1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/cgroup-defs.h> 29 #include <linux/page_counter.h> 30 #include <linux/memcontrol.h> 31 #include <linux/cgroup.h> 32 #include <linux/cpuset.h> 33 #include <linux/sched/mm.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/hugetlb.h> 36 #include <linux/pagemap.h> 37 #include <linux/pagevec.h> 38 #include <linux/vm_event_item.h> 39 #include <linux/smp.h> 40 #include <linux/page-flags.h> 41 #include <linux/backing-dev.h> 42 #include <linux/bit_spinlock.h> 43 #include <linux/rcupdate.h> 44 #include <linux/limits.h> 45 #include <linux/export.h> 46 #include <linux/list.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swapops.h> 51 #include <linux/spinlock.h> 52 #include <linux/fs.h> 53 #include <linux/seq_file.h> 54 #include <linux/parser.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/resume_user_mode.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include <linux/sched/isolation.h> 66 #include <linux/kmemleak.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 #include "memcontrol-v1.h" 72 73 #include <linux/uaccess.h> 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/memcg.h> 77 #undef CREATE_TRACE_POINTS 78 79 #include <trace/events/vmscan.h> 80 81 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 82 EXPORT_SYMBOL(memory_cgrp_subsys); 83 84 struct mem_cgroup *root_mem_cgroup __read_mostly; 85 86 /* Active memory cgroup to use from an interrupt context */ 87 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 88 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 89 90 /* Socket memory accounting disabled? */ 91 static bool cgroup_memory_nosocket __ro_after_init; 92 93 /* Kernel memory accounting disabled? */ 94 static bool cgroup_memory_nokmem __ro_after_init; 95 96 /* BPF memory accounting disabled? */ 97 static bool cgroup_memory_nobpf __ro_after_init; 98 99 static struct kmem_cache *memcg_cachep; 100 static struct kmem_cache *memcg_pn_cachep; 101 102 #ifdef CONFIG_CGROUP_WRITEBACK 103 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 104 #endif 105 106 static inline bool task_is_dying(void) 107 { 108 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 109 (current->flags & PF_EXITING); 110 } 111 112 /* Some nice accessors for the vmpressure. */ 113 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 114 { 115 if (!memcg) 116 memcg = root_mem_cgroup; 117 return &memcg->vmpressure; 118 } 119 120 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 121 { 122 return container_of(vmpr, struct mem_cgroup, vmpressure); 123 } 124 125 #define SEQ_BUF_SIZE SZ_4K 126 #define CURRENT_OBJCG_UPDATE_BIT 0 127 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT) 128 129 static DEFINE_SPINLOCK(objcg_lock); 130 131 bool mem_cgroup_kmem_disabled(void) 132 { 133 return cgroup_memory_nokmem; 134 } 135 136 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 137 138 static void obj_cgroup_release(struct percpu_ref *ref) 139 { 140 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 141 unsigned int nr_bytes; 142 unsigned int nr_pages; 143 unsigned long flags; 144 145 /* 146 * At this point all allocated objects are freed, and 147 * objcg->nr_charged_bytes can't have an arbitrary byte value. 148 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 149 * 150 * The following sequence can lead to it: 151 * 1) CPU0: objcg == stock->cached_objcg 152 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 153 * PAGE_SIZE bytes are charged 154 * 3) CPU1: a process from another memcg is allocating something, 155 * the stock if flushed, 156 * objcg->nr_charged_bytes = PAGE_SIZE - 92 157 * 5) CPU0: we do release this object, 158 * 92 bytes are added to stock->nr_bytes 159 * 6) CPU0: stock is flushed, 160 * 92 bytes are added to objcg->nr_charged_bytes 161 * 162 * In the result, nr_charged_bytes == PAGE_SIZE. 163 * This page will be uncharged in obj_cgroup_release(). 164 */ 165 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 166 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 167 nr_pages = nr_bytes >> PAGE_SHIFT; 168 169 if (nr_pages) { 170 struct mem_cgroup *memcg; 171 172 memcg = get_mem_cgroup_from_objcg(objcg); 173 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 174 memcg1_account_kmem(memcg, -nr_pages); 175 if (!mem_cgroup_is_root(memcg)) 176 memcg_uncharge(memcg, nr_pages); 177 mem_cgroup_put(memcg); 178 } 179 180 spin_lock_irqsave(&objcg_lock, flags); 181 list_del(&objcg->list); 182 spin_unlock_irqrestore(&objcg_lock, flags); 183 184 percpu_ref_exit(ref); 185 kfree_rcu(objcg, rcu); 186 } 187 188 static struct obj_cgroup *obj_cgroup_alloc(void) 189 { 190 struct obj_cgroup *objcg; 191 int ret; 192 193 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 194 if (!objcg) 195 return NULL; 196 197 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 198 GFP_KERNEL); 199 if (ret) { 200 kfree(objcg); 201 return NULL; 202 } 203 INIT_LIST_HEAD(&objcg->list); 204 return objcg; 205 } 206 207 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 208 struct mem_cgroup *parent) 209 { 210 struct obj_cgroup *objcg, *iter; 211 212 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 213 214 spin_lock_irq(&objcg_lock); 215 216 /* 1) Ready to reparent active objcg. */ 217 list_add(&objcg->list, &memcg->objcg_list); 218 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 219 list_for_each_entry(iter, &memcg->objcg_list, list) 220 WRITE_ONCE(iter->memcg, parent); 221 /* 3) Move already reparented objcgs to the parent's list */ 222 list_splice(&memcg->objcg_list, &parent->objcg_list); 223 224 spin_unlock_irq(&objcg_lock); 225 226 percpu_ref_kill(&objcg->refcnt); 227 } 228 229 /* 230 * A lot of the calls to the cache allocation functions are expected to be 231 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are 232 * conditional to this static branch, we'll have to allow modules that does 233 * kmem_cache_alloc and the such to see this symbol as well 234 */ 235 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key); 236 EXPORT_SYMBOL(memcg_kmem_online_key); 237 238 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 239 EXPORT_SYMBOL(memcg_bpf_enabled_key); 240 241 /** 242 * mem_cgroup_css_from_folio - css of the memcg associated with a folio 243 * @folio: folio of interest 244 * 245 * If memcg is bound to the default hierarchy, css of the memcg associated 246 * with @folio is returned. The returned css remains associated with @folio 247 * until it is released. 248 * 249 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 250 * is returned. 251 */ 252 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio) 253 { 254 struct mem_cgroup *memcg = folio_memcg(folio); 255 256 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 257 memcg = root_mem_cgroup; 258 259 return &memcg->css; 260 } 261 262 /** 263 * page_cgroup_ino - return inode number of the memcg a page is charged to 264 * @page: the page 265 * 266 * Look up the closest online ancestor of the memory cgroup @page is charged to 267 * and return its inode number or 0 if @page is not charged to any cgroup. It 268 * is safe to call this function without holding a reference to @page. 269 * 270 * Note, this function is inherently racy, because there is nothing to prevent 271 * the cgroup inode from getting torn down and potentially reallocated a moment 272 * after page_cgroup_ino() returns, so it only should be used by callers that 273 * do not care (such as procfs interfaces). 274 */ 275 ino_t page_cgroup_ino(struct page *page) 276 { 277 struct mem_cgroup *memcg; 278 unsigned long ino = 0; 279 280 rcu_read_lock(); 281 /* page_folio() is racy here, but the entire function is racy anyway */ 282 memcg = folio_memcg_check(page_folio(page)); 283 284 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 285 memcg = parent_mem_cgroup(memcg); 286 if (memcg) 287 ino = cgroup_ino(memcg->css.cgroup); 288 rcu_read_unlock(); 289 return ino; 290 } 291 292 /* Subset of node_stat_item for memcg stats */ 293 static const unsigned int memcg_node_stat_items[] = { 294 NR_INACTIVE_ANON, 295 NR_ACTIVE_ANON, 296 NR_INACTIVE_FILE, 297 NR_ACTIVE_FILE, 298 NR_UNEVICTABLE, 299 NR_SLAB_RECLAIMABLE_B, 300 NR_SLAB_UNRECLAIMABLE_B, 301 WORKINGSET_REFAULT_ANON, 302 WORKINGSET_REFAULT_FILE, 303 WORKINGSET_ACTIVATE_ANON, 304 WORKINGSET_ACTIVATE_FILE, 305 WORKINGSET_RESTORE_ANON, 306 WORKINGSET_RESTORE_FILE, 307 WORKINGSET_NODERECLAIM, 308 NR_ANON_MAPPED, 309 NR_FILE_MAPPED, 310 NR_FILE_PAGES, 311 NR_FILE_DIRTY, 312 NR_WRITEBACK, 313 NR_SHMEM, 314 NR_SHMEM_THPS, 315 NR_FILE_THPS, 316 NR_ANON_THPS, 317 NR_KERNEL_STACK_KB, 318 NR_PAGETABLE, 319 NR_SECONDARY_PAGETABLE, 320 #ifdef CONFIG_SWAP 321 NR_SWAPCACHE, 322 #endif 323 #ifdef CONFIG_NUMA_BALANCING 324 PGPROMOTE_SUCCESS, 325 #endif 326 PGDEMOTE_KSWAPD, 327 PGDEMOTE_DIRECT, 328 PGDEMOTE_KHUGEPAGED, 329 PGDEMOTE_PROACTIVE, 330 #ifdef CONFIG_HUGETLB_PAGE 331 NR_HUGETLB, 332 #endif 333 }; 334 335 static const unsigned int memcg_stat_items[] = { 336 MEMCG_SWAP, 337 MEMCG_SOCK, 338 MEMCG_PERCPU_B, 339 MEMCG_VMALLOC, 340 MEMCG_KMEM, 341 MEMCG_ZSWAP_B, 342 MEMCG_ZSWAPPED, 343 }; 344 345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items) 346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \ 347 ARRAY_SIZE(memcg_stat_items)) 348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX) 349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly; 350 351 static void init_memcg_stats(void) 352 { 353 u8 i, j = 0; 354 355 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX); 356 357 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index)); 358 359 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j) 360 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j; 361 362 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j) 363 mem_cgroup_stats_index[memcg_stat_items[i]] = j; 364 } 365 366 static inline int memcg_stats_index(int idx) 367 { 368 return mem_cgroup_stats_index[idx]; 369 } 370 371 struct lruvec_stats_percpu { 372 /* Local (CPU and cgroup) state */ 373 long state[NR_MEMCG_NODE_STAT_ITEMS]; 374 375 /* Delta calculation for lockless upward propagation */ 376 long state_prev[NR_MEMCG_NODE_STAT_ITEMS]; 377 }; 378 379 struct lruvec_stats { 380 /* Aggregated (CPU and subtree) state */ 381 long state[NR_MEMCG_NODE_STAT_ITEMS]; 382 383 /* Non-hierarchical (CPU aggregated) state */ 384 long state_local[NR_MEMCG_NODE_STAT_ITEMS]; 385 386 /* Pending child counts during tree propagation */ 387 long state_pending[NR_MEMCG_NODE_STAT_ITEMS]; 388 }; 389 390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx) 391 { 392 struct mem_cgroup_per_node *pn; 393 long x; 394 int i; 395 396 if (mem_cgroup_disabled()) 397 return node_page_state(lruvec_pgdat(lruvec), idx); 398 399 i = memcg_stats_index(idx); 400 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 401 return 0; 402 403 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 404 x = READ_ONCE(pn->lruvec_stats->state[i]); 405 #ifdef CONFIG_SMP 406 if (x < 0) 407 x = 0; 408 #endif 409 return x; 410 } 411 412 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 413 enum node_stat_item idx) 414 { 415 struct mem_cgroup_per_node *pn; 416 long x; 417 int i; 418 419 if (mem_cgroup_disabled()) 420 return node_page_state(lruvec_pgdat(lruvec), idx); 421 422 i = memcg_stats_index(idx); 423 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 424 return 0; 425 426 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 427 x = READ_ONCE(pn->lruvec_stats->state_local[i]); 428 #ifdef CONFIG_SMP 429 if (x < 0) 430 x = 0; 431 #endif 432 return x; 433 } 434 435 /* Subset of vm_event_item to report for memcg event stats */ 436 static const unsigned int memcg_vm_event_stat[] = { 437 #ifdef CONFIG_MEMCG_V1 438 PGPGIN, 439 PGPGOUT, 440 #endif 441 PSWPIN, 442 PSWPOUT, 443 PGSCAN_KSWAPD, 444 PGSCAN_DIRECT, 445 PGSCAN_KHUGEPAGED, 446 PGSCAN_PROACTIVE, 447 PGSTEAL_KSWAPD, 448 PGSTEAL_DIRECT, 449 PGSTEAL_KHUGEPAGED, 450 PGSTEAL_PROACTIVE, 451 PGFAULT, 452 PGMAJFAULT, 453 PGREFILL, 454 PGACTIVATE, 455 PGDEACTIVATE, 456 PGLAZYFREE, 457 PGLAZYFREED, 458 #ifdef CONFIG_SWAP 459 SWPIN_ZERO, 460 SWPOUT_ZERO, 461 #endif 462 #ifdef CONFIG_ZSWAP 463 ZSWPIN, 464 ZSWPOUT, 465 ZSWPWB, 466 #endif 467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 468 THP_FAULT_ALLOC, 469 THP_COLLAPSE_ALLOC, 470 THP_SWPOUT, 471 THP_SWPOUT_FALLBACK, 472 #endif 473 #ifdef CONFIG_NUMA_BALANCING 474 NUMA_PAGE_MIGRATE, 475 NUMA_PTE_UPDATES, 476 NUMA_HINT_FAULTS, 477 NUMA_TASK_MIGRATE, 478 NUMA_TASK_SWAP, 479 #endif 480 }; 481 482 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 483 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 484 485 static void init_memcg_events(void) 486 { 487 u8 i; 488 489 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX); 490 491 memset(mem_cgroup_events_index, U8_MAX, 492 sizeof(mem_cgroup_events_index)); 493 494 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 495 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i; 496 } 497 498 static inline int memcg_events_index(enum vm_event_item idx) 499 { 500 return mem_cgroup_events_index[idx]; 501 } 502 503 struct memcg_vmstats_percpu { 504 /* Stats updates since the last flush */ 505 unsigned int stats_updates; 506 507 /* Cached pointers for fast iteration in memcg_rstat_updated() */ 508 struct memcg_vmstats_percpu __percpu *parent_pcpu; 509 struct memcg_vmstats *vmstats; 510 511 /* The above should fit a single cacheline for memcg_rstat_updated() */ 512 513 /* Local (CPU and cgroup) page state & events */ 514 long state[MEMCG_VMSTAT_SIZE]; 515 unsigned long events[NR_MEMCG_EVENTS]; 516 517 /* Delta calculation for lockless upward propagation */ 518 long state_prev[MEMCG_VMSTAT_SIZE]; 519 unsigned long events_prev[NR_MEMCG_EVENTS]; 520 } ____cacheline_aligned; 521 522 struct memcg_vmstats { 523 /* Aggregated (CPU and subtree) page state & events */ 524 long state[MEMCG_VMSTAT_SIZE]; 525 unsigned long events[NR_MEMCG_EVENTS]; 526 527 /* Non-hierarchical (CPU aggregated) page state & events */ 528 long state_local[MEMCG_VMSTAT_SIZE]; 529 unsigned long events_local[NR_MEMCG_EVENTS]; 530 531 /* Pending child counts during tree propagation */ 532 long state_pending[MEMCG_VMSTAT_SIZE]; 533 unsigned long events_pending[NR_MEMCG_EVENTS]; 534 535 /* Stats updates since the last flush */ 536 atomic_t stats_updates; 537 }; 538 539 /* 540 * memcg and lruvec stats flushing 541 * 542 * Many codepaths leading to stats update or read are performance sensitive and 543 * adding stats flushing in such codepaths is not desirable. So, to optimize the 544 * flushing the kernel does: 545 * 546 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 547 * rstat update tree grow unbounded. 548 * 549 * 2) Flush the stats synchronously on reader side only when there are more than 550 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 551 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 552 * only for 2 seconds due to (1). 553 */ 554 static void flush_memcg_stats_dwork(struct work_struct *w); 555 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 556 static u64 flush_last_time; 557 558 #define FLUSH_TIME (2UL*HZ) 559 560 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats) 561 { 562 return atomic_read(&vmstats->stats_updates) > 563 MEMCG_CHARGE_BATCH * num_online_cpus(); 564 } 565 566 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val, 567 int cpu) 568 { 569 struct memcg_vmstats_percpu __percpu *statc_pcpu; 570 struct memcg_vmstats_percpu *statc; 571 unsigned int stats_updates; 572 573 if (!val) 574 return; 575 576 /* TODO: add to cgroup update tree once it is nmi-safe. */ 577 if (!in_nmi()) 578 css_rstat_updated(&memcg->css, cpu); 579 statc_pcpu = memcg->vmstats_percpu; 580 for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) { 581 statc = this_cpu_ptr(statc_pcpu); 582 /* 583 * If @memcg is already flushable then all its ancestors are 584 * flushable as well and also there is no need to increase 585 * stats_updates. 586 */ 587 if (memcg_vmstats_needs_flush(statc->vmstats)) 588 break; 589 590 stats_updates = this_cpu_add_return(statc_pcpu->stats_updates, 591 abs(val)); 592 if (stats_updates < MEMCG_CHARGE_BATCH) 593 continue; 594 595 stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0); 596 atomic_add(stats_updates, &statc->vmstats->stats_updates); 597 } 598 } 599 600 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force) 601 { 602 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats); 603 604 trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates), 605 force, needs_flush); 606 607 if (!force && !needs_flush) 608 return; 609 610 if (mem_cgroup_is_root(memcg)) 611 WRITE_ONCE(flush_last_time, jiffies_64); 612 613 css_rstat_flush(&memcg->css); 614 } 615 616 /* 617 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree 618 * @memcg: root of the subtree to flush 619 * 620 * Flushing is serialized by the underlying global rstat lock. There is also a 621 * minimum amount of work to be done even if there are no stat updates to flush. 622 * Hence, we only flush the stats if the updates delta exceeds a threshold. This 623 * avoids unnecessary work and contention on the underlying lock. 624 */ 625 void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 626 { 627 if (mem_cgroup_disabled()) 628 return; 629 630 if (!memcg) 631 memcg = root_mem_cgroup; 632 633 __mem_cgroup_flush_stats(memcg, false); 634 } 635 636 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 637 { 638 /* Only flush if the periodic flusher is one full cycle late */ 639 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME)) 640 mem_cgroup_flush_stats(memcg); 641 } 642 643 static void flush_memcg_stats_dwork(struct work_struct *w) 644 { 645 /* 646 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing 647 * in latency-sensitive paths is as cheap as possible. 648 */ 649 __mem_cgroup_flush_stats(root_mem_cgroup, true); 650 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 651 } 652 653 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 654 { 655 long x; 656 int i = memcg_stats_index(idx); 657 658 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 659 return 0; 660 661 x = READ_ONCE(memcg->vmstats->state[i]); 662 #ifdef CONFIG_SMP 663 if (x < 0) 664 x = 0; 665 #endif 666 return x; 667 } 668 669 static int memcg_page_state_unit(int item); 670 671 /* 672 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round 673 * up non-zero sub-page updates to 1 page as zero page updates are ignored. 674 */ 675 static int memcg_state_val_in_pages(int idx, int val) 676 { 677 int unit = memcg_page_state_unit(idx); 678 679 if (!val || unit == PAGE_SIZE) 680 return val; 681 else 682 return max(val * unit / PAGE_SIZE, 1UL); 683 } 684 685 /** 686 * mod_memcg_state - update cgroup memory statistics 687 * @memcg: the memory cgroup 688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 689 * @val: delta to add to the counter, can be negative 690 */ 691 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx, 692 int val) 693 { 694 int i = memcg_stats_index(idx); 695 int cpu; 696 697 if (mem_cgroup_disabled()) 698 return; 699 700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 701 return; 702 703 cpu = get_cpu(); 704 705 this_cpu_add(memcg->vmstats_percpu->state[i], val); 706 val = memcg_state_val_in_pages(idx, val); 707 memcg_rstat_updated(memcg, val, cpu); 708 trace_mod_memcg_state(memcg, idx, val); 709 710 put_cpu(); 711 } 712 713 #ifdef CONFIG_MEMCG_V1 714 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 715 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 716 { 717 long x; 718 int i = memcg_stats_index(idx); 719 720 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 721 return 0; 722 723 x = READ_ONCE(memcg->vmstats->state_local[i]); 724 #ifdef CONFIG_SMP 725 if (x < 0) 726 x = 0; 727 #endif 728 return x; 729 } 730 #endif 731 732 static void mod_memcg_lruvec_state(struct lruvec *lruvec, 733 enum node_stat_item idx, 734 int val) 735 { 736 struct mem_cgroup_per_node *pn; 737 struct mem_cgroup *memcg; 738 int i = memcg_stats_index(idx); 739 int cpu; 740 741 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 742 return; 743 744 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 745 memcg = pn->memcg; 746 747 cpu = get_cpu(); 748 749 /* Update memcg */ 750 this_cpu_add(memcg->vmstats_percpu->state[i], val); 751 752 /* Update lruvec */ 753 this_cpu_add(pn->lruvec_stats_percpu->state[i], val); 754 755 val = memcg_state_val_in_pages(idx, val); 756 memcg_rstat_updated(memcg, val, cpu); 757 trace_mod_memcg_lruvec_state(memcg, idx, val); 758 759 put_cpu(); 760 } 761 762 /** 763 * __mod_lruvec_state - update lruvec memory statistics 764 * @lruvec: the lruvec 765 * @idx: the stat item 766 * @val: delta to add to the counter, can be negative 767 * 768 * The lruvec is the intersection of the NUMA node and a cgroup. This 769 * function updates the all three counters that are affected by a 770 * change of state at this level: per-node, per-cgroup, per-lruvec. 771 */ 772 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 773 int val) 774 { 775 /* Update node */ 776 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 777 778 /* Update memcg and lruvec */ 779 if (!mem_cgroup_disabled()) 780 mod_memcg_lruvec_state(lruvec, idx, val); 781 } 782 783 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx, 784 int val) 785 { 786 struct mem_cgroup *memcg; 787 pg_data_t *pgdat = folio_pgdat(folio); 788 struct lruvec *lruvec; 789 790 rcu_read_lock(); 791 memcg = folio_memcg(folio); 792 /* Untracked pages have no memcg, no lruvec. Update only the node */ 793 if (!memcg) { 794 rcu_read_unlock(); 795 __mod_node_page_state(pgdat, idx, val); 796 return; 797 } 798 799 lruvec = mem_cgroup_lruvec(memcg, pgdat); 800 __mod_lruvec_state(lruvec, idx, val); 801 rcu_read_unlock(); 802 } 803 EXPORT_SYMBOL(__lruvec_stat_mod_folio); 804 805 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 806 { 807 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 808 struct mem_cgroup *memcg; 809 struct lruvec *lruvec; 810 811 rcu_read_lock(); 812 memcg = mem_cgroup_from_slab_obj(p); 813 814 /* 815 * Untracked pages have no memcg, no lruvec. Update only the 816 * node. If we reparent the slab objects to the root memcg, 817 * when we free the slab object, we need to update the per-memcg 818 * vmstats to keep it correct for the root memcg. 819 */ 820 if (!memcg) { 821 __mod_node_page_state(pgdat, idx, val); 822 } else { 823 lruvec = mem_cgroup_lruvec(memcg, pgdat); 824 __mod_lruvec_state(lruvec, idx, val); 825 } 826 rcu_read_unlock(); 827 } 828 829 /** 830 * count_memcg_events - account VM events in a cgroup 831 * @memcg: the memory cgroup 832 * @idx: the event item 833 * @count: the number of events that occurred 834 */ 835 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 836 unsigned long count) 837 { 838 int i = memcg_events_index(idx); 839 int cpu; 840 841 if (mem_cgroup_disabled()) 842 return; 843 844 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx)) 845 return; 846 847 cpu = get_cpu(); 848 849 this_cpu_add(memcg->vmstats_percpu->events[i], count); 850 memcg_rstat_updated(memcg, count, cpu); 851 trace_count_memcg_events(memcg, idx, count); 852 853 put_cpu(); 854 } 855 856 unsigned long memcg_events(struct mem_cgroup *memcg, int event) 857 { 858 int i = memcg_events_index(event); 859 860 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 861 return 0; 862 863 return READ_ONCE(memcg->vmstats->events[i]); 864 } 865 866 #ifdef CONFIG_MEMCG_V1 867 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 868 { 869 int i = memcg_events_index(event); 870 871 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event)) 872 return 0; 873 874 return READ_ONCE(memcg->vmstats->events_local[i]); 875 } 876 #endif 877 878 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 879 { 880 /* 881 * mm_update_next_owner() may clear mm->owner to NULL 882 * if it races with swapoff, page migration, etc. 883 * So this can be called with p == NULL. 884 */ 885 if (unlikely(!p)) 886 return NULL; 887 888 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 889 } 890 EXPORT_SYMBOL(mem_cgroup_from_task); 891 892 static __always_inline struct mem_cgroup *active_memcg(void) 893 { 894 if (!in_task()) 895 return this_cpu_read(int_active_memcg); 896 else 897 return current->active_memcg; 898 } 899 900 /** 901 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 902 * @mm: mm from which memcg should be extracted. It can be NULL. 903 * 904 * Obtain a reference on mm->memcg and returns it if successful. If mm 905 * is NULL, then the memcg is chosen as follows: 906 * 1) The active memcg, if set. 907 * 2) current->mm->memcg, if available 908 * 3) root memcg 909 * If mem_cgroup is disabled, NULL is returned. 910 */ 911 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 912 { 913 struct mem_cgroup *memcg; 914 915 if (mem_cgroup_disabled()) 916 return NULL; 917 918 /* 919 * Page cache insertions can happen without an 920 * actual mm context, e.g. during disk probing 921 * on boot, loopback IO, acct() writes etc. 922 * 923 * No need to css_get on root memcg as the reference 924 * counting is disabled on the root level in the 925 * cgroup core. See CSS_NO_REF. 926 */ 927 if (unlikely(!mm)) { 928 memcg = active_memcg(); 929 if (unlikely(memcg)) { 930 /* remote memcg must hold a ref */ 931 css_get(&memcg->css); 932 return memcg; 933 } 934 mm = current->mm; 935 if (unlikely(!mm)) 936 return root_mem_cgroup; 937 } 938 939 rcu_read_lock(); 940 do { 941 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 942 if (unlikely(!memcg)) 943 memcg = root_mem_cgroup; 944 } while (!css_tryget(&memcg->css)); 945 rcu_read_unlock(); 946 return memcg; 947 } 948 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 949 950 /** 951 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg. 952 */ 953 struct mem_cgroup *get_mem_cgroup_from_current(void) 954 { 955 struct mem_cgroup *memcg; 956 957 if (mem_cgroup_disabled()) 958 return NULL; 959 960 again: 961 rcu_read_lock(); 962 memcg = mem_cgroup_from_task(current); 963 if (!css_tryget(&memcg->css)) { 964 rcu_read_unlock(); 965 goto again; 966 } 967 rcu_read_unlock(); 968 return memcg; 969 } 970 971 /** 972 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg. 973 * @folio: folio from which memcg should be extracted. 974 */ 975 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 976 { 977 struct mem_cgroup *memcg = folio_memcg(folio); 978 979 if (mem_cgroup_disabled()) 980 return NULL; 981 982 rcu_read_lock(); 983 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 984 memcg = root_mem_cgroup; 985 rcu_read_unlock(); 986 return memcg; 987 } 988 989 /** 990 * mem_cgroup_iter - iterate over memory cgroup hierarchy 991 * @root: hierarchy root 992 * @prev: previously returned memcg, NULL on first invocation 993 * @reclaim: cookie for shared reclaim walks, NULL for full walks 994 * 995 * Returns references to children of the hierarchy below @root, or 996 * @root itself, or %NULL after a full round-trip. 997 * 998 * Caller must pass the return value in @prev on subsequent 999 * invocations for reference counting, or use mem_cgroup_iter_break() 1000 * to cancel a hierarchy walk before the round-trip is complete. 1001 * 1002 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1003 * in the hierarchy among all concurrent reclaimers operating on the 1004 * same node. 1005 */ 1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1007 struct mem_cgroup *prev, 1008 struct mem_cgroup_reclaim_cookie *reclaim) 1009 { 1010 struct mem_cgroup_reclaim_iter *iter; 1011 struct cgroup_subsys_state *css; 1012 struct mem_cgroup *pos; 1013 struct mem_cgroup *next; 1014 1015 if (mem_cgroup_disabled()) 1016 return NULL; 1017 1018 if (!root) 1019 root = root_mem_cgroup; 1020 1021 rcu_read_lock(); 1022 restart: 1023 next = NULL; 1024 1025 if (reclaim) { 1026 int gen; 1027 int nid = reclaim->pgdat->node_id; 1028 1029 iter = &root->nodeinfo[nid]->iter; 1030 gen = atomic_read(&iter->generation); 1031 1032 /* 1033 * On start, join the current reclaim iteration cycle. 1034 * Exit when a concurrent walker completes it. 1035 */ 1036 if (!prev) 1037 reclaim->generation = gen; 1038 else if (reclaim->generation != gen) 1039 goto out_unlock; 1040 1041 pos = READ_ONCE(iter->position); 1042 } else 1043 pos = prev; 1044 1045 css = pos ? &pos->css : NULL; 1046 1047 while ((css = css_next_descendant_pre(css, &root->css))) { 1048 /* 1049 * Verify the css and acquire a reference. The root 1050 * is provided by the caller, so we know it's alive 1051 * and kicking, and don't take an extra reference. 1052 */ 1053 if (css == &root->css || css_tryget(css)) 1054 break; 1055 } 1056 1057 next = mem_cgroup_from_css(css); 1058 1059 if (reclaim) { 1060 /* 1061 * The position could have already been updated by a competing 1062 * thread, so check that the value hasn't changed since we read 1063 * it to avoid reclaiming from the same cgroup twice. 1064 */ 1065 if (cmpxchg(&iter->position, pos, next) != pos) { 1066 if (css && css != &root->css) 1067 css_put(css); 1068 goto restart; 1069 } 1070 1071 if (!next) { 1072 atomic_inc(&iter->generation); 1073 1074 /* 1075 * Reclaimers share the hierarchy walk, and a 1076 * new one might jump in right at the end of 1077 * the hierarchy - make sure they see at least 1078 * one group and restart from the beginning. 1079 */ 1080 if (!prev) 1081 goto restart; 1082 } 1083 } 1084 1085 out_unlock: 1086 rcu_read_unlock(); 1087 if (prev && prev != root) 1088 css_put(&prev->css); 1089 1090 return next; 1091 } 1092 1093 /** 1094 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1095 * @root: hierarchy root 1096 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1097 */ 1098 void mem_cgroup_iter_break(struct mem_cgroup *root, 1099 struct mem_cgroup *prev) 1100 { 1101 if (!root) 1102 root = root_mem_cgroup; 1103 if (prev && prev != root) 1104 css_put(&prev->css); 1105 } 1106 1107 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1108 struct mem_cgroup *dead_memcg) 1109 { 1110 struct mem_cgroup_reclaim_iter *iter; 1111 struct mem_cgroup_per_node *mz; 1112 int nid; 1113 1114 for_each_node(nid) { 1115 mz = from->nodeinfo[nid]; 1116 iter = &mz->iter; 1117 cmpxchg(&iter->position, dead_memcg, NULL); 1118 } 1119 } 1120 1121 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1122 { 1123 struct mem_cgroup *memcg = dead_memcg; 1124 struct mem_cgroup *last; 1125 1126 do { 1127 __invalidate_reclaim_iterators(memcg, dead_memcg); 1128 last = memcg; 1129 } while ((memcg = parent_mem_cgroup(memcg))); 1130 1131 /* 1132 * When cgroup1 non-hierarchy mode is used, 1133 * parent_mem_cgroup() does not walk all the way up to the 1134 * cgroup root (root_mem_cgroup). So we have to handle 1135 * dead_memcg from cgroup root separately. 1136 */ 1137 if (!mem_cgroup_is_root(last)) 1138 __invalidate_reclaim_iterators(root_mem_cgroup, 1139 dead_memcg); 1140 } 1141 1142 /** 1143 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1144 * @memcg: hierarchy root 1145 * @fn: function to call for each task 1146 * @arg: argument passed to @fn 1147 * 1148 * This function iterates over tasks attached to @memcg or to any of its 1149 * descendants and calls @fn for each task. If @fn returns a non-zero 1150 * value, the function breaks the iteration loop. Otherwise, it will iterate 1151 * over all tasks and return 0. 1152 * 1153 * This function must not be called for the root memory cgroup. 1154 */ 1155 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1156 int (*fn)(struct task_struct *, void *), void *arg) 1157 { 1158 struct mem_cgroup *iter; 1159 int ret = 0; 1160 1161 BUG_ON(mem_cgroup_is_root(memcg)); 1162 1163 for_each_mem_cgroup_tree(iter, memcg) { 1164 struct css_task_iter it; 1165 struct task_struct *task; 1166 1167 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1168 while (!ret && (task = css_task_iter_next(&it))) { 1169 ret = fn(task, arg); 1170 /* Avoid potential softlockup warning */ 1171 cond_resched(); 1172 } 1173 css_task_iter_end(&it); 1174 if (ret) { 1175 mem_cgroup_iter_break(memcg, iter); 1176 break; 1177 } 1178 } 1179 } 1180 1181 #ifdef CONFIG_DEBUG_VM 1182 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1183 { 1184 struct mem_cgroup *memcg; 1185 1186 if (mem_cgroup_disabled()) 1187 return; 1188 1189 memcg = folio_memcg(folio); 1190 1191 if (!memcg) 1192 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1193 else 1194 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1195 } 1196 #endif 1197 1198 /** 1199 * folio_lruvec_lock - Lock the lruvec for a folio. 1200 * @folio: Pointer to the folio. 1201 * 1202 * These functions are safe to use under any of the following conditions: 1203 * - folio locked 1204 * - folio_test_lru false 1205 * - folio frozen (refcount of 0) 1206 * 1207 * Return: The lruvec this folio is on with its lock held. 1208 */ 1209 struct lruvec *folio_lruvec_lock(struct folio *folio) 1210 { 1211 struct lruvec *lruvec = folio_lruvec(folio); 1212 1213 spin_lock(&lruvec->lru_lock); 1214 lruvec_memcg_debug(lruvec, folio); 1215 1216 return lruvec; 1217 } 1218 1219 /** 1220 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1221 * @folio: Pointer to the folio. 1222 * 1223 * These functions are safe to use under any of the following conditions: 1224 * - folio locked 1225 * - folio_test_lru false 1226 * - folio frozen (refcount of 0) 1227 * 1228 * Return: The lruvec this folio is on with its lock held and interrupts 1229 * disabled. 1230 */ 1231 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1232 { 1233 struct lruvec *lruvec = folio_lruvec(folio); 1234 1235 spin_lock_irq(&lruvec->lru_lock); 1236 lruvec_memcg_debug(lruvec, folio); 1237 1238 return lruvec; 1239 } 1240 1241 /** 1242 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1243 * @folio: Pointer to the folio. 1244 * @flags: Pointer to irqsave flags. 1245 * 1246 * These functions are safe to use under any of the following conditions: 1247 * - folio locked 1248 * - folio_test_lru false 1249 * - folio frozen (refcount of 0) 1250 * 1251 * Return: The lruvec this folio is on with its lock held and interrupts 1252 * disabled. 1253 */ 1254 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1255 unsigned long *flags) 1256 { 1257 struct lruvec *lruvec = folio_lruvec(folio); 1258 1259 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1260 lruvec_memcg_debug(lruvec, folio); 1261 1262 return lruvec; 1263 } 1264 1265 /** 1266 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1267 * @lruvec: mem_cgroup per zone lru vector 1268 * @lru: index of lru list the page is sitting on 1269 * @zid: zone id of the accounted pages 1270 * @nr_pages: positive when adding or negative when removing 1271 * 1272 * This function must be called under lru_lock, just before a page is added 1273 * to or just after a page is removed from an lru list. 1274 */ 1275 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1276 int zid, int nr_pages) 1277 { 1278 struct mem_cgroup_per_node *mz; 1279 unsigned long *lru_size; 1280 long size; 1281 1282 if (mem_cgroup_disabled()) 1283 return; 1284 1285 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1286 lru_size = &mz->lru_zone_size[zid][lru]; 1287 1288 if (nr_pages < 0) 1289 *lru_size += nr_pages; 1290 1291 size = *lru_size; 1292 if (WARN_ONCE(size < 0, 1293 "%s(%p, %d, %d): lru_size %ld\n", 1294 __func__, lruvec, lru, nr_pages, size)) { 1295 VM_BUG_ON(1); 1296 *lru_size = 0; 1297 } 1298 1299 if (nr_pages > 0) 1300 *lru_size += nr_pages; 1301 } 1302 1303 /** 1304 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1305 * @memcg: the memory cgroup 1306 * 1307 * Returns the maximum amount of memory @mem can be charged with, in 1308 * pages. 1309 */ 1310 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1311 { 1312 unsigned long margin = 0; 1313 unsigned long count; 1314 unsigned long limit; 1315 1316 count = page_counter_read(&memcg->memory); 1317 limit = READ_ONCE(memcg->memory.max); 1318 if (count < limit) 1319 margin = limit - count; 1320 1321 if (do_memsw_account()) { 1322 count = page_counter_read(&memcg->memsw); 1323 limit = READ_ONCE(memcg->memsw.max); 1324 if (count < limit) 1325 margin = min(margin, limit - count); 1326 else 1327 margin = 0; 1328 } 1329 1330 return margin; 1331 } 1332 1333 struct memory_stat { 1334 const char *name; 1335 unsigned int idx; 1336 }; 1337 1338 static const struct memory_stat memory_stats[] = { 1339 { "anon", NR_ANON_MAPPED }, 1340 { "file", NR_FILE_PAGES }, 1341 { "kernel", MEMCG_KMEM }, 1342 { "kernel_stack", NR_KERNEL_STACK_KB }, 1343 { "pagetables", NR_PAGETABLE }, 1344 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1345 { "percpu", MEMCG_PERCPU_B }, 1346 { "sock", MEMCG_SOCK }, 1347 { "vmalloc", MEMCG_VMALLOC }, 1348 { "shmem", NR_SHMEM }, 1349 #ifdef CONFIG_ZSWAP 1350 { "zswap", MEMCG_ZSWAP_B }, 1351 { "zswapped", MEMCG_ZSWAPPED }, 1352 #endif 1353 { "file_mapped", NR_FILE_MAPPED }, 1354 { "file_dirty", NR_FILE_DIRTY }, 1355 { "file_writeback", NR_WRITEBACK }, 1356 #ifdef CONFIG_SWAP 1357 { "swapcached", NR_SWAPCACHE }, 1358 #endif 1359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1360 { "anon_thp", NR_ANON_THPS }, 1361 { "file_thp", NR_FILE_THPS }, 1362 { "shmem_thp", NR_SHMEM_THPS }, 1363 #endif 1364 { "inactive_anon", NR_INACTIVE_ANON }, 1365 { "active_anon", NR_ACTIVE_ANON }, 1366 { "inactive_file", NR_INACTIVE_FILE }, 1367 { "active_file", NR_ACTIVE_FILE }, 1368 { "unevictable", NR_UNEVICTABLE }, 1369 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1370 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1371 #ifdef CONFIG_HUGETLB_PAGE 1372 { "hugetlb", NR_HUGETLB }, 1373 #endif 1374 1375 /* The memory events */ 1376 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1377 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1378 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1379 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1380 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1381 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1382 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1383 1384 { "pgdemote_kswapd", PGDEMOTE_KSWAPD }, 1385 { "pgdemote_direct", PGDEMOTE_DIRECT }, 1386 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED }, 1387 { "pgdemote_proactive", PGDEMOTE_PROACTIVE }, 1388 #ifdef CONFIG_NUMA_BALANCING 1389 { "pgpromote_success", PGPROMOTE_SUCCESS }, 1390 #endif 1391 }; 1392 1393 /* The actual unit of the state item, not the same as the output unit */ 1394 static int memcg_page_state_unit(int item) 1395 { 1396 switch (item) { 1397 case MEMCG_PERCPU_B: 1398 case MEMCG_ZSWAP_B: 1399 case NR_SLAB_RECLAIMABLE_B: 1400 case NR_SLAB_UNRECLAIMABLE_B: 1401 return 1; 1402 case NR_KERNEL_STACK_KB: 1403 return SZ_1K; 1404 default: 1405 return PAGE_SIZE; 1406 } 1407 } 1408 1409 /* Translate stat items to the correct unit for memory.stat output */ 1410 static int memcg_page_state_output_unit(int item) 1411 { 1412 /* 1413 * Workingset state is actually in pages, but we export it to userspace 1414 * as a scalar count of events, so special case it here. 1415 * 1416 * Demotion and promotion activities are exported in pages, consistent 1417 * with their global counterparts. 1418 */ 1419 switch (item) { 1420 case WORKINGSET_REFAULT_ANON: 1421 case WORKINGSET_REFAULT_FILE: 1422 case WORKINGSET_ACTIVATE_ANON: 1423 case WORKINGSET_ACTIVATE_FILE: 1424 case WORKINGSET_RESTORE_ANON: 1425 case WORKINGSET_RESTORE_FILE: 1426 case WORKINGSET_NODERECLAIM: 1427 case PGDEMOTE_KSWAPD: 1428 case PGDEMOTE_DIRECT: 1429 case PGDEMOTE_KHUGEPAGED: 1430 case PGDEMOTE_PROACTIVE: 1431 #ifdef CONFIG_NUMA_BALANCING 1432 case PGPROMOTE_SUCCESS: 1433 #endif 1434 return 1; 1435 default: 1436 return memcg_page_state_unit(item); 1437 } 1438 } 1439 1440 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item) 1441 { 1442 return memcg_page_state(memcg, item) * 1443 memcg_page_state_output_unit(item); 1444 } 1445 1446 #ifdef CONFIG_MEMCG_V1 1447 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item) 1448 { 1449 return memcg_page_state_local(memcg, item) * 1450 memcg_page_state_output_unit(item); 1451 } 1452 #endif 1453 1454 #ifdef CONFIG_HUGETLB_PAGE 1455 static bool memcg_accounts_hugetlb(void) 1456 { 1457 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1458 } 1459 #else /* CONFIG_HUGETLB_PAGE */ 1460 static bool memcg_accounts_hugetlb(void) 1461 { 1462 return false; 1463 } 1464 #endif /* CONFIG_HUGETLB_PAGE */ 1465 1466 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1467 { 1468 int i; 1469 1470 /* 1471 * Provide statistics on the state of the memory subsystem as 1472 * well as cumulative event counters that show past behavior. 1473 * 1474 * This list is ordered following a combination of these gradients: 1475 * 1) generic big picture -> specifics and details 1476 * 2) reflecting userspace activity -> reflecting kernel heuristics 1477 * 1478 * Current memory state: 1479 */ 1480 mem_cgroup_flush_stats(memcg); 1481 1482 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1483 u64 size; 1484 1485 #ifdef CONFIG_HUGETLB_PAGE 1486 if (unlikely(memory_stats[i].idx == NR_HUGETLB) && 1487 !memcg_accounts_hugetlb()) 1488 continue; 1489 #endif 1490 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1491 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size); 1492 1493 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1494 size += memcg_page_state_output(memcg, 1495 NR_SLAB_RECLAIMABLE_B); 1496 seq_buf_printf(s, "slab %llu\n", size); 1497 } 1498 } 1499 1500 /* Accumulated memory events */ 1501 seq_buf_printf(s, "pgscan %lu\n", 1502 memcg_events(memcg, PGSCAN_KSWAPD) + 1503 memcg_events(memcg, PGSCAN_DIRECT) + 1504 memcg_events(memcg, PGSCAN_PROACTIVE) + 1505 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1506 seq_buf_printf(s, "pgsteal %lu\n", 1507 memcg_events(memcg, PGSTEAL_KSWAPD) + 1508 memcg_events(memcg, PGSTEAL_DIRECT) + 1509 memcg_events(memcg, PGSTEAL_PROACTIVE) + 1510 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1511 1512 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1513 #ifdef CONFIG_MEMCG_V1 1514 if (memcg_vm_event_stat[i] == PGPGIN || 1515 memcg_vm_event_stat[i] == PGPGOUT) 1516 continue; 1517 #endif 1518 seq_buf_printf(s, "%s %lu\n", 1519 vm_event_name(memcg_vm_event_stat[i]), 1520 memcg_events(memcg, memcg_vm_event_stat[i])); 1521 } 1522 } 1523 1524 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) 1525 { 1526 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1527 memcg_stat_format(memcg, s); 1528 else 1529 memcg1_stat_format(memcg, s); 1530 if (seq_buf_has_overflowed(s)) 1531 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__); 1532 } 1533 1534 /** 1535 * mem_cgroup_print_oom_context: Print OOM information relevant to 1536 * memory controller. 1537 * @memcg: The memory cgroup that went over limit 1538 * @p: Task that is going to be killed 1539 * 1540 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1541 * enabled 1542 */ 1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1544 { 1545 rcu_read_lock(); 1546 1547 if (memcg) { 1548 pr_cont(",oom_memcg="); 1549 pr_cont_cgroup_path(memcg->css.cgroup); 1550 } else 1551 pr_cont(",global_oom"); 1552 if (p) { 1553 pr_cont(",task_memcg="); 1554 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1555 } 1556 rcu_read_unlock(); 1557 } 1558 1559 /** 1560 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1561 * memory controller. 1562 * @memcg: The memory cgroup that went over limit 1563 */ 1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1565 { 1566 /* Use static buffer, for the caller is holding oom_lock. */ 1567 static char buf[SEQ_BUF_SIZE]; 1568 struct seq_buf s; 1569 unsigned long memory_failcnt; 1570 1571 lockdep_assert_held(&oom_lock); 1572 1573 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1574 memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]); 1575 else 1576 memory_failcnt = memcg->memory.failcnt; 1577 1578 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1579 K((u64)page_counter_read(&memcg->memory)), 1580 K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt); 1581 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1582 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1583 K((u64)page_counter_read(&memcg->swap)), 1584 K((u64)READ_ONCE(memcg->swap.max)), 1585 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 1586 #ifdef CONFIG_MEMCG_V1 1587 else { 1588 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1589 K((u64)page_counter_read(&memcg->memsw)), 1590 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1591 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1592 K((u64)page_counter_read(&memcg->kmem)), 1593 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1594 } 1595 #endif 1596 1597 pr_info("Memory cgroup stats for "); 1598 pr_cont_cgroup_path(memcg->css.cgroup); 1599 pr_cont(":"); 1600 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 1601 memory_stat_format(memcg, &s); 1602 seq_buf_do_printk(&s, KERN_INFO); 1603 } 1604 1605 /* 1606 * Return the memory (and swap, if configured) limit for a memcg. 1607 */ 1608 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1609 { 1610 unsigned long max = READ_ONCE(memcg->memory.max); 1611 1612 if (do_memsw_account()) { 1613 if (mem_cgroup_swappiness(memcg)) { 1614 /* Calculate swap excess capacity from memsw limit */ 1615 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1616 1617 max += min(swap, (unsigned long)total_swap_pages); 1618 } 1619 } else { 1620 if (mem_cgroup_swappiness(memcg)) 1621 max += min(READ_ONCE(memcg->swap.max), 1622 (unsigned long)total_swap_pages); 1623 } 1624 return max; 1625 } 1626 1627 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1628 { 1629 return page_counter_read(&memcg->memory); 1630 } 1631 1632 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1633 int order) 1634 { 1635 struct oom_control oc = { 1636 .zonelist = NULL, 1637 .nodemask = NULL, 1638 .memcg = memcg, 1639 .gfp_mask = gfp_mask, 1640 .order = order, 1641 }; 1642 bool ret = true; 1643 1644 if (mutex_lock_killable(&oom_lock)) 1645 return true; 1646 1647 if (mem_cgroup_margin(memcg) >= (1 << order)) 1648 goto unlock; 1649 1650 /* 1651 * A few threads which were not waiting at mutex_lock_killable() can 1652 * fail to bail out. Therefore, check again after holding oom_lock. 1653 */ 1654 ret = out_of_memory(&oc); 1655 1656 unlock: 1657 mutex_unlock(&oom_lock); 1658 return ret; 1659 } 1660 1661 /* 1662 * Returns true if successfully killed one or more processes. Though in some 1663 * corner cases it can return true even without killing any process. 1664 */ 1665 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1666 { 1667 bool locked, ret; 1668 1669 if (order > PAGE_ALLOC_COSTLY_ORDER) 1670 return false; 1671 1672 memcg_memory_event(memcg, MEMCG_OOM); 1673 1674 if (!memcg1_oom_prepare(memcg, &locked)) 1675 return false; 1676 1677 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1678 1679 memcg1_oom_finish(memcg, locked); 1680 1681 return ret; 1682 } 1683 1684 /** 1685 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1686 * @victim: task to be killed by the OOM killer 1687 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1688 * 1689 * Returns a pointer to a memory cgroup, which has to be cleaned up 1690 * by killing all belonging OOM-killable tasks. 1691 * 1692 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1693 */ 1694 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1695 struct mem_cgroup *oom_domain) 1696 { 1697 struct mem_cgroup *oom_group = NULL; 1698 struct mem_cgroup *memcg; 1699 1700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1701 return NULL; 1702 1703 if (!oom_domain) 1704 oom_domain = root_mem_cgroup; 1705 1706 rcu_read_lock(); 1707 1708 memcg = mem_cgroup_from_task(victim); 1709 if (mem_cgroup_is_root(memcg)) 1710 goto out; 1711 1712 /* 1713 * If the victim task has been asynchronously moved to a different 1714 * memory cgroup, we might end up killing tasks outside oom_domain. 1715 * In this case it's better to ignore memory.group.oom. 1716 */ 1717 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1718 goto out; 1719 1720 /* 1721 * Traverse the memory cgroup hierarchy from the victim task's 1722 * cgroup up to the OOMing cgroup (or root) to find the 1723 * highest-level memory cgroup with oom.group set. 1724 */ 1725 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1726 if (READ_ONCE(memcg->oom_group)) 1727 oom_group = memcg; 1728 1729 if (memcg == oom_domain) 1730 break; 1731 } 1732 1733 if (oom_group) 1734 css_get(&oom_group->css); 1735 out: 1736 rcu_read_unlock(); 1737 1738 return oom_group; 1739 } 1740 1741 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1742 { 1743 pr_info("Tasks in "); 1744 pr_cont_cgroup_path(memcg->css.cgroup); 1745 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1746 } 1747 1748 /* 1749 * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their 1750 * nr_pages in a single cacheline. This may change in future. 1751 */ 1752 #define NR_MEMCG_STOCK 7 1753 #define FLUSHING_CACHED_CHARGE 0 1754 struct memcg_stock_pcp { 1755 local_trylock_t lock; 1756 uint8_t nr_pages[NR_MEMCG_STOCK]; 1757 struct mem_cgroup *cached[NR_MEMCG_STOCK]; 1758 1759 struct work_struct work; 1760 unsigned long flags; 1761 }; 1762 1763 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = { 1764 .lock = INIT_LOCAL_TRYLOCK(lock), 1765 }; 1766 1767 struct obj_stock_pcp { 1768 local_trylock_t lock; 1769 unsigned int nr_bytes; 1770 struct obj_cgroup *cached_objcg; 1771 struct pglist_data *cached_pgdat; 1772 int nr_slab_reclaimable_b; 1773 int nr_slab_unreclaimable_b; 1774 1775 struct work_struct work; 1776 unsigned long flags; 1777 }; 1778 1779 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = { 1780 .lock = INIT_LOCAL_TRYLOCK(lock), 1781 }; 1782 1783 static DEFINE_MUTEX(percpu_charge_mutex); 1784 1785 static void drain_obj_stock(struct obj_stock_pcp *stock); 1786 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 1787 struct mem_cgroup *root_memcg); 1788 1789 /** 1790 * consume_stock: Try to consume stocked charge on this cpu. 1791 * @memcg: memcg to consume from. 1792 * @nr_pages: how many pages to charge. 1793 * 1794 * Consume the cached charge if enough nr_pages are present otherwise return 1795 * failure. Also return failure for charge request larger than 1796 * MEMCG_CHARGE_BATCH or if the local lock is already taken. 1797 * 1798 * returns true if successful, false otherwise. 1799 */ 1800 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1801 { 1802 struct memcg_stock_pcp *stock; 1803 uint8_t stock_pages; 1804 bool ret = false; 1805 int i; 1806 1807 if (nr_pages > MEMCG_CHARGE_BATCH || 1808 !local_trylock(&memcg_stock.lock)) 1809 return ret; 1810 1811 stock = this_cpu_ptr(&memcg_stock); 1812 1813 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1814 if (memcg != READ_ONCE(stock->cached[i])) 1815 continue; 1816 1817 stock_pages = READ_ONCE(stock->nr_pages[i]); 1818 if (stock_pages >= nr_pages) { 1819 WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages); 1820 ret = true; 1821 } 1822 break; 1823 } 1824 1825 local_unlock(&memcg_stock.lock); 1826 1827 return ret; 1828 } 1829 1830 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 1831 { 1832 page_counter_uncharge(&memcg->memory, nr_pages); 1833 if (do_memsw_account()) 1834 page_counter_uncharge(&memcg->memsw, nr_pages); 1835 } 1836 1837 /* 1838 * Returns stocks cached in percpu and reset cached information. 1839 */ 1840 static void drain_stock(struct memcg_stock_pcp *stock, int i) 1841 { 1842 struct mem_cgroup *old = READ_ONCE(stock->cached[i]); 1843 uint8_t stock_pages; 1844 1845 if (!old) 1846 return; 1847 1848 stock_pages = READ_ONCE(stock->nr_pages[i]); 1849 if (stock_pages) { 1850 memcg_uncharge(old, stock_pages); 1851 WRITE_ONCE(stock->nr_pages[i], 0); 1852 } 1853 1854 css_put(&old->css); 1855 WRITE_ONCE(stock->cached[i], NULL); 1856 } 1857 1858 static void drain_stock_fully(struct memcg_stock_pcp *stock) 1859 { 1860 int i; 1861 1862 for (i = 0; i < NR_MEMCG_STOCK; ++i) 1863 drain_stock(stock, i); 1864 } 1865 1866 static void drain_local_memcg_stock(struct work_struct *dummy) 1867 { 1868 struct memcg_stock_pcp *stock; 1869 1870 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1871 return; 1872 1873 local_lock(&memcg_stock.lock); 1874 1875 stock = this_cpu_ptr(&memcg_stock); 1876 drain_stock_fully(stock); 1877 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1878 1879 local_unlock(&memcg_stock.lock); 1880 } 1881 1882 static void drain_local_obj_stock(struct work_struct *dummy) 1883 { 1884 struct obj_stock_pcp *stock; 1885 1886 if (WARN_ONCE(!in_task(), "drain in non-task context")) 1887 return; 1888 1889 local_lock(&obj_stock.lock); 1890 1891 stock = this_cpu_ptr(&obj_stock); 1892 drain_obj_stock(stock); 1893 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1894 1895 local_unlock(&obj_stock.lock); 1896 } 1897 1898 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1899 { 1900 struct memcg_stock_pcp *stock; 1901 struct mem_cgroup *cached; 1902 uint8_t stock_pages; 1903 bool success = false; 1904 int empty_slot = -1; 1905 int i; 1906 1907 /* 1908 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we 1909 * decide to increase it more than 127 then we will need more careful 1910 * handling of nr_pages[] in struct memcg_stock_pcp. 1911 */ 1912 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX); 1913 1914 VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg)); 1915 1916 if (nr_pages > MEMCG_CHARGE_BATCH || 1917 !local_trylock(&memcg_stock.lock)) { 1918 /* 1919 * In case of larger than batch refill or unlikely failure to 1920 * lock the percpu memcg_stock.lock, uncharge memcg directly. 1921 */ 1922 memcg_uncharge(memcg, nr_pages); 1923 return; 1924 } 1925 1926 stock = this_cpu_ptr(&memcg_stock); 1927 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1928 cached = READ_ONCE(stock->cached[i]); 1929 if (!cached && empty_slot == -1) 1930 empty_slot = i; 1931 if (memcg == READ_ONCE(stock->cached[i])) { 1932 stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages; 1933 WRITE_ONCE(stock->nr_pages[i], stock_pages); 1934 if (stock_pages > MEMCG_CHARGE_BATCH) 1935 drain_stock(stock, i); 1936 success = true; 1937 break; 1938 } 1939 } 1940 1941 if (!success) { 1942 i = empty_slot; 1943 if (i == -1) { 1944 i = get_random_u32_below(NR_MEMCG_STOCK); 1945 drain_stock(stock, i); 1946 } 1947 css_get(&memcg->css); 1948 WRITE_ONCE(stock->cached[i], memcg); 1949 WRITE_ONCE(stock->nr_pages[i], nr_pages); 1950 } 1951 1952 local_unlock(&memcg_stock.lock); 1953 } 1954 1955 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock, 1956 struct mem_cgroup *root_memcg) 1957 { 1958 struct mem_cgroup *memcg; 1959 bool flush = false; 1960 int i; 1961 1962 rcu_read_lock(); 1963 for (i = 0; i < NR_MEMCG_STOCK; ++i) { 1964 memcg = READ_ONCE(stock->cached[i]); 1965 if (!memcg) 1966 continue; 1967 1968 if (READ_ONCE(stock->nr_pages[i]) && 1969 mem_cgroup_is_descendant(memcg, root_memcg)) { 1970 flush = true; 1971 break; 1972 } 1973 } 1974 rcu_read_unlock(); 1975 return flush; 1976 } 1977 1978 /* 1979 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1980 * of the hierarchy under it. 1981 */ 1982 void drain_all_stock(struct mem_cgroup *root_memcg) 1983 { 1984 int cpu, curcpu; 1985 1986 /* If someone's already draining, avoid adding running more workers. */ 1987 if (!mutex_trylock(&percpu_charge_mutex)) 1988 return; 1989 /* 1990 * Notify other cpus that system-wide "drain" is running 1991 * We do not care about races with the cpu hotplug because cpu down 1992 * as well as workers from this path always operate on the local 1993 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1994 */ 1995 migrate_disable(); 1996 curcpu = smp_processor_id(); 1997 for_each_online_cpu(cpu) { 1998 struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu); 1999 struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu); 2000 2001 if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) && 2002 is_memcg_drain_needed(memcg_st, root_memcg) && 2003 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2004 &memcg_st->flags)) { 2005 if (cpu == curcpu) 2006 drain_local_memcg_stock(&memcg_st->work); 2007 else if (!cpu_is_isolated(cpu)) 2008 schedule_work_on(cpu, &memcg_st->work); 2009 } 2010 2011 if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) && 2012 obj_stock_flush_required(obj_st, root_memcg) && 2013 !test_and_set_bit(FLUSHING_CACHED_CHARGE, 2014 &obj_st->flags)) { 2015 if (cpu == curcpu) 2016 drain_local_obj_stock(&obj_st->work); 2017 else if (!cpu_is_isolated(cpu)) 2018 schedule_work_on(cpu, &obj_st->work); 2019 } 2020 } 2021 migrate_enable(); 2022 mutex_unlock(&percpu_charge_mutex); 2023 } 2024 2025 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2026 { 2027 /* no need for the local lock */ 2028 drain_obj_stock(&per_cpu(obj_stock, cpu)); 2029 drain_stock_fully(&per_cpu(memcg_stock, cpu)); 2030 2031 return 0; 2032 } 2033 2034 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2035 unsigned int nr_pages, 2036 gfp_t gfp_mask) 2037 { 2038 unsigned long nr_reclaimed = 0; 2039 2040 do { 2041 unsigned long pflags; 2042 2043 if (page_counter_read(&memcg->memory) <= 2044 READ_ONCE(memcg->memory.high)) 2045 continue; 2046 2047 memcg_memory_event(memcg, MEMCG_HIGH); 2048 2049 psi_memstall_enter(&pflags); 2050 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2051 gfp_mask, 2052 MEMCG_RECLAIM_MAY_SWAP, 2053 NULL); 2054 psi_memstall_leave(&pflags); 2055 } while ((memcg = parent_mem_cgroup(memcg)) && 2056 !mem_cgroup_is_root(memcg)); 2057 2058 return nr_reclaimed; 2059 } 2060 2061 static void high_work_func(struct work_struct *work) 2062 { 2063 struct mem_cgroup *memcg; 2064 2065 memcg = container_of(work, struct mem_cgroup, high_work); 2066 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2067 } 2068 2069 /* 2070 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2071 * enough to still cause a significant slowdown in most cases, while still 2072 * allowing diagnostics and tracing to proceed without becoming stuck. 2073 */ 2074 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2075 2076 /* 2077 * When calculating the delay, we use these either side of the exponentiation to 2078 * maintain precision and scale to a reasonable number of jiffies (see the table 2079 * below. 2080 * 2081 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2082 * overage ratio to a delay. 2083 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2084 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2085 * to produce a reasonable delay curve. 2086 * 2087 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2088 * reasonable delay curve compared to precision-adjusted overage, not 2089 * penalising heavily at first, but still making sure that growth beyond the 2090 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2091 * example, with a high of 100 megabytes: 2092 * 2093 * +-------+------------------------+ 2094 * | usage | time to allocate in ms | 2095 * +-------+------------------------+ 2096 * | 100M | 0 | 2097 * | 101M | 6 | 2098 * | 102M | 25 | 2099 * | 103M | 57 | 2100 * | 104M | 102 | 2101 * | 105M | 159 | 2102 * | 106M | 230 | 2103 * | 107M | 313 | 2104 * | 108M | 409 | 2105 * | 109M | 518 | 2106 * | 110M | 639 | 2107 * | 111M | 774 | 2108 * | 112M | 921 | 2109 * | 113M | 1081 | 2110 * | 114M | 1254 | 2111 * | 115M | 1439 | 2112 * | 116M | 1638 | 2113 * | 117M | 1849 | 2114 * | 118M | 2000 | 2115 * | 119M | 2000 | 2116 * | 120M | 2000 | 2117 * +-------+------------------------+ 2118 */ 2119 #define MEMCG_DELAY_PRECISION_SHIFT 20 2120 #define MEMCG_DELAY_SCALING_SHIFT 14 2121 2122 static u64 calculate_overage(unsigned long usage, unsigned long high) 2123 { 2124 u64 overage; 2125 2126 if (usage <= high) 2127 return 0; 2128 2129 /* 2130 * Prevent division by 0 in overage calculation by acting as if 2131 * it was a threshold of 1 page 2132 */ 2133 high = max(high, 1UL); 2134 2135 overage = usage - high; 2136 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2137 return div64_u64(overage, high); 2138 } 2139 2140 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2141 { 2142 u64 overage, max_overage = 0; 2143 2144 do { 2145 overage = calculate_overage(page_counter_read(&memcg->memory), 2146 READ_ONCE(memcg->memory.high)); 2147 max_overage = max(overage, max_overage); 2148 } while ((memcg = parent_mem_cgroup(memcg)) && 2149 !mem_cgroup_is_root(memcg)); 2150 2151 return max_overage; 2152 } 2153 2154 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2155 { 2156 u64 overage, max_overage = 0; 2157 2158 do { 2159 overage = calculate_overage(page_counter_read(&memcg->swap), 2160 READ_ONCE(memcg->swap.high)); 2161 if (overage) 2162 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2163 max_overage = max(overage, max_overage); 2164 } while ((memcg = parent_mem_cgroup(memcg)) && 2165 !mem_cgroup_is_root(memcg)); 2166 2167 return max_overage; 2168 } 2169 2170 /* 2171 * Get the number of jiffies that we should penalise a mischievous cgroup which 2172 * is exceeding its memory.high by checking both it and its ancestors. 2173 */ 2174 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2175 unsigned int nr_pages, 2176 u64 max_overage) 2177 { 2178 unsigned long penalty_jiffies; 2179 2180 if (!max_overage) 2181 return 0; 2182 2183 /* 2184 * We use overage compared to memory.high to calculate the number of 2185 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2186 * fairly lenient on small overages, and increasingly harsh when the 2187 * memcg in question makes it clear that it has no intention of stopping 2188 * its crazy behaviour, so we exponentially increase the delay based on 2189 * overage amount. 2190 */ 2191 penalty_jiffies = max_overage * max_overage * HZ; 2192 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2193 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2194 2195 /* 2196 * Factor in the task's own contribution to the overage, such that four 2197 * N-sized allocations are throttled approximately the same as one 2198 * 4N-sized allocation. 2199 * 2200 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2201 * larger the current charge patch is than that. 2202 */ 2203 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2204 } 2205 2206 /* 2207 * Reclaims memory over the high limit. Called directly from 2208 * try_charge() (context permitting), as well as from the userland 2209 * return path where reclaim is always able to block. 2210 */ 2211 void mem_cgroup_handle_over_high(gfp_t gfp_mask) 2212 { 2213 unsigned long penalty_jiffies; 2214 unsigned long pflags; 2215 unsigned long nr_reclaimed; 2216 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2217 int nr_retries = MAX_RECLAIM_RETRIES; 2218 struct mem_cgroup *memcg; 2219 bool in_retry = false; 2220 2221 if (likely(!nr_pages)) 2222 return; 2223 2224 memcg = get_mem_cgroup_from_mm(current->mm); 2225 current->memcg_nr_pages_over_high = 0; 2226 2227 retry_reclaim: 2228 /* 2229 * Bail if the task is already exiting. Unlike memory.max, 2230 * memory.high enforcement isn't as strict, and there is no 2231 * OOM killer involved, which means the excess could already 2232 * be much bigger (and still growing) than it could for 2233 * memory.max; the dying task could get stuck in fruitless 2234 * reclaim for a long time, which isn't desirable. 2235 */ 2236 if (task_is_dying()) 2237 goto out; 2238 2239 /* 2240 * The allocating task should reclaim at least the batch size, but for 2241 * subsequent retries we only want to do what's necessary to prevent oom 2242 * or breaching resource isolation. 2243 * 2244 * This is distinct from memory.max or page allocator behaviour because 2245 * memory.high is currently batched, whereas memory.max and the page 2246 * allocator run every time an allocation is made. 2247 */ 2248 nr_reclaimed = reclaim_high(memcg, 2249 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2250 gfp_mask); 2251 2252 /* 2253 * memory.high is breached and reclaim is unable to keep up. Throttle 2254 * allocators proactively to slow down excessive growth. 2255 */ 2256 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2257 mem_find_max_overage(memcg)); 2258 2259 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2260 swap_find_max_overage(memcg)); 2261 2262 /* 2263 * Clamp the max delay per usermode return so as to still keep the 2264 * application moving forwards and also permit diagnostics, albeit 2265 * extremely slowly. 2266 */ 2267 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2268 2269 /* 2270 * Don't sleep if the amount of jiffies this memcg owes us is so low 2271 * that it's not even worth doing, in an attempt to be nice to those who 2272 * go only a small amount over their memory.high value and maybe haven't 2273 * been aggressively reclaimed enough yet. 2274 */ 2275 if (penalty_jiffies <= HZ / 100) 2276 goto out; 2277 2278 /* 2279 * If reclaim is making forward progress but we're still over 2280 * memory.high, we want to encourage that rather than doing allocator 2281 * throttling. 2282 */ 2283 if (nr_reclaimed || nr_retries--) { 2284 in_retry = true; 2285 goto retry_reclaim; 2286 } 2287 2288 /* 2289 * Reclaim didn't manage to push usage below the limit, slow 2290 * this allocating task down. 2291 * 2292 * If we exit early, we're guaranteed to die (since 2293 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2294 * need to account for any ill-begotten jiffies to pay them off later. 2295 */ 2296 psi_memstall_enter(&pflags); 2297 schedule_timeout_killable(penalty_jiffies); 2298 psi_memstall_leave(&pflags); 2299 2300 out: 2301 css_put(&memcg->css); 2302 } 2303 2304 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2305 unsigned int nr_pages) 2306 { 2307 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2308 int nr_retries = MAX_RECLAIM_RETRIES; 2309 struct mem_cgroup *mem_over_limit; 2310 struct page_counter *counter; 2311 unsigned long nr_reclaimed; 2312 bool passed_oom = false; 2313 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2314 bool drained = false; 2315 bool raised_max_event = false; 2316 unsigned long pflags; 2317 2318 retry: 2319 if (consume_stock(memcg, nr_pages)) 2320 return 0; 2321 2322 if (!gfpflags_allow_spinning(gfp_mask)) 2323 /* Avoid the refill and flush of the older stock */ 2324 batch = nr_pages; 2325 2326 if (!do_memsw_account() || 2327 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2328 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2329 goto done_restock; 2330 if (do_memsw_account()) 2331 page_counter_uncharge(&memcg->memsw, batch); 2332 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2333 } else { 2334 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2335 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2336 } 2337 2338 if (batch > nr_pages) { 2339 batch = nr_pages; 2340 goto retry; 2341 } 2342 2343 /* 2344 * Prevent unbounded recursion when reclaim operations need to 2345 * allocate memory. This might exceed the limits temporarily, 2346 * but we prefer facilitating memory reclaim and getting back 2347 * under the limit over triggering OOM kills in these cases. 2348 */ 2349 if (unlikely(current->flags & PF_MEMALLOC)) 2350 goto force; 2351 2352 if (unlikely(task_in_memcg_oom(current))) 2353 goto nomem; 2354 2355 if (!gfpflags_allow_blocking(gfp_mask)) 2356 goto nomem; 2357 2358 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2359 raised_max_event = true; 2360 2361 psi_memstall_enter(&pflags); 2362 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2363 gfp_mask, reclaim_options, NULL); 2364 psi_memstall_leave(&pflags); 2365 2366 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2367 goto retry; 2368 2369 if (!drained) { 2370 drain_all_stock(mem_over_limit); 2371 drained = true; 2372 goto retry; 2373 } 2374 2375 if (gfp_mask & __GFP_NORETRY) 2376 goto nomem; 2377 /* 2378 * Even though the limit is exceeded at this point, reclaim 2379 * may have been able to free some pages. Retry the charge 2380 * before killing the task. 2381 * 2382 * Only for regular pages, though: huge pages are rather 2383 * unlikely to succeed so close to the limit, and we fall back 2384 * to regular pages anyway in case of failure. 2385 */ 2386 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2387 goto retry; 2388 2389 if (nr_retries--) 2390 goto retry; 2391 2392 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2393 goto nomem; 2394 2395 /* Avoid endless loop for tasks bypassed by the oom killer */ 2396 if (passed_oom && task_is_dying()) 2397 goto nomem; 2398 2399 /* 2400 * keep retrying as long as the memcg oom killer is able to make 2401 * a forward progress or bypass the charge if the oom killer 2402 * couldn't make any progress. 2403 */ 2404 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2405 get_order(nr_pages * PAGE_SIZE))) { 2406 passed_oom = true; 2407 nr_retries = MAX_RECLAIM_RETRIES; 2408 goto retry; 2409 } 2410 nomem: 2411 /* 2412 * Memcg doesn't have a dedicated reserve for atomic 2413 * allocations. But like the global atomic pool, we need to 2414 * put the burden of reclaim on regular allocation requests 2415 * and let these go through as privileged allocations. 2416 */ 2417 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2418 return -ENOMEM; 2419 force: 2420 /* 2421 * If the allocation has to be enforced, don't forget to raise 2422 * a MEMCG_MAX event. 2423 */ 2424 if (!raised_max_event) 2425 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2426 2427 /* 2428 * The allocation either can't fail or will lead to more memory 2429 * being freed very soon. Allow memory usage go over the limit 2430 * temporarily by force charging it. 2431 */ 2432 page_counter_charge(&memcg->memory, nr_pages); 2433 if (do_memsw_account()) 2434 page_counter_charge(&memcg->memsw, nr_pages); 2435 2436 return 0; 2437 2438 done_restock: 2439 if (batch > nr_pages) 2440 refill_stock(memcg, batch - nr_pages); 2441 2442 /* 2443 * If the hierarchy is above the normal consumption range, schedule 2444 * reclaim on returning to userland. We can perform reclaim here 2445 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2446 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2447 * not recorded as it most likely matches current's and won't 2448 * change in the meantime. As high limit is checked again before 2449 * reclaim, the cost of mismatch is negligible. 2450 */ 2451 do { 2452 bool mem_high, swap_high; 2453 2454 mem_high = page_counter_read(&memcg->memory) > 2455 READ_ONCE(memcg->memory.high); 2456 swap_high = page_counter_read(&memcg->swap) > 2457 READ_ONCE(memcg->swap.high); 2458 2459 /* Don't bother a random interrupted task */ 2460 if (!in_task()) { 2461 if (mem_high) { 2462 schedule_work(&memcg->high_work); 2463 break; 2464 } 2465 continue; 2466 } 2467 2468 if (mem_high || swap_high) { 2469 /* 2470 * The allocating tasks in this cgroup will need to do 2471 * reclaim or be throttled to prevent further growth 2472 * of the memory or swap footprints. 2473 * 2474 * Target some best-effort fairness between the tasks, 2475 * and distribute reclaim work and delay penalties 2476 * based on how much each task is actually allocating. 2477 */ 2478 current->memcg_nr_pages_over_high += batch; 2479 set_notify_resume(current); 2480 break; 2481 } 2482 } while ((memcg = parent_mem_cgroup(memcg))); 2483 2484 /* 2485 * Reclaim is set up above to be called from the userland 2486 * return path. But also attempt synchronous reclaim to avoid 2487 * excessive overrun while the task is still inside the 2488 * kernel. If this is successful, the return path will see it 2489 * when it rechecks the overage and simply bail out. 2490 */ 2491 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2492 !(current->flags & PF_MEMALLOC) && 2493 gfpflags_allow_blocking(gfp_mask)) 2494 mem_cgroup_handle_over_high(gfp_mask); 2495 return 0; 2496 } 2497 2498 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2499 unsigned int nr_pages) 2500 { 2501 if (mem_cgroup_is_root(memcg)) 2502 return 0; 2503 2504 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2505 } 2506 2507 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2508 { 2509 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio); 2510 /* 2511 * Any of the following ensures page's memcg stability: 2512 * 2513 * - the page lock 2514 * - LRU isolation 2515 * - exclusive reference 2516 */ 2517 folio->memcg_data = (unsigned long)memcg; 2518 } 2519 2520 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2521 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2522 struct pglist_data *pgdat, 2523 enum node_stat_item idx, int nr) 2524 { 2525 struct lruvec *lruvec; 2526 2527 if (likely(!in_nmi())) { 2528 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2529 mod_memcg_lruvec_state(lruvec, idx, nr); 2530 } else { 2531 struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id]; 2532 2533 /* TODO: add to cgroup update tree once it is nmi-safe. */ 2534 if (idx == NR_SLAB_RECLAIMABLE_B) 2535 atomic_add(nr, &pn->slab_reclaimable); 2536 else 2537 atomic_add(nr, &pn->slab_unreclaimable); 2538 } 2539 } 2540 #else 2541 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg, 2542 struct pglist_data *pgdat, 2543 enum node_stat_item idx, int nr) 2544 { 2545 struct lruvec *lruvec; 2546 2547 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2548 mod_memcg_lruvec_state(lruvec, idx, nr); 2549 } 2550 #endif 2551 2552 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2553 struct pglist_data *pgdat, 2554 enum node_stat_item idx, int nr) 2555 { 2556 struct mem_cgroup *memcg; 2557 2558 rcu_read_lock(); 2559 memcg = obj_cgroup_memcg(objcg); 2560 account_slab_nmi_safe(memcg, pgdat, idx, nr); 2561 rcu_read_unlock(); 2562 } 2563 2564 static __always_inline 2565 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2566 { 2567 /* 2568 * Slab objects are accounted individually, not per-page. 2569 * Memcg membership data for each individual object is saved in 2570 * slab->obj_exts. 2571 */ 2572 if (folio_test_slab(folio)) { 2573 struct slabobj_ext *obj_exts; 2574 struct slab *slab; 2575 unsigned int off; 2576 2577 slab = folio_slab(folio); 2578 obj_exts = slab_obj_exts(slab); 2579 if (!obj_exts) 2580 return NULL; 2581 2582 off = obj_to_index(slab->slab_cache, slab, p); 2583 if (obj_exts[off].objcg) 2584 return obj_cgroup_memcg(obj_exts[off].objcg); 2585 2586 return NULL; 2587 } 2588 2589 /* 2590 * folio_memcg_check() is used here, because in theory we can encounter 2591 * a folio where the slab flag has been cleared already, but 2592 * slab->obj_exts has not been freed yet 2593 * folio_memcg_check() will guarantee that a proper memory 2594 * cgroup pointer or NULL will be returned. 2595 */ 2596 return folio_memcg_check(folio); 2597 } 2598 2599 /* 2600 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2601 * It is not suitable for objects allocated using vmalloc(). 2602 * 2603 * A passed kernel object must be a slab object or a generic kernel page. 2604 * 2605 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2606 * cgroup_mutex, etc. 2607 */ 2608 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2609 { 2610 if (mem_cgroup_disabled()) 2611 return NULL; 2612 2613 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2614 } 2615 2616 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2617 { 2618 struct obj_cgroup *objcg = NULL; 2619 2620 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2621 objcg = rcu_dereference(memcg->objcg); 2622 if (likely(objcg && obj_cgroup_tryget(objcg))) 2623 break; 2624 objcg = NULL; 2625 } 2626 return objcg; 2627 } 2628 2629 static struct obj_cgroup *current_objcg_update(void) 2630 { 2631 struct mem_cgroup *memcg; 2632 struct obj_cgroup *old, *objcg = NULL; 2633 2634 do { 2635 /* Atomically drop the update bit. */ 2636 old = xchg(¤t->objcg, NULL); 2637 if (old) { 2638 old = (struct obj_cgroup *) 2639 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG); 2640 obj_cgroup_put(old); 2641 2642 old = NULL; 2643 } 2644 2645 /* If new objcg is NULL, no reason for the second atomic update. */ 2646 if (!current->mm || (current->flags & PF_KTHREAD)) 2647 return NULL; 2648 2649 /* 2650 * Release the objcg pointer from the previous iteration, 2651 * if try_cmpxcg() below fails. 2652 */ 2653 if (unlikely(objcg)) { 2654 obj_cgroup_put(objcg); 2655 objcg = NULL; 2656 } 2657 2658 /* 2659 * Obtain the new objcg pointer. The current task can be 2660 * asynchronously moved to another memcg and the previous 2661 * memcg can be offlined. So let's get the memcg pointer 2662 * and try get a reference to objcg under a rcu read lock. 2663 */ 2664 2665 rcu_read_lock(); 2666 memcg = mem_cgroup_from_task(current); 2667 objcg = __get_obj_cgroup_from_memcg(memcg); 2668 rcu_read_unlock(); 2669 2670 /* 2671 * Try set up a new objcg pointer atomically. If it 2672 * fails, it means the update flag was set concurrently, so 2673 * the whole procedure should be repeated. 2674 */ 2675 } while (!try_cmpxchg(¤t->objcg, &old, objcg)); 2676 2677 return objcg; 2678 } 2679 2680 __always_inline struct obj_cgroup *current_obj_cgroup(void) 2681 { 2682 struct mem_cgroup *memcg; 2683 struct obj_cgroup *objcg; 2684 2685 if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi()) 2686 return NULL; 2687 2688 if (in_task()) { 2689 memcg = current->active_memcg; 2690 if (unlikely(memcg)) 2691 goto from_memcg; 2692 2693 objcg = READ_ONCE(current->objcg); 2694 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG)) 2695 objcg = current_objcg_update(); 2696 /* 2697 * Objcg reference is kept by the task, so it's safe 2698 * to use the objcg by the current task. 2699 */ 2700 return objcg; 2701 } 2702 2703 memcg = this_cpu_read(int_active_memcg); 2704 if (unlikely(memcg)) 2705 goto from_memcg; 2706 2707 return NULL; 2708 2709 from_memcg: 2710 objcg = NULL; 2711 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 2712 /* 2713 * Memcg pointer is protected by scope (see set_active_memcg()) 2714 * and is pinning the corresponding objcg, so objcg can't go 2715 * away and can be used within the scope without any additional 2716 * protection. 2717 */ 2718 objcg = rcu_dereference_check(memcg->objcg, 1); 2719 if (likely(objcg)) 2720 break; 2721 } 2722 2723 return objcg; 2724 } 2725 2726 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 2727 { 2728 struct obj_cgroup *objcg; 2729 2730 if (!memcg_kmem_online()) 2731 return NULL; 2732 2733 if (folio_memcg_kmem(folio)) { 2734 objcg = __folio_objcg(folio); 2735 obj_cgroup_get(objcg); 2736 } else { 2737 struct mem_cgroup *memcg; 2738 2739 rcu_read_lock(); 2740 memcg = __folio_memcg(folio); 2741 if (memcg) 2742 objcg = __get_obj_cgroup_from_memcg(memcg); 2743 else 2744 objcg = NULL; 2745 rcu_read_unlock(); 2746 } 2747 return objcg; 2748 } 2749 2750 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 2751 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2752 { 2753 if (likely(!in_nmi())) { 2754 mod_memcg_state(memcg, MEMCG_KMEM, val); 2755 } else { 2756 /* TODO: add to cgroup update tree once it is nmi-safe. */ 2757 atomic_add(val, &memcg->kmem_stat); 2758 } 2759 } 2760 #else 2761 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val) 2762 { 2763 mod_memcg_state(memcg, MEMCG_KMEM, val); 2764 } 2765 #endif 2766 2767 /* 2768 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2769 * @objcg: object cgroup to uncharge 2770 * @nr_pages: number of pages to uncharge 2771 */ 2772 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2773 unsigned int nr_pages) 2774 { 2775 struct mem_cgroup *memcg; 2776 2777 memcg = get_mem_cgroup_from_objcg(objcg); 2778 2779 account_kmem_nmi_safe(memcg, -nr_pages); 2780 memcg1_account_kmem(memcg, -nr_pages); 2781 if (!mem_cgroup_is_root(memcg)) 2782 refill_stock(memcg, nr_pages); 2783 2784 css_put(&memcg->css); 2785 } 2786 2787 /* 2788 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2789 * @objcg: object cgroup to charge 2790 * @gfp: reclaim mode 2791 * @nr_pages: number of pages to charge 2792 * 2793 * Returns 0 on success, an error code on failure. 2794 */ 2795 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2796 unsigned int nr_pages) 2797 { 2798 struct mem_cgroup *memcg; 2799 int ret; 2800 2801 memcg = get_mem_cgroup_from_objcg(objcg); 2802 2803 ret = try_charge_memcg(memcg, gfp, nr_pages); 2804 if (ret) 2805 goto out; 2806 2807 account_kmem_nmi_safe(memcg, nr_pages); 2808 memcg1_account_kmem(memcg, nr_pages); 2809 out: 2810 css_put(&memcg->css); 2811 2812 return ret; 2813 } 2814 2815 static struct obj_cgroup *page_objcg(const struct page *page) 2816 { 2817 unsigned long memcg_data = page->memcg_data; 2818 2819 if (mem_cgroup_disabled() || !memcg_data) 2820 return NULL; 2821 2822 VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM, 2823 page); 2824 return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM); 2825 } 2826 2827 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg) 2828 { 2829 page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM; 2830 } 2831 2832 /** 2833 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2834 * @page: page to charge 2835 * @gfp: reclaim mode 2836 * @order: allocation order 2837 * 2838 * Returns 0 on success, an error code on failure. 2839 */ 2840 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2841 { 2842 struct obj_cgroup *objcg; 2843 int ret = 0; 2844 2845 objcg = current_obj_cgroup(); 2846 if (objcg) { 2847 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2848 if (!ret) { 2849 obj_cgroup_get(objcg); 2850 page_set_objcg(page, objcg); 2851 return 0; 2852 } 2853 } 2854 return ret; 2855 } 2856 2857 /** 2858 * __memcg_kmem_uncharge_page: uncharge a kmem page 2859 * @page: page to uncharge 2860 * @order: allocation order 2861 */ 2862 void __memcg_kmem_uncharge_page(struct page *page, int order) 2863 { 2864 struct obj_cgroup *objcg = page_objcg(page); 2865 unsigned int nr_pages = 1 << order; 2866 2867 if (!objcg) 2868 return; 2869 2870 obj_cgroup_uncharge_pages(objcg, nr_pages); 2871 page->memcg_data = 0; 2872 obj_cgroup_put(objcg); 2873 } 2874 2875 static void __account_obj_stock(struct obj_cgroup *objcg, 2876 struct obj_stock_pcp *stock, int nr, 2877 struct pglist_data *pgdat, enum node_stat_item idx) 2878 { 2879 int *bytes; 2880 2881 /* 2882 * Save vmstat data in stock and skip vmstat array update unless 2883 * accumulating over a page of vmstat data or when pgdat changes. 2884 */ 2885 if (stock->cached_pgdat != pgdat) { 2886 /* Flush the existing cached vmstat data */ 2887 struct pglist_data *oldpg = stock->cached_pgdat; 2888 2889 if (stock->nr_slab_reclaimable_b) { 2890 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 2891 stock->nr_slab_reclaimable_b); 2892 stock->nr_slab_reclaimable_b = 0; 2893 } 2894 if (stock->nr_slab_unreclaimable_b) { 2895 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 2896 stock->nr_slab_unreclaimable_b); 2897 stock->nr_slab_unreclaimable_b = 0; 2898 } 2899 stock->cached_pgdat = pgdat; 2900 } 2901 2902 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 2903 : &stock->nr_slab_unreclaimable_b; 2904 /* 2905 * Even for large object >= PAGE_SIZE, the vmstat data will still be 2906 * cached locally at least once before pushing it out. 2907 */ 2908 if (!*bytes) { 2909 *bytes = nr; 2910 nr = 0; 2911 } else { 2912 *bytes += nr; 2913 if (abs(*bytes) > PAGE_SIZE) { 2914 nr = *bytes; 2915 *bytes = 0; 2916 } else { 2917 nr = 0; 2918 } 2919 } 2920 if (nr) 2921 mod_objcg_mlstate(objcg, pgdat, idx, nr); 2922 } 2923 2924 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 2925 struct pglist_data *pgdat, enum node_stat_item idx) 2926 { 2927 struct obj_stock_pcp *stock; 2928 bool ret = false; 2929 2930 if (!local_trylock(&obj_stock.lock)) 2931 return ret; 2932 2933 stock = this_cpu_ptr(&obj_stock); 2934 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) { 2935 stock->nr_bytes -= nr_bytes; 2936 ret = true; 2937 2938 if (pgdat) 2939 __account_obj_stock(objcg, stock, nr_bytes, pgdat, idx); 2940 } 2941 2942 local_unlock(&obj_stock.lock); 2943 2944 return ret; 2945 } 2946 2947 static void drain_obj_stock(struct obj_stock_pcp *stock) 2948 { 2949 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg); 2950 2951 if (!old) 2952 return; 2953 2954 if (stock->nr_bytes) { 2955 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 2956 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 2957 2958 if (nr_pages) { 2959 struct mem_cgroup *memcg; 2960 2961 memcg = get_mem_cgroup_from_objcg(old); 2962 2963 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages); 2964 memcg1_account_kmem(memcg, -nr_pages); 2965 if (!mem_cgroup_is_root(memcg)) 2966 memcg_uncharge(memcg, nr_pages); 2967 2968 css_put(&memcg->css); 2969 } 2970 2971 /* 2972 * The leftover is flushed to the centralized per-memcg value. 2973 * On the next attempt to refill obj stock it will be moved 2974 * to a per-cpu stock (probably, on an other CPU), see 2975 * refill_obj_stock(). 2976 * 2977 * How often it's flushed is a trade-off between the memory 2978 * limit enforcement accuracy and potential CPU contention, 2979 * so it might be changed in the future. 2980 */ 2981 atomic_add(nr_bytes, &old->nr_charged_bytes); 2982 stock->nr_bytes = 0; 2983 } 2984 2985 /* 2986 * Flush the vmstat data in current stock 2987 */ 2988 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 2989 if (stock->nr_slab_reclaimable_b) { 2990 mod_objcg_mlstate(old, stock->cached_pgdat, 2991 NR_SLAB_RECLAIMABLE_B, 2992 stock->nr_slab_reclaimable_b); 2993 stock->nr_slab_reclaimable_b = 0; 2994 } 2995 if (stock->nr_slab_unreclaimable_b) { 2996 mod_objcg_mlstate(old, stock->cached_pgdat, 2997 NR_SLAB_UNRECLAIMABLE_B, 2998 stock->nr_slab_unreclaimable_b); 2999 stock->nr_slab_unreclaimable_b = 0; 3000 } 3001 stock->cached_pgdat = NULL; 3002 } 3003 3004 WRITE_ONCE(stock->cached_objcg, NULL); 3005 obj_cgroup_put(old); 3006 } 3007 3008 static bool obj_stock_flush_required(struct obj_stock_pcp *stock, 3009 struct mem_cgroup *root_memcg) 3010 { 3011 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg); 3012 struct mem_cgroup *memcg; 3013 bool flush = false; 3014 3015 rcu_read_lock(); 3016 if (objcg) { 3017 memcg = obj_cgroup_memcg(objcg); 3018 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3019 flush = true; 3020 } 3021 rcu_read_unlock(); 3022 3023 return flush; 3024 } 3025 3026 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3027 bool allow_uncharge, int nr_acct, struct pglist_data *pgdat, 3028 enum node_stat_item idx) 3029 { 3030 struct obj_stock_pcp *stock; 3031 unsigned int nr_pages = 0; 3032 3033 if (!local_trylock(&obj_stock.lock)) { 3034 if (pgdat) 3035 mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes); 3036 nr_pages = nr_bytes >> PAGE_SHIFT; 3037 nr_bytes = nr_bytes & (PAGE_SIZE - 1); 3038 atomic_add(nr_bytes, &objcg->nr_charged_bytes); 3039 goto out; 3040 } 3041 3042 stock = this_cpu_ptr(&obj_stock); 3043 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */ 3044 drain_obj_stock(stock); 3045 obj_cgroup_get(objcg); 3046 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3047 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3048 WRITE_ONCE(stock->cached_objcg, objcg); 3049 3050 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3051 } 3052 stock->nr_bytes += nr_bytes; 3053 3054 if (pgdat) 3055 __account_obj_stock(objcg, stock, nr_acct, pgdat, idx); 3056 3057 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3058 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3059 stock->nr_bytes &= (PAGE_SIZE - 1); 3060 } 3061 3062 local_unlock(&obj_stock.lock); 3063 out: 3064 if (nr_pages) 3065 obj_cgroup_uncharge_pages(objcg, nr_pages); 3066 } 3067 3068 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size, 3069 struct pglist_data *pgdat, enum node_stat_item idx) 3070 { 3071 unsigned int nr_pages, nr_bytes; 3072 int ret; 3073 3074 if (likely(consume_obj_stock(objcg, size, pgdat, idx))) 3075 return 0; 3076 3077 /* 3078 * In theory, objcg->nr_charged_bytes can have enough 3079 * pre-charged bytes to satisfy the allocation. However, 3080 * flushing objcg->nr_charged_bytes requires two atomic 3081 * operations, and objcg->nr_charged_bytes can't be big. 3082 * The shared objcg->nr_charged_bytes can also become a 3083 * performance bottleneck if all tasks of the same memcg are 3084 * trying to update it. So it's better to ignore it and try 3085 * grab some new pages. The stock's nr_bytes will be flushed to 3086 * objcg->nr_charged_bytes later on when objcg changes. 3087 * 3088 * The stock's nr_bytes may contain enough pre-charged bytes 3089 * to allow one less page from being charged, but we can't rely 3090 * on the pre-charged bytes not being changed outside of 3091 * consume_obj_stock() or refill_obj_stock(). So ignore those 3092 * pre-charged bytes as well when charging pages. To avoid a 3093 * page uncharge right after a page charge, we set the 3094 * allow_uncharge flag to false when calling refill_obj_stock() 3095 * to temporarily allow the pre-charged bytes to exceed the page 3096 * size limit. The maximum reachable value of the pre-charged 3097 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3098 * race. 3099 */ 3100 nr_pages = size >> PAGE_SHIFT; 3101 nr_bytes = size & (PAGE_SIZE - 1); 3102 3103 if (nr_bytes) 3104 nr_pages += 1; 3105 3106 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3107 if (!ret && (nr_bytes || pgdat)) 3108 refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0, 3109 false, size, pgdat, idx); 3110 3111 return ret; 3112 } 3113 3114 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3115 { 3116 return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0); 3117 } 3118 3119 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3120 { 3121 refill_obj_stock(objcg, size, true, 0, NULL, 0); 3122 } 3123 3124 static inline size_t obj_full_size(struct kmem_cache *s) 3125 { 3126 /* 3127 * For each accounted object there is an extra space which is used 3128 * to store obj_cgroup membership. Charge it too. 3129 */ 3130 return s->size + sizeof(struct obj_cgroup *); 3131 } 3132 3133 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3134 gfp_t flags, size_t size, void **p) 3135 { 3136 struct obj_cgroup *objcg; 3137 struct slab *slab; 3138 unsigned long off; 3139 size_t i; 3140 3141 /* 3142 * The obtained objcg pointer is safe to use within the current scope, 3143 * defined by current task or set_active_memcg() pair. 3144 * obj_cgroup_get() is used to get a permanent reference. 3145 */ 3146 objcg = current_obj_cgroup(); 3147 if (!objcg) 3148 return true; 3149 3150 /* 3151 * slab_alloc_node() avoids the NULL check, so we might be called with a 3152 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill 3153 * the whole requested size. 3154 * return success as there's nothing to free back 3155 */ 3156 if (unlikely(*p == NULL)) 3157 return true; 3158 3159 flags &= gfp_allowed_mask; 3160 3161 if (lru) { 3162 int ret; 3163 struct mem_cgroup *memcg; 3164 3165 memcg = get_mem_cgroup_from_objcg(objcg); 3166 ret = memcg_list_lru_alloc(memcg, lru, flags); 3167 css_put(&memcg->css); 3168 3169 if (ret) 3170 return false; 3171 } 3172 3173 for (i = 0; i < size; i++) { 3174 slab = virt_to_slab(p[i]); 3175 3176 if (!slab_obj_exts(slab) && 3177 alloc_slab_obj_exts(slab, s, flags, false)) { 3178 continue; 3179 } 3180 3181 /* 3182 * if we fail and size is 1, memcg_alloc_abort_single() will 3183 * just free the object, which is ok as we have not assigned 3184 * objcg to its obj_ext yet 3185 * 3186 * for larger sizes, kmem_cache_free_bulk() will uncharge 3187 * any objects that were already charged and obj_ext assigned 3188 * 3189 * TODO: we could batch this until slab_pgdat(slab) changes 3190 * between iterations, with a more complicated undo 3191 */ 3192 if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s), 3193 slab_pgdat(slab), cache_vmstat_idx(s))) 3194 return false; 3195 3196 off = obj_to_index(s, slab, p[i]); 3197 obj_cgroup_get(objcg); 3198 slab_obj_exts(slab)[off].objcg = objcg; 3199 } 3200 3201 return true; 3202 } 3203 3204 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 3205 void **p, int objects, struct slabobj_ext *obj_exts) 3206 { 3207 size_t obj_size = obj_full_size(s); 3208 3209 for (int i = 0; i < objects; i++) { 3210 struct obj_cgroup *objcg; 3211 unsigned int off; 3212 3213 off = obj_to_index(s, slab, p[i]); 3214 objcg = obj_exts[off].objcg; 3215 if (!objcg) 3216 continue; 3217 3218 obj_exts[off].objcg = NULL; 3219 refill_obj_stock(objcg, obj_size, true, -obj_size, 3220 slab_pgdat(slab), cache_vmstat_idx(s)); 3221 obj_cgroup_put(objcg); 3222 } 3223 } 3224 3225 /* 3226 * The objcg is only set on the first page, so transfer it to all the 3227 * other pages. 3228 */ 3229 void split_page_memcg(struct page *page, unsigned order) 3230 { 3231 struct obj_cgroup *objcg = page_objcg(page); 3232 unsigned int i, nr = 1 << order; 3233 3234 if (!objcg) 3235 return; 3236 3237 for (i = 1; i < nr; i++) 3238 page_set_objcg(&page[i], objcg); 3239 3240 obj_cgroup_get_many(objcg, nr - 1); 3241 } 3242 3243 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 3244 unsigned new_order) 3245 { 3246 unsigned new_refs; 3247 3248 if (mem_cgroup_disabled() || !folio_memcg_charged(folio)) 3249 return; 3250 3251 new_refs = (1 << (old_order - new_order)) - 1; 3252 css_get_many(&__folio_memcg(folio)->css, new_refs); 3253 } 3254 3255 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3256 { 3257 unsigned long val; 3258 3259 if (mem_cgroup_is_root(memcg)) { 3260 /* 3261 * Approximate root's usage from global state. This isn't 3262 * perfect, but the root usage was always an approximation. 3263 */ 3264 val = global_node_page_state(NR_FILE_PAGES) + 3265 global_node_page_state(NR_ANON_MAPPED); 3266 if (swap) 3267 val += total_swap_pages - get_nr_swap_pages(); 3268 } else { 3269 if (!swap) 3270 val = page_counter_read(&memcg->memory); 3271 else 3272 val = page_counter_read(&memcg->memsw); 3273 } 3274 return val; 3275 } 3276 3277 static int memcg_online_kmem(struct mem_cgroup *memcg) 3278 { 3279 struct obj_cgroup *objcg; 3280 3281 if (mem_cgroup_kmem_disabled()) 3282 return 0; 3283 3284 if (unlikely(mem_cgroup_is_root(memcg))) 3285 return 0; 3286 3287 objcg = obj_cgroup_alloc(); 3288 if (!objcg) 3289 return -ENOMEM; 3290 3291 objcg->memcg = memcg; 3292 rcu_assign_pointer(memcg->objcg, objcg); 3293 obj_cgroup_get(objcg); 3294 memcg->orig_objcg = objcg; 3295 3296 static_branch_enable(&memcg_kmem_online_key); 3297 3298 memcg->kmemcg_id = memcg->id.id; 3299 3300 return 0; 3301 } 3302 3303 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3304 { 3305 struct mem_cgroup *parent; 3306 3307 if (mem_cgroup_kmem_disabled()) 3308 return; 3309 3310 if (unlikely(mem_cgroup_is_root(memcg))) 3311 return; 3312 3313 parent = parent_mem_cgroup(memcg); 3314 if (!parent) 3315 parent = root_mem_cgroup; 3316 3317 memcg_reparent_list_lrus(memcg, parent); 3318 3319 /* 3320 * Objcg's reparenting must be after list_lru's, make sure list_lru 3321 * helpers won't use parent's list_lru until child is drained. 3322 */ 3323 memcg_reparent_objcgs(memcg, parent); 3324 } 3325 3326 #ifdef CONFIG_CGROUP_WRITEBACK 3327 3328 #include <trace/events/writeback.h> 3329 3330 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3331 { 3332 return wb_domain_init(&memcg->cgwb_domain, gfp); 3333 } 3334 3335 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3336 { 3337 wb_domain_exit(&memcg->cgwb_domain); 3338 } 3339 3340 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3341 { 3342 wb_domain_size_changed(&memcg->cgwb_domain); 3343 } 3344 3345 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3346 { 3347 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3348 3349 if (!memcg->css.parent) 3350 return NULL; 3351 3352 return &memcg->cgwb_domain; 3353 } 3354 3355 /** 3356 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3357 * @wb: bdi_writeback in question 3358 * @pfilepages: out parameter for number of file pages 3359 * @pheadroom: out parameter for number of allocatable pages according to memcg 3360 * @pdirty: out parameter for number of dirty pages 3361 * @pwriteback: out parameter for number of pages under writeback 3362 * 3363 * Determine the numbers of file, headroom, dirty, and writeback pages in 3364 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3365 * is a bit more involved. 3366 * 3367 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3368 * headroom is calculated as the lowest headroom of itself and the 3369 * ancestors. Note that this doesn't consider the actual amount of 3370 * available memory in the system. The caller should further cap 3371 * *@pheadroom accordingly. 3372 */ 3373 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3374 unsigned long *pheadroom, unsigned long *pdirty, 3375 unsigned long *pwriteback) 3376 { 3377 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3378 struct mem_cgroup *parent; 3379 3380 mem_cgroup_flush_stats_ratelimited(memcg); 3381 3382 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3383 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3384 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 3385 memcg_page_state(memcg, NR_ACTIVE_FILE); 3386 3387 *pheadroom = PAGE_COUNTER_MAX; 3388 while ((parent = parent_mem_cgroup(memcg))) { 3389 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 3390 READ_ONCE(memcg->memory.high)); 3391 unsigned long used = page_counter_read(&memcg->memory); 3392 3393 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3394 memcg = parent; 3395 } 3396 } 3397 3398 /* 3399 * Foreign dirty flushing 3400 * 3401 * There's an inherent mismatch between memcg and writeback. The former 3402 * tracks ownership per-page while the latter per-inode. This was a 3403 * deliberate design decision because honoring per-page ownership in the 3404 * writeback path is complicated, may lead to higher CPU and IO overheads 3405 * and deemed unnecessary given that write-sharing an inode across 3406 * different cgroups isn't a common use-case. 3407 * 3408 * Combined with inode majority-writer ownership switching, this works well 3409 * enough in most cases but there are some pathological cases. For 3410 * example, let's say there are two cgroups A and B which keep writing to 3411 * different but confined parts of the same inode. B owns the inode and 3412 * A's memory is limited far below B's. A's dirty ratio can rise enough to 3413 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 3414 * triggering background writeback. A will be slowed down without a way to 3415 * make writeback of the dirty pages happen. 3416 * 3417 * Conditions like the above can lead to a cgroup getting repeatedly and 3418 * severely throttled after making some progress after each 3419 * dirty_expire_interval while the underlying IO device is almost 3420 * completely idle. 3421 * 3422 * Solving this problem completely requires matching the ownership tracking 3423 * granularities between memcg and writeback in either direction. However, 3424 * the more egregious behaviors can be avoided by simply remembering the 3425 * most recent foreign dirtying events and initiating remote flushes on 3426 * them when local writeback isn't enough to keep the memory clean enough. 3427 * 3428 * The following two functions implement such mechanism. When a foreign 3429 * page - a page whose memcg and writeback ownerships don't match - is 3430 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 3431 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 3432 * decides that the memcg needs to sleep due to high dirty ratio, it calls 3433 * mem_cgroup_flush_foreign() which queues writeback on the recorded 3434 * foreign bdi_writebacks which haven't expired. Both the numbers of 3435 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 3436 * limited to MEMCG_CGWB_FRN_CNT. 3437 * 3438 * The mechanism only remembers IDs and doesn't hold any object references. 3439 * As being wrong occasionally doesn't matter, updates and accesses to the 3440 * records are lockless and racy. 3441 */ 3442 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 3443 struct bdi_writeback *wb) 3444 { 3445 struct mem_cgroup *memcg = folio_memcg(folio); 3446 struct memcg_cgwb_frn *frn; 3447 u64 now = get_jiffies_64(); 3448 u64 oldest_at = now; 3449 int oldest = -1; 3450 int i; 3451 3452 trace_track_foreign_dirty(folio, wb); 3453 3454 /* 3455 * Pick the slot to use. If there is already a slot for @wb, keep 3456 * using it. If not replace the oldest one which isn't being 3457 * written out. 3458 */ 3459 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3460 frn = &memcg->cgwb_frn[i]; 3461 if (frn->bdi_id == wb->bdi->id && 3462 frn->memcg_id == wb->memcg_css->id) 3463 break; 3464 if (time_before64(frn->at, oldest_at) && 3465 atomic_read(&frn->done.cnt) == 1) { 3466 oldest = i; 3467 oldest_at = frn->at; 3468 } 3469 } 3470 3471 if (i < MEMCG_CGWB_FRN_CNT) { 3472 /* 3473 * Re-using an existing one. Update timestamp lazily to 3474 * avoid making the cacheline hot. We want them to be 3475 * reasonably up-to-date and significantly shorter than 3476 * dirty_expire_interval as that's what expires the record. 3477 * Use the shorter of 1s and dirty_expire_interval / 8. 3478 */ 3479 unsigned long update_intv = 3480 min_t(unsigned long, HZ, 3481 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 3482 3483 if (time_before64(frn->at, now - update_intv)) 3484 frn->at = now; 3485 } else if (oldest >= 0) { 3486 /* replace the oldest free one */ 3487 frn = &memcg->cgwb_frn[oldest]; 3488 frn->bdi_id = wb->bdi->id; 3489 frn->memcg_id = wb->memcg_css->id; 3490 frn->at = now; 3491 } 3492 } 3493 3494 /* issue foreign writeback flushes for recorded foreign dirtying events */ 3495 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 3496 { 3497 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3498 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 3499 u64 now = jiffies_64; 3500 int i; 3501 3502 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 3503 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 3504 3505 /* 3506 * If the record is older than dirty_expire_interval, 3507 * writeback on it has already started. No need to kick it 3508 * off again. Also, don't start a new one if there's 3509 * already one in flight. 3510 */ 3511 if (time_after64(frn->at, now - intv) && 3512 atomic_read(&frn->done.cnt) == 1) { 3513 frn->at = 0; 3514 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 3515 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 3516 WB_REASON_FOREIGN_FLUSH, 3517 &frn->done); 3518 } 3519 } 3520 } 3521 3522 #else /* CONFIG_CGROUP_WRITEBACK */ 3523 3524 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3525 { 3526 return 0; 3527 } 3528 3529 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3530 { 3531 } 3532 3533 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3534 { 3535 } 3536 3537 #endif /* CONFIG_CGROUP_WRITEBACK */ 3538 3539 /* 3540 * Private memory cgroup IDR 3541 * 3542 * Swap-out records and page cache shadow entries need to store memcg 3543 * references in constrained space, so we maintain an ID space that is 3544 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 3545 * memory-controlled cgroups to 64k. 3546 * 3547 * However, there usually are many references to the offline CSS after 3548 * the cgroup has been destroyed, such as page cache or reclaimable 3549 * slab objects, that don't need to hang on to the ID. We want to keep 3550 * those dead CSS from occupying IDs, or we might quickly exhaust the 3551 * relatively small ID space and prevent the creation of new cgroups 3552 * even when there are much fewer than 64k cgroups - possibly none. 3553 * 3554 * Maintain a private 16-bit ID space for memcg, and allow the ID to 3555 * be freed and recycled when it's no longer needed, which is usually 3556 * when the CSS is offlined. 3557 * 3558 * The only exception to that are records of swapped out tmpfs/shmem 3559 * pages that need to be attributed to live ancestors on swapin. But 3560 * those references are manageable from userspace. 3561 */ 3562 3563 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1) 3564 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids); 3565 3566 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 3567 { 3568 if (memcg->id.id > 0) { 3569 xa_erase(&mem_cgroup_ids, memcg->id.id); 3570 memcg->id.id = 0; 3571 } 3572 } 3573 3574 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 3575 unsigned int n) 3576 { 3577 refcount_add(n, &memcg->id.ref); 3578 } 3579 3580 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 3581 { 3582 if (refcount_sub_and_test(n, &memcg->id.ref)) { 3583 mem_cgroup_id_remove(memcg); 3584 3585 /* Memcg ID pins CSS */ 3586 css_put(&memcg->css); 3587 } 3588 } 3589 3590 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 3591 { 3592 mem_cgroup_id_put_many(memcg, 1); 3593 } 3594 3595 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 3596 { 3597 while (!refcount_inc_not_zero(&memcg->id.ref)) { 3598 /* 3599 * The root cgroup cannot be destroyed, so it's refcount must 3600 * always be >= 1. 3601 */ 3602 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 3603 VM_BUG_ON(1); 3604 break; 3605 } 3606 memcg = parent_mem_cgroup(memcg); 3607 if (!memcg) 3608 memcg = root_mem_cgroup; 3609 } 3610 return memcg; 3611 } 3612 3613 /** 3614 * mem_cgroup_from_id - look up a memcg from a memcg id 3615 * @id: the memcg id to look up 3616 * 3617 * Caller must hold rcu_read_lock(). 3618 */ 3619 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 3620 { 3621 WARN_ON_ONCE(!rcu_read_lock_held()); 3622 return xa_load(&mem_cgroup_ids, id); 3623 } 3624 3625 #ifdef CONFIG_SHRINKER_DEBUG 3626 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 3627 { 3628 struct cgroup *cgrp; 3629 struct cgroup_subsys_state *css; 3630 struct mem_cgroup *memcg; 3631 3632 cgrp = cgroup_get_from_id(ino); 3633 if (IS_ERR(cgrp)) 3634 return ERR_CAST(cgrp); 3635 3636 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 3637 if (css) 3638 memcg = container_of(css, struct mem_cgroup, css); 3639 else 3640 memcg = ERR_PTR(-ENOENT); 3641 3642 cgroup_put(cgrp); 3643 3644 return memcg; 3645 } 3646 #endif 3647 3648 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn) 3649 { 3650 if (!pn) 3651 return; 3652 3653 free_percpu(pn->lruvec_stats_percpu); 3654 kfree(pn->lruvec_stats); 3655 kfree(pn); 3656 } 3657 3658 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 3659 { 3660 struct mem_cgroup_per_node *pn; 3661 3662 pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO, 3663 node); 3664 if (!pn) 3665 return false; 3666 3667 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats), 3668 GFP_KERNEL_ACCOUNT, node); 3669 if (!pn->lruvec_stats) 3670 goto fail; 3671 3672 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 3673 GFP_KERNEL_ACCOUNT); 3674 if (!pn->lruvec_stats_percpu) 3675 goto fail; 3676 3677 lruvec_init(&pn->lruvec); 3678 pn->memcg = memcg; 3679 3680 memcg->nodeinfo[node] = pn; 3681 return true; 3682 fail: 3683 free_mem_cgroup_per_node_info(pn); 3684 return false; 3685 } 3686 3687 static void __mem_cgroup_free(struct mem_cgroup *memcg) 3688 { 3689 int node; 3690 3691 obj_cgroup_put(memcg->orig_objcg); 3692 3693 for_each_node(node) 3694 free_mem_cgroup_per_node_info(memcg->nodeinfo[node]); 3695 memcg1_free_events(memcg); 3696 kfree(memcg->vmstats); 3697 free_percpu(memcg->vmstats_percpu); 3698 kfree(memcg); 3699 } 3700 3701 static void mem_cgroup_free(struct mem_cgroup *memcg) 3702 { 3703 lru_gen_exit_memcg(memcg); 3704 memcg_wb_domain_exit(memcg); 3705 __mem_cgroup_free(memcg); 3706 } 3707 3708 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent) 3709 { 3710 struct memcg_vmstats_percpu *statc; 3711 struct memcg_vmstats_percpu __percpu *pstatc_pcpu; 3712 struct mem_cgroup *memcg; 3713 int node, cpu; 3714 int __maybe_unused i; 3715 long error; 3716 3717 memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL); 3718 if (!memcg) 3719 return ERR_PTR(-ENOMEM); 3720 3721 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL, 3722 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL); 3723 if (error) 3724 goto fail; 3725 error = -ENOMEM; 3726 3727 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), 3728 GFP_KERNEL_ACCOUNT); 3729 if (!memcg->vmstats) 3730 goto fail; 3731 3732 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 3733 GFP_KERNEL_ACCOUNT); 3734 if (!memcg->vmstats_percpu) 3735 goto fail; 3736 3737 if (!memcg1_alloc_events(memcg)) 3738 goto fail; 3739 3740 for_each_possible_cpu(cpu) { 3741 if (parent) 3742 pstatc_pcpu = parent->vmstats_percpu; 3743 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 3744 statc->parent_pcpu = parent ? pstatc_pcpu : NULL; 3745 statc->vmstats = memcg->vmstats; 3746 } 3747 3748 for_each_node(node) 3749 if (!alloc_mem_cgroup_per_node_info(memcg, node)) 3750 goto fail; 3751 3752 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 3753 goto fail; 3754 3755 INIT_WORK(&memcg->high_work, high_work_func); 3756 vmpressure_init(&memcg->vmpressure); 3757 INIT_LIST_HEAD(&memcg->memory_peaks); 3758 INIT_LIST_HEAD(&memcg->swap_peaks); 3759 spin_lock_init(&memcg->peaks_lock); 3760 memcg->socket_pressure = jiffies; 3761 memcg1_memcg_init(memcg); 3762 memcg->kmemcg_id = -1; 3763 INIT_LIST_HEAD(&memcg->objcg_list); 3764 #ifdef CONFIG_CGROUP_WRITEBACK 3765 INIT_LIST_HEAD(&memcg->cgwb_list); 3766 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3767 memcg->cgwb_frn[i].done = 3768 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 3769 #endif 3770 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3771 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 3772 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 3773 memcg->deferred_split_queue.split_queue_len = 0; 3774 #endif 3775 lru_gen_init_memcg(memcg); 3776 return memcg; 3777 fail: 3778 mem_cgroup_id_remove(memcg); 3779 __mem_cgroup_free(memcg); 3780 return ERR_PTR(error); 3781 } 3782 3783 static struct cgroup_subsys_state * __ref 3784 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 3785 { 3786 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 3787 struct mem_cgroup *memcg, *old_memcg; 3788 bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys); 3789 3790 old_memcg = set_active_memcg(parent); 3791 memcg = mem_cgroup_alloc(parent); 3792 set_active_memcg(old_memcg); 3793 if (IS_ERR(memcg)) 3794 return ERR_CAST(memcg); 3795 3796 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3797 memcg1_soft_limit_reset(memcg); 3798 #ifdef CONFIG_ZSWAP 3799 memcg->zswap_max = PAGE_COUNTER_MAX; 3800 WRITE_ONCE(memcg->zswap_writeback, true); 3801 #endif 3802 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3803 if (parent) { 3804 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent)); 3805 3806 page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl); 3807 page_counter_init(&memcg->swap, &parent->swap, false); 3808 #ifdef CONFIG_MEMCG_V1 3809 memcg->memory.track_failcnt = !memcg_on_dfl; 3810 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable)); 3811 page_counter_init(&memcg->kmem, &parent->kmem, false); 3812 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false); 3813 #endif 3814 } else { 3815 init_memcg_stats(); 3816 init_memcg_events(); 3817 page_counter_init(&memcg->memory, NULL, true); 3818 page_counter_init(&memcg->swap, NULL, false); 3819 #ifdef CONFIG_MEMCG_V1 3820 page_counter_init(&memcg->kmem, NULL, false); 3821 page_counter_init(&memcg->tcpmem, NULL, false); 3822 #endif 3823 root_mem_cgroup = memcg; 3824 return &memcg->css; 3825 } 3826 3827 if (memcg_on_dfl && !cgroup_memory_nosocket) 3828 static_branch_inc(&memcg_sockets_enabled_key); 3829 3830 if (!cgroup_memory_nobpf) 3831 static_branch_inc(&memcg_bpf_enabled_key); 3832 3833 return &memcg->css; 3834 } 3835 3836 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 3837 { 3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3839 3840 if (memcg_online_kmem(memcg)) 3841 goto remove_id; 3842 3843 /* 3844 * A memcg must be visible for expand_shrinker_info() 3845 * by the time the maps are allocated. So, we allocate maps 3846 * here, when for_each_mem_cgroup() can't skip it. 3847 */ 3848 if (alloc_shrinker_info(memcg)) 3849 goto offline_kmem; 3850 3851 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled()) 3852 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 3853 FLUSH_TIME); 3854 lru_gen_online_memcg(memcg); 3855 3856 /* Online state pins memcg ID, memcg ID pins CSS */ 3857 refcount_set(&memcg->id.ref, 1); 3858 css_get(css); 3859 3860 /* 3861 * Ensure mem_cgroup_from_id() works once we're fully online. 3862 * 3863 * We could do this earlier and require callers to filter with 3864 * css_tryget_online(). But right now there are no users that 3865 * need earlier access, and the workingset code relies on the 3866 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So 3867 * publish it here at the end of onlining. This matches the 3868 * regular ID destruction during offlining. 3869 */ 3870 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL); 3871 3872 return 0; 3873 offline_kmem: 3874 memcg_offline_kmem(memcg); 3875 remove_id: 3876 mem_cgroup_id_remove(memcg); 3877 return -ENOMEM; 3878 } 3879 3880 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 3881 { 3882 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3883 3884 memcg1_css_offline(memcg); 3885 3886 page_counter_set_min(&memcg->memory, 0); 3887 page_counter_set_low(&memcg->memory, 0); 3888 3889 zswap_memcg_offline_cleanup(memcg); 3890 3891 memcg_offline_kmem(memcg); 3892 reparent_shrinker_deferred(memcg); 3893 wb_memcg_offline(memcg); 3894 lru_gen_offline_memcg(memcg); 3895 3896 drain_all_stock(memcg); 3897 3898 mem_cgroup_id_put(memcg); 3899 } 3900 3901 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 3902 { 3903 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3904 3905 invalidate_reclaim_iterators(memcg); 3906 lru_gen_release_memcg(memcg); 3907 } 3908 3909 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 3910 { 3911 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3912 int __maybe_unused i; 3913 3914 #ifdef CONFIG_CGROUP_WRITEBACK 3915 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 3916 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 3917 #endif 3918 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 3919 static_branch_dec(&memcg_sockets_enabled_key); 3920 3921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg)) 3922 static_branch_dec(&memcg_sockets_enabled_key); 3923 3924 if (!cgroup_memory_nobpf) 3925 static_branch_dec(&memcg_bpf_enabled_key); 3926 3927 vmpressure_cleanup(&memcg->vmpressure); 3928 cancel_work_sync(&memcg->high_work); 3929 memcg1_remove_from_trees(memcg); 3930 free_shrinker_info(memcg); 3931 mem_cgroup_free(memcg); 3932 } 3933 3934 /** 3935 * mem_cgroup_css_reset - reset the states of a mem_cgroup 3936 * @css: the target css 3937 * 3938 * Reset the states of the mem_cgroup associated with @css. This is 3939 * invoked when the userland requests disabling on the default hierarchy 3940 * but the memcg is pinned through dependency. The memcg should stop 3941 * applying policies and should revert to the vanilla state as it may be 3942 * made visible again. 3943 * 3944 * The current implementation only resets the essential configurations. 3945 * This needs to be expanded to cover all the visible parts. 3946 */ 3947 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 3948 { 3949 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3950 3951 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 3952 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 3953 #ifdef CONFIG_MEMCG_V1 3954 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 3955 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 3956 #endif 3957 page_counter_set_min(&memcg->memory, 0); 3958 page_counter_set_low(&memcg->memory, 0); 3959 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 3960 memcg1_soft_limit_reset(memcg); 3961 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 3962 memcg_wb_domain_size_changed(memcg); 3963 } 3964 3965 struct aggregate_control { 3966 /* pointer to the aggregated (CPU and subtree aggregated) counters */ 3967 long *aggregate; 3968 /* pointer to the non-hierarchichal (CPU aggregated) counters */ 3969 long *local; 3970 /* pointer to the pending child counters during tree propagation */ 3971 long *pending; 3972 /* pointer to the parent's pending counters, could be NULL */ 3973 long *ppending; 3974 /* pointer to the percpu counters to be aggregated */ 3975 long *cstat; 3976 /* pointer to the percpu counters of the last aggregation*/ 3977 long *cstat_prev; 3978 /* size of the above counters */ 3979 int size; 3980 }; 3981 3982 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac) 3983 { 3984 int i; 3985 long delta, delta_cpu, v; 3986 3987 for (i = 0; i < ac->size; i++) { 3988 /* 3989 * Collect the aggregated propagation counts of groups 3990 * below us. We're in a per-cpu loop here and this is 3991 * a global counter, so the first cycle will get them. 3992 */ 3993 delta = ac->pending[i]; 3994 if (delta) 3995 ac->pending[i] = 0; 3996 3997 /* Add CPU changes on this level since the last flush */ 3998 delta_cpu = 0; 3999 v = READ_ONCE(ac->cstat[i]); 4000 if (v != ac->cstat_prev[i]) { 4001 delta_cpu = v - ac->cstat_prev[i]; 4002 delta += delta_cpu; 4003 ac->cstat_prev[i] = v; 4004 } 4005 4006 /* Aggregate counts on this level and propagate upwards */ 4007 if (delta_cpu) 4008 ac->local[i] += delta_cpu; 4009 4010 if (delta) { 4011 ac->aggregate[i] += delta; 4012 if (ac->ppending) 4013 ac->ppending[i] += delta; 4014 } 4015 } 4016 } 4017 4018 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 4019 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4020 int cpu) 4021 { 4022 int nid; 4023 4024 if (atomic_read(&memcg->kmem_stat)) { 4025 int kmem = atomic_xchg(&memcg->kmem_stat, 0); 4026 int index = memcg_stats_index(MEMCG_KMEM); 4027 4028 memcg->vmstats->state[index] += kmem; 4029 if (parent) 4030 parent->vmstats->state_pending[index] += kmem; 4031 } 4032 4033 for_each_node_state(nid, N_MEMORY) { 4034 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4035 struct lruvec_stats *lstats = pn->lruvec_stats; 4036 struct lruvec_stats *plstats = NULL; 4037 4038 if (parent) 4039 plstats = parent->nodeinfo[nid]->lruvec_stats; 4040 4041 if (atomic_read(&pn->slab_reclaimable)) { 4042 int slab = atomic_xchg(&pn->slab_reclaimable, 0); 4043 int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B); 4044 4045 lstats->state[index] += slab; 4046 if (plstats) 4047 plstats->state_pending[index] += slab; 4048 } 4049 if (atomic_read(&pn->slab_unreclaimable)) { 4050 int slab = atomic_xchg(&pn->slab_unreclaimable, 0); 4051 int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B); 4052 4053 lstats->state[index] += slab; 4054 if (plstats) 4055 plstats->state_pending[index] += slab; 4056 } 4057 } 4058 } 4059 #else 4060 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent, 4061 int cpu) 4062 {} 4063 #endif 4064 4065 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 4066 { 4067 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4068 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4069 struct memcg_vmstats_percpu *statc; 4070 struct aggregate_control ac; 4071 int nid; 4072 4073 flush_nmi_stats(memcg, parent, cpu); 4074 4075 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 4076 4077 ac = (struct aggregate_control) { 4078 .aggregate = memcg->vmstats->state, 4079 .local = memcg->vmstats->state_local, 4080 .pending = memcg->vmstats->state_pending, 4081 .ppending = parent ? parent->vmstats->state_pending : NULL, 4082 .cstat = statc->state, 4083 .cstat_prev = statc->state_prev, 4084 .size = MEMCG_VMSTAT_SIZE, 4085 }; 4086 mem_cgroup_stat_aggregate(&ac); 4087 4088 ac = (struct aggregate_control) { 4089 .aggregate = memcg->vmstats->events, 4090 .local = memcg->vmstats->events_local, 4091 .pending = memcg->vmstats->events_pending, 4092 .ppending = parent ? parent->vmstats->events_pending : NULL, 4093 .cstat = statc->events, 4094 .cstat_prev = statc->events_prev, 4095 .size = NR_MEMCG_EVENTS, 4096 }; 4097 mem_cgroup_stat_aggregate(&ac); 4098 4099 for_each_node_state(nid, N_MEMORY) { 4100 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 4101 struct lruvec_stats *lstats = pn->lruvec_stats; 4102 struct lruvec_stats *plstats = NULL; 4103 struct lruvec_stats_percpu *lstatc; 4104 4105 if (parent) 4106 plstats = parent->nodeinfo[nid]->lruvec_stats; 4107 4108 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 4109 4110 ac = (struct aggregate_control) { 4111 .aggregate = lstats->state, 4112 .local = lstats->state_local, 4113 .pending = lstats->state_pending, 4114 .ppending = plstats ? plstats->state_pending : NULL, 4115 .cstat = lstatc->state, 4116 .cstat_prev = lstatc->state_prev, 4117 .size = NR_MEMCG_NODE_STAT_ITEMS, 4118 }; 4119 mem_cgroup_stat_aggregate(&ac); 4120 4121 } 4122 WRITE_ONCE(statc->stats_updates, 0); 4123 /* We are in a per-cpu loop here, only do the atomic write once */ 4124 if (atomic_read(&memcg->vmstats->stats_updates)) 4125 atomic_set(&memcg->vmstats->stats_updates, 0); 4126 } 4127 4128 static void mem_cgroup_fork(struct task_struct *task) 4129 { 4130 /* 4131 * Set the update flag to cause task->objcg to be initialized lazily 4132 * on the first allocation. It can be done without any synchronization 4133 * because it's always performed on the current task, so does 4134 * current_objcg_update(). 4135 */ 4136 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG; 4137 } 4138 4139 static void mem_cgroup_exit(struct task_struct *task) 4140 { 4141 struct obj_cgroup *objcg = task->objcg; 4142 4143 objcg = (struct obj_cgroup *) 4144 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG); 4145 obj_cgroup_put(objcg); 4146 4147 /* 4148 * Some kernel allocations can happen after this point, 4149 * but let's ignore them. It can be done without any synchronization 4150 * because it's always performed on the current task, so does 4151 * current_objcg_update(). 4152 */ 4153 task->objcg = NULL; 4154 } 4155 4156 #ifdef CONFIG_LRU_GEN 4157 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) 4158 { 4159 struct task_struct *task; 4160 struct cgroup_subsys_state *css; 4161 4162 /* find the first leader if there is any */ 4163 cgroup_taskset_for_each_leader(task, css, tset) 4164 break; 4165 4166 if (!task) 4167 return; 4168 4169 task_lock(task); 4170 if (task->mm && READ_ONCE(task->mm->owner) == task) 4171 lru_gen_migrate_mm(task->mm); 4172 task_unlock(task); 4173 } 4174 #else 4175 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {} 4176 #endif /* CONFIG_LRU_GEN */ 4177 4178 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) 4179 { 4180 struct task_struct *task; 4181 struct cgroup_subsys_state *css; 4182 4183 cgroup_taskset_for_each(task, css, tset) { 4184 /* atomically set the update bit */ 4185 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg); 4186 } 4187 } 4188 4189 static void mem_cgroup_attach(struct cgroup_taskset *tset) 4190 { 4191 mem_cgroup_lru_gen_attach(tset); 4192 mem_cgroup_kmem_attach(tset); 4193 } 4194 4195 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 4196 { 4197 if (value == PAGE_COUNTER_MAX) 4198 seq_puts(m, "max\n"); 4199 else 4200 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 4201 4202 return 0; 4203 } 4204 4205 static u64 memory_current_read(struct cgroup_subsys_state *css, 4206 struct cftype *cft) 4207 { 4208 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4209 4210 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 4211 } 4212 4213 #define OFP_PEAK_UNSET (((-1UL))) 4214 4215 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc) 4216 { 4217 struct cgroup_of_peak *ofp = of_peak(sf->private); 4218 u64 fd_peak = READ_ONCE(ofp->value), peak; 4219 4220 /* User wants global or local peak? */ 4221 if (fd_peak == OFP_PEAK_UNSET) 4222 peak = pc->watermark; 4223 else 4224 peak = max(fd_peak, READ_ONCE(pc->local_watermark)); 4225 4226 seq_printf(sf, "%llu\n", peak * PAGE_SIZE); 4227 return 0; 4228 } 4229 4230 static int memory_peak_show(struct seq_file *sf, void *v) 4231 { 4232 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4233 4234 return peak_show(sf, v, &memcg->memory); 4235 } 4236 4237 static int peak_open(struct kernfs_open_file *of) 4238 { 4239 struct cgroup_of_peak *ofp = of_peak(of); 4240 4241 ofp->value = OFP_PEAK_UNSET; 4242 return 0; 4243 } 4244 4245 static void peak_release(struct kernfs_open_file *of) 4246 { 4247 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4248 struct cgroup_of_peak *ofp = of_peak(of); 4249 4250 if (ofp->value == OFP_PEAK_UNSET) { 4251 /* fast path (no writes on this fd) */ 4252 return; 4253 } 4254 spin_lock(&memcg->peaks_lock); 4255 list_del(&ofp->list); 4256 spin_unlock(&memcg->peaks_lock); 4257 } 4258 4259 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 4260 loff_t off, struct page_counter *pc, 4261 struct list_head *watchers) 4262 { 4263 unsigned long usage; 4264 struct cgroup_of_peak *peer_ctx; 4265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4266 struct cgroup_of_peak *ofp = of_peak(of); 4267 4268 spin_lock(&memcg->peaks_lock); 4269 4270 usage = page_counter_read(pc); 4271 WRITE_ONCE(pc->local_watermark, usage); 4272 4273 list_for_each_entry(peer_ctx, watchers, list) 4274 if (usage > peer_ctx->value) 4275 WRITE_ONCE(peer_ctx->value, usage); 4276 4277 /* initial write, register watcher */ 4278 if (ofp->value == OFP_PEAK_UNSET) 4279 list_add(&ofp->list, watchers); 4280 4281 WRITE_ONCE(ofp->value, usage); 4282 spin_unlock(&memcg->peaks_lock); 4283 4284 return nbytes; 4285 } 4286 4287 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf, 4288 size_t nbytes, loff_t off) 4289 { 4290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4291 4292 return peak_write(of, buf, nbytes, off, &memcg->memory, 4293 &memcg->memory_peaks); 4294 } 4295 4296 #undef OFP_PEAK_UNSET 4297 4298 static int memory_min_show(struct seq_file *m, void *v) 4299 { 4300 return seq_puts_memcg_tunable(m, 4301 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 4302 } 4303 4304 static ssize_t memory_min_write(struct kernfs_open_file *of, 4305 char *buf, size_t nbytes, loff_t off) 4306 { 4307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4308 unsigned long min; 4309 int err; 4310 4311 buf = strstrip(buf); 4312 err = page_counter_memparse(buf, "max", &min); 4313 if (err) 4314 return err; 4315 4316 page_counter_set_min(&memcg->memory, min); 4317 4318 return nbytes; 4319 } 4320 4321 static int memory_low_show(struct seq_file *m, void *v) 4322 { 4323 return seq_puts_memcg_tunable(m, 4324 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 4325 } 4326 4327 static ssize_t memory_low_write(struct kernfs_open_file *of, 4328 char *buf, size_t nbytes, loff_t off) 4329 { 4330 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4331 unsigned long low; 4332 int err; 4333 4334 buf = strstrip(buf); 4335 err = page_counter_memparse(buf, "max", &low); 4336 if (err) 4337 return err; 4338 4339 page_counter_set_low(&memcg->memory, low); 4340 4341 return nbytes; 4342 } 4343 4344 static int memory_high_show(struct seq_file *m, void *v) 4345 { 4346 return seq_puts_memcg_tunable(m, 4347 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 4348 } 4349 4350 static ssize_t memory_high_write(struct kernfs_open_file *of, 4351 char *buf, size_t nbytes, loff_t off) 4352 { 4353 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4354 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4355 bool drained = false; 4356 unsigned long high; 4357 int err; 4358 4359 buf = strstrip(buf); 4360 err = page_counter_memparse(buf, "max", &high); 4361 if (err) 4362 return err; 4363 4364 page_counter_set_high(&memcg->memory, high); 4365 4366 if (of->file->f_flags & O_NONBLOCK) 4367 goto out; 4368 4369 for (;;) { 4370 unsigned long nr_pages = page_counter_read(&memcg->memory); 4371 unsigned long reclaimed; 4372 4373 if (nr_pages <= high) 4374 break; 4375 4376 if (signal_pending(current)) 4377 break; 4378 4379 if (!drained) { 4380 drain_all_stock(memcg); 4381 drained = true; 4382 continue; 4383 } 4384 4385 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 4386 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL); 4387 4388 if (!reclaimed && !nr_retries--) 4389 break; 4390 } 4391 out: 4392 memcg_wb_domain_size_changed(memcg); 4393 return nbytes; 4394 } 4395 4396 static int memory_max_show(struct seq_file *m, void *v) 4397 { 4398 return seq_puts_memcg_tunable(m, 4399 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 4400 } 4401 4402 static ssize_t memory_max_write(struct kernfs_open_file *of, 4403 char *buf, size_t nbytes, loff_t off) 4404 { 4405 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4406 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 4407 bool drained = false; 4408 unsigned long max; 4409 int err; 4410 4411 buf = strstrip(buf); 4412 err = page_counter_memparse(buf, "max", &max); 4413 if (err) 4414 return err; 4415 4416 xchg(&memcg->memory.max, max); 4417 4418 if (of->file->f_flags & O_NONBLOCK) 4419 goto out; 4420 4421 for (;;) { 4422 unsigned long nr_pages = page_counter_read(&memcg->memory); 4423 4424 if (nr_pages <= max) 4425 break; 4426 4427 if (signal_pending(current)) 4428 break; 4429 4430 if (!drained) { 4431 drain_all_stock(memcg); 4432 drained = true; 4433 continue; 4434 } 4435 4436 if (nr_reclaims) { 4437 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 4438 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL)) 4439 nr_reclaims--; 4440 continue; 4441 } 4442 4443 memcg_memory_event(memcg, MEMCG_OOM); 4444 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 4445 break; 4446 cond_resched(); 4447 } 4448 out: 4449 memcg_wb_domain_size_changed(memcg); 4450 return nbytes; 4451 } 4452 4453 /* 4454 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener' 4455 * if any new events become available. 4456 */ 4457 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 4458 { 4459 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 4460 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 4461 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 4462 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 4463 seq_printf(m, "oom_kill %lu\n", 4464 atomic_long_read(&events[MEMCG_OOM_KILL])); 4465 seq_printf(m, "oom_group_kill %lu\n", 4466 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 4467 } 4468 4469 static int memory_events_show(struct seq_file *m, void *v) 4470 { 4471 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4472 4473 __memory_events_show(m, memcg->memory_events); 4474 return 0; 4475 } 4476 4477 static int memory_events_local_show(struct seq_file *m, void *v) 4478 { 4479 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4480 4481 __memory_events_show(m, memcg->memory_events_local); 4482 return 0; 4483 } 4484 4485 int memory_stat_show(struct seq_file *m, void *v) 4486 { 4487 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4488 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL); 4489 struct seq_buf s; 4490 4491 if (!buf) 4492 return -ENOMEM; 4493 seq_buf_init(&s, buf, SEQ_BUF_SIZE); 4494 memory_stat_format(memcg, &s); 4495 seq_puts(m, buf); 4496 kfree(buf); 4497 return 0; 4498 } 4499 4500 #ifdef CONFIG_NUMA 4501 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 4502 int item) 4503 { 4504 return lruvec_page_state(lruvec, item) * 4505 memcg_page_state_output_unit(item); 4506 } 4507 4508 static int memory_numa_stat_show(struct seq_file *m, void *v) 4509 { 4510 int i; 4511 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4512 4513 mem_cgroup_flush_stats(memcg); 4514 4515 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 4516 int nid; 4517 4518 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 4519 continue; 4520 4521 seq_printf(m, "%s", memory_stats[i].name); 4522 for_each_node_state(nid, N_MEMORY) { 4523 u64 size; 4524 struct lruvec *lruvec; 4525 4526 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 4527 size = lruvec_page_state_output(lruvec, 4528 memory_stats[i].idx); 4529 seq_printf(m, " N%d=%llu", nid, size); 4530 } 4531 seq_putc(m, '\n'); 4532 } 4533 4534 return 0; 4535 } 4536 #endif 4537 4538 static int memory_oom_group_show(struct seq_file *m, void *v) 4539 { 4540 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4541 4542 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group)); 4543 4544 return 0; 4545 } 4546 4547 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 4548 char *buf, size_t nbytes, loff_t off) 4549 { 4550 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4551 int ret, oom_group; 4552 4553 buf = strstrip(buf); 4554 if (!buf) 4555 return -EINVAL; 4556 4557 ret = kstrtoint(buf, 0, &oom_group); 4558 if (ret) 4559 return ret; 4560 4561 if (oom_group != 0 && oom_group != 1) 4562 return -EINVAL; 4563 4564 WRITE_ONCE(memcg->oom_group, oom_group); 4565 4566 return nbytes; 4567 } 4568 4569 enum { 4570 MEMORY_RECLAIM_SWAPPINESS = 0, 4571 MEMORY_RECLAIM_SWAPPINESS_MAX, 4572 MEMORY_RECLAIM_NULL, 4573 }; 4574 4575 static const match_table_t tokens = { 4576 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"}, 4577 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"}, 4578 { MEMORY_RECLAIM_NULL, NULL }, 4579 }; 4580 4581 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 4582 size_t nbytes, loff_t off) 4583 { 4584 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4585 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 4586 unsigned long nr_to_reclaim, nr_reclaimed = 0; 4587 int swappiness = -1; 4588 unsigned int reclaim_options; 4589 char *old_buf, *start; 4590 substring_t args[MAX_OPT_ARGS]; 4591 4592 buf = strstrip(buf); 4593 4594 old_buf = buf; 4595 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE; 4596 if (buf == old_buf) 4597 return -EINVAL; 4598 4599 buf = strstrip(buf); 4600 4601 while ((start = strsep(&buf, " ")) != NULL) { 4602 if (!strlen(start)) 4603 continue; 4604 switch (match_token(start, tokens, args)) { 4605 case MEMORY_RECLAIM_SWAPPINESS: 4606 if (match_int(&args[0], &swappiness)) 4607 return -EINVAL; 4608 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS) 4609 return -EINVAL; 4610 break; 4611 case MEMORY_RECLAIM_SWAPPINESS_MAX: 4612 swappiness = SWAPPINESS_ANON_ONLY; 4613 break; 4614 default: 4615 return -EINVAL; 4616 } 4617 } 4618 4619 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 4620 while (nr_reclaimed < nr_to_reclaim) { 4621 /* Will converge on zero, but reclaim enforces a minimum */ 4622 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4; 4623 unsigned long reclaimed; 4624 4625 if (signal_pending(current)) 4626 return -EINTR; 4627 4628 /* 4629 * This is the final attempt, drain percpu lru caches in the 4630 * hope of introducing more evictable pages for 4631 * try_to_free_mem_cgroup_pages(). 4632 */ 4633 if (!nr_retries) 4634 lru_add_drain_all(); 4635 4636 reclaimed = try_to_free_mem_cgroup_pages(memcg, 4637 batch_size, GFP_KERNEL, 4638 reclaim_options, 4639 swappiness == -1 ? NULL : &swappiness); 4640 4641 if (!reclaimed && !nr_retries--) 4642 return -EAGAIN; 4643 4644 nr_reclaimed += reclaimed; 4645 } 4646 4647 return nbytes; 4648 } 4649 4650 static struct cftype memory_files[] = { 4651 { 4652 .name = "current", 4653 .flags = CFTYPE_NOT_ON_ROOT, 4654 .read_u64 = memory_current_read, 4655 }, 4656 { 4657 .name = "peak", 4658 .flags = CFTYPE_NOT_ON_ROOT, 4659 .open = peak_open, 4660 .release = peak_release, 4661 .seq_show = memory_peak_show, 4662 .write = memory_peak_write, 4663 }, 4664 { 4665 .name = "min", 4666 .flags = CFTYPE_NOT_ON_ROOT, 4667 .seq_show = memory_min_show, 4668 .write = memory_min_write, 4669 }, 4670 { 4671 .name = "low", 4672 .flags = CFTYPE_NOT_ON_ROOT, 4673 .seq_show = memory_low_show, 4674 .write = memory_low_write, 4675 }, 4676 { 4677 .name = "high", 4678 .flags = CFTYPE_NOT_ON_ROOT, 4679 .seq_show = memory_high_show, 4680 .write = memory_high_write, 4681 }, 4682 { 4683 .name = "max", 4684 .flags = CFTYPE_NOT_ON_ROOT, 4685 .seq_show = memory_max_show, 4686 .write = memory_max_write, 4687 }, 4688 { 4689 .name = "events", 4690 .flags = CFTYPE_NOT_ON_ROOT, 4691 .file_offset = offsetof(struct mem_cgroup, events_file), 4692 .seq_show = memory_events_show, 4693 }, 4694 { 4695 .name = "events.local", 4696 .flags = CFTYPE_NOT_ON_ROOT, 4697 .file_offset = offsetof(struct mem_cgroup, events_local_file), 4698 .seq_show = memory_events_local_show, 4699 }, 4700 { 4701 .name = "stat", 4702 .seq_show = memory_stat_show, 4703 }, 4704 #ifdef CONFIG_NUMA 4705 { 4706 .name = "numa_stat", 4707 .seq_show = memory_numa_stat_show, 4708 }, 4709 #endif 4710 { 4711 .name = "oom.group", 4712 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 4713 .seq_show = memory_oom_group_show, 4714 .write = memory_oom_group_write, 4715 }, 4716 { 4717 .name = "reclaim", 4718 .flags = CFTYPE_NS_DELEGATABLE, 4719 .write = memory_reclaim, 4720 }, 4721 { } /* terminate */ 4722 }; 4723 4724 struct cgroup_subsys memory_cgrp_subsys = { 4725 .css_alloc = mem_cgroup_css_alloc, 4726 .css_online = mem_cgroup_css_online, 4727 .css_offline = mem_cgroup_css_offline, 4728 .css_released = mem_cgroup_css_released, 4729 .css_free = mem_cgroup_css_free, 4730 .css_reset = mem_cgroup_css_reset, 4731 .css_rstat_flush = mem_cgroup_css_rstat_flush, 4732 .attach = mem_cgroup_attach, 4733 .fork = mem_cgroup_fork, 4734 .exit = mem_cgroup_exit, 4735 .dfl_cftypes = memory_files, 4736 #ifdef CONFIG_MEMCG_V1 4737 .legacy_cftypes = mem_cgroup_legacy_files, 4738 #endif 4739 .early_init = 0, 4740 }; 4741 4742 /** 4743 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 4744 * @root: the top ancestor of the sub-tree being checked 4745 * @memcg: the memory cgroup to check 4746 * 4747 * WARNING: This function is not stateless! It can only be used as part 4748 * of a top-down tree iteration, not for isolated queries. 4749 */ 4750 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 4751 struct mem_cgroup *memcg) 4752 { 4753 bool recursive_protection = 4754 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT; 4755 4756 if (mem_cgroup_disabled()) 4757 return; 4758 4759 if (!root) 4760 root = root_mem_cgroup; 4761 4762 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection); 4763 } 4764 4765 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 4766 gfp_t gfp) 4767 { 4768 int ret; 4769 4770 ret = try_charge(memcg, gfp, folio_nr_pages(folio)); 4771 if (ret) 4772 goto out; 4773 4774 css_get(&memcg->css); 4775 commit_charge(folio, memcg); 4776 memcg1_commit_charge(folio, memcg); 4777 out: 4778 return ret; 4779 } 4780 4781 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 4782 { 4783 struct mem_cgroup *memcg; 4784 int ret; 4785 4786 memcg = get_mem_cgroup_from_mm(mm); 4787 ret = charge_memcg(folio, memcg, gfp); 4788 css_put(&memcg->css); 4789 4790 return ret; 4791 } 4792 4793 /** 4794 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio 4795 * @folio: folio being charged 4796 * @gfp: reclaim mode 4797 * 4798 * This function is called when allocating a huge page folio, after the page has 4799 * already been obtained and charged to the appropriate hugetlb cgroup 4800 * controller (if it is enabled). 4801 * 4802 * Returns ENOMEM if the memcg is already full. 4803 * Returns 0 if either the charge was successful, or if we skip the charging. 4804 */ 4805 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp) 4806 { 4807 struct mem_cgroup *memcg = get_mem_cgroup_from_current(); 4808 int ret = 0; 4809 4810 /* 4811 * Even memcg does not account for hugetlb, we still want to update 4812 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip 4813 * charging the memcg. 4814 */ 4815 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() || 4816 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4817 goto out; 4818 4819 if (charge_memcg(folio, memcg, gfp)) 4820 ret = -ENOMEM; 4821 4822 out: 4823 mem_cgroup_put(memcg); 4824 return ret; 4825 } 4826 4827 /** 4828 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 4829 * @folio: folio to charge. 4830 * @mm: mm context of the victim 4831 * @gfp: reclaim mode 4832 * @entry: swap entry for which the folio is allocated 4833 * 4834 * This function charges a folio allocated for swapin. Please call this before 4835 * adding the folio to the swapcache. 4836 * 4837 * Returns 0 on success. Otherwise, an error code is returned. 4838 */ 4839 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 4840 gfp_t gfp, swp_entry_t entry) 4841 { 4842 struct mem_cgroup *memcg; 4843 unsigned short id; 4844 int ret; 4845 4846 if (mem_cgroup_disabled()) 4847 return 0; 4848 4849 id = lookup_swap_cgroup_id(entry); 4850 rcu_read_lock(); 4851 memcg = mem_cgroup_from_id(id); 4852 if (!memcg || !css_tryget_online(&memcg->css)) 4853 memcg = get_mem_cgroup_from_mm(mm); 4854 rcu_read_unlock(); 4855 4856 ret = charge_memcg(folio, memcg, gfp); 4857 4858 css_put(&memcg->css); 4859 return ret; 4860 } 4861 4862 struct uncharge_gather { 4863 struct mem_cgroup *memcg; 4864 unsigned long nr_memory; 4865 unsigned long pgpgout; 4866 unsigned long nr_kmem; 4867 int nid; 4868 }; 4869 4870 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 4871 { 4872 memset(ug, 0, sizeof(*ug)); 4873 } 4874 4875 static void uncharge_batch(const struct uncharge_gather *ug) 4876 { 4877 if (ug->nr_memory) { 4878 memcg_uncharge(ug->memcg, ug->nr_memory); 4879 if (ug->nr_kmem) { 4880 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem); 4881 memcg1_account_kmem(ug->memcg, -ug->nr_kmem); 4882 } 4883 memcg1_oom_recover(ug->memcg); 4884 } 4885 4886 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid); 4887 4888 /* drop reference from uncharge_folio */ 4889 css_put(&ug->memcg->css); 4890 } 4891 4892 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 4893 { 4894 long nr_pages; 4895 struct mem_cgroup *memcg; 4896 struct obj_cgroup *objcg; 4897 4898 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 4899 4900 /* 4901 * Nobody should be changing or seriously looking at 4902 * folio memcg or objcg at this point, we have fully 4903 * exclusive access to the folio. 4904 */ 4905 if (folio_memcg_kmem(folio)) { 4906 objcg = __folio_objcg(folio); 4907 /* 4908 * This get matches the put at the end of the function and 4909 * kmem pages do not hold memcg references anymore. 4910 */ 4911 memcg = get_mem_cgroup_from_objcg(objcg); 4912 } else { 4913 memcg = __folio_memcg(folio); 4914 } 4915 4916 if (!memcg) 4917 return; 4918 4919 if (ug->memcg != memcg) { 4920 if (ug->memcg) { 4921 uncharge_batch(ug); 4922 uncharge_gather_clear(ug); 4923 } 4924 ug->memcg = memcg; 4925 ug->nid = folio_nid(folio); 4926 4927 /* pairs with css_put in uncharge_batch */ 4928 css_get(&memcg->css); 4929 } 4930 4931 nr_pages = folio_nr_pages(folio); 4932 4933 if (folio_memcg_kmem(folio)) { 4934 ug->nr_memory += nr_pages; 4935 ug->nr_kmem += nr_pages; 4936 4937 folio->memcg_data = 0; 4938 obj_cgroup_put(objcg); 4939 } else { 4940 /* LRU pages aren't accounted at the root level */ 4941 if (!mem_cgroup_is_root(memcg)) 4942 ug->nr_memory += nr_pages; 4943 ug->pgpgout++; 4944 4945 WARN_ON_ONCE(folio_unqueue_deferred_split(folio)); 4946 folio->memcg_data = 0; 4947 } 4948 4949 css_put(&memcg->css); 4950 } 4951 4952 void __mem_cgroup_uncharge(struct folio *folio) 4953 { 4954 struct uncharge_gather ug; 4955 4956 /* Don't touch folio->lru of any random page, pre-check: */ 4957 if (!folio_memcg_charged(folio)) 4958 return; 4959 4960 uncharge_gather_clear(&ug); 4961 uncharge_folio(folio, &ug); 4962 uncharge_batch(&ug); 4963 } 4964 4965 void __mem_cgroup_uncharge_folios(struct folio_batch *folios) 4966 { 4967 struct uncharge_gather ug; 4968 unsigned int i; 4969 4970 uncharge_gather_clear(&ug); 4971 for (i = 0; i < folios->nr; i++) 4972 uncharge_folio(folios->folios[i], &ug); 4973 if (ug.memcg) 4974 uncharge_batch(&ug); 4975 } 4976 4977 /** 4978 * mem_cgroup_replace_folio - Charge a folio's replacement. 4979 * @old: Currently circulating folio. 4980 * @new: Replacement folio. 4981 * 4982 * Charge @new as a replacement folio for @old. @old will 4983 * be uncharged upon free. 4984 * 4985 * Both folios must be locked, @new->mapping must be set up. 4986 */ 4987 void mem_cgroup_replace_folio(struct folio *old, struct folio *new) 4988 { 4989 struct mem_cgroup *memcg; 4990 long nr_pages = folio_nr_pages(new); 4991 4992 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 4993 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 4994 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 4995 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 4996 4997 if (mem_cgroup_disabled()) 4998 return; 4999 5000 /* Page cache replacement: new folio already charged? */ 5001 if (folio_memcg_charged(new)) 5002 return; 5003 5004 memcg = folio_memcg(old); 5005 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 5006 if (!memcg) 5007 return; 5008 5009 /* Force-charge the new page. The old one will be freed soon */ 5010 if (!mem_cgroup_is_root(memcg)) { 5011 page_counter_charge(&memcg->memory, nr_pages); 5012 if (do_memsw_account()) 5013 page_counter_charge(&memcg->memsw, nr_pages); 5014 } 5015 5016 css_get(&memcg->css); 5017 commit_charge(new, memcg); 5018 memcg1_commit_charge(new, memcg); 5019 } 5020 5021 /** 5022 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio. 5023 * @old: Currently circulating folio. 5024 * @new: Replacement folio. 5025 * 5026 * Transfer the memcg data from the old folio to the new folio for migration. 5027 * The old folio's data info will be cleared. Note that the memory counters 5028 * will remain unchanged throughout the process. 5029 * 5030 * Both folios must be locked, @new->mapping must be set up. 5031 */ 5032 void mem_cgroup_migrate(struct folio *old, struct folio *new) 5033 { 5034 struct mem_cgroup *memcg; 5035 5036 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 5037 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 5038 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 5039 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new); 5040 VM_BUG_ON_FOLIO(folio_test_lru(old), old); 5041 5042 if (mem_cgroup_disabled()) 5043 return; 5044 5045 memcg = folio_memcg(old); 5046 /* 5047 * Note that it is normal to see !memcg for a hugetlb folio. 5048 * For e.g, itt could have been allocated when memory_hugetlb_accounting 5049 * was not selected. 5050 */ 5051 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old); 5052 if (!memcg) 5053 return; 5054 5055 /* Transfer the charge and the css ref */ 5056 commit_charge(new, memcg); 5057 5058 /* Warning should never happen, so don't worry about refcount non-0 */ 5059 WARN_ON_ONCE(folio_unqueue_deferred_split(old)); 5060 old->memcg_data = 0; 5061 } 5062 5063 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5064 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5065 5066 void mem_cgroup_sk_alloc(struct sock *sk) 5067 { 5068 struct mem_cgroup *memcg; 5069 5070 if (!mem_cgroup_sockets_enabled) 5071 return; 5072 5073 /* Do not associate the sock with unrelated interrupted task's memcg. */ 5074 if (!in_task()) 5075 return; 5076 5077 rcu_read_lock(); 5078 memcg = mem_cgroup_from_task(current); 5079 if (mem_cgroup_is_root(memcg)) 5080 goto out; 5081 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg)) 5082 goto out; 5083 if (css_tryget(&memcg->css)) 5084 sk->sk_memcg = memcg; 5085 out: 5086 rcu_read_unlock(); 5087 } 5088 5089 void mem_cgroup_sk_free(struct sock *sk) 5090 { 5091 if (sk->sk_memcg) 5092 css_put(&sk->sk_memcg->css); 5093 } 5094 5095 /** 5096 * mem_cgroup_charge_skmem - charge socket memory 5097 * @memcg: memcg to charge 5098 * @nr_pages: number of pages to charge 5099 * @gfp_mask: reclaim mode 5100 * 5101 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5102 * @memcg's configured limit, %false if it doesn't. 5103 */ 5104 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 5105 gfp_t gfp_mask) 5106 { 5107 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5108 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask); 5109 5110 if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) { 5111 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5112 return true; 5113 } 5114 5115 return false; 5116 } 5117 5118 /** 5119 * mem_cgroup_uncharge_skmem - uncharge socket memory 5120 * @memcg: memcg to uncharge 5121 * @nr_pages: number of pages to uncharge 5122 */ 5123 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5124 { 5125 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5126 memcg1_uncharge_skmem(memcg, nr_pages); 5127 return; 5128 } 5129 5130 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5131 5132 refill_stock(memcg, nr_pages); 5133 } 5134 5135 static int __init cgroup_memory(char *s) 5136 { 5137 char *token; 5138 5139 while ((token = strsep(&s, ",")) != NULL) { 5140 if (!*token) 5141 continue; 5142 if (!strcmp(token, "nosocket")) 5143 cgroup_memory_nosocket = true; 5144 if (!strcmp(token, "nokmem")) 5145 cgroup_memory_nokmem = true; 5146 if (!strcmp(token, "nobpf")) 5147 cgroup_memory_nobpf = true; 5148 } 5149 return 1; 5150 } 5151 __setup("cgroup.memory=", cgroup_memory); 5152 5153 /* 5154 * Memory controller init before cgroup_init() initialize root_mem_cgroup. 5155 * 5156 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5157 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5158 * basically everything that doesn't depend on a specific mem_cgroup structure 5159 * should be initialized from here. 5160 */ 5161 int __init mem_cgroup_init(void) 5162 { 5163 unsigned int memcg_size; 5164 int cpu; 5165 5166 /* 5167 * Currently s32 type (can refer to struct batched_lruvec_stat) is 5168 * used for per-memcg-per-cpu caching of per-node statistics. In order 5169 * to work fine, we should make sure that the overfill threshold can't 5170 * exceed S32_MAX / PAGE_SIZE. 5171 */ 5172 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 5173 5174 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5175 memcg_hotplug_cpu_dead); 5176 5177 for_each_possible_cpu(cpu) { 5178 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5179 drain_local_memcg_stock); 5180 INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work, 5181 drain_local_obj_stock); 5182 } 5183 5184 memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids); 5185 memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0, 5186 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL); 5187 5188 memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node, 5189 SLAB_PANIC | SLAB_HWCACHE_ALIGN); 5190 5191 return 0; 5192 } 5193 5194 #ifdef CONFIG_SWAP 5195 /** 5196 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 5197 * @folio: folio being added to swap 5198 * @entry: swap entry to charge 5199 * 5200 * Try to charge @folio's memcg for the swap space at @entry. 5201 * 5202 * Returns 0 on success, -ENOMEM on failure. 5203 */ 5204 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 5205 { 5206 unsigned int nr_pages = folio_nr_pages(folio); 5207 struct page_counter *counter; 5208 struct mem_cgroup *memcg; 5209 5210 if (do_memsw_account()) 5211 return 0; 5212 5213 memcg = folio_memcg(folio); 5214 5215 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 5216 if (!memcg) 5217 return 0; 5218 5219 if (!entry.val) { 5220 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5221 return 0; 5222 } 5223 5224 memcg = mem_cgroup_id_get_online(memcg); 5225 5226 if (!mem_cgroup_is_root(memcg) && 5227 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 5228 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 5229 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 5230 mem_cgroup_id_put(memcg); 5231 return -ENOMEM; 5232 } 5233 5234 /* Get references for the tail pages, too */ 5235 if (nr_pages > 1) 5236 mem_cgroup_id_get_many(memcg, nr_pages - 1); 5237 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 5238 5239 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry); 5240 5241 return 0; 5242 } 5243 5244 /** 5245 * __mem_cgroup_uncharge_swap - uncharge swap space 5246 * @entry: swap entry to uncharge 5247 * @nr_pages: the amount of swap space to uncharge 5248 */ 5249 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 5250 { 5251 struct mem_cgroup *memcg; 5252 unsigned short id; 5253 5254 id = swap_cgroup_clear(entry, nr_pages); 5255 rcu_read_lock(); 5256 memcg = mem_cgroup_from_id(id); 5257 if (memcg) { 5258 if (!mem_cgroup_is_root(memcg)) { 5259 if (do_memsw_account()) 5260 page_counter_uncharge(&memcg->memsw, nr_pages); 5261 else 5262 page_counter_uncharge(&memcg->swap, nr_pages); 5263 } 5264 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 5265 mem_cgroup_id_put_many(memcg, nr_pages); 5266 } 5267 rcu_read_unlock(); 5268 } 5269 5270 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5271 { 5272 long nr_swap_pages = get_nr_swap_pages(); 5273 5274 if (mem_cgroup_disabled() || do_memsw_account()) 5275 return nr_swap_pages; 5276 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 5277 nr_swap_pages = min_t(long, nr_swap_pages, 5278 READ_ONCE(memcg->swap.max) - 5279 page_counter_read(&memcg->swap)); 5280 return nr_swap_pages; 5281 } 5282 5283 bool mem_cgroup_swap_full(struct folio *folio) 5284 { 5285 struct mem_cgroup *memcg; 5286 5287 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 5288 5289 if (vm_swap_full()) 5290 return true; 5291 if (do_memsw_account()) 5292 return false; 5293 5294 memcg = folio_memcg(folio); 5295 if (!memcg) 5296 return false; 5297 5298 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 5299 unsigned long usage = page_counter_read(&memcg->swap); 5300 5301 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 5302 usage * 2 >= READ_ONCE(memcg->swap.max)) 5303 return true; 5304 } 5305 5306 return false; 5307 } 5308 5309 static int __init setup_swap_account(char *s) 5310 { 5311 bool res; 5312 5313 if (!kstrtobool(s, &res) && !res) 5314 pr_warn_once("The swapaccount=0 commandline option is deprecated " 5315 "in favor of configuring swap control via cgroupfs. " 5316 "Please report your usecase to linux-mm@kvack.org if you " 5317 "depend on this functionality.\n"); 5318 return 1; 5319 } 5320 __setup("swapaccount=", setup_swap_account); 5321 5322 static u64 swap_current_read(struct cgroup_subsys_state *css, 5323 struct cftype *cft) 5324 { 5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5326 5327 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5328 } 5329 5330 static int swap_peak_show(struct seq_file *sf, void *v) 5331 { 5332 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5333 5334 return peak_show(sf, v, &memcg->swap); 5335 } 5336 5337 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf, 5338 size_t nbytes, loff_t off) 5339 { 5340 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5341 5342 return peak_write(of, buf, nbytes, off, &memcg->swap, 5343 &memcg->swap_peaks); 5344 } 5345 5346 static int swap_high_show(struct seq_file *m, void *v) 5347 { 5348 return seq_puts_memcg_tunable(m, 5349 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 5350 } 5351 5352 static ssize_t swap_high_write(struct kernfs_open_file *of, 5353 char *buf, size_t nbytes, loff_t off) 5354 { 5355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5356 unsigned long high; 5357 int err; 5358 5359 buf = strstrip(buf); 5360 err = page_counter_memparse(buf, "max", &high); 5361 if (err) 5362 return err; 5363 5364 page_counter_set_high(&memcg->swap, high); 5365 5366 return nbytes; 5367 } 5368 5369 static int swap_max_show(struct seq_file *m, void *v) 5370 { 5371 return seq_puts_memcg_tunable(m, 5372 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 5373 } 5374 5375 static ssize_t swap_max_write(struct kernfs_open_file *of, 5376 char *buf, size_t nbytes, loff_t off) 5377 { 5378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5379 unsigned long max; 5380 int err; 5381 5382 buf = strstrip(buf); 5383 err = page_counter_memparse(buf, "max", &max); 5384 if (err) 5385 return err; 5386 5387 xchg(&memcg->swap.max, max); 5388 5389 return nbytes; 5390 } 5391 5392 static int swap_events_show(struct seq_file *m, void *v) 5393 { 5394 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5395 5396 seq_printf(m, "high %lu\n", 5397 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 5398 seq_printf(m, "max %lu\n", 5399 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 5400 seq_printf(m, "fail %lu\n", 5401 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 5402 5403 return 0; 5404 } 5405 5406 static struct cftype swap_files[] = { 5407 { 5408 .name = "swap.current", 5409 .flags = CFTYPE_NOT_ON_ROOT, 5410 .read_u64 = swap_current_read, 5411 }, 5412 { 5413 .name = "swap.high", 5414 .flags = CFTYPE_NOT_ON_ROOT, 5415 .seq_show = swap_high_show, 5416 .write = swap_high_write, 5417 }, 5418 { 5419 .name = "swap.max", 5420 .flags = CFTYPE_NOT_ON_ROOT, 5421 .seq_show = swap_max_show, 5422 .write = swap_max_write, 5423 }, 5424 { 5425 .name = "swap.peak", 5426 .flags = CFTYPE_NOT_ON_ROOT, 5427 .open = peak_open, 5428 .release = peak_release, 5429 .seq_show = swap_peak_show, 5430 .write = swap_peak_write, 5431 }, 5432 { 5433 .name = "swap.events", 5434 .flags = CFTYPE_NOT_ON_ROOT, 5435 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 5436 .seq_show = swap_events_show, 5437 }, 5438 { } /* terminate */ 5439 }; 5440 5441 #ifdef CONFIG_ZSWAP 5442 /** 5443 * obj_cgroup_may_zswap - check if this cgroup can zswap 5444 * @objcg: the object cgroup 5445 * 5446 * Check if the hierarchical zswap limit has been reached. 5447 * 5448 * This doesn't check for specific headroom, and it is not atomic 5449 * either. But with zswap, the size of the allocation is only known 5450 * once compression has occurred, and this optimistic pre-check avoids 5451 * spending cycles on compression when there is already no room left 5452 * or zswap is disabled altogether somewhere in the hierarchy. 5453 */ 5454 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 5455 { 5456 struct mem_cgroup *memcg, *original_memcg; 5457 bool ret = true; 5458 5459 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5460 return true; 5461 5462 original_memcg = get_mem_cgroup_from_objcg(objcg); 5463 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 5464 memcg = parent_mem_cgroup(memcg)) { 5465 unsigned long max = READ_ONCE(memcg->zswap_max); 5466 unsigned long pages; 5467 5468 if (max == PAGE_COUNTER_MAX) 5469 continue; 5470 if (max == 0) { 5471 ret = false; 5472 break; 5473 } 5474 5475 /* Force flush to get accurate stats for charging */ 5476 __mem_cgroup_flush_stats(memcg, true); 5477 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 5478 if (pages < max) 5479 continue; 5480 ret = false; 5481 break; 5482 } 5483 mem_cgroup_put(original_memcg); 5484 return ret; 5485 } 5486 5487 /** 5488 * obj_cgroup_charge_zswap - charge compression backend memory 5489 * @objcg: the object cgroup 5490 * @size: size of compressed object 5491 * 5492 * This forces the charge after obj_cgroup_may_zswap() allowed 5493 * compression and storage in zwap for this cgroup to go ahead. 5494 */ 5495 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 5496 { 5497 struct mem_cgroup *memcg; 5498 5499 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5500 return; 5501 5502 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 5503 5504 /* PF_MEMALLOC context, charging must succeed */ 5505 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 5506 VM_WARN_ON_ONCE(1); 5507 5508 rcu_read_lock(); 5509 memcg = obj_cgroup_memcg(objcg); 5510 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 5511 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 5512 rcu_read_unlock(); 5513 } 5514 5515 /** 5516 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 5517 * @objcg: the object cgroup 5518 * @size: size of compressed object 5519 * 5520 * Uncharges zswap memory on page in. 5521 */ 5522 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 5523 { 5524 struct mem_cgroup *memcg; 5525 5526 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5527 return; 5528 5529 obj_cgroup_uncharge(objcg, size); 5530 5531 rcu_read_lock(); 5532 memcg = obj_cgroup_memcg(objcg); 5533 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 5534 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 5535 rcu_read_unlock(); 5536 } 5537 5538 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 5539 { 5540 /* if zswap is disabled, do not block pages going to the swapping device */ 5541 if (!zswap_is_enabled()) 5542 return true; 5543 5544 for (; memcg; memcg = parent_mem_cgroup(memcg)) 5545 if (!READ_ONCE(memcg->zswap_writeback)) 5546 return false; 5547 5548 return true; 5549 } 5550 5551 static u64 zswap_current_read(struct cgroup_subsys_state *css, 5552 struct cftype *cft) 5553 { 5554 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5555 5556 mem_cgroup_flush_stats(memcg); 5557 return memcg_page_state(memcg, MEMCG_ZSWAP_B); 5558 } 5559 5560 static int zswap_max_show(struct seq_file *m, void *v) 5561 { 5562 return seq_puts_memcg_tunable(m, 5563 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 5564 } 5565 5566 static ssize_t zswap_max_write(struct kernfs_open_file *of, 5567 char *buf, size_t nbytes, loff_t off) 5568 { 5569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5570 unsigned long max; 5571 int err; 5572 5573 buf = strstrip(buf); 5574 err = page_counter_memparse(buf, "max", &max); 5575 if (err) 5576 return err; 5577 5578 xchg(&memcg->zswap_max, max); 5579 5580 return nbytes; 5581 } 5582 5583 static int zswap_writeback_show(struct seq_file *m, void *v) 5584 { 5585 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5586 5587 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback)); 5588 return 0; 5589 } 5590 5591 static ssize_t zswap_writeback_write(struct kernfs_open_file *of, 5592 char *buf, size_t nbytes, loff_t off) 5593 { 5594 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5595 int zswap_writeback; 5596 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback); 5597 5598 if (parse_ret) 5599 return parse_ret; 5600 5601 if (zswap_writeback != 0 && zswap_writeback != 1) 5602 return -EINVAL; 5603 5604 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback); 5605 return nbytes; 5606 } 5607 5608 static struct cftype zswap_files[] = { 5609 { 5610 .name = "zswap.current", 5611 .flags = CFTYPE_NOT_ON_ROOT, 5612 .read_u64 = zswap_current_read, 5613 }, 5614 { 5615 .name = "zswap.max", 5616 .flags = CFTYPE_NOT_ON_ROOT, 5617 .seq_show = zswap_max_show, 5618 .write = zswap_max_write, 5619 }, 5620 { 5621 .name = "zswap.writeback", 5622 .seq_show = zswap_writeback_show, 5623 .write = zswap_writeback_write, 5624 }, 5625 { } /* terminate */ 5626 }; 5627 #endif /* CONFIG_ZSWAP */ 5628 5629 static int __init mem_cgroup_swap_init(void) 5630 { 5631 if (mem_cgroup_disabled()) 5632 return 0; 5633 5634 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 5635 #ifdef CONFIG_MEMCG_V1 5636 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 5637 #endif 5638 #ifdef CONFIG_ZSWAP 5639 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 5640 #endif 5641 return 0; 5642 } 5643 subsys_initcall(mem_cgroup_swap_init); 5644 5645 #endif /* CONFIG_SWAP */ 5646 5647 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 5648 { 5649 return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true; 5650 } 5651