1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51
52 #include "internal.h"
53
54 /*
55 * Lock order:
56 * 1. slab_mutex (Global Mutex)
57 * 2. node->list_lock (Spinlock)
58 * 3. kmem_cache->cpu_slab->lock (Local lock)
59 * 4. slab_lock(slab) (Only on some arches)
60 * 5. object_map_lock (Only for debugging)
61 *
62 * slab_mutex
63 *
64 * The role of the slab_mutex is to protect the list of all the slabs
65 * and to synchronize major metadata changes to slab cache structures.
66 * Also synchronizes memory hotplug callbacks.
67 *
68 * slab_lock
69 *
70 * The slab_lock is a wrapper around the page lock, thus it is a bit
71 * spinlock.
72 *
73 * The slab_lock is only used on arches that do not have the ability
74 * to do a cmpxchg_double. It only protects:
75 *
76 * A. slab->freelist -> List of free objects in a slab
77 * B. slab->inuse -> Number of objects in use
78 * C. slab->objects -> Number of objects in slab
79 * D. slab->frozen -> frozen state
80 *
81 * Frozen slabs
82 *
83 * If a slab is frozen then it is exempt from list management. It is
84 * the cpu slab which is actively allocated from by the processor that
85 * froze it and it is not on any list. The processor that froze the
86 * slab is the one who can perform list operations on the slab. Other
87 * processors may put objects onto the freelist but the processor that
88 * froze the slab is the only one that can retrieve the objects from the
89 * slab's freelist.
90 *
91 * CPU partial slabs
92 *
93 * The partially empty slabs cached on the CPU partial list are used
94 * for performance reasons, which speeds up the allocation process.
95 * These slabs are not frozen, but are also exempt from list management,
96 * by clearing the SL_partial flag when moving out of the node
97 * partial list. Please see __slab_free() for more details.
98 *
99 * To sum up, the current scheme is:
100 * - node partial slab: SL_partial && !frozen
101 * - cpu partial slab: !SL_partial && !frozen
102 * - cpu slab: !SL_partial && frozen
103 * - full slab: !SL_partial && !frozen
104 *
105 * list_lock
106 *
107 * The list_lock protects the partial and full list on each node and
108 * the partial slab counter. If taken then no new slabs may be added or
109 * removed from the lists nor make the number of partial slabs be modified.
110 * (Note that the total number of slabs is an atomic value that may be
111 * modified without taking the list lock).
112 *
113 * The list_lock is a centralized lock and thus we avoid taking it as
114 * much as possible. As long as SLUB does not have to handle partial
115 * slabs, operations can continue without any centralized lock. F.e.
116 * allocating a long series of objects that fill up slabs does not require
117 * the list lock.
118 *
119 * For debug caches, all allocations are forced to go through a list_lock
120 * protected region to serialize against concurrent validation.
121 *
122 * cpu_slab->lock local lock
123 *
124 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
125 * except the stat counters. This is a percpu structure manipulated only by
126 * the local cpu, so the lock protects against being preempted or interrupted
127 * by an irq. Fast path operations rely on lockless operations instead.
128 *
129 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130 * which means the lockless fastpath cannot be used as it might interfere with
131 * an in-progress slow path operations. In this case the local lock is always
132 * taken but it still utilizes the freelist for the common operations.
133 *
134 * lockless fastpaths
135 *
136 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137 * are fully lockless when satisfied from the percpu slab (and when
138 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
139 * They also don't disable preemption or migration or irqs. They rely on
140 * the transaction id (tid) field to detect being preempted or moved to
141 * another cpu.
142 *
143 * irq, preemption, migration considerations
144 *
145 * Interrupts are disabled as part of list_lock or local_lock operations, or
146 * around the slab_lock operation, in order to make the slab allocator safe
147 * to use in the context of an irq.
148 *
149 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152 * doesn't have to be revalidated in each section protected by the local lock.
153 *
154 * SLUB assigns one slab for allocation to each processor.
155 * Allocations only occur from these slabs called cpu slabs.
156 *
157 * Slabs with free elements are kept on a partial list and during regular
158 * operations no list for full slabs is used. If an object in a full slab is
159 * freed then the slab will show up again on the partial lists.
160 * We track full slabs for debugging purposes though because otherwise we
161 * cannot scan all objects.
162 *
163 * Slabs are freed when they become empty. Teardown and setup is
164 * minimal so we rely on the page allocators per cpu caches for
165 * fast frees and allocs.
166 *
167 * slab->frozen The slab is frozen and exempt from list processing.
168 * This means that the slab is dedicated to a purpose
169 * such as satisfying allocations for a specific
170 * processor. Objects may be freed in the slab while
171 * it is frozen but slab_free will then skip the usual
172 * list operations. It is up to the processor holding
173 * the slab to integrate the slab into the slab lists
174 * when the slab is no longer needed.
175 *
176 * One use of this flag is to mark slabs that are
177 * used for allocations. Then such a slab becomes a cpu
178 * slab. The cpu slab may be equipped with an additional
179 * freelist that allows lockless access to
180 * free objects in addition to the regular freelist
181 * that requires the slab lock.
182 *
183 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
184 * options set. This moves slab handling out of
185 * the fast path and disables lockless freelists.
186 */
187
188 /**
189 * enum slab_flags - How the slab flags bits are used.
190 * @SL_locked: Is locked with slab_lock()
191 * @SL_partial: On the per-node partial list
192 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193 *
194 * The slab flags share space with the page flags but some bits have
195 * different interpretations. The high bits are used for information
196 * like zone/node/section.
197 */
198 enum slab_flags {
199 SL_locked = PG_locked,
200 SL_partial = PG_workingset, /* Historical reasons for this bit */
201 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
202 };
203
204 /*
205 * We could simply use migrate_disable()/enable() but as long as it's a
206 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207 */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH() (true)
212 #else
213 #define slub_get_cpu_ptr(var) \
214 ({ \
215 migrate_disable(); \
216 this_cpu_ptr(var); \
217 })
218 #define slub_put_cpu_ptr(var) \
219 do { \
220 (void)(var); \
221 migrate_enable(); \
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH() (false)
224 #endif
225
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif /* CONFIG_SLUB_DEBUG */
239
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 gfp_t flags;
247 unsigned int orig_size;
248 void *object;
249 };
250
kmem_cache_debug(struct kmem_cache * s)251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255
fixup_red_left(struct kmem_cache * s,void * p)256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 p += s->red_left_pad;
260
261 return p;
262 }
263
kmem_cache_has_cpu_partial(struct kmem_cache * s)264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 return !kmem_cache_debug(s);
268 #else
269 return false;
270 #endif
271 }
272
273 /*
274 * Issues still to be resolved:
275 *
276 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277 *
278 * - Variable sizing of the per node arrays
279 */
280
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283
284 #ifndef CONFIG_SLUB_TINY
285 /*
286 * Minimum number of partial slabs. These will be left on the partial
287 * lists even if they are empty. kmem_cache_shrink may reclaim them.
288 */
289 #define MIN_PARTIAL 5
290
291 /*
292 * Maximum number of desirable partial slabs.
293 * The existence of more partial slabs makes kmem_cache_shrink
294 * sort the partial list by the number of objects in use.
295 */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 SLAB_POISON | SLAB_STORE_USER)
304
305 /*
306 * These debug flags cannot use CMPXCHG because there might be consistency
307 * issues when checking or reading debug information
308 */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 SLAB_TRACE)
311
312
313 /*
314 * Debugging flags that require metadata to be stored in the slab. These get
315 * disabled when slab_debug=O is used and a cache's min order increases with
316 * metadata.
317 */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319
320 #define OO_SHIFT 16
321 #define OO_MASK ((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
323
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
333 #endif
334
335 /*
336 * Tracking user of a slab.
337 */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 unsigned long addr; /* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 depot_stack_handle_t handle;
343 #endif
344 int cpu; /* Was running on cpu */
345 int pid; /* Pid context */
346 unsigned long when; /* When did the operation occur */
347 };
348
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
sysfs_slab_add(struct kmem_cache * s)355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 { return 0; }
358 #endif
359
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
debugfs_slab_add(struct kmem_cache * s)363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365
366 enum stat_item {
367 ALLOC_PCS, /* Allocation from percpu sheaf */
368 ALLOC_FASTPATH, /* Allocation from cpu slab */
369 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
370 FREE_PCS, /* Free to percpu sheaf */
371 FREE_RCU_SHEAF, /* Free to rcu_free sheaf */
372 FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */
373 FREE_FASTPATH, /* Free to cpu slab */
374 FREE_SLOWPATH, /* Freeing not to cpu slab */
375 FREE_FROZEN, /* Freeing to frozen slab */
376 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
377 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
378 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
379 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
380 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
381 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
382 FREE_SLAB, /* Slab freed to the page allocator */
383 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
384 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
385 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
386 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
387 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
388 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 DEACTIVATE_BYPASS, /* Implicit deactivation */
390 ORDER_FALLBACK, /* Number of times fallback was necessary */
391 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
393 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
394 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
395 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
396 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
397 SHEAF_FLUSH, /* Objects flushed from a sheaf */
398 SHEAF_REFILL, /* Objects refilled to a sheaf */
399 SHEAF_ALLOC, /* Allocation of an empty sheaf */
400 SHEAF_FREE, /* Freeing of an empty sheaf */
401 BARN_GET, /* Got full sheaf from barn */
402 BARN_GET_FAIL, /* Failed to get full sheaf from barn */
403 BARN_PUT, /* Put full sheaf to barn */
404 BARN_PUT_FAIL, /* Failed to put full sheaf to barn */
405 SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */
406 SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */
407 SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */
408 SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */
409 SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */
410 NR_SLUB_STAT_ITEMS
411 };
412
413 #ifndef CONFIG_SLUB_TINY
414 /*
415 * When changing the layout, make sure freelist and tid are still compatible
416 * with this_cpu_cmpxchg_double() alignment requirements.
417 */
418 struct kmem_cache_cpu {
419 union {
420 struct {
421 void **freelist; /* Pointer to next available object */
422 unsigned long tid; /* Globally unique transaction id */
423 };
424 freelist_aba_t freelist_tid;
425 };
426 struct slab *slab; /* The slab from which we are allocating */
427 #ifdef CONFIG_SLUB_CPU_PARTIAL
428 struct slab *partial; /* Partially allocated slabs */
429 #endif
430 local_trylock_t lock; /* Protects the fields above */
431 #ifdef CONFIG_SLUB_STATS
432 unsigned int stat[NR_SLUB_STAT_ITEMS];
433 #endif
434 };
435 #endif /* CONFIG_SLUB_TINY */
436
stat(const struct kmem_cache * s,enum stat_item si)437 static inline void stat(const struct kmem_cache *s, enum stat_item si)
438 {
439 #ifdef CONFIG_SLUB_STATS
440 /*
441 * The rmw is racy on a preemptible kernel but this is acceptable, so
442 * avoid this_cpu_add()'s irq-disable overhead.
443 */
444 raw_cpu_inc(s->cpu_slab->stat[si]);
445 #endif
446 }
447
448 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)449 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
450 {
451 #ifdef CONFIG_SLUB_STATS
452 raw_cpu_add(s->cpu_slab->stat[si], v);
453 #endif
454 }
455
456 #define MAX_FULL_SHEAVES 10
457 #define MAX_EMPTY_SHEAVES 10
458
459 struct node_barn {
460 spinlock_t lock;
461 struct list_head sheaves_full;
462 struct list_head sheaves_empty;
463 unsigned int nr_full;
464 unsigned int nr_empty;
465 };
466
467 struct slab_sheaf {
468 union {
469 struct rcu_head rcu_head;
470 struct list_head barn_list;
471 /* only used for prefilled sheafs */
472 unsigned int capacity;
473 };
474 struct kmem_cache *cache;
475 unsigned int size;
476 int node; /* only used for rcu_sheaf */
477 void *objects[];
478 };
479
480 struct slub_percpu_sheaves {
481 local_trylock_t lock;
482 struct slab_sheaf *main; /* never NULL when unlocked */
483 struct slab_sheaf *spare; /* empty or full, may be NULL */
484 struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
485 };
486
487 /*
488 * The slab lists for all objects.
489 */
490 struct kmem_cache_node {
491 spinlock_t list_lock;
492 unsigned long nr_partial;
493 struct list_head partial;
494 #ifdef CONFIG_SLUB_DEBUG
495 atomic_long_t nr_slabs;
496 atomic_long_t total_objects;
497 struct list_head full;
498 #endif
499 struct node_barn *barn;
500 };
501
get_node(struct kmem_cache * s,int node)502 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
503 {
504 return s->node[node];
505 }
506
507 /* Get the barn of the current cpu's memory node */
get_barn(struct kmem_cache * s)508 static inline struct node_barn *get_barn(struct kmem_cache *s)
509 {
510 return get_node(s, numa_mem_id())->barn;
511 }
512
513 /*
514 * Iterator over all nodes. The body will be executed for each node that has
515 * a kmem_cache_node structure allocated (which is true for all online nodes)
516 */
517 #define for_each_kmem_cache_node(__s, __node, __n) \
518 for (__node = 0; __node < nr_node_ids; __node++) \
519 if ((__n = get_node(__s, __node)))
520
521 /*
522 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
523 * Corresponds to node_state[N_MEMORY], but can temporarily
524 * differ during memory hotplug/hotremove operations.
525 * Protected by slab_mutex.
526 */
527 static nodemask_t slab_nodes;
528
529 /*
530 * Workqueue used for flush_cpu_slab().
531 */
532 static struct workqueue_struct *flushwq;
533
534 struct slub_flush_work {
535 struct work_struct work;
536 struct kmem_cache *s;
537 bool skip;
538 };
539
540 static DEFINE_MUTEX(flush_lock);
541 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
542
543 /********************************************************************
544 * Core slab cache functions
545 *******************************************************************/
546
547 /*
548 * Returns freelist pointer (ptr). With hardening, this is obfuscated
549 * with an XOR of the address where the pointer is held and a per-cache
550 * random number.
551 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)552 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
553 void *ptr, unsigned long ptr_addr)
554 {
555 unsigned long encoded;
556
557 #ifdef CONFIG_SLAB_FREELIST_HARDENED
558 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
559 #else
560 encoded = (unsigned long)ptr;
561 #endif
562 return (freeptr_t){.v = encoded};
563 }
564
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)565 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
566 freeptr_t ptr, unsigned long ptr_addr)
567 {
568 void *decoded;
569
570 #ifdef CONFIG_SLAB_FREELIST_HARDENED
571 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
572 #else
573 decoded = (void *)ptr.v;
574 #endif
575 return decoded;
576 }
577
get_freepointer(struct kmem_cache * s,void * object)578 static inline void *get_freepointer(struct kmem_cache *s, void *object)
579 {
580 unsigned long ptr_addr;
581 freeptr_t p;
582
583 object = kasan_reset_tag(object);
584 ptr_addr = (unsigned long)object + s->offset;
585 p = *(freeptr_t *)(ptr_addr);
586 return freelist_ptr_decode(s, p, ptr_addr);
587 }
588
589 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)590 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
591 {
592 prefetchw(object + s->offset);
593 }
594 #endif
595
596 /*
597 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
598 * pointer value in the case the current thread loses the race for the next
599 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
600 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
601 * KMSAN will still check all arguments of cmpxchg because of imperfect
602 * handling of inline assembly.
603 * To work around this problem, we apply __no_kmsan_checks to ensure that
604 * get_freepointer_safe() returns initialized memory.
605 */
606 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)607 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
608 {
609 unsigned long freepointer_addr;
610 freeptr_t p;
611
612 if (!debug_pagealloc_enabled_static())
613 return get_freepointer(s, object);
614
615 object = kasan_reset_tag(object);
616 freepointer_addr = (unsigned long)object + s->offset;
617 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
618 return freelist_ptr_decode(s, p, freepointer_addr);
619 }
620
set_freepointer(struct kmem_cache * s,void * object,void * fp)621 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
622 {
623 unsigned long freeptr_addr = (unsigned long)object + s->offset;
624
625 #ifdef CONFIG_SLAB_FREELIST_HARDENED
626 BUG_ON(object == fp); /* naive detection of double free or corruption */
627 #endif
628
629 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
630 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
631 }
632
633 /*
634 * See comment in calculate_sizes().
635 */
freeptr_outside_object(struct kmem_cache * s)636 static inline bool freeptr_outside_object(struct kmem_cache *s)
637 {
638 return s->offset >= s->inuse;
639 }
640
641 /*
642 * Return offset of the end of info block which is inuse + free pointer if
643 * not overlapping with object.
644 */
get_info_end(struct kmem_cache * s)645 static inline unsigned int get_info_end(struct kmem_cache *s)
646 {
647 if (freeptr_outside_object(s))
648 return s->inuse + sizeof(void *);
649 else
650 return s->inuse;
651 }
652
653 /* Loop over all objects in a slab */
654 #define for_each_object(__p, __s, __addr, __objects) \
655 for (__p = fixup_red_left(__s, __addr); \
656 __p < (__addr) + (__objects) * (__s)->size; \
657 __p += (__s)->size)
658
order_objects(unsigned int order,unsigned int size)659 static inline unsigned int order_objects(unsigned int order, unsigned int size)
660 {
661 return ((unsigned int)PAGE_SIZE << order) / size;
662 }
663
oo_make(unsigned int order,unsigned int size)664 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
665 unsigned int size)
666 {
667 struct kmem_cache_order_objects x = {
668 (order << OO_SHIFT) + order_objects(order, size)
669 };
670
671 return x;
672 }
673
oo_order(struct kmem_cache_order_objects x)674 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
675 {
676 return x.x >> OO_SHIFT;
677 }
678
oo_objects(struct kmem_cache_order_objects x)679 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
680 {
681 return x.x & OO_MASK;
682 }
683
684 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)685 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
686 {
687 unsigned int nr_slabs;
688
689 s->cpu_partial = nr_objects;
690
691 /*
692 * We take the number of objects but actually limit the number of
693 * slabs on the per cpu partial list, in order to limit excessive
694 * growth of the list. For simplicity we assume that the slabs will
695 * be half-full.
696 */
697 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
698 s->cpu_partial_slabs = nr_slabs;
699 }
700
slub_get_cpu_partial(struct kmem_cache * s)701 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
702 {
703 return s->cpu_partial_slabs;
704 }
705 #else
706 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)707 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
708 {
709 }
710
slub_get_cpu_partial(struct kmem_cache * s)711 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
712 {
713 return 0;
714 }
715 #endif /* CONFIG_SLUB_CPU_PARTIAL */
716
717 /*
718 * If network-based swap is enabled, slub must keep track of whether memory
719 * were allocated from pfmemalloc reserves.
720 */
slab_test_pfmemalloc(const struct slab * slab)721 static inline bool slab_test_pfmemalloc(const struct slab *slab)
722 {
723 return test_bit(SL_pfmemalloc, &slab->flags.f);
724 }
725
slab_set_pfmemalloc(struct slab * slab)726 static inline void slab_set_pfmemalloc(struct slab *slab)
727 {
728 set_bit(SL_pfmemalloc, &slab->flags.f);
729 }
730
__slab_clear_pfmemalloc(struct slab * slab)731 static inline void __slab_clear_pfmemalloc(struct slab *slab)
732 {
733 __clear_bit(SL_pfmemalloc, &slab->flags.f);
734 }
735
736 /*
737 * Per slab locking using the pagelock
738 */
slab_lock(struct slab * slab)739 static __always_inline void slab_lock(struct slab *slab)
740 {
741 bit_spin_lock(SL_locked, &slab->flags.f);
742 }
743
slab_unlock(struct slab * slab)744 static __always_inline void slab_unlock(struct slab *slab)
745 {
746 bit_spin_unlock(SL_locked, &slab->flags.f);
747 }
748
749 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)750 __update_freelist_fast(struct slab *slab,
751 void *freelist_old, unsigned long counters_old,
752 void *freelist_new, unsigned long counters_new)
753 {
754 #ifdef system_has_freelist_aba
755 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
756 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
757
758 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
759 #else
760 return false;
761 #endif
762 }
763
764 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)765 __update_freelist_slow(struct slab *slab,
766 void *freelist_old, unsigned long counters_old,
767 void *freelist_new, unsigned long counters_new)
768 {
769 bool ret = false;
770
771 slab_lock(slab);
772 if (slab->freelist == freelist_old &&
773 slab->counters == counters_old) {
774 slab->freelist = freelist_new;
775 slab->counters = counters_new;
776 ret = true;
777 }
778 slab_unlock(slab);
779
780 return ret;
781 }
782
783 /*
784 * Interrupts must be disabled (for the fallback code to work right), typically
785 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
786 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
787 * allocation/ free operation in hardirq context. Therefore nothing can
788 * interrupt the operation.
789 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)790 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
791 void *freelist_old, unsigned long counters_old,
792 void *freelist_new, unsigned long counters_new,
793 const char *n)
794 {
795 bool ret;
796
797 if (USE_LOCKLESS_FAST_PATH())
798 lockdep_assert_irqs_disabled();
799
800 if (s->flags & __CMPXCHG_DOUBLE) {
801 ret = __update_freelist_fast(slab, freelist_old, counters_old,
802 freelist_new, counters_new);
803 } else {
804 ret = __update_freelist_slow(slab, freelist_old, counters_old,
805 freelist_new, counters_new);
806 }
807 if (likely(ret))
808 return true;
809
810 cpu_relax();
811 stat(s, CMPXCHG_DOUBLE_FAIL);
812
813 #ifdef SLUB_DEBUG_CMPXCHG
814 pr_info("%s %s: cmpxchg double redo ", n, s->name);
815 #endif
816
817 return false;
818 }
819
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)820 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
821 void *freelist_old, unsigned long counters_old,
822 void *freelist_new, unsigned long counters_new,
823 const char *n)
824 {
825 bool ret;
826
827 if (s->flags & __CMPXCHG_DOUBLE) {
828 ret = __update_freelist_fast(slab, freelist_old, counters_old,
829 freelist_new, counters_new);
830 } else {
831 unsigned long flags;
832
833 local_irq_save(flags);
834 ret = __update_freelist_slow(slab, freelist_old, counters_old,
835 freelist_new, counters_new);
836 local_irq_restore(flags);
837 }
838 if (likely(ret))
839 return true;
840
841 cpu_relax();
842 stat(s, CMPXCHG_DOUBLE_FAIL);
843
844 #ifdef SLUB_DEBUG_CMPXCHG
845 pr_info("%s %s: cmpxchg double redo ", n, s->name);
846 #endif
847
848 return false;
849 }
850
851 /*
852 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
853 * family will round up the real request size to these fixed ones, so
854 * there could be an extra area than what is requested. Save the original
855 * request size in the meta data area, for better debug and sanity check.
856 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)857 static inline void set_orig_size(struct kmem_cache *s,
858 void *object, unsigned int orig_size)
859 {
860 void *p = kasan_reset_tag(object);
861
862 if (!slub_debug_orig_size(s))
863 return;
864
865 p += get_info_end(s);
866 p += sizeof(struct track) * 2;
867
868 *(unsigned int *)p = orig_size;
869 }
870
get_orig_size(struct kmem_cache * s,void * object)871 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
872 {
873 void *p = kasan_reset_tag(object);
874
875 if (is_kfence_address(object))
876 return kfence_ksize(object);
877
878 if (!slub_debug_orig_size(s))
879 return s->object_size;
880
881 p += get_info_end(s);
882 p += sizeof(struct track) * 2;
883
884 return *(unsigned int *)p;
885 }
886
887 #ifdef CONFIG_SLUB_DEBUG
888
889 /*
890 * For debugging context when we want to check if the struct slab pointer
891 * appears to be valid.
892 */
validate_slab_ptr(struct slab * slab)893 static inline bool validate_slab_ptr(struct slab *slab)
894 {
895 return PageSlab(slab_page(slab));
896 }
897
898 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
899 static DEFINE_SPINLOCK(object_map_lock);
900
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)901 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
902 struct slab *slab)
903 {
904 void *addr = slab_address(slab);
905 void *p;
906
907 bitmap_zero(obj_map, slab->objects);
908
909 for (p = slab->freelist; p; p = get_freepointer(s, p))
910 set_bit(__obj_to_index(s, addr, p), obj_map);
911 }
912
913 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)914 static bool slab_add_kunit_errors(void)
915 {
916 struct kunit_resource *resource;
917
918 if (!kunit_get_current_test())
919 return false;
920
921 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
922 if (!resource)
923 return false;
924
925 (*(int *)resource->data)++;
926 kunit_put_resource(resource);
927 return true;
928 }
929
slab_in_kunit_test(void)930 bool slab_in_kunit_test(void)
931 {
932 struct kunit_resource *resource;
933
934 if (!kunit_get_current_test())
935 return false;
936
937 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
938 if (!resource)
939 return false;
940
941 kunit_put_resource(resource);
942 return true;
943 }
944 #else
slab_add_kunit_errors(void)945 static inline bool slab_add_kunit_errors(void) { return false; }
946 #endif
947
size_from_object(struct kmem_cache * s)948 static inline unsigned int size_from_object(struct kmem_cache *s)
949 {
950 if (s->flags & SLAB_RED_ZONE)
951 return s->size - s->red_left_pad;
952
953 return s->size;
954 }
955
restore_red_left(struct kmem_cache * s,void * p)956 static inline void *restore_red_left(struct kmem_cache *s, void *p)
957 {
958 if (s->flags & SLAB_RED_ZONE)
959 p -= s->red_left_pad;
960
961 return p;
962 }
963
964 /*
965 * Debug settings:
966 */
967 #if defined(CONFIG_SLUB_DEBUG_ON)
968 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
969 #else
970 static slab_flags_t slub_debug;
971 #endif
972
973 static char *slub_debug_string;
974 static int disable_higher_order_debug;
975
976 /*
977 * slub is about to manipulate internal object metadata. This memory lies
978 * outside the range of the allocated object, so accessing it would normally
979 * be reported by kasan as a bounds error. metadata_access_enable() is used
980 * to tell kasan that these accesses are OK.
981 */
metadata_access_enable(void)982 static inline void metadata_access_enable(void)
983 {
984 kasan_disable_current();
985 kmsan_disable_current();
986 }
987
metadata_access_disable(void)988 static inline void metadata_access_disable(void)
989 {
990 kmsan_enable_current();
991 kasan_enable_current();
992 }
993
994 /*
995 * Object debugging
996 */
997
998 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)999 static inline int check_valid_pointer(struct kmem_cache *s,
1000 struct slab *slab, void *object)
1001 {
1002 void *base;
1003
1004 if (!object)
1005 return 1;
1006
1007 base = slab_address(slab);
1008 object = kasan_reset_tag(object);
1009 object = restore_red_left(s, object);
1010 if (object < base || object >= base + slab->objects * s->size ||
1011 (object - base) % s->size) {
1012 return 0;
1013 }
1014
1015 return 1;
1016 }
1017
print_section(char * level,char * text,u8 * addr,unsigned int length)1018 static void print_section(char *level, char *text, u8 *addr,
1019 unsigned int length)
1020 {
1021 metadata_access_enable();
1022 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1023 16, 1, kasan_reset_tag((void *)addr), length, 1);
1024 metadata_access_disable();
1025 }
1026
get_track(struct kmem_cache * s,void * object,enum track_item alloc)1027 static struct track *get_track(struct kmem_cache *s, void *object,
1028 enum track_item alloc)
1029 {
1030 struct track *p;
1031
1032 p = object + get_info_end(s);
1033
1034 return kasan_reset_tag(p + alloc);
1035 }
1036
1037 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)1038 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1039 {
1040 depot_stack_handle_t handle;
1041 unsigned long entries[TRACK_ADDRS_COUNT];
1042 unsigned int nr_entries;
1043
1044 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1045 handle = stack_depot_save(entries, nr_entries, gfp_flags);
1046
1047 return handle;
1048 }
1049 #else
set_track_prepare(gfp_t gfp_flags)1050 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1051 {
1052 return 0;
1053 }
1054 #endif
1055
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)1056 static void set_track_update(struct kmem_cache *s, void *object,
1057 enum track_item alloc, unsigned long addr,
1058 depot_stack_handle_t handle)
1059 {
1060 struct track *p = get_track(s, object, alloc);
1061
1062 #ifdef CONFIG_STACKDEPOT
1063 p->handle = handle;
1064 #endif
1065 p->addr = addr;
1066 p->cpu = smp_processor_id();
1067 p->pid = current->pid;
1068 p->when = jiffies;
1069 }
1070
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1071 static __always_inline void set_track(struct kmem_cache *s, void *object,
1072 enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1073 {
1074 depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1075
1076 set_track_update(s, object, alloc, addr, handle);
1077 }
1078
init_tracking(struct kmem_cache * s,void * object)1079 static void init_tracking(struct kmem_cache *s, void *object)
1080 {
1081 struct track *p;
1082
1083 if (!(s->flags & SLAB_STORE_USER))
1084 return;
1085
1086 p = get_track(s, object, TRACK_ALLOC);
1087 memset(p, 0, 2*sizeof(struct track));
1088 }
1089
print_track(const char * s,struct track * t,unsigned long pr_time)1090 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1091 {
1092 depot_stack_handle_t handle __maybe_unused;
1093
1094 if (!t->addr)
1095 return;
1096
1097 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1098 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1099 #ifdef CONFIG_STACKDEPOT
1100 handle = READ_ONCE(t->handle);
1101 if (handle)
1102 stack_depot_print(handle);
1103 else
1104 pr_err("object allocation/free stack trace missing\n");
1105 #endif
1106 }
1107
print_tracking(struct kmem_cache * s,void * object)1108 void print_tracking(struct kmem_cache *s, void *object)
1109 {
1110 unsigned long pr_time = jiffies;
1111 if (!(s->flags & SLAB_STORE_USER))
1112 return;
1113
1114 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1115 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1116 }
1117
print_slab_info(const struct slab * slab)1118 static void print_slab_info(const struct slab *slab)
1119 {
1120 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1121 slab, slab->objects, slab->inuse, slab->freelist,
1122 &slab->flags.f);
1123 }
1124
skip_orig_size_check(struct kmem_cache * s,const void * object)1125 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1126 {
1127 set_orig_size(s, (void *)object, s->object_size);
1128 }
1129
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1130 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1131 {
1132 struct va_format vaf;
1133 va_list args;
1134
1135 va_copy(args, argsp);
1136 vaf.fmt = fmt;
1137 vaf.va = &args;
1138 pr_err("=============================================================================\n");
1139 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1140 pr_err("-----------------------------------------------------------------------------\n\n");
1141 va_end(args);
1142 }
1143
slab_bug(struct kmem_cache * s,const char * fmt,...)1144 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1145 {
1146 va_list args;
1147
1148 va_start(args, fmt);
1149 __slab_bug(s, fmt, args);
1150 va_end(args);
1151 }
1152
1153 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1154 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1155 {
1156 struct va_format vaf;
1157 va_list args;
1158
1159 if (slab_add_kunit_errors())
1160 return;
1161
1162 va_start(args, fmt);
1163 vaf.fmt = fmt;
1164 vaf.va = &args;
1165 pr_err("FIX %s: %pV\n", s->name, &vaf);
1166 va_end(args);
1167 }
1168
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1169 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1170 {
1171 unsigned int off; /* Offset of last byte */
1172 u8 *addr = slab_address(slab);
1173
1174 print_tracking(s, p);
1175
1176 print_slab_info(slab);
1177
1178 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1179 p, p - addr, get_freepointer(s, p));
1180
1181 if (s->flags & SLAB_RED_ZONE)
1182 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1183 s->red_left_pad);
1184 else if (p > addr + 16)
1185 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1186
1187 print_section(KERN_ERR, "Object ", p,
1188 min_t(unsigned int, s->object_size, PAGE_SIZE));
1189 if (s->flags & SLAB_RED_ZONE)
1190 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1191 s->inuse - s->object_size);
1192
1193 off = get_info_end(s);
1194
1195 if (s->flags & SLAB_STORE_USER)
1196 off += 2 * sizeof(struct track);
1197
1198 if (slub_debug_orig_size(s))
1199 off += sizeof(unsigned int);
1200
1201 off += kasan_metadata_size(s, false);
1202
1203 if (off != size_from_object(s))
1204 /* Beginning of the filler is the free pointer */
1205 print_section(KERN_ERR, "Padding ", p + off,
1206 size_from_object(s) - off);
1207 }
1208
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1209 static void object_err(struct kmem_cache *s, struct slab *slab,
1210 u8 *object, const char *reason)
1211 {
1212 if (slab_add_kunit_errors())
1213 return;
1214
1215 slab_bug(s, reason);
1216 if (!object || !check_valid_pointer(s, slab, object)) {
1217 print_slab_info(slab);
1218 pr_err("Invalid pointer 0x%p\n", object);
1219 } else {
1220 print_trailer(s, slab, object);
1221 }
1222 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1223
1224 WARN_ON(1);
1225 }
1226
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1227 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1228 void **freelist, void *nextfree)
1229 {
1230 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1231 !check_valid_pointer(s, slab, nextfree) && freelist) {
1232 object_err(s, slab, *freelist, "Freechain corrupt");
1233 *freelist = NULL;
1234 slab_fix(s, "Isolate corrupted freechain");
1235 return true;
1236 }
1237
1238 return false;
1239 }
1240
__slab_err(struct slab * slab)1241 static void __slab_err(struct slab *slab)
1242 {
1243 if (slab_in_kunit_test())
1244 return;
1245
1246 print_slab_info(slab);
1247 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1248
1249 WARN_ON(1);
1250 }
1251
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1252 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1253 const char *fmt, ...)
1254 {
1255 va_list args;
1256
1257 if (slab_add_kunit_errors())
1258 return;
1259
1260 va_start(args, fmt);
1261 __slab_bug(s, fmt, args);
1262 va_end(args);
1263
1264 __slab_err(slab);
1265 }
1266
init_object(struct kmem_cache * s,void * object,u8 val)1267 static void init_object(struct kmem_cache *s, void *object, u8 val)
1268 {
1269 u8 *p = kasan_reset_tag(object);
1270 unsigned int poison_size = s->object_size;
1271
1272 if (s->flags & SLAB_RED_ZONE) {
1273 /*
1274 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1275 * the shadow makes it possible to distinguish uninit-value
1276 * from use-after-free.
1277 */
1278 memset_no_sanitize_memory(p - s->red_left_pad, val,
1279 s->red_left_pad);
1280
1281 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1282 /*
1283 * Redzone the extra allocated space by kmalloc than
1284 * requested, and the poison size will be limited to
1285 * the original request size accordingly.
1286 */
1287 poison_size = get_orig_size(s, object);
1288 }
1289 }
1290
1291 if (s->flags & __OBJECT_POISON) {
1292 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1293 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1294 }
1295
1296 if (s->flags & SLAB_RED_ZONE)
1297 memset_no_sanitize_memory(p + poison_size, val,
1298 s->inuse - poison_size);
1299 }
1300
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1301 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1302 void *from, void *to)
1303 {
1304 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1305 memset(from, data, to - from);
1306 }
1307
1308 #ifdef CONFIG_KMSAN
1309 #define pad_check_attributes noinline __no_kmsan_checks
1310 #else
1311 #define pad_check_attributes
1312 #endif
1313
1314 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1315 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1316 u8 *object, const char *what, u8 *start, unsigned int value,
1317 unsigned int bytes, bool slab_obj_print)
1318 {
1319 u8 *fault;
1320 u8 *end;
1321 u8 *addr = slab_address(slab);
1322
1323 metadata_access_enable();
1324 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1325 metadata_access_disable();
1326 if (!fault)
1327 return 1;
1328
1329 end = start + bytes;
1330 while (end > fault && end[-1] == value)
1331 end--;
1332
1333 if (slab_add_kunit_errors())
1334 goto skip_bug_print;
1335
1336 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1337 what, fault, end - 1, fault - addr, fault[0], value);
1338
1339 if (slab_obj_print)
1340 object_err(s, slab, object, "Object corrupt");
1341
1342 skip_bug_print:
1343 restore_bytes(s, what, value, fault, end);
1344 return 0;
1345 }
1346
1347 /*
1348 * Object layout:
1349 *
1350 * object address
1351 * Bytes of the object to be managed.
1352 * If the freepointer may overlay the object then the free
1353 * pointer is at the middle of the object.
1354 *
1355 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1356 * 0xa5 (POISON_END)
1357 *
1358 * object + s->object_size
1359 * Padding to reach word boundary. This is also used for Redzoning.
1360 * Padding is extended by another word if Redzoning is enabled and
1361 * object_size == inuse.
1362 *
1363 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1364 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1365 *
1366 * object + s->inuse
1367 * Meta data starts here.
1368 *
1369 * A. Free pointer (if we cannot overwrite object on free)
1370 * B. Tracking data for SLAB_STORE_USER
1371 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1372 * D. Padding to reach required alignment boundary or at minimum
1373 * one word if debugging is on to be able to detect writes
1374 * before the word boundary.
1375 *
1376 * Padding is done using 0x5a (POISON_INUSE)
1377 *
1378 * object + s->size
1379 * Nothing is used beyond s->size.
1380 *
1381 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1382 * ignored. And therefore no slab options that rely on these boundaries
1383 * may be used with merged slabcaches.
1384 */
1385
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1386 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1387 {
1388 unsigned long off = get_info_end(s); /* The end of info */
1389
1390 if (s->flags & SLAB_STORE_USER) {
1391 /* We also have user information there */
1392 off += 2 * sizeof(struct track);
1393
1394 if (s->flags & SLAB_KMALLOC)
1395 off += sizeof(unsigned int);
1396 }
1397
1398 off += kasan_metadata_size(s, false);
1399
1400 if (size_from_object(s) == off)
1401 return 1;
1402
1403 return check_bytes_and_report(s, slab, p, "Object padding",
1404 p + off, POISON_INUSE, size_from_object(s) - off, true);
1405 }
1406
1407 /* Check the pad bytes at the end of a slab page */
1408 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1409 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1410 {
1411 u8 *start;
1412 u8 *fault;
1413 u8 *end;
1414 u8 *pad;
1415 int length;
1416 int remainder;
1417
1418 if (!(s->flags & SLAB_POISON))
1419 return;
1420
1421 start = slab_address(slab);
1422 length = slab_size(slab);
1423 end = start + length;
1424 remainder = length % s->size;
1425 if (!remainder)
1426 return;
1427
1428 pad = end - remainder;
1429 metadata_access_enable();
1430 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1431 metadata_access_disable();
1432 if (!fault)
1433 return;
1434 while (end > fault && end[-1] == POISON_INUSE)
1435 end--;
1436
1437 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1438 fault, end - 1, fault - start);
1439 print_section(KERN_ERR, "Padding ", pad, remainder);
1440 __slab_err(slab);
1441
1442 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1443 }
1444
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1445 static int check_object(struct kmem_cache *s, struct slab *slab,
1446 void *object, u8 val)
1447 {
1448 u8 *p = object;
1449 u8 *endobject = object + s->object_size;
1450 unsigned int orig_size, kasan_meta_size;
1451 int ret = 1;
1452
1453 if (s->flags & SLAB_RED_ZONE) {
1454 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1455 object - s->red_left_pad, val, s->red_left_pad, ret))
1456 ret = 0;
1457
1458 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1459 endobject, val, s->inuse - s->object_size, ret))
1460 ret = 0;
1461
1462 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1463 orig_size = get_orig_size(s, object);
1464
1465 if (s->object_size > orig_size &&
1466 !check_bytes_and_report(s, slab, object,
1467 "kmalloc Redzone", p + orig_size,
1468 val, s->object_size - orig_size, ret)) {
1469 ret = 0;
1470 }
1471 }
1472 } else {
1473 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1474 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1475 endobject, POISON_INUSE,
1476 s->inuse - s->object_size, ret))
1477 ret = 0;
1478 }
1479 }
1480
1481 if (s->flags & SLAB_POISON) {
1482 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1483 /*
1484 * KASAN can save its free meta data inside of the
1485 * object at offset 0. Thus, skip checking the part of
1486 * the redzone that overlaps with the meta data.
1487 */
1488 kasan_meta_size = kasan_metadata_size(s, true);
1489 if (kasan_meta_size < s->object_size - 1 &&
1490 !check_bytes_and_report(s, slab, p, "Poison",
1491 p + kasan_meta_size, POISON_FREE,
1492 s->object_size - kasan_meta_size - 1, ret))
1493 ret = 0;
1494 if (kasan_meta_size < s->object_size &&
1495 !check_bytes_and_report(s, slab, p, "End Poison",
1496 p + s->object_size - 1, POISON_END, 1, ret))
1497 ret = 0;
1498 }
1499 /*
1500 * check_pad_bytes cleans up on its own.
1501 */
1502 if (!check_pad_bytes(s, slab, p))
1503 ret = 0;
1504 }
1505
1506 /*
1507 * Cannot check freepointer while object is allocated if
1508 * object and freepointer overlap.
1509 */
1510 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1511 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1512 object_err(s, slab, p, "Freepointer corrupt");
1513 /*
1514 * No choice but to zap it and thus lose the remainder
1515 * of the free objects in this slab. May cause
1516 * another error because the object count is now wrong.
1517 */
1518 set_freepointer(s, p, NULL);
1519 ret = 0;
1520 }
1521
1522 return ret;
1523 }
1524
1525 /*
1526 * Checks if the slab state looks sane. Assumes the struct slab pointer
1527 * was either obtained in a way that ensures it's valid, or validated
1528 * by validate_slab_ptr()
1529 */
check_slab(struct kmem_cache * s,struct slab * slab)1530 static int check_slab(struct kmem_cache *s, struct slab *slab)
1531 {
1532 int maxobj;
1533
1534 maxobj = order_objects(slab_order(slab), s->size);
1535 if (slab->objects > maxobj) {
1536 slab_err(s, slab, "objects %u > max %u",
1537 slab->objects, maxobj);
1538 return 0;
1539 }
1540 if (slab->inuse > slab->objects) {
1541 slab_err(s, slab, "inuse %u > max %u",
1542 slab->inuse, slab->objects);
1543 return 0;
1544 }
1545 if (slab->frozen) {
1546 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1547 return 0;
1548 }
1549
1550 /* Slab_pad_check fixes things up after itself */
1551 slab_pad_check(s, slab);
1552 return 1;
1553 }
1554
1555 /*
1556 * Determine if a certain object in a slab is on the freelist. Must hold the
1557 * slab lock to guarantee that the chains are in a consistent state.
1558 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1559 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1560 {
1561 int nr = 0;
1562 void *fp;
1563 void *object = NULL;
1564 int max_objects;
1565
1566 fp = slab->freelist;
1567 while (fp && nr <= slab->objects) {
1568 if (fp == search)
1569 return true;
1570 if (!check_valid_pointer(s, slab, fp)) {
1571 if (object) {
1572 object_err(s, slab, object,
1573 "Freechain corrupt");
1574 set_freepointer(s, object, NULL);
1575 break;
1576 } else {
1577 slab_err(s, slab, "Freepointer corrupt");
1578 slab->freelist = NULL;
1579 slab->inuse = slab->objects;
1580 slab_fix(s, "Freelist cleared");
1581 return false;
1582 }
1583 }
1584 object = fp;
1585 fp = get_freepointer(s, object);
1586 nr++;
1587 }
1588
1589 if (nr > slab->objects) {
1590 slab_err(s, slab, "Freelist cycle detected");
1591 slab->freelist = NULL;
1592 slab->inuse = slab->objects;
1593 slab_fix(s, "Freelist cleared");
1594 return false;
1595 }
1596
1597 max_objects = order_objects(slab_order(slab), s->size);
1598 if (max_objects > MAX_OBJS_PER_PAGE)
1599 max_objects = MAX_OBJS_PER_PAGE;
1600
1601 if (slab->objects != max_objects) {
1602 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1603 slab->objects, max_objects);
1604 slab->objects = max_objects;
1605 slab_fix(s, "Number of objects adjusted");
1606 }
1607 if (slab->inuse != slab->objects - nr) {
1608 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1609 slab->inuse, slab->objects - nr);
1610 slab->inuse = slab->objects - nr;
1611 slab_fix(s, "Object count adjusted");
1612 }
1613 return search == NULL;
1614 }
1615
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1616 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1617 int alloc)
1618 {
1619 if (s->flags & SLAB_TRACE) {
1620 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1621 s->name,
1622 alloc ? "alloc" : "free",
1623 object, slab->inuse,
1624 slab->freelist);
1625
1626 if (!alloc)
1627 print_section(KERN_INFO, "Object ", (void *)object,
1628 s->object_size);
1629
1630 dump_stack();
1631 }
1632 }
1633
1634 /*
1635 * Tracking of fully allocated slabs for debugging purposes.
1636 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1637 static void add_full(struct kmem_cache *s,
1638 struct kmem_cache_node *n, struct slab *slab)
1639 {
1640 if (!(s->flags & SLAB_STORE_USER))
1641 return;
1642
1643 lockdep_assert_held(&n->list_lock);
1644 list_add(&slab->slab_list, &n->full);
1645 }
1646
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1647 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1648 {
1649 if (!(s->flags & SLAB_STORE_USER))
1650 return;
1651
1652 lockdep_assert_held(&n->list_lock);
1653 list_del(&slab->slab_list);
1654 }
1655
node_nr_slabs(struct kmem_cache_node * n)1656 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1657 {
1658 return atomic_long_read(&n->nr_slabs);
1659 }
1660
inc_slabs_node(struct kmem_cache * s,int node,int objects)1661 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1662 {
1663 struct kmem_cache_node *n = get_node(s, node);
1664
1665 atomic_long_inc(&n->nr_slabs);
1666 atomic_long_add(objects, &n->total_objects);
1667 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1668 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1669 {
1670 struct kmem_cache_node *n = get_node(s, node);
1671
1672 atomic_long_dec(&n->nr_slabs);
1673 atomic_long_sub(objects, &n->total_objects);
1674 }
1675
1676 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1677 static void setup_object_debug(struct kmem_cache *s, void *object)
1678 {
1679 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1680 return;
1681
1682 init_object(s, object, SLUB_RED_INACTIVE);
1683 init_tracking(s, object);
1684 }
1685
1686 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1687 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1688 {
1689 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1690 return;
1691
1692 metadata_access_enable();
1693 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1694 metadata_access_disable();
1695 }
1696
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1697 static inline int alloc_consistency_checks(struct kmem_cache *s,
1698 struct slab *slab, void *object)
1699 {
1700 if (!check_slab(s, slab))
1701 return 0;
1702
1703 if (!check_valid_pointer(s, slab, object)) {
1704 object_err(s, slab, object, "Freelist Pointer check fails");
1705 return 0;
1706 }
1707
1708 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1709 return 0;
1710
1711 return 1;
1712 }
1713
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1714 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1715 struct slab *slab, void *object, int orig_size)
1716 {
1717 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1718 if (!alloc_consistency_checks(s, slab, object))
1719 goto bad;
1720 }
1721
1722 /* Success. Perform special debug activities for allocs */
1723 trace(s, slab, object, 1);
1724 set_orig_size(s, object, orig_size);
1725 init_object(s, object, SLUB_RED_ACTIVE);
1726 return true;
1727
1728 bad:
1729 /*
1730 * Let's do the best we can to avoid issues in the future. Marking all
1731 * objects as used avoids touching the remaining objects.
1732 */
1733 slab_fix(s, "Marking all objects used");
1734 slab->inuse = slab->objects;
1735 slab->freelist = NULL;
1736 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1737
1738 return false;
1739 }
1740
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1741 static inline int free_consistency_checks(struct kmem_cache *s,
1742 struct slab *slab, void *object, unsigned long addr)
1743 {
1744 if (!check_valid_pointer(s, slab, object)) {
1745 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1746 return 0;
1747 }
1748
1749 if (on_freelist(s, slab, object)) {
1750 object_err(s, slab, object, "Object already free");
1751 return 0;
1752 }
1753
1754 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1755 return 0;
1756
1757 if (unlikely(s != slab->slab_cache)) {
1758 if (!slab->slab_cache) {
1759 slab_err(NULL, slab, "No slab cache for object 0x%p",
1760 object);
1761 } else {
1762 object_err(s, slab, object,
1763 "page slab pointer corrupt.");
1764 }
1765 return 0;
1766 }
1767 return 1;
1768 }
1769
1770 /*
1771 * Parse a block of slab_debug options. Blocks are delimited by ';'
1772 *
1773 * @str: start of block
1774 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1775 * @slabs: return start of list of slabs, or NULL when there's no list
1776 * @init: assume this is initial parsing and not per-kmem-create parsing
1777 *
1778 * returns the start of next block if there's any, or NULL
1779 */
1780 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1781 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1782 {
1783 bool higher_order_disable = false;
1784
1785 /* Skip any completely empty blocks */
1786 while (*str && *str == ';')
1787 str++;
1788
1789 if (*str == ',') {
1790 /*
1791 * No options but restriction on slabs. This means full
1792 * debugging for slabs matching a pattern.
1793 */
1794 *flags = DEBUG_DEFAULT_FLAGS;
1795 goto check_slabs;
1796 }
1797 *flags = 0;
1798
1799 /* Determine which debug features should be switched on */
1800 for (; *str && *str != ',' && *str != ';'; str++) {
1801 switch (tolower(*str)) {
1802 case '-':
1803 *flags = 0;
1804 break;
1805 case 'f':
1806 *flags |= SLAB_CONSISTENCY_CHECKS;
1807 break;
1808 case 'z':
1809 *flags |= SLAB_RED_ZONE;
1810 break;
1811 case 'p':
1812 *flags |= SLAB_POISON;
1813 break;
1814 case 'u':
1815 *flags |= SLAB_STORE_USER;
1816 break;
1817 case 't':
1818 *flags |= SLAB_TRACE;
1819 break;
1820 case 'a':
1821 *flags |= SLAB_FAILSLAB;
1822 break;
1823 case 'o':
1824 /*
1825 * Avoid enabling debugging on caches if its minimum
1826 * order would increase as a result.
1827 */
1828 higher_order_disable = true;
1829 break;
1830 default:
1831 if (init)
1832 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1833 }
1834 }
1835 check_slabs:
1836 if (*str == ',')
1837 *slabs = ++str;
1838 else
1839 *slabs = NULL;
1840
1841 /* Skip over the slab list */
1842 while (*str && *str != ';')
1843 str++;
1844
1845 /* Skip any completely empty blocks */
1846 while (*str && *str == ';')
1847 str++;
1848
1849 if (init && higher_order_disable)
1850 disable_higher_order_debug = 1;
1851
1852 if (*str)
1853 return str;
1854 else
1855 return NULL;
1856 }
1857
setup_slub_debug(char * str)1858 static int __init setup_slub_debug(char *str)
1859 {
1860 slab_flags_t flags;
1861 slab_flags_t global_flags;
1862 char *saved_str;
1863 char *slab_list;
1864 bool global_slub_debug_changed = false;
1865 bool slab_list_specified = false;
1866
1867 global_flags = DEBUG_DEFAULT_FLAGS;
1868 if (*str++ != '=' || !*str)
1869 /*
1870 * No options specified. Switch on full debugging.
1871 */
1872 goto out;
1873
1874 saved_str = str;
1875 while (str) {
1876 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1877
1878 if (!slab_list) {
1879 global_flags = flags;
1880 global_slub_debug_changed = true;
1881 } else {
1882 slab_list_specified = true;
1883 if (flags & SLAB_STORE_USER)
1884 stack_depot_request_early_init();
1885 }
1886 }
1887
1888 /*
1889 * For backwards compatibility, a single list of flags with list of
1890 * slabs means debugging is only changed for those slabs, so the global
1891 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1892 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1893 * long as there is no option specifying flags without a slab list.
1894 */
1895 if (slab_list_specified) {
1896 if (!global_slub_debug_changed)
1897 global_flags = slub_debug;
1898 slub_debug_string = saved_str;
1899 }
1900 out:
1901 slub_debug = global_flags;
1902 if (slub_debug & SLAB_STORE_USER)
1903 stack_depot_request_early_init();
1904 if (slub_debug != 0 || slub_debug_string)
1905 static_branch_enable(&slub_debug_enabled);
1906 else
1907 static_branch_disable(&slub_debug_enabled);
1908 if ((static_branch_unlikely(&init_on_alloc) ||
1909 static_branch_unlikely(&init_on_free)) &&
1910 (slub_debug & SLAB_POISON))
1911 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1912 return 1;
1913 }
1914
1915 __setup("slab_debug", setup_slub_debug);
1916 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1917
1918 /*
1919 * kmem_cache_flags - apply debugging options to the cache
1920 * @flags: flags to set
1921 * @name: name of the cache
1922 *
1923 * Debug option(s) are applied to @flags. In addition to the debug
1924 * option(s), if a slab name (or multiple) is specified i.e.
1925 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1926 * then only the select slabs will receive the debug option(s).
1927 */
kmem_cache_flags(slab_flags_t flags,const char * name)1928 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1929 {
1930 char *iter;
1931 size_t len;
1932 char *next_block;
1933 slab_flags_t block_flags;
1934 slab_flags_t slub_debug_local = slub_debug;
1935
1936 if (flags & SLAB_NO_USER_FLAGS)
1937 return flags;
1938
1939 /*
1940 * If the slab cache is for debugging (e.g. kmemleak) then
1941 * don't store user (stack trace) information by default,
1942 * but let the user enable it via the command line below.
1943 */
1944 if (flags & SLAB_NOLEAKTRACE)
1945 slub_debug_local &= ~SLAB_STORE_USER;
1946
1947 len = strlen(name);
1948 next_block = slub_debug_string;
1949 /* Go through all blocks of debug options, see if any matches our slab's name */
1950 while (next_block) {
1951 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1952 if (!iter)
1953 continue;
1954 /* Found a block that has a slab list, search it */
1955 while (*iter) {
1956 char *end, *glob;
1957 size_t cmplen;
1958
1959 end = strchrnul(iter, ',');
1960 if (next_block && next_block < end)
1961 end = next_block - 1;
1962
1963 glob = strnchr(iter, end - iter, '*');
1964 if (glob)
1965 cmplen = glob - iter;
1966 else
1967 cmplen = max_t(size_t, len, (end - iter));
1968
1969 if (!strncmp(name, iter, cmplen)) {
1970 flags |= block_flags;
1971 return flags;
1972 }
1973
1974 if (!*end || *end == ';')
1975 break;
1976 iter = end + 1;
1977 }
1978 }
1979
1980 return flags | slub_debug_local;
1981 }
1982 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1983 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1984 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1985 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1986
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1987 static inline bool alloc_debug_processing(struct kmem_cache *s,
1988 struct slab *slab, void *object, int orig_size) { return true; }
1989
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1990 static inline bool free_debug_processing(struct kmem_cache *s,
1991 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1992 unsigned long addr, depot_stack_handle_t handle) { return true; }
1993
slab_pad_check(struct kmem_cache * s,struct slab * slab)1994 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1995 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1996 void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)1997 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1998 static inline void set_track(struct kmem_cache *s, void *object,
1999 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2000 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2001 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2002 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2003 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)2004 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2005 {
2006 return flags;
2007 }
2008 #define slub_debug 0
2009
2010 #define disable_higher_order_debug 0
2011
node_nr_slabs(struct kmem_cache_node * n)2012 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2013 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)2014 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2015 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)2016 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2017 int objects) {}
2018 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)2019 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2020 void **freelist, void *nextfree)
2021 {
2022 return false;
2023 }
2024 #endif
2025 #endif /* CONFIG_SLUB_DEBUG */
2026
2027 #ifdef CONFIG_SLAB_OBJ_EXT
2028
2029 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2030
mark_objexts_empty(struct slabobj_ext * obj_exts)2031 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2032 {
2033 struct slabobj_ext *slab_exts;
2034 struct slab *obj_exts_slab;
2035
2036 obj_exts_slab = virt_to_slab(obj_exts);
2037 slab_exts = slab_obj_exts(obj_exts_slab);
2038 if (slab_exts) {
2039 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2040 obj_exts_slab, obj_exts);
2041 /* codetag should be NULL */
2042 WARN_ON(slab_exts[offs].ref.ct);
2043 set_codetag_empty(&slab_exts[offs].ref);
2044 }
2045 }
2046
mark_failed_objexts_alloc(struct slab * slab)2047 static inline void mark_failed_objexts_alloc(struct slab *slab)
2048 {
2049 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
2050 }
2051
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2052 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2053 struct slabobj_ext *vec, unsigned int objects)
2054 {
2055 /*
2056 * If vector previously failed to allocate then we have live
2057 * objects with no tag reference. Mark all references in this
2058 * vector as empty to avoid warnings later on.
2059 */
2060 if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2061 unsigned int i;
2062
2063 for (i = 0; i < objects; i++)
2064 set_codetag_empty(&vec[i].ref);
2065 }
2066 }
2067
2068 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2069
mark_objexts_empty(struct slabobj_ext * obj_exts)2070 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2071 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2072 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2073 struct slabobj_ext *vec, unsigned int objects) {}
2074
2075 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2076
2077 /*
2078 * The allocated objcg pointers array is not accounted directly.
2079 * Moreover, it should not come from DMA buffer and is not readily
2080 * reclaimable. So those GFP bits should be masked off.
2081 */
2082 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2083 __GFP_ACCOUNT | __GFP_NOFAIL)
2084
init_slab_obj_exts(struct slab * slab)2085 static inline void init_slab_obj_exts(struct slab *slab)
2086 {
2087 slab->obj_exts = 0;
2088 }
2089
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2090 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2091 gfp_t gfp, bool new_slab)
2092 {
2093 bool allow_spin = gfpflags_allow_spinning(gfp);
2094 unsigned int objects = objs_per_slab(s, slab);
2095 unsigned long new_exts;
2096 unsigned long old_exts;
2097 struct slabobj_ext *vec;
2098
2099 gfp &= ~OBJCGS_CLEAR_MASK;
2100 /* Prevent recursive extension vector allocation */
2101 gfp |= __GFP_NO_OBJ_EXT;
2102
2103 /*
2104 * Note that allow_spin may be false during early boot and its
2105 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2106 * architectures with cmpxchg16b, early obj_exts will be missing for
2107 * very early allocations on those.
2108 */
2109 if (unlikely(!allow_spin)) {
2110 size_t sz = objects * sizeof(struct slabobj_ext);
2111
2112 vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2113 slab_nid(slab));
2114 } else {
2115 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2116 slab_nid(slab));
2117 }
2118 if (!vec) {
2119 /* Mark vectors which failed to allocate */
2120 mark_failed_objexts_alloc(slab);
2121
2122 return -ENOMEM;
2123 }
2124
2125 new_exts = (unsigned long)vec;
2126 if (unlikely(!allow_spin))
2127 new_exts |= OBJEXTS_NOSPIN_ALLOC;
2128 #ifdef CONFIG_MEMCG
2129 new_exts |= MEMCG_DATA_OBJEXTS;
2130 #endif
2131 old_exts = READ_ONCE(slab->obj_exts);
2132 handle_failed_objexts_alloc(old_exts, vec, objects);
2133 if (new_slab) {
2134 /*
2135 * If the slab is brand new and nobody can yet access its
2136 * obj_exts, no synchronization is required and obj_exts can
2137 * be simply assigned.
2138 */
2139 slab->obj_exts = new_exts;
2140 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2141 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2142 /*
2143 * If the slab is already in use, somebody can allocate and
2144 * assign slabobj_exts in parallel. In this case the existing
2145 * objcg vector should be reused.
2146 */
2147 mark_objexts_empty(vec);
2148 if (unlikely(!allow_spin))
2149 kfree_nolock(vec);
2150 else
2151 kfree(vec);
2152 return 0;
2153 }
2154
2155 if (allow_spin)
2156 kmemleak_not_leak(vec);
2157 return 0;
2158 }
2159
free_slab_obj_exts(struct slab * slab)2160 static inline void free_slab_obj_exts(struct slab *slab)
2161 {
2162 struct slabobj_ext *obj_exts;
2163
2164 obj_exts = slab_obj_exts(slab);
2165 if (!obj_exts)
2166 return;
2167
2168 /*
2169 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2170 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2171 * warning if slab has extensions but the extension of an object is
2172 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2173 * the extension for obj_exts is expected to be NULL.
2174 */
2175 mark_objexts_empty(obj_exts);
2176 if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2177 kfree_nolock(obj_exts);
2178 else
2179 kfree(obj_exts);
2180 slab->obj_exts = 0;
2181 }
2182
2183 #else /* CONFIG_SLAB_OBJ_EXT */
2184
init_slab_obj_exts(struct slab * slab)2185 static inline void init_slab_obj_exts(struct slab *slab)
2186 {
2187 }
2188
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2189 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2190 gfp_t gfp, bool new_slab)
2191 {
2192 return 0;
2193 }
2194
free_slab_obj_exts(struct slab * slab)2195 static inline void free_slab_obj_exts(struct slab *slab)
2196 {
2197 }
2198
2199 #endif /* CONFIG_SLAB_OBJ_EXT */
2200
2201 #ifdef CONFIG_MEM_ALLOC_PROFILING
2202
2203 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2204 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2205 {
2206 struct slab *slab;
2207
2208 slab = virt_to_slab(p);
2209 if (!slab_obj_exts(slab) &&
2210 alloc_slab_obj_exts(slab, s, flags, false)) {
2211 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2212 __func__, s->name);
2213 return NULL;
2214 }
2215
2216 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2217 }
2218
2219 /* Should be called only if mem_alloc_profiling_enabled() */
2220 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2221 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2222 {
2223 struct slabobj_ext *obj_exts;
2224
2225 if (!object)
2226 return;
2227
2228 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2229 return;
2230
2231 if (flags & __GFP_NO_OBJ_EXT)
2232 return;
2233
2234 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2235 /*
2236 * Currently obj_exts is used only for allocation profiling.
2237 * If other users appear then mem_alloc_profiling_enabled()
2238 * check should be added before alloc_tag_add().
2239 */
2240 if (likely(obj_exts))
2241 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2242 else
2243 alloc_tag_set_inaccurate(current->alloc_tag);
2244 }
2245
2246 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2247 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2248 {
2249 if (mem_alloc_profiling_enabled())
2250 __alloc_tagging_slab_alloc_hook(s, object, flags);
2251 }
2252
2253 /* Should be called only if mem_alloc_profiling_enabled() */
2254 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2255 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2256 int objects)
2257 {
2258 struct slabobj_ext *obj_exts;
2259 int i;
2260
2261 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2262 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2263 return;
2264
2265 obj_exts = slab_obj_exts(slab);
2266 if (!obj_exts)
2267 return;
2268
2269 for (i = 0; i < objects; i++) {
2270 unsigned int off = obj_to_index(s, slab, p[i]);
2271
2272 alloc_tag_sub(&obj_exts[off].ref, s->size);
2273 }
2274 }
2275
2276 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2277 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2278 int objects)
2279 {
2280 if (mem_alloc_profiling_enabled())
2281 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2282 }
2283
2284 #else /* CONFIG_MEM_ALLOC_PROFILING */
2285
2286 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2287 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2288 {
2289 }
2290
2291 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2292 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2293 int objects)
2294 {
2295 }
2296
2297 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2298
2299
2300 #ifdef CONFIG_MEMCG
2301
2302 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2303
2304 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2305 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2306 gfp_t flags, size_t size, void **p)
2307 {
2308 if (likely(!memcg_kmem_online()))
2309 return true;
2310
2311 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2312 return true;
2313
2314 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2315 return true;
2316
2317 if (likely(size == 1)) {
2318 memcg_alloc_abort_single(s, *p);
2319 *p = NULL;
2320 } else {
2321 kmem_cache_free_bulk(s, size, p);
2322 }
2323
2324 return false;
2325 }
2326
2327 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2328 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2329 int objects)
2330 {
2331 struct slabobj_ext *obj_exts;
2332
2333 if (!memcg_kmem_online())
2334 return;
2335
2336 obj_exts = slab_obj_exts(slab);
2337 if (likely(!obj_exts))
2338 return;
2339
2340 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2341 }
2342
2343 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2344 bool memcg_slab_post_charge(void *p, gfp_t flags)
2345 {
2346 struct slabobj_ext *slab_exts;
2347 struct kmem_cache *s;
2348 struct folio *folio;
2349 struct slab *slab;
2350 unsigned long off;
2351
2352 folio = virt_to_folio(p);
2353 if (!folio_test_slab(folio)) {
2354 int size;
2355
2356 if (folio_memcg_kmem(folio))
2357 return true;
2358
2359 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2360 folio_order(folio)))
2361 return false;
2362
2363 /*
2364 * This folio has already been accounted in the global stats but
2365 * not in the memcg stats. So, subtract from the global and use
2366 * the interface which adds to both global and memcg stats.
2367 */
2368 size = folio_size(folio);
2369 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2370 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2371 return true;
2372 }
2373
2374 slab = folio_slab(folio);
2375 s = slab->slab_cache;
2376
2377 /*
2378 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2379 * of slab_obj_exts being allocated from the same slab and thus the slab
2380 * becoming effectively unfreeable.
2381 */
2382 if (is_kmalloc_normal(s))
2383 return true;
2384
2385 /* Ignore already charged objects. */
2386 slab_exts = slab_obj_exts(slab);
2387 if (slab_exts) {
2388 off = obj_to_index(s, slab, p);
2389 if (unlikely(slab_exts[off].objcg))
2390 return true;
2391 }
2392
2393 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2394 }
2395
2396 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2397 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2398 struct list_lru *lru,
2399 gfp_t flags, size_t size,
2400 void **p)
2401 {
2402 return true;
2403 }
2404
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2405 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2406 void **p, int objects)
2407 {
2408 }
2409
memcg_slab_post_charge(void * p,gfp_t flags)2410 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2411 {
2412 return true;
2413 }
2414 #endif /* CONFIG_MEMCG */
2415
2416 #ifdef CONFIG_SLUB_RCU_DEBUG
2417 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2418
2419 struct rcu_delayed_free {
2420 struct rcu_head head;
2421 void *object;
2422 };
2423 #endif
2424
2425 /*
2426 * Hooks for other subsystems that check memory allocations. In a typical
2427 * production configuration these hooks all should produce no code at all.
2428 *
2429 * Returns true if freeing of the object can proceed, false if its reuse
2430 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2431 * to KFENCE.
2432 */
2433 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2434 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2435 bool after_rcu_delay)
2436 {
2437 /* Are the object contents still accessible? */
2438 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2439
2440 kmemleak_free_recursive(x, s->flags);
2441 kmsan_slab_free(s, x);
2442
2443 debug_check_no_locks_freed(x, s->object_size);
2444
2445 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2446 debug_check_no_obj_freed(x, s->object_size);
2447
2448 /* Use KCSAN to help debug racy use-after-free. */
2449 if (!still_accessible)
2450 __kcsan_check_access(x, s->object_size,
2451 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2452
2453 if (kfence_free(x))
2454 return false;
2455
2456 /*
2457 * Give KASAN a chance to notice an invalid free operation before we
2458 * modify the object.
2459 */
2460 if (kasan_slab_pre_free(s, x))
2461 return false;
2462
2463 #ifdef CONFIG_SLUB_RCU_DEBUG
2464 if (still_accessible) {
2465 struct rcu_delayed_free *delayed_free;
2466
2467 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2468 if (delayed_free) {
2469 /*
2470 * Let KASAN track our call stack as a "related work
2471 * creation", just like if the object had been freed
2472 * normally via kfree_rcu().
2473 * We have to do this manually because the rcu_head is
2474 * not located inside the object.
2475 */
2476 kasan_record_aux_stack(x);
2477
2478 delayed_free->object = x;
2479 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2480 return false;
2481 }
2482 }
2483 #endif /* CONFIG_SLUB_RCU_DEBUG */
2484
2485 /*
2486 * As memory initialization might be integrated into KASAN,
2487 * kasan_slab_free and initialization memset's must be
2488 * kept together to avoid discrepancies in behavior.
2489 *
2490 * The initialization memset's clear the object and the metadata,
2491 * but don't touch the SLAB redzone.
2492 *
2493 * The object's freepointer is also avoided if stored outside the
2494 * object.
2495 */
2496 if (unlikely(init)) {
2497 int rsize;
2498 unsigned int inuse, orig_size;
2499
2500 inuse = get_info_end(s);
2501 orig_size = get_orig_size(s, x);
2502 if (!kasan_has_integrated_init())
2503 memset(kasan_reset_tag(x), 0, orig_size);
2504 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2505 memset((char *)kasan_reset_tag(x) + inuse, 0,
2506 s->size - inuse - rsize);
2507 /*
2508 * Restore orig_size, otherwize kmalloc redzone overwritten
2509 * would be reported
2510 */
2511 set_orig_size(s, x, orig_size);
2512
2513 }
2514 /* KASAN might put x into memory quarantine, delaying its reuse. */
2515 return !kasan_slab_free(s, x, init, still_accessible, false);
2516 }
2517
2518 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2519 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2520 int *cnt)
2521 {
2522
2523 void *object;
2524 void *next = *head;
2525 void *old_tail = *tail;
2526 bool init;
2527
2528 if (is_kfence_address(next)) {
2529 slab_free_hook(s, next, false, false);
2530 return false;
2531 }
2532
2533 /* Head and tail of the reconstructed freelist */
2534 *head = NULL;
2535 *tail = NULL;
2536
2537 init = slab_want_init_on_free(s);
2538
2539 do {
2540 object = next;
2541 next = get_freepointer(s, object);
2542
2543 /* If object's reuse doesn't have to be delayed */
2544 if (likely(slab_free_hook(s, object, init, false))) {
2545 /* Move object to the new freelist */
2546 set_freepointer(s, object, *head);
2547 *head = object;
2548 if (!*tail)
2549 *tail = object;
2550 } else {
2551 /*
2552 * Adjust the reconstructed freelist depth
2553 * accordingly if object's reuse is delayed.
2554 */
2555 --(*cnt);
2556 }
2557 } while (object != old_tail);
2558
2559 return *head != NULL;
2560 }
2561
setup_object(struct kmem_cache * s,void * object)2562 static void *setup_object(struct kmem_cache *s, void *object)
2563 {
2564 setup_object_debug(s, object);
2565 object = kasan_init_slab_obj(s, object);
2566 if (unlikely(s->ctor)) {
2567 kasan_unpoison_new_object(s, object);
2568 s->ctor(object);
2569 kasan_poison_new_object(s, object);
2570 }
2571 return object;
2572 }
2573
alloc_empty_sheaf(struct kmem_cache * s,gfp_t gfp)2574 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2575 {
2576 struct slab_sheaf *sheaf = kzalloc(struct_size(sheaf, objects,
2577 s->sheaf_capacity), gfp);
2578
2579 if (unlikely(!sheaf))
2580 return NULL;
2581
2582 sheaf->cache = s;
2583
2584 stat(s, SHEAF_ALLOC);
2585
2586 return sheaf;
2587 }
2588
free_empty_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf)2589 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2590 {
2591 kfree(sheaf);
2592
2593 stat(s, SHEAF_FREE);
2594 }
2595
2596 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2597 size_t size, void **p);
2598
2599
refill_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)2600 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2601 gfp_t gfp)
2602 {
2603 int to_fill = s->sheaf_capacity - sheaf->size;
2604 int filled;
2605
2606 if (!to_fill)
2607 return 0;
2608
2609 filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2610 &sheaf->objects[sheaf->size]);
2611
2612 sheaf->size += filled;
2613
2614 stat_add(s, SHEAF_REFILL, filled);
2615
2616 if (filled < to_fill)
2617 return -ENOMEM;
2618
2619 return 0;
2620 }
2621
2622
alloc_full_sheaf(struct kmem_cache * s,gfp_t gfp)2623 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2624 {
2625 struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2626
2627 if (!sheaf)
2628 return NULL;
2629
2630 if (refill_sheaf(s, sheaf, gfp)) {
2631 free_empty_sheaf(s, sheaf);
2632 return NULL;
2633 }
2634
2635 return sheaf;
2636 }
2637
2638 /*
2639 * Maximum number of objects freed during a single flush of main pcs sheaf.
2640 * Translates directly to an on-stack array size.
2641 */
2642 #define PCS_BATCH_MAX 32U
2643
2644 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2645
2646 /*
2647 * Free all objects from the main sheaf. In order to perform
2648 * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2649 * object pointers are moved to a on-stack array under the lock. To bound the
2650 * stack usage, limit each batch to PCS_BATCH_MAX.
2651 *
2652 * returns true if at least partially flushed
2653 */
sheaf_flush_main(struct kmem_cache * s)2654 static bool sheaf_flush_main(struct kmem_cache *s)
2655 {
2656 struct slub_percpu_sheaves *pcs;
2657 unsigned int batch, remaining;
2658 void *objects[PCS_BATCH_MAX];
2659 struct slab_sheaf *sheaf;
2660 bool ret = false;
2661
2662 next_batch:
2663 if (!local_trylock(&s->cpu_sheaves->lock))
2664 return ret;
2665
2666 pcs = this_cpu_ptr(s->cpu_sheaves);
2667 sheaf = pcs->main;
2668
2669 batch = min(PCS_BATCH_MAX, sheaf->size);
2670
2671 sheaf->size -= batch;
2672 memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2673
2674 remaining = sheaf->size;
2675
2676 local_unlock(&s->cpu_sheaves->lock);
2677
2678 __kmem_cache_free_bulk(s, batch, &objects[0]);
2679
2680 stat_add(s, SHEAF_FLUSH, batch);
2681
2682 ret = true;
2683
2684 if (remaining)
2685 goto next_batch;
2686
2687 return ret;
2688 }
2689
2690 /*
2691 * Free all objects from a sheaf that's unused, i.e. not linked to any
2692 * cpu_sheaves, so we need no locking and batching. The locking is also not
2693 * necessary when flushing cpu's sheaves (both spare and main) during cpu
2694 * hotremove as the cpu is not executing anymore.
2695 */
sheaf_flush_unused(struct kmem_cache * s,struct slab_sheaf * sheaf)2696 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2697 {
2698 if (!sheaf->size)
2699 return;
2700
2701 stat_add(s, SHEAF_FLUSH, sheaf->size);
2702
2703 __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2704
2705 sheaf->size = 0;
2706 }
2707
__rcu_free_sheaf_prepare(struct kmem_cache * s,struct slab_sheaf * sheaf)2708 static void __rcu_free_sheaf_prepare(struct kmem_cache *s,
2709 struct slab_sheaf *sheaf)
2710 {
2711 bool init = slab_want_init_on_free(s);
2712 void **p = &sheaf->objects[0];
2713 unsigned int i = 0;
2714
2715 while (i < sheaf->size) {
2716 struct slab *slab = virt_to_slab(p[i]);
2717
2718 memcg_slab_free_hook(s, slab, p + i, 1);
2719 alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2720
2721 if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2722 p[i] = p[--sheaf->size];
2723 continue;
2724 }
2725
2726 i++;
2727 }
2728 }
2729
rcu_free_sheaf_nobarn(struct rcu_head * head)2730 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2731 {
2732 struct slab_sheaf *sheaf;
2733 struct kmem_cache *s;
2734
2735 sheaf = container_of(head, struct slab_sheaf, rcu_head);
2736 s = sheaf->cache;
2737
2738 __rcu_free_sheaf_prepare(s, sheaf);
2739
2740 sheaf_flush_unused(s, sheaf);
2741
2742 free_empty_sheaf(s, sheaf);
2743 }
2744
2745 /*
2746 * Caller needs to make sure migration is disabled in order to fully flush
2747 * single cpu's sheaves
2748 *
2749 * must not be called from an irq
2750 *
2751 * flushing operations are rare so let's keep it simple and flush to slabs
2752 * directly, skipping the barn
2753 */
pcs_flush_all(struct kmem_cache * s)2754 static void pcs_flush_all(struct kmem_cache *s)
2755 {
2756 struct slub_percpu_sheaves *pcs;
2757 struct slab_sheaf *spare, *rcu_free;
2758
2759 local_lock(&s->cpu_sheaves->lock);
2760 pcs = this_cpu_ptr(s->cpu_sheaves);
2761
2762 spare = pcs->spare;
2763 pcs->spare = NULL;
2764
2765 rcu_free = pcs->rcu_free;
2766 pcs->rcu_free = NULL;
2767
2768 local_unlock(&s->cpu_sheaves->lock);
2769
2770 if (spare) {
2771 sheaf_flush_unused(s, spare);
2772 free_empty_sheaf(s, spare);
2773 }
2774
2775 if (rcu_free)
2776 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2777
2778 sheaf_flush_main(s);
2779 }
2780
__pcs_flush_all_cpu(struct kmem_cache * s,unsigned int cpu)2781 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2782 {
2783 struct slub_percpu_sheaves *pcs;
2784
2785 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2786
2787 /* The cpu is not executing anymore so we don't need pcs->lock */
2788 sheaf_flush_unused(s, pcs->main);
2789 if (pcs->spare) {
2790 sheaf_flush_unused(s, pcs->spare);
2791 free_empty_sheaf(s, pcs->spare);
2792 pcs->spare = NULL;
2793 }
2794
2795 if (pcs->rcu_free) {
2796 call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2797 pcs->rcu_free = NULL;
2798 }
2799 }
2800
pcs_destroy(struct kmem_cache * s)2801 static void pcs_destroy(struct kmem_cache *s)
2802 {
2803 int cpu;
2804
2805 for_each_possible_cpu(cpu) {
2806 struct slub_percpu_sheaves *pcs;
2807
2808 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2809
2810 /* can happen when unwinding failed create */
2811 if (!pcs->main)
2812 continue;
2813
2814 /*
2815 * We have already passed __kmem_cache_shutdown() so everything
2816 * was flushed and there should be no objects allocated from
2817 * slabs, otherwise kmem_cache_destroy() would have aborted.
2818 * Therefore something would have to be really wrong if the
2819 * warnings here trigger, and we should rather leave objects and
2820 * sheaves to leak in that case.
2821 */
2822
2823 WARN_ON(pcs->spare);
2824 WARN_ON(pcs->rcu_free);
2825
2826 if (!WARN_ON(pcs->main->size)) {
2827 free_empty_sheaf(s, pcs->main);
2828 pcs->main = NULL;
2829 }
2830 }
2831
2832 free_percpu(s->cpu_sheaves);
2833 s->cpu_sheaves = NULL;
2834 }
2835
barn_get_empty_sheaf(struct node_barn * barn)2836 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2837 {
2838 struct slab_sheaf *empty = NULL;
2839 unsigned long flags;
2840
2841 if (!data_race(barn->nr_empty))
2842 return NULL;
2843
2844 spin_lock_irqsave(&barn->lock, flags);
2845
2846 if (likely(barn->nr_empty)) {
2847 empty = list_first_entry(&barn->sheaves_empty,
2848 struct slab_sheaf, barn_list);
2849 list_del(&empty->barn_list);
2850 barn->nr_empty--;
2851 }
2852
2853 spin_unlock_irqrestore(&barn->lock, flags);
2854
2855 return empty;
2856 }
2857
2858 /*
2859 * The following two functions are used mainly in cases where we have to undo an
2860 * intended action due to a race or cpu migration. Thus they do not check the
2861 * empty or full sheaf limits for simplicity.
2862 */
2863
barn_put_empty_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2864 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2865 {
2866 unsigned long flags;
2867
2868 spin_lock_irqsave(&barn->lock, flags);
2869
2870 list_add(&sheaf->barn_list, &barn->sheaves_empty);
2871 barn->nr_empty++;
2872
2873 spin_unlock_irqrestore(&barn->lock, flags);
2874 }
2875
barn_put_full_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2876 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2877 {
2878 unsigned long flags;
2879
2880 spin_lock_irqsave(&barn->lock, flags);
2881
2882 list_add(&sheaf->barn_list, &barn->sheaves_full);
2883 barn->nr_full++;
2884
2885 spin_unlock_irqrestore(&barn->lock, flags);
2886 }
2887
barn_get_full_or_empty_sheaf(struct node_barn * barn)2888 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2889 {
2890 struct slab_sheaf *sheaf = NULL;
2891 unsigned long flags;
2892
2893 if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2894 return NULL;
2895
2896 spin_lock_irqsave(&barn->lock, flags);
2897
2898 if (barn->nr_full) {
2899 sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2900 barn_list);
2901 list_del(&sheaf->barn_list);
2902 barn->nr_full--;
2903 } else if (barn->nr_empty) {
2904 sheaf = list_first_entry(&barn->sheaves_empty,
2905 struct slab_sheaf, barn_list);
2906 list_del(&sheaf->barn_list);
2907 barn->nr_empty--;
2908 }
2909
2910 spin_unlock_irqrestore(&barn->lock, flags);
2911
2912 return sheaf;
2913 }
2914
2915 /*
2916 * If a full sheaf is available, return it and put the supplied empty one to
2917 * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2918 * change.
2919 */
2920 static struct slab_sheaf *
barn_replace_empty_sheaf(struct node_barn * barn,struct slab_sheaf * empty)2921 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2922 {
2923 struct slab_sheaf *full = NULL;
2924 unsigned long flags;
2925
2926 if (!data_race(barn->nr_full))
2927 return NULL;
2928
2929 spin_lock_irqsave(&barn->lock, flags);
2930
2931 if (likely(barn->nr_full)) {
2932 full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2933 barn_list);
2934 list_del(&full->barn_list);
2935 list_add(&empty->barn_list, &barn->sheaves_empty);
2936 barn->nr_full--;
2937 barn->nr_empty++;
2938 }
2939
2940 spin_unlock_irqrestore(&barn->lock, flags);
2941
2942 return full;
2943 }
2944
2945 /*
2946 * If an empty sheaf is available, return it and put the supplied full one to
2947 * barn. But if there are too many full sheaves, reject this with -E2BIG.
2948 */
2949 static struct slab_sheaf *
barn_replace_full_sheaf(struct node_barn * barn,struct slab_sheaf * full)2950 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2951 {
2952 struct slab_sheaf *empty;
2953 unsigned long flags;
2954
2955 /* we don't repeat this check under barn->lock as it's not critical */
2956 if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
2957 return ERR_PTR(-E2BIG);
2958 if (!data_race(barn->nr_empty))
2959 return ERR_PTR(-ENOMEM);
2960
2961 spin_lock_irqsave(&barn->lock, flags);
2962
2963 if (likely(barn->nr_empty)) {
2964 empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
2965 barn_list);
2966 list_del(&empty->barn_list);
2967 list_add(&full->barn_list, &barn->sheaves_full);
2968 barn->nr_empty--;
2969 barn->nr_full++;
2970 } else {
2971 empty = ERR_PTR(-ENOMEM);
2972 }
2973
2974 spin_unlock_irqrestore(&barn->lock, flags);
2975
2976 return empty;
2977 }
2978
barn_init(struct node_barn * barn)2979 static void barn_init(struct node_barn *barn)
2980 {
2981 spin_lock_init(&barn->lock);
2982 INIT_LIST_HEAD(&barn->sheaves_full);
2983 INIT_LIST_HEAD(&barn->sheaves_empty);
2984 barn->nr_full = 0;
2985 barn->nr_empty = 0;
2986 }
2987
barn_shrink(struct kmem_cache * s,struct node_barn * barn)2988 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
2989 {
2990 struct list_head empty_list;
2991 struct list_head full_list;
2992 struct slab_sheaf *sheaf, *sheaf2;
2993 unsigned long flags;
2994
2995 INIT_LIST_HEAD(&empty_list);
2996 INIT_LIST_HEAD(&full_list);
2997
2998 spin_lock_irqsave(&barn->lock, flags);
2999
3000 list_splice_init(&barn->sheaves_full, &full_list);
3001 barn->nr_full = 0;
3002 list_splice_init(&barn->sheaves_empty, &empty_list);
3003 barn->nr_empty = 0;
3004
3005 spin_unlock_irqrestore(&barn->lock, flags);
3006
3007 list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3008 sheaf_flush_unused(s, sheaf);
3009 free_empty_sheaf(s, sheaf);
3010 }
3011
3012 list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3013 free_empty_sheaf(s, sheaf);
3014 }
3015
3016 /*
3017 * Slab allocation and freeing
3018 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo,bool allow_spin)3019 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3020 struct kmem_cache_order_objects oo,
3021 bool allow_spin)
3022 {
3023 struct folio *folio;
3024 struct slab *slab;
3025 unsigned int order = oo_order(oo);
3026
3027 if (unlikely(!allow_spin))
3028 folio = (struct folio *)alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3029 node, order);
3030 else if (node == NUMA_NO_NODE)
3031 folio = (struct folio *)alloc_frozen_pages(flags, order);
3032 else
3033 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
3034
3035 if (!folio)
3036 return NULL;
3037
3038 slab = folio_slab(folio);
3039 __folio_set_slab(folio);
3040 if (folio_is_pfmemalloc(folio))
3041 slab_set_pfmemalloc(slab);
3042
3043 return slab;
3044 }
3045
3046 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3047 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)3048 static int init_cache_random_seq(struct kmem_cache *s)
3049 {
3050 unsigned int count = oo_objects(s->oo);
3051 int err;
3052
3053 /* Bailout if already initialised */
3054 if (s->random_seq)
3055 return 0;
3056
3057 err = cache_random_seq_create(s, count, GFP_KERNEL);
3058 if (err) {
3059 pr_err("SLUB: Unable to initialize free list for %s\n",
3060 s->name);
3061 return err;
3062 }
3063
3064 /* Transform to an offset on the set of pages */
3065 if (s->random_seq) {
3066 unsigned int i;
3067
3068 for (i = 0; i < count; i++)
3069 s->random_seq[i] *= s->size;
3070 }
3071 return 0;
3072 }
3073
3074 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)3075 static void __init init_freelist_randomization(void)
3076 {
3077 struct kmem_cache *s;
3078
3079 mutex_lock(&slab_mutex);
3080
3081 list_for_each_entry(s, &slab_caches, list)
3082 init_cache_random_seq(s);
3083
3084 mutex_unlock(&slab_mutex);
3085 }
3086
3087 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)3088 static void *next_freelist_entry(struct kmem_cache *s,
3089 unsigned long *pos, void *start,
3090 unsigned long page_limit,
3091 unsigned long freelist_count)
3092 {
3093 unsigned int idx;
3094
3095 /*
3096 * If the target page allocation failed, the number of objects on the
3097 * page might be smaller than the usual size defined by the cache.
3098 */
3099 do {
3100 idx = s->random_seq[*pos];
3101 *pos += 1;
3102 if (*pos >= freelist_count)
3103 *pos = 0;
3104 } while (unlikely(idx >= page_limit));
3105
3106 return (char *)start + idx;
3107 }
3108
3109 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3110 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3111 {
3112 void *start;
3113 void *cur;
3114 void *next;
3115 unsigned long idx, pos, page_limit, freelist_count;
3116
3117 if (slab->objects < 2 || !s->random_seq)
3118 return false;
3119
3120 freelist_count = oo_objects(s->oo);
3121 pos = get_random_u32_below(freelist_count);
3122
3123 page_limit = slab->objects * s->size;
3124 start = fixup_red_left(s, slab_address(slab));
3125
3126 /* First entry is used as the base of the freelist */
3127 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3128 cur = setup_object(s, cur);
3129 slab->freelist = cur;
3130
3131 for (idx = 1; idx < slab->objects; idx++) {
3132 next = next_freelist_entry(s, &pos, start, page_limit,
3133 freelist_count);
3134 next = setup_object(s, next);
3135 set_freepointer(s, cur, next);
3136 cur = next;
3137 }
3138 set_freepointer(s, cur, NULL);
3139
3140 return true;
3141 }
3142 #else
init_cache_random_seq(struct kmem_cache * s)3143 static inline int init_cache_random_seq(struct kmem_cache *s)
3144 {
3145 return 0;
3146 }
init_freelist_randomization(void)3147 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3148 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3149 {
3150 return false;
3151 }
3152 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3153
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)3154 static __always_inline void account_slab(struct slab *slab, int order,
3155 struct kmem_cache *s, gfp_t gfp)
3156 {
3157 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3158 alloc_slab_obj_exts(slab, s, gfp, true);
3159
3160 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3161 PAGE_SIZE << order);
3162 }
3163
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)3164 static __always_inline void unaccount_slab(struct slab *slab, int order,
3165 struct kmem_cache *s)
3166 {
3167 /*
3168 * The slab object extensions should now be freed regardless of
3169 * whether mem_alloc_profiling_enabled() or not because profiling
3170 * might have been disabled after slab->obj_exts got allocated.
3171 */
3172 free_slab_obj_exts(slab);
3173
3174 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3175 -(PAGE_SIZE << order));
3176 }
3177
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)3178 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3179 {
3180 bool allow_spin = gfpflags_allow_spinning(flags);
3181 struct slab *slab;
3182 struct kmem_cache_order_objects oo = s->oo;
3183 gfp_t alloc_gfp;
3184 void *start, *p, *next;
3185 int idx;
3186 bool shuffle;
3187
3188 flags &= gfp_allowed_mask;
3189
3190 flags |= s->allocflags;
3191
3192 /*
3193 * Let the initial higher-order allocation fail under memory pressure
3194 * so we fall-back to the minimum order allocation.
3195 */
3196 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3197 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3198 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3199
3200 /*
3201 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3202 * so pass allow_spin flag directly.
3203 */
3204 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3205 if (unlikely(!slab)) {
3206 oo = s->min;
3207 alloc_gfp = flags;
3208 /*
3209 * Allocation may have failed due to fragmentation.
3210 * Try a lower order alloc if possible
3211 */
3212 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3213 if (unlikely(!slab))
3214 return NULL;
3215 stat(s, ORDER_FALLBACK);
3216 }
3217
3218 slab->objects = oo_objects(oo);
3219 slab->inuse = 0;
3220 slab->frozen = 0;
3221 init_slab_obj_exts(slab);
3222
3223 account_slab(slab, oo_order(oo), s, flags);
3224
3225 slab->slab_cache = s;
3226
3227 kasan_poison_slab(slab);
3228
3229 start = slab_address(slab);
3230
3231 setup_slab_debug(s, slab, start);
3232
3233 shuffle = shuffle_freelist(s, slab);
3234
3235 if (!shuffle) {
3236 start = fixup_red_left(s, start);
3237 start = setup_object(s, start);
3238 slab->freelist = start;
3239 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3240 next = p + s->size;
3241 next = setup_object(s, next);
3242 set_freepointer(s, p, next);
3243 p = next;
3244 }
3245 set_freepointer(s, p, NULL);
3246 }
3247
3248 return slab;
3249 }
3250
new_slab(struct kmem_cache * s,gfp_t flags,int node)3251 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3252 {
3253 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3254 flags = kmalloc_fix_flags(flags);
3255
3256 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3257
3258 return allocate_slab(s,
3259 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3260 }
3261
__free_slab(struct kmem_cache * s,struct slab * slab)3262 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3263 {
3264 struct folio *folio = slab_folio(slab);
3265 int order = folio_order(folio);
3266 int pages = 1 << order;
3267
3268 __slab_clear_pfmemalloc(slab);
3269 folio->mapping = NULL;
3270 __folio_clear_slab(folio);
3271 mm_account_reclaimed_pages(pages);
3272 unaccount_slab(slab, order, s);
3273 free_frozen_pages(&folio->page, order);
3274 }
3275
rcu_free_slab(struct rcu_head * h)3276 static void rcu_free_slab(struct rcu_head *h)
3277 {
3278 struct slab *slab = container_of(h, struct slab, rcu_head);
3279
3280 __free_slab(slab->slab_cache, slab);
3281 }
3282
free_slab(struct kmem_cache * s,struct slab * slab)3283 static void free_slab(struct kmem_cache *s, struct slab *slab)
3284 {
3285 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3286 void *p;
3287
3288 slab_pad_check(s, slab);
3289 for_each_object(p, s, slab_address(slab), slab->objects)
3290 check_object(s, slab, p, SLUB_RED_INACTIVE);
3291 }
3292
3293 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3294 call_rcu(&slab->rcu_head, rcu_free_slab);
3295 else
3296 __free_slab(s, slab);
3297 }
3298
discard_slab(struct kmem_cache * s,struct slab * slab)3299 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3300 {
3301 dec_slabs_node(s, slab_nid(slab), slab->objects);
3302 free_slab(s, slab);
3303 }
3304
slab_test_node_partial(const struct slab * slab)3305 static inline bool slab_test_node_partial(const struct slab *slab)
3306 {
3307 return test_bit(SL_partial, &slab->flags.f);
3308 }
3309
slab_set_node_partial(struct slab * slab)3310 static inline void slab_set_node_partial(struct slab *slab)
3311 {
3312 set_bit(SL_partial, &slab->flags.f);
3313 }
3314
slab_clear_node_partial(struct slab * slab)3315 static inline void slab_clear_node_partial(struct slab *slab)
3316 {
3317 clear_bit(SL_partial, &slab->flags.f);
3318 }
3319
3320 /*
3321 * Management of partially allocated slabs.
3322 */
3323 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3324 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3325 {
3326 n->nr_partial++;
3327 if (tail == DEACTIVATE_TO_TAIL)
3328 list_add_tail(&slab->slab_list, &n->partial);
3329 else
3330 list_add(&slab->slab_list, &n->partial);
3331 slab_set_node_partial(slab);
3332 }
3333
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3334 static inline void add_partial(struct kmem_cache_node *n,
3335 struct slab *slab, int tail)
3336 {
3337 lockdep_assert_held(&n->list_lock);
3338 __add_partial(n, slab, tail);
3339 }
3340
remove_partial(struct kmem_cache_node * n,struct slab * slab)3341 static inline void remove_partial(struct kmem_cache_node *n,
3342 struct slab *slab)
3343 {
3344 lockdep_assert_held(&n->list_lock);
3345 list_del(&slab->slab_list);
3346 slab_clear_node_partial(slab);
3347 n->nr_partial--;
3348 }
3349
3350 /*
3351 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3352 * slab from the n->partial list. Remove only a single object from the slab, do
3353 * the alloc_debug_processing() checks and leave the slab on the list, or move
3354 * it to full list if it was the last free object.
3355 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)3356 static void *alloc_single_from_partial(struct kmem_cache *s,
3357 struct kmem_cache_node *n, struct slab *slab, int orig_size)
3358 {
3359 void *object;
3360
3361 lockdep_assert_held(&n->list_lock);
3362
3363 #ifdef CONFIG_SLUB_DEBUG
3364 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3365 if (!validate_slab_ptr(slab)) {
3366 slab_err(s, slab, "Not a valid slab page");
3367 return NULL;
3368 }
3369 }
3370 #endif
3371
3372 object = slab->freelist;
3373 slab->freelist = get_freepointer(s, object);
3374 slab->inuse++;
3375
3376 if (!alloc_debug_processing(s, slab, object, orig_size)) {
3377 remove_partial(n, slab);
3378 return NULL;
3379 }
3380
3381 if (slab->inuse == slab->objects) {
3382 remove_partial(n, slab);
3383 add_full(s, n, slab);
3384 }
3385
3386 return object;
3387 }
3388
3389 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3390
3391 /*
3392 * Called only for kmem_cache_debug() caches to allocate from a freshly
3393 * allocated slab. Allocate a single object instead of whole freelist
3394 * and put the slab to the partial (or full) list.
3395 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size,gfp_t gfpflags)3396 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3397 int orig_size, gfp_t gfpflags)
3398 {
3399 bool allow_spin = gfpflags_allow_spinning(gfpflags);
3400 int nid = slab_nid(slab);
3401 struct kmem_cache_node *n = get_node(s, nid);
3402 unsigned long flags;
3403 void *object;
3404
3405 if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3406 /* Unlucky, discard newly allocated slab */
3407 slab->frozen = 1;
3408 defer_deactivate_slab(slab, NULL);
3409 return NULL;
3410 }
3411
3412 object = slab->freelist;
3413 slab->freelist = get_freepointer(s, object);
3414 slab->inuse = 1;
3415
3416 if (!alloc_debug_processing(s, slab, object, orig_size)) {
3417 /*
3418 * It's not really expected that this would fail on a
3419 * freshly allocated slab, but a concurrent memory
3420 * corruption in theory could cause that.
3421 * Leak memory of allocated slab.
3422 */
3423 if (!allow_spin)
3424 spin_unlock_irqrestore(&n->list_lock, flags);
3425 return NULL;
3426 }
3427
3428 if (allow_spin)
3429 spin_lock_irqsave(&n->list_lock, flags);
3430
3431 if (slab->inuse == slab->objects)
3432 add_full(s, n, slab);
3433 else
3434 add_partial(n, slab, DEACTIVATE_TO_HEAD);
3435
3436 inc_slabs_node(s, nid, slab->objects);
3437 spin_unlock_irqrestore(&n->list_lock, flags);
3438
3439 return object;
3440 }
3441
3442 #ifdef CONFIG_SLUB_CPU_PARTIAL
3443 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3444 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3445 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3446 int drain) { }
3447 #endif
3448 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3449
3450 /*
3451 * Try to allocate a partial slab from a specific node.
3452 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)3453 static struct slab *get_partial_node(struct kmem_cache *s,
3454 struct kmem_cache_node *n,
3455 struct partial_context *pc)
3456 {
3457 struct slab *slab, *slab2, *partial = NULL;
3458 unsigned long flags;
3459 unsigned int partial_slabs = 0;
3460
3461 /*
3462 * Racy check. If we mistakenly see no partial slabs then we
3463 * just allocate an empty slab. If we mistakenly try to get a
3464 * partial slab and there is none available then get_partial()
3465 * will return NULL.
3466 */
3467 if (!n || !n->nr_partial)
3468 return NULL;
3469
3470 if (gfpflags_allow_spinning(pc->flags))
3471 spin_lock_irqsave(&n->list_lock, flags);
3472 else if (!spin_trylock_irqsave(&n->list_lock, flags))
3473 return NULL;
3474 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3475 if (!pfmemalloc_match(slab, pc->flags))
3476 continue;
3477
3478 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3479 void *object = alloc_single_from_partial(s, n, slab,
3480 pc->orig_size);
3481 if (object) {
3482 partial = slab;
3483 pc->object = object;
3484 break;
3485 }
3486 continue;
3487 }
3488
3489 remove_partial(n, slab);
3490
3491 if (!partial) {
3492 partial = slab;
3493 stat(s, ALLOC_FROM_PARTIAL);
3494
3495 if ((slub_get_cpu_partial(s) == 0)) {
3496 break;
3497 }
3498 } else {
3499 put_cpu_partial(s, slab, 0);
3500 stat(s, CPU_PARTIAL_NODE);
3501
3502 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3503 break;
3504 }
3505 }
3506 }
3507 spin_unlock_irqrestore(&n->list_lock, flags);
3508 return partial;
3509 }
3510
3511 /*
3512 * Get a slab from somewhere. Search in increasing NUMA distances.
3513 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)3514 static struct slab *get_any_partial(struct kmem_cache *s,
3515 struct partial_context *pc)
3516 {
3517 #ifdef CONFIG_NUMA
3518 struct zonelist *zonelist;
3519 struct zoneref *z;
3520 struct zone *zone;
3521 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3522 struct slab *slab;
3523 unsigned int cpuset_mems_cookie;
3524
3525 /*
3526 * The defrag ratio allows a configuration of the tradeoffs between
3527 * inter node defragmentation and node local allocations. A lower
3528 * defrag_ratio increases the tendency to do local allocations
3529 * instead of attempting to obtain partial slabs from other nodes.
3530 *
3531 * If the defrag_ratio is set to 0 then kmalloc() always
3532 * returns node local objects. If the ratio is higher then kmalloc()
3533 * may return off node objects because partial slabs are obtained
3534 * from other nodes and filled up.
3535 *
3536 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3537 * (which makes defrag_ratio = 1000) then every (well almost)
3538 * allocation will first attempt to defrag slab caches on other nodes.
3539 * This means scanning over all nodes to look for partial slabs which
3540 * may be expensive if we do it every time we are trying to find a slab
3541 * with available objects.
3542 */
3543 if (!s->remote_node_defrag_ratio ||
3544 get_cycles() % 1024 > s->remote_node_defrag_ratio)
3545 return NULL;
3546
3547 do {
3548 cpuset_mems_cookie = read_mems_allowed_begin();
3549 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3550 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3551 struct kmem_cache_node *n;
3552
3553 n = get_node(s, zone_to_nid(zone));
3554
3555 if (n && cpuset_zone_allowed(zone, pc->flags) &&
3556 n->nr_partial > s->min_partial) {
3557 slab = get_partial_node(s, n, pc);
3558 if (slab) {
3559 /*
3560 * Don't check read_mems_allowed_retry()
3561 * here - if mems_allowed was updated in
3562 * parallel, that was a harmless race
3563 * between allocation and the cpuset
3564 * update
3565 */
3566 return slab;
3567 }
3568 }
3569 }
3570 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3571 #endif /* CONFIG_NUMA */
3572 return NULL;
3573 }
3574
3575 /*
3576 * Get a partial slab, lock it and return it.
3577 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3578 static struct slab *get_partial(struct kmem_cache *s, int node,
3579 struct partial_context *pc)
3580 {
3581 struct slab *slab;
3582 int searchnode = node;
3583
3584 if (node == NUMA_NO_NODE)
3585 searchnode = numa_mem_id();
3586
3587 slab = get_partial_node(s, get_node(s, searchnode), pc);
3588 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3589 return slab;
3590
3591 return get_any_partial(s, pc);
3592 }
3593
3594 #ifndef CONFIG_SLUB_TINY
3595
3596 #ifdef CONFIG_PREEMPTION
3597 /*
3598 * Calculate the next globally unique transaction for disambiguation
3599 * during cmpxchg. The transactions start with the cpu number and are then
3600 * incremented by CONFIG_NR_CPUS.
3601 */
3602 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
3603 #else
3604 /*
3605 * No preemption supported therefore also no need to check for
3606 * different cpus.
3607 */
3608 #define TID_STEP 1
3609 #endif /* CONFIG_PREEMPTION */
3610
next_tid(unsigned long tid)3611 static inline unsigned long next_tid(unsigned long tid)
3612 {
3613 return tid + TID_STEP;
3614 }
3615
3616 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3617 static inline unsigned int tid_to_cpu(unsigned long tid)
3618 {
3619 return tid % TID_STEP;
3620 }
3621
tid_to_event(unsigned long tid)3622 static inline unsigned long tid_to_event(unsigned long tid)
3623 {
3624 return tid / TID_STEP;
3625 }
3626 #endif
3627
init_tid(int cpu)3628 static inline unsigned int init_tid(int cpu)
3629 {
3630 return cpu;
3631 }
3632
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3633 static inline void note_cmpxchg_failure(const char *n,
3634 const struct kmem_cache *s, unsigned long tid)
3635 {
3636 #ifdef SLUB_DEBUG_CMPXCHG
3637 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3638
3639 pr_info("%s %s: cmpxchg redo ", n, s->name);
3640
3641 if (IS_ENABLED(CONFIG_PREEMPTION) &&
3642 tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3643 pr_warn("due to cpu change %d -> %d\n",
3644 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3645 } else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3646 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3647 tid_to_event(tid), tid_to_event(actual_tid));
3648 } else {
3649 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3650 actual_tid, tid, next_tid(tid));
3651 }
3652 #endif
3653 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3654 }
3655
init_kmem_cache_cpus(struct kmem_cache * s)3656 static void init_kmem_cache_cpus(struct kmem_cache *s)
3657 {
3658 #ifdef CONFIG_PREEMPT_RT
3659 /*
3660 * Register lockdep key for non-boot kmem caches to avoid
3661 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3662 */
3663 bool finegrain_lockdep = !init_section_contains(s, 1);
3664 #else
3665 /*
3666 * Don't bother with different lockdep classes for each
3667 * kmem_cache, since we only use local_trylock_irqsave().
3668 */
3669 bool finegrain_lockdep = false;
3670 #endif
3671 int cpu;
3672 struct kmem_cache_cpu *c;
3673
3674 if (finegrain_lockdep)
3675 lockdep_register_key(&s->lock_key);
3676 for_each_possible_cpu(cpu) {
3677 c = per_cpu_ptr(s->cpu_slab, cpu);
3678 local_trylock_init(&c->lock);
3679 if (finegrain_lockdep)
3680 lockdep_set_class(&c->lock, &s->lock_key);
3681 c->tid = init_tid(cpu);
3682 }
3683 }
3684
3685 /*
3686 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3687 * unfreezes the slabs and puts it on the proper list.
3688 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3689 * by the caller.
3690 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3691 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3692 void *freelist)
3693 {
3694 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3695 int free_delta = 0;
3696 void *nextfree, *freelist_iter, *freelist_tail;
3697 int tail = DEACTIVATE_TO_HEAD;
3698 unsigned long flags = 0;
3699 struct slab new;
3700 struct slab old;
3701
3702 if (READ_ONCE(slab->freelist)) {
3703 stat(s, DEACTIVATE_REMOTE_FREES);
3704 tail = DEACTIVATE_TO_TAIL;
3705 }
3706
3707 /*
3708 * Stage one: Count the objects on cpu's freelist as free_delta and
3709 * remember the last object in freelist_tail for later splicing.
3710 */
3711 freelist_tail = NULL;
3712 freelist_iter = freelist;
3713 while (freelist_iter) {
3714 nextfree = get_freepointer(s, freelist_iter);
3715
3716 /*
3717 * If 'nextfree' is invalid, it is possible that the object at
3718 * 'freelist_iter' is already corrupted. So isolate all objects
3719 * starting at 'freelist_iter' by skipping them.
3720 */
3721 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3722 break;
3723
3724 freelist_tail = freelist_iter;
3725 free_delta++;
3726
3727 freelist_iter = nextfree;
3728 }
3729
3730 /*
3731 * Stage two: Unfreeze the slab while splicing the per-cpu
3732 * freelist to the head of slab's freelist.
3733 */
3734 do {
3735 old.freelist = READ_ONCE(slab->freelist);
3736 old.counters = READ_ONCE(slab->counters);
3737 VM_BUG_ON(!old.frozen);
3738
3739 /* Determine target state of the slab */
3740 new.counters = old.counters;
3741 new.frozen = 0;
3742 if (freelist_tail) {
3743 new.inuse -= free_delta;
3744 set_freepointer(s, freelist_tail, old.freelist);
3745 new.freelist = freelist;
3746 } else {
3747 new.freelist = old.freelist;
3748 }
3749 } while (!slab_update_freelist(s, slab,
3750 old.freelist, old.counters,
3751 new.freelist, new.counters,
3752 "unfreezing slab"));
3753
3754 /*
3755 * Stage three: Manipulate the slab list based on the updated state.
3756 */
3757 if (!new.inuse && n->nr_partial >= s->min_partial) {
3758 stat(s, DEACTIVATE_EMPTY);
3759 discard_slab(s, slab);
3760 stat(s, FREE_SLAB);
3761 } else if (new.freelist) {
3762 spin_lock_irqsave(&n->list_lock, flags);
3763 add_partial(n, slab, tail);
3764 spin_unlock_irqrestore(&n->list_lock, flags);
3765 stat(s, tail);
3766 } else {
3767 stat(s, DEACTIVATE_FULL);
3768 }
3769 }
3770
3771 /*
3772 * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3773 * can be acquired without a deadlock before invoking the function.
3774 *
3775 * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3776 * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3777 * and kmalloc() is not used in an unsupported context.
3778 *
3779 * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3780 * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3781 * lockdep_assert() will catch a bug in case:
3782 * #1
3783 * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3784 * or
3785 * #2
3786 * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3787 *
3788 * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3789 * disabled context. The lock will always be acquired and if needed it
3790 * block and sleep until the lock is available.
3791 * #1 is possible in !PREEMPT_RT only.
3792 * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3793 * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3794 * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3795 *
3796 * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3797 */
3798 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3799 #define local_lock_cpu_slab(s, flags) \
3800 local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3801 #else
3802 #define local_lock_cpu_slab(s, flags) \
3803 do { \
3804 bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3805 lockdep_assert(__l); \
3806 } while (0)
3807 #endif
3808
3809 #define local_unlock_cpu_slab(s, flags) \
3810 local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3811
3812 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3813 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3814 {
3815 struct kmem_cache_node *n = NULL, *n2 = NULL;
3816 struct slab *slab, *slab_to_discard = NULL;
3817 unsigned long flags = 0;
3818
3819 while (partial_slab) {
3820 slab = partial_slab;
3821 partial_slab = slab->next;
3822
3823 n2 = get_node(s, slab_nid(slab));
3824 if (n != n2) {
3825 if (n)
3826 spin_unlock_irqrestore(&n->list_lock, flags);
3827
3828 n = n2;
3829 spin_lock_irqsave(&n->list_lock, flags);
3830 }
3831
3832 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3833 slab->next = slab_to_discard;
3834 slab_to_discard = slab;
3835 } else {
3836 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3837 stat(s, FREE_ADD_PARTIAL);
3838 }
3839 }
3840
3841 if (n)
3842 spin_unlock_irqrestore(&n->list_lock, flags);
3843
3844 while (slab_to_discard) {
3845 slab = slab_to_discard;
3846 slab_to_discard = slab_to_discard->next;
3847
3848 stat(s, DEACTIVATE_EMPTY);
3849 discard_slab(s, slab);
3850 stat(s, FREE_SLAB);
3851 }
3852 }
3853
3854 /*
3855 * Put all the cpu partial slabs to the node partial list.
3856 */
put_partials(struct kmem_cache * s)3857 static void put_partials(struct kmem_cache *s)
3858 {
3859 struct slab *partial_slab;
3860 unsigned long flags;
3861
3862 local_lock_irqsave(&s->cpu_slab->lock, flags);
3863 partial_slab = this_cpu_read(s->cpu_slab->partial);
3864 this_cpu_write(s->cpu_slab->partial, NULL);
3865 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3866
3867 if (partial_slab)
3868 __put_partials(s, partial_slab);
3869 }
3870
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3871 static void put_partials_cpu(struct kmem_cache *s,
3872 struct kmem_cache_cpu *c)
3873 {
3874 struct slab *partial_slab;
3875
3876 partial_slab = slub_percpu_partial(c);
3877 c->partial = NULL;
3878
3879 if (partial_slab)
3880 __put_partials(s, partial_slab);
3881 }
3882
3883 /*
3884 * Put a slab into a partial slab slot if available.
3885 *
3886 * If we did not find a slot then simply move all the partials to the
3887 * per node partial list.
3888 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3889 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3890 {
3891 struct slab *oldslab;
3892 struct slab *slab_to_put = NULL;
3893 unsigned long flags;
3894 int slabs = 0;
3895
3896 local_lock_cpu_slab(s, flags);
3897
3898 oldslab = this_cpu_read(s->cpu_slab->partial);
3899
3900 if (oldslab) {
3901 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3902 /*
3903 * Partial array is full. Move the existing set to the
3904 * per node partial list. Postpone the actual unfreezing
3905 * outside of the critical section.
3906 */
3907 slab_to_put = oldslab;
3908 oldslab = NULL;
3909 } else {
3910 slabs = oldslab->slabs;
3911 }
3912 }
3913
3914 slabs++;
3915
3916 slab->slabs = slabs;
3917 slab->next = oldslab;
3918
3919 this_cpu_write(s->cpu_slab->partial, slab);
3920
3921 local_unlock_cpu_slab(s, flags);
3922
3923 if (slab_to_put) {
3924 __put_partials(s, slab_to_put);
3925 stat(s, CPU_PARTIAL_DRAIN);
3926 }
3927 }
3928
3929 #else /* CONFIG_SLUB_CPU_PARTIAL */
3930
put_partials(struct kmem_cache * s)3931 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3932 static inline void put_partials_cpu(struct kmem_cache *s,
3933 struct kmem_cache_cpu *c) { }
3934
3935 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3936
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3937 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3938 {
3939 unsigned long flags;
3940 struct slab *slab;
3941 void *freelist;
3942
3943 local_lock_irqsave(&s->cpu_slab->lock, flags);
3944
3945 slab = c->slab;
3946 freelist = c->freelist;
3947
3948 c->slab = NULL;
3949 c->freelist = NULL;
3950 c->tid = next_tid(c->tid);
3951
3952 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3953
3954 if (slab) {
3955 deactivate_slab(s, slab, freelist);
3956 stat(s, CPUSLAB_FLUSH);
3957 }
3958 }
3959
__flush_cpu_slab(struct kmem_cache * s,int cpu)3960 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3961 {
3962 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3963 void *freelist = c->freelist;
3964 struct slab *slab = c->slab;
3965
3966 c->slab = NULL;
3967 c->freelist = NULL;
3968 c->tid = next_tid(c->tid);
3969
3970 if (slab) {
3971 deactivate_slab(s, slab, freelist);
3972 stat(s, CPUSLAB_FLUSH);
3973 }
3974
3975 put_partials_cpu(s, c);
3976 }
3977
flush_this_cpu_slab(struct kmem_cache * s)3978 static inline void flush_this_cpu_slab(struct kmem_cache *s)
3979 {
3980 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
3981
3982 if (c->slab)
3983 flush_slab(s, c);
3984
3985 put_partials(s);
3986 }
3987
has_cpu_slab(int cpu,struct kmem_cache * s)3988 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3989 {
3990 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3991
3992 return c->slab || slub_percpu_partial(c);
3993 }
3994
3995 #else /* CONFIG_SLUB_TINY */
__flush_cpu_slab(struct kmem_cache * s,int cpu)3996 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
has_cpu_slab(int cpu,struct kmem_cache * s)3997 static inline bool has_cpu_slab(int cpu, struct kmem_cache *s) { return false; }
flush_this_cpu_slab(struct kmem_cache * s)3998 static inline void flush_this_cpu_slab(struct kmem_cache *s) { }
3999 #endif /* CONFIG_SLUB_TINY */
4000
has_pcs_used(int cpu,struct kmem_cache * s)4001 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4002 {
4003 struct slub_percpu_sheaves *pcs;
4004
4005 if (!s->cpu_sheaves)
4006 return false;
4007
4008 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4009
4010 return (pcs->spare || pcs->rcu_free || pcs->main->size);
4011 }
4012
4013 /*
4014 * Flush cpu slab.
4015 *
4016 * Called from CPU work handler with migration disabled.
4017 */
flush_cpu_slab(struct work_struct * w)4018 static void flush_cpu_slab(struct work_struct *w)
4019 {
4020 struct kmem_cache *s;
4021 struct slub_flush_work *sfw;
4022
4023 sfw = container_of(w, struct slub_flush_work, work);
4024
4025 s = sfw->s;
4026
4027 if (s->cpu_sheaves)
4028 pcs_flush_all(s);
4029
4030 flush_this_cpu_slab(s);
4031 }
4032
flush_all_cpus_locked(struct kmem_cache * s)4033 static void flush_all_cpus_locked(struct kmem_cache *s)
4034 {
4035 struct slub_flush_work *sfw;
4036 unsigned int cpu;
4037
4038 lockdep_assert_cpus_held();
4039 mutex_lock(&flush_lock);
4040
4041 for_each_online_cpu(cpu) {
4042 sfw = &per_cpu(slub_flush, cpu);
4043 if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4044 sfw->skip = true;
4045 continue;
4046 }
4047 INIT_WORK(&sfw->work, flush_cpu_slab);
4048 sfw->skip = false;
4049 sfw->s = s;
4050 queue_work_on(cpu, flushwq, &sfw->work);
4051 }
4052
4053 for_each_online_cpu(cpu) {
4054 sfw = &per_cpu(slub_flush, cpu);
4055 if (sfw->skip)
4056 continue;
4057 flush_work(&sfw->work);
4058 }
4059
4060 mutex_unlock(&flush_lock);
4061 }
4062
flush_all(struct kmem_cache * s)4063 static void flush_all(struct kmem_cache *s)
4064 {
4065 cpus_read_lock();
4066 flush_all_cpus_locked(s);
4067 cpus_read_unlock();
4068 }
4069
flush_rcu_sheaf(struct work_struct * w)4070 static void flush_rcu_sheaf(struct work_struct *w)
4071 {
4072 struct slub_percpu_sheaves *pcs;
4073 struct slab_sheaf *rcu_free;
4074 struct slub_flush_work *sfw;
4075 struct kmem_cache *s;
4076
4077 sfw = container_of(w, struct slub_flush_work, work);
4078 s = sfw->s;
4079
4080 local_lock(&s->cpu_sheaves->lock);
4081 pcs = this_cpu_ptr(s->cpu_sheaves);
4082
4083 rcu_free = pcs->rcu_free;
4084 pcs->rcu_free = NULL;
4085
4086 local_unlock(&s->cpu_sheaves->lock);
4087
4088 if (rcu_free)
4089 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4090 }
4091
4092
4093 /* needed for kvfree_rcu_barrier() */
flush_all_rcu_sheaves(void)4094 void flush_all_rcu_sheaves(void)
4095 {
4096 struct slub_flush_work *sfw;
4097 struct kmem_cache *s;
4098 unsigned int cpu;
4099
4100 cpus_read_lock();
4101 mutex_lock(&slab_mutex);
4102
4103 list_for_each_entry(s, &slab_caches, list) {
4104 if (!s->cpu_sheaves)
4105 continue;
4106
4107 mutex_lock(&flush_lock);
4108
4109 for_each_online_cpu(cpu) {
4110 sfw = &per_cpu(slub_flush, cpu);
4111
4112 /*
4113 * we don't check if rcu_free sheaf exists - racing
4114 * __kfree_rcu_sheaf() might have just removed it.
4115 * by executing flush_rcu_sheaf() on the cpu we make
4116 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4117 */
4118
4119 INIT_WORK(&sfw->work, flush_rcu_sheaf);
4120 sfw->s = s;
4121 queue_work_on(cpu, flushwq, &sfw->work);
4122 }
4123
4124 for_each_online_cpu(cpu) {
4125 sfw = &per_cpu(slub_flush, cpu);
4126 flush_work(&sfw->work);
4127 }
4128
4129 mutex_unlock(&flush_lock);
4130 }
4131
4132 mutex_unlock(&slab_mutex);
4133 cpus_read_unlock();
4134
4135 rcu_barrier();
4136 }
4137
4138 /*
4139 * Use the cpu notifier to insure that the cpu slabs are flushed when
4140 * necessary.
4141 */
slub_cpu_dead(unsigned int cpu)4142 static int slub_cpu_dead(unsigned int cpu)
4143 {
4144 struct kmem_cache *s;
4145
4146 mutex_lock(&slab_mutex);
4147 list_for_each_entry(s, &slab_caches, list) {
4148 __flush_cpu_slab(s, cpu);
4149 if (s->cpu_sheaves)
4150 __pcs_flush_all_cpu(s, cpu);
4151 }
4152 mutex_unlock(&slab_mutex);
4153 return 0;
4154 }
4155
4156 /*
4157 * Check if the objects in a per cpu structure fit numa
4158 * locality expectations.
4159 */
node_match(struct slab * slab,int node)4160 static inline int node_match(struct slab *slab, int node)
4161 {
4162 #ifdef CONFIG_NUMA
4163 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4164 return 0;
4165 #endif
4166 return 1;
4167 }
4168
4169 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)4170 static int count_free(struct slab *slab)
4171 {
4172 return slab->objects - slab->inuse;
4173 }
4174
node_nr_objs(struct kmem_cache_node * n)4175 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4176 {
4177 return atomic_long_read(&n->total_objects);
4178 }
4179
4180 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)4181 static inline bool free_debug_processing(struct kmem_cache *s,
4182 struct slab *slab, void *head, void *tail, int *bulk_cnt,
4183 unsigned long addr, depot_stack_handle_t handle)
4184 {
4185 bool checks_ok = false;
4186 void *object = head;
4187 int cnt = 0;
4188
4189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4190 if (!check_slab(s, slab))
4191 goto out;
4192 }
4193
4194 if (slab->inuse < *bulk_cnt) {
4195 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4196 slab->inuse, *bulk_cnt);
4197 goto out;
4198 }
4199
4200 next_object:
4201
4202 if (++cnt > *bulk_cnt)
4203 goto out_cnt;
4204
4205 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4206 if (!free_consistency_checks(s, slab, object, addr))
4207 goto out;
4208 }
4209
4210 if (s->flags & SLAB_STORE_USER)
4211 set_track_update(s, object, TRACK_FREE, addr, handle);
4212 trace(s, slab, object, 0);
4213 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4214 init_object(s, object, SLUB_RED_INACTIVE);
4215
4216 /* Reached end of constructed freelist yet? */
4217 if (object != tail) {
4218 object = get_freepointer(s, object);
4219 goto next_object;
4220 }
4221 checks_ok = true;
4222
4223 out_cnt:
4224 if (cnt != *bulk_cnt) {
4225 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4226 *bulk_cnt, cnt);
4227 *bulk_cnt = cnt;
4228 }
4229
4230 out:
4231
4232 if (!checks_ok)
4233 slab_fix(s, "Object at 0x%p not freed", object);
4234
4235 return checks_ok;
4236 }
4237 #endif /* CONFIG_SLUB_DEBUG */
4238
4239 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))4240 static unsigned long count_partial(struct kmem_cache_node *n,
4241 int (*get_count)(struct slab *))
4242 {
4243 unsigned long flags;
4244 unsigned long x = 0;
4245 struct slab *slab;
4246
4247 spin_lock_irqsave(&n->list_lock, flags);
4248 list_for_each_entry(slab, &n->partial, slab_list)
4249 x += get_count(slab);
4250 spin_unlock_irqrestore(&n->list_lock, flags);
4251 return x;
4252 }
4253 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4254
4255 #ifdef CONFIG_SLUB_DEBUG
4256 #define MAX_PARTIAL_TO_SCAN 10000
4257
count_partial_free_approx(struct kmem_cache_node * n)4258 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4259 {
4260 unsigned long flags;
4261 unsigned long x = 0;
4262 struct slab *slab;
4263
4264 spin_lock_irqsave(&n->list_lock, flags);
4265 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4266 list_for_each_entry(slab, &n->partial, slab_list)
4267 x += slab->objects - slab->inuse;
4268 } else {
4269 /*
4270 * For a long list, approximate the total count of objects in
4271 * it to meet the limit on the number of slabs to scan.
4272 * Scan from both the list's head and tail for better accuracy.
4273 */
4274 unsigned long scanned = 0;
4275
4276 list_for_each_entry(slab, &n->partial, slab_list) {
4277 x += slab->objects - slab->inuse;
4278 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4279 break;
4280 }
4281 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4282 x += slab->objects - slab->inuse;
4283 if (++scanned == MAX_PARTIAL_TO_SCAN)
4284 break;
4285 }
4286 x = mult_frac(x, n->nr_partial, scanned);
4287 x = min(x, node_nr_objs(n));
4288 }
4289 spin_unlock_irqrestore(&n->list_lock, flags);
4290 return x;
4291 }
4292
4293 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4294 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4295 {
4296 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4297 DEFAULT_RATELIMIT_BURST);
4298 int cpu = raw_smp_processor_id();
4299 int node;
4300 struct kmem_cache_node *n;
4301
4302 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4303 return;
4304
4305 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4306 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4307 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4308 s->name, s->object_size, s->size, oo_order(s->oo),
4309 oo_order(s->min));
4310
4311 if (oo_order(s->min) > get_order(s->object_size))
4312 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
4313 s->name);
4314
4315 for_each_kmem_cache_node(s, node, n) {
4316 unsigned long nr_slabs;
4317 unsigned long nr_objs;
4318 unsigned long nr_free;
4319
4320 nr_free = count_partial_free_approx(n);
4321 nr_slabs = node_nr_slabs(n);
4322 nr_objs = node_nr_objs(n);
4323
4324 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
4325 node, nr_slabs, nr_objs, nr_free);
4326 }
4327 }
4328 #else /* CONFIG_SLUB_DEBUG */
4329 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4330 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4331 #endif
4332
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)4333 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4334 {
4335 if (unlikely(slab_test_pfmemalloc(slab)))
4336 return gfp_pfmemalloc_allowed(gfpflags);
4337
4338 return true;
4339 }
4340
4341 #ifndef CONFIG_SLUB_TINY
4342 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)4343 __update_cpu_freelist_fast(struct kmem_cache *s,
4344 void *freelist_old, void *freelist_new,
4345 unsigned long tid)
4346 {
4347 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
4348 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
4349
4350 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
4351 &old.full, new.full);
4352 }
4353
4354 /*
4355 * Check the slab->freelist and either transfer the freelist to the
4356 * per cpu freelist or deactivate the slab.
4357 *
4358 * The slab is still frozen if the return value is not NULL.
4359 *
4360 * If this function returns NULL then the slab has been unfrozen.
4361 */
get_freelist(struct kmem_cache * s,struct slab * slab)4362 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4363 {
4364 struct slab new;
4365 unsigned long counters;
4366 void *freelist;
4367
4368 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4369
4370 do {
4371 freelist = slab->freelist;
4372 counters = slab->counters;
4373
4374 new.counters = counters;
4375
4376 new.inuse = slab->objects;
4377 new.frozen = freelist != NULL;
4378
4379 } while (!__slab_update_freelist(s, slab,
4380 freelist, counters,
4381 NULL, new.counters,
4382 "get_freelist"));
4383
4384 return freelist;
4385 }
4386
4387 /*
4388 * Freeze the partial slab and return the pointer to the freelist.
4389 */
freeze_slab(struct kmem_cache * s,struct slab * slab)4390 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4391 {
4392 struct slab new;
4393 unsigned long counters;
4394 void *freelist;
4395
4396 do {
4397 freelist = slab->freelist;
4398 counters = slab->counters;
4399
4400 new.counters = counters;
4401 VM_BUG_ON(new.frozen);
4402
4403 new.inuse = slab->objects;
4404 new.frozen = 1;
4405
4406 } while (!slab_update_freelist(s, slab,
4407 freelist, counters,
4408 NULL, new.counters,
4409 "freeze_slab"));
4410
4411 return freelist;
4412 }
4413
4414 /*
4415 * Slow path. The lockless freelist is empty or we need to perform
4416 * debugging duties.
4417 *
4418 * Processing is still very fast if new objects have been freed to the
4419 * regular freelist. In that case we simply take over the regular freelist
4420 * as the lockless freelist and zap the regular freelist.
4421 *
4422 * If that is not working then we fall back to the partial lists. We take the
4423 * first element of the freelist as the object to allocate now and move the
4424 * rest of the freelist to the lockless freelist.
4425 *
4426 * And if we were unable to get a new slab from the partial slab lists then
4427 * we need to allocate a new slab. This is the slowest path since it involves
4428 * a call to the page allocator and the setup of a new slab.
4429 *
4430 * Version of __slab_alloc to use when we know that preemption is
4431 * already disabled (which is the case for bulk allocation).
4432 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4433 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4434 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4435 {
4436 bool allow_spin = gfpflags_allow_spinning(gfpflags);
4437 void *freelist;
4438 struct slab *slab;
4439 unsigned long flags;
4440 struct partial_context pc;
4441 bool try_thisnode = true;
4442
4443 stat(s, ALLOC_SLOWPATH);
4444
4445 reread_slab:
4446
4447 slab = READ_ONCE(c->slab);
4448 if (!slab) {
4449 /*
4450 * if the node is not online or has no normal memory, just
4451 * ignore the node constraint
4452 */
4453 if (unlikely(node != NUMA_NO_NODE &&
4454 !node_isset(node, slab_nodes)))
4455 node = NUMA_NO_NODE;
4456 goto new_slab;
4457 }
4458
4459 if (unlikely(!node_match(slab, node))) {
4460 /*
4461 * same as above but node_match() being false already
4462 * implies node != NUMA_NO_NODE.
4463 *
4464 * We don't strictly honor pfmemalloc and NUMA preferences
4465 * when !allow_spin because:
4466 *
4467 * 1. Most kmalloc() users allocate objects on the local node,
4468 * so kmalloc_nolock() tries not to interfere with them by
4469 * deactivating the cpu slab.
4470 *
4471 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4472 * unnecessary slab allocations even when n->partial list
4473 * is not empty.
4474 */
4475 if (!node_isset(node, slab_nodes) ||
4476 !allow_spin) {
4477 node = NUMA_NO_NODE;
4478 } else {
4479 stat(s, ALLOC_NODE_MISMATCH);
4480 goto deactivate_slab;
4481 }
4482 }
4483
4484 /*
4485 * By rights, we should be searching for a slab page that was
4486 * PFMEMALLOC but right now, we are losing the pfmemalloc
4487 * information when the page leaves the per-cpu allocator
4488 */
4489 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4490 goto deactivate_slab;
4491
4492 /* must check again c->slab in case we got preempted and it changed */
4493 local_lock_cpu_slab(s, flags);
4494
4495 if (unlikely(slab != c->slab)) {
4496 local_unlock_cpu_slab(s, flags);
4497 goto reread_slab;
4498 }
4499 freelist = c->freelist;
4500 if (freelist)
4501 goto load_freelist;
4502
4503 freelist = get_freelist(s, slab);
4504
4505 if (!freelist) {
4506 c->slab = NULL;
4507 c->tid = next_tid(c->tid);
4508 local_unlock_cpu_slab(s, flags);
4509 stat(s, DEACTIVATE_BYPASS);
4510 goto new_slab;
4511 }
4512
4513 stat(s, ALLOC_REFILL);
4514
4515 load_freelist:
4516
4517 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4518
4519 /*
4520 * freelist is pointing to the list of objects to be used.
4521 * slab is pointing to the slab from which the objects are obtained.
4522 * That slab must be frozen for per cpu allocations to work.
4523 */
4524 VM_BUG_ON(!c->slab->frozen);
4525 c->freelist = get_freepointer(s, freelist);
4526 c->tid = next_tid(c->tid);
4527 local_unlock_cpu_slab(s, flags);
4528 return freelist;
4529
4530 deactivate_slab:
4531
4532 local_lock_cpu_slab(s, flags);
4533 if (slab != c->slab) {
4534 local_unlock_cpu_slab(s, flags);
4535 goto reread_slab;
4536 }
4537 freelist = c->freelist;
4538 c->slab = NULL;
4539 c->freelist = NULL;
4540 c->tid = next_tid(c->tid);
4541 local_unlock_cpu_slab(s, flags);
4542 deactivate_slab(s, slab, freelist);
4543
4544 new_slab:
4545
4546 #ifdef CONFIG_SLUB_CPU_PARTIAL
4547 while (slub_percpu_partial(c)) {
4548 local_lock_cpu_slab(s, flags);
4549 if (unlikely(c->slab)) {
4550 local_unlock_cpu_slab(s, flags);
4551 goto reread_slab;
4552 }
4553 if (unlikely(!slub_percpu_partial(c))) {
4554 local_unlock_cpu_slab(s, flags);
4555 /* we were preempted and partial list got empty */
4556 goto new_objects;
4557 }
4558
4559 slab = slub_percpu_partial(c);
4560 slub_set_percpu_partial(c, slab);
4561
4562 if (likely(node_match(slab, node) &&
4563 pfmemalloc_match(slab, gfpflags)) ||
4564 !allow_spin) {
4565 c->slab = slab;
4566 freelist = get_freelist(s, slab);
4567 VM_BUG_ON(!freelist);
4568 stat(s, CPU_PARTIAL_ALLOC);
4569 goto load_freelist;
4570 }
4571
4572 local_unlock_cpu_slab(s, flags);
4573
4574 slab->next = NULL;
4575 __put_partials(s, slab);
4576 }
4577 #endif
4578
4579 new_objects:
4580
4581 pc.flags = gfpflags;
4582 /*
4583 * When a preferred node is indicated but no __GFP_THISNODE
4584 *
4585 * 1) try to get a partial slab from target node only by having
4586 * __GFP_THISNODE in pc.flags for get_partial()
4587 * 2) if 1) failed, try to allocate a new slab from target node with
4588 * GPF_NOWAIT | __GFP_THISNODE opportunistically
4589 * 3) if 2) failed, retry with original gfpflags which will allow
4590 * get_partial() try partial lists of other nodes before potentially
4591 * allocating new page from other nodes
4592 */
4593 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4594 && try_thisnode)) {
4595 if (unlikely(!allow_spin))
4596 /* Do not upgrade gfp to NOWAIT from more restrictive mode */
4597 pc.flags = gfpflags | __GFP_THISNODE;
4598 else
4599 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4600 }
4601
4602 pc.orig_size = orig_size;
4603 slab = get_partial(s, node, &pc);
4604 if (slab) {
4605 if (kmem_cache_debug(s)) {
4606 freelist = pc.object;
4607 /*
4608 * For debug caches here we had to go through
4609 * alloc_single_from_partial() so just store the
4610 * tracking info and return the object.
4611 *
4612 * Due to disabled preemption we need to disallow
4613 * blocking. The flags are further adjusted by
4614 * gfp_nested_mask() in stack_depot itself.
4615 */
4616 if (s->flags & SLAB_STORE_USER)
4617 set_track(s, freelist, TRACK_ALLOC, addr,
4618 gfpflags & ~(__GFP_DIRECT_RECLAIM));
4619
4620 return freelist;
4621 }
4622
4623 freelist = freeze_slab(s, slab);
4624 goto retry_load_slab;
4625 }
4626
4627 slub_put_cpu_ptr(s->cpu_slab);
4628 slab = new_slab(s, pc.flags, node);
4629 c = slub_get_cpu_ptr(s->cpu_slab);
4630
4631 if (unlikely(!slab)) {
4632 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4633 && try_thisnode) {
4634 try_thisnode = false;
4635 goto new_objects;
4636 }
4637 slab_out_of_memory(s, gfpflags, node);
4638 return NULL;
4639 }
4640
4641 stat(s, ALLOC_SLAB);
4642
4643 if (kmem_cache_debug(s)) {
4644 freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4645
4646 if (unlikely(!freelist))
4647 goto new_objects;
4648
4649 if (s->flags & SLAB_STORE_USER)
4650 set_track(s, freelist, TRACK_ALLOC, addr,
4651 gfpflags & ~(__GFP_DIRECT_RECLAIM));
4652
4653 return freelist;
4654 }
4655
4656 /*
4657 * No other reference to the slab yet so we can
4658 * muck around with it freely without cmpxchg
4659 */
4660 freelist = slab->freelist;
4661 slab->freelist = NULL;
4662 slab->inuse = slab->objects;
4663 slab->frozen = 1;
4664
4665 inc_slabs_node(s, slab_nid(slab), slab->objects);
4666
4667 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4668 /*
4669 * For !pfmemalloc_match() case we don't load freelist so that
4670 * we don't make further mismatched allocations easier.
4671 */
4672 deactivate_slab(s, slab, get_freepointer(s, freelist));
4673 return freelist;
4674 }
4675
4676 retry_load_slab:
4677
4678 local_lock_cpu_slab(s, flags);
4679 if (unlikely(c->slab)) {
4680 void *flush_freelist = c->freelist;
4681 struct slab *flush_slab = c->slab;
4682
4683 c->slab = NULL;
4684 c->freelist = NULL;
4685 c->tid = next_tid(c->tid);
4686
4687 local_unlock_cpu_slab(s, flags);
4688
4689 if (unlikely(!allow_spin)) {
4690 /* Reentrant slub cannot take locks, defer */
4691 defer_deactivate_slab(flush_slab, flush_freelist);
4692 } else {
4693 deactivate_slab(s, flush_slab, flush_freelist);
4694 }
4695
4696 stat(s, CPUSLAB_FLUSH);
4697
4698 goto retry_load_slab;
4699 }
4700 c->slab = slab;
4701
4702 goto load_freelist;
4703 }
4704 /*
4705 * We disallow kprobes in ___slab_alloc() to prevent reentrance
4706 *
4707 * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4708 * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4709 * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4710 * manipulating c->freelist without lock.
4711 *
4712 * This does not prevent kprobe in functions called from ___slab_alloc() such as
4713 * local_lock_irqsave() itself, and that is fine, we only need to protect the
4714 * c->freelist manipulation in ___slab_alloc() itself.
4715 */
4716 NOKPROBE_SYMBOL(___slab_alloc);
4717
4718 /*
4719 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4720 * disabled. Compensates for possible cpu changes by refetching the per cpu area
4721 * pointer.
4722 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4723 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4724 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4725 {
4726 void *p;
4727
4728 #ifdef CONFIG_PREEMPT_COUNT
4729 /*
4730 * We may have been preempted and rescheduled on a different
4731 * cpu before disabling preemption. Need to reload cpu area
4732 * pointer.
4733 */
4734 c = slub_get_cpu_ptr(s->cpu_slab);
4735 #endif
4736 if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4737 if (local_lock_is_locked(&s->cpu_slab->lock)) {
4738 /*
4739 * EBUSY is an internal signal to kmalloc_nolock() to
4740 * retry a different bucket. It's not propagated
4741 * to the caller.
4742 */
4743 p = ERR_PTR(-EBUSY);
4744 goto out;
4745 }
4746 }
4747 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4748 out:
4749 #ifdef CONFIG_PREEMPT_COUNT
4750 slub_put_cpu_ptr(s->cpu_slab);
4751 #endif
4752 return p;
4753 }
4754
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4755 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4756 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4757 {
4758 struct kmem_cache_cpu *c;
4759 struct slab *slab;
4760 unsigned long tid;
4761 void *object;
4762
4763 redo:
4764 /*
4765 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4766 * enabled. We may switch back and forth between cpus while
4767 * reading from one cpu area. That does not matter as long
4768 * as we end up on the original cpu again when doing the cmpxchg.
4769 *
4770 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4771 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4772 * the tid. If we are preempted and switched to another cpu between the
4773 * two reads, it's OK as the two are still associated with the same cpu
4774 * and cmpxchg later will validate the cpu.
4775 */
4776 c = raw_cpu_ptr(s->cpu_slab);
4777 tid = READ_ONCE(c->tid);
4778
4779 /*
4780 * Irqless object alloc/free algorithm used here depends on sequence
4781 * of fetching cpu_slab's data. tid should be fetched before anything
4782 * on c to guarantee that object and slab associated with previous tid
4783 * won't be used with current tid. If we fetch tid first, object and
4784 * slab could be one associated with next tid and our alloc/free
4785 * request will be failed. In this case, we will retry. So, no problem.
4786 */
4787 barrier();
4788
4789 /*
4790 * The transaction ids are globally unique per cpu and per operation on
4791 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4792 * occurs on the right processor and that there was no operation on the
4793 * linked list in between.
4794 */
4795
4796 object = c->freelist;
4797 slab = c->slab;
4798
4799 #ifdef CONFIG_NUMA
4800 if (static_branch_unlikely(&strict_numa) &&
4801 node == NUMA_NO_NODE) {
4802
4803 struct mempolicy *mpol = current->mempolicy;
4804
4805 if (mpol) {
4806 /*
4807 * Special BIND rule support. If existing slab
4808 * is in permitted set then do not redirect
4809 * to a particular node.
4810 * Otherwise we apply the memory policy to get
4811 * the node we need to allocate on.
4812 */
4813 if (mpol->mode != MPOL_BIND || !slab ||
4814 !node_isset(slab_nid(slab), mpol->nodes))
4815
4816 node = mempolicy_slab_node();
4817 }
4818 }
4819 #endif
4820
4821 if (!USE_LOCKLESS_FAST_PATH() ||
4822 unlikely(!object || !slab || !node_match(slab, node))) {
4823 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4824 } else {
4825 void *next_object = get_freepointer_safe(s, object);
4826
4827 /*
4828 * The cmpxchg will only match if there was no additional
4829 * operation and if we are on the right processor.
4830 *
4831 * The cmpxchg does the following atomically (without lock
4832 * semantics!)
4833 * 1. Relocate first pointer to the current per cpu area.
4834 * 2. Verify that tid and freelist have not been changed
4835 * 3. If they were not changed replace tid and freelist
4836 *
4837 * Since this is without lock semantics the protection is only
4838 * against code executing on this cpu *not* from access by
4839 * other cpus.
4840 */
4841 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4842 note_cmpxchg_failure("slab_alloc", s, tid);
4843 goto redo;
4844 }
4845 prefetch_freepointer(s, next_object);
4846 stat(s, ALLOC_FASTPATH);
4847 }
4848
4849 return object;
4850 }
4851 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4852 static void *__slab_alloc_node(struct kmem_cache *s,
4853 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4854 {
4855 struct partial_context pc;
4856 struct slab *slab;
4857 void *object;
4858
4859 pc.flags = gfpflags;
4860 pc.orig_size = orig_size;
4861 slab = get_partial(s, node, &pc);
4862
4863 if (slab)
4864 return pc.object;
4865
4866 slab = new_slab(s, gfpflags, node);
4867 if (unlikely(!slab)) {
4868 slab_out_of_memory(s, gfpflags, node);
4869 return NULL;
4870 }
4871
4872 object = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4873
4874 return object;
4875 }
4876 #endif /* CONFIG_SLUB_TINY */
4877
4878 /*
4879 * If the object has been wiped upon free, make sure it's fully initialized by
4880 * zeroing out freelist pointer.
4881 *
4882 * Note that we also wipe custom freelist pointers.
4883 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4884 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4885 void *obj)
4886 {
4887 if (unlikely(slab_want_init_on_free(s)) && obj &&
4888 !freeptr_outside_object(s))
4889 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4890 0, sizeof(void *));
4891 }
4892
4893 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4894 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4895 {
4896 flags &= gfp_allowed_mask;
4897
4898 might_alloc(flags);
4899
4900 if (unlikely(should_failslab(s, flags)))
4901 return NULL;
4902
4903 return s;
4904 }
4905
4906 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4907 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4908 gfp_t flags, size_t size, void **p, bool init,
4909 unsigned int orig_size)
4910 {
4911 unsigned int zero_size = s->object_size;
4912 bool kasan_init = init;
4913 size_t i;
4914 gfp_t init_flags = flags & gfp_allowed_mask;
4915
4916 /*
4917 * For kmalloc object, the allocated memory size(object_size) is likely
4918 * larger than the requested size(orig_size). If redzone check is
4919 * enabled for the extra space, don't zero it, as it will be redzoned
4920 * soon. The redzone operation for this extra space could be seen as a
4921 * replacement of current poisoning under certain debug option, and
4922 * won't break other sanity checks.
4923 */
4924 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4925 (s->flags & SLAB_KMALLOC))
4926 zero_size = orig_size;
4927
4928 /*
4929 * When slab_debug is enabled, avoid memory initialization integrated
4930 * into KASAN and instead zero out the memory via the memset below with
4931 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4932 * cause false-positive reports. This does not lead to a performance
4933 * penalty on production builds, as slab_debug is not intended to be
4934 * enabled there.
4935 */
4936 if (__slub_debug_enabled())
4937 kasan_init = false;
4938
4939 /*
4940 * As memory initialization might be integrated into KASAN,
4941 * kasan_slab_alloc and initialization memset must be
4942 * kept together to avoid discrepancies in behavior.
4943 *
4944 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4945 */
4946 for (i = 0; i < size; i++) {
4947 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4948 if (p[i] && init && (!kasan_init ||
4949 !kasan_has_integrated_init()))
4950 memset(p[i], 0, zero_size);
4951 if (gfpflags_allow_spinning(flags))
4952 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4953 s->flags, init_flags);
4954 kmsan_slab_alloc(s, p[i], init_flags);
4955 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4956 }
4957
4958 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4959 }
4960
4961 /*
4962 * Replace the empty main sheaf with a (at least partially) full sheaf.
4963 *
4964 * Must be called with the cpu_sheaves local lock locked. If successful, returns
4965 * the pcs pointer and the local lock locked (possibly on a different cpu than
4966 * initially called). If not successful, returns NULL and the local lock
4967 * unlocked.
4968 */
4969 static struct slub_percpu_sheaves *
__pcs_replace_empty_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,gfp_t gfp)4970 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4971 {
4972 struct slab_sheaf *empty = NULL;
4973 struct slab_sheaf *full;
4974 struct node_barn *barn;
4975 bool can_alloc;
4976
4977 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
4978
4979 if (pcs->spare && pcs->spare->size > 0) {
4980 swap(pcs->main, pcs->spare);
4981 return pcs;
4982 }
4983
4984 barn = get_barn(s);
4985
4986 full = barn_replace_empty_sheaf(barn, pcs->main);
4987
4988 if (full) {
4989 stat(s, BARN_GET);
4990 pcs->main = full;
4991 return pcs;
4992 }
4993
4994 stat(s, BARN_GET_FAIL);
4995
4996 can_alloc = gfpflags_allow_blocking(gfp);
4997
4998 if (can_alloc) {
4999 if (pcs->spare) {
5000 empty = pcs->spare;
5001 pcs->spare = NULL;
5002 } else {
5003 empty = barn_get_empty_sheaf(barn);
5004 }
5005 }
5006
5007 local_unlock(&s->cpu_sheaves->lock);
5008
5009 if (!can_alloc)
5010 return NULL;
5011
5012 if (empty) {
5013 if (!refill_sheaf(s, empty, gfp)) {
5014 full = empty;
5015 } else {
5016 /*
5017 * we must be very low on memory so don't bother
5018 * with the barn
5019 */
5020 free_empty_sheaf(s, empty);
5021 }
5022 } else {
5023 full = alloc_full_sheaf(s, gfp);
5024 }
5025
5026 if (!full)
5027 return NULL;
5028
5029 /*
5030 * we can reach here only when gfpflags_allow_blocking
5031 * so this must not be an irq
5032 */
5033 local_lock(&s->cpu_sheaves->lock);
5034 pcs = this_cpu_ptr(s->cpu_sheaves);
5035
5036 /*
5037 * If we are returning empty sheaf, we either got it from the
5038 * barn or had to allocate one. If we are returning a full
5039 * sheaf, it's due to racing or being migrated to a different
5040 * cpu. Breaching the barn's sheaf limits should be thus rare
5041 * enough so just ignore them to simplify the recovery.
5042 */
5043
5044 if (pcs->main->size == 0) {
5045 barn_put_empty_sheaf(barn, pcs->main);
5046 pcs->main = full;
5047 return pcs;
5048 }
5049
5050 if (!pcs->spare) {
5051 pcs->spare = full;
5052 return pcs;
5053 }
5054
5055 if (pcs->spare->size == 0) {
5056 barn_put_empty_sheaf(barn, pcs->spare);
5057 pcs->spare = full;
5058 return pcs;
5059 }
5060
5061 barn_put_full_sheaf(barn, full);
5062 stat(s, BARN_PUT);
5063
5064 return pcs;
5065 }
5066
5067 static __fastpath_inline
alloc_from_pcs(struct kmem_cache * s,gfp_t gfp,int node)5068 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5069 {
5070 struct slub_percpu_sheaves *pcs;
5071 bool node_requested;
5072 void *object;
5073
5074 #ifdef CONFIG_NUMA
5075 if (static_branch_unlikely(&strict_numa) &&
5076 node == NUMA_NO_NODE) {
5077
5078 struct mempolicy *mpol = current->mempolicy;
5079
5080 if (mpol) {
5081 /*
5082 * Special BIND rule support. If the local node
5083 * is in permitted set then do not redirect
5084 * to a particular node.
5085 * Otherwise we apply the memory policy to get
5086 * the node we need to allocate on.
5087 */
5088 if (mpol->mode != MPOL_BIND ||
5089 !node_isset(numa_mem_id(), mpol->nodes))
5090
5091 node = mempolicy_slab_node();
5092 }
5093 }
5094 #endif
5095
5096 node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5097
5098 /*
5099 * We assume the percpu sheaves contain only local objects although it's
5100 * not completely guaranteed, so we verify later.
5101 */
5102 if (unlikely(node_requested && node != numa_mem_id()))
5103 return NULL;
5104
5105 if (!local_trylock(&s->cpu_sheaves->lock))
5106 return NULL;
5107
5108 pcs = this_cpu_ptr(s->cpu_sheaves);
5109
5110 if (unlikely(pcs->main->size == 0)) {
5111 pcs = __pcs_replace_empty_main(s, pcs, gfp);
5112 if (unlikely(!pcs))
5113 return NULL;
5114 }
5115
5116 object = pcs->main->objects[pcs->main->size - 1];
5117
5118 if (unlikely(node_requested)) {
5119 /*
5120 * Verify that the object was from the node we want. This could
5121 * be false because of cpu migration during an unlocked part of
5122 * the current allocation or previous freeing process.
5123 */
5124 if (folio_nid(virt_to_folio(object)) != node) {
5125 local_unlock(&s->cpu_sheaves->lock);
5126 return NULL;
5127 }
5128 }
5129
5130 pcs->main->size--;
5131
5132 local_unlock(&s->cpu_sheaves->lock);
5133
5134 stat(s, ALLOC_PCS);
5135
5136 return object;
5137 }
5138
5139 static __fastpath_inline
alloc_from_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)5140 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5141 {
5142 struct slub_percpu_sheaves *pcs;
5143 struct slab_sheaf *main;
5144 unsigned int allocated = 0;
5145 unsigned int batch;
5146
5147 next_batch:
5148 if (!local_trylock(&s->cpu_sheaves->lock))
5149 return allocated;
5150
5151 pcs = this_cpu_ptr(s->cpu_sheaves);
5152
5153 if (unlikely(pcs->main->size == 0)) {
5154
5155 struct slab_sheaf *full;
5156
5157 if (pcs->spare && pcs->spare->size > 0) {
5158 swap(pcs->main, pcs->spare);
5159 goto do_alloc;
5160 }
5161
5162 full = barn_replace_empty_sheaf(get_barn(s), pcs->main);
5163
5164 if (full) {
5165 stat(s, BARN_GET);
5166 pcs->main = full;
5167 goto do_alloc;
5168 }
5169
5170 stat(s, BARN_GET_FAIL);
5171
5172 local_unlock(&s->cpu_sheaves->lock);
5173
5174 /*
5175 * Once full sheaves in barn are depleted, let the bulk
5176 * allocation continue from slab pages, otherwise we would just
5177 * be copying arrays of pointers twice.
5178 */
5179 return allocated;
5180 }
5181
5182 do_alloc:
5183
5184 main = pcs->main;
5185 batch = min(size, main->size);
5186
5187 main->size -= batch;
5188 memcpy(p, main->objects + main->size, batch * sizeof(void *));
5189
5190 local_unlock(&s->cpu_sheaves->lock);
5191
5192 stat_add(s, ALLOC_PCS, batch);
5193
5194 allocated += batch;
5195
5196 if (batch < size) {
5197 p += batch;
5198 size -= batch;
5199 goto next_batch;
5200 }
5201
5202 return allocated;
5203 }
5204
5205
5206 /*
5207 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5208 * have the fastpath folded into their functions. So no function call
5209 * overhead for requests that can be satisfied on the fastpath.
5210 *
5211 * The fastpath works by first checking if the lockless freelist can be used.
5212 * If not then __slab_alloc is called for slow processing.
5213 *
5214 * Otherwise we can simply pick the next object from the lockless free list.
5215 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)5216 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5217 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5218 {
5219 void *object;
5220 bool init = false;
5221
5222 s = slab_pre_alloc_hook(s, gfpflags);
5223 if (unlikely(!s))
5224 return NULL;
5225
5226 object = kfence_alloc(s, orig_size, gfpflags);
5227 if (unlikely(object))
5228 goto out;
5229
5230 if (s->cpu_sheaves)
5231 object = alloc_from_pcs(s, gfpflags, node);
5232
5233 if (!object)
5234 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5235
5236 maybe_wipe_obj_freeptr(s, object);
5237 init = slab_want_init_on_alloc(gfpflags, s);
5238
5239 out:
5240 /*
5241 * When init equals 'true', like for kzalloc() family, only
5242 * @orig_size bytes might be zeroed instead of s->object_size
5243 * In case this fails due to memcg_slab_post_alloc_hook(),
5244 * object is set to NULL
5245 */
5246 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5247
5248 return object;
5249 }
5250
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)5251 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5252 {
5253 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5254 s->object_size);
5255
5256 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5257
5258 return ret;
5259 }
5260 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5261
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)5262 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5263 gfp_t gfpflags)
5264 {
5265 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5266 s->object_size);
5267
5268 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5269
5270 return ret;
5271 }
5272 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5273
kmem_cache_charge(void * objp,gfp_t gfpflags)5274 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5275 {
5276 if (!memcg_kmem_online())
5277 return true;
5278
5279 return memcg_slab_post_charge(objp, gfpflags);
5280 }
5281 EXPORT_SYMBOL(kmem_cache_charge);
5282
5283 /**
5284 * kmem_cache_alloc_node - Allocate an object on the specified node
5285 * @s: The cache to allocate from.
5286 * @gfpflags: See kmalloc().
5287 * @node: node number of the target node.
5288 *
5289 * Identical to kmem_cache_alloc but it will allocate memory on the given
5290 * node, which can improve the performance for cpu bound structures.
5291 *
5292 * Fallback to other node is possible if __GFP_THISNODE is not set.
5293 *
5294 * Return: pointer to the new object or %NULL in case of error
5295 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)5296 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5297 {
5298 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5299
5300 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5301
5302 return ret;
5303 }
5304 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5305
5306 /*
5307 * returns a sheaf that has at least the requested size
5308 * when prefilling is needed, do so with given gfp flags
5309 *
5310 * return NULL if sheaf allocation or prefilling failed
5311 */
5312 struct slab_sheaf *
kmem_cache_prefill_sheaf(struct kmem_cache * s,gfp_t gfp,unsigned int size)5313 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5314 {
5315 struct slub_percpu_sheaves *pcs;
5316 struct slab_sheaf *sheaf = NULL;
5317
5318 if (unlikely(size > s->sheaf_capacity)) {
5319
5320 /*
5321 * slab_debug disables cpu sheaves intentionally so all
5322 * prefilled sheaves become "oversize" and we give up on
5323 * performance for the debugging. Same with SLUB_TINY.
5324 * Creating a cache without sheaves and then requesting a
5325 * prefilled sheaf is however not expected, so warn.
5326 */
5327 WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5328 !IS_ENABLED(CONFIG_SLUB_TINY) &&
5329 !(s->flags & SLAB_DEBUG_FLAGS));
5330
5331 sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5332 if (!sheaf)
5333 return NULL;
5334
5335 stat(s, SHEAF_PREFILL_OVERSIZE);
5336 sheaf->cache = s;
5337 sheaf->capacity = size;
5338
5339 if (!__kmem_cache_alloc_bulk(s, gfp, size,
5340 &sheaf->objects[0])) {
5341 kfree(sheaf);
5342 return NULL;
5343 }
5344
5345 sheaf->size = size;
5346
5347 return sheaf;
5348 }
5349
5350 local_lock(&s->cpu_sheaves->lock);
5351 pcs = this_cpu_ptr(s->cpu_sheaves);
5352
5353 if (pcs->spare) {
5354 sheaf = pcs->spare;
5355 pcs->spare = NULL;
5356 stat(s, SHEAF_PREFILL_FAST);
5357 } else {
5358 stat(s, SHEAF_PREFILL_SLOW);
5359 sheaf = barn_get_full_or_empty_sheaf(get_barn(s));
5360 if (sheaf && sheaf->size)
5361 stat(s, BARN_GET);
5362 else
5363 stat(s, BARN_GET_FAIL);
5364 }
5365
5366 local_unlock(&s->cpu_sheaves->lock);
5367
5368
5369 if (!sheaf)
5370 sheaf = alloc_empty_sheaf(s, gfp);
5371
5372 if (sheaf && sheaf->size < size) {
5373 if (refill_sheaf(s, sheaf, gfp)) {
5374 sheaf_flush_unused(s, sheaf);
5375 free_empty_sheaf(s, sheaf);
5376 sheaf = NULL;
5377 }
5378 }
5379
5380 if (sheaf)
5381 sheaf->capacity = s->sheaf_capacity;
5382
5383 return sheaf;
5384 }
5385
5386 /*
5387 * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5388 *
5389 * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5390 * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5391 * sheaf_capacity to avoid handling partially full sheaves.
5392 *
5393 * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5394 * sheaf is instead flushed and freed.
5395 */
kmem_cache_return_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5396 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5397 struct slab_sheaf *sheaf)
5398 {
5399 struct slub_percpu_sheaves *pcs;
5400 struct node_barn *barn;
5401
5402 if (unlikely(sheaf->capacity != s->sheaf_capacity)) {
5403 sheaf_flush_unused(s, sheaf);
5404 kfree(sheaf);
5405 return;
5406 }
5407
5408 local_lock(&s->cpu_sheaves->lock);
5409 pcs = this_cpu_ptr(s->cpu_sheaves);
5410 barn = get_barn(s);
5411
5412 if (!pcs->spare) {
5413 pcs->spare = sheaf;
5414 sheaf = NULL;
5415 stat(s, SHEAF_RETURN_FAST);
5416 }
5417
5418 local_unlock(&s->cpu_sheaves->lock);
5419
5420 if (!sheaf)
5421 return;
5422
5423 stat(s, SHEAF_RETURN_SLOW);
5424
5425 /*
5426 * If the barn has too many full sheaves or we fail to refill the sheaf,
5427 * simply flush and free it.
5428 */
5429 if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5430 refill_sheaf(s, sheaf, gfp)) {
5431 sheaf_flush_unused(s, sheaf);
5432 free_empty_sheaf(s, sheaf);
5433 return;
5434 }
5435
5436 barn_put_full_sheaf(barn, sheaf);
5437 stat(s, BARN_PUT);
5438 }
5439
5440 /*
5441 * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5442 * the given size
5443 *
5444 * the sheaf might be replaced by a new one when requesting more than
5445 * s->sheaf_capacity objects if such replacement is necessary, but the refill
5446 * fails (returning -ENOMEM), the existing sheaf is left intact
5447 *
5448 * In practice we always refill to full sheaf's capacity.
5449 */
kmem_cache_refill_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf ** sheafp,unsigned int size)5450 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5451 struct slab_sheaf **sheafp, unsigned int size)
5452 {
5453 struct slab_sheaf *sheaf;
5454
5455 /*
5456 * TODO: do we want to support *sheaf == NULL to be equivalent of
5457 * kmem_cache_prefill_sheaf() ?
5458 */
5459 if (!sheafp || !(*sheafp))
5460 return -EINVAL;
5461
5462 sheaf = *sheafp;
5463 if (sheaf->size >= size)
5464 return 0;
5465
5466 if (likely(sheaf->capacity >= size)) {
5467 if (likely(sheaf->capacity == s->sheaf_capacity))
5468 return refill_sheaf(s, sheaf, gfp);
5469
5470 if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5471 &sheaf->objects[sheaf->size])) {
5472 return -ENOMEM;
5473 }
5474 sheaf->size = sheaf->capacity;
5475
5476 return 0;
5477 }
5478
5479 /*
5480 * We had a regular sized sheaf and need an oversize one, or we had an
5481 * oversize one already but need a larger one now.
5482 * This should be a very rare path so let's not complicate it.
5483 */
5484 sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5485 if (!sheaf)
5486 return -ENOMEM;
5487
5488 kmem_cache_return_sheaf(s, gfp, *sheafp);
5489 *sheafp = sheaf;
5490 return 0;
5491 }
5492
5493 /*
5494 * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5495 *
5496 * Guaranteed not to fail as many allocations as was the requested size.
5497 * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5498 *
5499 * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5500 * memcg charging is forced over limit if necessary, to avoid failure.
5501 */
5502 void *
kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5503 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5504 struct slab_sheaf *sheaf)
5505 {
5506 void *ret = NULL;
5507 bool init;
5508
5509 if (sheaf->size == 0)
5510 goto out;
5511
5512 ret = sheaf->objects[--sheaf->size];
5513
5514 init = slab_want_init_on_alloc(gfp, s);
5515
5516 /* add __GFP_NOFAIL to force successful memcg charging */
5517 slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5518 out:
5519 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5520
5521 return ret;
5522 }
5523
kmem_cache_sheaf_size(struct slab_sheaf * sheaf)5524 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5525 {
5526 return sheaf->size;
5527 }
5528 /*
5529 * To avoid unnecessary overhead, we pass through large allocation requests
5530 * directly to the page allocator. We use __GFP_COMP, because we will need to
5531 * know the allocation order to free the pages properly in kfree.
5532 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)5533 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5534 {
5535 struct folio *folio;
5536 void *ptr = NULL;
5537 unsigned int order = get_order(size);
5538
5539 if (unlikely(flags & GFP_SLAB_BUG_MASK))
5540 flags = kmalloc_fix_flags(flags);
5541
5542 flags |= __GFP_COMP;
5543
5544 if (node == NUMA_NO_NODE)
5545 folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
5546 else
5547 folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
5548
5549 if (folio) {
5550 ptr = folio_address(folio);
5551 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
5552 PAGE_SIZE << order);
5553 __folio_set_large_kmalloc(folio);
5554 }
5555
5556 ptr = kasan_kmalloc_large(ptr, size, flags);
5557 /* As ptr might get tagged, call kmemleak hook after KASAN. */
5558 kmemleak_alloc(ptr, size, 1, flags);
5559 kmsan_kmalloc_large(ptr, size, flags);
5560
5561 return ptr;
5562 }
5563
__kmalloc_large_noprof(size_t size,gfp_t flags)5564 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5565 {
5566 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5567
5568 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5569 flags, NUMA_NO_NODE);
5570 return ret;
5571 }
5572 EXPORT_SYMBOL(__kmalloc_large_noprof);
5573
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)5574 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5575 {
5576 void *ret = ___kmalloc_large_node(size, flags, node);
5577
5578 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5579 flags, node);
5580 return ret;
5581 }
5582 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5583
5584 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)5585 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5586 unsigned long caller)
5587 {
5588 struct kmem_cache *s;
5589 void *ret;
5590
5591 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5592 ret = __kmalloc_large_node_noprof(size, flags, node);
5593 trace_kmalloc(caller, ret, size,
5594 PAGE_SIZE << get_order(size), flags, node);
5595 return ret;
5596 }
5597
5598 if (unlikely(!size))
5599 return ZERO_SIZE_PTR;
5600
5601 s = kmalloc_slab(size, b, flags, caller);
5602
5603 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5604 ret = kasan_kmalloc(s, ret, size, flags);
5605 trace_kmalloc(caller, ret, size, s->size, flags, node);
5606 return ret;
5607 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5608 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5609 {
5610 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5611 }
5612 EXPORT_SYMBOL(__kmalloc_node_noprof);
5613
__kmalloc_noprof(size_t size,gfp_t flags)5614 void *__kmalloc_noprof(size_t size, gfp_t flags)
5615 {
5616 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5617 }
5618 EXPORT_SYMBOL(__kmalloc_noprof);
5619
5620 /**
5621 * kmalloc_nolock - Allocate an object of given size from any context.
5622 * @size: size to allocate
5623 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5624 * allowed.
5625 * @node: node number of the target node.
5626 *
5627 * Return: pointer to the new object or NULL in case of error.
5628 * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5629 * There is no reason to call it again and expect !NULL.
5630 */
kmalloc_nolock_noprof(size_t size,gfp_t gfp_flags,int node)5631 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5632 {
5633 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5634 struct kmem_cache *s;
5635 bool can_retry = true;
5636 void *ret = ERR_PTR(-EBUSY);
5637
5638 VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5639 __GFP_NO_OBJ_EXT));
5640
5641 if (unlikely(!size))
5642 return ZERO_SIZE_PTR;
5643
5644 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5645 /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5646 return NULL;
5647 retry:
5648 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5649 return NULL;
5650 s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5651
5652 if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5653 /*
5654 * kmalloc_nolock() is not supported on architectures that
5655 * don't implement cmpxchg16b, but debug caches don't use
5656 * per-cpu slab and per-cpu partial slabs. They rely on
5657 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5658 * attempt to allocate from debug caches by
5659 * spin_trylock_irqsave(&n->list_lock, ...)
5660 */
5661 return NULL;
5662
5663 /*
5664 * Do not call slab_alloc_node(), since trylock mode isn't
5665 * compatible with slab_pre_alloc_hook/should_failslab and
5666 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5667 * and slab_post_alloc_hook() directly.
5668 *
5669 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5670 * in irq saved region. It assumes that the same cpu will not
5671 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5672 * Therefore use in_nmi() to check whether particular bucket is in
5673 * irq protected section.
5674 *
5675 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5676 * this cpu was interrupted somewhere inside ___slab_alloc() after
5677 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5678 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5679 */
5680 #ifndef CONFIG_SLUB_TINY
5681 if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5682 #endif
5683 ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5684
5685 if (PTR_ERR(ret) == -EBUSY) {
5686 if (can_retry) {
5687 /* pick the next kmalloc bucket */
5688 size = s->object_size + 1;
5689 /*
5690 * Another alternative is to
5691 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5692 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5693 * to retry from bucket of the same size.
5694 */
5695 can_retry = false;
5696 goto retry;
5697 }
5698 ret = NULL;
5699 }
5700
5701 maybe_wipe_obj_freeptr(s, ret);
5702 slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5703 slab_want_init_on_alloc(alloc_gfp, s), size);
5704
5705 ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5706 return ret;
5707 }
5708 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5709
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)5710 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5711 int node, unsigned long caller)
5712 {
5713 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5714
5715 }
5716 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5717
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)5718 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5719 {
5720 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5721 _RET_IP_, size);
5722
5723 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5724
5725 ret = kasan_kmalloc(s, ret, size, gfpflags);
5726 return ret;
5727 }
5728 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5729
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)5730 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5731 int node, size_t size)
5732 {
5733 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5734
5735 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5736
5737 ret = kasan_kmalloc(s, ret, size, gfpflags);
5738 return ret;
5739 }
5740 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5741
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)5742 static noinline void free_to_partial_list(
5743 struct kmem_cache *s, struct slab *slab,
5744 void *head, void *tail, int bulk_cnt,
5745 unsigned long addr)
5746 {
5747 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5748 struct slab *slab_free = NULL;
5749 int cnt = bulk_cnt;
5750 unsigned long flags;
5751 depot_stack_handle_t handle = 0;
5752
5753 /*
5754 * We cannot use GFP_NOWAIT as there are callsites where waking up
5755 * kswapd could deadlock
5756 */
5757 if (s->flags & SLAB_STORE_USER)
5758 handle = set_track_prepare(__GFP_NOWARN);
5759
5760 spin_lock_irqsave(&n->list_lock, flags);
5761
5762 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5763 void *prior = slab->freelist;
5764
5765 /* Perform the actual freeing while we still hold the locks */
5766 slab->inuse -= cnt;
5767 set_freepointer(s, tail, prior);
5768 slab->freelist = head;
5769
5770 /*
5771 * If the slab is empty, and node's partial list is full,
5772 * it should be discarded anyway no matter it's on full or
5773 * partial list.
5774 */
5775 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5776 slab_free = slab;
5777
5778 if (!prior) {
5779 /* was on full list */
5780 remove_full(s, n, slab);
5781 if (!slab_free) {
5782 add_partial(n, slab, DEACTIVATE_TO_TAIL);
5783 stat(s, FREE_ADD_PARTIAL);
5784 }
5785 } else if (slab_free) {
5786 remove_partial(n, slab);
5787 stat(s, FREE_REMOVE_PARTIAL);
5788 }
5789 }
5790
5791 if (slab_free) {
5792 /*
5793 * Update the counters while still holding n->list_lock to
5794 * prevent spurious validation warnings
5795 */
5796 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5797 }
5798
5799 spin_unlock_irqrestore(&n->list_lock, flags);
5800
5801 if (slab_free) {
5802 stat(s, FREE_SLAB);
5803 free_slab(s, slab_free);
5804 }
5805 }
5806
5807 /*
5808 * Slow path handling. This may still be called frequently since objects
5809 * have a longer lifetime than the cpu slabs in most processing loads.
5810 *
5811 * So we still attempt to reduce cache line usage. Just take the slab
5812 * lock and free the item. If there is no additional partial slab
5813 * handling required then we can return immediately.
5814 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)5815 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5816 void *head, void *tail, int cnt,
5817 unsigned long addr)
5818
5819 {
5820 void *prior;
5821 int was_frozen;
5822 struct slab new;
5823 unsigned long counters;
5824 struct kmem_cache_node *n = NULL;
5825 unsigned long flags;
5826 bool on_node_partial;
5827
5828 stat(s, FREE_SLOWPATH);
5829
5830 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5831 free_to_partial_list(s, slab, head, tail, cnt, addr);
5832 return;
5833 }
5834
5835 do {
5836 if (unlikely(n)) {
5837 spin_unlock_irqrestore(&n->list_lock, flags);
5838 n = NULL;
5839 }
5840 prior = slab->freelist;
5841 counters = slab->counters;
5842 set_freepointer(s, tail, prior);
5843 new.counters = counters;
5844 was_frozen = new.frozen;
5845 new.inuse -= cnt;
5846 if ((!new.inuse || !prior) && !was_frozen) {
5847 /* Needs to be taken off a list */
5848 if (!kmem_cache_has_cpu_partial(s) || prior) {
5849
5850 n = get_node(s, slab_nid(slab));
5851 /*
5852 * Speculatively acquire the list_lock.
5853 * If the cmpxchg does not succeed then we may
5854 * drop the list_lock without any processing.
5855 *
5856 * Otherwise the list_lock will synchronize with
5857 * other processors updating the list of slabs.
5858 */
5859 spin_lock_irqsave(&n->list_lock, flags);
5860
5861 on_node_partial = slab_test_node_partial(slab);
5862 }
5863 }
5864
5865 } while (!slab_update_freelist(s, slab,
5866 prior, counters,
5867 head, new.counters,
5868 "__slab_free"));
5869
5870 if (likely(!n)) {
5871
5872 if (likely(was_frozen)) {
5873 /*
5874 * The list lock was not taken therefore no list
5875 * activity can be necessary.
5876 */
5877 stat(s, FREE_FROZEN);
5878 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
5879 /*
5880 * If we started with a full slab then put it onto the
5881 * per cpu partial list.
5882 */
5883 put_cpu_partial(s, slab, 1);
5884 stat(s, CPU_PARTIAL_FREE);
5885 }
5886
5887 return;
5888 }
5889
5890 /*
5891 * This slab was partially empty but not on the per-node partial list,
5892 * in which case we shouldn't manipulate its list, just return.
5893 */
5894 if (prior && !on_node_partial) {
5895 spin_unlock_irqrestore(&n->list_lock, flags);
5896 return;
5897 }
5898
5899 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5900 goto slab_empty;
5901
5902 /*
5903 * Objects left in the slab. If it was not on the partial list before
5904 * then add it.
5905 */
5906 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
5907 add_partial(n, slab, DEACTIVATE_TO_TAIL);
5908 stat(s, FREE_ADD_PARTIAL);
5909 }
5910 spin_unlock_irqrestore(&n->list_lock, flags);
5911 return;
5912
5913 slab_empty:
5914 if (prior) {
5915 /*
5916 * Slab on the partial list.
5917 */
5918 remove_partial(n, slab);
5919 stat(s, FREE_REMOVE_PARTIAL);
5920 }
5921
5922 spin_unlock_irqrestore(&n->list_lock, flags);
5923 stat(s, FREE_SLAB);
5924 discard_slab(s, slab);
5925 }
5926
5927 /*
5928 * pcs is locked. We should have get rid of the spare sheaf and obtained an
5929 * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
5930 * as a main sheaf, and make the current main sheaf a spare sheaf.
5931 *
5932 * However due to having relinquished the cpu_sheaves lock when obtaining
5933 * the empty sheaf, we need to handle some unlikely but possible cases.
5934 *
5935 * If we put any sheaf to barn here, it's because we were interrupted or have
5936 * been migrated to a different cpu, which should be rare enough so just ignore
5937 * the barn's limits to simplify the handling.
5938 *
5939 * An alternative scenario that gets us here is when we fail
5940 * barn_replace_full_sheaf(), because there's no empty sheaf available in the
5941 * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
5942 * limit on full sheaves was not exceeded, we assume it didn't change and just
5943 * put the full sheaf there.
5944 */
__pcs_install_empty_sheaf(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,struct slab_sheaf * empty)5945 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
5946 struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty)
5947 {
5948 struct node_barn *barn;
5949
5950 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
5951
5952 /* This is what we expect to find if nobody interrupted us. */
5953 if (likely(!pcs->spare)) {
5954 pcs->spare = pcs->main;
5955 pcs->main = empty;
5956 return;
5957 }
5958
5959 barn = get_barn(s);
5960
5961 /*
5962 * Unlikely because if the main sheaf had space, we would have just
5963 * freed to it. Get rid of our empty sheaf.
5964 */
5965 if (pcs->main->size < s->sheaf_capacity) {
5966 barn_put_empty_sheaf(barn, empty);
5967 return;
5968 }
5969
5970 /* Also unlikely for the same reason */
5971 if (pcs->spare->size < s->sheaf_capacity) {
5972 swap(pcs->main, pcs->spare);
5973 barn_put_empty_sheaf(barn, empty);
5974 return;
5975 }
5976
5977 /*
5978 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
5979 * available there, but we allocated one, so finish the job.
5980 */
5981 barn_put_full_sheaf(barn, pcs->main);
5982 stat(s, BARN_PUT);
5983 pcs->main = empty;
5984 }
5985
5986 /*
5987 * Replace the full main sheaf with a (at least partially) empty sheaf.
5988 *
5989 * Must be called with the cpu_sheaves local lock locked. If successful, returns
5990 * the pcs pointer and the local lock locked (possibly on a different cpu than
5991 * initially called). If not successful, returns NULL and the local lock
5992 * unlocked.
5993 */
5994 static struct slub_percpu_sheaves *
__pcs_replace_full_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs)5995 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
5996 {
5997 struct slab_sheaf *empty;
5998 struct node_barn *barn;
5999 bool put_fail;
6000
6001 restart:
6002 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6003
6004 barn = get_barn(s);
6005 put_fail = false;
6006
6007 if (!pcs->spare) {
6008 empty = barn_get_empty_sheaf(barn);
6009 if (empty) {
6010 pcs->spare = pcs->main;
6011 pcs->main = empty;
6012 return pcs;
6013 }
6014 goto alloc_empty;
6015 }
6016
6017 if (pcs->spare->size < s->sheaf_capacity) {
6018 swap(pcs->main, pcs->spare);
6019 return pcs;
6020 }
6021
6022 empty = barn_replace_full_sheaf(barn, pcs->main);
6023
6024 if (!IS_ERR(empty)) {
6025 stat(s, BARN_PUT);
6026 pcs->main = empty;
6027 return pcs;
6028 }
6029
6030 if (PTR_ERR(empty) == -E2BIG) {
6031 /* Since we got here, spare exists and is full */
6032 struct slab_sheaf *to_flush = pcs->spare;
6033
6034 stat(s, BARN_PUT_FAIL);
6035
6036 pcs->spare = NULL;
6037 local_unlock(&s->cpu_sheaves->lock);
6038
6039 sheaf_flush_unused(s, to_flush);
6040 empty = to_flush;
6041 goto got_empty;
6042 }
6043
6044 /*
6045 * We could not replace full sheaf because barn had no empty
6046 * sheaves. We can still allocate it and put the full sheaf in
6047 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6048 * make sure to count the fail.
6049 */
6050 put_fail = true;
6051
6052 alloc_empty:
6053 local_unlock(&s->cpu_sheaves->lock);
6054
6055 empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6056 if (empty)
6057 goto got_empty;
6058
6059 if (put_fail)
6060 stat(s, BARN_PUT_FAIL);
6061
6062 if (!sheaf_flush_main(s))
6063 return NULL;
6064
6065 if (!local_trylock(&s->cpu_sheaves->lock))
6066 return NULL;
6067
6068 pcs = this_cpu_ptr(s->cpu_sheaves);
6069
6070 /*
6071 * we flushed the main sheaf so it should be empty now,
6072 * but in case we got preempted or migrated, we need to
6073 * check again
6074 */
6075 if (pcs->main->size == s->sheaf_capacity)
6076 goto restart;
6077
6078 return pcs;
6079
6080 got_empty:
6081 if (!local_trylock(&s->cpu_sheaves->lock)) {
6082 barn_put_empty_sheaf(barn, empty);
6083 return NULL;
6084 }
6085
6086 pcs = this_cpu_ptr(s->cpu_sheaves);
6087 __pcs_install_empty_sheaf(s, pcs, empty);
6088
6089 return pcs;
6090 }
6091
6092 /*
6093 * Free an object to the percpu sheaves.
6094 * The object is expected to have passed slab_free_hook() already.
6095 */
6096 static __fastpath_inline
free_to_pcs(struct kmem_cache * s,void * object)6097 bool free_to_pcs(struct kmem_cache *s, void *object)
6098 {
6099 struct slub_percpu_sheaves *pcs;
6100
6101 if (!local_trylock(&s->cpu_sheaves->lock))
6102 return false;
6103
6104 pcs = this_cpu_ptr(s->cpu_sheaves);
6105
6106 if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6107
6108 pcs = __pcs_replace_full_main(s, pcs);
6109 if (unlikely(!pcs))
6110 return false;
6111 }
6112
6113 pcs->main->objects[pcs->main->size++] = object;
6114
6115 local_unlock(&s->cpu_sheaves->lock);
6116
6117 stat(s, FREE_PCS);
6118
6119 return true;
6120 }
6121
rcu_free_sheaf(struct rcu_head * head)6122 static void rcu_free_sheaf(struct rcu_head *head)
6123 {
6124 struct slab_sheaf *sheaf;
6125 struct node_barn *barn;
6126 struct kmem_cache *s;
6127
6128 sheaf = container_of(head, struct slab_sheaf, rcu_head);
6129
6130 s = sheaf->cache;
6131
6132 /*
6133 * This may remove some objects due to slab_free_hook() returning false,
6134 * so that the sheaf might no longer be completely full. But it's easier
6135 * to handle it as full (unless it became completely empty), as the code
6136 * handles it fine. The only downside is that sheaf will serve fewer
6137 * allocations when reused. It only happens due to debugging, which is a
6138 * performance hit anyway.
6139 */
6140 __rcu_free_sheaf_prepare(s, sheaf);
6141
6142 barn = get_node(s, sheaf->node)->barn;
6143
6144 /* due to slab_free_hook() */
6145 if (unlikely(sheaf->size == 0))
6146 goto empty;
6147
6148 /*
6149 * Checking nr_full/nr_empty outside lock avoids contention in case the
6150 * barn is at the respective limit. Due to the race we might go over the
6151 * limit but that should be rare and harmless.
6152 */
6153
6154 if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6155 stat(s, BARN_PUT);
6156 barn_put_full_sheaf(barn, sheaf);
6157 return;
6158 }
6159
6160 stat(s, BARN_PUT_FAIL);
6161 sheaf_flush_unused(s, sheaf);
6162
6163 empty:
6164 if (data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6165 barn_put_empty_sheaf(barn, sheaf);
6166 return;
6167 }
6168
6169 free_empty_sheaf(s, sheaf);
6170 }
6171
__kfree_rcu_sheaf(struct kmem_cache * s,void * obj)6172 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6173 {
6174 struct slub_percpu_sheaves *pcs;
6175 struct slab_sheaf *rcu_sheaf;
6176
6177 if (!local_trylock(&s->cpu_sheaves->lock))
6178 goto fail;
6179
6180 pcs = this_cpu_ptr(s->cpu_sheaves);
6181
6182 if (unlikely(!pcs->rcu_free)) {
6183
6184 struct slab_sheaf *empty;
6185 struct node_barn *barn;
6186
6187 if (pcs->spare && pcs->spare->size == 0) {
6188 pcs->rcu_free = pcs->spare;
6189 pcs->spare = NULL;
6190 goto do_free;
6191 }
6192
6193 barn = get_barn(s);
6194
6195 empty = barn_get_empty_sheaf(barn);
6196
6197 if (empty) {
6198 pcs->rcu_free = empty;
6199 goto do_free;
6200 }
6201
6202 local_unlock(&s->cpu_sheaves->lock);
6203
6204 empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6205
6206 if (!empty)
6207 goto fail;
6208
6209 if (!local_trylock(&s->cpu_sheaves->lock)) {
6210 barn_put_empty_sheaf(barn, empty);
6211 goto fail;
6212 }
6213
6214 pcs = this_cpu_ptr(s->cpu_sheaves);
6215
6216 if (unlikely(pcs->rcu_free))
6217 barn_put_empty_sheaf(barn, empty);
6218 else
6219 pcs->rcu_free = empty;
6220 }
6221
6222 do_free:
6223
6224 rcu_sheaf = pcs->rcu_free;
6225
6226 /*
6227 * Since we flush immediately when size reaches capacity, we never reach
6228 * this with size already at capacity, so no OOB write is possible.
6229 */
6230 rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6231
6232 if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6233 rcu_sheaf = NULL;
6234 } else {
6235 pcs->rcu_free = NULL;
6236 rcu_sheaf->node = numa_mem_id();
6237 }
6238
6239 /*
6240 * we flush before local_unlock to make sure a racing
6241 * flush_all_rcu_sheaves() doesn't miss this sheaf
6242 */
6243 if (rcu_sheaf)
6244 call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6245
6246 local_unlock(&s->cpu_sheaves->lock);
6247
6248 stat(s, FREE_RCU_SHEAF);
6249 return true;
6250
6251 fail:
6252 stat(s, FREE_RCU_SHEAF_FAIL);
6253 return false;
6254 }
6255
6256 /*
6257 * Bulk free objects to the percpu sheaves.
6258 * Unlike free_to_pcs() this includes the calls to all necessary hooks
6259 * and the fallback to freeing to slab pages.
6260 */
free_to_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)6261 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6262 {
6263 struct slub_percpu_sheaves *pcs;
6264 struct slab_sheaf *main, *empty;
6265 bool init = slab_want_init_on_free(s);
6266 unsigned int batch, i = 0;
6267 struct node_barn *barn;
6268 void *remote_objects[PCS_BATCH_MAX];
6269 unsigned int remote_nr = 0;
6270 int node = numa_mem_id();
6271
6272 next_remote_batch:
6273 while (i < size) {
6274 struct slab *slab = virt_to_slab(p[i]);
6275
6276 memcg_slab_free_hook(s, slab, p + i, 1);
6277 alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6278
6279 if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6280 p[i] = p[--size];
6281 if (!size)
6282 goto flush_remote;
6283 continue;
6284 }
6285
6286 if (unlikely(IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)) {
6287 remote_objects[remote_nr] = p[i];
6288 p[i] = p[--size];
6289 if (++remote_nr >= PCS_BATCH_MAX)
6290 goto flush_remote;
6291 continue;
6292 }
6293
6294 i++;
6295 }
6296
6297 next_batch:
6298 if (!local_trylock(&s->cpu_sheaves->lock))
6299 goto fallback;
6300
6301 pcs = this_cpu_ptr(s->cpu_sheaves);
6302
6303 if (likely(pcs->main->size < s->sheaf_capacity))
6304 goto do_free;
6305
6306 barn = get_barn(s);
6307
6308 if (!pcs->spare) {
6309 empty = barn_get_empty_sheaf(barn);
6310 if (!empty)
6311 goto no_empty;
6312
6313 pcs->spare = pcs->main;
6314 pcs->main = empty;
6315 goto do_free;
6316 }
6317
6318 if (pcs->spare->size < s->sheaf_capacity) {
6319 swap(pcs->main, pcs->spare);
6320 goto do_free;
6321 }
6322
6323 empty = barn_replace_full_sheaf(barn, pcs->main);
6324 if (IS_ERR(empty)) {
6325 stat(s, BARN_PUT_FAIL);
6326 goto no_empty;
6327 }
6328
6329 stat(s, BARN_PUT);
6330 pcs->main = empty;
6331
6332 do_free:
6333 main = pcs->main;
6334 batch = min(size, s->sheaf_capacity - main->size);
6335
6336 memcpy(main->objects + main->size, p, batch * sizeof(void *));
6337 main->size += batch;
6338
6339 local_unlock(&s->cpu_sheaves->lock);
6340
6341 stat_add(s, FREE_PCS, batch);
6342
6343 if (batch < size) {
6344 p += batch;
6345 size -= batch;
6346 goto next_batch;
6347 }
6348
6349 return;
6350
6351 no_empty:
6352 local_unlock(&s->cpu_sheaves->lock);
6353
6354 /*
6355 * if we depleted all empty sheaves in the barn or there are too
6356 * many full sheaves, free the rest to slab pages
6357 */
6358 fallback:
6359 __kmem_cache_free_bulk(s, size, p);
6360
6361 flush_remote:
6362 if (remote_nr) {
6363 __kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6364 if (i < size) {
6365 remote_nr = 0;
6366 goto next_remote_batch;
6367 }
6368 }
6369 }
6370
6371 struct defer_free {
6372 struct llist_head objects;
6373 struct llist_head slabs;
6374 struct irq_work work;
6375 };
6376
6377 static void free_deferred_objects(struct irq_work *work);
6378
6379 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6380 .objects = LLIST_HEAD_INIT(objects),
6381 .slabs = LLIST_HEAD_INIT(slabs),
6382 .work = IRQ_WORK_INIT(free_deferred_objects),
6383 };
6384
6385 /*
6386 * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6387 * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6388 * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6389 */
free_deferred_objects(struct irq_work * work)6390 static void free_deferred_objects(struct irq_work *work)
6391 {
6392 struct defer_free *df = container_of(work, struct defer_free, work);
6393 struct llist_head *objs = &df->objects;
6394 struct llist_head *slabs = &df->slabs;
6395 struct llist_node *llnode, *pos, *t;
6396
6397 if (llist_empty(objs) && llist_empty(slabs))
6398 return;
6399
6400 llnode = llist_del_all(objs);
6401 llist_for_each_safe(pos, t, llnode) {
6402 struct kmem_cache *s;
6403 struct slab *slab;
6404 void *x = pos;
6405
6406 slab = virt_to_slab(x);
6407 s = slab->slab_cache;
6408
6409 /*
6410 * We used freepointer in 'x' to link 'x' into df->objects.
6411 * Clear it to NULL to avoid false positive detection
6412 * of "Freepointer corruption".
6413 */
6414 *(void **)x = NULL;
6415
6416 /* Point 'x' back to the beginning of allocated object */
6417 x -= s->offset;
6418 __slab_free(s, slab, x, x, 1, _THIS_IP_);
6419 }
6420
6421 llnode = llist_del_all(slabs);
6422 llist_for_each_safe(pos, t, llnode) {
6423 struct slab *slab = container_of(pos, struct slab, llnode);
6424
6425 #ifdef CONFIG_SLUB_TINY
6426 discard_slab(slab->slab_cache, slab);
6427 #else
6428 deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6429 #endif
6430 }
6431 }
6432
defer_free(struct kmem_cache * s,void * head)6433 static void defer_free(struct kmem_cache *s, void *head)
6434 {
6435 struct defer_free *df;
6436
6437 guard(preempt)();
6438
6439 df = this_cpu_ptr(&defer_free_objects);
6440 if (llist_add(head + s->offset, &df->objects))
6441 irq_work_queue(&df->work);
6442 }
6443
defer_deactivate_slab(struct slab * slab,void * flush_freelist)6444 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6445 {
6446 struct defer_free *df;
6447
6448 slab->flush_freelist = flush_freelist;
6449
6450 guard(preempt)();
6451
6452 df = this_cpu_ptr(&defer_free_objects);
6453 if (llist_add(&slab->llnode, &df->slabs))
6454 irq_work_queue(&df->work);
6455 }
6456
defer_free_barrier(void)6457 void defer_free_barrier(void)
6458 {
6459 int cpu;
6460
6461 for_each_possible_cpu(cpu)
6462 irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6463 }
6464
6465 #ifndef CONFIG_SLUB_TINY
6466 /*
6467 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6468 * can perform fastpath freeing without additional function calls.
6469 *
6470 * The fastpath is only possible if we are freeing to the current cpu slab
6471 * of this processor. This typically the case if we have just allocated
6472 * the item before.
6473 *
6474 * If fastpath is not possible then fall back to __slab_free where we deal
6475 * with all sorts of special processing.
6476 *
6477 * Bulk free of a freelist with several objects (all pointing to the
6478 * same slab) possible by specifying head and tail ptr, plus objects
6479 * count (cnt). Bulk free indicated by tail pointer being set.
6480 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6481 static __always_inline void do_slab_free(struct kmem_cache *s,
6482 struct slab *slab, void *head, void *tail,
6483 int cnt, unsigned long addr)
6484 {
6485 /* cnt == 0 signals that it's called from kfree_nolock() */
6486 bool allow_spin = cnt;
6487 struct kmem_cache_cpu *c;
6488 unsigned long tid;
6489 void **freelist;
6490
6491 redo:
6492 /*
6493 * Determine the currently cpus per cpu slab.
6494 * The cpu may change afterward. However that does not matter since
6495 * data is retrieved via this pointer. If we are on the same cpu
6496 * during the cmpxchg then the free will succeed.
6497 */
6498 c = raw_cpu_ptr(s->cpu_slab);
6499 tid = READ_ONCE(c->tid);
6500
6501 /* Same with comment on barrier() in __slab_alloc_node() */
6502 barrier();
6503
6504 if (unlikely(slab != c->slab)) {
6505 if (unlikely(!allow_spin)) {
6506 /*
6507 * __slab_free() can locklessly cmpxchg16 into a slab,
6508 * but then it might need to take spin_lock or local_lock
6509 * in put_cpu_partial() for further processing.
6510 * Avoid the complexity and simply add to a deferred list.
6511 */
6512 defer_free(s, head);
6513 } else {
6514 __slab_free(s, slab, head, tail, cnt, addr);
6515 }
6516 return;
6517 }
6518
6519 if (unlikely(!allow_spin)) {
6520 if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6521 local_lock_is_locked(&s->cpu_slab->lock)) {
6522 defer_free(s, head);
6523 return;
6524 }
6525 cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6526 }
6527
6528 if (USE_LOCKLESS_FAST_PATH()) {
6529 freelist = READ_ONCE(c->freelist);
6530
6531 set_freepointer(s, tail, freelist);
6532
6533 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6534 note_cmpxchg_failure("slab_free", s, tid);
6535 goto redo;
6536 }
6537 } else {
6538 __maybe_unused unsigned long flags = 0;
6539
6540 /* Update the free list under the local lock */
6541 local_lock_cpu_slab(s, flags);
6542 c = this_cpu_ptr(s->cpu_slab);
6543 if (unlikely(slab != c->slab)) {
6544 local_unlock_cpu_slab(s, flags);
6545 goto redo;
6546 }
6547 tid = c->tid;
6548 freelist = c->freelist;
6549
6550 set_freepointer(s, tail, freelist);
6551 c->freelist = head;
6552 c->tid = next_tid(tid);
6553
6554 local_unlock_cpu_slab(s, flags);
6555 }
6556 stat_add(s, FREE_FASTPATH, cnt);
6557 }
6558 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6559 static void do_slab_free(struct kmem_cache *s,
6560 struct slab *slab, void *head, void *tail,
6561 int cnt, unsigned long addr)
6562 {
6563 __slab_free(s, slab, head, tail, cnt, addr);
6564 }
6565 #endif /* CONFIG_SLUB_TINY */
6566
6567 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)6568 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6569 unsigned long addr)
6570 {
6571 memcg_slab_free_hook(s, slab, &object, 1);
6572 alloc_tagging_slab_free_hook(s, slab, &object, 1);
6573
6574 if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6575 return;
6576
6577 if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6578 slab_nid(slab) == numa_mem_id())) {
6579 if (likely(free_to_pcs(s, object)))
6580 return;
6581 }
6582
6583 do_slab_free(s, slab, object, object, 1, addr);
6584 }
6585
6586 #ifdef CONFIG_MEMCG
6587 /* Do not inline the rare memcg charging failed path into the allocation path */
6588 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)6589 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6590 {
6591 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6592 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6593 }
6594 #endif
6595
6596 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)6597 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6598 void *tail, void **p, int cnt, unsigned long addr)
6599 {
6600 memcg_slab_free_hook(s, slab, p, cnt);
6601 alloc_tagging_slab_free_hook(s, slab, p, cnt);
6602 /*
6603 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6604 * to remove objects, whose reuse must be delayed.
6605 */
6606 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6607 do_slab_free(s, slab, head, tail, cnt, addr);
6608 }
6609
6610 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)6611 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6612 {
6613 struct rcu_delayed_free *delayed_free =
6614 container_of(rcu_head, struct rcu_delayed_free, head);
6615 void *object = delayed_free->object;
6616 struct slab *slab = virt_to_slab(object);
6617 struct kmem_cache *s;
6618
6619 kfree(delayed_free);
6620
6621 if (WARN_ON(is_kfence_address(object)))
6622 return;
6623
6624 /* find the object and the cache again */
6625 if (WARN_ON(!slab))
6626 return;
6627 s = slab->slab_cache;
6628 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6629 return;
6630
6631 /* resume freeing */
6632 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6633 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6634 }
6635 #endif /* CONFIG_SLUB_RCU_DEBUG */
6636
6637 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)6638 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6639 {
6640 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6641 }
6642 #endif
6643
virt_to_cache(const void * obj)6644 static inline struct kmem_cache *virt_to_cache(const void *obj)
6645 {
6646 struct slab *slab;
6647
6648 slab = virt_to_slab(obj);
6649 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6650 return NULL;
6651 return slab->slab_cache;
6652 }
6653
cache_from_obj(struct kmem_cache * s,void * x)6654 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6655 {
6656 struct kmem_cache *cachep;
6657
6658 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6659 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6660 return s;
6661
6662 cachep = virt_to_cache(x);
6663 if (WARN(cachep && cachep != s,
6664 "%s: Wrong slab cache. %s but object is from %s\n",
6665 __func__, s->name, cachep->name))
6666 print_tracking(cachep, x);
6667 return cachep;
6668 }
6669
6670 /**
6671 * kmem_cache_free - Deallocate an object
6672 * @s: The cache the allocation was from.
6673 * @x: The previously allocated object.
6674 *
6675 * Free an object which was previously allocated from this
6676 * cache.
6677 */
kmem_cache_free(struct kmem_cache * s,void * x)6678 void kmem_cache_free(struct kmem_cache *s, void *x)
6679 {
6680 s = cache_from_obj(s, x);
6681 if (!s)
6682 return;
6683 trace_kmem_cache_free(_RET_IP_, x, s);
6684 slab_free(s, virt_to_slab(x), x, _RET_IP_);
6685 }
6686 EXPORT_SYMBOL(kmem_cache_free);
6687
free_large_kmalloc(struct folio * folio,void * object)6688 static void free_large_kmalloc(struct folio *folio, void *object)
6689 {
6690 unsigned int order = folio_order(folio);
6691
6692 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
6693 dump_page(&folio->page, "Not a kmalloc allocation");
6694 return;
6695 }
6696
6697 if (WARN_ON_ONCE(order == 0))
6698 pr_warn_once("object pointer: 0x%p\n", object);
6699
6700 kmemleak_free(object);
6701 kasan_kfree_large(object);
6702 kmsan_kfree_large(object);
6703
6704 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
6705 -(PAGE_SIZE << order));
6706 __folio_clear_large_kmalloc(folio);
6707 free_frozen_pages(&folio->page, order);
6708 }
6709
6710 /*
6711 * Given an rcu_head embedded within an object obtained from kvmalloc at an
6712 * offset < 4k, free the object in question.
6713 */
kvfree_rcu_cb(struct rcu_head * head)6714 void kvfree_rcu_cb(struct rcu_head *head)
6715 {
6716 void *obj = head;
6717 struct folio *folio;
6718 struct slab *slab;
6719 struct kmem_cache *s;
6720 void *slab_addr;
6721
6722 if (is_vmalloc_addr(obj)) {
6723 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6724 vfree(obj);
6725 return;
6726 }
6727
6728 folio = virt_to_folio(obj);
6729 if (!folio_test_slab(folio)) {
6730 /*
6731 * rcu_head offset can be only less than page size so no need to
6732 * consider folio order
6733 */
6734 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6735 free_large_kmalloc(folio, obj);
6736 return;
6737 }
6738
6739 slab = folio_slab(folio);
6740 s = slab->slab_cache;
6741 slab_addr = folio_address(folio);
6742
6743 if (is_kfence_address(obj)) {
6744 obj = kfence_object_start(obj);
6745 } else {
6746 unsigned int idx = __obj_to_index(s, slab_addr, obj);
6747
6748 obj = slab_addr + s->size * idx;
6749 obj = fixup_red_left(s, obj);
6750 }
6751
6752 slab_free(s, slab, obj, _RET_IP_);
6753 }
6754
6755 /**
6756 * kfree - free previously allocated memory
6757 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6758 *
6759 * If @object is NULL, no operation is performed.
6760 */
kfree(const void * object)6761 void kfree(const void *object)
6762 {
6763 struct folio *folio;
6764 struct slab *slab;
6765 struct kmem_cache *s;
6766 void *x = (void *)object;
6767
6768 trace_kfree(_RET_IP_, object);
6769
6770 if (unlikely(ZERO_OR_NULL_PTR(object)))
6771 return;
6772
6773 folio = virt_to_folio(object);
6774 if (unlikely(!folio_test_slab(folio))) {
6775 free_large_kmalloc(folio, (void *)object);
6776 return;
6777 }
6778
6779 slab = folio_slab(folio);
6780 s = slab->slab_cache;
6781 slab_free(s, slab, x, _RET_IP_);
6782 }
6783 EXPORT_SYMBOL(kfree);
6784
6785 /*
6786 * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6787 * but ONLY for objects allocated by kmalloc_nolock().
6788 * Debug checks (like kmemleak and kfence) were skipped on allocation,
6789 * hence
6790 * obj = kmalloc(); kfree_nolock(obj);
6791 * will miss kmemleak/kfence book keeping and will cause false positives.
6792 * large_kmalloc is not supported either.
6793 */
kfree_nolock(const void * object)6794 void kfree_nolock(const void *object)
6795 {
6796 struct folio *folio;
6797 struct slab *slab;
6798 struct kmem_cache *s;
6799 void *x = (void *)object;
6800
6801 if (unlikely(ZERO_OR_NULL_PTR(object)))
6802 return;
6803
6804 folio = virt_to_folio(object);
6805 if (unlikely(!folio_test_slab(folio))) {
6806 WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6807 return;
6808 }
6809
6810 slab = folio_slab(folio);
6811 s = slab->slab_cache;
6812
6813 memcg_slab_free_hook(s, slab, &x, 1);
6814 alloc_tagging_slab_free_hook(s, slab, &x, 1);
6815 /*
6816 * Unlike slab_free() do NOT call the following:
6817 * kmemleak_free_recursive(x, s->flags);
6818 * debug_check_no_locks_freed(x, s->object_size);
6819 * debug_check_no_obj_freed(x, s->object_size);
6820 * __kcsan_check_access(x, s->object_size, ..);
6821 * kfence_free(x);
6822 * since they take spinlocks or not safe from any context.
6823 */
6824 kmsan_slab_free(s, x);
6825 /*
6826 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6827 * which will call raw_spin_lock_irqsave() which is technically
6828 * unsafe from NMI, but take chance and report kernel bug.
6829 * The sequence of
6830 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6831 * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6832 * is double buggy and deserves to deadlock.
6833 */
6834 if (kasan_slab_pre_free(s, x))
6835 return;
6836 /*
6837 * memcg, kasan_slab_pre_free are done for 'x'.
6838 * The only thing left is kasan_poison without quarantine,
6839 * since kasan quarantine takes locks and not supported from NMI.
6840 */
6841 kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6842 #ifndef CONFIG_SLUB_TINY
6843 do_slab_free(s, slab, x, x, 0, _RET_IP_);
6844 #else
6845 defer_free(s, x);
6846 #endif
6847 }
6848 EXPORT_SYMBOL_GPL(kfree_nolock);
6849
6850 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)6851 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6852 {
6853 void *ret;
6854 size_t ks = 0;
6855 int orig_size = 0;
6856 struct kmem_cache *s = NULL;
6857
6858 if (unlikely(ZERO_OR_NULL_PTR(p)))
6859 goto alloc_new;
6860
6861 /* Check for double-free. */
6862 if (!kasan_check_byte(p))
6863 return NULL;
6864
6865 /*
6866 * If reallocation is not necessary (e. g. the new size is less
6867 * than the current allocated size), the current allocation will be
6868 * preserved unless __GFP_THISNODE is set. In the latter case a new
6869 * allocation on the requested node will be attempted.
6870 */
6871 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6872 nid != page_to_nid(virt_to_page(p)))
6873 goto alloc_new;
6874
6875 if (is_kfence_address(p)) {
6876 ks = orig_size = kfence_ksize(p);
6877 } else {
6878 struct folio *folio;
6879
6880 folio = virt_to_folio(p);
6881 if (unlikely(!folio_test_slab(folio))) {
6882 /* Big kmalloc object */
6883 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
6884 WARN_ON(p != folio_address(folio));
6885 ks = folio_size(folio);
6886 } else {
6887 s = folio_slab(folio)->slab_cache;
6888 orig_size = get_orig_size(s, (void *)p);
6889 ks = s->object_size;
6890 }
6891 }
6892
6893 /* If the old object doesn't fit, allocate a bigger one */
6894 if (new_size > ks)
6895 goto alloc_new;
6896
6897 /* If the old object doesn't satisfy the new alignment, allocate a new one */
6898 if (!IS_ALIGNED((unsigned long)p, align))
6899 goto alloc_new;
6900
6901 /* Zero out spare memory. */
6902 if (want_init_on_alloc(flags)) {
6903 kasan_disable_current();
6904 if (orig_size && orig_size < new_size)
6905 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6906 else
6907 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6908 kasan_enable_current();
6909 }
6910
6911 /* Setup kmalloc redzone when needed */
6912 if (s && slub_debug_orig_size(s)) {
6913 set_orig_size(s, (void *)p, new_size);
6914 if (s->flags & SLAB_RED_ZONE && new_size < ks)
6915 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
6916 SLUB_RED_ACTIVE, ks - new_size);
6917 }
6918
6919 p = kasan_krealloc(p, new_size, flags);
6920 return (void *)p;
6921
6922 alloc_new:
6923 ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
6924 if (ret && p) {
6925 /* Disable KASAN checks as the object's redzone is accessed. */
6926 kasan_disable_current();
6927 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
6928 kasan_enable_current();
6929 }
6930
6931 return ret;
6932 }
6933
6934 /**
6935 * krealloc_node_align - reallocate memory. The contents will remain unchanged.
6936 * @p: object to reallocate memory for.
6937 * @new_size: how many bytes of memory are required.
6938 * @align: desired alignment.
6939 * @flags: the type of memory to allocate.
6940 * @nid: NUMA node or NUMA_NO_NODE
6941 *
6942 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
6943 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
6944 *
6945 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
6946 * Documentation/core-api/memory-allocation.rst for more details.
6947 *
6948 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
6949 * initial memory allocation, every subsequent call to this API for the same
6950 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
6951 * __GFP_ZERO is not fully honored by this API.
6952 *
6953 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
6954 * size of an allocation (but not the exact size it was allocated with) and
6955 * hence implements the following semantics for shrinking and growing buffers
6956 * with __GFP_ZERO::
6957 *
6958 * new bucket
6959 * 0 size size
6960 * |--------|----------------|
6961 * | keep | zero |
6962 *
6963 * Otherwise, the original allocation size 'orig_size' could be used to
6964 * precisely clear the requested size, and the new size will also be stored
6965 * as the new 'orig_size'.
6966 *
6967 * In any case, the contents of the object pointed to are preserved up to the
6968 * lesser of the new and old sizes.
6969 *
6970 * Return: pointer to the allocated memory or %NULL in case of error
6971 */
krealloc_node_align_noprof(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)6972 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
6973 gfp_t flags, int nid)
6974 {
6975 void *ret;
6976
6977 if (unlikely(!new_size)) {
6978 kfree(p);
6979 return ZERO_SIZE_PTR;
6980 }
6981
6982 ret = __do_krealloc(p, new_size, align, flags, nid);
6983 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
6984 kfree(p);
6985
6986 return ret;
6987 }
6988 EXPORT_SYMBOL(krealloc_node_align_noprof);
6989
kmalloc_gfp_adjust(gfp_t flags,size_t size)6990 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
6991 {
6992 /*
6993 * We want to attempt a large physically contiguous block first because
6994 * it is less likely to fragment multiple larger blocks and therefore
6995 * contribute to a long term fragmentation less than vmalloc fallback.
6996 * However make sure that larger requests are not too disruptive - i.e.
6997 * do not direct reclaim unless physically continuous memory is preferred
6998 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
6999 * start working in the background
7000 */
7001 if (size > PAGE_SIZE) {
7002 flags |= __GFP_NOWARN;
7003
7004 if (!(flags & __GFP_RETRY_MAYFAIL))
7005 flags &= ~__GFP_DIRECT_RECLAIM;
7006
7007 /* nofail semantic is implemented by the vmalloc fallback */
7008 flags &= ~__GFP_NOFAIL;
7009 }
7010
7011 return flags;
7012 }
7013
7014 /**
7015 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7016 * failure, fall back to non-contiguous (vmalloc) allocation.
7017 * @size: size of the request.
7018 * @b: which set of kmalloc buckets to allocate from.
7019 * @align: desired alignment.
7020 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7021 * @node: numa node to allocate from
7022 *
7023 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7024 * Documentation/core-api/memory-allocation.rst for more details.
7025 *
7026 * Uses kmalloc to get the memory but if the allocation fails then falls back
7027 * to the vmalloc allocator. Use kvfree for freeing the memory.
7028 *
7029 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
7030 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7031 * preferable to the vmalloc fallback, due to visible performance drawbacks.
7032 *
7033 * Return: pointer to the allocated memory of %NULL in case of failure
7034 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),unsigned long align,gfp_t flags,int node)7035 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7036 gfp_t flags, int node)
7037 {
7038 void *ret;
7039
7040 /*
7041 * It doesn't really make sense to fallback to vmalloc for sub page
7042 * requests
7043 */
7044 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7045 kmalloc_gfp_adjust(flags, size),
7046 node, _RET_IP_);
7047 if (ret || size <= PAGE_SIZE)
7048 return ret;
7049
7050 /* non-sleeping allocations are not supported by vmalloc */
7051 if (!gfpflags_allow_blocking(flags))
7052 return NULL;
7053
7054 /* Don't even allow crazy sizes */
7055 if (unlikely(size > INT_MAX)) {
7056 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7057 return NULL;
7058 }
7059
7060 /*
7061 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7062 * since the callers already cannot assume anything
7063 * about the resulting pointer, and cannot play
7064 * protection games.
7065 */
7066 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7067 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
7068 node, __builtin_return_address(0));
7069 }
7070 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7071
7072 /**
7073 * kvfree() - Free memory.
7074 * @addr: Pointer to allocated memory.
7075 *
7076 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7077 * It is slightly more efficient to use kfree() or vfree() if you are certain
7078 * that you know which one to use.
7079 *
7080 * Context: Either preemptible task context or not-NMI interrupt.
7081 */
kvfree(const void * addr)7082 void kvfree(const void *addr)
7083 {
7084 if (is_vmalloc_addr(addr))
7085 vfree(addr);
7086 else
7087 kfree(addr);
7088 }
7089 EXPORT_SYMBOL(kvfree);
7090
7091 /**
7092 * kvfree_sensitive - Free a data object containing sensitive information.
7093 * @addr: address of the data object to be freed.
7094 * @len: length of the data object.
7095 *
7096 * Use the special memzero_explicit() function to clear the content of a
7097 * kvmalloc'ed object containing sensitive data to make sure that the
7098 * compiler won't optimize out the data clearing.
7099 */
kvfree_sensitive(const void * addr,size_t len)7100 void kvfree_sensitive(const void *addr, size_t len)
7101 {
7102 if (likely(!ZERO_OR_NULL_PTR(addr))) {
7103 memzero_explicit((void *)addr, len);
7104 kvfree(addr);
7105 }
7106 }
7107 EXPORT_SYMBOL(kvfree_sensitive);
7108
7109 /**
7110 * kvrealloc_node_align - reallocate memory; contents remain unchanged
7111 * @p: object to reallocate memory for
7112 * @size: the size to reallocate
7113 * @align: desired alignment
7114 * @flags: the flags for the page level allocator
7115 * @nid: NUMA node id
7116 *
7117 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7118 * and @p is not a %NULL pointer, the object pointed to is freed.
7119 *
7120 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7121 * Documentation/core-api/memory-allocation.rst for more details.
7122 *
7123 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7124 * initial memory allocation, every subsequent call to this API for the same
7125 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7126 * __GFP_ZERO is not fully honored by this API.
7127 *
7128 * In any case, the contents of the object pointed to are preserved up to the
7129 * lesser of the new and old sizes.
7130 *
7131 * This function must not be called concurrently with itself or kvfree() for the
7132 * same memory allocation.
7133 *
7134 * Return: pointer to the allocated memory or %NULL in case of error
7135 */
kvrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)7136 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7137 gfp_t flags, int nid)
7138 {
7139 void *n;
7140
7141 if (is_vmalloc_addr(p))
7142 return vrealloc_node_align_noprof(p, size, align, flags, nid);
7143
7144 n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7145 if (!n) {
7146 /* We failed to krealloc(), fall back to kvmalloc(). */
7147 n = kvmalloc_node_align_noprof(size, align, flags, nid);
7148 if (!n)
7149 return NULL;
7150
7151 if (p) {
7152 /* We already know that `p` is not a vmalloc address. */
7153 kasan_disable_current();
7154 memcpy(n, kasan_reset_tag(p), ksize(p));
7155 kasan_enable_current();
7156
7157 kfree(p);
7158 }
7159 }
7160
7161 return n;
7162 }
7163 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7164
7165 struct detached_freelist {
7166 struct slab *slab;
7167 void *tail;
7168 void *freelist;
7169 int cnt;
7170 struct kmem_cache *s;
7171 };
7172
7173 /*
7174 * This function progressively scans the array with free objects (with
7175 * a limited look ahead) and extract objects belonging to the same
7176 * slab. It builds a detached freelist directly within the given
7177 * slab/objects. This can happen without any need for
7178 * synchronization, because the objects are owned by running process.
7179 * The freelist is build up as a single linked list in the objects.
7180 * The idea is, that this detached freelist can then be bulk
7181 * transferred to the real freelist(s), but only requiring a single
7182 * synchronization primitive. Look ahead in the array is limited due
7183 * to performance reasons.
7184 */
7185 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)7186 int build_detached_freelist(struct kmem_cache *s, size_t size,
7187 void **p, struct detached_freelist *df)
7188 {
7189 int lookahead = 3;
7190 void *object;
7191 struct folio *folio;
7192 size_t same;
7193
7194 object = p[--size];
7195 folio = virt_to_folio(object);
7196 if (!s) {
7197 /* Handle kalloc'ed objects */
7198 if (unlikely(!folio_test_slab(folio))) {
7199 free_large_kmalloc(folio, object);
7200 df->slab = NULL;
7201 return size;
7202 }
7203 /* Derive kmem_cache from object */
7204 df->slab = folio_slab(folio);
7205 df->s = df->slab->slab_cache;
7206 } else {
7207 df->slab = folio_slab(folio);
7208 df->s = cache_from_obj(s, object); /* Support for memcg */
7209 }
7210
7211 /* Start new detached freelist */
7212 df->tail = object;
7213 df->freelist = object;
7214 df->cnt = 1;
7215
7216 if (is_kfence_address(object))
7217 return size;
7218
7219 set_freepointer(df->s, object, NULL);
7220
7221 same = size;
7222 while (size) {
7223 object = p[--size];
7224 /* df->slab is always set at this point */
7225 if (df->slab == virt_to_slab(object)) {
7226 /* Opportunity build freelist */
7227 set_freepointer(df->s, object, df->freelist);
7228 df->freelist = object;
7229 df->cnt++;
7230 same--;
7231 if (size != same)
7232 swap(p[size], p[same]);
7233 continue;
7234 }
7235
7236 /* Limit look ahead search */
7237 if (!--lookahead)
7238 break;
7239 }
7240
7241 return same;
7242 }
7243
7244 /*
7245 * Internal bulk free of objects that were not initialised by the post alloc
7246 * hooks and thus should not be processed by the free hooks
7247 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7248 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7249 {
7250 if (!size)
7251 return;
7252
7253 do {
7254 struct detached_freelist df;
7255
7256 size = build_detached_freelist(s, size, p, &df);
7257 if (!df.slab)
7258 continue;
7259
7260 if (kfence_free(df.freelist))
7261 continue;
7262
7263 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7264 _RET_IP_);
7265 } while (likely(size));
7266 }
7267
7268 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7269 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7270 {
7271 if (!size)
7272 return;
7273
7274 /*
7275 * freeing to sheaves is so incompatible with the detached freelist so
7276 * once we go that way, we have to do everything differently
7277 */
7278 if (s && s->cpu_sheaves) {
7279 free_to_pcs_bulk(s, size, p);
7280 return;
7281 }
7282
7283 do {
7284 struct detached_freelist df;
7285
7286 size = build_detached_freelist(s, size, p, &df);
7287 if (!df.slab)
7288 continue;
7289
7290 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7291 df.cnt, _RET_IP_);
7292 } while (likely(size));
7293 }
7294 EXPORT_SYMBOL(kmem_cache_free_bulk);
7295
7296 #ifndef CONFIG_SLUB_TINY
7297 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7298 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7299 void **p)
7300 {
7301 struct kmem_cache_cpu *c;
7302 unsigned long irqflags;
7303 int i;
7304
7305 /*
7306 * Drain objects in the per cpu slab, while disabling local
7307 * IRQs, which protects against PREEMPT and interrupts
7308 * handlers invoking normal fastpath.
7309 */
7310 c = slub_get_cpu_ptr(s->cpu_slab);
7311 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7312
7313 for (i = 0; i < size; i++) {
7314 void *object = kfence_alloc(s, s->object_size, flags);
7315
7316 if (unlikely(object)) {
7317 p[i] = object;
7318 continue;
7319 }
7320
7321 object = c->freelist;
7322 if (unlikely(!object)) {
7323 /*
7324 * We may have removed an object from c->freelist using
7325 * the fastpath in the previous iteration; in that case,
7326 * c->tid has not been bumped yet.
7327 * Since ___slab_alloc() may reenable interrupts while
7328 * allocating memory, we should bump c->tid now.
7329 */
7330 c->tid = next_tid(c->tid);
7331
7332 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7333
7334 /*
7335 * Invoking slow path likely have side-effect
7336 * of re-populating per CPU c->freelist
7337 */
7338 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7339 _RET_IP_, c, s->object_size);
7340 if (unlikely(!p[i]))
7341 goto error;
7342
7343 c = this_cpu_ptr(s->cpu_slab);
7344 maybe_wipe_obj_freeptr(s, p[i]);
7345
7346 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7347
7348 continue; /* goto for-loop */
7349 }
7350 c->freelist = get_freepointer(s, object);
7351 p[i] = object;
7352 maybe_wipe_obj_freeptr(s, p[i]);
7353 stat(s, ALLOC_FASTPATH);
7354 }
7355 c->tid = next_tid(c->tid);
7356 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7357 slub_put_cpu_ptr(s->cpu_slab);
7358
7359 return i;
7360
7361 error:
7362 slub_put_cpu_ptr(s->cpu_slab);
7363 __kmem_cache_free_bulk(s, i, p);
7364 return 0;
7365
7366 }
7367 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7368 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
7369 size_t size, void **p)
7370 {
7371 int i;
7372
7373 for (i = 0; i < size; i++) {
7374 void *object = kfence_alloc(s, s->object_size, flags);
7375
7376 if (unlikely(object)) {
7377 p[i] = object;
7378 continue;
7379 }
7380
7381 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
7382 _RET_IP_, s->object_size);
7383 if (unlikely(!p[i]))
7384 goto error;
7385
7386 maybe_wipe_obj_freeptr(s, p[i]);
7387 }
7388
7389 return i;
7390
7391 error:
7392 __kmem_cache_free_bulk(s, i, p);
7393 return 0;
7394 }
7395 #endif /* CONFIG_SLUB_TINY */
7396
7397 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7398 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7399 void **p)
7400 {
7401 unsigned int i = 0;
7402
7403 if (!size)
7404 return 0;
7405
7406 s = slab_pre_alloc_hook(s, flags);
7407 if (unlikely(!s))
7408 return 0;
7409
7410 if (s->cpu_sheaves)
7411 i = alloc_from_pcs_bulk(s, size, p);
7412
7413 if (i < size) {
7414 /*
7415 * If we ran out of memory, don't bother with freeing back to
7416 * the percpu sheaves, we have bigger problems.
7417 */
7418 if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7419 if (i > 0)
7420 __kmem_cache_free_bulk(s, i, p);
7421 return 0;
7422 }
7423 }
7424
7425 /*
7426 * memcg and kmem_cache debug support and memory initialization.
7427 * Done outside of the IRQ disabled fastpath loop.
7428 */
7429 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7430 slab_want_init_on_alloc(flags, s), s->object_size))) {
7431 return 0;
7432 }
7433
7434 return size;
7435 }
7436 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7437
7438 /*
7439 * Object placement in a slab is made very easy because we always start at
7440 * offset 0. If we tune the size of the object to the alignment then we can
7441 * get the required alignment by putting one properly sized object after
7442 * another.
7443 *
7444 * Notice that the allocation order determines the sizes of the per cpu
7445 * caches. Each processor has always one slab available for allocations.
7446 * Increasing the allocation order reduces the number of times that slabs
7447 * must be moved on and off the partial lists and is therefore a factor in
7448 * locking overhead.
7449 */
7450
7451 /*
7452 * Minimum / Maximum order of slab pages. This influences locking overhead
7453 * and slab fragmentation. A higher order reduces the number of partial slabs
7454 * and increases the number of allocations possible without having to
7455 * take the list_lock.
7456 */
7457 static unsigned int slub_min_order;
7458 static unsigned int slub_max_order =
7459 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7460 static unsigned int slub_min_objects;
7461
7462 /*
7463 * Calculate the order of allocation given an slab object size.
7464 *
7465 * The order of allocation has significant impact on performance and other
7466 * system components. Generally order 0 allocations should be preferred since
7467 * order 0 does not cause fragmentation in the page allocator. Larger objects
7468 * be problematic to put into order 0 slabs because there may be too much
7469 * unused space left. We go to a higher order if more than 1/16th of the slab
7470 * would be wasted.
7471 *
7472 * In order to reach satisfactory performance we must ensure that a minimum
7473 * number of objects is in one slab. Otherwise we may generate too much
7474 * activity on the partial lists which requires taking the list_lock. This is
7475 * less a concern for large slabs though which are rarely used.
7476 *
7477 * slab_max_order specifies the order where we begin to stop considering the
7478 * number of objects in a slab as critical. If we reach slab_max_order then
7479 * we try to keep the page order as low as possible. So we accept more waste
7480 * of space in favor of a small page order.
7481 *
7482 * Higher order allocations also allow the placement of more objects in a
7483 * slab and thereby reduce object handling overhead. If the user has
7484 * requested a higher minimum order then we start with that one instead of
7485 * the smallest order which will fit the object.
7486 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)7487 static inline unsigned int calc_slab_order(unsigned int size,
7488 unsigned int min_order, unsigned int max_order,
7489 unsigned int fract_leftover)
7490 {
7491 unsigned int order;
7492
7493 for (order = min_order; order <= max_order; order++) {
7494
7495 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7496 unsigned int rem;
7497
7498 rem = slab_size % size;
7499
7500 if (rem <= slab_size / fract_leftover)
7501 break;
7502 }
7503
7504 return order;
7505 }
7506
calculate_order(unsigned int size)7507 static inline int calculate_order(unsigned int size)
7508 {
7509 unsigned int order;
7510 unsigned int min_objects;
7511 unsigned int max_objects;
7512 unsigned int min_order;
7513
7514 min_objects = slub_min_objects;
7515 if (!min_objects) {
7516 /*
7517 * Some architectures will only update present cpus when
7518 * onlining them, so don't trust the number if it's just 1. But
7519 * we also don't want to use nr_cpu_ids always, as on some other
7520 * architectures, there can be many possible cpus, but never
7521 * onlined. Here we compromise between trying to avoid too high
7522 * order on systems that appear larger than they are, and too
7523 * low order on systems that appear smaller than they are.
7524 */
7525 unsigned int nr_cpus = num_present_cpus();
7526 if (nr_cpus <= 1)
7527 nr_cpus = nr_cpu_ids;
7528 min_objects = 4 * (fls(nr_cpus) + 1);
7529 }
7530 /* min_objects can't be 0 because get_order(0) is undefined */
7531 max_objects = max(order_objects(slub_max_order, size), 1U);
7532 min_objects = min(min_objects, max_objects);
7533
7534 min_order = max_t(unsigned int, slub_min_order,
7535 get_order(min_objects * size));
7536 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7537 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7538
7539 /*
7540 * Attempt to find best configuration for a slab. This works by first
7541 * attempting to generate a layout with the best possible configuration
7542 * and backing off gradually.
7543 *
7544 * We start with accepting at most 1/16 waste and try to find the
7545 * smallest order from min_objects-derived/slab_min_order up to
7546 * slab_max_order that will satisfy the constraint. Note that increasing
7547 * the order can only result in same or less fractional waste, not more.
7548 *
7549 * If that fails, we increase the acceptable fraction of waste and try
7550 * again. The last iteration with fraction of 1/2 would effectively
7551 * accept any waste and give us the order determined by min_objects, as
7552 * long as at least single object fits within slab_max_order.
7553 */
7554 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7555 order = calc_slab_order(size, min_order, slub_max_order,
7556 fraction);
7557 if (order <= slub_max_order)
7558 return order;
7559 }
7560
7561 /*
7562 * Doh this slab cannot be placed using slab_max_order.
7563 */
7564 order = get_order(size);
7565 if (order <= MAX_PAGE_ORDER)
7566 return order;
7567 return -ENOSYS;
7568 }
7569
7570 static void
init_kmem_cache_node(struct kmem_cache_node * n,struct node_barn * barn)7571 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7572 {
7573 n->nr_partial = 0;
7574 spin_lock_init(&n->list_lock);
7575 INIT_LIST_HEAD(&n->partial);
7576 #ifdef CONFIG_SLUB_DEBUG
7577 atomic_long_set(&n->nr_slabs, 0);
7578 atomic_long_set(&n->total_objects, 0);
7579 INIT_LIST_HEAD(&n->full);
7580 #endif
7581 n->barn = barn;
7582 if (barn)
7583 barn_init(barn);
7584 }
7585
7586 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)7587 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7588 {
7589 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7590 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7591 sizeof(struct kmem_cache_cpu));
7592
7593 /*
7594 * Must align to double word boundary for the double cmpxchg
7595 * instructions to work; see __pcpu_double_call_return_bool().
7596 */
7597 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7598 2 * sizeof(void *));
7599
7600 if (!s->cpu_slab)
7601 return 0;
7602
7603 init_kmem_cache_cpus(s);
7604
7605 return 1;
7606 }
7607 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)7608 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7609 {
7610 return 1;
7611 }
7612 #endif /* CONFIG_SLUB_TINY */
7613
init_percpu_sheaves(struct kmem_cache * s)7614 static int init_percpu_sheaves(struct kmem_cache *s)
7615 {
7616 int cpu;
7617
7618 for_each_possible_cpu(cpu) {
7619 struct slub_percpu_sheaves *pcs;
7620
7621 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7622
7623 local_trylock_init(&pcs->lock);
7624
7625 pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7626
7627 if (!pcs->main)
7628 return -ENOMEM;
7629 }
7630
7631 return 0;
7632 }
7633
7634 static struct kmem_cache *kmem_cache_node;
7635
7636 /*
7637 * No kmalloc_node yet so do it by hand. We know that this is the first
7638 * slab on the node for this slabcache. There are no concurrent accesses
7639 * possible.
7640 *
7641 * Note that this function only works on the kmem_cache_node
7642 * when allocating for the kmem_cache_node. This is used for bootstrapping
7643 * memory on a fresh node that has no slab structures yet.
7644 */
early_kmem_cache_node_alloc(int node)7645 static void early_kmem_cache_node_alloc(int node)
7646 {
7647 struct slab *slab;
7648 struct kmem_cache_node *n;
7649
7650 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7651
7652 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7653
7654 BUG_ON(!slab);
7655 if (slab_nid(slab) != node) {
7656 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7657 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7658 }
7659
7660 n = slab->freelist;
7661 BUG_ON(!n);
7662 #ifdef CONFIG_SLUB_DEBUG
7663 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7664 #endif
7665 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7666 slab->freelist = get_freepointer(kmem_cache_node, n);
7667 slab->inuse = 1;
7668 kmem_cache_node->node[node] = n;
7669 init_kmem_cache_node(n, NULL);
7670 inc_slabs_node(kmem_cache_node, node, slab->objects);
7671
7672 /*
7673 * No locks need to be taken here as it has just been
7674 * initialized and there is no concurrent access.
7675 */
7676 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
7677 }
7678
free_kmem_cache_nodes(struct kmem_cache * s)7679 static void free_kmem_cache_nodes(struct kmem_cache *s)
7680 {
7681 int node;
7682 struct kmem_cache_node *n;
7683
7684 for_each_kmem_cache_node(s, node, n) {
7685 if (n->barn) {
7686 WARN_ON(n->barn->nr_full);
7687 WARN_ON(n->barn->nr_empty);
7688 kfree(n->barn);
7689 n->barn = NULL;
7690 }
7691
7692 s->node[node] = NULL;
7693 kmem_cache_free(kmem_cache_node, n);
7694 }
7695 }
7696
__kmem_cache_release(struct kmem_cache * s)7697 void __kmem_cache_release(struct kmem_cache *s)
7698 {
7699 cache_random_seq_destroy(s);
7700 if (s->cpu_sheaves)
7701 pcs_destroy(s);
7702 #ifndef CONFIG_SLUB_TINY
7703 #ifdef CONFIG_PREEMPT_RT
7704 if (s->cpu_slab)
7705 lockdep_unregister_key(&s->lock_key);
7706 #endif
7707 free_percpu(s->cpu_slab);
7708 #endif
7709 free_kmem_cache_nodes(s);
7710 }
7711
init_kmem_cache_nodes(struct kmem_cache * s)7712 static int init_kmem_cache_nodes(struct kmem_cache *s)
7713 {
7714 int node;
7715
7716 for_each_node_mask(node, slab_nodes) {
7717 struct kmem_cache_node *n;
7718 struct node_barn *barn = NULL;
7719
7720 if (slab_state == DOWN) {
7721 early_kmem_cache_node_alloc(node);
7722 continue;
7723 }
7724
7725 if (s->cpu_sheaves) {
7726 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7727
7728 if (!barn)
7729 return 0;
7730 }
7731
7732 n = kmem_cache_alloc_node(kmem_cache_node,
7733 GFP_KERNEL, node);
7734 if (!n) {
7735 kfree(barn);
7736 return 0;
7737 }
7738
7739 init_kmem_cache_node(n, barn);
7740
7741 s->node[node] = n;
7742 }
7743 return 1;
7744 }
7745
set_cpu_partial(struct kmem_cache * s)7746 static void set_cpu_partial(struct kmem_cache *s)
7747 {
7748 #ifdef CONFIG_SLUB_CPU_PARTIAL
7749 unsigned int nr_objects;
7750
7751 /*
7752 * cpu_partial determined the maximum number of objects kept in the
7753 * per cpu partial lists of a processor.
7754 *
7755 * Per cpu partial lists mainly contain slabs that just have one
7756 * object freed. If they are used for allocation then they can be
7757 * filled up again with minimal effort. The slab will never hit the
7758 * per node partial lists and therefore no locking will be required.
7759 *
7760 * For backwards compatibility reasons, this is determined as number
7761 * of objects, even though we now limit maximum number of pages, see
7762 * slub_set_cpu_partial()
7763 */
7764 if (!kmem_cache_has_cpu_partial(s))
7765 nr_objects = 0;
7766 else if (s->size >= PAGE_SIZE)
7767 nr_objects = 6;
7768 else if (s->size >= 1024)
7769 nr_objects = 24;
7770 else if (s->size >= 256)
7771 nr_objects = 52;
7772 else
7773 nr_objects = 120;
7774
7775 slub_set_cpu_partial(s, nr_objects);
7776 #endif
7777 }
7778
7779 /*
7780 * calculate_sizes() determines the order and the distribution of data within
7781 * a slab object.
7782 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)7783 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7784 {
7785 slab_flags_t flags = s->flags;
7786 unsigned int size = s->object_size;
7787 unsigned int order;
7788
7789 /*
7790 * Round up object size to the next word boundary. We can only
7791 * place the free pointer at word boundaries and this determines
7792 * the possible location of the free pointer.
7793 */
7794 size = ALIGN(size, sizeof(void *));
7795
7796 #ifdef CONFIG_SLUB_DEBUG
7797 /*
7798 * Determine if we can poison the object itself. If the user of
7799 * the slab may touch the object after free or before allocation
7800 * then we should never poison the object itself.
7801 */
7802 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7803 !s->ctor)
7804 s->flags |= __OBJECT_POISON;
7805 else
7806 s->flags &= ~__OBJECT_POISON;
7807
7808
7809 /*
7810 * If we are Redzoning then check if there is some space between the
7811 * end of the object and the free pointer. If not then add an
7812 * additional word to have some bytes to store Redzone information.
7813 */
7814 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7815 size += sizeof(void *);
7816 #endif
7817
7818 /*
7819 * With that we have determined the number of bytes in actual use
7820 * by the object and redzoning.
7821 */
7822 s->inuse = size;
7823
7824 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7825 (flags & SLAB_POISON) || s->ctor ||
7826 ((flags & SLAB_RED_ZONE) &&
7827 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7828 /*
7829 * Relocate free pointer after the object if it is not
7830 * permitted to overwrite the first word of the object on
7831 * kmem_cache_free.
7832 *
7833 * This is the case if we do RCU, have a constructor or
7834 * destructor, are poisoning the objects, or are
7835 * redzoning an object smaller than sizeof(void *) or are
7836 * redzoning an object with slub_debug_orig_size() enabled,
7837 * in which case the right redzone may be extended.
7838 *
7839 * The assumption that s->offset >= s->inuse means free
7840 * pointer is outside of the object is used in the
7841 * freeptr_outside_object() function. If that is no
7842 * longer true, the function needs to be modified.
7843 */
7844 s->offset = size;
7845 size += sizeof(void *);
7846 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7847 s->offset = args->freeptr_offset;
7848 } else {
7849 /*
7850 * Store freelist pointer near middle of object to keep
7851 * it away from the edges of the object to avoid small
7852 * sized over/underflows from neighboring allocations.
7853 */
7854 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7855 }
7856
7857 #ifdef CONFIG_SLUB_DEBUG
7858 if (flags & SLAB_STORE_USER) {
7859 /*
7860 * Need to store information about allocs and frees after
7861 * the object.
7862 */
7863 size += 2 * sizeof(struct track);
7864
7865 /* Save the original kmalloc request size */
7866 if (flags & SLAB_KMALLOC)
7867 size += sizeof(unsigned int);
7868 }
7869 #endif
7870
7871 kasan_cache_create(s, &size, &s->flags);
7872 #ifdef CONFIG_SLUB_DEBUG
7873 if (flags & SLAB_RED_ZONE) {
7874 /*
7875 * Add some empty padding so that we can catch
7876 * overwrites from earlier objects rather than let
7877 * tracking information or the free pointer be
7878 * corrupted if a user writes before the start
7879 * of the object.
7880 */
7881 size += sizeof(void *);
7882
7883 s->red_left_pad = sizeof(void *);
7884 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7885 size += s->red_left_pad;
7886 }
7887 #endif
7888
7889 /*
7890 * SLUB stores one object immediately after another beginning from
7891 * offset 0. In order to align the objects we have to simply size
7892 * each object to conform to the alignment.
7893 */
7894 size = ALIGN(size, s->align);
7895 s->size = size;
7896 s->reciprocal_size = reciprocal_value(size);
7897 order = calculate_order(size);
7898
7899 if ((int)order < 0)
7900 return 0;
7901
7902 s->allocflags = __GFP_COMP;
7903
7904 if (s->flags & SLAB_CACHE_DMA)
7905 s->allocflags |= GFP_DMA;
7906
7907 if (s->flags & SLAB_CACHE_DMA32)
7908 s->allocflags |= GFP_DMA32;
7909
7910 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7911 s->allocflags |= __GFP_RECLAIMABLE;
7912
7913 /*
7914 * Determine the number of objects per slab
7915 */
7916 s->oo = oo_make(order, size);
7917 s->min = oo_make(get_order(size), size);
7918
7919 return !!oo_objects(s->oo);
7920 }
7921
list_slab_objects(struct kmem_cache * s,struct slab * slab)7922 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7923 {
7924 #ifdef CONFIG_SLUB_DEBUG
7925 void *addr = slab_address(slab);
7926 void *p;
7927
7928 if (!slab_add_kunit_errors())
7929 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
7930
7931 spin_lock(&object_map_lock);
7932 __fill_map(object_map, s, slab);
7933
7934 for_each_object(p, s, addr, slab->objects) {
7935
7936 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
7937 if (slab_add_kunit_errors())
7938 continue;
7939 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
7940 print_tracking(s, p);
7941 }
7942 }
7943 spin_unlock(&object_map_lock);
7944
7945 __slab_err(slab);
7946 #endif
7947 }
7948
7949 /*
7950 * Attempt to free all partial slabs on a node.
7951 * This is called from __kmem_cache_shutdown(). We must take list_lock
7952 * because sysfs file might still access partial list after the shutdowning.
7953 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)7954 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
7955 {
7956 LIST_HEAD(discard);
7957 struct slab *slab, *h;
7958
7959 BUG_ON(irqs_disabled());
7960 spin_lock_irq(&n->list_lock);
7961 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
7962 if (!slab->inuse) {
7963 remove_partial(n, slab);
7964 list_add(&slab->slab_list, &discard);
7965 } else {
7966 list_slab_objects(s, slab);
7967 }
7968 }
7969 spin_unlock_irq(&n->list_lock);
7970
7971 list_for_each_entry_safe(slab, h, &discard, slab_list)
7972 discard_slab(s, slab);
7973 }
7974
__kmem_cache_empty(struct kmem_cache * s)7975 bool __kmem_cache_empty(struct kmem_cache *s)
7976 {
7977 int node;
7978 struct kmem_cache_node *n;
7979
7980 for_each_kmem_cache_node(s, node, n)
7981 if (n->nr_partial || node_nr_slabs(n))
7982 return false;
7983 return true;
7984 }
7985
7986 /*
7987 * Release all resources used by a slab cache.
7988 */
__kmem_cache_shutdown(struct kmem_cache * s)7989 int __kmem_cache_shutdown(struct kmem_cache *s)
7990 {
7991 int node;
7992 struct kmem_cache_node *n;
7993
7994 flush_all_cpus_locked(s);
7995
7996 /* we might have rcu sheaves in flight */
7997 if (s->cpu_sheaves)
7998 rcu_barrier();
7999
8000 /* Attempt to free all objects */
8001 for_each_kmem_cache_node(s, node, n) {
8002 if (n->barn)
8003 barn_shrink(s, n->barn);
8004 free_partial(s, n);
8005 if (n->nr_partial || node_nr_slabs(n))
8006 return 1;
8007 }
8008 return 0;
8009 }
8010
8011 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)8012 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8013 {
8014 void *base;
8015 int __maybe_unused i;
8016 unsigned int objnr;
8017 void *objp;
8018 void *objp0;
8019 struct kmem_cache *s = slab->slab_cache;
8020 struct track __maybe_unused *trackp;
8021
8022 kpp->kp_ptr = object;
8023 kpp->kp_slab = slab;
8024 kpp->kp_slab_cache = s;
8025 base = slab_address(slab);
8026 objp0 = kasan_reset_tag(object);
8027 #ifdef CONFIG_SLUB_DEBUG
8028 objp = restore_red_left(s, objp0);
8029 #else
8030 objp = objp0;
8031 #endif
8032 objnr = obj_to_index(s, slab, objp);
8033 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8034 objp = base + s->size * objnr;
8035 kpp->kp_objp = objp;
8036 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8037 || (objp - base) % s->size) ||
8038 !(s->flags & SLAB_STORE_USER))
8039 return;
8040 #ifdef CONFIG_SLUB_DEBUG
8041 objp = fixup_red_left(s, objp);
8042 trackp = get_track(s, objp, TRACK_ALLOC);
8043 kpp->kp_ret = (void *)trackp->addr;
8044 #ifdef CONFIG_STACKDEPOT
8045 {
8046 depot_stack_handle_t handle;
8047 unsigned long *entries;
8048 unsigned int nr_entries;
8049
8050 handle = READ_ONCE(trackp->handle);
8051 if (handle) {
8052 nr_entries = stack_depot_fetch(handle, &entries);
8053 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8054 kpp->kp_stack[i] = (void *)entries[i];
8055 }
8056
8057 trackp = get_track(s, objp, TRACK_FREE);
8058 handle = READ_ONCE(trackp->handle);
8059 if (handle) {
8060 nr_entries = stack_depot_fetch(handle, &entries);
8061 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8062 kpp->kp_free_stack[i] = (void *)entries[i];
8063 }
8064 }
8065 #endif
8066 #endif
8067 }
8068 #endif
8069
8070 /********************************************************************
8071 * Kmalloc subsystem
8072 *******************************************************************/
8073
setup_slub_min_order(char * str)8074 static int __init setup_slub_min_order(char *str)
8075 {
8076 get_option(&str, (int *)&slub_min_order);
8077
8078 if (slub_min_order > slub_max_order)
8079 slub_max_order = slub_min_order;
8080
8081 return 1;
8082 }
8083
8084 __setup("slab_min_order=", setup_slub_min_order);
8085 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
8086
8087
setup_slub_max_order(char * str)8088 static int __init setup_slub_max_order(char *str)
8089 {
8090 get_option(&str, (int *)&slub_max_order);
8091 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8092
8093 if (slub_min_order > slub_max_order)
8094 slub_min_order = slub_max_order;
8095
8096 return 1;
8097 }
8098
8099 __setup("slab_max_order=", setup_slub_max_order);
8100 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
8101
setup_slub_min_objects(char * str)8102 static int __init setup_slub_min_objects(char *str)
8103 {
8104 get_option(&str, (int *)&slub_min_objects);
8105
8106 return 1;
8107 }
8108
8109 __setup("slab_min_objects=", setup_slub_min_objects);
8110 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
8111
8112 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)8113 static int __init setup_slab_strict_numa(char *str)
8114 {
8115 if (nr_node_ids > 1) {
8116 static_branch_enable(&strict_numa);
8117 pr_info("SLUB: Strict NUMA enabled.\n");
8118 } else {
8119 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8120 }
8121
8122 return 1;
8123 }
8124
8125 __setup("slab_strict_numa", setup_slab_strict_numa);
8126 #endif
8127
8128
8129 #ifdef CONFIG_HARDENED_USERCOPY
8130 /*
8131 * Rejects incorrectly sized objects and objects that are to be copied
8132 * to/from userspace but do not fall entirely within the containing slab
8133 * cache's usercopy region.
8134 *
8135 * Returns NULL if check passes, otherwise const char * to name of cache
8136 * to indicate an error.
8137 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)8138 void __check_heap_object(const void *ptr, unsigned long n,
8139 const struct slab *slab, bool to_user)
8140 {
8141 struct kmem_cache *s;
8142 unsigned int offset;
8143 bool is_kfence = is_kfence_address(ptr);
8144
8145 ptr = kasan_reset_tag(ptr);
8146
8147 /* Find object and usable object size. */
8148 s = slab->slab_cache;
8149
8150 /* Reject impossible pointers. */
8151 if (ptr < slab_address(slab))
8152 usercopy_abort("SLUB object not in SLUB page?!", NULL,
8153 to_user, 0, n);
8154
8155 /* Find offset within object. */
8156 if (is_kfence)
8157 offset = ptr - kfence_object_start(ptr);
8158 else
8159 offset = (ptr - slab_address(slab)) % s->size;
8160
8161 /* Adjust for redzone and reject if within the redzone. */
8162 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8163 if (offset < s->red_left_pad)
8164 usercopy_abort("SLUB object in left red zone",
8165 s->name, to_user, offset, n);
8166 offset -= s->red_left_pad;
8167 }
8168
8169 /* Allow address range falling entirely within usercopy region. */
8170 if (offset >= s->useroffset &&
8171 offset - s->useroffset <= s->usersize &&
8172 n <= s->useroffset - offset + s->usersize)
8173 return;
8174
8175 usercopy_abort("SLUB object", s->name, to_user, offset, n);
8176 }
8177 #endif /* CONFIG_HARDENED_USERCOPY */
8178
8179 #define SHRINK_PROMOTE_MAX 32
8180
8181 /*
8182 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8183 * up most to the head of the partial lists. New allocations will then
8184 * fill those up and thus they can be removed from the partial lists.
8185 *
8186 * The slabs with the least items are placed last. This results in them
8187 * being allocated from last increasing the chance that the last objects
8188 * are freed in them.
8189 */
__kmem_cache_do_shrink(struct kmem_cache * s)8190 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8191 {
8192 int node;
8193 int i;
8194 struct kmem_cache_node *n;
8195 struct slab *slab;
8196 struct slab *t;
8197 struct list_head discard;
8198 struct list_head promote[SHRINK_PROMOTE_MAX];
8199 unsigned long flags;
8200 int ret = 0;
8201
8202 for_each_kmem_cache_node(s, node, n) {
8203 INIT_LIST_HEAD(&discard);
8204 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8205 INIT_LIST_HEAD(promote + i);
8206
8207 if (n->barn)
8208 barn_shrink(s, n->barn);
8209
8210 spin_lock_irqsave(&n->list_lock, flags);
8211
8212 /*
8213 * Build lists of slabs to discard or promote.
8214 *
8215 * Note that concurrent frees may occur while we hold the
8216 * list_lock. slab->inuse here is the upper limit.
8217 */
8218 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8219 int free = slab->objects - slab->inuse;
8220
8221 /* Do not reread slab->inuse */
8222 barrier();
8223
8224 /* We do not keep full slabs on the list */
8225 BUG_ON(free <= 0);
8226
8227 if (free == slab->objects) {
8228 list_move(&slab->slab_list, &discard);
8229 slab_clear_node_partial(slab);
8230 n->nr_partial--;
8231 dec_slabs_node(s, node, slab->objects);
8232 } else if (free <= SHRINK_PROMOTE_MAX)
8233 list_move(&slab->slab_list, promote + free - 1);
8234 }
8235
8236 /*
8237 * Promote the slabs filled up most to the head of the
8238 * partial list.
8239 */
8240 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8241 list_splice(promote + i, &n->partial);
8242
8243 spin_unlock_irqrestore(&n->list_lock, flags);
8244
8245 /* Release empty slabs */
8246 list_for_each_entry_safe(slab, t, &discard, slab_list)
8247 free_slab(s, slab);
8248
8249 if (node_nr_slabs(n))
8250 ret = 1;
8251 }
8252
8253 return ret;
8254 }
8255
__kmem_cache_shrink(struct kmem_cache * s)8256 int __kmem_cache_shrink(struct kmem_cache *s)
8257 {
8258 flush_all(s);
8259 return __kmem_cache_do_shrink(s);
8260 }
8261
slab_mem_going_offline_callback(void)8262 static int slab_mem_going_offline_callback(void)
8263 {
8264 struct kmem_cache *s;
8265
8266 mutex_lock(&slab_mutex);
8267 list_for_each_entry(s, &slab_caches, list) {
8268 flush_all_cpus_locked(s);
8269 __kmem_cache_do_shrink(s);
8270 }
8271 mutex_unlock(&slab_mutex);
8272
8273 return 0;
8274 }
8275
slab_mem_going_online_callback(int nid)8276 static int slab_mem_going_online_callback(int nid)
8277 {
8278 struct kmem_cache_node *n;
8279 struct kmem_cache *s;
8280 int ret = 0;
8281
8282 /*
8283 * We are bringing a node online. No memory is available yet. We must
8284 * allocate a kmem_cache_node structure in order to bring the node
8285 * online.
8286 */
8287 mutex_lock(&slab_mutex);
8288 list_for_each_entry(s, &slab_caches, list) {
8289 struct node_barn *barn = NULL;
8290
8291 /*
8292 * The structure may already exist if the node was previously
8293 * onlined and offlined.
8294 */
8295 if (get_node(s, nid))
8296 continue;
8297
8298 if (s->cpu_sheaves) {
8299 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8300
8301 if (!barn) {
8302 ret = -ENOMEM;
8303 goto out;
8304 }
8305 }
8306
8307 /*
8308 * XXX: kmem_cache_alloc_node will fallback to other nodes
8309 * since memory is not yet available from the node that
8310 * is brought up.
8311 */
8312 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8313 if (!n) {
8314 kfree(barn);
8315 ret = -ENOMEM;
8316 goto out;
8317 }
8318
8319 init_kmem_cache_node(n, barn);
8320
8321 s->node[nid] = n;
8322 }
8323 /*
8324 * Any cache created after this point will also have kmem_cache_node
8325 * initialized for the new node.
8326 */
8327 node_set(nid, slab_nodes);
8328 out:
8329 mutex_unlock(&slab_mutex);
8330 return ret;
8331 }
8332
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)8333 static int slab_memory_callback(struct notifier_block *self,
8334 unsigned long action, void *arg)
8335 {
8336 struct node_notify *nn = arg;
8337 int nid = nn->nid;
8338 int ret = 0;
8339
8340 switch (action) {
8341 case NODE_ADDING_FIRST_MEMORY:
8342 ret = slab_mem_going_online_callback(nid);
8343 break;
8344 case NODE_REMOVING_LAST_MEMORY:
8345 ret = slab_mem_going_offline_callback();
8346 break;
8347 }
8348 if (ret)
8349 ret = notifier_from_errno(ret);
8350 else
8351 ret = NOTIFY_OK;
8352 return ret;
8353 }
8354
8355 /********************************************************************
8356 * Basic setup of slabs
8357 *******************************************************************/
8358
8359 /*
8360 * Used for early kmem_cache structures that were allocated using
8361 * the page allocator. Allocate them properly then fix up the pointers
8362 * that may be pointing to the wrong kmem_cache structure.
8363 */
8364
bootstrap(struct kmem_cache * static_cache)8365 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8366 {
8367 int node;
8368 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8369 struct kmem_cache_node *n;
8370
8371 memcpy(s, static_cache, kmem_cache->object_size);
8372
8373 /*
8374 * This runs very early, and only the boot processor is supposed to be
8375 * up. Even if it weren't true, IRQs are not up so we couldn't fire
8376 * IPIs around.
8377 */
8378 __flush_cpu_slab(s, smp_processor_id());
8379 for_each_kmem_cache_node(s, node, n) {
8380 struct slab *p;
8381
8382 list_for_each_entry(p, &n->partial, slab_list)
8383 p->slab_cache = s;
8384
8385 #ifdef CONFIG_SLUB_DEBUG
8386 list_for_each_entry(p, &n->full, slab_list)
8387 p->slab_cache = s;
8388 #endif
8389 }
8390 list_add(&s->list, &slab_caches);
8391 return s;
8392 }
8393
kmem_cache_init(void)8394 void __init kmem_cache_init(void)
8395 {
8396 static __initdata struct kmem_cache boot_kmem_cache,
8397 boot_kmem_cache_node;
8398 int node;
8399
8400 if (debug_guardpage_minorder())
8401 slub_max_order = 0;
8402
8403 /* Inform pointer hashing choice about slub debugging state. */
8404 hash_pointers_finalize(__slub_debug_enabled());
8405
8406 kmem_cache_node = &boot_kmem_cache_node;
8407 kmem_cache = &boot_kmem_cache;
8408
8409 /*
8410 * Initialize the nodemask for which we will allocate per node
8411 * structures. Here we don't need taking slab_mutex yet.
8412 */
8413 for_each_node_state(node, N_MEMORY)
8414 node_set(node, slab_nodes);
8415
8416 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8417 sizeof(struct kmem_cache_node),
8418 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8419
8420 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8421
8422 /* Able to allocate the per node structures */
8423 slab_state = PARTIAL;
8424
8425 create_boot_cache(kmem_cache, "kmem_cache",
8426 offsetof(struct kmem_cache, node) +
8427 nr_node_ids * sizeof(struct kmem_cache_node *),
8428 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8429
8430 kmem_cache = bootstrap(&boot_kmem_cache);
8431 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8432
8433 /* Now we can use the kmem_cache to allocate kmalloc slabs */
8434 setup_kmalloc_cache_index_table();
8435 create_kmalloc_caches();
8436
8437 /* Setup random freelists for each cache */
8438 init_freelist_randomization();
8439
8440 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8441 slub_cpu_dead);
8442
8443 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8444 cache_line_size(),
8445 slub_min_order, slub_max_order, slub_min_objects,
8446 nr_cpu_ids, nr_node_ids);
8447 }
8448
kmem_cache_init_late(void)8449 void __init kmem_cache_init_late(void)
8450 {
8451 #ifndef CONFIG_SLUB_TINY
8452 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8453 WARN_ON(!flushwq);
8454 #endif
8455 }
8456
8457 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))8458 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8459 slab_flags_t flags, void (*ctor)(void *))
8460 {
8461 struct kmem_cache *s;
8462
8463 s = find_mergeable(size, align, flags, name, ctor);
8464 if (s) {
8465 if (sysfs_slab_alias(s, name))
8466 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8467 name);
8468
8469 s->refcount++;
8470
8471 /*
8472 * Adjust the object sizes so that we clear
8473 * the complete object on kzalloc.
8474 */
8475 s->object_size = max(s->object_size, size);
8476 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8477 }
8478
8479 return s;
8480 }
8481
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)8482 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8483 unsigned int size, struct kmem_cache_args *args,
8484 slab_flags_t flags)
8485 {
8486 int err = -EINVAL;
8487
8488 s->name = name;
8489 s->size = s->object_size = size;
8490
8491 s->flags = kmem_cache_flags(flags, s->name);
8492 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8493 s->random = get_random_long();
8494 #endif
8495 s->align = args->align;
8496 s->ctor = args->ctor;
8497 #ifdef CONFIG_HARDENED_USERCOPY
8498 s->useroffset = args->useroffset;
8499 s->usersize = args->usersize;
8500 #endif
8501
8502 if (!calculate_sizes(args, s))
8503 goto out;
8504 if (disable_higher_order_debug) {
8505 /*
8506 * Disable debugging flags that store metadata if the min slab
8507 * order increased.
8508 */
8509 if (get_order(s->size) > get_order(s->object_size)) {
8510 s->flags &= ~DEBUG_METADATA_FLAGS;
8511 s->offset = 0;
8512 if (!calculate_sizes(args, s))
8513 goto out;
8514 }
8515 }
8516
8517 #ifdef system_has_freelist_aba
8518 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8519 /* Enable fast mode */
8520 s->flags |= __CMPXCHG_DOUBLE;
8521 }
8522 #endif
8523
8524 /*
8525 * The larger the object size is, the more slabs we want on the partial
8526 * list to avoid pounding the page allocator excessively.
8527 */
8528 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8529 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8530
8531 set_cpu_partial(s);
8532
8533 if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8534 && !(s->flags & SLAB_DEBUG_FLAGS)) {
8535 s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8536 if (!s->cpu_sheaves) {
8537 err = -ENOMEM;
8538 goto out;
8539 }
8540 // TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8541 s->sheaf_capacity = args->sheaf_capacity;
8542 }
8543
8544 #ifdef CONFIG_NUMA
8545 s->remote_node_defrag_ratio = 1000;
8546 #endif
8547
8548 /* Initialize the pre-computed randomized freelist if slab is up */
8549 if (slab_state >= UP) {
8550 if (init_cache_random_seq(s))
8551 goto out;
8552 }
8553
8554 if (!init_kmem_cache_nodes(s))
8555 goto out;
8556
8557 if (!alloc_kmem_cache_cpus(s))
8558 goto out;
8559
8560 if (s->cpu_sheaves) {
8561 err = init_percpu_sheaves(s);
8562 if (err)
8563 goto out;
8564 }
8565
8566 err = 0;
8567
8568 /* Mutex is not taken during early boot */
8569 if (slab_state <= UP)
8570 goto out;
8571
8572 /*
8573 * Failing to create sysfs files is not critical to SLUB functionality.
8574 * If it fails, proceed with cache creation without these files.
8575 */
8576 if (sysfs_slab_add(s))
8577 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8578
8579 if (s->flags & SLAB_STORE_USER)
8580 debugfs_slab_add(s);
8581
8582 out:
8583 if (err)
8584 __kmem_cache_release(s);
8585 return err;
8586 }
8587
8588 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)8589 static int count_inuse(struct slab *slab)
8590 {
8591 return slab->inuse;
8592 }
8593
count_total(struct slab * slab)8594 static int count_total(struct slab *slab)
8595 {
8596 return slab->objects;
8597 }
8598 #endif
8599
8600 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)8601 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8602 unsigned long *obj_map)
8603 {
8604 void *p;
8605 void *addr = slab_address(slab);
8606
8607 if (!validate_slab_ptr(slab)) {
8608 slab_err(s, slab, "Not a valid slab page");
8609 return;
8610 }
8611
8612 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8613 return;
8614
8615 /* Now we know that a valid freelist exists */
8616 __fill_map(obj_map, s, slab);
8617 for_each_object(p, s, addr, slab->objects) {
8618 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8619 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8620
8621 if (!check_object(s, slab, p, val))
8622 break;
8623 }
8624 }
8625
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)8626 static int validate_slab_node(struct kmem_cache *s,
8627 struct kmem_cache_node *n, unsigned long *obj_map)
8628 {
8629 unsigned long count = 0;
8630 struct slab *slab;
8631 unsigned long flags;
8632
8633 spin_lock_irqsave(&n->list_lock, flags);
8634
8635 list_for_each_entry(slab, &n->partial, slab_list) {
8636 validate_slab(s, slab, obj_map);
8637 count++;
8638 }
8639 if (count != n->nr_partial) {
8640 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8641 s->name, count, n->nr_partial);
8642 slab_add_kunit_errors();
8643 }
8644
8645 if (!(s->flags & SLAB_STORE_USER))
8646 goto out;
8647
8648 list_for_each_entry(slab, &n->full, slab_list) {
8649 validate_slab(s, slab, obj_map);
8650 count++;
8651 }
8652 if (count != node_nr_slabs(n)) {
8653 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8654 s->name, count, node_nr_slabs(n));
8655 slab_add_kunit_errors();
8656 }
8657
8658 out:
8659 spin_unlock_irqrestore(&n->list_lock, flags);
8660 return count;
8661 }
8662
validate_slab_cache(struct kmem_cache * s)8663 long validate_slab_cache(struct kmem_cache *s)
8664 {
8665 int node;
8666 unsigned long count = 0;
8667 struct kmem_cache_node *n;
8668 unsigned long *obj_map;
8669
8670 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8671 if (!obj_map)
8672 return -ENOMEM;
8673
8674 flush_all(s);
8675 for_each_kmem_cache_node(s, node, n)
8676 count += validate_slab_node(s, n, obj_map);
8677
8678 bitmap_free(obj_map);
8679
8680 return count;
8681 }
8682 EXPORT_SYMBOL(validate_slab_cache);
8683
8684 #ifdef CONFIG_DEBUG_FS
8685 /*
8686 * Generate lists of code addresses where slabcache objects are allocated
8687 * and freed.
8688 */
8689
8690 struct location {
8691 depot_stack_handle_t handle;
8692 unsigned long count;
8693 unsigned long addr;
8694 unsigned long waste;
8695 long long sum_time;
8696 long min_time;
8697 long max_time;
8698 long min_pid;
8699 long max_pid;
8700 DECLARE_BITMAP(cpus, NR_CPUS);
8701 nodemask_t nodes;
8702 };
8703
8704 struct loc_track {
8705 unsigned long max;
8706 unsigned long count;
8707 struct location *loc;
8708 loff_t idx;
8709 };
8710
8711 static struct dentry *slab_debugfs_root;
8712
free_loc_track(struct loc_track * t)8713 static void free_loc_track(struct loc_track *t)
8714 {
8715 if (t->max)
8716 free_pages((unsigned long)t->loc,
8717 get_order(sizeof(struct location) * t->max));
8718 }
8719
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)8720 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8721 {
8722 struct location *l;
8723 int order;
8724
8725 order = get_order(sizeof(struct location) * max);
8726
8727 l = (void *)__get_free_pages(flags, order);
8728 if (!l)
8729 return 0;
8730
8731 if (t->count) {
8732 memcpy(l, t->loc, sizeof(struct location) * t->count);
8733 free_loc_track(t);
8734 }
8735 t->max = max;
8736 t->loc = l;
8737 return 1;
8738 }
8739
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)8740 static int add_location(struct loc_track *t, struct kmem_cache *s,
8741 const struct track *track,
8742 unsigned int orig_size)
8743 {
8744 long start, end, pos;
8745 struct location *l;
8746 unsigned long caddr, chandle, cwaste;
8747 unsigned long age = jiffies - track->when;
8748 depot_stack_handle_t handle = 0;
8749 unsigned int waste = s->object_size - orig_size;
8750
8751 #ifdef CONFIG_STACKDEPOT
8752 handle = READ_ONCE(track->handle);
8753 #endif
8754 start = -1;
8755 end = t->count;
8756
8757 for ( ; ; ) {
8758 pos = start + (end - start + 1) / 2;
8759
8760 /*
8761 * There is nothing at "end". If we end up there
8762 * we need to add something to before end.
8763 */
8764 if (pos == end)
8765 break;
8766
8767 l = &t->loc[pos];
8768 caddr = l->addr;
8769 chandle = l->handle;
8770 cwaste = l->waste;
8771 if ((track->addr == caddr) && (handle == chandle) &&
8772 (waste == cwaste)) {
8773
8774 l->count++;
8775 if (track->when) {
8776 l->sum_time += age;
8777 if (age < l->min_time)
8778 l->min_time = age;
8779 if (age > l->max_time)
8780 l->max_time = age;
8781
8782 if (track->pid < l->min_pid)
8783 l->min_pid = track->pid;
8784 if (track->pid > l->max_pid)
8785 l->max_pid = track->pid;
8786
8787 cpumask_set_cpu(track->cpu,
8788 to_cpumask(l->cpus));
8789 }
8790 node_set(page_to_nid(virt_to_page(track)), l->nodes);
8791 return 1;
8792 }
8793
8794 if (track->addr < caddr)
8795 end = pos;
8796 else if (track->addr == caddr && handle < chandle)
8797 end = pos;
8798 else if (track->addr == caddr && handle == chandle &&
8799 waste < cwaste)
8800 end = pos;
8801 else
8802 start = pos;
8803 }
8804
8805 /*
8806 * Not found. Insert new tracking element.
8807 */
8808 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8809 return 0;
8810
8811 l = t->loc + pos;
8812 if (pos < t->count)
8813 memmove(l + 1, l,
8814 (t->count - pos) * sizeof(struct location));
8815 t->count++;
8816 l->count = 1;
8817 l->addr = track->addr;
8818 l->sum_time = age;
8819 l->min_time = age;
8820 l->max_time = age;
8821 l->min_pid = track->pid;
8822 l->max_pid = track->pid;
8823 l->handle = handle;
8824 l->waste = waste;
8825 cpumask_clear(to_cpumask(l->cpus));
8826 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8827 nodes_clear(l->nodes);
8828 node_set(page_to_nid(virt_to_page(track)), l->nodes);
8829 return 1;
8830 }
8831
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)8832 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8833 struct slab *slab, enum track_item alloc,
8834 unsigned long *obj_map)
8835 {
8836 void *addr = slab_address(slab);
8837 bool is_alloc = (alloc == TRACK_ALLOC);
8838 void *p;
8839
8840 __fill_map(obj_map, s, slab);
8841
8842 for_each_object(p, s, addr, slab->objects)
8843 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8844 add_location(t, s, get_track(s, p, alloc),
8845 is_alloc ? get_orig_size(s, p) :
8846 s->object_size);
8847 }
8848 #endif /* CONFIG_DEBUG_FS */
8849 #endif /* CONFIG_SLUB_DEBUG */
8850
8851 #ifdef SLAB_SUPPORTS_SYSFS
8852 enum slab_stat_type {
8853 SL_ALL, /* All slabs */
8854 SL_PARTIAL, /* Only partially allocated slabs */
8855 SL_CPU, /* Only slabs used for cpu caches */
8856 SL_OBJECTS, /* Determine allocated objects not slabs */
8857 SL_TOTAL /* Determine object capacity not slabs */
8858 };
8859
8860 #define SO_ALL (1 << SL_ALL)
8861 #define SO_PARTIAL (1 << SL_PARTIAL)
8862 #define SO_CPU (1 << SL_CPU)
8863 #define SO_OBJECTS (1 << SL_OBJECTS)
8864 #define SO_TOTAL (1 << SL_TOTAL)
8865
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)8866 static ssize_t show_slab_objects(struct kmem_cache *s,
8867 char *buf, unsigned long flags)
8868 {
8869 unsigned long total = 0;
8870 int node;
8871 int x;
8872 unsigned long *nodes;
8873 int len = 0;
8874
8875 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8876 if (!nodes)
8877 return -ENOMEM;
8878
8879 if (flags & SO_CPU) {
8880 int cpu;
8881
8882 for_each_possible_cpu(cpu) {
8883 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8884 cpu);
8885 int node;
8886 struct slab *slab;
8887
8888 slab = READ_ONCE(c->slab);
8889 if (!slab)
8890 continue;
8891
8892 node = slab_nid(slab);
8893 if (flags & SO_TOTAL)
8894 x = slab->objects;
8895 else if (flags & SO_OBJECTS)
8896 x = slab->inuse;
8897 else
8898 x = 1;
8899
8900 total += x;
8901 nodes[node] += x;
8902
8903 #ifdef CONFIG_SLUB_CPU_PARTIAL
8904 slab = slub_percpu_partial_read_once(c);
8905 if (slab) {
8906 node = slab_nid(slab);
8907 if (flags & SO_TOTAL)
8908 WARN_ON_ONCE(1);
8909 else if (flags & SO_OBJECTS)
8910 WARN_ON_ONCE(1);
8911 else
8912 x = data_race(slab->slabs);
8913 total += x;
8914 nodes[node] += x;
8915 }
8916 #endif
8917 }
8918 }
8919
8920 /*
8921 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
8922 * already held which will conflict with an existing lock order:
8923 *
8924 * mem_hotplug_lock->slab_mutex->kernfs_mutex
8925 *
8926 * We don't really need mem_hotplug_lock (to hold off
8927 * slab_mem_going_offline_callback) here because slab's memory hot
8928 * unplug code doesn't destroy the kmem_cache->node[] data.
8929 */
8930
8931 #ifdef CONFIG_SLUB_DEBUG
8932 if (flags & SO_ALL) {
8933 struct kmem_cache_node *n;
8934
8935 for_each_kmem_cache_node(s, node, n) {
8936
8937 if (flags & SO_TOTAL)
8938 x = node_nr_objs(n);
8939 else if (flags & SO_OBJECTS)
8940 x = node_nr_objs(n) - count_partial(n, count_free);
8941 else
8942 x = node_nr_slabs(n);
8943 total += x;
8944 nodes[node] += x;
8945 }
8946
8947 } else
8948 #endif
8949 if (flags & SO_PARTIAL) {
8950 struct kmem_cache_node *n;
8951
8952 for_each_kmem_cache_node(s, node, n) {
8953 if (flags & SO_TOTAL)
8954 x = count_partial(n, count_total);
8955 else if (flags & SO_OBJECTS)
8956 x = count_partial(n, count_inuse);
8957 else
8958 x = n->nr_partial;
8959 total += x;
8960 nodes[node] += x;
8961 }
8962 }
8963
8964 len += sysfs_emit_at(buf, len, "%lu", total);
8965 #ifdef CONFIG_NUMA
8966 for (node = 0; node < nr_node_ids; node++) {
8967 if (nodes[node])
8968 len += sysfs_emit_at(buf, len, " N%d=%lu",
8969 node, nodes[node]);
8970 }
8971 #endif
8972 len += sysfs_emit_at(buf, len, "\n");
8973 kfree(nodes);
8974
8975 return len;
8976 }
8977
8978 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
8979 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
8980
8981 struct slab_attribute {
8982 struct attribute attr;
8983 ssize_t (*show)(struct kmem_cache *s, char *buf);
8984 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
8985 };
8986
8987 #define SLAB_ATTR_RO(_name) \
8988 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
8989
8990 #define SLAB_ATTR(_name) \
8991 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
8992
slab_size_show(struct kmem_cache * s,char * buf)8993 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
8994 {
8995 return sysfs_emit(buf, "%u\n", s->size);
8996 }
8997 SLAB_ATTR_RO(slab_size);
8998
align_show(struct kmem_cache * s,char * buf)8999 static ssize_t align_show(struct kmem_cache *s, char *buf)
9000 {
9001 return sysfs_emit(buf, "%u\n", s->align);
9002 }
9003 SLAB_ATTR_RO(align);
9004
object_size_show(struct kmem_cache * s,char * buf)9005 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9006 {
9007 return sysfs_emit(buf, "%u\n", s->object_size);
9008 }
9009 SLAB_ATTR_RO(object_size);
9010
objs_per_slab_show(struct kmem_cache * s,char * buf)9011 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9012 {
9013 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9014 }
9015 SLAB_ATTR_RO(objs_per_slab);
9016
order_show(struct kmem_cache * s,char * buf)9017 static ssize_t order_show(struct kmem_cache *s, char *buf)
9018 {
9019 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9020 }
9021 SLAB_ATTR_RO(order);
9022
sheaf_capacity_show(struct kmem_cache * s,char * buf)9023 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9024 {
9025 return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9026 }
9027 SLAB_ATTR_RO(sheaf_capacity);
9028
min_partial_show(struct kmem_cache * s,char * buf)9029 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9030 {
9031 return sysfs_emit(buf, "%lu\n", s->min_partial);
9032 }
9033
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)9034 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9035 size_t length)
9036 {
9037 unsigned long min;
9038 int err;
9039
9040 err = kstrtoul(buf, 10, &min);
9041 if (err)
9042 return err;
9043
9044 s->min_partial = min;
9045 return length;
9046 }
9047 SLAB_ATTR(min_partial);
9048
cpu_partial_show(struct kmem_cache * s,char * buf)9049 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9050 {
9051 unsigned int nr_partial = 0;
9052 #ifdef CONFIG_SLUB_CPU_PARTIAL
9053 nr_partial = s->cpu_partial;
9054 #endif
9055
9056 return sysfs_emit(buf, "%u\n", nr_partial);
9057 }
9058
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)9059 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9060 size_t length)
9061 {
9062 unsigned int objects;
9063 int err;
9064
9065 err = kstrtouint(buf, 10, &objects);
9066 if (err)
9067 return err;
9068 if (objects && !kmem_cache_has_cpu_partial(s))
9069 return -EINVAL;
9070
9071 slub_set_cpu_partial(s, objects);
9072 flush_all(s);
9073 return length;
9074 }
9075 SLAB_ATTR(cpu_partial);
9076
ctor_show(struct kmem_cache * s,char * buf)9077 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9078 {
9079 if (!s->ctor)
9080 return 0;
9081 return sysfs_emit(buf, "%pS\n", s->ctor);
9082 }
9083 SLAB_ATTR_RO(ctor);
9084
aliases_show(struct kmem_cache * s,char * buf)9085 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9086 {
9087 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9088 }
9089 SLAB_ATTR_RO(aliases);
9090
partial_show(struct kmem_cache * s,char * buf)9091 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9092 {
9093 return show_slab_objects(s, buf, SO_PARTIAL);
9094 }
9095 SLAB_ATTR_RO(partial);
9096
cpu_slabs_show(struct kmem_cache * s,char * buf)9097 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9098 {
9099 return show_slab_objects(s, buf, SO_CPU);
9100 }
9101 SLAB_ATTR_RO(cpu_slabs);
9102
objects_partial_show(struct kmem_cache * s,char * buf)9103 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9104 {
9105 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9106 }
9107 SLAB_ATTR_RO(objects_partial);
9108
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)9109 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9110 {
9111 int objects = 0;
9112 int slabs = 0;
9113 int cpu __maybe_unused;
9114 int len = 0;
9115
9116 #ifdef CONFIG_SLUB_CPU_PARTIAL
9117 for_each_online_cpu(cpu) {
9118 struct slab *slab;
9119
9120 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9121
9122 if (slab)
9123 slabs += data_race(slab->slabs);
9124 }
9125 #endif
9126
9127 /* Approximate half-full slabs, see slub_set_cpu_partial() */
9128 objects = (slabs * oo_objects(s->oo)) / 2;
9129 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9130
9131 #ifdef CONFIG_SLUB_CPU_PARTIAL
9132 for_each_online_cpu(cpu) {
9133 struct slab *slab;
9134
9135 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9136 if (slab) {
9137 slabs = data_race(slab->slabs);
9138 objects = (slabs * oo_objects(s->oo)) / 2;
9139 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9140 cpu, objects, slabs);
9141 }
9142 }
9143 #endif
9144 len += sysfs_emit_at(buf, len, "\n");
9145
9146 return len;
9147 }
9148 SLAB_ATTR_RO(slabs_cpu_partial);
9149
reclaim_account_show(struct kmem_cache * s,char * buf)9150 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9151 {
9152 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9153 }
9154 SLAB_ATTR_RO(reclaim_account);
9155
hwcache_align_show(struct kmem_cache * s,char * buf)9156 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9157 {
9158 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9159 }
9160 SLAB_ATTR_RO(hwcache_align);
9161
9162 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)9163 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9164 {
9165 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9166 }
9167 SLAB_ATTR_RO(cache_dma);
9168 #endif
9169
9170 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)9171 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9172 {
9173 return sysfs_emit(buf, "%u\n", s->usersize);
9174 }
9175 SLAB_ATTR_RO(usersize);
9176 #endif
9177
destroy_by_rcu_show(struct kmem_cache * s,char * buf)9178 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9179 {
9180 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9181 }
9182 SLAB_ATTR_RO(destroy_by_rcu);
9183
9184 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)9185 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9186 {
9187 return show_slab_objects(s, buf, SO_ALL);
9188 }
9189 SLAB_ATTR_RO(slabs);
9190
total_objects_show(struct kmem_cache * s,char * buf)9191 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9192 {
9193 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9194 }
9195 SLAB_ATTR_RO(total_objects);
9196
objects_show(struct kmem_cache * s,char * buf)9197 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9198 {
9199 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9200 }
9201 SLAB_ATTR_RO(objects);
9202
sanity_checks_show(struct kmem_cache * s,char * buf)9203 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9204 {
9205 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9206 }
9207 SLAB_ATTR_RO(sanity_checks);
9208
trace_show(struct kmem_cache * s,char * buf)9209 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9210 {
9211 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9212 }
9213 SLAB_ATTR_RO(trace);
9214
red_zone_show(struct kmem_cache * s,char * buf)9215 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9216 {
9217 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9218 }
9219
9220 SLAB_ATTR_RO(red_zone);
9221
poison_show(struct kmem_cache * s,char * buf)9222 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9223 {
9224 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9225 }
9226
9227 SLAB_ATTR_RO(poison);
9228
store_user_show(struct kmem_cache * s,char * buf)9229 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9230 {
9231 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9232 }
9233
9234 SLAB_ATTR_RO(store_user);
9235
validate_show(struct kmem_cache * s,char * buf)9236 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9237 {
9238 return 0;
9239 }
9240
validate_store(struct kmem_cache * s,const char * buf,size_t length)9241 static ssize_t validate_store(struct kmem_cache *s,
9242 const char *buf, size_t length)
9243 {
9244 int ret = -EINVAL;
9245
9246 if (buf[0] == '1' && kmem_cache_debug(s)) {
9247 ret = validate_slab_cache(s);
9248 if (ret >= 0)
9249 ret = length;
9250 }
9251 return ret;
9252 }
9253 SLAB_ATTR(validate);
9254
9255 #endif /* CONFIG_SLUB_DEBUG */
9256
9257 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)9258 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9259 {
9260 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9261 }
9262
failslab_store(struct kmem_cache * s,const char * buf,size_t length)9263 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9264 size_t length)
9265 {
9266 if (s->refcount > 1)
9267 return -EINVAL;
9268
9269 if (buf[0] == '1')
9270 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9271 else
9272 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9273
9274 return length;
9275 }
9276 SLAB_ATTR(failslab);
9277 #endif
9278
shrink_show(struct kmem_cache * s,char * buf)9279 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9280 {
9281 return 0;
9282 }
9283
shrink_store(struct kmem_cache * s,const char * buf,size_t length)9284 static ssize_t shrink_store(struct kmem_cache *s,
9285 const char *buf, size_t length)
9286 {
9287 if (buf[0] == '1')
9288 kmem_cache_shrink(s);
9289 else
9290 return -EINVAL;
9291 return length;
9292 }
9293 SLAB_ATTR(shrink);
9294
9295 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)9296 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9297 {
9298 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9299 }
9300
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)9301 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9302 const char *buf, size_t length)
9303 {
9304 unsigned int ratio;
9305 int err;
9306
9307 err = kstrtouint(buf, 10, &ratio);
9308 if (err)
9309 return err;
9310 if (ratio > 100)
9311 return -ERANGE;
9312
9313 s->remote_node_defrag_ratio = ratio * 10;
9314
9315 return length;
9316 }
9317 SLAB_ATTR(remote_node_defrag_ratio);
9318 #endif
9319
9320 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)9321 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9322 {
9323 unsigned long sum = 0;
9324 int cpu;
9325 int len = 0;
9326 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9327
9328 if (!data)
9329 return -ENOMEM;
9330
9331 for_each_online_cpu(cpu) {
9332 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9333
9334 data[cpu] = x;
9335 sum += x;
9336 }
9337
9338 len += sysfs_emit_at(buf, len, "%lu", sum);
9339
9340 #ifdef CONFIG_SMP
9341 for_each_online_cpu(cpu) {
9342 if (data[cpu])
9343 len += sysfs_emit_at(buf, len, " C%d=%u",
9344 cpu, data[cpu]);
9345 }
9346 #endif
9347 kfree(data);
9348 len += sysfs_emit_at(buf, len, "\n");
9349
9350 return len;
9351 }
9352
clear_stat(struct kmem_cache * s,enum stat_item si)9353 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9354 {
9355 int cpu;
9356
9357 for_each_online_cpu(cpu)
9358 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9359 }
9360
9361 #define STAT_ATTR(si, text) \
9362 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
9363 { \
9364 return show_stat(s, buf, si); \
9365 } \
9366 static ssize_t text##_store(struct kmem_cache *s, \
9367 const char *buf, size_t length) \
9368 { \
9369 if (buf[0] != '0') \
9370 return -EINVAL; \
9371 clear_stat(s, si); \
9372 return length; \
9373 } \
9374 SLAB_ATTR(text); \
9375
9376 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9377 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9378 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9379 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9380 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9381 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9382 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9383 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9384 STAT_ATTR(FREE_FROZEN, free_frozen);
9385 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9386 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9387 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9388 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9389 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9390 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9391 STAT_ATTR(FREE_SLAB, free_slab);
9392 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9393 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9394 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9395 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9396 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9397 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9398 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9399 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9400 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9401 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9402 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9403 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9404 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9405 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9406 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9407 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9408 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9409 STAT_ATTR(SHEAF_FREE, sheaf_free);
9410 STAT_ATTR(BARN_GET, barn_get);
9411 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9412 STAT_ATTR(BARN_PUT, barn_put);
9413 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9414 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9415 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9416 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9417 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9418 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9419 #endif /* CONFIG_SLUB_STATS */
9420
9421 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)9422 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9423 {
9424 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9425 }
9426
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)9427 static ssize_t skip_kfence_store(struct kmem_cache *s,
9428 const char *buf, size_t length)
9429 {
9430 int ret = length;
9431
9432 if (buf[0] == '0')
9433 s->flags &= ~SLAB_SKIP_KFENCE;
9434 else if (buf[0] == '1')
9435 s->flags |= SLAB_SKIP_KFENCE;
9436 else
9437 ret = -EINVAL;
9438
9439 return ret;
9440 }
9441 SLAB_ATTR(skip_kfence);
9442 #endif
9443
9444 static struct attribute *slab_attrs[] = {
9445 &slab_size_attr.attr,
9446 &object_size_attr.attr,
9447 &objs_per_slab_attr.attr,
9448 &order_attr.attr,
9449 &sheaf_capacity_attr.attr,
9450 &min_partial_attr.attr,
9451 &cpu_partial_attr.attr,
9452 &objects_partial_attr.attr,
9453 &partial_attr.attr,
9454 &cpu_slabs_attr.attr,
9455 &ctor_attr.attr,
9456 &aliases_attr.attr,
9457 &align_attr.attr,
9458 &hwcache_align_attr.attr,
9459 &reclaim_account_attr.attr,
9460 &destroy_by_rcu_attr.attr,
9461 &shrink_attr.attr,
9462 &slabs_cpu_partial_attr.attr,
9463 #ifdef CONFIG_SLUB_DEBUG
9464 &total_objects_attr.attr,
9465 &objects_attr.attr,
9466 &slabs_attr.attr,
9467 &sanity_checks_attr.attr,
9468 &trace_attr.attr,
9469 &red_zone_attr.attr,
9470 &poison_attr.attr,
9471 &store_user_attr.attr,
9472 &validate_attr.attr,
9473 #endif
9474 #ifdef CONFIG_ZONE_DMA
9475 &cache_dma_attr.attr,
9476 #endif
9477 #ifdef CONFIG_NUMA
9478 &remote_node_defrag_ratio_attr.attr,
9479 #endif
9480 #ifdef CONFIG_SLUB_STATS
9481 &alloc_cpu_sheaf_attr.attr,
9482 &alloc_fastpath_attr.attr,
9483 &alloc_slowpath_attr.attr,
9484 &free_cpu_sheaf_attr.attr,
9485 &free_rcu_sheaf_attr.attr,
9486 &free_rcu_sheaf_fail_attr.attr,
9487 &free_fastpath_attr.attr,
9488 &free_slowpath_attr.attr,
9489 &free_frozen_attr.attr,
9490 &free_add_partial_attr.attr,
9491 &free_remove_partial_attr.attr,
9492 &alloc_from_partial_attr.attr,
9493 &alloc_slab_attr.attr,
9494 &alloc_refill_attr.attr,
9495 &alloc_node_mismatch_attr.attr,
9496 &free_slab_attr.attr,
9497 &cpuslab_flush_attr.attr,
9498 &deactivate_full_attr.attr,
9499 &deactivate_empty_attr.attr,
9500 &deactivate_to_head_attr.attr,
9501 &deactivate_to_tail_attr.attr,
9502 &deactivate_remote_frees_attr.attr,
9503 &deactivate_bypass_attr.attr,
9504 &order_fallback_attr.attr,
9505 &cmpxchg_double_fail_attr.attr,
9506 &cmpxchg_double_cpu_fail_attr.attr,
9507 &cpu_partial_alloc_attr.attr,
9508 &cpu_partial_free_attr.attr,
9509 &cpu_partial_node_attr.attr,
9510 &cpu_partial_drain_attr.attr,
9511 &sheaf_flush_attr.attr,
9512 &sheaf_refill_attr.attr,
9513 &sheaf_alloc_attr.attr,
9514 &sheaf_free_attr.attr,
9515 &barn_get_attr.attr,
9516 &barn_get_fail_attr.attr,
9517 &barn_put_attr.attr,
9518 &barn_put_fail_attr.attr,
9519 &sheaf_prefill_fast_attr.attr,
9520 &sheaf_prefill_slow_attr.attr,
9521 &sheaf_prefill_oversize_attr.attr,
9522 &sheaf_return_fast_attr.attr,
9523 &sheaf_return_slow_attr.attr,
9524 #endif
9525 #ifdef CONFIG_FAILSLAB
9526 &failslab_attr.attr,
9527 #endif
9528 #ifdef CONFIG_HARDENED_USERCOPY
9529 &usersize_attr.attr,
9530 #endif
9531 #ifdef CONFIG_KFENCE
9532 &skip_kfence_attr.attr,
9533 #endif
9534
9535 NULL
9536 };
9537
9538 static const struct attribute_group slab_attr_group = {
9539 .attrs = slab_attrs,
9540 };
9541
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)9542 static ssize_t slab_attr_show(struct kobject *kobj,
9543 struct attribute *attr,
9544 char *buf)
9545 {
9546 struct slab_attribute *attribute;
9547 struct kmem_cache *s;
9548
9549 attribute = to_slab_attr(attr);
9550 s = to_slab(kobj);
9551
9552 if (!attribute->show)
9553 return -EIO;
9554
9555 return attribute->show(s, buf);
9556 }
9557
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)9558 static ssize_t slab_attr_store(struct kobject *kobj,
9559 struct attribute *attr,
9560 const char *buf, size_t len)
9561 {
9562 struct slab_attribute *attribute;
9563 struct kmem_cache *s;
9564
9565 attribute = to_slab_attr(attr);
9566 s = to_slab(kobj);
9567
9568 if (!attribute->store)
9569 return -EIO;
9570
9571 return attribute->store(s, buf, len);
9572 }
9573
kmem_cache_release(struct kobject * k)9574 static void kmem_cache_release(struct kobject *k)
9575 {
9576 slab_kmem_cache_release(to_slab(k));
9577 }
9578
9579 static const struct sysfs_ops slab_sysfs_ops = {
9580 .show = slab_attr_show,
9581 .store = slab_attr_store,
9582 };
9583
9584 static const struct kobj_type slab_ktype = {
9585 .sysfs_ops = &slab_sysfs_ops,
9586 .release = kmem_cache_release,
9587 };
9588
9589 static struct kset *slab_kset;
9590
cache_kset(struct kmem_cache * s)9591 static inline struct kset *cache_kset(struct kmem_cache *s)
9592 {
9593 return slab_kset;
9594 }
9595
9596 #define ID_STR_LENGTH 32
9597
9598 /* Create a unique string id for a slab cache:
9599 *
9600 * Format :[flags-]size
9601 */
create_unique_id(struct kmem_cache * s)9602 static char *create_unique_id(struct kmem_cache *s)
9603 {
9604 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9605 char *p = name;
9606
9607 if (!name)
9608 return ERR_PTR(-ENOMEM);
9609
9610 *p++ = ':';
9611 /*
9612 * First flags affecting slabcache operations. We will only
9613 * get here for aliasable slabs so we do not need to support
9614 * too many flags. The flags here must cover all flags that
9615 * are matched during merging to guarantee that the id is
9616 * unique.
9617 */
9618 if (s->flags & SLAB_CACHE_DMA)
9619 *p++ = 'd';
9620 if (s->flags & SLAB_CACHE_DMA32)
9621 *p++ = 'D';
9622 if (s->flags & SLAB_RECLAIM_ACCOUNT)
9623 *p++ = 'a';
9624 if (s->flags & SLAB_CONSISTENCY_CHECKS)
9625 *p++ = 'F';
9626 if (s->flags & SLAB_ACCOUNT)
9627 *p++ = 'A';
9628 if (p != name + 1)
9629 *p++ = '-';
9630 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9631
9632 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9633 kfree(name);
9634 return ERR_PTR(-EINVAL);
9635 }
9636 kmsan_unpoison_memory(name, p - name);
9637 return name;
9638 }
9639
sysfs_slab_add(struct kmem_cache * s)9640 static int sysfs_slab_add(struct kmem_cache *s)
9641 {
9642 int err;
9643 const char *name;
9644 struct kset *kset = cache_kset(s);
9645 int unmergeable = slab_unmergeable(s);
9646
9647 if (!unmergeable && disable_higher_order_debug &&
9648 (slub_debug & DEBUG_METADATA_FLAGS))
9649 unmergeable = 1;
9650
9651 if (unmergeable) {
9652 /*
9653 * Slabcache can never be merged so we can use the name proper.
9654 * This is typically the case for debug situations. In that
9655 * case we can catch duplicate names easily.
9656 */
9657 sysfs_remove_link(&slab_kset->kobj, s->name);
9658 name = s->name;
9659 } else {
9660 /*
9661 * Create a unique name for the slab as a target
9662 * for the symlinks.
9663 */
9664 name = create_unique_id(s);
9665 if (IS_ERR(name))
9666 return PTR_ERR(name);
9667 }
9668
9669 s->kobj.kset = kset;
9670 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9671 if (err)
9672 goto out;
9673
9674 err = sysfs_create_group(&s->kobj, &slab_attr_group);
9675 if (err)
9676 goto out_del_kobj;
9677
9678 if (!unmergeable) {
9679 /* Setup first alias */
9680 sysfs_slab_alias(s, s->name);
9681 }
9682 out:
9683 if (!unmergeable)
9684 kfree(name);
9685 return err;
9686 out_del_kobj:
9687 kobject_del(&s->kobj);
9688 goto out;
9689 }
9690
sysfs_slab_unlink(struct kmem_cache * s)9691 void sysfs_slab_unlink(struct kmem_cache *s)
9692 {
9693 if (s->kobj.state_in_sysfs)
9694 kobject_del(&s->kobj);
9695 }
9696
sysfs_slab_release(struct kmem_cache * s)9697 void sysfs_slab_release(struct kmem_cache *s)
9698 {
9699 kobject_put(&s->kobj);
9700 }
9701
9702 /*
9703 * Need to buffer aliases during bootup until sysfs becomes
9704 * available lest we lose that information.
9705 */
9706 struct saved_alias {
9707 struct kmem_cache *s;
9708 const char *name;
9709 struct saved_alias *next;
9710 };
9711
9712 static struct saved_alias *alias_list;
9713
sysfs_slab_alias(struct kmem_cache * s,const char * name)9714 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9715 {
9716 struct saved_alias *al;
9717
9718 if (slab_state == FULL) {
9719 /*
9720 * If we have a leftover link then remove it.
9721 */
9722 sysfs_remove_link(&slab_kset->kobj, name);
9723 /*
9724 * The original cache may have failed to generate sysfs file.
9725 * In that case, sysfs_create_link() returns -ENOENT and
9726 * symbolic link creation is skipped.
9727 */
9728 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9729 }
9730
9731 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9732 if (!al)
9733 return -ENOMEM;
9734
9735 al->s = s;
9736 al->name = name;
9737 al->next = alias_list;
9738 alias_list = al;
9739 kmsan_unpoison_memory(al, sizeof(*al));
9740 return 0;
9741 }
9742
slab_sysfs_init(void)9743 static int __init slab_sysfs_init(void)
9744 {
9745 struct kmem_cache *s;
9746 int err;
9747
9748 mutex_lock(&slab_mutex);
9749
9750 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9751 if (!slab_kset) {
9752 mutex_unlock(&slab_mutex);
9753 pr_err("Cannot register slab subsystem.\n");
9754 return -ENOMEM;
9755 }
9756
9757 slab_state = FULL;
9758
9759 list_for_each_entry(s, &slab_caches, list) {
9760 err = sysfs_slab_add(s);
9761 if (err)
9762 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9763 s->name);
9764 }
9765
9766 while (alias_list) {
9767 struct saved_alias *al = alias_list;
9768
9769 alias_list = alias_list->next;
9770 err = sysfs_slab_alias(al->s, al->name);
9771 if (err)
9772 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9773 al->name);
9774 kfree(al);
9775 }
9776
9777 mutex_unlock(&slab_mutex);
9778 return 0;
9779 }
9780 late_initcall(slab_sysfs_init);
9781 #endif /* SLAB_SUPPORTS_SYSFS */
9782
9783 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)9784 static int slab_debugfs_show(struct seq_file *seq, void *v)
9785 {
9786 struct loc_track *t = seq->private;
9787 struct location *l;
9788 unsigned long idx;
9789
9790 idx = (unsigned long) t->idx;
9791 if (idx < t->count) {
9792 l = &t->loc[idx];
9793
9794 seq_printf(seq, "%7ld ", l->count);
9795
9796 if (l->addr)
9797 seq_printf(seq, "%pS", (void *)l->addr);
9798 else
9799 seq_puts(seq, "<not-available>");
9800
9801 if (l->waste)
9802 seq_printf(seq, " waste=%lu/%lu",
9803 l->count * l->waste, l->waste);
9804
9805 if (l->sum_time != l->min_time) {
9806 seq_printf(seq, " age=%ld/%llu/%ld",
9807 l->min_time, div_u64(l->sum_time, l->count),
9808 l->max_time);
9809 } else
9810 seq_printf(seq, " age=%ld", l->min_time);
9811
9812 if (l->min_pid != l->max_pid)
9813 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9814 else
9815 seq_printf(seq, " pid=%ld",
9816 l->min_pid);
9817
9818 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9819 seq_printf(seq, " cpus=%*pbl",
9820 cpumask_pr_args(to_cpumask(l->cpus)));
9821
9822 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9823 seq_printf(seq, " nodes=%*pbl",
9824 nodemask_pr_args(&l->nodes));
9825
9826 #ifdef CONFIG_STACKDEPOT
9827 {
9828 depot_stack_handle_t handle;
9829 unsigned long *entries;
9830 unsigned int nr_entries, j;
9831
9832 handle = READ_ONCE(l->handle);
9833 if (handle) {
9834 nr_entries = stack_depot_fetch(handle, &entries);
9835 seq_puts(seq, "\n");
9836 for (j = 0; j < nr_entries; j++)
9837 seq_printf(seq, " %pS\n", (void *)entries[j]);
9838 }
9839 }
9840 #endif
9841 seq_puts(seq, "\n");
9842 }
9843
9844 if (!idx && !t->count)
9845 seq_puts(seq, "No data\n");
9846
9847 return 0;
9848 }
9849
slab_debugfs_stop(struct seq_file * seq,void * v)9850 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9851 {
9852 }
9853
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)9854 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9855 {
9856 struct loc_track *t = seq->private;
9857
9858 t->idx = ++(*ppos);
9859 if (*ppos <= t->count)
9860 return ppos;
9861
9862 return NULL;
9863 }
9864
cmp_loc_by_count(const void * a,const void * b)9865 static int cmp_loc_by_count(const void *a, const void *b)
9866 {
9867 struct location *loc1 = (struct location *)a;
9868 struct location *loc2 = (struct location *)b;
9869
9870 return cmp_int(loc2->count, loc1->count);
9871 }
9872
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)9873 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9874 {
9875 struct loc_track *t = seq->private;
9876
9877 t->idx = *ppos;
9878 return ppos;
9879 }
9880
9881 static const struct seq_operations slab_debugfs_sops = {
9882 .start = slab_debugfs_start,
9883 .next = slab_debugfs_next,
9884 .stop = slab_debugfs_stop,
9885 .show = slab_debugfs_show,
9886 };
9887
slab_debug_trace_open(struct inode * inode,struct file * filep)9888 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9889 {
9890
9891 struct kmem_cache_node *n;
9892 enum track_item alloc;
9893 int node;
9894 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9895 sizeof(struct loc_track));
9896 struct kmem_cache *s = file_inode(filep)->i_private;
9897 unsigned long *obj_map;
9898
9899 if (!t)
9900 return -ENOMEM;
9901
9902 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9903 if (!obj_map) {
9904 seq_release_private(inode, filep);
9905 return -ENOMEM;
9906 }
9907
9908 alloc = debugfs_get_aux_num(filep);
9909
9910 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9911 bitmap_free(obj_map);
9912 seq_release_private(inode, filep);
9913 return -ENOMEM;
9914 }
9915
9916 for_each_kmem_cache_node(s, node, n) {
9917 unsigned long flags;
9918 struct slab *slab;
9919
9920 if (!node_nr_slabs(n))
9921 continue;
9922
9923 spin_lock_irqsave(&n->list_lock, flags);
9924 list_for_each_entry(slab, &n->partial, slab_list)
9925 process_slab(t, s, slab, alloc, obj_map);
9926 list_for_each_entry(slab, &n->full, slab_list)
9927 process_slab(t, s, slab, alloc, obj_map);
9928 spin_unlock_irqrestore(&n->list_lock, flags);
9929 }
9930
9931 /* Sort locations by count */
9932 sort(t->loc, t->count, sizeof(struct location),
9933 cmp_loc_by_count, NULL);
9934
9935 bitmap_free(obj_map);
9936 return 0;
9937 }
9938
slab_debug_trace_release(struct inode * inode,struct file * file)9939 static int slab_debug_trace_release(struct inode *inode, struct file *file)
9940 {
9941 struct seq_file *seq = file->private_data;
9942 struct loc_track *t = seq->private;
9943
9944 free_loc_track(t);
9945 return seq_release_private(inode, file);
9946 }
9947
9948 static const struct file_operations slab_debugfs_fops = {
9949 .open = slab_debug_trace_open,
9950 .read = seq_read,
9951 .llseek = seq_lseek,
9952 .release = slab_debug_trace_release,
9953 };
9954
debugfs_slab_add(struct kmem_cache * s)9955 static void debugfs_slab_add(struct kmem_cache *s)
9956 {
9957 struct dentry *slab_cache_dir;
9958
9959 if (unlikely(!slab_debugfs_root))
9960 return;
9961
9962 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
9963
9964 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
9965 TRACK_ALLOC, &slab_debugfs_fops);
9966
9967 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
9968 TRACK_FREE, &slab_debugfs_fops);
9969 }
9970
debugfs_slab_release(struct kmem_cache * s)9971 void debugfs_slab_release(struct kmem_cache *s)
9972 {
9973 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
9974 }
9975
slab_debugfs_init(void)9976 static int __init slab_debugfs_init(void)
9977 {
9978 struct kmem_cache *s;
9979
9980 slab_debugfs_root = debugfs_create_dir("slab", NULL);
9981
9982 list_for_each_entry(s, &slab_caches, list)
9983 if (s->flags & SLAB_STORE_USER)
9984 debugfs_slab_add(s);
9985
9986 return 0;
9987
9988 }
9989 __initcall(slab_debugfs_init);
9990 #endif
9991 /*
9992 * The /proc/slabinfo ABI
9993 */
9994 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)9995 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
9996 {
9997 unsigned long nr_slabs = 0;
9998 unsigned long nr_objs = 0;
9999 unsigned long nr_free = 0;
10000 int node;
10001 struct kmem_cache_node *n;
10002
10003 for_each_kmem_cache_node(s, node, n) {
10004 nr_slabs += node_nr_slabs(n);
10005 nr_objs += node_nr_objs(n);
10006 nr_free += count_partial_free_approx(n);
10007 }
10008
10009 sinfo->active_objs = nr_objs - nr_free;
10010 sinfo->num_objs = nr_objs;
10011 sinfo->active_slabs = nr_slabs;
10012 sinfo->num_slabs = nr_slabs;
10013 sinfo->objects_per_slab = oo_objects(s->oo);
10014 sinfo->cache_order = oo_order(s->oo);
10015 }
10016 #endif /* CONFIG_SLUB_DEBUG */
10017