1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 /**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136
137 #define RING_EXECLIST_QFULL (1 << 0x2)
138 #define RING_EXECLIST1_VALID (1 << 0x3)
139 #define RING_EXECLIST0_VALID (1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
143
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
150
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID 0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID 0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165 (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170 struct virtual_engine {
171 struct intel_engine_cs base;
172 struct intel_context context;
173 struct rcu_work rcu;
174
175 /*
176 * We allow only a single request through the virtual engine at a time
177 * (each request in the timeline waits for the completion fence of
178 * the previous before being submitted). By restricting ourselves to
179 * only submitting a single request, each request is placed on to a
180 * physical to maximise load spreading (by virtue of the late greedy
181 * scheduling -- each real engine takes the next available request
182 * upon idling).
183 */
184 struct i915_request *request;
185
186 /*
187 * We keep a rbtree of available virtual engines inside each physical
188 * engine, sorted by priority. Here we preallocate the nodes we need
189 * for the virtual engine, indexed by physical_engine->id.
190 */
191 struct ve_node {
192 struct rb_node rb;
193 int prio;
194 } nodes[I915_NUM_ENGINES];
195
196 /* And finally, which physical engines this virtual engine maps onto. */
197 unsigned int num_siblings;
198 struct intel_engine_cs *siblings[];
199 };
200
to_virtual_engine(struct intel_engine_cs * engine)201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203 GEM_BUG_ON(!intel_engine_is_virtual(engine));
204 return container_of(engine, struct virtual_engine, base);
205 }
206
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209 unsigned long flags);
210
211 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)212 __active_request(const struct intel_timeline * const tl,
213 struct i915_request *rq,
214 int error)
215 {
216 struct i915_request *active = rq;
217
218 list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219 if (__i915_request_is_complete(rq))
220 break;
221
222 if (error) {
223 i915_request_set_error_once(rq, error);
224 __i915_request_skip(rq);
225 }
226 active = rq;
227 }
228
229 return active;
230 }
231
232 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235 return __active_request(tl, rq, 0);
236 }
237
ring_set_paused(const struct intel_engine_cs * engine,int state)238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240 /*
241 * We inspect HWS_PREEMPT with a semaphore inside
242 * engine->emit_fini_breadcrumb. If the dword is true,
243 * the ring is paused as the semaphore will busywait
244 * until the dword is false.
245 */
246 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247 if (state)
248 wmb();
249 }
250
to_priolist(struct rb_node * rb)251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253 return rb_entry(rb, struct i915_priolist, node);
254 }
255
rq_prio(const struct i915_request * rq)256 static int rq_prio(const struct i915_request *rq)
257 {
258 return READ_ONCE(rq->sched.attr.priority);
259 }
260
effective_prio(const struct i915_request * rq)261 static int effective_prio(const struct i915_request *rq)
262 {
263 int prio = rq_prio(rq);
264
265 /*
266 * If this request is special and must not be interrupted at any
267 * cost, so be it. Note we are only checking the most recent request
268 * in the context and so may be masking an earlier vip request. It
269 * is hoped that under the conditions where nopreempt is used, this
270 * will not matter (i.e. all requests to that context will be
271 * nopreempt for as long as desired).
272 */
273 if (i915_request_has_nopreempt(rq))
274 prio = I915_PRIORITY_UNPREEMPTABLE;
275
276 return prio;
277 }
278
queue_prio(const struct i915_sched_engine * sched_engine)279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281 struct rb_node *rb;
282
283 rb = rb_first_cached(&sched_engine->queue);
284 if (!rb)
285 return INT_MIN;
286
287 return to_priolist(rb)->priority;
288 }
289
virtual_prio(const struct intel_engine_execlists * el)290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292 struct rb_node *rb = rb_first_cached(&el->virtual);
293
294 return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)297 static bool need_preempt(const struct intel_engine_cs *engine,
298 const struct i915_request *rq)
299 {
300 int last_prio;
301
302 if (!intel_engine_has_semaphores(engine))
303 return false;
304
305 /*
306 * Check if the current priority hint merits a preemption attempt.
307 *
308 * We record the highest value priority we saw during rescheduling
309 * prior to this dequeue, therefore we know that if it is strictly
310 * less than the current tail of ESLP[0], we do not need to force
311 * a preempt-to-idle cycle.
312 *
313 * However, the priority hint is a mere hint that we may need to
314 * preempt. If that hint is stale or we may be trying to preempt
315 * ourselves, ignore the request.
316 *
317 * More naturally we would write
318 * prio >= max(0, last);
319 * except that we wish to prevent triggering preemption at the same
320 * priority level: the task that is running should remain running
321 * to preserve FIFO ordering of dependencies.
322 */
323 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324 if (engine->sched_engine->queue_priority_hint <= last_prio)
325 return false;
326
327 /*
328 * Check against the first request in ELSP[1], it will, thanks to the
329 * power of PI, be the highest priority of that context.
330 */
331 if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333 return true;
334
335 /*
336 * If the inflight context did not trigger the preemption, then maybe
337 * it was the set of queued requests? Pick the highest priority in
338 * the queue (the first active priolist) and see if it deserves to be
339 * running instead of ELSP[0].
340 *
341 * The highest priority request in the queue can not be either
342 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343 * context, it's priority would not exceed ELSP[0] aka last_prio.
344 */
345 return max(virtual_prio(&engine->execlists),
346 queue_prio(engine->sched_engine)) > last_prio;
347 }
348
349 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)350 assert_priority_queue(const struct i915_request *prev,
351 const struct i915_request *next)
352 {
353 /*
354 * Without preemption, the prev may refer to the still active element
355 * which we refuse to let go.
356 *
357 * Even with preemption, there are times when we think it is better not
358 * to preempt and leave an ostensibly lower priority request in flight.
359 */
360 if (i915_request_is_active(prev))
361 return true;
362
363 return rq_prio(prev) >= rq_prio(next);
364 }
365
366 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369 struct i915_request *rq, *rn, *active = NULL;
370 struct list_head *pl;
371 int prio = I915_PRIORITY_INVALID;
372
373 lockdep_assert_held(&engine->sched_engine->lock);
374
375 list_for_each_entry_safe_reverse(rq, rn,
376 &engine->sched_engine->requests,
377 sched.link) {
378 if (__i915_request_is_complete(rq)) {
379 list_del_init(&rq->sched.link);
380 continue;
381 }
382
383 __i915_request_unsubmit(rq);
384
385 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386 if (rq_prio(rq) != prio) {
387 prio = rq_prio(rq);
388 pl = i915_sched_lookup_priolist(engine->sched_engine,
389 prio);
390 }
391 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393 list_move(&rq->sched.link, pl);
394 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396 /* Check in case we rollback so far we wrap [size/2] */
397 if (intel_ring_direction(rq->ring,
398 rq->tail,
399 rq->ring->tail + 8) > 0)
400 rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402 active = rq;
403 }
404
405 return active;
406 }
407
408 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)409 execlists_context_status_change(struct i915_request *rq, unsigned long status)
410 {
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
419 status, rq);
420 }
421
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)422 static void reset_active(struct i915_request *rq,
423 struct intel_engine_cs *engine)
424 {
425 struct intel_context * const ce = rq->context;
426 u32 head;
427
428 /*
429 * The executing context has been cancelled. We want to prevent
430 * further execution along this context and propagate the error on
431 * to anything depending on its results.
432 *
433 * In __i915_request_submit(), we apply the -EIO and remove the
434 * requests' payloads for any banned requests. But first, we must
435 * rewind the context back to the start of the incomplete request so
436 * that we do not jump back into the middle of the batch.
437 *
438 * We preserve the breadcrumbs and semaphores of the incomplete
439 * requests so that inter-timeline dependencies (i.e other timelines)
440 * remain correctly ordered. And we defer to __i915_request_submit()
441 * so that all asynchronous waits are correctly handled.
442 */
443 ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
444 rq->fence.context, rq->fence.seqno);
445
446 /* On resubmission of the active request, payload will be scrubbed */
447 if (__i915_request_is_complete(rq))
448 head = rq->tail;
449 else
450 head = __active_request(ce->timeline, rq, -EIO)->head;
451 head = intel_ring_wrap(ce->ring, head);
452
453 /* Scrub the context image to prevent replaying the previous batch */
454 lrc_init_regs(ce, engine, true);
455
456 /* We've switched away, so this should be a no-op, but intent matters */
457 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
458 }
459
bad_request(const struct i915_request * rq)460 static bool bad_request(const struct i915_request *rq)
461 {
462 return rq->fence.error && i915_request_started(rq);
463 }
464
465 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)466 __execlists_schedule_in(struct i915_request *rq)
467 {
468 struct intel_engine_cs * const engine = rq->engine;
469 struct intel_context * const ce = rq->context;
470
471 intel_context_get(ce);
472
473 if (unlikely(intel_context_is_closed(ce) &&
474 !intel_engine_has_heartbeat(engine)))
475 intel_context_set_exiting(ce);
476
477 if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
478 reset_active(rq, engine);
479
480 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
481 lrc_check_regs(ce, engine, "before");
482
483 if (ce->tag) {
484 /* Use a fixed tag for OA and friends */
485 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
486 ce->lrc.ccid = ce->tag;
487 } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
488 /* We don't need a strict matching tag, just different values */
489 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
490
491 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
492 clear_bit(tag - 1, &engine->context_tag);
493 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
494
495 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
496
497 } else {
498 /* We don't need a strict matching tag, just different values */
499 unsigned int tag = __ffs(engine->context_tag);
500
501 GEM_BUG_ON(tag >= BITS_PER_LONG);
502 __clear_bit(tag, &engine->context_tag);
503 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
504
505 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
506 }
507
508 ce->lrc.ccid |= engine->execlists.ccid;
509
510 __intel_gt_pm_get(engine->gt);
511 if (engine->fw_domain && !engine->fw_active++)
512 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
513 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
514 intel_engine_context_in(engine);
515
516 CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
517
518 return engine;
519 }
520
execlists_schedule_in(struct i915_request * rq,int idx)521 static void execlists_schedule_in(struct i915_request *rq, int idx)
522 {
523 struct intel_context * const ce = rq->context;
524 struct intel_engine_cs *old;
525
526 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
527 trace_i915_request_in(rq, idx);
528
529 old = ce->inflight;
530 if (!old)
531 old = __execlists_schedule_in(rq);
532 WRITE_ONCE(ce->inflight, ptr_inc(old));
533
534 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
535 }
536
537 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)538 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
539 {
540 struct intel_engine_cs *engine = rq->engine;
541
542 spin_lock_irq(&engine->sched_engine->lock);
543
544 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
545 WRITE_ONCE(rq->engine, &ve->base);
546 ve->base.submit_request(rq);
547
548 spin_unlock_irq(&engine->sched_engine->lock);
549 }
550
kick_siblings(struct i915_request * rq,struct intel_context * ce)551 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
552 {
553 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
554 struct intel_engine_cs *engine = rq->engine;
555
556 /*
557 * After this point, the rq may be transferred to a new sibling, so
558 * before we clear ce->inflight make sure that the context has been
559 * removed from the b->signalers and furthermore we need to make sure
560 * that the concurrent iterator in signal_irq_work is no longer
561 * following ce->signal_link.
562 */
563 if (!list_empty(&ce->signals))
564 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
565
566 /*
567 * This engine is now too busy to run this virtual request, so
568 * see if we can find an alternative engine for it to execute on.
569 * Once a request has become bonded to this engine, we treat it the
570 * same as other native request.
571 */
572 if (i915_request_in_priority_queue(rq) &&
573 rq->execution_mask != engine->mask)
574 resubmit_virtual_request(rq, ve);
575
576 if (READ_ONCE(ve->request))
577 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
578 }
579
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)580 static void __execlists_schedule_out(struct i915_request * const rq,
581 struct intel_context * const ce)
582 {
583 struct intel_engine_cs * const engine = rq->engine;
584 unsigned int ccid;
585
586 /*
587 * NB process_csb() is not under the engine->sched_engine->lock and hence
588 * schedule_out can race with schedule_in meaning that we should
589 * refrain from doing non-trivial work here.
590 */
591
592 CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
593 GEM_BUG_ON(ce->inflight != engine);
594
595 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
596 lrc_check_regs(ce, engine, "after");
597
598 /*
599 * If we have just completed this context, the engine may now be
600 * idle and we want to re-enter powersaving.
601 */
602 if (intel_timeline_is_last(ce->timeline, rq) &&
603 __i915_request_is_complete(rq))
604 intel_engine_add_retire(engine, ce->timeline);
605
606 ccid = ce->lrc.ccid;
607 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
608 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
609 ccid &= XEHP_MAX_CONTEXT_HW_ID;
610 } else {
611 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
612 ccid &= GEN12_MAX_CONTEXT_HW_ID;
613 }
614
615 if (ccid < BITS_PER_LONG) {
616 GEM_BUG_ON(ccid == 0);
617 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
618 __set_bit(ccid - 1, &engine->context_tag);
619 }
620 intel_engine_context_out(engine);
621 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
622 if (engine->fw_domain && !--engine->fw_active)
623 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
624 intel_gt_pm_put_async_untracked(engine->gt);
625
626 /*
627 * If this is part of a virtual engine, its next request may
628 * have been blocked waiting for access to the active context.
629 * We have to kick all the siblings again in case we need to
630 * switch (e.g. the next request is not runnable on this
631 * engine). Hopefully, we will already have submitted the next
632 * request before the tasklet runs and do not need to rebuild
633 * each virtual tree and kick everyone again.
634 */
635 if (ce->engine != engine)
636 kick_siblings(rq, ce);
637
638 WRITE_ONCE(ce->inflight, NULL);
639 intel_context_put(ce);
640 }
641
execlists_schedule_out(struct i915_request * rq)642 static inline void execlists_schedule_out(struct i915_request *rq)
643 {
644 struct intel_context * const ce = rq->context;
645
646 trace_i915_request_out(rq);
647
648 GEM_BUG_ON(!ce->inflight);
649 ce->inflight = ptr_dec(ce->inflight);
650 if (!__intel_context_inflight_count(ce->inflight))
651 __execlists_schedule_out(rq, ce);
652
653 i915_request_put(rq);
654 }
655
map_i915_prio_to_lrc_desc_prio(int prio)656 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
657 {
658 if (prio > I915_PRIORITY_NORMAL)
659 return GEN12_CTX_PRIORITY_HIGH;
660 else if (prio < I915_PRIORITY_NORMAL)
661 return GEN12_CTX_PRIORITY_LOW;
662 else
663 return GEN12_CTX_PRIORITY_NORMAL;
664 }
665
execlists_update_context(struct i915_request * rq)666 static u64 execlists_update_context(struct i915_request *rq)
667 {
668 struct intel_context *ce = rq->context;
669 u64 desc;
670 u32 tail, prev;
671
672 desc = ce->lrc.desc;
673 if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
674 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
675
676 /*
677 * WaIdleLiteRestore:bdw,skl
678 *
679 * We should never submit the context with the same RING_TAIL twice
680 * just in case we submit an empty ring, which confuses the HW.
681 *
682 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
683 * the normal request to be able to always advance the RING_TAIL on
684 * subsequent resubmissions (for lite restore). Should that fail us,
685 * and we try and submit the same tail again, force the context
686 * reload.
687 *
688 * If we need to return to a preempted context, we need to skip the
689 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
690 * HW has a tendency to ignore us rewinding the TAIL to the end of
691 * an earlier request.
692 */
693 GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
694 prev = rq->ring->tail;
695 tail = intel_ring_set_tail(rq->ring, rq->tail);
696 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
697 desc |= CTX_DESC_FORCE_RESTORE;
698 ce->lrc_reg_state[CTX_RING_TAIL] = tail;
699 rq->tail = rq->wa_tail;
700
701 /*
702 * Make sure the context image is complete before we submit it to HW.
703 *
704 * Ostensibly, writes (including the WCB) should be flushed prior to
705 * an uncached write such as our mmio register access, the empirical
706 * evidence (esp. on Braswell) suggests that the WC write into memory
707 * may not be visible to the HW prior to the completion of the UC
708 * register write and that we may begin execution from the context
709 * before its image is complete leading to invalid PD chasing.
710 */
711 wmb();
712
713 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
714 return desc;
715 }
716
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)717 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
718 {
719 if (execlists->ctrl_reg) {
720 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
721 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
722 } else {
723 writel(upper_32_bits(desc), execlists->submit_reg);
724 writel(lower_32_bits(desc), execlists->submit_reg);
725 }
726 }
727
728 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)729 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
730 {
731 if (!rq)
732 return "";
733
734 snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
735 prefix,
736 rq->context->lrc.ccid,
737 rq->fence.context, rq->fence.seqno,
738 __i915_request_is_complete(rq) ? "!" :
739 __i915_request_has_started(rq) ? "*" :
740 "",
741 rq_prio(rq));
742
743 return buf;
744 }
745
746 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)747 trace_ports(const struct intel_engine_execlists *execlists,
748 const char *msg,
749 struct i915_request * const *ports)
750 {
751 const struct intel_engine_cs *engine =
752 container_of(execlists, typeof(*engine), execlists);
753 char __maybe_unused p0[40], p1[40];
754
755 if (!ports[0])
756 return;
757
758 ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
759 dump_port(p0, sizeof(p0), "", ports[0]),
760 dump_port(p1, sizeof(p1), ", ", ports[1]));
761 }
762
763 static bool
reset_in_progress(const struct intel_engine_cs * engine)764 reset_in_progress(const struct intel_engine_cs *engine)
765 {
766 return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
767 }
768
769 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)770 assert_pending_valid(const struct intel_engine_execlists *execlists,
771 const char *msg)
772 {
773 struct intel_engine_cs *engine =
774 container_of(execlists, typeof(*engine), execlists);
775 struct i915_request * const *port, *rq, *prev = NULL;
776 struct intel_context *ce = NULL;
777 u32 ccid = -1;
778
779 trace_ports(execlists, msg, execlists->pending);
780
781 /* We may be messing around with the lists during reset, lalala */
782 if (reset_in_progress(engine))
783 return true;
784
785 if (!execlists->pending[0]) {
786 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
787 engine->name);
788 return false;
789 }
790
791 if (execlists->pending[execlists_num_ports(execlists)]) {
792 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
793 engine->name, execlists_num_ports(execlists));
794 return false;
795 }
796
797 for (port = execlists->pending; (rq = *port); port++) {
798 unsigned long flags;
799 bool ok = true;
800
801 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
802 GEM_BUG_ON(!i915_request_is_active(rq));
803
804 if (ce == rq->context) {
805 GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
806 engine->name,
807 ce->timeline->fence_context,
808 port - execlists->pending);
809 return false;
810 }
811 ce = rq->context;
812
813 if (ccid == ce->lrc.ccid) {
814 GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
815 engine->name,
816 ccid, ce->timeline->fence_context,
817 port - execlists->pending);
818 return false;
819 }
820 ccid = ce->lrc.ccid;
821
822 /*
823 * Sentinels are supposed to be the last request so they flush
824 * the current execution off the HW. Check that they are the only
825 * request in the pending submission.
826 *
827 * NB: Due to the async nature of preempt-to-busy and request
828 * cancellation we need to handle the case where request
829 * becomes a sentinel in parallel to CSB processing.
830 */
831 if (prev && i915_request_has_sentinel(prev) &&
832 !READ_ONCE(prev->fence.error)) {
833 GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
834 engine->name,
835 ce->timeline->fence_context,
836 port - execlists->pending);
837 return false;
838 }
839 prev = rq;
840
841 /*
842 * We want virtual requests to only be in the first slot so
843 * that they are never stuck behind a hog and can be immediately
844 * transferred onto the next idle engine.
845 */
846 if (rq->execution_mask != engine->mask &&
847 port != execlists->pending) {
848 GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
849 engine->name,
850 ce->timeline->fence_context,
851 port - execlists->pending);
852 return false;
853 }
854
855 /* Hold tightly onto the lock to prevent concurrent retires! */
856 if (!spin_trylock_irqsave(&rq->lock, flags))
857 continue;
858
859 if (__i915_request_is_complete(rq))
860 goto unlock;
861
862 if (i915_active_is_idle(&ce->active) &&
863 !intel_context_is_barrier(ce)) {
864 GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
865 engine->name,
866 ce->timeline->fence_context,
867 port - execlists->pending);
868 ok = false;
869 goto unlock;
870 }
871
872 if (!i915_vma_is_pinned(ce->state)) {
873 GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
874 engine->name,
875 ce->timeline->fence_context,
876 port - execlists->pending);
877 ok = false;
878 goto unlock;
879 }
880
881 if (!i915_vma_is_pinned(ce->ring->vma)) {
882 GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
883 engine->name,
884 ce->timeline->fence_context,
885 port - execlists->pending);
886 ok = false;
887 goto unlock;
888 }
889
890 unlock:
891 spin_unlock_irqrestore(&rq->lock, flags);
892 if (!ok)
893 return false;
894 }
895
896 return ce;
897 }
898
execlists_submit_ports(struct intel_engine_cs * engine)899 static void execlists_submit_ports(struct intel_engine_cs *engine)
900 {
901 struct intel_engine_execlists *execlists = &engine->execlists;
902 unsigned int n;
903
904 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
905
906 /*
907 * We can skip acquiring intel_runtime_pm_get() here as it was taken
908 * on our behalf by the request (see i915_gem_mark_busy()) and it will
909 * not be relinquished until the device is idle (see
910 * i915_gem_idle_work_handler()). As a precaution, we make sure
911 * that all ELSP are drained i.e. we have processed the CSB,
912 * before allowing ourselves to idle and calling intel_runtime_pm_put().
913 */
914 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
915
916 /*
917 * ELSQ note: the submit queue is not cleared after being submitted
918 * to the HW so we need to make sure we always clean it up. This is
919 * currently ensured by the fact that we always write the same number
920 * of elsq entries, keep this in mind before changing the loop below.
921 */
922 for (n = execlists_num_ports(execlists); n--; ) {
923 struct i915_request *rq = execlists->pending[n];
924
925 write_desc(execlists,
926 rq ? execlists_update_context(rq) : 0,
927 n);
928 }
929
930 /* we need to manually load the submit queue */
931 if (execlists->ctrl_reg)
932 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
933 }
934
ctx_single_port_submission(const struct intel_context * ce)935 static bool ctx_single_port_submission(const struct intel_context *ce)
936 {
937 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
938 intel_context_force_single_submission(ce));
939 }
940
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)941 static bool can_merge_ctx(const struct intel_context *prev,
942 const struct intel_context *next)
943 {
944 if (prev != next)
945 return false;
946
947 if (ctx_single_port_submission(prev))
948 return false;
949
950 return true;
951 }
952
i915_request_flags(const struct i915_request * rq)953 static unsigned long i915_request_flags(const struct i915_request *rq)
954 {
955 return READ_ONCE(rq->fence.flags);
956 }
957
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)958 static bool can_merge_rq(const struct i915_request *prev,
959 const struct i915_request *next)
960 {
961 GEM_BUG_ON(prev == next);
962 GEM_BUG_ON(!assert_priority_queue(prev, next));
963
964 /*
965 * We do not submit known completed requests. Therefore if the next
966 * request is already completed, we can pretend to merge it in
967 * with the previous context (and we will skip updating the ELSP
968 * and tracking). Thus hopefully keeping the ELSP full with active
969 * contexts, despite the best efforts of preempt-to-busy to confuse
970 * us.
971 */
972 if (__i915_request_is_complete(next))
973 return true;
974
975 if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
976 (BIT(I915_FENCE_FLAG_NOPREEMPT) |
977 BIT(I915_FENCE_FLAG_SENTINEL))))
978 return false;
979
980 if (!can_merge_ctx(prev->context, next->context))
981 return false;
982
983 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
984 return true;
985 }
986
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)987 static bool virtual_matches(const struct virtual_engine *ve,
988 const struct i915_request *rq,
989 const struct intel_engine_cs *engine)
990 {
991 const struct intel_engine_cs *inflight;
992
993 if (!rq)
994 return false;
995
996 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
997 return false;
998
999 /*
1000 * We track when the HW has completed saving the context image
1001 * (i.e. when we have seen the final CS event switching out of
1002 * the context) and must not overwrite the context image before
1003 * then. This restricts us to only using the active engine
1004 * while the previous virtualized request is inflight (so
1005 * we reuse the register offsets). This is a very small
1006 * hystersis on the greedy seelction algorithm.
1007 */
1008 inflight = intel_context_inflight(&ve->context);
1009 if (inflight && inflight != engine)
1010 return false;
1011
1012 return true;
1013 }
1014
1015 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)1016 first_virtual_engine(struct intel_engine_cs *engine)
1017 {
1018 struct intel_engine_execlists *el = &engine->execlists;
1019 struct rb_node *rb = rb_first_cached(&el->virtual);
1020
1021 while (rb) {
1022 struct virtual_engine *ve =
1023 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1024 struct i915_request *rq = READ_ONCE(ve->request);
1025
1026 /* lazily cleanup after another engine handled rq */
1027 if (!rq || !virtual_matches(ve, rq, engine)) {
1028 rb_erase_cached(rb, &el->virtual);
1029 RB_CLEAR_NODE(rb);
1030 rb = rb_first_cached(&el->virtual);
1031 continue;
1032 }
1033
1034 return ve;
1035 }
1036
1037 return NULL;
1038 }
1039
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1040 static void virtual_xfer_context(struct virtual_engine *ve,
1041 struct intel_engine_cs *engine)
1042 {
1043 unsigned int n;
1044
1045 if (likely(engine == ve->siblings[0]))
1046 return;
1047
1048 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1049 if (!intel_engine_has_relative_mmio(engine))
1050 lrc_update_offsets(&ve->context, engine);
1051
1052 /*
1053 * Move the bound engine to the top of the list for
1054 * future execution. We then kick this tasklet first
1055 * before checking others, so that we preferentially
1056 * reuse this set of bound registers.
1057 */
1058 for (n = 1; n < ve->num_siblings; n++) {
1059 if (ve->siblings[n] == engine) {
1060 swap(ve->siblings[n], ve->siblings[0]);
1061 break;
1062 }
1063 }
1064 }
1065
defer_request(struct i915_request * rq,struct list_head * const pl)1066 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1067 {
1068 LIST_HEAD(list);
1069
1070 /*
1071 * We want to move the interrupted request to the back of
1072 * the round-robin list (i.e. its priority level), but
1073 * in doing so, we must then move all requests that were in
1074 * flight and were waiting for the interrupted request to
1075 * be run after it again.
1076 */
1077 do {
1078 struct i915_dependency *p;
1079
1080 GEM_BUG_ON(i915_request_is_active(rq));
1081 list_move_tail(&rq->sched.link, pl);
1082
1083 for_each_waiter(p, rq) {
1084 struct i915_request *w =
1085 container_of(p->waiter, typeof(*w), sched);
1086
1087 if (p->flags & I915_DEPENDENCY_WEAK)
1088 continue;
1089
1090 /* Leave semaphores spinning on the other engines */
1091 if (w->engine != rq->engine)
1092 continue;
1093
1094 /* No waiter should start before its signaler */
1095 GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1096 __i915_request_has_started(w) &&
1097 !__i915_request_is_complete(rq));
1098
1099 if (!i915_request_is_ready(w))
1100 continue;
1101
1102 if (rq_prio(w) < rq_prio(rq))
1103 continue;
1104
1105 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1106 GEM_BUG_ON(i915_request_is_active(w));
1107 list_move_tail(&w->sched.link, &list);
1108 }
1109
1110 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1111 } while (rq);
1112 }
1113
defer_active(struct intel_engine_cs * engine)1114 static void defer_active(struct intel_engine_cs *engine)
1115 {
1116 struct i915_request *rq;
1117
1118 rq = __unwind_incomplete_requests(engine);
1119 if (!rq)
1120 return;
1121
1122 defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1123 rq_prio(rq)));
1124 }
1125
1126 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1127 timeslice_yield(const struct intel_engine_execlists *el,
1128 const struct i915_request *rq)
1129 {
1130 /*
1131 * Once bitten, forever smitten!
1132 *
1133 * If the active context ever busy-waited on a semaphore,
1134 * it will be treated as a hog until the end of its timeslice (i.e.
1135 * until it is scheduled out and replaced by a new submission,
1136 * possibly even its own lite-restore). The HW only sends an interrupt
1137 * on the first miss, and we do know if that semaphore has been
1138 * signaled, or even if it is now stuck on another semaphore. Play
1139 * safe, yield if it might be stuck -- it will be given a fresh
1140 * timeslice in the near future.
1141 */
1142 return rq->context->lrc.ccid == READ_ONCE(el->yield);
1143 }
1144
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1145 static bool needs_timeslice(const struct intel_engine_cs *engine,
1146 const struct i915_request *rq)
1147 {
1148 if (!intel_engine_has_timeslices(engine))
1149 return false;
1150
1151 /* If not currently active, or about to switch, wait for next event */
1152 if (!rq || __i915_request_is_complete(rq))
1153 return false;
1154
1155 /* We do not need to start the timeslice until after the ACK */
1156 if (READ_ONCE(engine->execlists.pending[0]))
1157 return false;
1158
1159 /* If ELSP[1] is occupied, always check to see if worth slicing */
1160 if (!list_is_last_rcu(&rq->sched.link,
1161 &engine->sched_engine->requests)) {
1162 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1163 return true;
1164 }
1165
1166 /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1167 if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1168 ENGINE_TRACE(engine, "timeslice required for queue\n");
1169 return true;
1170 }
1171
1172 if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1173 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1174 return true;
1175 }
1176
1177 return false;
1178 }
1179
1180 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1181 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1182 {
1183 const struct intel_engine_execlists *el = &engine->execlists;
1184
1185 if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1186 return false;
1187
1188 if (!needs_timeslice(engine, rq))
1189 return false;
1190
1191 return timer_expired(&el->timer) || timeslice_yield(el, rq);
1192 }
1193
timeslice(const struct intel_engine_cs * engine)1194 static unsigned long timeslice(const struct intel_engine_cs *engine)
1195 {
1196 return READ_ONCE(engine->props.timeslice_duration_ms);
1197 }
1198
start_timeslice(struct intel_engine_cs * engine)1199 static void start_timeslice(struct intel_engine_cs *engine)
1200 {
1201 struct intel_engine_execlists *el = &engine->execlists;
1202 unsigned long duration;
1203
1204 /* Disable the timer if there is nothing to switch to */
1205 duration = 0;
1206 if (needs_timeslice(engine, *el->active)) {
1207 /* Avoid continually prolonging an active timeslice */
1208 if (timer_active(&el->timer)) {
1209 /*
1210 * If we just submitted a new ELSP after an old
1211 * context, that context may have already consumed
1212 * its timeslice, so recheck.
1213 */
1214 if (!timer_pending(&el->timer))
1215 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1216 return;
1217 }
1218
1219 duration = timeslice(engine);
1220 }
1221
1222 set_timer_ms(&el->timer, duration);
1223 }
1224
record_preemption(struct intel_engine_execlists * execlists)1225 static void record_preemption(struct intel_engine_execlists *execlists)
1226 {
1227 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1228 }
1229
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1230 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1231 const struct i915_request *rq)
1232 {
1233 if (!rq)
1234 return 0;
1235
1236 /* Only allow ourselves to force reset the currently active context */
1237 engine->execlists.preempt_target = rq;
1238
1239 /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1240 if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1241 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1242
1243 return READ_ONCE(engine->props.preempt_timeout_ms);
1244 }
1245
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1246 static void set_preempt_timeout(struct intel_engine_cs *engine,
1247 const struct i915_request *rq)
1248 {
1249 if (!intel_engine_has_preempt_reset(engine))
1250 return;
1251
1252 set_timer_ms(&engine->execlists.preempt,
1253 active_preempt_timeout(engine, rq));
1254 }
1255
completed(const struct i915_request * rq)1256 static bool completed(const struct i915_request *rq)
1257 {
1258 if (i915_request_has_sentinel(rq))
1259 return false;
1260
1261 return __i915_request_is_complete(rq);
1262 }
1263
execlists_dequeue(struct intel_engine_cs * engine)1264 static void execlists_dequeue(struct intel_engine_cs *engine)
1265 {
1266 struct intel_engine_execlists * const execlists = &engine->execlists;
1267 struct i915_sched_engine * const sched_engine = engine->sched_engine;
1268 struct i915_request **port = execlists->pending;
1269 struct i915_request ** const last_port = port + execlists->port_mask;
1270 struct i915_request *last, * const *active;
1271 struct virtual_engine *ve;
1272 struct rb_node *rb;
1273 bool submit = false;
1274
1275 /*
1276 * Hardware submission is through 2 ports. Conceptually each port
1277 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1278 * static for a context, and unique to each, so we only execute
1279 * requests belonging to a single context from each ring. RING_HEAD
1280 * is maintained by the CS in the context image, it marks the place
1281 * where it got up to last time, and through RING_TAIL we tell the CS
1282 * where we want to execute up to this time.
1283 *
1284 * In this list the requests are in order of execution. Consecutive
1285 * requests from the same context are adjacent in the ringbuffer. We
1286 * can combine these requests into a single RING_TAIL update:
1287 *
1288 * RING_HEAD...req1...req2
1289 * ^- RING_TAIL
1290 * since to execute req2 the CS must first execute req1.
1291 *
1292 * Our goal then is to point each port to the end of a consecutive
1293 * sequence of requests as being the most optimal (fewest wake ups
1294 * and context switches) submission.
1295 */
1296
1297 spin_lock(&sched_engine->lock);
1298
1299 /*
1300 * If the queue is higher priority than the last
1301 * request in the currently active context, submit afresh.
1302 * We will resubmit again afterwards in case we need to split
1303 * the active context to interject the preemption request,
1304 * i.e. we will retrigger preemption following the ack in case
1305 * of trouble.
1306 *
1307 */
1308 active = execlists->active;
1309 while ((last = *active) && completed(last))
1310 active++;
1311
1312 if (last) {
1313 if (need_preempt(engine, last)) {
1314 ENGINE_TRACE(engine,
1315 "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1316 last->fence.context,
1317 last->fence.seqno,
1318 last->sched.attr.priority,
1319 sched_engine->queue_priority_hint);
1320 record_preemption(execlists);
1321
1322 /*
1323 * Don't let the RING_HEAD advance past the breadcrumb
1324 * as we unwind (and until we resubmit) so that we do
1325 * not accidentally tell it to go backwards.
1326 */
1327 ring_set_paused(engine, 1);
1328
1329 /*
1330 * Note that we have not stopped the GPU at this point,
1331 * so we are unwinding the incomplete requests as they
1332 * remain inflight and so by the time we do complete
1333 * the preemption, some of the unwound requests may
1334 * complete!
1335 */
1336 __unwind_incomplete_requests(engine);
1337
1338 last = NULL;
1339 } else if (timeslice_expired(engine, last)) {
1340 ENGINE_TRACE(engine,
1341 "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1342 str_yes_no(timer_expired(&execlists->timer)),
1343 last->fence.context, last->fence.seqno,
1344 rq_prio(last),
1345 sched_engine->queue_priority_hint,
1346 str_yes_no(timeslice_yield(execlists, last)));
1347
1348 /*
1349 * Consume this timeslice; ensure we start a new one.
1350 *
1351 * The timeslice expired, and we will unwind the
1352 * running contexts and recompute the next ELSP.
1353 * If that submit will be the same pair of contexts
1354 * (due to dependency ordering), we will skip the
1355 * submission. If we don't cancel the timer now,
1356 * we will see that the timer has expired and
1357 * reschedule the tasklet; continually until the
1358 * next context switch or other preemption event.
1359 *
1360 * Since we have decided to reschedule based on
1361 * consumption of this timeslice, if we submit the
1362 * same context again, grant it a full timeslice.
1363 */
1364 cancel_timer(&execlists->timer);
1365 ring_set_paused(engine, 1);
1366 defer_active(engine);
1367
1368 /*
1369 * Unlike for preemption, if we rewind and continue
1370 * executing the same context as previously active,
1371 * the order of execution will remain the same and
1372 * the tail will only advance. We do not need to
1373 * force a full context restore, as a lite-restore
1374 * is sufficient to resample the monotonic TAIL.
1375 *
1376 * If we switch to any other context, similarly we
1377 * will not rewind TAIL of current context, and
1378 * normal save/restore will preserve state and allow
1379 * us to later continue executing the same request.
1380 */
1381 last = NULL;
1382 } else {
1383 /*
1384 * Otherwise if we already have a request pending
1385 * for execution after the current one, we can
1386 * just wait until the next CS event before
1387 * queuing more. In either case we will force a
1388 * lite-restore preemption event, but if we wait
1389 * we hopefully coalesce several updates into a single
1390 * submission.
1391 */
1392 if (active[1]) {
1393 /*
1394 * Even if ELSP[1] is occupied and not worthy
1395 * of timeslices, our queue might be.
1396 */
1397 spin_unlock(&sched_engine->lock);
1398 return;
1399 }
1400 }
1401 }
1402
1403 /* XXX virtual is always taking precedence */
1404 while ((ve = first_virtual_engine(engine))) {
1405 struct i915_request *rq;
1406
1407 spin_lock(&ve->base.sched_engine->lock);
1408
1409 rq = ve->request;
1410 if (unlikely(!virtual_matches(ve, rq, engine)))
1411 goto unlock; /* lost the race to a sibling */
1412
1413 GEM_BUG_ON(rq->engine != &ve->base);
1414 GEM_BUG_ON(rq->context != &ve->context);
1415
1416 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1417 spin_unlock(&ve->base.sched_engine->lock);
1418 break;
1419 }
1420
1421 if (last && !can_merge_rq(last, rq)) {
1422 spin_unlock(&ve->base.sched_engine->lock);
1423 spin_unlock(&engine->sched_engine->lock);
1424 return; /* leave this for another sibling */
1425 }
1426
1427 ENGINE_TRACE(engine,
1428 "virtual rq=%llx:%lld%s, new engine? %s\n",
1429 rq->fence.context,
1430 rq->fence.seqno,
1431 __i915_request_is_complete(rq) ? "!" :
1432 __i915_request_has_started(rq) ? "*" :
1433 "",
1434 str_yes_no(engine != ve->siblings[0]));
1435
1436 WRITE_ONCE(ve->request, NULL);
1437 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1438
1439 rb = &ve->nodes[engine->id].rb;
1440 rb_erase_cached(rb, &execlists->virtual);
1441 RB_CLEAR_NODE(rb);
1442
1443 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1444 WRITE_ONCE(rq->engine, engine);
1445
1446 if (__i915_request_submit(rq)) {
1447 /*
1448 * Only after we confirm that we will submit
1449 * this request (i.e. it has not already
1450 * completed), do we want to update the context.
1451 *
1452 * This serves two purposes. It avoids
1453 * unnecessary work if we are resubmitting an
1454 * already completed request after timeslicing.
1455 * But more importantly, it prevents us altering
1456 * ve->siblings[] on an idle context, where
1457 * we may be using ve->siblings[] in
1458 * virtual_context_enter / virtual_context_exit.
1459 */
1460 virtual_xfer_context(ve, engine);
1461 GEM_BUG_ON(ve->siblings[0] != engine);
1462
1463 submit = true;
1464 last = rq;
1465 }
1466
1467 i915_request_put(rq);
1468 unlock:
1469 spin_unlock(&ve->base.sched_engine->lock);
1470
1471 /*
1472 * Hmm, we have a bunch of virtual engine requests,
1473 * but the first one was already completed (thanks
1474 * preempt-to-busy!). Keep looking at the veng queue
1475 * until we have no more relevant requests (i.e.
1476 * the normal submit queue has higher priority).
1477 */
1478 if (submit)
1479 break;
1480 }
1481
1482 while ((rb = rb_first_cached(&sched_engine->queue))) {
1483 struct i915_priolist *p = to_priolist(rb);
1484 struct i915_request *rq, *rn;
1485
1486 priolist_for_each_request_consume(rq, rn, p) {
1487 bool merge = true;
1488
1489 /*
1490 * Can we combine this request with the current port?
1491 * It has to be the same context/ringbuffer and not
1492 * have any exceptions (e.g. GVT saying never to
1493 * combine contexts).
1494 *
1495 * If we can combine the requests, we can execute both
1496 * by updating the RING_TAIL to point to the end of the
1497 * second request, and so we never need to tell the
1498 * hardware about the first.
1499 */
1500 if (last && !can_merge_rq(last, rq)) {
1501 /*
1502 * If we are on the second port and cannot
1503 * combine this request with the last, then we
1504 * are done.
1505 */
1506 if (port == last_port)
1507 goto done;
1508
1509 /*
1510 * We must not populate both ELSP[] with the
1511 * same LRCA, i.e. we must submit 2 different
1512 * contexts if we submit 2 ELSP.
1513 */
1514 if (last->context == rq->context)
1515 goto done;
1516
1517 if (i915_request_has_sentinel(last))
1518 goto done;
1519
1520 /*
1521 * We avoid submitting virtual requests into
1522 * the secondary ports so that we can migrate
1523 * the request immediately to another engine
1524 * rather than wait for the primary request.
1525 */
1526 if (rq->execution_mask != engine->mask)
1527 goto done;
1528
1529 /*
1530 * If GVT overrides us we only ever submit
1531 * port[0], leaving port[1] empty. Note that we
1532 * also have to be careful that we don't queue
1533 * the same context (even though a different
1534 * request) to the second port.
1535 */
1536 if (ctx_single_port_submission(last->context) ||
1537 ctx_single_port_submission(rq->context))
1538 goto done;
1539
1540 merge = false;
1541 }
1542
1543 if (__i915_request_submit(rq)) {
1544 if (!merge) {
1545 *port++ = i915_request_get(last);
1546 last = NULL;
1547 }
1548
1549 GEM_BUG_ON(last &&
1550 !can_merge_ctx(last->context,
1551 rq->context));
1552 GEM_BUG_ON(last &&
1553 i915_seqno_passed(last->fence.seqno,
1554 rq->fence.seqno));
1555
1556 submit = true;
1557 last = rq;
1558 }
1559 }
1560
1561 rb_erase_cached(&p->node, &sched_engine->queue);
1562 i915_priolist_free(p);
1563 }
1564 done:
1565 *port++ = i915_request_get(last);
1566
1567 /*
1568 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1569 *
1570 * We choose the priority hint such that if we add a request of greater
1571 * priority than this, we kick the submission tasklet to decide on
1572 * the right order of submitting the requests to hardware. We must
1573 * also be prepared to reorder requests as they are in-flight on the
1574 * HW. We derive the priority hint then as the first "hole" in
1575 * the HW submission ports and if there are no available slots,
1576 * the priority of the lowest executing request, i.e. last.
1577 *
1578 * When we do receive a higher priority request ready to run from the
1579 * user, see queue_request(), the priority hint is bumped to that
1580 * request triggering preemption on the next dequeue (or subsequent
1581 * interrupt for secondary ports).
1582 */
1583 sched_engine->queue_priority_hint = queue_prio(sched_engine);
1584 i915_sched_engine_reset_on_empty(sched_engine);
1585 spin_unlock(&sched_engine->lock);
1586
1587 /*
1588 * We can skip poking the HW if we ended up with exactly the same set
1589 * of requests as currently running, e.g. trying to timeslice a pair
1590 * of ordered contexts.
1591 */
1592 if (submit &&
1593 memcmp(active,
1594 execlists->pending,
1595 (port - execlists->pending) * sizeof(*port))) {
1596 *port = NULL;
1597 while (port-- != execlists->pending)
1598 execlists_schedule_in(*port, port - execlists->pending);
1599
1600 WRITE_ONCE(execlists->yield, -1);
1601 set_preempt_timeout(engine, *active);
1602 execlists_submit_ports(engine);
1603 } else {
1604 ring_set_paused(engine, 0);
1605 while (port-- != execlists->pending)
1606 i915_request_put(*port);
1607 *execlists->pending = NULL;
1608 }
1609 }
1610
execlists_dequeue_irq(struct intel_engine_cs * engine)1611 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1612 {
1613 local_irq_disable(); /* Suspend interrupts across request submission */
1614 execlists_dequeue(engine);
1615 local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1616 }
1617
clear_ports(struct i915_request ** ports,int count)1618 static void clear_ports(struct i915_request **ports, int count)
1619 {
1620 memset_p((void **)ports, NULL, count);
1621 }
1622
1623 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1624 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1625 {
1626 /* A memcpy_p() would be very useful here! */
1627 while (count--)
1628 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1629 }
1630
1631 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1632 cancel_port_requests(struct intel_engine_execlists * const execlists,
1633 struct i915_request **inactive)
1634 {
1635 struct i915_request * const *port;
1636
1637 for (port = execlists->pending; *port; port++)
1638 *inactive++ = *port;
1639 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1640
1641 /* Mark the end of active before we overwrite *active */
1642 for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1643 *inactive++ = *port;
1644 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1645
1646 smp_wmb(); /* complete the seqlock for execlists_active() */
1647 WRITE_ONCE(execlists->active, execlists->inflight);
1648
1649 /* Having cancelled all outstanding process_csb(), stop their timers */
1650 GEM_BUG_ON(execlists->pending[0]);
1651 cancel_timer(&execlists->timer);
1652 cancel_timer(&execlists->preempt);
1653
1654 return inactive;
1655 }
1656
1657 /*
1658 * Starting with Gen12, the status has a new format:
1659 *
1660 * bit 0: switched to new queue
1661 * bit 1: reserved
1662 * bit 2: semaphore wait mode (poll or signal), only valid when
1663 * switch detail is set to "wait on semaphore"
1664 * bits 3-5: engine class
1665 * bits 6-11: engine instance
1666 * bits 12-14: reserved
1667 * bits 15-25: sw context id of the lrc the GT switched to
1668 * bits 26-31: sw counter of the lrc the GT switched to
1669 * bits 32-35: context switch detail
1670 * - 0: ctx complete
1671 * - 1: wait on sync flip
1672 * - 2: wait on vblank
1673 * - 3: wait on scanline
1674 * - 4: wait on semaphore
1675 * - 5: context preempted (not on SEMAPHORE_WAIT or
1676 * WAIT_FOR_EVENT)
1677 * bit 36: reserved
1678 * bits 37-43: wait detail (for switch detail 1 to 4)
1679 * bits 44-46: reserved
1680 * bits 47-57: sw context id of the lrc the GT switched away from
1681 * bits 58-63: sw counter of the lrc the GT switched away from
1682 *
1683 * Xe_HP csb shuffles things around compared to TGL:
1684 *
1685 * bits 0-3: context switch detail (same possible values as TGL)
1686 * bits 4-9: engine instance
1687 * bits 10-25: sw context id of the lrc the GT switched to
1688 * bits 26-31: sw counter of the lrc the GT switched to
1689 * bit 32: semaphore wait mode (poll or signal), Only valid when
1690 * switch detail is set to "wait on semaphore"
1691 * bit 33: switched to new queue
1692 * bits 34-41: wait detail (for switch detail 1 to 4)
1693 * bits 42-57: sw context id of the lrc the GT switched away from
1694 * bits 58-63: sw counter of the lrc the GT switched away from
1695 */
1696 static inline bool
__gen12_csb_parse(bool ctx_to_valid,bool ctx_away_valid,bool new_queue,u8 switch_detail)1697 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1698 u8 switch_detail)
1699 {
1700 /*
1701 * The context switch detail is not guaranteed to be 5 when a preemption
1702 * occurs, so we can't just check for that. The check below works for
1703 * all the cases we care about, including preemptions of WAIT
1704 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1705 * would require some extra handling, but we don't support that.
1706 */
1707 if (!ctx_away_valid || new_queue) {
1708 GEM_BUG_ON(!ctx_to_valid);
1709 return true;
1710 }
1711
1712 /*
1713 * switch detail = 5 is covered by the case above and we do not expect a
1714 * context switch on an unsuccessful wait instruction since we always
1715 * use polling mode.
1716 */
1717 GEM_BUG_ON(switch_detail);
1718 return false;
1719 }
1720
xehp_csb_parse(const u64 csb)1721 static bool xehp_csb_parse(const u64 csb)
1722 {
1723 return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1724 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1725 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1726 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1727 }
1728
gen12_csb_parse(const u64 csb)1729 static bool gen12_csb_parse(const u64 csb)
1730 {
1731 return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1732 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1733 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1734 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1735 }
1736
gen8_csb_parse(const u64 csb)1737 static bool gen8_csb_parse(const u64 csb)
1738 {
1739 return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1740 }
1741
1742 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1743 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1744 {
1745 u64 entry;
1746
1747 /*
1748 * Reading from the HWSP has one particular advantage: we can detect
1749 * a stale entry. Since the write into HWSP is broken, we have no reason
1750 * to trust the HW at all, the mmio entry may equally be unordered, so
1751 * we prefer the path that is self-checking and as a last resort,
1752 * return the mmio value.
1753 *
1754 * tgl,dg1:HSDES#22011327657
1755 */
1756 preempt_disable();
1757 if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1758 int idx = csb - engine->execlists.csb_status;
1759 int status;
1760
1761 status = GEN8_EXECLISTS_STATUS_BUF;
1762 if (idx >= 6) {
1763 status = GEN11_EXECLISTS_STATUS_BUF2;
1764 idx -= 6;
1765 }
1766 status += sizeof(u64) * idx;
1767
1768 entry = intel_uncore_read64(engine->uncore,
1769 _MMIO(engine->mmio_base + status));
1770 }
1771 preempt_enable();
1772
1773 return entry;
1774 }
1775
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1776 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1777 {
1778 u64 entry = READ_ONCE(*csb);
1779
1780 /*
1781 * Unfortunately, the GPU does not always serialise its write
1782 * of the CSB entries before its write of the CSB pointer, at least
1783 * from the perspective of the CPU, using what is known as a Global
1784 * Observation Point. We may read a new CSB tail pointer, but then
1785 * read the stale CSB entries, causing us to misinterpret the
1786 * context-switch events, and eventually declare the GPU hung.
1787 *
1788 * icl:HSDES#1806554093
1789 * tgl:HSDES#22011248461
1790 */
1791 if (unlikely(entry == -1))
1792 entry = wa_csb_read(engine, csb);
1793
1794 /* Consume this entry so that we can spot its future reuse. */
1795 WRITE_ONCE(*csb, -1);
1796
1797 /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1798 return entry;
1799 }
1800
new_timeslice(struct intel_engine_execlists * el)1801 static void new_timeslice(struct intel_engine_execlists *el)
1802 {
1803 /* By cancelling, we will start afresh in start_timeslice() */
1804 cancel_timer(&el->timer);
1805 }
1806
1807 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1808 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1809 {
1810 struct intel_engine_execlists * const execlists = &engine->execlists;
1811 u64 * const buf = execlists->csb_status;
1812 const u8 num_entries = execlists->csb_size;
1813 struct i915_request **prev;
1814 u8 head, tail;
1815
1816 /*
1817 * As we modify our execlists state tracking we require exclusive
1818 * access. Either we are inside the tasklet, or the tasklet is disabled
1819 * and we assume that is only inside the reset paths and so serialised.
1820 */
1821 GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1822 !reset_in_progress(engine));
1823
1824 /*
1825 * Note that csb_write, csb_status may be either in HWSP or mmio.
1826 * When reading from the csb_write mmio register, we have to be
1827 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1828 * the low 4bits. As it happens we know the next 4bits are always
1829 * zero and so we can simply masked off the low u8 of the register
1830 * and treat it identically to reading from the HWSP (without having
1831 * to use explicit shifting and masking, and probably bifurcating
1832 * the code to handle the legacy mmio read).
1833 */
1834 head = execlists->csb_head;
1835 tail = READ_ONCE(*execlists->csb_write);
1836 if (unlikely(head == tail))
1837 return inactive;
1838
1839 /*
1840 * We will consume all events from HW, or at least pretend to.
1841 *
1842 * The sequence of events from the HW is deterministic, and derived
1843 * from our writes to the ELSP, with a smidgen of variability for
1844 * the arrival of the asynchronous requests wrt to the inflight
1845 * execution. If the HW sends an event that does not correspond with
1846 * the one we are expecting, we have to abandon all hope as we lose
1847 * all tracking of what the engine is actually executing. We will
1848 * only detect we are out of sequence with the HW when we get an
1849 * 'impossible' event because we have already drained our own
1850 * preemption/promotion queue. If this occurs, we know that we likely
1851 * lost track of execution earlier and must unwind and restart, the
1852 * simplest way is by stop processing the event queue and force the
1853 * engine to reset.
1854 */
1855 execlists->csb_head = tail;
1856 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1857
1858 /*
1859 * Hopefully paired with a wmb() in HW!
1860 *
1861 * We must complete the read of the write pointer before any reads
1862 * from the CSB, so that we do not see stale values. Without an rmb
1863 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1864 * we perform the READ_ONCE(*csb_write).
1865 */
1866 rmb();
1867
1868 /* Remember who was last running under the timer */
1869 prev = inactive;
1870 *prev = NULL;
1871
1872 do {
1873 bool promote;
1874 u64 csb;
1875
1876 if (++head == num_entries)
1877 head = 0;
1878
1879 /*
1880 * We are flying near dragons again.
1881 *
1882 * We hold a reference to the request in execlist_port[]
1883 * but no more than that. We are operating in softirq
1884 * context and so cannot hold any mutex or sleep. That
1885 * prevents us stopping the requests we are processing
1886 * in port[] from being retired simultaneously (the
1887 * breadcrumb will be complete before we see the
1888 * context-switch). As we only hold the reference to the
1889 * request, any pointer chasing underneath the request
1890 * is subject to a potential use-after-free. Thus we
1891 * store all of the bookkeeping within port[] as
1892 * required, and avoid using unguarded pointers beneath
1893 * request itself. The same applies to the atomic
1894 * status notifier.
1895 */
1896
1897 csb = csb_read(engine, buf + head);
1898 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1899 head, upper_32_bits(csb), lower_32_bits(csb));
1900
1901 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
1902 promote = xehp_csb_parse(csb);
1903 else if (GRAPHICS_VER(engine->i915) >= 12)
1904 promote = gen12_csb_parse(csb);
1905 else
1906 promote = gen8_csb_parse(csb);
1907 if (promote) {
1908 struct i915_request * const *old = execlists->active;
1909
1910 if (GEM_WARN_ON(!*execlists->pending)) {
1911 execlists->error_interrupt |= ERROR_CSB;
1912 break;
1913 }
1914
1915 ring_set_paused(engine, 0);
1916
1917 /* Point active to the new ELSP; prevent overwriting */
1918 WRITE_ONCE(execlists->active, execlists->pending);
1919 smp_wmb(); /* notify execlists_active() */
1920
1921 /* cancel old inflight, prepare for switch */
1922 trace_ports(execlists, "preempted", old);
1923 while (*old)
1924 *inactive++ = *old++;
1925
1926 /* switch pending to inflight */
1927 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1928 copy_ports(execlists->inflight,
1929 execlists->pending,
1930 execlists_num_ports(execlists));
1931 smp_wmb(); /* complete the seqlock */
1932 WRITE_ONCE(execlists->active, execlists->inflight);
1933
1934 /* XXX Magic delay for tgl */
1935 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1936
1937 WRITE_ONCE(execlists->pending[0], NULL);
1938 } else {
1939 if (GEM_WARN_ON(!*execlists->active)) {
1940 execlists->error_interrupt |= ERROR_CSB;
1941 break;
1942 }
1943
1944 /* port0 completed, advanced to port1 */
1945 trace_ports(execlists, "completed", execlists->active);
1946
1947 /*
1948 * We rely on the hardware being strongly
1949 * ordered, that the breadcrumb write is
1950 * coherent (visible from the CPU) before the
1951 * user interrupt is processed. One might assume
1952 * that the breadcrumb write being before the
1953 * user interrupt and the CS event for the context
1954 * switch would therefore be before the CS event
1955 * itself...
1956 */
1957 if (GEM_SHOW_DEBUG() &&
1958 !__i915_request_is_complete(*execlists->active)) {
1959 struct i915_request *rq = *execlists->active;
1960 const u32 *regs __maybe_unused =
1961 rq->context->lrc_reg_state;
1962
1963 ENGINE_TRACE(engine,
1964 "context completed before request!\n");
1965 ENGINE_TRACE(engine,
1966 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1967 ENGINE_READ(engine, RING_START),
1968 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1969 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1970 ENGINE_READ(engine, RING_CTL),
1971 ENGINE_READ(engine, RING_MI_MODE));
1972 ENGINE_TRACE(engine,
1973 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1974 i915_ggtt_offset(rq->ring->vma),
1975 rq->head, rq->tail,
1976 rq->fence.context,
1977 lower_32_bits(rq->fence.seqno),
1978 hwsp_seqno(rq));
1979 ENGINE_TRACE(engine,
1980 "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1981 regs[CTX_RING_START],
1982 regs[CTX_RING_HEAD],
1983 regs[CTX_RING_TAIL]);
1984 }
1985
1986 *inactive++ = *execlists->active++;
1987
1988 GEM_BUG_ON(execlists->active - execlists->inflight >
1989 execlists_num_ports(execlists));
1990 }
1991 } while (head != tail);
1992
1993 /*
1994 * Gen11 has proven to fail wrt global observation point between
1995 * entry and tail update, failing on the ordering and thus
1996 * we see an old entry in the context status buffer.
1997 *
1998 * Forcibly evict out entries for the next gpu csb update,
1999 * to increase the odds that we get a fresh entries with non
2000 * working hardware. The cost for doing so comes out mostly with
2001 * the wash as hardware, working or not, will need to do the
2002 * invalidation before.
2003 */
2004 drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2005
2006 /*
2007 * We assume that any event reflects a change in context flow
2008 * and merits a fresh timeslice. We reinstall the timer after
2009 * inspecting the queue to see if we need to resumbit.
2010 */
2011 if (*prev != *execlists->active) { /* elide lite-restores */
2012 struct intel_context *prev_ce = NULL, *active_ce = NULL;
2013
2014 /*
2015 * Note the inherent discrepancy between the HW runtime,
2016 * recorded as part of the context switch, and the CPU
2017 * adjustment for active contexts. We have to hope that
2018 * the delay in processing the CS event is very small
2019 * and consistent. It works to our advantage to have
2020 * the CPU adjustment _undershoot_ (i.e. start later than)
2021 * the CS timestamp so we never overreport the runtime
2022 * and correct overselves later when updating from HW.
2023 */
2024 if (*prev)
2025 prev_ce = (*prev)->context;
2026 if (*execlists->active)
2027 active_ce = (*execlists->active)->context;
2028 if (prev_ce != active_ce) {
2029 if (prev_ce)
2030 lrc_runtime_stop(prev_ce);
2031 if (active_ce)
2032 lrc_runtime_start(active_ce);
2033 }
2034 new_timeslice(execlists);
2035 }
2036
2037 return inactive;
2038 }
2039
post_process_csb(struct i915_request ** port,struct i915_request ** last)2040 static void post_process_csb(struct i915_request **port,
2041 struct i915_request **last)
2042 {
2043 while (port != last)
2044 execlists_schedule_out(*port++);
2045 }
2046
__execlists_hold(struct i915_request * rq)2047 static void __execlists_hold(struct i915_request *rq)
2048 {
2049 LIST_HEAD(list);
2050
2051 do {
2052 struct i915_dependency *p;
2053
2054 if (i915_request_is_active(rq))
2055 __i915_request_unsubmit(rq);
2056
2057 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2058 list_move_tail(&rq->sched.link,
2059 &rq->engine->sched_engine->hold);
2060 i915_request_set_hold(rq);
2061 RQ_TRACE(rq, "on hold\n");
2062
2063 for_each_waiter(p, rq) {
2064 struct i915_request *w =
2065 container_of(p->waiter, typeof(*w), sched);
2066
2067 if (p->flags & I915_DEPENDENCY_WEAK)
2068 continue;
2069
2070 /* Leave semaphores spinning on the other engines */
2071 if (w->engine != rq->engine)
2072 continue;
2073
2074 if (!i915_request_is_ready(w))
2075 continue;
2076
2077 if (__i915_request_is_complete(w))
2078 continue;
2079
2080 if (i915_request_on_hold(w))
2081 continue;
2082
2083 list_move_tail(&w->sched.link, &list);
2084 }
2085
2086 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2087 } while (rq);
2088 }
2089
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2090 static bool execlists_hold(struct intel_engine_cs *engine,
2091 struct i915_request *rq)
2092 {
2093 if (i915_request_on_hold(rq))
2094 return false;
2095
2096 spin_lock_irq(&engine->sched_engine->lock);
2097
2098 if (__i915_request_is_complete(rq)) { /* too late! */
2099 rq = NULL;
2100 goto unlock;
2101 }
2102
2103 /*
2104 * Transfer this request onto the hold queue to prevent it
2105 * being resumbitted to HW (and potentially completed) before we have
2106 * released it. Since we may have already submitted following
2107 * requests, we need to remove those as well.
2108 */
2109 GEM_BUG_ON(i915_request_on_hold(rq));
2110 GEM_BUG_ON(rq->engine != engine);
2111 __execlists_hold(rq);
2112 GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2113
2114 unlock:
2115 spin_unlock_irq(&engine->sched_engine->lock);
2116 return rq;
2117 }
2118
hold_request(const struct i915_request * rq)2119 static bool hold_request(const struct i915_request *rq)
2120 {
2121 struct i915_dependency *p;
2122 bool result = false;
2123
2124 /*
2125 * If one of our ancestors is on hold, we must also be on hold,
2126 * otherwise we will bypass it and execute before it.
2127 */
2128 rcu_read_lock();
2129 for_each_signaler(p, rq) {
2130 const struct i915_request *s =
2131 container_of(p->signaler, typeof(*s), sched);
2132
2133 if (s->engine != rq->engine)
2134 continue;
2135
2136 result = i915_request_on_hold(s);
2137 if (result)
2138 break;
2139 }
2140 rcu_read_unlock();
2141
2142 return result;
2143 }
2144
__execlists_unhold(struct i915_request * rq)2145 static void __execlists_unhold(struct i915_request *rq)
2146 {
2147 LIST_HEAD(list);
2148
2149 do {
2150 struct i915_dependency *p;
2151
2152 RQ_TRACE(rq, "hold release\n");
2153
2154 GEM_BUG_ON(!i915_request_on_hold(rq));
2155 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2156
2157 i915_request_clear_hold(rq);
2158 list_move_tail(&rq->sched.link,
2159 i915_sched_lookup_priolist(rq->engine->sched_engine,
2160 rq_prio(rq)));
2161 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2162
2163 /* Also release any children on this engine that are ready */
2164 for_each_waiter(p, rq) {
2165 struct i915_request *w =
2166 container_of(p->waiter, typeof(*w), sched);
2167
2168 if (p->flags & I915_DEPENDENCY_WEAK)
2169 continue;
2170
2171 if (w->engine != rq->engine)
2172 continue;
2173
2174 if (!i915_request_on_hold(w))
2175 continue;
2176
2177 /* Check that no other parents are also on hold */
2178 if (hold_request(w))
2179 continue;
2180
2181 list_move_tail(&w->sched.link, &list);
2182 }
2183
2184 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2185 } while (rq);
2186 }
2187
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2188 static void execlists_unhold(struct intel_engine_cs *engine,
2189 struct i915_request *rq)
2190 {
2191 spin_lock_irq(&engine->sched_engine->lock);
2192
2193 /*
2194 * Move this request back to the priority queue, and all of its
2195 * children and grandchildren that were suspended along with it.
2196 */
2197 __execlists_unhold(rq);
2198
2199 if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2200 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2201 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2202 }
2203
2204 spin_unlock_irq(&engine->sched_engine->lock);
2205 }
2206
2207 struct execlists_capture {
2208 struct work_struct work;
2209 struct i915_request *rq;
2210 struct i915_gpu_coredump *error;
2211 };
2212
execlists_capture_work(struct work_struct * work)2213 static void execlists_capture_work(struct work_struct *work)
2214 {
2215 struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2216 const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2217 __GFP_NOWARN;
2218 struct intel_engine_cs *engine = cap->rq->engine;
2219 struct intel_gt_coredump *gt = cap->error->gt;
2220 struct intel_engine_capture_vma *vma;
2221
2222 /* Compress all the objects attached to the request, slow! */
2223 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2224 if (vma) {
2225 struct i915_vma_compress *compress =
2226 i915_vma_capture_prepare(gt);
2227
2228 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2229 i915_vma_capture_finish(gt, compress);
2230 }
2231
2232 gt->simulated = gt->engine->simulated;
2233 cap->error->simulated = gt->simulated;
2234
2235 /* Publish the error state, and announce it to the world */
2236 i915_error_state_store(cap->error);
2237 i915_gpu_coredump_put(cap->error);
2238
2239 /* Return this request and all that depend upon it for signaling */
2240 execlists_unhold(engine, cap->rq);
2241 i915_request_put(cap->rq);
2242
2243 kfree(cap);
2244 }
2245
capture_regs(struct intel_engine_cs * engine)2246 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2247 {
2248 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2249 struct execlists_capture *cap;
2250
2251 cap = kmalloc(sizeof(*cap), gfp);
2252 if (!cap)
2253 return NULL;
2254
2255 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2256 if (!cap->error)
2257 goto err_cap;
2258
2259 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2260 if (!cap->error->gt)
2261 goto err_gpu;
2262
2263 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2264 if (!cap->error->gt->engine)
2265 goto err_gt;
2266
2267 cap->error->gt->engine->hung = true;
2268
2269 return cap;
2270
2271 err_gt:
2272 kfree(cap->error->gt);
2273 err_gpu:
2274 kfree(cap->error);
2275 err_cap:
2276 kfree(cap);
2277 return NULL;
2278 }
2279
2280 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2281 active_context(struct intel_engine_cs *engine, u32 ccid)
2282 {
2283 const struct intel_engine_execlists * const el = &engine->execlists;
2284 struct i915_request * const *port, *rq;
2285
2286 /*
2287 * Use the most recent result from process_csb(), but just in case
2288 * we trigger an error (via interrupt) before the first CS event has
2289 * been written, peek at the next submission.
2290 */
2291
2292 for (port = el->active; (rq = *port); port++) {
2293 if (rq->context->lrc.ccid == ccid) {
2294 ENGINE_TRACE(engine,
2295 "ccid:%x found at active:%zd\n",
2296 ccid, port - el->active);
2297 return rq;
2298 }
2299 }
2300
2301 for (port = el->pending; (rq = *port); port++) {
2302 if (rq->context->lrc.ccid == ccid) {
2303 ENGINE_TRACE(engine,
2304 "ccid:%x found at pending:%zd\n",
2305 ccid, port - el->pending);
2306 return rq;
2307 }
2308 }
2309
2310 ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2311 return NULL;
2312 }
2313
active_ccid(struct intel_engine_cs * engine)2314 static u32 active_ccid(struct intel_engine_cs *engine)
2315 {
2316 return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2317 }
2318
execlists_capture(struct intel_engine_cs * engine)2319 static void execlists_capture(struct intel_engine_cs *engine)
2320 {
2321 struct drm_i915_private *i915 = engine->i915;
2322 struct execlists_capture *cap;
2323
2324 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2325 return;
2326
2327 /*
2328 * We need to _quickly_ capture the engine state before we reset.
2329 * We are inside an atomic section (softirq) here and we are delaying
2330 * the forced preemption event.
2331 */
2332 cap = capture_regs(engine);
2333 if (!cap)
2334 return;
2335
2336 spin_lock_irq(&engine->sched_engine->lock);
2337 cap->rq = active_context(engine, active_ccid(engine));
2338 if (cap->rq) {
2339 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2340 cap->rq = i915_request_get_rcu(cap->rq);
2341 }
2342 spin_unlock_irq(&engine->sched_engine->lock);
2343 if (!cap->rq)
2344 goto err_free;
2345
2346 /*
2347 * Remove the request from the execlists queue, and take ownership
2348 * of the request. We pass it to our worker who will _slowly_ compress
2349 * all the pages the _user_ requested for debugging their batch, after
2350 * which we return it to the queue for signaling.
2351 *
2352 * By removing them from the execlists queue, we also remove the
2353 * requests from being processed by __unwind_incomplete_requests()
2354 * during the intel_engine_reset(), and so they will *not* be replayed
2355 * afterwards.
2356 *
2357 * Note that because we have not yet reset the engine at this point,
2358 * it is possible for the request that we have identified as being
2359 * guilty, did in fact complete and we will then hit an arbitration
2360 * point allowing the outstanding preemption to succeed. The likelihood
2361 * of that is very low (as capturing of the engine registers should be
2362 * fast enough to run inside an irq-off atomic section!), so we will
2363 * simply hold that request accountable for being non-preemptible
2364 * long enough to force the reset.
2365 */
2366 if (!execlists_hold(engine, cap->rq))
2367 goto err_rq;
2368
2369 INIT_WORK(&cap->work, execlists_capture_work);
2370 queue_work(i915->unordered_wq, &cap->work);
2371 return;
2372
2373 err_rq:
2374 i915_request_put(cap->rq);
2375 err_free:
2376 i915_gpu_coredump_put(cap->error);
2377 kfree(cap);
2378 }
2379
execlists_reset(struct intel_engine_cs * engine,const char * msg)2380 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2381 {
2382 const unsigned int bit = I915_RESET_ENGINE + engine->id;
2383 unsigned long *lock = &engine->gt->reset.flags;
2384
2385 if (!intel_has_reset_engine(engine->gt))
2386 return;
2387
2388 if (test_and_set_bit(bit, lock))
2389 return;
2390
2391 ENGINE_TRACE(engine, "reset for %s\n", msg);
2392
2393 /* Mark this tasklet as disabled to avoid waiting for it to complete */
2394 tasklet_disable_nosync(&engine->sched_engine->tasklet);
2395
2396 ring_set_paused(engine, 1); /* Freeze the current request in place */
2397 execlists_capture(engine);
2398 intel_engine_reset(engine, msg);
2399
2400 tasklet_enable(&engine->sched_engine->tasklet);
2401 clear_and_wake_up_bit(bit, lock);
2402 }
2403
preempt_timeout(const struct intel_engine_cs * const engine)2404 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2405 {
2406 const struct timer_list *t = &engine->execlists.preempt;
2407
2408 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2409 return false;
2410
2411 if (!timer_expired(t))
2412 return false;
2413
2414 return engine->execlists.pending[0];
2415 }
2416
2417 /*
2418 * Check the unread Context Status Buffers and manage the submission of new
2419 * contexts to the ELSP accordingly.
2420 */
execlists_submission_tasklet(struct tasklet_struct * t)2421 static void execlists_submission_tasklet(struct tasklet_struct *t)
2422 {
2423 struct i915_sched_engine *sched_engine =
2424 from_tasklet(sched_engine, t, tasklet);
2425 struct intel_engine_cs * const engine = sched_engine->private_data;
2426 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2427 struct i915_request **inactive;
2428
2429 rcu_read_lock();
2430 inactive = process_csb(engine, post);
2431 GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2432
2433 if (unlikely(preempt_timeout(engine))) {
2434 const struct i915_request *rq = *engine->execlists.active;
2435
2436 /*
2437 * If after the preempt-timeout expired, we are still on the
2438 * same active request/context as before we initiated the
2439 * preemption, reset the engine.
2440 *
2441 * However, if we have processed a CS event to switch contexts,
2442 * but not yet processed the CS event for the pending
2443 * preemption, reset the timer allowing the new context to
2444 * gracefully exit.
2445 */
2446 cancel_timer(&engine->execlists.preempt);
2447 if (rq == engine->execlists.preempt_target)
2448 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2449 else
2450 set_timer_ms(&engine->execlists.preempt,
2451 active_preempt_timeout(engine, rq));
2452 }
2453
2454 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2455 const char *msg;
2456
2457 /* Generate the error message in priority wrt to the user! */
2458 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2459 msg = "CS error"; /* thrown by a user payload */
2460 else if (engine->execlists.error_interrupt & ERROR_CSB)
2461 msg = "invalid CSB event";
2462 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2463 msg = "preemption time out";
2464 else
2465 msg = "internal error";
2466
2467 engine->execlists.error_interrupt = 0;
2468 execlists_reset(engine, msg);
2469 }
2470
2471 if (!engine->execlists.pending[0]) {
2472 execlists_dequeue_irq(engine);
2473 start_timeslice(engine);
2474 }
2475
2476 post_process_csb(post, inactive);
2477 rcu_read_unlock();
2478 }
2479
execlists_irq_handler(struct intel_engine_cs * engine,u16 iir)2480 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2481 {
2482 bool tasklet = false;
2483
2484 if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2485 u32 eir;
2486
2487 /* Upper 16b are the enabling mask, rsvd for internal errors */
2488 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2489 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2490
2491 /* Disable the error interrupt until after the reset */
2492 if (likely(eir)) {
2493 ENGINE_WRITE(engine, RING_EMR, ~0u);
2494 ENGINE_WRITE(engine, RING_EIR, eir);
2495 WRITE_ONCE(engine->execlists.error_interrupt, eir);
2496 tasklet = true;
2497 }
2498 }
2499
2500 if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2501 WRITE_ONCE(engine->execlists.yield,
2502 ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2503 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2504 engine->execlists.yield);
2505 if (del_timer(&engine->execlists.timer))
2506 tasklet = true;
2507 }
2508
2509 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2510 tasklet = true;
2511
2512 if (iir & GT_RENDER_USER_INTERRUPT)
2513 intel_engine_signal_breadcrumbs(engine);
2514
2515 if (tasklet)
2516 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2517 }
2518
__execlists_kick(struct intel_engine_execlists * execlists)2519 static void __execlists_kick(struct intel_engine_execlists *execlists)
2520 {
2521 struct intel_engine_cs *engine =
2522 container_of(execlists, typeof(*engine), execlists);
2523
2524 /* Kick the tasklet for some interrupt coalescing and reset handling */
2525 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2526 }
2527
2528 #define execlists_kick(t, member) \
2529 __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2530
execlists_timeslice(struct timer_list * timer)2531 static void execlists_timeslice(struct timer_list *timer)
2532 {
2533 execlists_kick(timer, timer);
2534 }
2535
execlists_preempt(struct timer_list * timer)2536 static void execlists_preempt(struct timer_list *timer)
2537 {
2538 execlists_kick(timer, preempt);
2539 }
2540
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2541 static void queue_request(struct intel_engine_cs *engine,
2542 struct i915_request *rq)
2543 {
2544 GEM_BUG_ON(!list_empty(&rq->sched.link));
2545 list_add_tail(&rq->sched.link,
2546 i915_sched_lookup_priolist(engine->sched_engine,
2547 rq_prio(rq)));
2548 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2549 }
2550
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2551 static bool submit_queue(struct intel_engine_cs *engine,
2552 const struct i915_request *rq)
2553 {
2554 struct i915_sched_engine *sched_engine = engine->sched_engine;
2555
2556 if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2557 return false;
2558
2559 sched_engine->queue_priority_hint = rq_prio(rq);
2560 return true;
2561 }
2562
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2563 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2564 const struct i915_request *rq)
2565 {
2566 GEM_BUG_ON(i915_request_on_hold(rq));
2567 return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2568 }
2569
execlists_submit_request(struct i915_request * request)2570 static void execlists_submit_request(struct i915_request *request)
2571 {
2572 struct intel_engine_cs *engine = request->engine;
2573 unsigned long flags;
2574
2575 /* Will be called from irq-context when using foreign fences. */
2576 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2577
2578 if (unlikely(ancestor_on_hold(engine, request))) {
2579 RQ_TRACE(request, "ancestor on hold\n");
2580 list_add_tail(&request->sched.link,
2581 &engine->sched_engine->hold);
2582 i915_request_set_hold(request);
2583 } else {
2584 queue_request(engine, request);
2585
2586 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2587 GEM_BUG_ON(list_empty(&request->sched.link));
2588
2589 if (submit_queue(engine, request))
2590 __execlists_kick(&engine->execlists);
2591 }
2592
2593 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2594 }
2595
2596 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2597 __execlists_context_pre_pin(struct intel_context *ce,
2598 struct intel_engine_cs *engine,
2599 struct i915_gem_ww_ctx *ww, void **vaddr)
2600 {
2601 int err;
2602
2603 err = lrc_pre_pin(ce, engine, ww, vaddr);
2604 if (err)
2605 return err;
2606
2607 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2608 lrc_init_state(ce, engine, *vaddr);
2609
2610 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2611 }
2612
2613 return 0;
2614 }
2615
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2616 static int execlists_context_pre_pin(struct intel_context *ce,
2617 struct i915_gem_ww_ctx *ww,
2618 void **vaddr)
2619 {
2620 return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2621 }
2622
execlists_context_pin(struct intel_context * ce,void * vaddr)2623 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2624 {
2625 return lrc_pin(ce, ce->engine, vaddr);
2626 }
2627
execlists_context_alloc(struct intel_context * ce)2628 static int execlists_context_alloc(struct intel_context *ce)
2629 {
2630 return lrc_alloc(ce, ce->engine);
2631 }
2632
execlists_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2633 static void execlists_context_cancel_request(struct intel_context *ce,
2634 struct i915_request *rq)
2635 {
2636 struct intel_engine_cs *engine = NULL;
2637
2638 i915_request_active_engine(rq, &engine);
2639
2640 if (engine && intel_engine_pulse(engine))
2641 intel_gt_handle_error(engine->gt, engine->mask, 0,
2642 "request cancellation by %s",
2643 current->comm);
2644 }
2645
2646 static struct intel_context *
execlists_create_parallel(struct intel_engine_cs ** engines,unsigned int num_siblings,unsigned int width)2647 execlists_create_parallel(struct intel_engine_cs **engines,
2648 unsigned int num_siblings,
2649 unsigned int width)
2650 {
2651 struct intel_context *parent = NULL, *ce, *err;
2652 int i;
2653
2654 GEM_BUG_ON(num_siblings != 1);
2655
2656 for (i = 0; i < width; ++i) {
2657 ce = intel_context_create(engines[i]);
2658 if (IS_ERR(ce)) {
2659 err = ce;
2660 goto unwind;
2661 }
2662
2663 if (i == 0)
2664 parent = ce;
2665 else
2666 intel_context_bind_parent_child(parent, ce);
2667 }
2668
2669 parent->parallel.fence_context = dma_fence_context_alloc(1);
2670
2671 intel_context_set_nopreempt(parent);
2672 for_each_child(parent, ce)
2673 intel_context_set_nopreempt(ce);
2674
2675 return parent;
2676
2677 unwind:
2678 if (parent)
2679 intel_context_put(parent);
2680 return err;
2681 }
2682
2683 static const struct intel_context_ops execlists_context_ops = {
2684 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2685
2686 .alloc = execlists_context_alloc,
2687
2688 .cancel_request = execlists_context_cancel_request,
2689
2690 .pre_pin = execlists_context_pre_pin,
2691 .pin = execlists_context_pin,
2692 .unpin = lrc_unpin,
2693 .post_unpin = lrc_post_unpin,
2694
2695 .enter = intel_context_enter_engine,
2696 .exit = intel_context_exit_engine,
2697
2698 .reset = lrc_reset,
2699 .destroy = lrc_destroy,
2700
2701 .create_parallel = execlists_create_parallel,
2702 .create_virtual = execlists_create_virtual,
2703 };
2704
emit_pdps(struct i915_request * rq)2705 static int emit_pdps(struct i915_request *rq)
2706 {
2707 const struct intel_engine_cs * const engine = rq->engine;
2708 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2709 int err, i;
2710 u32 *cs;
2711
2712 GEM_BUG_ON(intel_vgpu_active(rq->i915));
2713
2714 /*
2715 * Beware ye of the dragons, this sequence is magic!
2716 *
2717 * Small changes to this sequence can cause anything from
2718 * GPU hangs to forcewake errors and machine lockups!
2719 */
2720
2721 cs = intel_ring_begin(rq, 2);
2722 if (IS_ERR(cs))
2723 return PTR_ERR(cs);
2724
2725 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2726 *cs++ = MI_NOOP;
2727 intel_ring_advance(rq, cs);
2728
2729 /* Flush any residual operations from the context load */
2730 err = engine->emit_flush(rq, EMIT_FLUSH);
2731 if (err)
2732 return err;
2733
2734 /* Magic required to prevent forcewake errors! */
2735 err = engine->emit_flush(rq, EMIT_INVALIDATE);
2736 if (err)
2737 return err;
2738
2739 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2740 if (IS_ERR(cs))
2741 return PTR_ERR(cs);
2742
2743 /* Ensure the LRI have landed before we invalidate & continue */
2744 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2745 for (i = GEN8_3LVL_PDPES; i--; ) {
2746 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2747 u32 base = engine->mmio_base;
2748
2749 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2750 *cs++ = upper_32_bits(pd_daddr);
2751 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2752 *cs++ = lower_32_bits(pd_daddr);
2753 }
2754 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2755 intel_ring_advance(rq, cs);
2756
2757 intel_ring_advance(rq, cs);
2758
2759 return 0;
2760 }
2761
execlists_request_alloc(struct i915_request * request)2762 static int execlists_request_alloc(struct i915_request *request)
2763 {
2764 int ret;
2765
2766 GEM_BUG_ON(!intel_context_is_pinned(request->context));
2767
2768 /*
2769 * Flush enough space to reduce the likelihood of waiting after
2770 * we start building the request - in which case we will just
2771 * have to repeat work.
2772 */
2773 request->reserved_space += EXECLISTS_REQUEST_SIZE;
2774
2775 /*
2776 * Note that after this point, we have committed to using
2777 * this request as it is being used to both track the
2778 * state of engine initialisation and liveness of the
2779 * golden renderstate above. Think twice before you try
2780 * to cancel/unwind this request now.
2781 */
2782
2783 if (!i915_vm_is_4lvl(request->context->vm)) {
2784 ret = emit_pdps(request);
2785 if (ret)
2786 return ret;
2787 }
2788
2789 /* Unconditionally invalidate GPU caches and TLBs. */
2790 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2791 if (ret)
2792 return ret;
2793
2794 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2795 return 0;
2796 }
2797
reset_csb_pointers(struct intel_engine_cs * engine)2798 static void reset_csb_pointers(struct intel_engine_cs *engine)
2799 {
2800 struct intel_engine_execlists * const execlists = &engine->execlists;
2801 const unsigned int reset_value = execlists->csb_size - 1;
2802
2803 ring_set_paused(engine, 0);
2804
2805 /*
2806 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2807 * Bludgeon them with a mmio update to be sure.
2808 */
2809 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2810 0xffff << 16 | reset_value << 8 | reset_value);
2811 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2812
2813 /*
2814 * After a reset, the HW starts writing into CSB entry [0]. We
2815 * therefore have to set our HEAD pointer back one entry so that
2816 * the *first* entry we check is entry 0. To complicate this further,
2817 * as we don't wait for the first interrupt after reset, we have to
2818 * fake the HW write to point back to the last entry so that our
2819 * inline comparison of our cached head position against the last HW
2820 * write works even before the first interrupt.
2821 */
2822 execlists->csb_head = reset_value;
2823 WRITE_ONCE(*execlists->csb_write, reset_value);
2824 wmb(); /* Make sure this is visible to HW (paranoia?) */
2825
2826 /* Check that the GPU does indeed update the CSB entries! */
2827 memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2828 drm_clflush_virt_range(execlists->csb_status,
2829 execlists->csb_size *
2830 sizeof(execlists->csb_status));
2831
2832 /* Once more for luck and our trusty paranoia */
2833 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2834 0xffff << 16 | reset_value << 8 | reset_value);
2835 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2836
2837 GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2838 }
2839
sanitize_hwsp(struct intel_engine_cs * engine)2840 static void sanitize_hwsp(struct intel_engine_cs *engine)
2841 {
2842 struct intel_timeline *tl;
2843
2844 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2845 intel_timeline_reset_seqno(tl);
2846 }
2847
execlists_sanitize(struct intel_engine_cs * engine)2848 static void execlists_sanitize(struct intel_engine_cs *engine)
2849 {
2850 GEM_BUG_ON(execlists_active(&engine->execlists));
2851
2852 /*
2853 * Poison residual state on resume, in case the suspend didn't!
2854 *
2855 * We have to assume that across suspend/resume (or other loss
2856 * of control) that the contents of our pinned buffers has been
2857 * lost, replaced by garbage. Since this doesn't always happen,
2858 * let's poison such state so that we more quickly spot when
2859 * we falsely assume it has been preserved.
2860 */
2861 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2862 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2863
2864 reset_csb_pointers(engine);
2865
2866 /*
2867 * The kernel_context HWSP is stored in the status_page. As above,
2868 * that may be lost on resume/initialisation, and so we need to
2869 * reset the value in the HWSP.
2870 */
2871 sanitize_hwsp(engine);
2872
2873 /* And scrub the dirty cachelines for the HWSP */
2874 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2875
2876 intel_engine_reset_pinned_contexts(engine);
2877 }
2878
enable_error_interrupt(struct intel_engine_cs * engine)2879 static void enable_error_interrupt(struct intel_engine_cs *engine)
2880 {
2881 u32 status;
2882
2883 engine->execlists.error_interrupt = 0;
2884 ENGINE_WRITE(engine, RING_EMR, ~0u);
2885 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2886
2887 status = ENGINE_READ(engine, RING_ESR);
2888 if (unlikely(status)) {
2889 drm_err(&engine->i915->drm,
2890 "engine '%s' resumed still in error: %08x\n",
2891 engine->name, status);
2892 intel_gt_reset_engine(engine);
2893 }
2894
2895 /*
2896 * On current gen8+, we have 2 signals to play with
2897 *
2898 * - I915_ERROR_INSTUCTION (bit 0)
2899 *
2900 * Generate an error if the command parser encounters an invalid
2901 * instruction
2902 *
2903 * This is a fatal error.
2904 *
2905 * - CP_PRIV (bit 2)
2906 *
2907 * Generate an error on privilege violation (where the CP replaces
2908 * the instruction with a no-op). This also fires for writes into
2909 * read-only scratch pages.
2910 *
2911 * This is a non-fatal error, parsing continues.
2912 *
2913 * * there are a few others defined for odd HW that we do not use
2914 *
2915 * Since CP_PRIV fires for cases where we have chosen to ignore the
2916 * error (as the HW is validating and suppressing the mistakes), we
2917 * only unmask the instruction error bit.
2918 */
2919 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2920 }
2921
enable_execlists(struct intel_engine_cs * engine)2922 static void enable_execlists(struct intel_engine_cs *engine)
2923 {
2924 u32 mode;
2925
2926 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2927
2928 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2929
2930 if (GRAPHICS_VER(engine->i915) >= 11)
2931 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2932 else
2933 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2934 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2935
2936 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2937
2938 ENGINE_WRITE_FW(engine,
2939 RING_HWS_PGA,
2940 i915_ggtt_offset(engine->status_page.vma));
2941 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2942
2943 enable_error_interrupt(engine);
2944 }
2945
execlists_resume(struct intel_engine_cs * engine)2946 static int execlists_resume(struct intel_engine_cs *engine)
2947 {
2948 intel_mocs_init_engine(engine);
2949 intel_breadcrumbs_reset(engine->breadcrumbs);
2950
2951 enable_execlists(engine);
2952
2953 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2954 xehp_enable_ccs_engines(engine);
2955
2956 return 0;
2957 }
2958
execlists_reset_prepare(struct intel_engine_cs * engine)2959 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2960 {
2961 ENGINE_TRACE(engine, "depth<-%d\n",
2962 atomic_read(&engine->sched_engine->tasklet.count));
2963
2964 /*
2965 * Prevent request submission to the hardware until we have
2966 * completed the reset in i915_gem_reset_finish(). If a request
2967 * is completed by one engine, it may then queue a request
2968 * to a second via its execlists->tasklet *just* as we are
2969 * calling engine->resume() and also writing the ELSP.
2970 * Turning off the execlists->tasklet until the reset is over
2971 * prevents the race.
2972 */
2973 __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2974 GEM_BUG_ON(!reset_in_progress(engine));
2975
2976 /*
2977 * We stop engines, otherwise we might get failed reset and a
2978 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2979 * from system hang if batchbuffer is progressing when
2980 * the reset is issued, regardless of READY_TO_RESET ack.
2981 * Thus assume it is best to stop engines on all gens
2982 * where we have a gpu reset.
2983 *
2984 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2985 *
2986 * FIXME: Wa for more modern gens needs to be validated
2987 */
2988 ring_set_paused(engine, 1);
2989 intel_engine_stop_cs(engine);
2990
2991 /*
2992 * Wa_22011802037: In addition to stopping the cs, we need
2993 * to wait for any pending mi force wakeups
2994 */
2995 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
2996 intel_engine_wait_for_pending_mi_fw(engine);
2997
2998 engine->execlists.reset_ccid = active_ccid(engine);
2999 }
3000
3001 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)3002 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3003 {
3004 struct intel_engine_execlists * const execlists = &engine->execlists;
3005
3006 drm_clflush_virt_range(execlists->csb_write,
3007 sizeof(execlists->csb_write[0]));
3008
3009 inactive = process_csb(engine, inactive); /* drain preemption events */
3010
3011 /* Following the reset, we need to reload the CSB read/write pointers */
3012 reset_csb_pointers(engine);
3013
3014 return inactive;
3015 }
3016
3017 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)3018 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3019 {
3020 struct intel_context *ce;
3021 struct i915_request *rq;
3022 u32 head;
3023
3024 /*
3025 * Save the currently executing context, even if we completed
3026 * its request, it was still running at the time of the
3027 * reset and will have been clobbered.
3028 */
3029 rq = active_context(engine, engine->execlists.reset_ccid);
3030 if (!rq)
3031 return;
3032
3033 ce = rq->context;
3034 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3035
3036 if (__i915_request_is_complete(rq)) {
3037 /* Idle context; tidy up the ring so we can restart afresh */
3038 head = intel_ring_wrap(ce->ring, rq->tail);
3039 goto out_replay;
3040 }
3041
3042 /* We still have requests in-flight; the engine should be active */
3043 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3044
3045 /* Context has requests still in-flight; it should not be idle! */
3046 GEM_BUG_ON(i915_active_is_idle(&ce->active));
3047
3048 rq = active_request(ce->timeline, rq);
3049 head = intel_ring_wrap(ce->ring, rq->head);
3050 GEM_BUG_ON(head == ce->ring->tail);
3051
3052 /*
3053 * If this request hasn't started yet, e.g. it is waiting on a
3054 * semaphore, we need to avoid skipping the request or else we
3055 * break the signaling chain. However, if the context is corrupt
3056 * the request will not restart and we will be stuck with a wedged
3057 * device. It is quite often the case that if we issue a reset
3058 * while the GPU is loading the context image, that the context
3059 * image becomes corrupt.
3060 *
3061 * Otherwise, if we have not started yet, the request should replay
3062 * perfectly and we do not need to flag the result as being erroneous.
3063 */
3064 if (!__i915_request_has_started(rq))
3065 goto out_replay;
3066
3067 /*
3068 * If the request was innocent, we leave the request in the ELSP
3069 * and will try to replay it on restarting. The context image may
3070 * have been corrupted by the reset, in which case we may have
3071 * to service a new GPU hang, but more likely we can continue on
3072 * without impact.
3073 *
3074 * If the request was guilty, we presume the context is corrupt
3075 * and have to at least restore the RING register in the context
3076 * image back to the expected values to skip over the guilty request.
3077 */
3078 __i915_request_reset(rq, stalled);
3079
3080 /*
3081 * We want a simple context + ring to execute the breadcrumb update.
3082 * We cannot rely on the context being intact across the GPU hang,
3083 * so clear it and rebuild just what we need for the breadcrumb.
3084 * All pending requests for this context will be zapped, and any
3085 * future request will be after userspace has had the opportunity
3086 * to recreate its own state.
3087 */
3088 out_replay:
3089 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3090 head, ce->ring->tail);
3091 lrc_reset_regs(ce, engine);
3092 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3093 }
3094
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)3095 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3096 {
3097 struct intel_engine_execlists * const execlists = &engine->execlists;
3098 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3099 struct i915_request **inactive;
3100
3101 rcu_read_lock();
3102 inactive = reset_csb(engine, post);
3103
3104 execlists_reset_active(engine, true);
3105
3106 inactive = cancel_port_requests(execlists, inactive);
3107 post_process_csb(post, inactive);
3108 rcu_read_unlock();
3109 }
3110
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)3111 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3112 {
3113 unsigned long flags;
3114
3115 ENGINE_TRACE(engine, "\n");
3116
3117 /* Process the csb, find the guilty context and throw away */
3118 execlists_reset_csb(engine, stalled);
3119
3120 /* Push back any incomplete requests for replay after the reset. */
3121 rcu_read_lock();
3122 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3123 __unwind_incomplete_requests(engine);
3124 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3125 rcu_read_unlock();
3126 }
3127
nop_submission_tasklet(struct tasklet_struct * t)3128 static void nop_submission_tasklet(struct tasklet_struct *t)
3129 {
3130 struct i915_sched_engine *sched_engine =
3131 from_tasklet(sched_engine, t, tasklet);
3132 struct intel_engine_cs * const engine = sched_engine->private_data;
3133
3134 /* The driver is wedged; don't process any more events. */
3135 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3136 }
3137
execlists_reset_cancel(struct intel_engine_cs * engine)3138 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3139 {
3140 struct intel_engine_execlists * const execlists = &engine->execlists;
3141 struct i915_sched_engine * const sched_engine = engine->sched_engine;
3142 struct i915_request *rq, *rn;
3143 struct rb_node *rb;
3144 unsigned long flags;
3145
3146 ENGINE_TRACE(engine, "\n");
3147
3148 /*
3149 * Before we call engine->cancel_requests(), we should have exclusive
3150 * access to the submission state. This is arranged for us by the
3151 * caller disabling the interrupt generation, the tasklet and other
3152 * threads that may then access the same state, giving us a free hand
3153 * to reset state. However, we still need to let lockdep be aware that
3154 * we know this state may be accessed in hardirq context, so we
3155 * disable the irq around this manipulation and we want to keep
3156 * the spinlock focused on its duties and not accidentally conflate
3157 * coverage to the submission's irq state. (Similarly, although we
3158 * shouldn't need to disable irq around the manipulation of the
3159 * submission's irq state, we also wish to remind ourselves that
3160 * it is irq state.)
3161 */
3162 execlists_reset_csb(engine, true);
3163
3164 rcu_read_lock();
3165 spin_lock_irqsave(&engine->sched_engine->lock, flags);
3166
3167 /* Mark all executing requests as skipped. */
3168 list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3169 i915_request_put(i915_request_mark_eio(rq));
3170 intel_engine_signal_breadcrumbs(engine);
3171
3172 /* Flush the queued requests to the timeline list (for retiring). */
3173 while ((rb = rb_first_cached(&sched_engine->queue))) {
3174 struct i915_priolist *p = to_priolist(rb);
3175
3176 priolist_for_each_request_consume(rq, rn, p) {
3177 if (i915_request_mark_eio(rq)) {
3178 __i915_request_submit(rq);
3179 i915_request_put(rq);
3180 }
3181 }
3182
3183 rb_erase_cached(&p->node, &sched_engine->queue);
3184 i915_priolist_free(p);
3185 }
3186
3187 /* On-hold requests will be flushed to timeline upon their release */
3188 list_for_each_entry(rq, &sched_engine->hold, sched.link)
3189 i915_request_put(i915_request_mark_eio(rq));
3190
3191 /* Cancel all attached virtual engines */
3192 while ((rb = rb_first_cached(&execlists->virtual))) {
3193 struct virtual_engine *ve =
3194 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3195
3196 rb_erase_cached(rb, &execlists->virtual);
3197 RB_CLEAR_NODE(rb);
3198
3199 spin_lock(&ve->base.sched_engine->lock);
3200 rq = fetch_and_zero(&ve->request);
3201 if (rq) {
3202 if (i915_request_mark_eio(rq)) {
3203 rq->engine = engine;
3204 __i915_request_submit(rq);
3205 i915_request_put(rq);
3206 }
3207 i915_request_put(rq);
3208
3209 ve->base.sched_engine->queue_priority_hint = INT_MIN;
3210 }
3211 spin_unlock(&ve->base.sched_engine->lock);
3212 }
3213
3214 /* Remaining _unready_ requests will be nop'ed when submitted */
3215
3216 sched_engine->queue_priority_hint = INT_MIN;
3217 sched_engine->queue = RB_ROOT_CACHED;
3218
3219 GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3220 engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3221
3222 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3223 rcu_read_unlock();
3224 }
3225
execlists_reset_finish(struct intel_engine_cs * engine)3226 static void execlists_reset_finish(struct intel_engine_cs *engine)
3227 {
3228 struct intel_engine_execlists * const execlists = &engine->execlists;
3229
3230 /*
3231 * After a GPU reset, we may have requests to replay. Do so now while
3232 * we still have the forcewake to be sure that the GPU is not allowed
3233 * to sleep before we restart and reload a context.
3234 *
3235 * If the GPU reset fails, the engine may still be alive with requests
3236 * inflight. We expect those to complete, or for the device to be
3237 * reset as the next level of recovery, and as a final resort we
3238 * will declare the device wedged.
3239 */
3240 GEM_BUG_ON(!reset_in_progress(engine));
3241
3242 /* And kick in case we missed a new request submission. */
3243 if (__tasklet_enable(&engine->sched_engine->tasklet))
3244 __execlists_kick(execlists);
3245
3246 ENGINE_TRACE(engine, "depth->%d\n",
3247 atomic_read(&engine->sched_engine->tasklet.count));
3248 }
3249
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3250 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3251 {
3252 ENGINE_WRITE(engine, RING_IMR,
3253 ~(engine->irq_enable_mask | engine->irq_keep_mask));
3254 ENGINE_POSTING_READ(engine, RING_IMR);
3255 }
3256
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3257 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3258 {
3259 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3260 }
3261
execlists_park(struct intel_engine_cs * engine)3262 static void execlists_park(struct intel_engine_cs *engine)
3263 {
3264 cancel_timer(&engine->execlists.timer);
3265 cancel_timer(&engine->execlists.preempt);
3266
3267 /* Reset upon idling, or we may delay the busy wakeup. */
3268 WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3269 }
3270
add_to_engine(struct i915_request * rq)3271 static void add_to_engine(struct i915_request *rq)
3272 {
3273 lockdep_assert_held(&rq->engine->sched_engine->lock);
3274 list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3275 }
3276
remove_from_engine(struct i915_request * rq)3277 static void remove_from_engine(struct i915_request *rq)
3278 {
3279 struct intel_engine_cs *engine, *locked;
3280
3281 /*
3282 * Virtual engines complicate acquiring the engine timeline lock,
3283 * as their rq->engine pointer is not stable until under that
3284 * engine lock. The simple ploy we use is to take the lock then
3285 * check that the rq still belongs to the newly locked engine.
3286 */
3287 locked = READ_ONCE(rq->engine);
3288 spin_lock_irq(&locked->sched_engine->lock);
3289 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3290 spin_unlock(&locked->sched_engine->lock);
3291 spin_lock(&engine->sched_engine->lock);
3292 locked = engine;
3293 }
3294 list_del_init(&rq->sched.link);
3295
3296 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3297 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3298
3299 /* Prevent further __await_execution() registering a cb, then flush */
3300 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3301
3302 spin_unlock_irq(&locked->sched_engine->lock);
3303
3304 i915_request_notify_execute_cb_imm(rq);
3305 }
3306
can_preempt(struct intel_engine_cs * engine)3307 static bool can_preempt(struct intel_engine_cs *engine)
3308 {
3309 return GRAPHICS_VER(engine->i915) > 8;
3310 }
3311
kick_execlists(const struct i915_request * rq,int prio)3312 static void kick_execlists(const struct i915_request *rq, int prio)
3313 {
3314 struct intel_engine_cs *engine = rq->engine;
3315 struct i915_sched_engine *sched_engine = engine->sched_engine;
3316 const struct i915_request *inflight;
3317
3318 /*
3319 * We only need to kick the tasklet once for the high priority
3320 * new context we add into the queue.
3321 */
3322 if (prio <= sched_engine->queue_priority_hint)
3323 return;
3324
3325 rcu_read_lock();
3326
3327 /* Nothing currently active? We're overdue for a submission! */
3328 inflight = execlists_active(&engine->execlists);
3329 if (!inflight)
3330 goto unlock;
3331
3332 /*
3333 * If we are already the currently executing context, don't
3334 * bother evaluating if we should preempt ourselves.
3335 */
3336 if (inflight->context == rq->context)
3337 goto unlock;
3338
3339 ENGINE_TRACE(engine,
3340 "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3341 prio,
3342 rq->fence.context, rq->fence.seqno,
3343 inflight->fence.context, inflight->fence.seqno,
3344 inflight->sched.attr.priority);
3345
3346 sched_engine->queue_priority_hint = prio;
3347
3348 /*
3349 * Allow preemption of low -> normal -> high, but we do
3350 * not allow low priority tasks to preempt other low priority
3351 * tasks under the impression that latency for low priority
3352 * tasks does not matter (as much as background throughput),
3353 * so kiss.
3354 */
3355 if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3356 tasklet_hi_schedule(&sched_engine->tasklet);
3357
3358 unlock:
3359 rcu_read_unlock();
3360 }
3361
execlists_set_default_submission(struct intel_engine_cs * engine)3362 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3363 {
3364 engine->submit_request = execlists_submit_request;
3365 engine->sched_engine->schedule = i915_schedule;
3366 engine->sched_engine->kick_backend = kick_execlists;
3367 engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3368 }
3369
execlists_shutdown(struct intel_engine_cs * engine)3370 static void execlists_shutdown(struct intel_engine_cs *engine)
3371 {
3372 /* Synchronise with residual timers and any softirq they raise */
3373 del_timer_sync(&engine->execlists.timer);
3374 del_timer_sync(&engine->execlists.preempt);
3375 tasklet_kill(&engine->sched_engine->tasklet);
3376 }
3377
execlists_release(struct intel_engine_cs * engine)3378 static void execlists_release(struct intel_engine_cs *engine)
3379 {
3380 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3381
3382 execlists_shutdown(engine);
3383
3384 intel_engine_cleanup_common(engine);
3385 lrc_fini_wa_ctx(engine);
3386 }
3387
__execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3388 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3389 ktime_t *now)
3390 {
3391 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3392 ktime_t total = stats->total;
3393
3394 /*
3395 * If the engine is executing something at the moment
3396 * add it to the total.
3397 */
3398 *now = ktime_get();
3399 if (READ_ONCE(stats->active))
3400 total = ktime_add(total, ktime_sub(*now, stats->start));
3401
3402 return total;
3403 }
3404
execlists_engine_busyness(struct intel_engine_cs * engine,ktime_t * now)3405 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3406 ktime_t *now)
3407 {
3408 struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3409 unsigned int seq;
3410 ktime_t total;
3411
3412 do {
3413 seq = read_seqcount_begin(&stats->lock);
3414 total = __execlists_engine_busyness(engine, now);
3415 } while (read_seqcount_retry(&stats->lock, seq));
3416
3417 return total;
3418 }
3419
3420 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3421 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3422 {
3423 /* Default vfuncs which can be overridden by each engine. */
3424
3425 engine->resume = execlists_resume;
3426
3427 engine->cops = &execlists_context_ops;
3428 engine->request_alloc = execlists_request_alloc;
3429 engine->add_active_request = add_to_engine;
3430 engine->remove_active_request = remove_from_engine;
3431
3432 engine->reset.prepare = execlists_reset_prepare;
3433 engine->reset.rewind = execlists_reset_rewind;
3434 engine->reset.cancel = execlists_reset_cancel;
3435 engine->reset.finish = execlists_reset_finish;
3436
3437 engine->park = execlists_park;
3438 engine->unpark = NULL;
3439
3440 engine->emit_flush = gen8_emit_flush_xcs;
3441 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3442 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3443 if (GRAPHICS_VER(engine->i915) >= 12) {
3444 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3445 engine->emit_flush = gen12_emit_flush_xcs;
3446 }
3447 engine->set_default_submission = execlists_set_default_submission;
3448
3449 if (GRAPHICS_VER(engine->i915) < 11) {
3450 engine->irq_enable = gen8_logical_ring_enable_irq;
3451 engine->irq_disable = gen8_logical_ring_disable_irq;
3452 } else {
3453 /*
3454 * TODO: On Gen11 interrupt masks need to be clear
3455 * to allow C6 entry. Keep interrupts enabled at
3456 * and take the hit of generating extra interrupts
3457 * until a more refined solution exists.
3458 */
3459 }
3460 intel_engine_set_irq_handler(engine, execlists_irq_handler);
3461
3462 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3463 if (!intel_vgpu_active(engine->i915)) {
3464 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3465 if (can_preempt(engine)) {
3466 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3467 if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3468 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3469 }
3470 }
3471
3472 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) {
3473 if (intel_engine_has_preemption(engine))
3474 engine->emit_bb_start = xehp_emit_bb_start;
3475 else
3476 engine->emit_bb_start = xehp_emit_bb_start_noarb;
3477 } else {
3478 if (intel_engine_has_preemption(engine))
3479 engine->emit_bb_start = gen8_emit_bb_start;
3480 else
3481 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3482 }
3483
3484 engine->busyness = execlists_engine_busyness;
3485 }
3486
logical_ring_default_irqs(struct intel_engine_cs * engine)3487 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3488 {
3489 unsigned int shift = 0;
3490
3491 if (GRAPHICS_VER(engine->i915) < 11) {
3492 const u8 irq_shifts[] = {
3493 [RCS0] = GEN8_RCS_IRQ_SHIFT,
3494 [BCS0] = GEN8_BCS_IRQ_SHIFT,
3495 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
3496 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
3497 [VECS0] = GEN8_VECS_IRQ_SHIFT,
3498 };
3499
3500 shift = irq_shifts[engine->id];
3501 }
3502
3503 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3504 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3505 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3506 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3507 }
3508
rcs_submission_override(struct intel_engine_cs * engine)3509 static void rcs_submission_override(struct intel_engine_cs *engine)
3510 {
3511 switch (GRAPHICS_VER(engine->i915)) {
3512 case 12:
3513 engine->emit_flush = gen12_emit_flush_rcs;
3514 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3515 break;
3516 case 11:
3517 engine->emit_flush = gen11_emit_flush_rcs;
3518 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3519 break;
3520 default:
3521 engine->emit_flush = gen8_emit_flush_rcs;
3522 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3523 break;
3524 }
3525 }
3526
intel_execlists_submission_setup(struct intel_engine_cs * engine)3527 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3528 {
3529 struct intel_engine_execlists * const execlists = &engine->execlists;
3530 struct drm_i915_private *i915 = engine->i915;
3531 struct intel_uncore *uncore = engine->uncore;
3532 u32 base = engine->mmio_base;
3533
3534 tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3535 timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3536 timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3537
3538 logical_ring_default_vfuncs(engine);
3539 logical_ring_default_irqs(engine);
3540
3541 seqcount_init(&engine->stats.execlists.lock);
3542
3543 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3544 rcs_submission_override(engine);
3545
3546 lrc_init_wa_ctx(engine);
3547
3548 if (HAS_LOGICAL_RING_ELSQ(i915)) {
3549 execlists->submit_reg = intel_uncore_regs(uncore) +
3550 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3551 execlists->ctrl_reg = intel_uncore_regs(uncore) +
3552 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3553
3554 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3555 RING_EXECLIST_CONTROL(engine->mmio_base),
3556 FW_REG_WRITE);
3557 } else {
3558 execlists->submit_reg = intel_uncore_regs(uncore) +
3559 i915_mmio_reg_offset(RING_ELSP(base));
3560 }
3561
3562 execlists->csb_status =
3563 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3564
3565 execlists->csb_write =
3566 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3567
3568 if (GRAPHICS_VER(i915) < 11)
3569 execlists->csb_size = GEN8_CSB_ENTRIES;
3570 else
3571 execlists->csb_size = GEN11_CSB_ENTRIES;
3572
3573 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3574 if (GRAPHICS_VER(engine->i915) >= 11 &&
3575 GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 55)) {
3576 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3577 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3578 }
3579
3580 /* Finally, take ownership and responsibility for cleanup! */
3581 engine->sanitize = execlists_sanitize;
3582 engine->release = execlists_release;
3583
3584 return 0;
3585 }
3586
virtual_queue(struct virtual_engine * ve)3587 static struct list_head *virtual_queue(struct virtual_engine *ve)
3588 {
3589 return &ve->base.sched_engine->default_priolist.requests;
3590 }
3591
rcu_virtual_context_destroy(struct work_struct * wrk)3592 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3593 {
3594 struct virtual_engine *ve =
3595 container_of(wrk, typeof(*ve), rcu.work);
3596 unsigned int n;
3597
3598 GEM_BUG_ON(ve->context.inflight);
3599
3600 /* Preempt-to-busy may leave a stale request behind. */
3601 if (unlikely(ve->request)) {
3602 struct i915_request *old;
3603
3604 spin_lock_irq(&ve->base.sched_engine->lock);
3605
3606 old = fetch_and_zero(&ve->request);
3607 if (old) {
3608 GEM_BUG_ON(!__i915_request_is_complete(old));
3609 __i915_request_submit(old);
3610 i915_request_put(old);
3611 }
3612
3613 spin_unlock_irq(&ve->base.sched_engine->lock);
3614 }
3615
3616 /*
3617 * Flush the tasklet in case it is still running on another core.
3618 *
3619 * This needs to be done before we remove ourselves from the siblings'
3620 * rbtrees as in the case it is running in parallel, it may reinsert
3621 * the rb_node into a sibling.
3622 */
3623 tasklet_kill(&ve->base.sched_engine->tasklet);
3624
3625 /* Decouple ourselves from the siblings, no more access allowed. */
3626 for (n = 0; n < ve->num_siblings; n++) {
3627 struct intel_engine_cs *sibling = ve->siblings[n];
3628 struct rb_node *node = &ve->nodes[sibling->id].rb;
3629
3630 if (RB_EMPTY_NODE(node))
3631 continue;
3632
3633 spin_lock_irq(&sibling->sched_engine->lock);
3634
3635 /* Detachment is lazily performed in the sched_engine->tasklet */
3636 if (!RB_EMPTY_NODE(node))
3637 rb_erase_cached(node, &sibling->execlists.virtual);
3638
3639 spin_unlock_irq(&sibling->sched_engine->lock);
3640 }
3641 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3642 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3643
3644 lrc_fini(&ve->context);
3645 intel_context_fini(&ve->context);
3646
3647 if (ve->base.breadcrumbs)
3648 intel_breadcrumbs_put(ve->base.breadcrumbs);
3649 if (ve->base.sched_engine)
3650 i915_sched_engine_put(ve->base.sched_engine);
3651 intel_engine_free_request_pool(&ve->base);
3652
3653 kfree(ve);
3654 }
3655
virtual_context_destroy(struct kref * kref)3656 static void virtual_context_destroy(struct kref *kref)
3657 {
3658 struct virtual_engine *ve =
3659 container_of(kref, typeof(*ve), context.ref);
3660
3661 GEM_BUG_ON(!list_empty(&ve->context.signals));
3662
3663 /*
3664 * When destroying the virtual engine, we have to be aware that
3665 * it may still be in use from an hardirq/softirq context causing
3666 * the resubmission of a completed request (background completion
3667 * due to preempt-to-busy). Before we can free the engine, we need
3668 * to flush the submission code and tasklets that are still potentially
3669 * accessing the engine. Flushing the tasklets requires process context,
3670 * and since we can guard the resubmit onto the engine with an RCU read
3671 * lock, we can delegate the free of the engine to an RCU worker.
3672 */
3673 INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3674 queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3675 }
3676
virtual_engine_initial_hint(struct virtual_engine * ve)3677 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3678 {
3679 int swp;
3680
3681 /*
3682 * Pick a random sibling on starting to help spread the load around.
3683 *
3684 * New contexts are typically created with exactly the same order
3685 * of siblings, and often started in batches. Due to the way we iterate
3686 * the array of sibling when submitting requests, sibling[0] is
3687 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3688 * randomised across the system, we also help spread the load by the
3689 * first engine we inspect being different each time.
3690 *
3691 * NB This does not force us to execute on this engine, it will just
3692 * typically be the first we inspect for submission.
3693 */
3694 swp = get_random_u32_below(ve->num_siblings);
3695 if (swp)
3696 swap(ve->siblings[swp], ve->siblings[0]);
3697 }
3698
virtual_context_alloc(struct intel_context * ce)3699 static int virtual_context_alloc(struct intel_context *ce)
3700 {
3701 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3702
3703 return lrc_alloc(ce, ve->siblings[0]);
3704 }
3705
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3706 static int virtual_context_pre_pin(struct intel_context *ce,
3707 struct i915_gem_ww_ctx *ww,
3708 void **vaddr)
3709 {
3710 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3711
3712 /* Note: we must use a real engine class for setting up reg state */
3713 return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3714 }
3715
virtual_context_pin(struct intel_context * ce,void * vaddr)3716 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3717 {
3718 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3719
3720 return lrc_pin(ce, ve->siblings[0], vaddr);
3721 }
3722
virtual_context_enter(struct intel_context * ce)3723 static void virtual_context_enter(struct intel_context *ce)
3724 {
3725 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3726 unsigned int n;
3727
3728 for (n = 0; n < ve->num_siblings; n++)
3729 intel_engine_pm_get(ve->siblings[n]);
3730
3731 intel_timeline_enter(ce->timeline);
3732 }
3733
virtual_context_exit(struct intel_context * ce)3734 static void virtual_context_exit(struct intel_context *ce)
3735 {
3736 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3737 unsigned int n;
3738
3739 intel_timeline_exit(ce->timeline);
3740
3741 for (n = 0; n < ve->num_siblings; n++)
3742 intel_engine_pm_put(ve->siblings[n]);
3743 }
3744
3745 static struct intel_engine_cs *
virtual_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)3746 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3747 {
3748 struct virtual_engine *ve = to_virtual_engine(engine);
3749
3750 if (sibling >= ve->num_siblings)
3751 return NULL;
3752
3753 return ve->siblings[sibling];
3754 }
3755
3756 static const struct intel_context_ops virtual_context_ops = {
3757 .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3758
3759 .alloc = virtual_context_alloc,
3760
3761 .cancel_request = execlists_context_cancel_request,
3762
3763 .pre_pin = virtual_context_pre_pin,
3764 .pin = virtual_context_pin,
3765 .unpin = lrc_unpin,
3766 .post_unpin = lrc_post_unpin,
3767
3768 .enter = virtual_context_enter,
3769 .exit = virtual_context_exit,
3770
3771 .destroy = virtual_context_destroy,
3772
3773 .get_sibling = virtual_get_sibling,
3774 };
3775
virtual_submission_mask(struct virtual_engine * ve)3776 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3777 {
3778 struct i915_request *rq;
3779 intel_engine_mask_t mask;
3780
3781 rq = READ_ONCE(ve->request);
3782 if (!rq)
3783 return 0;
3784
3785 /* The rq is ready for submission; rq->execution_mask is now stable. */
3786 mask = rq->execution_mask;
3787 if (unlikely(!mask)) {
3788 /* Invalid selection, submit to a random engine in error */
3789 i915_request_set_error_once(rq, -ENODEV);
3790 mask = ve->siblings[0]->mask;
3791 }
3792
3793 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3794 rq->fence.context, rq->fence.seqno,
3795 mask, ve->base.sched_engine->queue_priority_hint);
3796
3797 return mask;
3798 }
3799
virtual_submission_tasklet(struct tasklet_struct * t)3800 static void virtual_submission_tasklet(struct tasklet_struct *t)
3801 {
3802 struct i915_sched_engine *sched_engine =
3803 from_tasklet(sched_engine, t, tasklet);
3804 struct virtual_engine * const ve =
3805 (struct virtual_engine *)sched_engine->private_data;
3806 const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3807 intel_engine_mask_t mask;
3808 unsigned int n;
3809
3810 rcu_read_lock();
3811 mask = virtual_submission_mask(ve);
3812 rcu_read_unlock();
3813 if (unlikely(!mask))
3814 return;
3815
3816 for (n = 0; n < ve->num_siblings; n++) {
3817 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3818 struct ve_node * const node = &ve->nodes[sibling->id];
3819 struct rb_node **parent, *rb;
3820 bool first;
3821
3822 if (!READ_ONCE(ve->request))
3823 break; /* already handled by a sibling's tasklet */
3824
3825 spin_lock_irq(&sibling->sched_engine->lock);
3826
3827 if (unlikely(!(mask & sibling->mask))) {
3828 if (!RB_EMPTY_NODE(&node->rb)) {
3829 rb_erase_cached(&node->rb,
3830 &sibling->execlists.virtual);
3831 RB_CLEAR_NODE(&node->rb);
3832 }
3833
3834 goto unlock_engine;
3835 }
3836
3837 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3838 /*
3839 * Cheat and avoid rebalancing the tree if we can
3840 * reuse this node in situ.
3841 */
3842 first = rb_first_cached(&sibling->execlists.virtual) ==
3843 &node->rb;
3844 if (prio == node->prio || (prio > node->prio && first))
3845 goto submit_engine;
3846
3847 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3848 }
3849
3850 rb = NULL;
3851 first = true;
3852 parent = &sibling->execlists.virtual.rb_root.rb_node;
3853 while (*parent) {
3854 struct ve_node *other;
3855
3856 rb = *parent;
3857 other = rb_entry(rb, typeof(*other), rb);
3858 if (prio > other->prio) {
3859 parent = &rb->rb_left;
3860 } else {
3861 parent = &rb->rb_right;
3862 first = false;
3863 }
3864 }
3865
3866 rb_link_node(&node->rb, rb, parent);
3867 rb_insert_color_cached(&node->rb,
3868 &sibling->execlists.virtual,
3869 first);
3870
3871 submit_engine:
3872 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3873 node->prio = prio;
3874 if (first && prio > sibling->sched_engine->queue_priority_hint)
3875 tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3876
3877 unlock_engine:
3878 spin_unlock_irq(&sibling->sched_engine->lock);
3879
3880 if (intel_context_inflight(&ve->context))
3881 break;
3882 }
3883 }
3884
virtual_submit_request(struct i915_request * rq)3885 static void virtual_submit_request(struct i915_request *rq)
3886 {
3887 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3888 unsigned long flags;
3889
3890 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3891 rq->fence.context,
3892 rq->fence.seqno);
3893
3894 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3895
3896 spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3897
3898 /* By the time we resubmit a request, it may be completed */
3899 if (__i915_request_is_complete(rq)) {
3900 __i915_request_submit(rq);
3901 goto unlock;
3902 }
3903
3904 if (ve->request) { /* background completion from preempt-to-busy */
3905 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3906 __i915_request_submit(ve->request);
3907 i915_request_put(ve->request);
3908 }
3909
3910 ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3911 ve->request = i915_request_get(rq);
3912
3913 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3914 list_move_tail(&rq->sched.link, virtual_queue(ve));
3915
3916 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3917
3918 unlock:
3919 spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3920 }
3921
3922 static struct intel_context *
execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)3923 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3924 unsigned long flags)
3925 {
3926 struct drm_i915_private *i915 = siblings[0]->i915;
3927 struct virtual_engine *ve;
3928 unsigned int n;
3929 int err;
3930
3931 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3932 if (!ve)
3933 return ERR_PTR(-ENOMEM);
3934
3935 ve->base.i915 = i915;
3936 ve->base.gt = siblings[0]->gt;
3937 ve->base.uncore = siblings[0]->uncore;
3938 ve->base.id = -1;
3939
3940 ve->base.class = OTHER_CLASS;
3941 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3942 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3943 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3944
3945 /*
3946 * The decision on whether to submit a request using semaphores
3947 * depends on the saturated state of the engine. We only compute
3948 * this during HW submission of the request, and we need for this
3949 * state to be globally applied to all requests being submitted
3950 * to this engine. Virtual engines encompass more than one physical
3951 * engine and so we cannot accurately tell in advance if one of those
3952 * engines is already saturated and so cannot afford to use a semaphore
3953 * and be pessimized in priority for doing so -- if we are the only
3954 * context using semaphores after all other clients have stopped, we
3955 * will be starved on the saturated system. Such a global switch for
3956 * semaphores is less than ideal, but alas is the current compromise.
3957 */
3958 ve->base.saturated = ALL_ENGINES;
3959
3960 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3961
3962 intel_engine_init_execlists(&ve->base);
3963
3964 ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3965 if (!ve->base.sched_engine) {
3966 err = -ENOMEM;
3967 goto err_put;
3968 }
3969 ve->base.sched_engine->private_data = &ve->base;
3970
3971 ve->base.cops = &virtual_context_ops;
3972 ve->base.request_alloc = execlists_request_alloc;
3973
3974 ve->base.sched_engine->schedule = i915_schedule;
3975 ve->base.sched_engine->kick_backend = kick_execlists;
3976 ve->base.submit_request = virtual_submit_request;
3977
3978 INIT_LIST_HEAD(virtual_queue(ve));
3979 tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3980
3981 intel_context_init(&ve->context, &ve->base);
3982
3983 ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3984 if (!ve->base.breadcrumbs) {
3985 err = -ENOMEM;
3986 goto err_put;
3987 }
3988
3989 for (n = 0; n < count; n++) {
3990 struct intel_engine_cs *sibling = siblings[n];
3991
3992 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3993 if (sibling->mask & ve->base.mask) {
3994 drm_dbg(&i915->drm,
3995 "duplicate %s entry in load balancer\n",
3996 sibling->name);
3997 err = -EINVAL;
3998 goto err_put;
3999 }
4000
4001 /*
4002 * The virtual engine implementation is tightly coupled to
4003 * the execlists backend -- we push out request directly
4004 * into a tree inside each physical engine. We could support
4005 * layering if we handle cloning of the requests and
4006 * submitting a copy into each backend.
4007 */
4008 if (sibling->sched_engine->tasklet.callback !=
4009 execlists_submission_tasklet) {
4010 err = -ENODEV;
4011 goto err_put;
4012 }
4013
4014 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4015 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4016
4017 ve->siblings[ve->num_siblings++] = sibling;
4018 ve->base.mask |= sibling->mask;
4019 ve->base.logical_mask |= sibling->logical_mask;
4020
4021 /*
4022 * All physical engines must be compatible for their emission
4023 * functions (as we build the instructions during request
4024 * construction and do not alter them before submission
4025 * on the physical engine). We use the engine class as a guide
4026 * here, although that could be refined.
4027 */
4028 if (ve->base.class != OTHER_CLASS) {
4029 if (ve->base.class != sibling->class) {
4030 drm_dbg(&i915->drm,
4031 "invalid mixing of engine class, sibling %d, already %d\n",
4032 sibling->class, ve->base.class);
4033 err = -EINVAL;
4034 goto err_put;
4035 }
4036 continue;
4037 }
4038
4039 ve->base.class = sibling->class;
4040 ve->base.uabi_class = sibling->uabi_class;
4041 snprintf(ve->base.name, sizeof(ve->base.name),
4042 "v%dx%d", ve->base.class, count);
4043 ve->base.context_size = sibling->context_size;
4044
4045 ve->base.add_active_request = sibling->add_active_request;
4046 ve->base.remove_active_request = sibling->remove_active_request;
4047 ve->base.emit_bb_start = sibling->emit_bb_start;
4048 ve->base.emit_flush = sibling->emit_flush;
4049 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4050 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4051 ve->base.emit_fini_breadcrumb_dw =
4052 sibling->emit_fini_breadcrumb_dw;
4053
4054 ve->base.flags = sibling->flags;
4055 }
4056
4057 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4058
4059 virtual_engine_initial_hint(ve);
4060 return &ve->context;
4061
4062 err_put:
4063 intel_context_put(&ve->context);
4064 return ERR_PTR(err);
4065 }
4066
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)4067 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4068 struct drm_printer *m,
4069 void (*show_request)(struct drm_printer *m,
4070 const struct i915_request *rq,
4071 const char *prefix,
4072 int indent),
4073 unsigned int max)
4074 {
4075 const struct intel_engine_execlists *execlists = &engine->execlists;
4076 struct i915_sched_engine *sched_engine = engine->sched_engine;
4077 struct i915_request *rq, *last;
4078 unsigned long flags;
4079 unsigned int count;
4080 struct rb_node *rb;
4081
4082 spin_lock_irqsave(&sched_engine->lock, flags);
4083
4084 last = NULL;
4085 count = 0;
4086 list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4087 if (count++ < max - 1)
4088 show_request(m, rq, "\t\t", 0);
4089 else
4090 last = rq;
4091 }
4092 if (last) {
4093 if (count > max) {
4094 drm_printf(m,
4095 "\t\t...skipping %d executing requests...\n",
4096 count - max);
4097 }
4098 show_request(m, last, "\t\t", 0);
4099 }
4100
4101 if (sched_engine->queue_priority_hint != INT_MIN)
4102 drm_printf(m, "\t\tQueue priority hint: %d\n",
4103 READ_ONCE(sched_engine->queue_priority_hint));
4104
4105 last = NULL;
4106 count = 0;
4107 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4108 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4109
4110 priolist_for_each_request(rq, p) {
4111 if (count++ < max - 1)
4112 show_request(m, rq, "\t\t", 0);
4113 else
4114 last = rq;
4115 }
4116 }
4117 if (last) {
4118 if (count > max) {
4119 drm_printf(m,
4120 "\t\t...skipping %d queued requests...\n",
4121 count - max);
4122 }
4123 show_request(m, last, "\t\t", 0);
4124 }
4125
4126 last = NULL;
4127 count = 0;
4128 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4129 struct virtual_engine *ve =
4130 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4131 struct i915_request *rq = READ_ONCE(ve->request);
4132
4133 if (rq) {
4134 if (count++ < max - 1)
4135 show_request(m, rq, "\t\t", 0);
4136 else
4137 last = rq;
4138 }
4139 }
4140 if (last) {
4141 if (count > max) {
4142 drm_printf(m,
4143 "\t\t...skipping %d virtual requests...\n",
4144 count - max);
4145 }
4146 show_request(m, last, "\t\t", 0);
4147 }
4148
4149 spin_unlock_irqrestore(&sched_engine->lock, flags);
4150 }
4151
intel_execlists_dump_active_requests(struct intel_engine_cs * engine,struct i915_request * hung_rq,struct drm_printer * m)4152 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4153 struct i915_request *hung_rq,
4154 struct drm_printer *m)
4155 {
4156 unsigned long flags;
4157
4158 spin_lock_irqsave(&engine->sched_engine->lock, flags);
4159
4160 intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4161
4162 drm_printf(m, "\tOn hold?: %zu\n",
4163 list_count_nodes(&engine->sched_engine->hold));
4164
4165 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4166 }
4167
4168 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4169 #include "selftest_execlists.c"
4170 #endif
4171