xref: /linux/tools/perf/builtin-sched.c (revision f4f346c3465949ebba80c6cc52cd8d2eeaa545fd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5 
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/mutex.h"
11 #include "util/symbol.h"
12 #include "util/thread.h"
13 #include "util/header.h"
14 #include "util/session.h"
15 #include "util/tool.h"
16 #include "util/cloexec.h"
17 #include "util/thread_map.h"
18 #include "util/color.h"
19 #include "util/stat.h"
20 #include "util/string2.h"
21 #include "util/callchain.h"
22 #include "util/time-utils.h"
23 
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include "util/trace-event.h"
27 
28 #include "util/debug.h"
29 #include "util/event.h"
30 #include "util/util.h"
31 
32 #include <linux/kernel.h>
33 #include <linux/log2.h>
34 #include <linux/zalloc.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <inttypes.h>
38 
39 #include <errno.h>
40 #include <semaphore.h>
41 #include <pthread.h>
42 #include <math.h>
43 #include <api/fs/fs.h>
44 #include <perf/cpumap.h>
45 #include <linux/time64.h>
46 #include <linux/err.h>
47 
48 #include <linux/ctype.h>
49 
50 #define PR_SET_NAME		15               /* Set process name */
51 #define MAX_CPUS		4096
52 #define COMM_LEN		20
53 #define SYM_LEN			129
54 #define MAX_PID			1024000
55 #define MAX_PRIO		140
56 
57 static const char *cpu_list;
58 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
59 
60 struct sched_atom;
61 
62 struct task_desc {
63 	unsigned long		nr;
64 	unsigned long		pid;
65 	char			comm[COMM_LEN];
66 
67 	unsigned long		nr_events;
68 	unsigned long		curr_event;
69 	struct sched_atom	**atoms;
70 
71 	pthread_t		thread;
72 
73 	sem_t			ready_for_work;
74 	sem_t			work_done_sem;
75 
76 	u64			cpu_usage;
77 };
78 
79 enum sched_event_type {
80 	SCHED_EVENT_RUN,
81 	SCHED_EVENT_SLEEP,
82 	SCHED_EVENT_WAKEUP,
83 };
84 
85 struct sched_atom {
86 	enum sched_event_type	type;
87 	u64			timestamp;
88 	u64			duration;
89 	unsigned long		nr;
90 	sem_t			*wait_sem;
91 	struct task_desc	*wakee;
92 };
93 
94 enum thread_state {
95 	THREAD_SLEEPING = 0,
96 	THREAD_WAIT_CPU,
97 	THREAD_SCHED_IN,
98 	THREAD_IGNORE
99 };
100 
101 struct work_atom {
102 	struct list_head	list;
103 	enum thread_state	state;
104 	u64			sched_out_time;
105 	u64			wake_up_time;
106 	u64			sched_in_time;
107 	u64			runtime;
108 };
109 
110 struct work_atoms {
111 	struct list_head	work_list;
112 	struct thread		*thread;
113 	struct rb_node		node;
114 	u64			max_lat;
115 	u64			max_lat_start;
116 	u64			max_lat_end;
117 	u64			total_lat;
118 	u64			nb_atoms;
119 	u64			total_runtime;
120 	int			num_merged;
121 };
122 
123 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
124 
125 struct perf_sched;
126 
127 struct trace_sched_handler {
128 	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
129 			    struct perf_sample *sample, struct machine *machine);
130 
131 	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
132 			     struct perf_sample *sample, struct machine *machine);
133 
134 	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
135 			    struct perf_sample *sample, struct machine *machine);
136 
137 	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
138 	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
139 			  struct machine *machine);
140 
141 	int (*migrate_task_event)(struct perf_sched *sched,
142 				  struct evsel *evsel,
143 				  struct perf_sample *sample,
144 				  struct machine *machine);
145 };
146 
147 #define COLOR_PIDS PERF_COLOR_BLUE
148 #define COLOR_CPUS PERF_COLOR_BG_RED
149 
150 struct perf_sched_map {
151 	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
152 	struct perf_cpu		*comp_cpus;
153 	bool			 comp;
154 	struct perf_thread_map *color_pids;
155 	const char		*color_pids_str;
156 	struct perf_cpu_map	*color_cpus;
157 	const char		*color_cpus_str;
158 	const char		*task_name;
159 	struct strlist		*task_names;
160 	bool			fuzzy;
161 	struct perf_cpu_map	*cpus;
162 	const char		*cpus_str;
163 };
164 
165 struct perf_sched {
166 	struct perf_tool tool;
167 	const char	 *sort_order;
168 	unsigned long	 nr_tasks;
169 	struct task_desc **pid_to_task;
170 	struct task_desc **tasks;
171 	const struct trace_sched_handler *tp_handler;
172 	struct mutex	 start_work_mutex;
173 	struct mutex	 work_done_wait_mutex;
174 	int		 profile_cpu;
175 /*
176  * Track the current task - that way we can know whether there's any
177  * weird events, such as a task being switched away that is not current.
178  */
179 	struct perf_cpu	 max_cpu;
180 	u32		 *curr_pid;
181 	struct thread	 **curr_thread;
182 	struct thread	 **curr_out_thread;
183 	char		 next_shortname1;
184 	char		 next_shortname2;
185 	unsigned int	 replay_repeat;
186 	unsigned long	 nr_run_events;
187 	unsigned long	 nr_sleep_events;
188 	unsigned long	 nr_wakeup_events;
189 	unsigned long	 nr_sleep_corrections;
190 	unsigned long	 nr_run_events_optimized;
191 	unsigned long	 targetless_wakeups;
192 	unsigned long	 multitarget_wakeups;
193 	unsigned long	 nr_runs;
194 	unsigned long	 nr_timestamps;
195 	unsigned long	 nr_unordered_timestamps;
196 	unsigned long	 nr_context_switch_bugs;
197 	unsigned long	 nr_events;
198 	unsigned long	 nr_lost_chunks;
199 	unsigned long	 nr_lost_events;
200 	u64		 run_measurement_overhead;
201 	u64		 sleep_measurement_overhead;
202 	u64		 start_time;
203 	u64		 cpu_usage;
204 	u64		 runavg_cpu_usage;
205 	u64		 parent_cpu_usage;
206 	u64		 runavg_parent_cpu_usage;
207 	u64		 sum_runtime;
208 	u64		 sum_fluct;
209 	u64		 run_avg;
210 	u64		 all_runtime;
211 	u64		 all_count;
212 	u64		 *cpu_last_switched;
213 	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
214 	struct list_head sort_list, cmp_pid;
215 	bool force;
216 	bool skip_merge;
217 	struct perf_sched_map map;
218 
219 	/* options for timehist command */
220 	bool		summary;
221 	bool		summary_only;
222 	bool		idle_hist;
223 	bool		show_callchain;
224 	unsigned int	max_stack;
225 	bool		show_cpu_visual;
226 	bool		show_wakeups;
227 	bool		show_next;
228 	bool		show_migrations;
229 	bool		pre_migrations;
230 	bool		show_state;
231 	bool		show_prio;
232 	u64		skipped_samples;
233 	const char	*time_str;
234 	struct perf_time_interval ptime;
235 	struct perf_time_interval hist_time;
236 	volatile bool   thread_funcs_exit;
237 	const char	*prio_str;
238 	DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
239 };
240 
241 /* per thread run time data */
242 struct thread_runtime {
243 	u64 last_time;      /* time of previous sched in/out event */
244 	u64 dt_run;         /* run time */
245 	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
246 	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
247 	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
248 	u64 dt_delay;       /* time between wakeup and sched-in */
249 	u64 dt_pre_mig;     /* time between migration and wakeup */
250 	u64 ready_to_run;   /* time of wakeup */
251 	u64 migrated;	    /* time when a thread is migrated */
252 
253 	struct stats run_stats;
254 	u64 total_run_time;
255 	u64 total_sleep_time;
256 	u64 total_iowait_time;
257 	u64 total_preempt_time;
258 	u64 total_delay_time;
259 	u64 total_pre_mig_time;
260 
261 	char last_state;
262 
263 	char shortname[3];
264 	bool comm_changed;
265 
266 	u64 migrations;
267 
268 	int prio;
269 };
270 
271 /* per event run time data */
272 struct evsel_runtime {
273 	u64 *last_time; /* time this event was last seen per cpu */
274 	u32 ncpu;       /* highest cpu slot allocated */
275 };
276 
277 /* per cpu idle time data */
278 struct idle_thread_runtime {
279 	struct thread_runtime	tr;
280 	struct thread		*last_thread;
281 	struct rb_root_cached	sorted_root;
282 	struct callchain_root	callchain;
283 	struct callchain_cursor	cursor;
284 };
285 
286 /* track idle times per cpu */
287 static struct thread **idle_threads;
288 static int idle_max_cpu;
289 static char idle_comm[] = "<idle>";
290 
get_nsecs(void)291 static u64 get_nsecs(void)
292 {
293 	struct timespec ts;
294 
295 	clock_gettime(CLOCK_MONOTONIC, &ts);
296 
297 	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298 }
299 
burn_nsecs(struct perf_sched * sched,u64 nsecs)300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301 {
302 	u64 T0 = get_nsecs(), T1;
303 
304 	do {
305 		T1 = get_nsecs();
306 	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307 }
308 
sleep_nsecs(u64 nsecs)309 static void sleep_nsecs(u64 nsecs)
310 {
311 	struct timespec ts;
312 
313 	ts.tv_nsec = nsecs % 999999999;
314 	ts.tv_sec = nsecs / 999999999;
315 
316 	nanosleep(&ts, NULL);
317 }
318 
calibrate_run_measurement_overhead(struct perf_sched * sched)319 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320 {
321 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322 	int i;
323 
324 	for (i = 0; i < 10; i++) {
325 		T0 = get_nsecs();
326 		burn_nsecs(sched, 0);
327 		T1 = get_nsecs();
328 		delta = T1-T0;
329 		min_delta = min(min_delta, delta);
330 	}
331 	sched->run_measurement_overhead = min_delta;
332 
333 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334 }
335 
calibrate_sleep_measurement_overhead(struct perf_sched * sched)336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337 {
338 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339 	int i;
340 
341 	for (i = 0; i < 10; i++) {
342 		T0 = get_nsecs();
343 		sleep_nsecs(10000);
344 		T1 = get_nsecs();
345 		delta = T1-T0;
346 		min_delta = min(min_delta, delta);
347 	}
348 	min_delta -= 10000;
349 	sched->sleep_measurement_overhead = min_delta;
350 
351 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352 }
353 
354 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)355 get_new_event(struct task_desc *task, u64 timestamp)
356 {
357 	struct sched_atom *event = zalloc(sizeof(*event));
358 	unsigned long idx = task->nr_events;
359 	size_t size;
360 
361 	event->timestamp = timestamp;
362 	event->nr = idx;
363 
364 	task->nr_events++;
365 	size = sizeof(struct sched_atom *) * task->nr_events;
366 	task->atoms = realloc(task->atoms, size);
367 	BUG_ON(!task->atoms);
368 
369 	task->atoms[idx] = event;
370 
371 	return event;
372 }
373 
last_event(struct task_desc * task)374 static struct sched_atom *last_event(struct task_desc *task)
375 {
376 	if (!task->nr_events)
377 		return NULL;
378 
379 	return task->atoms[task->nr_events - 1];
380 }
381 
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383 				u64 timestamp, u64 duration)
384 {
385 	struct sched_atom *event, *curr_event = last_event(task);
386 
387 	/*
388 	 * optimize an existing RUN event by merging this one
389 	 * to it:
390 	 */
391 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392 		sched->nr_run_events_optimized++;
393 		curr_event->duration += duration;
394 		return;
395 	}
396 
397 	event = get_new_event(task, timestamp);
398 
399 	event->type = SCHED_EVENT_RUN;
400 	event->duration = duration;
401 
402 	sched->nr_run_events++;
403 }
404 
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406 				   u64 timestamp, struct task_desc *wakee)
407 {
408 	struct sched_atom *event, *wakee_event;
409 
410 	event = get_new_event(task, timestamp);
411 	event->type = SCHED_EVENT_WAKEUP;
412 	event->wakee = wakee;
413 
414 	wakee_event = last_event(wakee);
415 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416 		sched->targetless_wakeups++;
417 		return;
418 	}
419 	if (wakee_event->wait_sem) {
420 		sched->multitarget_wakeups++;
421 		return;
422 	}
423 
424 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425 	sem_init(wakee_event->wait_sem, 0, 0);
426 	event->wait_sem = wakee_event->wait_sem;
427 
428 	sched->nr_wakeup_events++;
429 }
430 
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp)431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
432 				  u64 timestamp)
433 {
434 	struct sched_atom *event = get_new_event(task, timestamp);
435 
436 	event->type = SCHED_EVENT_SLEEP;
437 
438 	sched->nr_sleep_events++;
439 }
440 
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)441 static struct task_desc *register_pid(struct perf_sched *sched,
442 				      unsigned long pid, const char *comm)
443 {
444 	struct task_desc *task;
445 	static int pid_max;
446 
447 	if (sched->pid_to_task == NULL) {
448 		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
449 			pid_max = MAX_PID;
450 		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
451 	}
452 	if (pid >= (unsigned long)pid_max) {
453 		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
454 			sizeof(struct task_desc *))) == NULL);
455 		while (pid >= (unsigned long)pid_max)
456 			sched->pid_to_task[pid_max++] = NULL;
457 	}
458 
459 	task = sched->pid_to_task[pid];
460 
461 	if (task)
462 		return task;
463 
464 	task = zalloc(sizeof(*task));
465 	task->pid = pid;
466 	task->nr = sched->nr_tasks;
467 	strcpy(task->comm, comm);
468 	/*
469 	 * every task starts in sleeping state - this gets ignored
470 	 * if there's no wakeup pointing to this sleep state:
471 	 */
472 	add_sched_event_sleep(sched, task, 0);
473 
474 	sched->pid_to_task[pid] = task;
475 	sched->nr_tasks++;
476 	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
477 	BUG_ON(!sched->tasks);
478 	sched->tasks[task->nr] = task;
479 
480 	if (verbose > 0)
481 		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
482 
483 	return task;
484 }
485 
486 
print_task_traces(struct perf_sched * sched)487 static void print_task_traces(struct perf_sched *sched)
488 {
489 	struct task_desc *task;
490 	unsigned long i;
491 
492 	for (i = 0; i < sched->nr_tasks; i++) {
493 		task = sched->tasks[i];
494 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
495 			task->nr, task->comm, task->pid, task->nr_events);
496 	}
497 }
498 
add_cross_task_wakeups(struct perf_sched * sched)499 static void add_cross_task_wakeups(struct perf_sched *sched)
500 {
501 	struct task_desc *task1, *task2;
502 	unsigned long i, j;
503 
504 	for (i = 0; i < sched->nr_tasks; i++) {
505 		task1 = sched->tasks[i];
506 		j = i + 1;
507 		if (j == sched->nr_tasks)
508 			j = 0;
509 		task2 = sched->tasks[j];
510 		add_sched_event_wakeup(sched, task1, 0, task2);
511 	}
512 }
513 
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)514 static void perf_sched__process_event(struct perf_sched *sched,
515 				      struct sched_atom *atom)
516 {
517 	int ret = 0;
518 
519 	switch (atom->type) {
520 		case SCHED_EVENT_RUN:
521 			burn_nsecs(sched, atom->duration);
522 			break;
523 		case SCHED_EVENT_SLEEP:
524 			if (atom->wait_sem)
525 				ret = sem_wait(atom->wait_sem);
526 			BUG_ON(ret);
527 			break;
528 		case SCHED_EVENT_WAKEUP:
529 			if (atom->wait_sem)
530 				ret = sem_post(atom->wait_sem);
531 			BUG_ON(ret);
532 			break;
533 		default:
534 			BUG_ON(1);
535 	}
536 }
537 
get_cpu_usage_nsec_parent(void)538 static u64 get_cpu_usage_nsec_parent(void)
539 {
540 	struct rusage ru;
541 	u64 sum;
542 	int err;
543 
544 	err = getrusage(RUSAGE_SELF, &ru);
545 	BUG_ON(err);
546 
547 	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
548 	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
549 
550 	return sum;
551 }
552 
self_open_counters(struct perf_sched * sched,unsigned long cur_task)553 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
554 {
555 	struct perf_event_attr attr;
556 	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
557 	int fd;
558 	struct rlimit limit;
559 	bool need_privilege = false;
560 
561 	memset(&attr, 0, sizeof(attr));
562 
563 	attr.type = PERF_TYPE_SOFTWARE;
564 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
565 
566 force_again:
567 	fd = sys_perf_event_open(&attr, 0, -1, -1,
568 				 perf_event_open_cloexec_flag());
569 
570 	if (fd < 0) {
571 		if (errno == EMFILE) {
572 			if (sched->force) {
573 				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
574 				limit.rlim_cur += sched->nr_tasks - cur_task;
575 				if (limit.rlim_cur > limit.rlim_max) {
576 					limit.rlim_max = limit.rlim_cur;
577 					need_privilege = true;
578 				}
579 				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
580 					if (need_privilege && errno == EPERM)
581 						strcpy(info, "Need privilege\n");
582 				} else
583 					goto force_again;
584 			} else
585 				strcpy(info, "Have a try with -f option\n");
586 		}
587 		pr_err("Error: sys_perf_event_open() syscall returned "
588 		       "with %d (%s)\n%s", fd,
589 		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
590 		exit(EXIT_FAILURE);
591 	}
592 	return fd;
593 }
594 
get_cpu_usage_nsec_self(int fd)595 static u64 get_cpu_usage_nsec_self(int fd)
596 {
597 	u64 runtime;
598 	int ret;
599 
600 	ret = read(fd, &runtime, sizeof(runtime));
601 	BUG_ON(ret != sizeof(runtime));
602 
603 	return runtime;
604 }
605 
606 struct sched_thread_parms {
607 	struct task_desc  *task;
608 	struct perf_sched *sched;
609 	int fd;
610 };
611 
thread_func(void * ctx)612 static void *thread_func(void *ctx)
613 {
614 	struct sched_thread_parms *parms = ctx;
615 	struct task_desc *this_task = parms->task;
616 	struct perf_sched *sched = parms->sched;
617 	u64 cpu_usage_0, cpu_usage_1;
618 	unsigned long i, ret;
619 	char comm2[22];
620 	int fd = parms->fd;
621 
622 	zfree(&parms);
623 
624 	sprintf(comm2, ":%s", this_task->comm);
625 	prctl(PR_SET_NAME, comm2);
626 	if (fd < 0)
627 		return NULL;
628 
629 	while (!sched->thread_funcs_exit) {
630 		ret = sem_post(&this_task->ready_for_work);
631 		BUG_ON(ret);
632 		mutex_lock(&sched->start_work_mutex);
633 		mutex_unlock(&sched->start_work_mutex);
634 
635 		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
636 
637 		for (i = 0; i < this_task->nr_events; i++) {
638 			this_task->curr_event = i;
639 			perf_sched__process_event(sched, this_task->atoms[i]);
640 		}
641 
642 		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
643 		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
644 		ret = sem_post(&this_task->work_done_sem);
645 		BUG_ON(ret);
646 
647 		mutex_lock(&sched->work_done_wait_mutex);
648 		mutex_unlock(&sched->work_done_wait_mutex);
649 	}
650 	return NULL;
651 }
652 
create_tasks(struct perf_sched * sched)653 static void create_tasks(struct perf_sched *sched)
654 	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
655 	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
656 {
657 	struct task_desc *task;
658 	pthread_attr_t attr;
659 	unsigned long i;
660 	int err;
661 
662 	err = pthread_attr_init(&attr);
663 	BUG_ON(err);
664 	err = pthread_attr_setstacksize(&attr,
665 			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
666 	BUG_ON(err);
667 	mutex_lock(&sched->start_work_mutex);
668 	mutex_lock(&sched->work_done_wait_mutex);
669 	for (i = 0; i < sched->nr_tasks; i++) {
670 		struct sched_thread_parms *parms = malloc(sizeof(*parms));
671 		BUG_ON(parms == NULL);
672 		parms->task = task = sched->tasks[i];
673 		parms->sched = sched;
674 		parms->fd = self_open_counters(sched, i);
675 		sem_init(&task->ready_for_work, 0, 0);
676 		sem_init(&task->work_done_sem, 0, 0);
677 		task->curr_event = 0;
678 		err = pthread_create(&task->thread, &attr, thread_func, parms);
679 		BUG_ON(err);
680 	}
681 }
682 
destroy_tasks(struct perf_sched * sched)683 static void destroy_tasks(struct perf_sched *sched)
684 	UNLOCK_FUNCTION(sched->start_work_mutex)
685 	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
686 {
687 	struct task_desc *task;
688 	unsigned long i;
689 	int err;
690 
691 	mutex_unlock(&sched->start_work_mutex);
692 	mutex_unlock(&sched->work_done_wait_mutex);
693 	/* Get rid of threads so they won't be upset by mutex destrunction */
694 	for (i = 0; i < sched->nr_tasks; i++) {
695 		task = sched->tasks[i];
696 		err = pthread_join(task->thread, NULL);
697 		BUG_ON(err);
698 		sem_destroy(&task->ready_for_work);
699 		sem_destroy(&task->work_done_sem);
700 	}
701 }
702 
wait_for_tasks(struct perf_sched * sched)703 static void wait_for_tasks(struct perf_sched *sched)
704 	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
705 	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
706 {
707 	u64 cpu_usage_0, cpu_usage_1;
708 	struct task_desc *task;
709 	unsigned long i, ret;
710 
711 	sched->start_time = get_nsecs();
712 	sched->cpu_usage = 0;
713 	mutex_unlock(&sched->work_done_wait_mutex);
714 
715 	for (i = 0; i < sched->nr_tasks; i++) {
716 		task = sched->tasks[i];
717 		ret = sem_wait(&task->ready_for_work);
718 		BUG_ON(ret);
719 		sem_init(&task->ready_for_work, 0, 0);
720 	}
721 	mutex_lock(&sched->work_done_wait_mutex);
722 
723 	cpu_usage_0 = get_cpu_usage_nsec_parent();
724 
725 	mutex_unlock(&sched->start_work_mutex);
726 
727 	for (i = 0; i < sched->nr_tasks; i++) {
728 		task = sched->tasks[i];
729 		ret = sem_wait(&task->work_done_sem);
730 		BUG_ON(ret);
731 		sem_init(&task->work_done_sem, 0, 0);
732 		sched->cpu_usage += task->cpu_usage;
733 		task->cpu_usage = 0;
734 	}
735 
736 	cpu_usage_1 = get_cpu_usage_nsec_parent();
737 	if (!sched->runavg_cpu_usage)
738 		sched->runavg_cpu_usage = sched->cpu_usage;
739 	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
740 
741 	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
742 	if (!sched->runavg_parent_cpu_usage)
743 		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
744 	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
745 					 sched->parent_cpu_usage)/sched->replay_repeat;
746 
747 	mutex_lock(&sched->start_work_mutex);
748 
749 	for (i = 0; i < sched->nr_tasks; i++) {
750 		task = sched->tasks[i];
751 		task->curr_event = 0;
752 	}
753 }
754 
run_one_test(struct perf_sched * sched)755 static void run_one_test(struct perf_sched *sched)
756 	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
757 	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
758 {
759 	u64 T0, T1, delta, avg_delta, fluct;
760 
761 	T0 = get_nsecs();
762 	wait_for_tasks(sched);
763 	T1 = get_nsecs();
764 
765 	delta = T1 - T0;
766 	sched->sum_runtime += delta;
767 	sched->nr_runs++;
768 
769 	avg_delta = sched->sum_runtime / sched->nr_runs;
770 	if (delta < avg_delta)
771 		fluct = avg_delta - delta;
772 	else
773 		fluct = delta - avg_delta;
774 	sched->sum_fluct += fluct;
775 	if (!sched->run_avg)
776 		sched->run_avg = delta;
777 	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
778 
779 	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
780 
781 	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
782 
783 	printf("cpu: %0.2f / %0.2f",
784 		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
785 
786 #if 0
787 	/*
788 	 * rusage statistics done by the parent, these are less
789 	 * accurate than the sched->sum_exec_runtime based statistics:
790 	 */
791 	printf(" [%0.2f / %0.2f]",
792 		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
793 		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
794 #endif
795 
796 	printf("\n");
797 
798 	if (sched->nr_sleep_corrections)
799 		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
800 	sched->nr_sleep_corrections = 0;
801 }
802 
test_calibrations(struct perf_sched * sched)803 static void test_calibrations(struct perf_sched *sched)
804 {
805 	u64 T0, T1;
806 
807 	T0 = get_nsecs();
808 	burn_nsecs(sched, NSEC_PER_MSEC);
809 	T1 = get_nsecs();
810 
811 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
812 
813 	T0 = get_nsecs();
814 	sleep_nsecs(NSEC_PER_MSEC);
815 	T1 = get_nsecs();
816 
817 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
818 }
819 
820 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)821 replay_wakeup_event(struct perf_sched *sched,
822 		    struct evsel *evsel, struct perf_sample *sample,
823 		    struct machine *machine __maybe_unused)
824 {
825 	const char *comm = evsel__strval(evsel, sample, "comm");
826 	const u32 pid	 = evsel__intval(evsel, sample, "pid");
827 	struct task_desc *waker, *wakee;
828 
829 	if (verbose > 0) {
830 		printf("sched_wakeup event %p\n", evsel);
831 
832 		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
833 	}
834 
835 	waker = register_pid(sched, sample->tid, "<unknown>");
836 	wakee = register_pid(sched, pid, comm);
837 
838 	add_sched_event_wakeup(sched, waker, sample->time, wakee);
839 	return 0;
840 }
841 
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)842 static int replay_switch_event(struct perf_sched *sched,
843 			       struct evsel *evsel,
844 			       struct perf_sample *sample,
845 			       struct machine *machine __maybe_unused)
846 {
847 	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
848 		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
849 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
850 		  next_pid = evsel__intval(evsel, sample, "next_pid");
851 	struct task_desc *prev, __maybe_unused *next;
852 	u64 timestamp0, timestamp = sample->time;
853 	int cpu = sample->cpu;
854 	s64 delta;
855 
856 	if (verbose > 0)
857 		printf("sched_switch event %p\n", evsel);
858 
859 	if (cpu >= MAX_CPUS || cpu < 0)
860 		return 0;
861 
862 	timestamp0 = sched->cpu_last_switched[cpu];
863 	if (timestamp0)
864 		delta = timestamp - timestamp0;
865 	else
866 		delta = 0;
867 
868 	if (delta < 0) {
869 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
870 		return -1;
871 	}
872 
873 	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
874 		 prev_comm, prev_pid, next_comm, next_pid, delta);
875 
876 	prev = register_pid(sched, prev_pid, prev_comm);
877 	next = register_pid(sched, next_pid, next_comm);
878 
879 	sched->cpu_last_switched[cpu] = timestamp;
880 
881 	add_sched_event_run(sched, prev, timestamp, delta);
882 	add_sched_event_sleep(sched, prev, timestamp);
883 
884 	return 0;
885 }
886 
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)887 static int replay_fork_event(struct perf_sched *sched,
888 			     union perf_event *event,
889 			     struct machine *machine)
890 {
891 	struct thread *child, *parent;
892 
893 	child = machine__findnew_thread(machine, event->fork.pid,
894 					event->fork.tid);
895 	parent = machine__findnew_thread(machine, event->fork.ppid,
896 					 event->fork.ptid);
897 
898 	if (child == NULL || parent == NULL) {
899 		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
900 				 child, parent);
901 		goto out_put;
902 	}
903 
904 	if (verbose > 0) {
905 		printf("fork event\n");
906 		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
907 		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
908 	}
909 
910 	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
911 	register_pid(sched, thread__tid(child), thread__comm_str(child));
912 out_put:
913 	thread__put(child);
914 	thread__put(parent);
915 	return 0;
916 }
917 
918 struct sort_dimension {
919 	const char		*name;
920 	sort_fn_t		cmp;
921 	struct list_head	list;
922 };
923 
init_prio(struct thread_runtime * r)924 static inline void init_prio(struct thread_runtime *r)
925 {
926 	r->prio = -1;
927 }
928 
929 /*
930  * handle runtime stats saved per thread
931  */
thread__init_runtime(struct thread * thread)932 static struct thread_runtime *thread__init_runtime(struct thread *thread)
933 {
934 	struct thread_runtime *r;
935 
936 	r = zalloc(sizeof(struct thread_runtime));
937 	if (!r)
938 		return NULL;
939 
940 	init_stats(&r->run_stats);
941 	init_prio(r);
942 	thread__set_priv(thread, r);
943 
944 	return r;
945 }
946 
thread__get_runtime(struct thread * thread)947 static struct thread_runtime *thread__get_runtime(struct thread *thread)
948 {
949 	struct thread_runtime *tr;
950 
951 	tr = thread__priv(thread);
952 	if (tr == NULL) {
953 		tr = thread__init_runtime(thread);
954 		if (tr == NULL)
955 			pr_debug("Failed to malloc memory for runtime data.\n");
956 	}
957 
958 	return tr;
959 }
960 
961 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)962 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
963 {
964 	struct sort_dimension *sort;
965 	int ret = 0;
966 
967 	BUG_ON(list_empty(list));
968 
969 	list_for_each_entry(sort, list, list) {
970 		ret = sort->cmp(l, r);
971 		if (ret)
972 			return ret;
973 	}
974 
975 	return ret;
976 }
977 
978 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)979 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
980 			 struct list_head *sort_list)
981 {
982 	struct rb_node *node = root->rb_root.rb_node;
983 	struct work_atoms key = { .thread = thread };
984 
985 	while (node) {
986 		struct work_atoms *atoms;
987 		int cmp;
988 
989 		atoms = container_of(node, struct work_atoms, node);
990 
991 		cmp = thread_lat_cmp(sort_list, &key, atoms);
992 		if (cmp > 0)
993 			node = node->rb_left;
994 		else if (cmp < 0)
995 			node = node->rb_right;
996 		else {
997 			BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread));
998 			return atoms;
999 		}
1000 	}
1001 	return NULL;
1002 }
1003 
1004 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)1005 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1006 			 struct list_head *sort_list)
1007 {
1008 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1009 	bool leftmost = true;
1010 
1011 	while (*new) {
1012 		struct work_atoms *this;
1013 		int cmp;
1014 
1015 		this = container_of(*new, struct work_atoms, node);
1016 		parent = *new;
1017 
1018 		cmp = thread_lat_cmp(sort_list, data, this);
1019 
1020 		if (cmp > 0)
1021 			new = &((*new)->rb_left);
1022 		else {
1023 			new = &((*new)->rb_right);
1024 			leftmost = false;
1025 		}
1026 	}
1027 
1028 	rb_link_node(&data->node, parent, new);
1029 	rb_insert_color_cached(&data->node, root, leftmost);
1030 }
1031 
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1032 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1033 {
1034 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1035 	if (!atoms) {
1036 		pr_err("No memory at %s\n", __func__);
1037 		return -1;
1038 	}
1039 
1040 	atoms->thread = thread__get(thread);
1041 	INIT_LIST_HEAD(&atoms->work_list);
1042 	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1043 	return 0;
1044 }
1045 
1046 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1047 add_sched_out_event(struct work_atoms *atoms,
1048 		    char run_state,
1049 		    u64 timestamp)
1050 {
1051 	struct work_atom *atom = zalloc(sizeof(*atom));
1052 	if (!atom) {
1053 		pr_err("Non memory at %s", __func__);
1054 		return -1;
1055 	}
1056 
1057 	atom->sched_out_time = timestamp;
1058 
1059 	if (run_state == 'R') {
1060 		atom->state = THREAD_WAIT_CPU;
1061 		atom->wake_up_time = atom->sched_out_time;
1062 	}
1063 
1064 	list_add_tail(&atom->list, &atoms->work_list);
1065 	return 0;
1066 }
1067 
1068 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1069 add_runtime_event(struct work_atoms *atoms, u64 delta,
1070 		  u64 timestamp __maybe_unused)
1071 {
1072 	struct work_atom *atom;
1073 
1074 	BUG_ON(list_empty(&atoms->work_list));
1075 
1076 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1077 
1078 	atom->runtime += delta;
1079 	atoms->total_runtime += delta;
1080 }
1081 
1082 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1083 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1084 {
1085 	struct work_atom *atom;
1086 	u64 delta;
1087 
1088 	if (list_empty(&atoms->work_list))
1089 		return;
1090 
1091 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092 
1093 	if (atom->state != THREAD_WAIT_CPU)
1094 		return;
1095 
1096 	if (timestamp < atom->wake_up_time) {
1097 		atom->state = THREAD_IGNORE;
1098 		return;
1099 	}
1100 
1101 	atom->state = THREAD_SCHED_IN;
1102 	atom->sched_in_time = timestamp;
1103 
1104 	delta = atom->sched_in_time - atom->wake_up_time;
1105 	atoms->total_lat += delta;
1106 	if (delta > atoms->max_lat) {
1107 		atoms->max_lat = delta;
1108 		atoms->max_lat_start = atom->wake_up_time;
1109 		atoms->max_lat_end = timestamp;
1110 	}
1111 	atoms->nb_atoms++;
1112 }
1113 
free_work_atoms(struct work_atoms * atoms)1114 static void free_work_atoms(struct work_atoms *atoms)
1115 {
1116 	struct work_atom *atom, *tmp;
1117 
1118 	if (atoms == NULL)
1119 		return;
1120 
1121 	list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) {
1122 		list_del(&atom->list);
1123 		free(atom);
1124 	}
1125 	thread__zput(atoms->thread);
1126 	free(atoms);
1127 }
1128 
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1129 static int latency_switch_event(struct perf_sched *sched,
1130 				struct evsel *evsel,
1131 				struct perf_sample *sample,
1132 				struct machine *machine)
1133 {
1134 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1135 		  next_pid = evsel__intval(evsel, sample, "next_pid");
1136 	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1137 	struct work_atoms *out_events, *in_events;
1138 	struct thread *sched_out, *sched_in;
1139 	u64 timestamp0, timestamp = sample->time;
1140 	int cpu = sample->cpu, err = -1;
1141 	s64 delta;
1142 
1143 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1144 
1145 	timestamp0 = sched->cpu_last_switched[cpu];
1146 	sched->cpu_last_switched[cpu] = timestamp;
1147 	if (timestamp0)
1148 		delta = timestamp - timestamp0;
1149 	else
1150 		delta = 0;
1151 
1152 	if (delta < 0) {
1153 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1154 		return -1;
1155 	}
1156 
1157 	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1158 	sched_in = machine__findnew_thread(machine, -1, next_pid);
1159 	if (sched_out == NULL || sched_in == NULL)
1160 		goto out_put;
1161 
1162 	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1163 	if (!out_events) {
1164 		if (thread_atoms_insert(sched, sched_out))
1165 			goto out_put;
1166 		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1167 		if (!out_events) {
1168 			pr_err("out-event: Internal tree error");
1169 			goto out_put;
1170 		}
1171 	}
1172 	if (add_sched_out_event(out_events, prev_state, timestamp))
1173 		return -1;
1174 
1175 	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1176 	if (!in_events) {
1177 		if (thread_atoms_insert(sched, sched_in))
1178 			goto out_put;
1179 		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1180 		if (!in_events) {
1181 			pr_err("in-event: Internal tree error");
1182 			goto out_put;
1183 		}
1184 		/*
1185 		 * Take came in we have not heard about yet,
1186 		 * add in an initial atom in runnable state:
1187 		 */
1188 		if (add_sched_out_event(in_events, 'R', timestamp))
1189 			goto out_put;
1190 	}
1191 	add_sched_in_event(in_events, timestamp);
1192 	err = 0;
1193 out_put:
1194 	thread__put(sched_out);
1195 	thread__put(sched_in);
1196 	return err;
1197 }
1198 
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1199 static int latency_runtime_event(struct perf_sched *sched,
1200 				 struct evsel *evsel,
1201 				 struct perf_sample *sample,
1202 				 struct machine *machine)
1203 {
1204 	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1205 	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1206 	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1207 	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1208 	u64 timestamp = sample->time;
1209 	int cpu = sample->cpu, err = -1;
1210 
1211 	if (thread == NULL)
1212 		return -1;
1213 
1214 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1215 	if (!atoms) {
1216 		if (thread_atoms_insert(sched, thread))
1217 			goto out_put;
1218 		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1219 		if (!atoms) {
1220 			pr_err("in-event: Internal tree error");
1221 			goto out_put;
1222 		}
1223 		if (add_sched_out_event(atoms, 'R', timestamp))
1224 			goto out_put;
1225 	}
1226 
1227 	add_runtime_event(atoms, runtime, timestamp);
1228 	err = 0;
1229 out_put:
1230 	thread__put(thread);
1231 	return err;
1232 }
1233 
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1234 static int latency_wakeup_event(struct perf_sched *sched,
1235 				struct evsel *evsel,
1236 				struct perf_sample *sample,
1237 				struct machine *machine)
1238 {
1239 	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1240 	struct work_atoms *atoms;
1241 	struct work_atom *atom;
1242 	struct thread *wakee;
1243 	u64 timestamp = sample->time;
1244 	int err = -1;
1245 
1246 	wakee = machine__findnew_thread(machine, -1, pid);
1247 	if (wakee == NULL)
1248 		return -1;
1249 	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1250 	if (!atoms) {
1251 		if (thread_atoms_insert(sched, wakee))
1252 			goto out_put;
1253 		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1254 		if (!atoms) {
1255 			pr_err("wakeup-event: Internal tree error");
1256 			goto out_put;
1257 		}
1258 		if (add_sched_out_event(atoms, 'S', timestamp))
1259 			goto out_put;
1260 	}
1261 
1262 	BUG_ON(list_empty(&atoms->work_list));
1263 
1264 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1265 
1266 	/*
1267 	 * As we do not guarantee the wakeup event happens when
1268 	 * task is out of run queue, also may happen when task is
1269 	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1270 	 * then we should not set the ->wake_up_time when wake up a
1271 	 * task which is on run queue.
1272 	 *
1273 	 * You WILL be missing events if you've recorded only
1274 	 * one CPU, or are only looking at only one, so don't
1275 	 * skip in this case.
1276 	 */
1277 	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1278 		goto out_ok;
1279 
1280 	sched->nr_timestamps++;
1281 	if (atom->sched_out_time > timestamp) {
1282 		sched->nr_unordered_timestamps++;
1283 		goto out_ok;
1284 	}
1285 
1286 	atom->state = THREAD_WAIT_CPU;
1287 	atom->wake_up_time = timestamp;
1288 out_ok:
1289 	err = 0;
1290 out_put:
1291 	thread__put(wakee);
1292 	return err;
1293 }
1294 
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1295 static int latency_migrate_task_event(struct perf_sched *sched,
1296 				      struct evsel *evsel,
1297 				      struct perf_sample *sample,
1298 				      struct machine *machine)
1299 {
1300 	const u32 pid = evsel__intval(evsel, sample, "pid");
1301 	u64 timestamp = sample->time;
1302 	struct work_atoms *atoms;
1303 	struct work_atom *atom;
1304 	struct thread *migrant;
1305 	int err = -1;
1306 
1307 	/*
1308 	 * Only need to worry about migration when profiling one CPU.
1309 	 */
1310 	if (sched->profile_cpu == -1)
1311 		return 0;
1312 
1313 	migrant = machine__findnew_thread(machine, -1, pid);
1314 	if (migrant == NULL)
1315 		return -1;
1316 	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1317 	if (!atoms) {
1318 		if (thread_atoms_insert(sched, migrant))
1319 			goto out_put;
1320 		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1321 		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1322 		if (!atoms) {
1323 			pr_err("migration-event: Internal tree error");
1324 			goto out_put;
1325 		}
1326 		if (add_sched_out_event(atoms, 'R', timestamp))
1327 			goto out_put;
1328 	}
1329 
1330 	BUG_ON(list_empty(&atoms->work_list));
1331 
1332 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1333 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1334 
1335 	sched->nr_timestamps++;
1336 
1337 	if (atom->sched_out_time > timestamp)
1338 		sched->nr_unordered_timestamps++;
1339 	err = 0;
1340 out_put:
1341 	thread__put(migrant);
1342 	return err;
1343 }
1344 
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1345 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1346 {
1347 	int i;
1348 	int ret;
1349 	u64 avg;
1350 	char max_lat_start[32], max_lat_end[32];
1351 
1352 	if (!work_list->nb_atoms)
1353 		return;
1354 	/*
1355 	 * Ignore idle threads:
1356 	 */
1357 	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1358 		return;
1359 
1360 	sched->all_runtime += work_list->total_runtime;
1361 	sched->all_count   += work_list->nb_atoms;
1362 
1363 	if (work_list->num_merged > 1) {
1364 		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1365 			     work_list->num_merged);
1366 	} else {
1367 		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1368 			     thread__tid(work_list->thread));
1369 	}
1370 
1371 	for (i = 0; i < 24 - ret; i++)
1372 		printf(" ");
1373 
1374 	avg = work_list->total_lat / work_list->nb_atoms;
1375 	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1376 	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1377 
1378 	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1379 	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1380 		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1381 		 (double)work_list->max_lat / NSEC_PER_MSEC,
1382 		 max_lat_start, max_lat_end);
1383 }
1384 
pid_cmp(struct work_atoms * l,struct work_atoms * r)1385 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387 	pid_t l_tid, r_tid;
1388 
1389 	if (RC_CHK_EQUAL(l->thread, r->thread))
1390 		return 0;
1391 	l_tid = thread__tid(l->thread);
1392 	r_tid = thread__tid(r->thread);
1393 	if (l_tid < r_tid)
1394 		return -1;
1395 	if (l_tid > r_tid)
1396 		return 1;
1397 	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1398 }
1399 
avg_cmp(struct work_atoms * l,struct work_atoms * r)1400 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1401 {
1402 	u64 avgl, avgr;
1403 
1404 	if (!l->nb_atoms)
1405 		return -1;
1406 
1407 	if (!r->nb_atoms)
1408 		return 1;
1409 
1410 	avgl = l->total_lat / l->nb_atoms;
1411 	avgr = r->total_lat / r->nb_atoms;
1412 
1413 	if (avgl < avgr)
1414 		return -1;
1415 	if (avgl > avgr)
1416 		return 1;
1417 
1418 	return 0;
1419 }
1420 
max_cmp(struct work_atoms * l,struct work_atoms * r)1421 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1422 {
1423 	if (l->max_lat < r->max_lat)
1424 		return -1;
1425 	if (l->max_lat > r->max_lat)
1426 		return 1;
1427 
1428 	return 0;
1429 }
1430 
switch_cmp(struct work_atoms * l,struct work_atoms * r)1431 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1432 {
1433 	if (l->nb_atoms < r->nb_atoms)
1434 		return -1;
1435 	if (l->nb_atoms > r->nb_atoms)
1436 		return 1;
1437 
1438 	return 0;
1439 }
1440 
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1441 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1442 {
1443 	if (l->total_runtime < r->total_runtime)
1444 		return -1;
1445 	if (l->total_runtime > r->total_runtime)
1446 		return 1;
1447 
1448 	return 0;
1449 }
1450 
sort_dimension__add(const char * tok,struct list_head * list)1451 static int sort_dimension__add(const char *tok, struct list_head *list)
1452 {
1453 	size_t i;
1454 	static struct sort_dimension avg_sort_dimension = {
1455 		.name = "avg",
1456 		.cmp  = avg_cmp,
1457 	};
1458 	static struct sort_dimension max_sort_dimension = {
1459 		.name = "max",
1460 		.cmp  = max_cmp,
1461 	};
1462 	static struct sort_dimension pid_sort_dimension = {
1463 		.name = "pid",
1464 		.cmp  = pid_cmp,
1465 	};
1466 	static struct sort_dimension runtime_sort_dimension = {
1467 		.name = "runtime",
1468 		.cmp  = runtime_cmp,
1469 	};
1470 	static struct sort_dimension switch_sort_dimension = {
1471 		.name = "switch",
1472 		.cmp  = switch_cmp,
1473 	};
1474 	struct sort_dimension *available_sorts[] = {
1475 		&pid_sort_dimension,
1476 		&avg_sort_dimension,
1477 		&max_sort_dimension,
1478 		&switch_sort_dimension,
1479 		&runtime_sort_dimension,
1480 	};
1481 
1482 	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1483 		if (!strcmp(available_sorts[i]->name, tok)) {
1484 			list_add_tail(&available_sorts[i]->list, list);
1485 
1486 			return 0;
1487 		}
1488 	}
1489 
1490 	return -1;
1491 }
1492 
perf_sched__sort_lat(struct perf_sched * sched)1493 static void perf_sched__sort_lat(struct perf_sched *sched)
1494 {
1495 	struct rb_node *node;
1496 	struct rb_root_cached *root = &sched->atom_root;
1497 again:
1498 	for (;;) {
1499 		struct work_atoms *data;
1500 		node = rb_first_cached(root);
1501 		if (!node)
1502 			break;
1503 
1504 		rb_erase_cached(node, root);
1505 		data = rb_entry(node, struct work_atoms, node);
1506 		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1507 	}
1508 	if (root == &sched->atom_root) {
1509 		root = &sched->merged_atom_root;
1510 		goto again;
1511 	}
1512 }
1513 
process_sched_wakeup_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1514 static int process_sched_wakeup_event(const struct perf_tool *tool,
1515 				      struct evsel *evsel,
1516 				      struct perf_sample *sample,
1517 				      struct machine *machine)
1518 {
1519 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1520 
1521 	if (sched->tp_handler->wakeup_event)
1522 		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1523 
1524 	return 0;
1525 }
1526 
process_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1527 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1528 				      struct evsel *evsel __maybe_unused,
1529 				      struct perf_sample *sample __maybe_unused,
1530 				      struct machine *machine __maybe_unused)
1531 {
1532 	return 0;
1533 }
1534 
1535 union map_priv {
1536 	void	*ptr;
1537 	bool	 color;
1538 };
1539 
thread__has_color(struct thread * thread)1540 static bool thread__has_color(struct thread *thread)
1541 {
1542 	union map_priv priv = {
1543 		.ptr = thread__priv(thread),
1544 	};
1545 
1546 	return priv.color;
1547 }
1548 
1549 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1550 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1551 {
1552 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1553 	union map_priv priv = {
1554 		.color = false,
1555 	};
1556 
1557 	if (!sched->map.color_pids || !thread || thread__priv(thread))
1558 		return thread;
1559 
1560 	if (thread_map__has(sched->map.color_pids, tid))
1561 		priv.color = true;
1562 
1563 	thread__set_priv(thread, priv.ptr);
1564 	return thread;
1565 }
1566 
sched_match_task(struct perf_sched * sched,const char * comm_str)1567 static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1568 {
1569 	bool fuzzy_match = sched->map.fuzzy;
1570 	struct strlist *task_names = sched->map.task_names;
1571 	struct str_node *node;
1572 
1573 	strlist__for_each_entry(node, task_names) {
1574 		bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1575 							!strcmp(comm_str, node->s);
1576 		if (match_found)
1577 			return true;
1578 	}
1579 
1580 	return false;
1581 }
1582 
print_sched_map(struct perf_sched * sched,struct perf_cpu this_cpu,int cpus_nr,const char * color,bool sched_out)1583 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1584 								const char *color, bool sched_out)
1585 {
1586 	for (int i = 0; i < cpus_nr; i++) {
1587 		struct perf_cpu cpu = {
1588 			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1589 		};
1590 		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1591 		struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1592 		struct thread_runtime *curr_tr;
1593 		const char *pid_color = color;
1594 		const char *cpu_color = color;
1595 		char symbol = ' ';
1596 		struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1597 
1598 		if (thread_to_check && thread__has_color(thread_to_check))
1599 			pid_color = COLOR_PIDS;
1600 
1601 		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1602 			cpu_color = COLOR_CPUS;
1603 
1604 		if (cpu.cpu == this_cpu.cpu)
1605 			symbol = '*';
1606 
1607 		color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1608 
1609 		thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1610 								sched->curr_thread[cpu.cpu];
1611 
1612 		if (thread_to_check) {
1613 			curr_tr = thread__get_runtime(thread_to_check);
1614 			if (curr_tr == NULL)
1615 				return;
1616 
1617 			if (sched_out) {
1618 				if (cpu.cpu == this_cpu.cpu)
1619 					color_fprintf(stdout, color, "-  ");
1620 				else {
1621 					curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1622 					if (curr_tr != NULL)
1623 						color_fprintf(stdout, pid_color, "%2s ",
1624 										curr_tr->shortname);
1625 				}
1626 			} else
1627 				color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1628 		} else
1629 			color_fprintf(stdout, color, "   ");
1630 	}
1631 }
1632 
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1633 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1634 			    struct perf_sample *sample, struct machine *machine)
1635 {
1636 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1637 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1638 	struct thread *sched_in, *sched_out;
1639 	struct thread_runtime *tr;
1640 	int new_shortname;
1641 	u64 timestamp0, timestamp = sample->time;
1642 	s64 delta;
1643 	struct perf_cpu this_cpu = {
1644 		.cpu = sample->cpu,
1645 	};
1646 	int cpus_nr;
1647 	int proceed;
1648 	bool new_cpu = false;
1649 	const char *color = PERF_COLOR_NORMAL;
1650 	char stimestamp[32];
1651 	const char *str;
1652 	int ret = -1;
1653 
1654 	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1655 
1656 	if (this_cpu.cpu > sched->max_cpu.cpu)
1657 		sched->max_cpu = this_cpu;
1658 
1659 	if (sched->map.comp) {
1660 		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1661 		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1662 			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1663 			new_cpu = true;
1664 		}
1665 	} else
1666 		cpus_nr = sched->max_cpu.cpu;
1667 
1668 	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1669 	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1670 	if (timestamp0)
1671 		delta = timestamp - timestamp0;
1672 	else
1673 		delta = 0;
1674 
1675 	if (delta < 0) {
1676 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1677 		return -1;
1678 	}
1679 
1680 	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1681 	sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1682 	if (sched_in == NULL || sched_out == NULL)
1683 		goto out;
1684 
1685 	tr = thread__get_runtime(sched_in);
1686 	if (tr == NULL)
1687 		goto out;
1688 
1689 	thread__put(sched->curr_thread[this_cpu.cpu]);
1690 	thread__put(sched->curr_out_thread[this_cpu.cpu]);
1691 
1692 	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1693 	sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1694 
1695 	ret = 0;
1696 
1697 	str = thread__comm_str(sched_in);
1698 	new_shortname = 0;
1699 	if (!tr->shortname[0]) {
1700 		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1701 			/*
1702 			 * Don't allocate a letter-number for swapper:0
1703 			 * as a shortname. Instead, we use '.' for it.
1704 			 */
1705 			tr->shortname[0] = '.';
1706 			tr->shortname[1] = ' ';
1707 		} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1708 			tr->shortname[0] = sched->next_shortname1;
1709 			tr->shortname[1] = sched->next_shortname2;
1710 
1711 			if (sched->next_shortname1 < 'Z') {
1712 				sched->next_shortname1++;
1713 			} else {
1714 				sched->next_shortname1 = 'A';
1715 				if (sched->next_shortname2 < '9')
1716 					sched->next_shortname2++;
1717 				else
1718 					sched->next_shortname2 = '0';
1719 			}
1720 		} else {
1721 			tr->shortname[0] = '-';
1722 			tr->shortname[1] = ' ';
1723 		}
1724 		new_shortname = 1;
1725 	}
1726 
1727 	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1728 		goto out;
1729 
1730 	proceed = 0;
1731 	str = thread__comm_str(sched_in);
1732 	/*
1733 	 * Check which of sched_in and sched_out matches the passed --task-name
1734 	 * arguments and call the corresponding print_sched_map.
1735 	 */
1736 	if (sched->map.task_name && !sched_match_task(sched, str)) {
1737 		if (!sched_match_task(sched, thread__comm_str(sched_out)))
1738 			goto out;
1739 		else
1740 			goto sched_out;
1741 
1742 	} else {
1743 		str = thread__comm_str(sched_out);
1744 		if (!(sched->map.task_name && !sched_match_task(sched, str)))
1745 			proceed = 1;
1746 	}
1747 
1748 	printf("  ");
1749 
1750 	print_sched_map(sched, this_cpu, cpus_nr, color, false);
1751 
1752 	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1753 	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1754 	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1755 		const char *pid_color = color;
1756 
1757 		if (thread__has_color(sched_in))
1758 			pid_color = COLOR_PIDS;
1759 
1760 		color_fprintf(stdout, pid_color, "%s => %s:%d",
1761 			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1762 		tr->comm_changed = false;
1763 	}
1764 
1765 	if (sched->map.comp && new_cpu)
1766 		color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1767 
1768 	if (proceed != 1) {
1769 		color_fprintf(stdout, color, "\n");
1770 		goto out;
1771 	}
1772 
1773 sched_out:
1774 	if (sched->map.task_name) {
1775 		tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1776 		if (strcmp(tr->shortname, "") == 0)
1777 			goto out;
1778 
1779 		if (proceed == 1)
1780 			color_fprintf(stdout, color, "\n");
1781 
1782 		printf("  ");
1783 		print_sched_map(sched, this_cpu, cpus_nr, color, true);
1784 		timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1785 		color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1786 	}
1787 
1788 	color_fprintf(stdout, color, "\n");
1789 
1790 out:
1791 	thread__put(sched_out);
1792 	thread__put(sched_in);
1793 
1794 	return ret;
1795 }
1796 
process_sched_switch_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1797 static int process_sched_switch_event(const struct perf_tool *tool,
1798 				      struct evsel *evsel,
1799 				      struct perf_sample *sample,
1800 				      struct machine *machine)
1801 {
1802 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1803 	int this_cpu = sample->cpu, err = 0;
1804 	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1805 	    next_pid = evsel__intval(evsel, sample, "next_pid");
1806 
1807 	if (sched->curr_pid[this_cpu] != (u32)-1) {
1808 		/*
1809 		 * Are we trying to switch away a PID that is
1810 		 * not current?
1811 		 */
1812 		if (sched->curr_pid[this_cpu] != prev_pid)
1813 			sched->nr_context_switch_bugs++;
1814 	}
1815 
1816 	if (sched->tp_handler->switch_event)
1817 		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1818 
1819 	sched->curr_pid[this_cpu] = next_pid;
1820 	return err;
1821 }
1822 
process_sched_runtime_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1823 static int process_sched_runtime_event(const struct perf_tool *tool,
1824 				       struct evsel *evsel,
1825 				       struct perf_sample *sample,
1826 				       struct machine *machine)
1827 {
1828 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1829 
1830 	if (sched->tp_handler->runtime_event)
1831 		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1832 
1833 	return 0;
1834 }
1835 
perf_sched__process_fork_event(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1836 static int perf_sched__process_fork_event(const struct perf_tool *tool,
1837 					  union perf_event *event,
1838 					  struct perf_sample *sample,
1839 					  struct machine *machine)
1840 {
1841 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1842 
1843 	/* run the fork event through the perf machinery */
1844 	perf_event__process_fork(tool, event, sample, machine);
1845 
1846 	/* and then run additional processing needed for this command */
1847 	if (sched->tp_handler->fork_event)
1848 		return sched->tp_handler->fork_event(sched, event, machine);
1849 
1850 	return 0;
1851 }
1852 
process_sched_migrate_task_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1853 static int process_sched_migrate_task_event(const struct perf_tool *tool,
1854 					    struct evsel *evsel,
1855 					    struct perf_sample *sample,
1856 					    struct machine *machine)
1857 {
1858 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1859 
1860 	if (sched->tp_handler->migrate_task_event)
1861 		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1862 
1863 	return 0;
1864 }
1865 
1866 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1867 				  struct evsel *evsel,
1868 				  struct perf_sample *sample,
1869 				  struct machine *machine);
1870 
perf_sched__process_tracepoint_sample(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1871 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1872 						 union perf_event *event __maybe_unused,
1873 						 struct perf_sample *sample,
1874 						 struct evsel *evsel,
1875 						 struct machine *machine)
1876 {
1877 	int err = 0;
1878 
1879 	if (evsel->handler != NULL) {
1880 		tracepoint_handler f = evsel->handler;
1881 		err = f(tool, evsel, sample, machine);
1882 	}
1883 
1884 	return err;
1885 }
1886 
perf_sched__process_comm(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1887 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1888 				    union perf_event *event,
1889 				    struct perf_sample *sample,
1890 				    struct machine *machine)
1891 {
1892 	struct thread *thread;
1893 	struct thread_runtime *tr;
1894 	int err;
1895 
1896 	err = perf_event__process_comm(tool, event, sample, machine);
1897 	if (err)
1898 		return err;
1899 
1900 	thread = machine__find_thread(machine, sample->pid, sample->tid);
1901 	if (!thread) {
1902 		pr_err("Internal error: can't find thread\n");
1903 		return -1;
1904 	}
1905 
1906 	tr = thread__get_runtime(thread);
1907 	if (tr == NULL) {
1908 		thread__put(thread);
1909 		return -1;
1910 	}
1911 
1912 	tr->comm_changed = true;
1913 	thread__put(thread);
1914 
1915 	return 0;
1916 }
1917 
perf_sched__read_events(struct perf_sched * sched)1918 static int perf_sched__read_events(struct perf_sched *sched)
1919 {
1920 	struct evsel_str_handler handlers[] = {
1921 		{ "sched:sched_switch",	      process_sched_switch_event, },
1922 		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1923 		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1924 		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1925 		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1926 		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1927 	};
1928 	struct perf_session *session;
1929 	struct perf_data data = {
1930 		.path  = input_name,
1931 		.mode  = PERF_DATA_MODE_READ,
1932 		.force = sched->force,
1933 	};
1934 	int rc = -1;
1935 
1936 	session = perf_session__new(&data, &sched->tool);
1937 	if (IS_ERR(session)) {
1938 		pr_debug("Error creating perf session");
1939 		return PTR_ERR(session);
1940 	}
1941 
1942 	symbol__init(perf_session__env(session));
1943 
1944 	/* prefer sched_waking if it is captured */
1945 	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1946 		handlers[2].handler = process_sched_wakeup_ignore;
1947 
1948 	if (perf_session__set_tracepoints_handlers(session, handlers))
1949 		goto out_delete;
1950 
1951 	if (perf_session__has_traces(session, "record -R")) {
1952 		int err = perf_session__process_events(session);
1953 		if (err) {
1954 			pr_err("Failed to process events, error %d", err);
1955 			goto out_delete;
1956 		}
1957 
1958 		sched->nr_events      = session->evlist->stats.nr_events[0];
1959 		sched->nr_lost_events = session->evlist->stats.total_lost;
1960 		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1961 	}
1962 
1963 	rc = 0;
1964 out_delete:
1965 	perf_session__delete(session);
1966 	return rc;
1967 }
1968 
1969 /*
1970  * scheduling times are printed as msec.usec
1971  */
print_sched_time(unsigned long long nsecs,int width)1972 static inline void print_sched_time(unsigned long long nsecs, int width)
1973 {
1974 	unsigned long msecs;
1975 	unsigned long usecs;
1976 
1977 	msecs  = nsecs / NSEC_PER_MSEC;
1978 	nsecs -= msecs * NSEC_PER_MSEC;
1979 	usecs  = nsecs / NSEC_PER_USEC;
1980 	printf("%*lu.%03lu ", width, msecs, usecs);
1981 }
1982 
1983 /*
1984  * returns runtime data for event, allocating memory for it the
1985  * first time it is used.
1986  */
evsel__get_runtime(struct evsel * evsel)1987 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1988 {
1989 	struct evsel_runtime *r = evsel->priv;
1990 
1991 	if (r == NULL) {
1992 		r = zalloc(sizeof(struct evsel_runtime));
1993 		evsel->priv = r;
1994 	}
1995 
1996 	return r;
1997 }
1998 
1999 /*
2000  * save last time event was seen per cpu
2001  */
evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)2002 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
2003 {
2004 	struct evsel_runtime *r = evsel__get_runtime(evsel);
2005 
2006 	if (r == NULL)
2007 		return;
2008 
2009 	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
2010 		int i, n = __roundup_pow_of_two(cpu+1);
2011 		void *p = r->last_time;
2012 
2013 		p = realloc(r->last_time, n * sizeof(u64));
2014 		if (!p)
2015 			return;
2016 
2017 		r->last_time = p;
2018 		for (i = r->ncpu; i < n; ++i)
2019 			r->last_time[i] = (u64) 0;
2020 
2021 		r->ncpu = n;
2022 	}
2023 
2024 	r->last_time[cpu] = timestamp;
2025 }
2026 
2027 /* returns last time this event was seen on the given cpu */
evsel__get_time(struct evsel * evsel,u32 cpu)2028 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2029 {
2030 	struct evsel_runtime *r = evsel__get_runtime(evsel);
2031 
2032 	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2033 		return 0;
2034 
2035 	return r->last_time[cpu];
2036 }
2037 
timehist__evsel_priv_destructor(void * priv)2038 static void timehist__evsel_priv_destructor(void *priv)
2039 {
2040 	struct evsel_runtime *r = priv;
2041 
2042 	if (r) {
2043 		free(r->last_time);
2044 		free(r);
2045 	}
2046 }
2047 
2048 static int comm_width = 30;
2049 
timehist_get_commstr(struct thread * thread)2050 static char *timehist_get_commstr(struct thread *thread)
2051 {
2052 	static char str[32];
2053 	const char *comm = thread__comm_str(thread);
2054 	pid_t tid = thread__tid(thread);
2055 	pid_t pid = thread__pid(thread);
2056 	int n;
2057 
2058 	if (pid == 0)
2059 		n = scnprintf(str, sizeof(str), "%s", comm);
2060 
2061 	else if (tid != pid)
2062 		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2063 
2064 	else
2065 		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2066 
2067 	if (n > comm_width)
2068 		comm_width = n;
2069 
2070 	return str;
2071 }
2072 
2073 /* prio field format: xxx or xxx->yyy */
2074 #define MAX_PRIO_STR_LEN 8
timehist_get_priostr(struct evsel * evsel,struct thread * thread,struct perf_sample * sample)2075 static char *timehist_get_priostr(struct evsel *evsel,
2076 				  struct thread *thread,
2077 				  struct perf_sample *sample)
2078 {
2079 	static char prio_str[16];
2080 	int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2081 	struct thread_runtime *tr = thread__priv(thread);
2082 
2083 	if (tr->prio != prev_prio && tr->prio != -1)
2084 		scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2085 	else
2086 		scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2087 
2088 	return prio_str;
2089 }
2090 
timehist_header(struct perf_sched * sched)2091 static void timehist_header(struct perf_sched *sched)
2092 {
2093 	u32 ncpus = sched->max_cpu.cpu + 1;
2094 	u32 i, j;
2095 
2096 	printf("%15s %6s ", "time", "cpu");
2097 
2098 	if (sched->show_cpu_visual) {
2099 		printf(" ");
2100 		for (i = 0, j = 0; i < ncpus; ++i) {
2101 			printf("%x", j++);
2102 			if (j > 15)
2103 				j = 0;
2104 		}
2105 		printf(" ");
2106 	}
2107 
2108 	printf(" %-*s", comm_width, "task name");
2109 
2110 	if (sched->show_prio)
2111 		printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2112 
2113 	printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2114 
2115 	if (sched->pre_migrations)
2116 		printf("  %9s", "pre-mig time");
2117 
2118 	if (sched->show_state)
2119 		printf("  %s", "state");
2120 
2121 	printf("\n");
2122 
2123 	/*
2124 	 * units row
2125 	 */
2126 	printf("%15s %-6s ", "", "");
2127 
2128 	if (sched->show_cpu_visual)
2129 		printf(" %*s ", ncpus, "");
2130 
2131 	printf(" %-*s", comm_width, "[tid/pid]");
2132 
2133 	if (sched->show_prio)
2134 		printf("  %-*s", MAX_PRIO_STR_LEN, "");
2135 
2136 	printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2137 
2138 	if (sched->pre_migrations)
2139 		printf("  %9s", "(msec)");
2140 
2141 	printf("\n");
2142 
2143 	/*
2144 	 * separator
2145 	 */
2146 	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2147 
2148 	if (sched->show_cpu_visual)
2149 		printf(" %.*s ", ncpus, graph_dotted_line);
2150 
2151 	printf(" %.*s", comm_width, graph_dotted_line);
2152 
2153 	if (sched->show_prio)
2154 		printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2155 
2156 	printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2157 
2158 	if (sched->pre_migrations)
2159 		printf("  %.9s", graph_dotted_line);
2160 
2161 	if (sched->show_state)
2162 		printf("  %.5s", graph_dotted_line);
2163 
2164 	printf("\n");
2165 }
2166 
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,const char state)2167 static void timehist_print_sample(struct perf_sched *sched,
2168 				  struct evsel *evsel,
2169 				  struct perf_sample *sample,
2170 				  struct addr_location *al,
2171 				  struct thread *thread,
2172 				  u64 t, const char state)
2173 {
2174 	struct thread_runtime *tr = thread__priv(thread);
2175 	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2176 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2177 	u32 max_cpus = sched->max_cpu.cpu + 1;
2178 	char tstr[64];
2179 	char nstr[30];
2180 	u64 wait_time;
2181 
2182 	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2183 		return;
2184 
2185 	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2186 	printf("%15s [%04d] ", tstr, sample->cpu);
2187 
2188 	if (sched->show_cpu_visual) {
2189 		u32 i;
2190 		char c;
2191 
2192 		printf(" ");
2193 		for (i = 0; i < max_cpus; ++i) {
2194 			/* flag idle times with 'i'; others are sched events */
2195 			if (i == sample->cpu)
2196 				c = (thread__tid(thread) == 0) ? 'i' : 's';
2197 			else
2198 				c = ' ';
2199 			printf("%c", c);
2200 		}
2201 		printf(" ");
2202 	}
2203 
2204 	if (!thread__comm_set(thread)) {
2205                 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm");
2206                 thread__set_comm(thread, prev_comm, sample->time);
2207         }
2208 
2209 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2210 
2211 	if (sched->show_prio)
2212 		printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2213 
2214 	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2215 	print_sched_time(wait_time, 6);
2216 
2217 	print_sched_time(tr->dt_delay, 6);
2218 	print_sched_time(tr->dt_run, 6);
2219 	if (sched->pre_migrations)
2220 		print_sched_time(tr->dt_pre_mig, 6);
2221 
2222 	if (sched->show_state)
2223 		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2224 
2225 	if (sched->show_next) {
2226 		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2227 		printf(" %-*s", comm_width, nstr);
2228 	}
2229 
2230 	if (sched->show_wakeups && !sched->show_next)
2231 		printf("  %-*s", comm_width, "");
2232 
2233 	if (thread__tid(thread) == 0)
2234 		goto out;
2235 
2236 	if (sched->show_callchain)
2237 		printf("  ");
2238 
2239 	sample__fprintf_sym(sample, al, 0,
2240 			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2241 			    EVSEL__PRINT_CALLCHAIN_ARROW |
2242 			    EVSEL__PRINT_SKIP_IGNORED,
2243 			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2244 
2245 out:
2246 	printf("\n");
2247 }
2248 
2249 /*
2250  * Explanation of delta-time stats:
2251  *
2252  *            t = time of current schedule out event
2253  *        tprev = time of previous sched out event
2254  *                also time of schedule-in event for current task
2255  *    last_time = time of last sched change event for current task
2256  *                (i.e, time process was last scheduled out)
2257  * ready_to_run = time of wakeup for current task
2258  *     migrated = time of task migration to another CPU
2259  *
2260  * -----|-------------|-------------|-------------|-------------|-----
2261  *    last         ready         migrated       tprev           t
2262  *    time         to run
2263  *
2264  *      |---------------- dt_wait ----------------|
2265  *                   |--------- dt_delay ---------|-- dt_run --|
2266  *                   |- dt_pre_mig -|
2267  *
2268  *     dt_run = run time of current task
2269  *    dt_wait = time between last schedule out event for task and tprev
2270  *              represents time spent off the cpu
2271  *   dt_delay = time between wakeup and schedule-in of task
2272  * dt_pre_mig = time between wakeup and migration to another CPU
2273  */
2274 
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2275 static void timehist_update_runtime_stats(struct thread_runtime *r,
2276 					 u64 t, u64 tprev)
2277 {
2278 	r->dt_delay   = 0;
2279 	r->dt_sleep   = 0;
2280 	r->dt_iowait  = 0;
2281 	r->dt_preempt = 0;
2282 	r->dt_run     = 0;
2283 	r->dt_pre_mig = 0;
2284 
2285 	if (tprev) {
2286 		r->dt_run = t - tprev;
2287 		if (r->ready_to_run) {
2288 			if (r->ready_to_run > tprev)
2289 				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2290 			else
2291 				r->dt_delay = tprev - r->ready_to_run;
2292 
2293 			if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2294 				r->dt_pre_mig = r->migrated - r->ready_to_run;
2295 		}
2296 
2297 		if (r->last_time > tprev)
2298 			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2299 		else if (r->last_time) {
2300 			u64 dt_wait = tprev - r->last_time;
2301 
2302 			if (r->last_state == 'R')
2303 				r->dt_preempt = dt_wait;
2304 			else if (r->last_state == 'D')
2305 				r->dt_iowait = dt_wait;
2306 			else
2307 				r->dt_sleep = dt_wait;
2308 		}
2309 	}
2310 
2311 	update_stats(&r->run_stats, r->dt_run);
2312 
2313 	r->total_run_time     += r->dt_run;
2314 	r->total_delay_time   += r->dt_delay;
2315 	r->total_sleep_time   += r->dt_sleep;
2316 	r->total_iowait_time  += r->dt_iowait;
2317 	r->total_preempt_time += r->dt_preempt;
2318 	r->total_pre_mig_time += r->dt_pre_mig;
2319 }
2320 
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2321 static bool is_idle_sample(struct perf_sample *sample,
2322 			   struct evsel *evsel)
2323 {
2324 	/* pid 0 == swapper == idle task */
2325 	if (evsel__name_is(evsel, "sched:sched_switch"))
2326 		return evsel__intval(evsel, sample, "prev_pid") == 0;
2327 
2328 	return sample->pid == 0;
2329 }
2330 
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2331 static void save_task_callchain(struct perf_sched *sched,
2332 				struct perf_sample *sample,
2333 				struct evsel *evsel,
2334 				struct machine *machine)
2335 {
2336 	struct callchain_cursor *cursor;
2337 	struct thread *thread;
2338 
2339 	/* want main thread for process - has maps */
2340 	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2341 	if (thread == NULL) {
2342 		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2343 		return;
2344 	}
2345 
2346 	if (!sched->show_callchain || sample->callchain == NULL) {
2347 		thread__put(thread);
2348 		return;
2349 	}
2350 
2351 	cursor = get_tls_callchain_cursor();
2352 
2353 	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2354 				      NULL, NULL, sched->max_stack + 2) != 0) {
2355 		if (verbose > 0)
2356 			pr_err("Failed to resolve callchain. Skipping\n");
2357 
2358 		thread__put(thread);
2359 		return;
2360 	}
2361 
2362 	callchain_cursor_commit(cursor);
2363 	thread__put(thread);
2364 
2365 	while (true) {
2366 		struct callchain_cursor_node *node;
2367 		struct symbol *sym;
2368 
2369 		node = callchain_cursor_current(cursor);
2370 		if (node == NULL)
2371 			break;
2372 
2373 		sym = node->ms.sym;
2374 		if (sym) {
2375 			if (!strcmp(sym->name, "schedule") ||
2376 			    !strcmp(sym->name, "__schedule") ||
2377 			    !strcmp(sym->name, "preempt_schedule"))
2378 				sym->ignore = 1;
2379 		}
2380 
2381 		callchain_cursor_advance(cursor);
2382 	}
2383 }
2384 
init_idle_thread(struct thread * thread)2385 static int init_idle_thread(struct thread *thread)
2386 {
2387 	struct idle_thread_runtime *itr;
2388 
2389 	thread__set_comm(thread, idle_comm, 0);
2390 
2391 	itr = zalloc(sizeof(*itr));
2392 	if (itr == NULL)
2393 		return -ENOMEM;
2394 
2395 	init_prio(&itr->tr);
2396 	init_stats(&itr->tr.run_stats);
2397 	callchain_init(&itr->callchain);
2398 	callchain_cursor_reset(&itr->cursor);
2399 	thread__set_priv(thread, itr);
2400 
2401 	return 0;
2402 }
2403 
2404 /*
2405  * Track idle stats per cpu by maintaining a local thread
2406  * struct for the idle task on each cpu.
2407  */
init_idle_threads(int ncpu)2408 static int init_idle_threads(int ncpu)
2409 {
2410 	int i, ret;
2411 
2412 	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2413 	if (!idle_threads)
2414 		return -ENOMEM;
2415 
2416 	idle_max_cpu = ncpu;
2417 
2418 	/* allocate the actual thread struct if needed */
2419 	for (i = 0; i < ncpu; ++i) {
2420 		idle_threads[i] = thread__new(0, 0);
2421 		if (idle_threads[i] == NULL)
2422 			return -ENOMEM;
2423 
2424 		ret = init_idle_thread(idle_threads[i]);
2425 		if (ret < 0)
2426 			return ret;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
free_idle_threads(void)2432 static void free_idle_threads(void)
2433 {
2434 	int i;
2435 
2436 	if (idle_threads == NULL)
2437 		return;
2438 
2439 	for (i = 0; i < idle_max_cpu; ++i) {
2440 		struct thread *idle = idle_threads[i];
2441 
2442 		if (idle) {
2443 			struct idle_thread_runtime *itr;
2444 
2445 			itr = thread__priv(idle);
2446 			if (itr)
2447 				thread__put(itr->last_thread);
2448 
2449 			thread__delete(idle);
2450 		}
2451 	}
2452 
2453 	free(idle_threads);
2454 }
2455 
get_idle_thread(int cpu)2456 static struct thread *get_idle_thread(int cpu)
2457 {
2458 	/*
2459 	 * expand/allocate array of pointers to local thread
2460 	 * structs if needed
2461 	 */
2462 	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2463 		int i, j = __roundup_pow_of_two(cpu+1);
2464 		void *p;
2465 
2466 		p = realloc(idle_threads, j * sizeof(struct thread *));
2467 		if (!p)
2468 			return NULL;
2469 
2470 		idle_threads = (struct thread **) p;
2471 		for (i = idle_max_cpu; i < j; ++i)
2472 			idle_threads[i] = NULL;
2473 
2474 		idle_max_cpu = j;
2475 	}
2476 
2477 	/* allocate a new thread struct if needed */
2478 	if (idle_threads[cpu] == NULL) {
2479 		idle_threads[cpu] = thread__new(0, 0);
2480 
2481 		if (idle_threads[cpu]) {
2482 			if (init_idle_thread(idle_threads[cpu]) < 0)
2483 				return NULL;
2484 		}
2485 	}
2486 
2487 	return thread__get(idle_threads[cpu]);
2488 }
2489 
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2490 static void save_idle_callchain(struct perf_sched *sched,
2491 				struct idle_thread_runtime *itr,
2492 				struct perf_sample *sample)
2493 {
2494 	struct callchain_cursor *cursor;
2495 
2496 	if (!sched->show_callchain || sample->callchain == NULL)
2497 		return;
2498 
2499 	cursor = get_tls_callchain_cursor();
2500 	if (cursor == NULL)
2501 		return;
2502 
2503 	callchain_cursor__copy(&itr->cursor, cursor);
2504 }
2505 
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2506 static struct thread *timehist_get_thread(struct perf_sched *sched,
2507 					  struct perf_sample *sample,
2508 					  struct machine *machine,
2509 					  struct evsel *evsel)
2510 {
2511 	struct thread *thread;
2512 
2513 	if (is_idle_sample(sample, evsel)) {
2514 		thread = get_idle_thread(sample->cpu);
2515 		if (thread == NULL)
2516 			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2517 
2518 	} else {
2519 		/* there were samples with tid 0 but non-zero pid */
2520 		thread = machine__findnew_thread(machine, sample->pid,
2521 						 sample->tid ?: sample->pid);
2522 		if (thread == NULL) {
2523 			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2524 				 sample->tid);
2525 		}
2526 
2527 		save_task_callchain(sched, sample, evsel, machine);
2528 		if (sched->idle_hist) {
2529 			struct thread *idle;
2530 			struct idle_thread_runtime *itr;
2531 
2532 			idle = get_idle_thread(sample->cpu);
2533 			if (idle == NULL) {
2534 				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2535 				return NULL;
2536 			}
2537 
2538 			itr = thread__priv(idle);
2539 			if (itr == NULL)
2540 				return NULL;
2541 
2542 			thread__put(itr->last_thread);
2543 			itr->last_thread = thread__get(thread);
2544 
2545 			/* copy task callchain when entering to idle */
2546 			if (evsel__intval(evsel, sample, "next_pid") == 0)
2547 				save_idle_callchain(sched, itr, sample);
2548 		}
2549 	}
2550 
2551 	return thread;
2552 }
2553 
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2554 static bool timehist_skip_sample(struct perf_sched *sched,
2555 				 struct thread *thread,
2556 				 struct evsel *evsel,
2557 				 struct perf_sample *sample)
2558 {
2559 	bool rc = false;
2560 	int prio = -1;
2561 	struct thread_runtime *tr = NULL;
2562 
2563 	if (thread__is_filtered(thread)) {
2564 		rc = true;
2565 		sched->skipped_samples++;
2566 	}
2567 
2568 	if (sched->prio_str) {
2569 		/*
2570 		 * Because priority may be changed during task execution,
2571 		 * first read priority from prev sched_in event for current task.
2572 		 * If prev sched_in event is not saved, then read priority from
2573 		 * current task sched_out event.
2574 		 */
2575 		tr = thread__get_runtime(thread);
2576 		if (tr && tr->prio != -1)
2577 			prio = tr->prio;
2578 		else if (evsel__name_is(evsel, "sched:sched_switch"))
2579 			prio = evsel__intval(evsel, sample, "prev_prio");
2580 
2581 		if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2582 			rc = true;
2583 			sched->skipped_samples++;
2584 		}
2585 	}
2586 
2587 	if (sched->idle_hist) {
2588 		if (!evsel__name_is(evsel, "sched:sched_switch"))
2589 			rc = true;
2590 		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2591 			 evsel__intval(evsel, sample, "next_pid") != 0)
2592 			rc = true;
2593 	}
2594 
2595 	return rc;
2596 }
2597 
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2598 static void timehist_print_wakeup_event(struct perf_sched *sched,
2599 					struct evsel *evsel,
2600 					struct perf_sample *sample,
2601 					struct machine *machine,
2602 					struct thread *awakened)
2603 {
2604 	struct thread *thread;
2605 	char tstr[64];
2606 
2607 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2608 	if (thread == NULL)
2609 		return;
2610 
2611 	/* show wakeup unless both awakee and awaker are filtered */
2612 	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2613 	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2614 		thread__put(thread);
2615 		return;
2616 	}
2617 
2618 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2619 	printf("%15s [%04d] ", tstr, sample->cpu);
2620 	if (sched->show_cpu_visual)
2621 		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2622 
2623 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2624 
2625 	/* dt spacer */
2626 	printf("  %9s  %9s  %9s ", "", "", "");
2627 
2628 	printf("awakened: %s", timehist_get_commstr(awakened));
2629 
2630 	printf("\n");
2631 
2632 	thread__put(thread);
2633 }
2634 
timehist_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2635 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2636 					union perf_event *event __maybe_unused,
2637 					struct evsel *evsel __maybe_unused,
2638 					struct perf_sample *sample __maybe_unused,
2639 					struct machine *machine __maybe_unused)
2640 {
2641 	return 0;
2642 }
2643 
timehist_sched_wakeup_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2644 static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2645 				       union perf_event *event __maybe_unused,
2646 				       struct evsel *evsel,
2647 				       struct perf_sample *sample,
2648 				       struct machine *machine)
2649 {
2650 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2651 	struct thread *thread;
2652 	struct thread_runtime *tr = NULL;
2653 	/* want pid of awakened task not pid in sample */
2654 	const u32 pid = evsel__intval(evsel, sample, "pid");
2655 
2656 	thread = machine__findnew_thread(machine, 0, pid);
2657 	if (thread == NULL)
2658 		return -1;
2659 
2660 	tr = thread__get_runtime(thread);
2661 	if (tr == NULL) {
2662 		thread__put(thread);
2663 		return -1;
2664 	}
2665 
2666 	if (tr->ready_to_run == 0)
2667 		tr->ready_to_run = sample->time;
2668 
2669 	/* show wakeups if requested */
2670 	if (sched->show_wakeups &&
2671 	    !perf_time__skip_sample(&sched->ptime, sample->time))
2672 		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2673 
2674 	thread__put(thread);
2675 	return 0;
2676 }
2677 
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2678 static void timehist_print_migration_event(struct perf_sched *sched,
2679 					struct evsel *evsel,
2680 					struct perf_sample *sample,
2681 					struct machine *machine,
2682 					struct thread *migrated)
2683 {
2684 	struct thread *thread;
2685 	char tstr[64];
2686 	u32 max_cpus;
2687 	u32 ocpu, dcpu;
2688 
2689 	if (sched->summary_only)
2690 		return;
2691 
2692 	max_cpus = sched->max_cpu.cpu + 1;
2693 	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2694 	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2695 
2696 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2697 	if (thread == NULL)
2698 		return;
2699 
2700 	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2701 	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2702 		thread__put(thread);
2703 		return;
2704 	}
2705 
2706 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2707 	printf("%15s [%04d] ", tstr, sample->cpu);
2708 
2709 	if (sched->show_cpu_visual) {
2710 		u32 i;
2711 		char c;
2712 
2713 		printf("  ");
2714 		for (i = 0; i < max_cpus; ++i) {
2715 			c = (i == sample->cpu) ? 'm' : ' ';
2716 			printf("%c", c);
2717 		}
2718 		printf("  ");
2719 	}
2720 
2721 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2722 
2723 	/* dt spacer */
2724 	printf("  %9s  %9s  %9s ", "", "", "");
2725 
2726 	printf("migrated: %s", timehist_get_commstr(migrated));
2727 	printf(" cpu %d => %d", ocpu, dcpu);
2728 
2729 	printf("\n");
2730 	thread__put(thread);
2731 }
2732 
timehist_migrate_task_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2733 static int timehist_migrate_task_event(const struct perf_tool *tool,
2734 				       union perf_event *event __maybe_unused,
2735 				       struct evsel *evsel,
2736 				       struct perf_sample *sample,
2737 				       struct machine *machine)
2738 {
2739 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2740 	struct thread *thread;
2741 	struct thread_runtime *tr = NULL;
2742 	/* want pid of migrated task not pid in sample */
2743 	const u32 pid = evsel__intval(evsel, sample, "pid");
2744 
2745 	thread = machine__findnew_thread(machine, 0, pid);
2746 	if (thread == NULL)
2747 		return -1;
2748 
2749 	tr = thread__get_runtime(thread);
2750 	if (tr == NULL) {
2751 		thread__put(thread);
2752 		return -1;
2753 	}
2754 
2755 	tr->migrations++;
2756 	tr->migrated = sample->time;
2757 
2758 	/* show migrations if requested */
2759 	if (sched->show_migrations) {
2760 		timehist_print_migration_event(sched, evsel, sample,
2761 							machine, thread);
2762 	}
2763 	thread__put(thread);
2764 
2765 	return 0;
2766 }
2767 
timehist_update_task_prio(struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2768 static void timehist_update_task_prio(struct evsel *evsel,
2769 				      struct perf_sample *sample,
2770 				      struct machine *machine)
2771 {
2772 	struct thread *thread;
2773 	struct thread_runtime *tr = NULL;
2774 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2775 	const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2776 
2777 	if (next_pid == 0)
2778 		thread = get_idle_thread(sample->cpu);
2779 	else
2780 		thread = machine__findnew_thread(machine, -1, next_pid);
2781 
2782 	if (thread == NULL)
2783 		return;
2784 
2785 	tr = thread__get_runtime(thread);
2786 	if (tr != NULL)
2787 		tr->prio = next_prio;
2788 
2789 	thread__put(thread);
2790 }
2791 
timehist_sched_change_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2792 static int timehist_sched_change_event(const struct perf_tool *tool,
2793 				       union perf_event *event,
2794 				       struct evsel *evsel,
2795 				       struct perf_sample *sample,
2796 				       struct machine *machine)
2797 {
2798 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2799 	struct perf_time_interval *ptime = &sched->ptime;
2800 	struct addr_location al;
2801 	struct thread *thread = NULL;
2802 	struct thread_runtime *tr = NULL;
2803 	u64 tprev, t = sample->time;
2804 	int rc = 0;
2805 	const char state = evsel__taskstate(evsel, sample, "prev_state");
2806 
2807 	addr_location__init(&al);
2808 	if (machine__resolve(machine, &al, sample) < 0) {
2809 		pr_err("problem processing %d event. skipping it\n",
2810 		       event->header.type);
2811 		rc = -1;
2812 		goto out;
2813 	}
2814 
2815 	if (sched->show_prio || sched->prio_str)
2816 		timehist_update_task_prio(evsel, sample, machine);
2817 
2818 	thread = timehist_get_thread(sched, sample, machine, evsel);
2819 	if (thread == NULL) {
2820 		rc = -1;
2821 		goto out;
2822 	}
2823 
2824 	if (timehist_skip_sample(sched, thread, evsel, sample))
2825 		goto out;
2826 
2827 	tr = thread__get_runtime(thread);
2828 	if (tr == NULL) {
2829 		rc = -1;
2830 		goto out;
2831 	}
2832 
2833 	tprev = evsel__get_time(evsel, sample->cpu);
2834 
2835 	/*
2836 	 * If start time given:
2837 	 * - sample time is under window user cares about - skip sample
2838 	 * - tprev is under window user cares about  - reset to start of window
2839 	 */
2840 	if (ptime->start && ptime->start > t)
2841 		goto out;
2842 
2843 	if (tprev && ptime->start > tprev)
2844 		tprev = ptime->start;
2845 
2846 	/*
2847 	 * If end time given:
2848 	 * - previous sched event is out of window - we are done
2849 	 * - sample time is beyond window user cares about - reset it
2850 	 *   to close out stats for time window interest
2851 	 * - If tprev is 0, that is, sched_in event for current task is
2852 	 *   not recorded, cannot determine whether sched_in event is
2853 	 *   within time window interest - ignore it
2854 	 */
2855 	if (ptime->end) {
2856 		if (!tprev || tprev > ptime->end)
2857 			goto out;
2858 
2859 		if (t > ptime->end)
2860 			t = ptime->end;
2861 	}
2862 
2863 	if (!sched->idle_hist || thread__tid(thread) == 0) {
2864 		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2865 			timehist_update_runtime_stats(tr, t, tprev);
2866 
2867 		if (sched->idle_hist) {
2868 			struct idle_thread_runtime *itr = (void *)tr;
2869 			struct thread_runtime *last_tr;
2870 
2871 			if (itr->last_thread == NULL)
2872 				goto out;
2873 
2874 			/* add current idle time as last thread's runtime */
2875 			last_tr = thread__get_runtime(itr->last_thread);
2876 			if (last_tr == NULL)
2877 				goto out;
2878 
2879 			timehist_update_runtime_stats(last_tr, t, tprev);
2880 			/*
2881 			 * remove delta time of last thread as it's not updated
2882 			 * and otherwise it will show an invalid value next
2883 			 * time.  we only care total run time and run stat.
2884 			 */
2885 			last_tr->dt_run = 0;
2886 			last_tr->dt_delay = 0;
2887 			last_tr->dt_sleep = 0;
2888 			last_tr->dt_iowait = 0;
2889 			last_tr->dt_preempt = 0;
2890 
2891 			if (itr->cursor.nr)
2892 				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2893 
2894 			itr->last_thread = NULL;
2895 		}
2896 
2897 		if (!sched->summary_only)
2898 			timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2899 	}
2900 
2901 out:
2902 	if (sched->hist_time.start == 0 && t >= ptime->start)
2903 		sched->hist_time.start = t;
2904 	if (ptime->end == 0 || t <= ptime->end)
2905 		sched->hist_time.end = t;
2906 
2907 	if (tr) {
2908 		/* time of this sched_switch event becomes last time task seen */
2909 		tr->last_time = sample->time;
2910 
2911 		/* last state is used to determine where to account wait time */
2912 		tr->last_state = state;
2913 
2914 		/* sched out event for task so reset ready to run time and migrated time */
2915 		if (state == 'R')
2916 			tr->ready_to_run = t;
2917 		else
2918 			tr->ready_to_run = 0;
2919 
2920 		tr->migrated = 0;
2921 	}
2922 
2923 	evsel__save_time(evsel, sample->time, sample->cpu);
2924 
2925 	thread__put(thread);
2926 	addr_location__exit(&al);
2927 	return rc;
2928 }
2929 
timehist_sched_switch_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2930 static int timehist_sched_switch_event(const struct perf_tool *tool,
2931 			     union perf_event *event,
2932 			     struct evsel *evsel,
2933 			     struct perf_sample *sample,
2934 			     struct machine *machine __maybe_unused)
2935 {
2936 	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2937 }
2938 
process_lost(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2939 static int process_lost(const struct perf_tool *tool __maybe_unused,
2940 			union perf_event *event,
2941 			struct perf_sample *sample,
2942 			struct machine *machine __maybe_unused)
2943 {
2944 	char tstr[64];
2945 
2946 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2947 	printf("%15s ", tstr);
2948 	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2949 
2950 	return 0;
2951 }
2952 
2953 
print_thread_runtime(struct thread * t,struct thread_runtime * r)2954 static void print_thread_runtime(struct thread *t,
2955 				 struct thread_runtime *r)
2956 {
2957 	double mean = avg_stats(&r->run_stats);
2958 	float stddev;
2959 
2960 	printf("%*s   %5d  %9" PRIu64 " ",
2961 	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2962 	       (u64) r->run_stats.n);
2963 
2964 	print_sched_time(r->total_run_time, 8);
2965 	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2966 	print_sched_time(r->run_stats.min, 6);
2967 	printf(" ");
2968 	print_sched_time((u64) mean, 6);
2969 	printf(" ");
2970 	print_sched_time(r->run_stats.max, 6);
2971 	printf("  ");
2972 	printf("%5.2f", stddev);
2973 	printf("   %5" PRIu64, r->migrations);
2974 	printf("\n");
2975 }
2976 
print_thread_waittime(struct thread * t,struct thread_runtime * r)2977 static void print_thread_waittime(struct thread *t,
2978 				  struct thread_runtime *r)
2979 {
2980 	printf("%*s   %5d  %9" PRIu64 " ",
2981 	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2982 	       (u64) r->run_stats.n);
2983 
2984 	print_sched_time(r->total_run_time, 8);
2985 	print_sched_time(r->total_sleep_time, 6);
2986 	printf(" ");
2987 	print_sched_time(r->total_iowait_time, 6);
2988 	printf(" ");
2989 	print_sched_time(r->total_preempt_time, 6);
2990 	printf(" ");
2991 	print_sched_time(r->total_delay_time, 6);
2992 	printf("\n");
2993 }
2994 
2995 struct total_run_stats {
2996 	struct perf_sched *sched;
2997 	u64  sched_count;
2998 	u64  task_count;
2999 	u64  total_run_time;
3000 };
3001 
show_thread_runtime(struct thread * t,void * priv)3002 static int show_thread_runtime(struct thread *t, void *priv)
3003 {
3004 	struct total_run_stats *stats = priv;
3005 	struct thread_runtime *r;
3006 
3007 	if (thread__is_filtered(t))
3008 		return 0;
3009 
3010 	r = thread__priv(t);
3011 	if (r && r->run_stats.n) {
3012 		stats->task_count++;
3013 		stats->sched_count += r->run_stats.n;
3014 		stats->total_run_time += r->total_run_time;
3015 
3016 		if (stats->sched->show_state)
3017 			print_thread_waittime(t, r);
3018 		else
3019 			print_thread_runtime(t, r);
3020 	}
3021 
3022 	return 0;
3023 }
3024 
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)3025 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
3026 {
3027 	const char *sep = " <- ";
3028 	struct callchain_list *chain;
3029 	size_t ret = 0;
3030 	char bf[1024];
3031 	bool first;
3032 
3033 	if (node == NULL)
3034 		return 0;
3035 
3036 	ret = callchain__fprintf_folded(fp, node->parent);
3037 	first = (ret == 0);
3038 
3039 	list_for_each_entry(chain, &node->val, list) {
3040 		if (chain->ip >= PERF_CONTEXT_MAX)
3041 			continue;
3042 		if (chain->ms.sym && chain->ms.sym->ignore)
3043 			continue;
3044 		ret += fprintf(fp, "%s%s", first ? "" : sep,
3045 			       callchain_list__sym_name(chain, bf, sizeof(bf),
3046 							false));
3047 		first = false;
3048 	}
3049 
3050 	return ret;
3051 }
3052 
timehist_print_idlehist_callchain(struct rb_root_cached * root)3053 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
3054 {
3055 	size_t ret = 0;
3056 	FILE *fp = stdout;
3057 	struct callchain_node *chain;
3058 	struct rb_node *rb_node = rb_first_cached(root);
3059 
3060 	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3061 	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3062 	       graph_dotted_line);
3063 
3064 	while (rb_node) {
3065 		chain = rb_entry(rb_node, struct callchain_node, rb_node);
3066 		rb_node = rb_next(rb_node);
3067 
3068 		ret += fprintf(fp, "  ");
3069 		print_sched_time(chain->hit, 12);
3070 		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3071 		ret += fprintf(fp, " %8d  ", chain->count);
3072 		ret += callchain__fprintf_folded(fp, chain);
3073 		ret += fprintf(fp, "\n");
3074 	}
3075 
3076 	return ret;
3077 }
3078 
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)3079 static void timehist_print_summary(struct perf_sched *sched,
3080 				   struct perf_session *session)
3081 {
3082 	struct machine *m = &session->machines.host;
3083 	struct total_run_stats totals;
3084 	u64 task_count;
3085 	struct thread *t;
3086 	struct thread_runtime *r;
3087 	int i;
3088 	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3089 
3090 	memset(&totals, 0, sizeof(totals));
3091 	totals.sched = sched;
3092 
3093 	if (sched->idle_hist) {
3094 		printf("\nIdle-time summary\n");
3095 		printf("%*s  parent  sched-out  ", comm_width, "comm");
3096 		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3097 	} else if (sched->show_state) {
3098 		printf("\nWait-time summary\n");
3099 		printf("%*s  parent   sched-in  ", comm_width, "comm");
3100 		printf("   run-time      sleep      iowait     preempt       delay\n");
3101 	} else {
3102 		printf("\nRuntime summary\n");
3103 		printf("%*s  parent   sched-in  ", comm_width, "comm");
3104 		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3105 	}
3106 	printf("%*s            (count)  ", comm_width, "");
3107 	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3108 	       sched->show_state ? "(msec)" : "%");
3109 	printf("%.117s\n", graph_dotted_line);
3110 
3111 	machine__for_each_thread(m, show_thread_runtime, &totals);
3112 	task_count = totals.task_count;
3113 	if (!task_count)
3114 		printf("<no still running tasks>\n");
3115 
3116 	/* CPU idle stats not tracked when samples were skipped */
3117 	if (sched->skipped_samples && !sched->idle_hist)
3118 		return;
3119 
3120 	printf("\nIdle stats:\n");
3121 	for (i = 0; i < idle_max_cpu; ++i) {
3122 		if (cpu_list && !test_bit(i, cpu_bitmap))
3123 			continue;
3124 
3125 		t = idle_threads[i];
3126 		if (!t)
3127 			continue;
3128 
3129 		r = thread__priv(t);
3130 		if (r && r->run_stats.n) {
3131 			totals.sched_count += r->run_stats.n;
3132 			printf("    CPU %2d idle for ", i);
3133 			print_sched_time(r->total_run_time, 6);
3134 			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3135 		} else
3136 			printf("    CPU %2d idle entire time window\n", i);
3137 	}
3138 
3139 	if (sched->idle_hist && sched->show_callchain) {
3140 		callchain_param.mode  = CHAIN_FOLDED;
3141 		callchain_param.value = CCVAL_PERIOD;
3142 
3143 		callchain_register_param(&callchain_param);
3144 
3145 		printf("\nIdle stats by callchain:\n");
3146 		for (i = 0; i < idle_max_cpu; ++i) {
3147 			struct idle_thread_runtime *itr;
3148 
3149 			t = idle_threads[i];
3150 			if (!t)
3151 				continue;
3152 
3153 			itr = thread__priv(t);
3154 			if (itr == NULL)
3155 				continue;
3156 
3157 			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3158 					     0, &callchain_param);
3159 
3160 			printf("  CPU %2d:", i);
3161 			print_sched_time(itr->tr.total_run_time, 6);
3162 			printf(" msec\n");
3163 			timehist_print_idlehist_callchain(&itr->sorted_root);
3164 			printf("\n");
3165 		}
3166 	}
3167 
3168 	printf("\n"
3169 	       "    Total number of unique tasks: %" PRIu64 "\n"
3170 	       "Total number of context switches: %" PRIu64 "\n",
3171 	       totals.task_count, totals.sched_count);
3172 
3173 	printf("           Total run time (msec): ");
3174 	print_sched_time(totals.total_run_time, 2);
3175 	printf("\n");
3176 
3177 	printf("    Total scheduling time (msec): ");
3178 	print_sched_time(hist_time, 2);
3179 	printf(" (x %d)\n", sched->max_cpu.cpu);
3180 }
3181 
3182 typedef int (*sched_handler)(const struct perf_tool *tool,
3183 			  union perf_event *event,
3184 			  struct evsel *evsel,
3185 			  struct perf_sample *sample,
3186 			  struct machine *machine);
3187 
perf_timehist__process_sample(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)3188 static int perf_timehist__process_sample(const struct perf_tool *tool,
3189 					 union perf_event *event,
3190 					 struct perf_sample *sample,
3191 					 struct evsel *evsel,
3192 					 struct machine *machine)
3193 {
3194 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3195 	int err = 0;
3196 	struct perf_cpu this_cpu = {
3197 		.cpu = sample->cpu,
3198 	};
3199 
3200 	if (this_cpu.cpu > sched->max_cpu.cpu)
3201 		sched->max_cpu = this_cpu;
3202 
3203 	if (evsel->handler != NULL) {
3204 		sched_handler f = evsel->handler;
3205 
3206 		err = f(tool, event, evsel, sample, machine);
3207 	}
3208 
3209 	return err;
3210 }
3211 
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)3212 static int timehist_check_attr(struct perf_sched *sched,
3213 			       struct evlist *evlist)
3214 {
3215 	struct evsel *evsel;
3216 	struct evsel_runtime *er;
3217 
3218 	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3219 		er = evsel__get_runtime(evsel);
3220 		if (er == NULL) {
3221 			pr_err("Failed to allocate memory for evsel runtime data\n");
3222 			return -1;
3223 		}
3224 
3225 		/* only need to save callchain related to sched_switch event */
3226 		if (sched->show_callchain &&
3227 		    evsel__name_is(evsel, "sched:sched_switch") &&
3228 		    !evsel__has_callchain(evsel)) {
3229 			pr_info("Samples of sched_switch event do not have callchains.\n");
3230 			sched->show_callchain = 0;
3231 			symbol_conf.use_callchain = 0;
3232 		}
3233 	}
3234 
3235 	return 0;
3236 }
3237 
timehist_parse_prio_str(struct perf_sched * sched)3238 static int timehist_parse_prio_str(struct perf_sched *sched)
3239 {
3240 	char *p;
3241 	unsigned long start_prio, end_prio;
3242 	const char *str = sched->prio_str;
3243 
3244 	if (!str)
3245 		return 0;
3246 
3247 	while (isdigit(*str)) {
3248 		p = NULL;
3249 		start_prio = strtoul(str, &p, 0);
3250 		if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3251 			return -1;
3252 
3253 		if (*p == '-') {
3254 			str = ++p;
3255 			p = NULL;
3256 			end_prio = strtoul(str, &p, 0);
3257 
3258 			if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3259 				return -1;
3260 
3261 			if (end_prio < start_prio)
3262 				return -1;
3263 		} else {
3264 			end_prio = start_prio;
3265 		}
3266 
3267 		for (; start_prio <= end_prio; start_prio++)
3268 			__set_bit(start_prio, sched->prio_bitmap);
3269 
3270 		if (*p)
3271 			++p;
3272 
3273 		str = p;
3274 	}
3275 
3276 	return 0;
3277 }
3278 
perf_sched__timehist(struct perf_sched * sched)3279 static int perf_sched__timehist(struct perf_sched *sched)
3280 {
3281 	struct evsel_str_handler handlers[] = {
3282 		{ "sched:sched_switch",       timehist_sched_switch_event, },
3283 		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3284 		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3285 		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3286 	};
3287 	const struct evsel_str_handler migrate_handlers[] = {
3288 		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3289 	};
3290 	struct perf_data data = {
3291 		.path  = input_name,
3292 		.mode  = PERF_DATA_MODE_READ,
3293 		.force = sched->force,
3294 	};
3295 
3296 	struct perf_session *session;
3297 	struct perf_env *env;
3298 	struct evlist *evlist;
3299 	int err = -1;
3300 
3301 	/*
3302 	 * event handlers for timehist option
3303 	 */
3304 	sched->tool.sample	 = perf_timehist__process_sample;
3305 	sched->tool.mmap	 = perf_event__process_mmap;
3306 	sched->tool.comm	 = perf_event__process_comm;
3307 	sched->tool.exit	 = perf_event__process_exit;
3308 	sched->tool.fork	 = perf_event__process_fork;
3309 	sched->tool.lost	 = process_lost;
3310 	sched->tool.attr	 = perf_event__process_attr;
3311 	sched->tool.tracing_data = perf_event__process_tracing_data;
3312 	sched->tool.build_id	 = perf_event__process_build_id;
3313 
3314 	sched->tool.ordering_requires_timestamps = true;
3315 
3316 	symbol_conf.use_callchain = sched->show_callchain;
3317 
3318 	session = perf_session__new(&data, &sched->tool);
3319 	if (IS_ERR(session))
3320 		return PTR_ERR(session);
3321 
3322 	env = perf_session__env(session);
3323 	if (cpu_list) {
3324 		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3325 		if (err < 0)
3326 			goto out;
3327 	}
3328 
3329 	evlist = session->evlist;
3330 
3331 	symbol__init(env);
3332 
3333 	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3334 		pr_err("Invalid time string\n");
3335 		err = -EINVAL;
3336 		goto out;
3337 	}
3338 
3339 	if (timehist_check_attr(sched, evlist) != 0)
3340 		goto out;
3341 
3342 	if (timehist_parse_prio_str(sched) != 0) {
3343 		pr_err("Invalid prio string\n");
3344 		goto out;
3345 	}
3346 
3347 	setup_pager();
3348 
3349 	evsel__set_priv_destructor(timehist__evsel_priv_destructor);
3350 
3351 	/* prefer sched_waking if it is captured */
3352 	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3353 		handlers[1].handler = timehist_sched_wakeup_ignore;
3354 
3355 	/* setup per-evsel handlers */
3356 	if (perf_session__set_tracepoints_handlers(session, handlers))
3357 		goto out;
3358 
3359 	/* sched_switch event at a minimum needs to exist */
3360 	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3361 		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3362 		goto out;
3363 	}
3364 
3365 	if ((sched->show_migrations || sched->pre_migrations) &&
3366 		perf_session__set_tracepoints_handlers(session, migrate_handlers))
3367 		goto out;
3368 
3369 	/* pre-allocate struct for per-CPU idle stats */
3370 	sched->max_cpu.cpu = env->nr_cpus_online;
3371 	if (sched->max_cpu.cpu == 0)
3372 		sched->max_cpu.cpu = 4;
3373 	if (init_idle_threads(sched->max_cpu.cpu))
3374 		goto out;
3375 
3376 	/* summary_only implies summary option, but don't overwrite summary if set */
3377 	if (sched->summary_only)
3378 		sched->summary = sched->summary_only;
3379 
3380 	if (!sched->summary_only)
3381 		timehist_header(sched);
3382 
3383 	err = perf_session__process_events(session);
3384 	if (err) {
3385 		pr_err("Failed to process events, error %d", err);
3386 		goto out;
3387 	}
3388 
3389 	sched->nr_events      = evlist->stats.nr_events[0];
3390 	sched->nr_lost_events = evlist->stats.total_lost;
3391 	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3392 
3393 	if (sched->summary)
3394 		timehist_print_summary(sched, session);
3395 
3396 out:
3397 	free_idle_threads();
3398 	perf_session__delete(session);
3399 
3400 	return err;
3401 }
3402 
3403 
print_bad_events(struct perf_sched * sched)3404 static void print_bad_events(struct perf_sched *sched)
3405 {
3406 	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3407 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3408 			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3409 			sched->nr_unordered_timestamps, sched->nr_timestamps);
3410 	}
3411 	if (sched->nr_lost_events && sched->nr_events) {
3412 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3413 			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3414 			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3415 	}
3416 	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3417 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3418 			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3419 			sched->nr_context_switch_bugs, sched->nr_timestamps);
3420 		if (sched->nr_lost_events)
3421 			printf(" (due to lost events?)");
3422 		printf("\n");
3423 	}
3424 }
3425 
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3426 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3427 {
3428 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3429 	struct work_atoms *this;
3430 	const char *comm = thread__comm_str(data->thread), *this_comm;
3431 	bool leftmost = true;
3432 
3433 	while (*new) {
3434 		int cmp;
3435 
3436 		this = container_of(*new, struct work_atoms, node);
3437 		parent = *new;
3438 
3439 		this_comm = thread__comm_str(this->thread);
3440 		cmp = strcmp(comm, this_comm);
3441 		if (cmp > 0) {
3442 			new = &((*new)->rb_left);
3443 		} else if (cmp < 0) {
3444 			new = &((*new)->rb_right);
3445 			leftmost = false;
3446 		} else {
3447 			this->num_merged++;
3448 			this->total_runtime += data->total_runtime;
3449 			this->nb_atoms += data->nb_atoms;
3450 			this->total_lat += data->total_lat;
3451 			list_splice_init(&data->work_list, &this->work_list);
3452 			if (this->max_lat < data->max_lat) {
3453 				this->max_lat = data->max_lat;
3454 				this->max_lat_start = data->max_lat_start;
3455 				this->max_lat_end = data->max_lat_end;
3456 			}
3457 			free_work_atoms(data);
3458 			return;
3459 		}
3460 	}
3461 
3462 	data->num_merged++;
3463 	rb_link_node(&data->node, parent, new);
3464 	rb_insert_color_cached(&data->node, root, leftmost);
3465 }
3466 
perf_sched__merge_lat(struct perf_sched * sched)3467 static void perf_sched__merge_lat(struct perf_sched *sched)
3468 {
3469 	struct work_atoms *data;
3470 	struct rb_node *node;
3471 
3472 	if (sched->skip_merge)
3473 		return;
3474 
3475 	while ((node = rb_first_cached(&sched->atom_root))) {
3476 		rb_erase_cached(node, &sched->atom_root);
3477 		data = rb_entry(node, struct work_atoms, node);
3478 		__merge_work_atoms(&sched->merged_atom_root, data);
3479 	}
3480 }
3481 
setup_cpus_switch_event(struct perf_sched * sched)3482 static int setup_cpus_switch_event(struct perf_sched *sched)
3483 {
3484 	unsigned int i;
3485 
3486 	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3487 	if (!sched->cpu_last_switched)
3488 		return -1;
3489 
3490 	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3491 	if (!sched->curr_pid) {
3492 		zfree(&sched->cpu_last_switched);
3493 		return -1;
3494 	}
3495 
3496 	for (i = 0; i < MAX_CPUS; i++)
3497 		sched->curr_pid[i] = -1;
3498 
3499 	return 0;
3500 }
3501 
free_cpus_switch_event(struct perf_sched * sched)3502 static void free_cpus_switch_event(struct perf_sched *sched)
3503 {
3504 	zfree(&sched->curr_pid);
3505 	zfree(&sched->cpu_last_switched);
3506 }
3507 
perf_sched__lat(struct perf_sched * sched)3508 static int perf_sched__lat(struct perf_sched *sched)
3509 {
3510 	int rc = -1;
3511 	struct rb_node *next;
3512 
3513 	setup_pager();
3514 
3515 	if (setup_cpus_switch_event(sched))
3516 		return rc;
3517 
3518 	if (perf_sched__read_events(sched))
3519 		goto out_free_cpus_switch_event;
3520 
3521 	perf_sched__merge_lat(sched);
3522 	perf_sched__sort_lat(sched);
3523 
3524 	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3525 	printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3526 	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3527 
3528 	next = rb_first_cached(&sched->sorted_atom_root);
3529 
3530 	while (next) {
3531 		struct work_atoms *work_list;
3532 
3533 		work_list = rb_entry(next, struct work_atoms, node);
3534 		output_lat_thread(sched, work_list);
3535 		next = rb_next(next);
3536 	}
3537 
3538 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3539 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3540 		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3541 
3542 	printf(" ---------------------------------------------------\n");
3543 
3544 	print_bad_events(sched);
3545 	printf("\n");
3546 
3547 	rc = 0;
3548 
3549 	while ((next = rb_first_cached(&sched->sorted_atom_root))) {
3550 		struct work_atoms *data;
3551 
3552 		data = rb_entry(next, struct work_atoms, node);
3553 		rb_erase_cached(next, &sched->sorted_atom_root);
3554 		free_work_atoms(data);
3555 	}
3556 out_free_cpus_switch_event:
3557 	free_cpus_switch_event(sched);
3558 	return rc;
3559 }
3560 
setup_map_cpus(struct perf_sched * sched)3561 static int setup_map_cpus(struct perf_sched *sched)
3562 {
3563 	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3564 
3565 	if (sched->map.comp) {
3566 		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3567 		if (!sched->map.comp_cpus)
3568 			return -1;
3569 	}
3570 
3571 	if (sched->map.cpus_str) {
3572 		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3573 		if (!sched->map.cpus) {
3574 			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3575 			zfree(&sched->map.comp_cpus);
3576 			return -1;
3577 		}
3578 	}
3579 
3580 	return 0;
3581 }
3582 
setup_color_pids(struct perf_sched * sched)3583 static int setup_color_pids(struct perf_sched *sched)
3584 {
3585 	struct perf_thread_map *map;
3586 
3587 	if (!sched->map.color_pids_str)
3588 		return 0;
3589 
3590 	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3591 	if (!map) {
3592 		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3593 		return -1;
3594 	}
3595 
3596 	sched->map.color_pids = map;
3597 	return 0;
3598 }
3599 
setup_color_cpus(struct perf_sched * sched)3600 static int setup_color_cpus(struct perf_sched *sched)
3601 {
3602 	struct perf_cpu_map *map;
3603 
3604 	if (!sched->map.color_cpus_str)
3605 		return 0;
3606 
3607 	map = perf_cpu_map__new(sched->map.color_cpus_str);
3608 	if (!map) {
3609 		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3610 		return -1;
3611 	}
3612 
3613 	sched->map.color_cpus = map;
3614 	return 0;
3615 }
3616 
perf_sched__map(struct perf_sched * sched)3617 static int perf_sched__map(struct perf_sched *sched)
3618 {
3619 	int rc = -1;
3620 
3621 	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3622 	if (!sched->curr_thread)
3623 		return rc;
3624 
3625 	sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3626 	if (!sched->curr_out_thread)
3627 		goto out_free_curr_thread;
3628 
3629 	if (setup_cpus_switch_event(sched))
3630 		goto out_free_curr_out_thread;
3631 
3632 	if (setup_map_cpus(sched))
3633 		goto out_free_cpus_switch_event;
3634 
3635 	if (setup_color_pids(sched))
3636 		goto out_put_map_cpus;
3637 
3638 	if (setup_color_cpus(sched))
3639 		goto out_put_color_pids;
3640 
3641 	setup_pager();
3642 	if (perf_sched__read_events(sched))
3643 		goto out_put_color_cpus;
3644 
3645 	rc = 0;
3646 	print_bad_events(sched);
3647 
3648 out_put_color_cpus:
3649 	perf_cpu_map__put(sched->map.color_cpus);
3650 
3651 out_put_color_pids:
3652 	perf_thread_map__put(sched->map.color_pids);
3653 
3654 out_put_map_cpus:
3655 	zfree(&sched->map.comp_cpus);
3656 	perf_cpu_map__put(sched->map.cpus);
3657 
3658 out_free_cpus_switch_event:
3659 	free_cpus_switch_event(sched);
3660 
3661 out_free_curr_out_thread:
3662 	for (int i = 0; i < MAX_CPUS; i++)
3663 		thread__put(sched->curr_out_thread[i]);
3664 	zfree(&sched->curr_out_thread);
3665 
3666 out_free_curr_thread:
3667 	for (int i = 0; i < MAX_CPUS; i++)
3668 		thread__put(sched->curr_thread[i]);
3669 	zfree(&sched->curr_thread);
3670 	return rc;
3671 }
3672 
perf_sched__replay(struct perf_sched * sched)3673 static int perf_sched__replay(struct perf_sched *sched)
3674 {
3675 	int ret;
3676 	unsigned long i;
3677 
3678 	mutex_init(&sched->start_work_mutex);
3679 	mutex_init(&sched->work_done_wait_mutex);
3680 
3681 	ret = setup_cpus_switch_event(sched);
3682 	if (ret)
3683 		goto out_mutex_destroy;
3684 
3685 	calibrate_run_measurement_overhead(sched);
3686 	calibrate_sleep_measurement_overhead(sched);
3687 
3688 	test_calibrations(sched);
3689 
3690 	ret = perf_sched__read_events(sched);
3691 	if (ret)
3692 		goto out_free_cpus_switch_event;
3693 
3694 	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3695 	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3696 	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3697 
3698 	if (sched->targetless_wakeups)
3699 		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3700 	if (sched->multitarget_wakeups)
3701 		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3702 	if (sched->nr_run_events_optimized)
3703 		printf("run atoms optimized: %ld\n",
3704 			sched->nr_run_events_optimized);
3705 
3706 	print_task_traces(sched);
3707 	add_cross_task_wakeups(sched);
3708 
3709 	sched->thread_funcs_exit = false;
3710 	create_tasks(sched);
3711 	printf("------------------------------------------------------------\n");
3712 	if (sched->replay_repeat == 0)
3713 		sched->replay_repeat = UINT_MAX;
3714 
3715 	for (i = 0; i < sched->replay_repeat; i++)
3716 		run_one_test(sched);
3717 
3718 	sched->thread_funcs_exit = true;
3719 	destroy_tasks(sched);
3720 
3721 out_free_cpus_switch_event:
3722 	free_cpus_switch_event(sched);
3723 
3724 out_mutex_destroy:
3725 	mutex_destroy(&sched->start_work_mutex);
3726 	mutex_destroy(&sched->work_done_wait_mutex);
3727 	return ret;
3728 }
3729 
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3730 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3731 			  const char * const usage_msg[])
3732 {
3733 	char *tmp, *tok, *str = strdup(sched->sort_order);
3734 
3735 	for (tok = strtok_r(str, ", ", &tmp);
3736 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3737 		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3738 			usage_with_options_msg(usage_msg, options,
3739 					"Unknown --sort key: `%s'", tok);
3740 		}
3741 	}
3742 
3743 	free(str);
3744 
3745 	sort_dimension__add("pid", &sched->cmp_pid);
3746 }
3747 
schedstat_events_exposed(void)3748 static bool schedstat_events_exposed(void)
3749 {
3750 	/*
3751 	 * Select "sched:sched_stat_wait" event to check
3752 	 * whether schedstat tracepoints are exposed.
3753 	 */
3754 	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3755 		false : true;
3756 }
3757 
__cmd_record(int argc,const char ** argv)3758 static int __cmd_record(int argc, const char **argv)
3759 {
3760 	unsigned int rec_argc, i, j;
3761 	char **rec_argv;
3762 	const char **rec_argv_copy;
3763 	const char * const record_args[] = {
3764 		"record",
3765 		"-a",
3766 		"-R",
3767 		"-m", "1024",
3768 		"-c", "1",
3769 		"-e", "sched:sched_switch",
3770 		"-e", "sched:sched_stat_runtime",
3771 		"-e", "sched:sched_process_fork",
3772 		"-e", "sched:sched_wakeup_new",
3773 		"-e", "sched:sched_migrate_task",
3774 	};
3775 
3776 	/*
3777 	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3778 	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3779 	 * to prevent "perf sched record" execution failure, determine
3780 	 * whether to record schedstat events according to actual situation.
3781 	 */
3782 	const char * const schedstat_args[] = {
3783 		"-e", "sched:sched_stat_wait",
3784 		"-e", "sched:sched_stat_sleep",
3785 		"-e", "sched:sched_stat_iowait",
3786 	};
3787 	unsigned int schedstat_argc = schedstat_events_exposed() ?
3788 		ARRAY_SIZE(schedstat_args) : 0;
3789 
3790 	struct tep_event *waking_event;
3791 	int ret;
3792 
3793 	/*
3794 	 * +2 for either "-e", "sched:sched_wakeup" or
3795 	 * "-e", "sched:sched_waking"
3796 	 */
3797 	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3798 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3799 	if (rec_argv == NULL)
3800 		return -ENOMEM;
3801 	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3802 	if (rec_argv_copy == NULL) {
3803 		free(rec_argv);
3804 		return -ENOMEM;
3805 	}
3806 
3807 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3808 		rec_argv[i] = strdup(record_args[i]);
3809 
3810 	rec_argv[i++] = strdup("-e");
3811 	waking_event = trace_event__tp_format("sched", "sched_waking");
3812 	if (!IS_ERR(waking_event))
3813 		rec_argv[i++] = strdup("sched:sched_waking");
3814 	else
3815 		rec_argv[i++] = strdup("sched:sched_wakeup");
3816 
3817 	for (j = 0; j < schedstat_argc; j++)
3818 		rec_argv[i++] = strdup(schedstat_args[j]);
3819 
3820 	for (j = 1; j < (unsigned int)argc; j++, i++)
3821 		rec_argv[i] = strdup(argv[j]);
3822 
3823 	BUG_ON(i != rec_argc);
3824 
3825 	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3826 	ret = cmd_record(rec_argc, rec_argv_copy);
3827 
3828 	for (i = 0; i < rec_argc; i++)
3829 		free(rec_argv[i]);
3830 	free(rec_argv);
3831 	free(rec_argv_copy);
3832 
3833 	return ret;
3834 }
3835 
cmd_sched(int argc,const char ** argv)3836 int cmd_sched(int argc, const char **argv)
3837 {
3838 	static const char default_sort_order[] = "avg, max, switch, runtime";
3839 	struct perf_sched sched = {
3840 		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3841 		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3842 		.sort_order	      = default_sort_order,
3843 		.replay_repeat	      = 10,
3844 		.profile_cpu	      = -1,
3845 		.next_shortname1      = 'A',
3846 		.next_shortname2      = '0',
3847 		.skip_merge           = 0,
3848 		.show_callchain	      = 1,
3849 		.max_stack            = 5,
3850 	};
3851 	const struct option sched_options[] = {
3852 	OPT_STRING('i', "input", &input_name, "file",
3853 		    "input file name"),
3854 	OPT_INCR('v', "verbose", &verbose,
3855 		    "be more verbose (show symbol address, etc)"),
3856 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3857 		    "dump raw trace in ASCII"),
3858 	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3859 	OPT_END()
3860 	};
3861 	const struct option latency_options[] = {
3862 	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3863 		   "sort by key(s): runtime, switch, avg, max"),
3864 	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3865 		    "CPU to profile on"),
3866 	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3867 		    "latency stats per pid instead of per comm"),
3868 	OPT_PARENT(sched_options)
3869 	};
3870 	const struct option replay_options[] = {
3871 	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3872 		     "repeat the workload replay N times (0: infinite)"),
3873 	OPT_PARENT(sched_options)
3874 	};
3875 	const struct option map_options[] = {
3876 	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3877 		    "map output in compact mode"),
3878 	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3879 		   "highlight given pids in map"),
3880 	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3881                     "highlight given CPUs in map"),
3882 	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3883                     "display given CPUs in map"),
3884 	OPT_STRING(0, "task-name", &sched.map.task_name, "task",
3885 		"map output only for the given task name(s)."),
3886 	OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
3887 		"given command name can be partially matched (fuzzy matching)"),
3888 	OPT_PARENT(sched_options)
3889 	};
3890 	const struct option timehist_options[] = {
3891 	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3892 		   "file", "vmlinux pathname"),
3893 	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3894 		   "file", "kallsyms pathname"),
3895 	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3896 		    "Display call chains if present (default on)"),
3897 	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3898 		   "Maximum number of functions to display backtrace."),
3899 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3900 		    "Look for files with symbols relative to this directory"),
3901 	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3902 		    "Show only syscall summary with statistics"),
3903 	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3904 		    "Show all syscalls and summary with statistics"),
3905 	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3906 	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3907 	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3908 	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3909 	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3910 	OPT_STRING(0, "time", &sched.time_str, "str",
3911 		   "Time span for analysis (start,stop)"),
3912 	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3913 	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3914 		   "analyze events only for given process id(s)"),
3915 	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3916 		   "analyze events only for given thread id(s)"),
3917 	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3918 	OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
3919 	OPT_STRING(0, "prio", &sched.prio_str, "prio",
3920 		   "analyze events only for given task priority(ies)"),
3921 	OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
3922 	OPT_PARENT(sched_options)
3923 	};
3924 
3925 	const char * const latency_usage[] = {
3926 		"perf sched latency [<options>]",
3927 		NULL
3928 	};
3929 	const char * const replay_usage[] = {
3930 		"perf sched replay [<options>]",
3931 		NULL
3932 	};
3933 	const char * const map_usage[] = {
3934 		"perf sched map [<options>]",
3935 		NULL
3936 	};
3937 	const char * const timehist_usage[] = {
3938 		"perf sched timehist [<options>]",
3939 		NULL
3940 	};
3941 	const char *const sched_subcommands[] = { "record", "latency", "map",
3942 						  "replay", "script",
3943 						  "timehist", NULL };
3944 	const char *sched_usage[] = {
3945 		NULL,
3946 		NULL
3947 	};
3948 	struct trace_sched_handler lat_ops  = {
3949 		.wakeup_event	    = latency_wakeup_event,
3950 		.switch_event	    = latency_switch_event,
3951 		.runtime_event	    = latency_runtime_event,
3952 		.migrate_task_event = latency_migrate_task_event,
3953 	};
3954 	struct trace_sched_handler map_ops  = {
3955 		.switch_event	    = map_switch_event,
3956 	};
3957 	struct trace_sched_handler replay_ops  = {
3958 		.wakeup_event	    = replay_wakeup_event,
3959 		.switch_event	    = replay_switch_event,
3960 		.fork_event	    = replay_fork_event,
3961 	};
3962 	int ret;
3963 
3964 	perf_tool__init(&sched.tool, /*ordered_events=*/true);
3965 	sched.tool.sample	 = perf_sched__process_tracepoint_sample;
3966 	sched.tool.comm		 = perf_sched__process_comm;
3967 	sched.tool.namespaces	 = perf_event__process_namespaces;
3968 	sched.tool.lost		 = perf_event__process_lost;
3969 	sched.tool.fork		 = perf_sched__process_fork_event;
3970 
3971 	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3972 					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3973 	if (!argc)
3974 		usage_with_options(sched_usage, sched_options);
3975 
3976 	thread__set_priv_destructor(free);
3977 
3978 	/*
3979 	 * Aliased to 'perf script' for now:
3980 	 */
3981 	if (!strcmp(argv[0], "script")) {
3982 		ret = cmd_script(argc, argv);
3983 	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3984 		ret = __cmd_record(argc, argv);
3985 	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3986 		sched.tp_handler = &lat_ops;
3987 		if (argc > 1) {
3988 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3989 			if (argc)
3990 				usage_with_options(latency_usage, latency_options);
3991 		}
3992 		setup_sorting(&sched, latency_options, latency_usage);
3993 		ret = perf_sched__lat(&sched);
3994 	} else if (!strcmp(argv[0], "map")) {
3995 		if (argc) {
3996 			argc = parse_options(argc, argv, map_options, map_usage, 0);
3997 			if (argc)
3998 				usage_with_options(map_usage, map_options);
3999 
4000 			if (sched.map.task_name) {
4001 				sched.map.task_names = strlist__new(sched.map.task_name, NULL);
4002 				if (sched.map.task_names == NULL) {
4003 					fprintf(stderr, "Failed to parse task names\n");
4004 					ret = -1;
4005 					goto out;
4006 				}
4007 			}
4008 		}
4009 		sched.tp_handler = &map_ops;
4010 		setup_sorting(&sched, latency_options, latency_usage);
4011 		ret = perf_sched__map(&sched);
4012 	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
4013 		sched.tp_handler = &replay_ops;
4014 		if (argc) {
4015 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
4016 			if (argc)
4017 				usage_with_options(replay_usage, replay_options);
4018 		}
4019 		ret = perf_sched__replay(&sched);
4020 	} else if (!strcmp(argv[0], "timehist")) {
4021 		if (argc) {
4022 			argc = parse_options(argc, argv, timehist_options,
4023 					     timehist_usage, 0);
4024 			if (argc)
4025 				usage_with_options(timehist_usage, timehist_options);
4026 		}
4027 		if ((sched.show_wakeups || sched.show_next) &&
4028 		    sched.summary_only) {
4029 			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
4030 			parse_options_usage(timehist_usage, timehist_options, "s", true);
4031 			if (sched.show_wakeups)
4032 				parse_options_usage(NULL, timehist_options, "w", true);
4033 			if (sched.show_next)
4034 				parse_options_usage(NULL, timehist_options, "n", true);
4035 			ret = -EINVAL;
4036 			goto out;
4037 		}
4038 		ret = symbol__validate_sym_arguments();
4039 		if (!ret)
4040 			ret = perf_sched__timehist(&sched);
4041 	} else {
4042 		usage_with_options(sched_usage, sched_options);
4043 	}
4044 
4045 out:
4046 	/* free usage string allocated by parse_options_subcommand */
4047 	free((void *)sched_usage[0]);
4048 
4049 	return ret;
4050 }
4051