xref: /linux/kernel/module/main.c (revision da23ea194db94257123f1534d487f3cdc9b5626d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 static int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 static const struct ctl_table module_sysctl_table[] = {
133 	{
134 		.procname	= "modprobe",
135 		.data		= &modprobe_path,
136 		.maxlen		= KMOD_PATH_LEN,
137 		.mode		= 0644,
138 		.proc_handler	= proc_dostring,
139 	},
140 	{
141 		.procname	= "modules_disabled",
142 		.data		= &modules_disabled,
143 		.maxlen		= sizeof(int),
144 		.mode		= 0644,
145 		/* only handle a transition from default "0" to "1" */
146 		.proc_handler	= proc_dointvec_minmax,
147 		.extra1		= SYSCTL_ONE,
148 		.extra2		= SYSCTL_ONE,
149 	},
150 };
151 
152 static int __init init_module_sysctl(void)
153 {
154 	register_sysctl_init("kernel", module_sysctl_table);
155 	return 0;
156 }
157 
158 subsys_initcall(init_module_sysctl);
159 
160 /* Waiting for a module to finish initializing? */
161 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
162 
163 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
164 
165 int register_module_notifier(struct notifier_block *nb)
166 {
167 	return blocking_notifier_chain_register(&module_notify_list, nb);
168 }
169 EXPORT_SYMBOL(register_module_notifier);
170 
171 int unregister_module_notifier(struct notifier_block *nb)
172 {
173 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
174 }
175 EXPORT_SYMBOL(unregister_module_notifier);
176 
177 /*
178  * We require a truly strong try_module_get(): 0 means success.
179  * Otherwise an error is returned due to ongoing or failed
180  * initialization etc.
181  */
182 static inline int strong_try_module_get(struct module *mod)
183 {
184 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
185 	if (mod && mod->state == MODULE_STATE_COMING)
186 		return -EBUSY;
187 	if (try_module_get(mod))
188 		return 0;
189 	else
190 		return -ENOENT;
191 }
192 
193 static inline void add_taint_module(struct module *mod, unsigned flag,
194 				    enum lockdep_ok lockdep_ok)
195 {
196 	add_taint(flag, lockdep_ok);
197 	set_bit(flag, &mod->taints);
198 }
199 
200 /*
201  * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
202  */
203 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
204 {
205 	for (int i = 0; i < n; i++) {
206 		char a = str_a[i];
207 		char b = str_b[i];
208 		int d;
209 
210 		if (a == '-') a = '_';
211 		if (b == '-') b = '_';
212 
213 		d = a - b;
214 		if (d)
215 			return d;
216 
217 		if (!a)
218 			break;
219 	}
220 
221 	return 0;
222 }
223 
224 /*
225  * A thread that wants to hold a reference to a module only while it
226  * is running can call this to safely exit.
227  */
228 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
229 {
230 	module_put(mod);
231 	kthread_exit(code);
232 }
233 EXPORT_SYMBOL(__module_put_and_kthread_exit);
234 
235 /* Find a module section: 0 means not found. */
236 static unsigned int find_sec(const struct load_info *info, const char *name)
237 {
238 	unsigned int i;
239 
240 	for (i = 1; i < info->hdr->e_shnum; i++) {
241 		Elf_Shdr *shdr = &info->sechdrs[i];
242 		/* Alloc bit cleared means "ignore it." */
243 		if ((shdr->sh_flags & SHF_ALLOC)
244 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
245 			return i;
246 	}
247 	return 0;
248 }
249 
250 /**
251  * find_any_unique_sec() - Find a unique section index by name
252  * @info: Load info for the module to scan
253  * @name: Name of the section we're looking for
254  *
255  * Locates a unique section by name. Ignores SHF_ALLOC.
256  *
257  * Return: Section index if found uniquely, zero if absent, negative count
258  *         of total instances if multiple were found.
259  */
260 static int find_any_unique_sec(const struct load_info *info, const char *name)
261 {
262 	unsigned int idx;
263 	unsigned int count = 0;
264 	int i;
265 
266 	for (i = 1; i < info->hdr->e_shnum; i++) {
267 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
268 			   name) == 0) {
269 			count++;
270 			idx = i;
271 		}
272 	}
273 	if (count == 1) {
274 		return idx;
275 	} else if (count == 0) {
276 		return 0;
277 	} else {
278 		return -count;
279 	}
280 }
281 
282 /* Find a module section, or NULL. */
283 static void *section_addr(const struct load_info *info, const char *name)
284 {
285 	/* Section 0 has sh_addr 0. */
286 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
287 }
288 
289 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
290 static void *section_objs(const struct load_info *info,
291 			  const char *name,
292 			  size_t object_size,
293 			  unsigned int *num)
294 {
295 	unsigned int sec = find_sec(info, name);
296 
297 	/* Section 0 has sh_addr 0 and sh_size 0. */
298 	*num = info->sechdrs[sec].sh_size / object_size;
299 	return (void *)info->sechdrs[sec].sh_addr;
300 }
301 
302 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
303 static unsigned int find_any_sec(const struct load_info *info, const char *name)
304 {
305 	unsigned int i;
306 
307 	for (i = 1; i < info->hdr->e_shnum; i++) {
308 		Elf_Shdr *shdr = &info->sechdrs[i];
309 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
310 			return i;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Find a module section, or NULL. Fill in number of "objects" in section.
317  * Ignores SHF_ALLOC flag.
318  */
319 static __maybe_unused void *any_section_objs(const struct load_info *info,
320 					     const char *name,
321 					     size_t object_size,
322 					     unsigned int *num)
323 {
324 	unsigned int sec = find_any_sec(info, name);
325 
326 	/* Section 0 has sh_addr 0 and sh_size 0. */
327 	*num = info->sechdrs[sec].sh_size / object_size;
328 	return (void *)info->sechdrs[sec].sh_addr;
329 }
330 
331 #ifndef CONFIG_MODVERSIONS
332 #define symversion(base, idx) NULL
333 #else
334 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
335 #endif
336 
337 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
338 {
339 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
340 	return offset_to_ptr(&sym->name_offset);
341 #else
342 	return sym->name;
343 #endif
344 }
345 
346 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
347 {
348 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
349 	if (!sym->namespace_offset)
350 		return NULL;
351 	return offset_to_ptr(&sym->namespace_offset);
352 #else
353 	return sym->namespace;
354 #endif
355 }
356 
357 int cmp_name(const void *name, const void *sym)
358 {
359 	return strcmp(name, kernel_symbol_name(sym));
360 }
361 
362 static bool find_exported_symbol_in_section(const struct symsearch *syms,
363 					    struct module *owner,
364 					    struct find_symbol_arg *fsa)
365 {
366 	struct kernel_symbol *sym;
367 
368 	if (!fsa->gplok && syms->license == GPL_ONLY)
369 		return false;
370 
371 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
372 			sizeof(struct kernel_symbol), cmp_name);
373 	if (!sym)
374 		return false;
375 
376 	fsa->owner = owner;
377 	fsa->crc = symversion(syms->crcs, sym - syms->start);
378 	fsa->sym = sym;
379 	fsa->license = syms->license;
380 
381 	return true;
382 }
383 
384 /*
385  * Find an exported symbol and return it, along with, (optional) crc and
386  * (optional) module which owns it. Needs RCU or module_mutex.
387  */
388 bool find_symbol(struct find_symbol_arg *fsa)
389 {
390 	static const struct symsearch arr[] = {
391 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
392 		  NOT_GPL_ONLY },
393 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
394 		  __start___kcrctab_gpl,
395 		  GPL_ONLY },
396 	};
397 	struct module *mod;
398 	unsigned int i;
399 
400 	for (i = 0; i < ARRAY_SIZE(arr); i++)
401 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
402 			return true;
403 
404 	list_for_each_entry_rcu(mod, &modules, list,
405 				lockdep_is_held(&module_mutex)) {
406 		struct symsearch arr[] = {
407 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
408 			  NOT_GPL_ONLY },
409 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
410 			  mod->gpl_crcs,
411 			  GPL_ONLY },
412 		};
413 
414 		if (mod->state == MODULE_STATE_UNFORMED)
415 			continue;
416 
417 		for (i = 0; i < ARRAY_SIZE(arr); i++)
418 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
419 				return true;
420 	}
421 
422 	pr_debug("Failed to find symbol %s\n", fsa->name);
423 	return false;
424 }
425 
426 /*
427  * Search for module by name: must hold module_mutex (or RCU for read-only
428  * access).
429  */
430 struct module *find_module_all(const char *name, size_t len,
431 			       bool even_unformed)
432 {
433 	struct module *mod;
434 
435 	list_for_each_entry_rcu(mod, &modules, list,
436 				lockdep_is_held(&module_mutex)) {
437 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
438 			continue;
439 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
440 			return mod;
441 	}
442 	return NULL;
443 }
444 
445 struct module *find_module(const char *name)
446 {
447 	return find_module_all(name, strlen(name), false);
448 }
449 
450 #ifdef CONFIG_SMP
451 
452 static inline void __percpu *mod_percpu(struct module *mod)
453 {
454 	return mod->percpu;
455 }
456 
457 static int percpu_modalloc(struct module *mod, struct load_info *info)
458 {
459 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
460 	unsigned long align = pcpusec->sh_addralign;
461 
462 	if (!pcpusec->sh_size)
463 		return 0;
464 
465 	if (align > PAGE_SIZE) {
466 		pr_warn("%s: per-cpu alignment %li > %li\n",
467 			mod->name, align, PAGE_SIZE);
468 		align = PAGE_SIZE;
469 	}
470 
471 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
472 	if (!mod->percpu) {
473 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
474 			mod->name, (unsigned long)pcpusec->sh_size);
475 		return -ENOMEM;
476 	}
477 	mod->percpu_size = pcpusec->sh_size;
478 	return 0;
479 }
480 
481 static void percpu_modfree(struct module *mod)
482 {
483 	free_percpu(mod->percpu);
484 }
485 
486 static unsigned int find_pcpusec(struct load_info *info)
487 {
488 	return find_sec(info, ".data..percpu");
489 }
490 
491 static void percpu_modcopy(struct module *mod,
492 			   const void *from, unsigned long size)
493 {
494 	int cpu;
495 
496 	for_each_possible_cpu(cpu)
497 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
498 }
499 
500 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
501 {
502 	struct module *mod;
503 	unsigned int cpu;
504 
505 	guard(rcu)();
506 	list_for_each_entry_rcu(mod, &modules, list) {
507 		if (mod->state == MODULE_STATE_UNFORMED)
508 			continue;
509 		if (!mod->percpu_size)
510 			continue;
511 		for_each_possible_cpu(cpu) {
512 			void *start = per_cpu_ptr(mod->percpu, cpu);
513 			void *va = (void *)addr;
514 
515 			if (va >= start && va < start + mod->percpu_size) {
516 				if (can_addr) {
517 					*can_addr = (unsigned long) (va - start);
518 					*can_addr += (unsigned long)
519 						per_cpu_ptr(mod->percpu,
520 							    get_boot_cpu_id());
521 				}
522 				return true;
523 			}
524 		}
525 	}
526 	return false;
527 }
528 
529 /**
530  * is_module_percpu_address() - test whether address is from module static percpu
531  * @addr: address to test
532  *
533  * Test whether @addr belongs to module static percpu area.
534  *
535  * Return: %true if @addr is from module static percpu area
536  */
537 bool is_module_percpu_address(unsigned long addr)
538 {
539 	return __is_module_percpu_address(addr, NULL);
540 }
541 
542 #else /* ... !CONFIG_SMP */
543 
544 static inline void __percpu *mod_percpu(struct module *mod)
545 {
546 	return NULL;
547 }
548 static int percpu_modalloc(struct module *mod, struct load_info *info)
549 {
550 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
551 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
552 		return -ENOMEM;
553 	return 0;
554 }
555 static inline void percpu_modfree(struct module *mod)
556 {
557 }
558 static unsigned int find_pcpusec(struct load_info *info)
559 {
560 	return 0;
561 }
562 static inline void percpu_modcopy(struct module *mod,
563 				  const void *from, unsigned long size)
564 {
565 	/* pcpusec should be 0, and size of that section should be 0. */
566 	BUG_ON(size != 0);
567 }
568 bool is_module_percpu_address(unsigned long addr)
569 {
570 	return false;
571 }
572 
573 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
574 {
575 	return false;
576 }
577 
578 #endif /* CONFIG_SMP */
579 
580 #define MODINFO_ATTR(field)	\
581 static void setup_modinfo_##field(struct module *mod, const char *s)  \
582 {                                                                     \
583 	mod->field = kstrdup(s, GFP_KERNEL);                          \
584 }                                                                     \
585 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
586 			struct module_kobject *mk, char *buffer)      \
587 {                                                                     \
588 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
589 }                                                                     \
590 static int modinfo_##field##_exists(struct module *mod)               \
591 {                                                                     \
592 	return mod->field != NULL;                                    \
593 }                                                                     \
594 static void free_modinfo_##field(struct module *mod)                  \
595 {                                                                     \
596 	kfree(mod->field);                                            \
597 	mod->field = NULL;                                            \
598 }                                                                     \
599 static const struct module_attribute modinfo_##field = {              \
600 	.attr = { .name = __stringify(field), .mode = 0444 },         \
601 	.show = show_modinfo_##field,                                 \
602 	.setup = setup_modinfo_##field,                               \
603 	.test = modinfo_##field##_exists,                             \
604 	.free = free_modinfo_##field,                                 \
605 };
606 
607 MODINFO_ATTR(version);
608 MODINFO_ATTR(srcversion);
609 
610 static struct {
611 	char name[MODULE_NAME_LEN];
612 	char taints[MODULE_FLAGS_BUF_SIZE];
613 } last_unloaded_module;
614 
615 #ifdef CONFIG_MODULE_UNLOAD
616 
617 EXPORT_TRACEPOINT_SYMBOL(module_get);
618 
619 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
620 #define MODULE_REF_BASE	1
621 
622 /* Init the unload section of the module. */
623 static int module_unload_init(struct module *mod)
624 {
625 	/*
626 	 * Initialize reference counter to MODULE_REF_BASE.
627 	 * refcnt == 0 means module is going.
628 	 */
629 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
630 
631 	INIT_LIST_HEAD(&mod->source_list);
632 	INIT_LIST_HEAD(&mod->target_list);
633 
634 	/* Hold reference count during initialization. */
635 	atomic_inc(&mod->refcnt);
636 
637 	return 0;
638 }
639 
640 /* Does a already use b? */
641 static int already_uses(struct module *a, struct module *b)
642 {
643 	struct module_use *use;
644 
645 	list_for_each_entry(use, &b->source_list, source_list) {
646 		if (use->source == a)
647 			return 1;
648 	}
649 	pr_debug("%s does not use %s!\n", a->name, b->name);
650 	return 0;
651 }
652 
653 /*
654  * Module a uses b
655  *  - we add 'a' as a "source", 'b' as a "target" of module use
656  *  - the module_use is added to the list of 'b' sources (so
657  *    'b' can walk the list to see who sourced them), and of 'a'
658  *    targets (so 'a' can see what modules it targets).
659  */
660 static int add_module_usage(struct module *a, struct module *b)
661 {
662 	struct module_use *use;
663 
664 	pr_debug("Allocating new usage for %s.\n", a->name);
665 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
666 	if (!use)
667 		return -ENOMEM;
668 
669 	use->source = a;
670 	use->target = b;
671 	list_add(&use->source_list, &b->source_list);
672 	list_add(&use->target_list, &a->target_list);
673 	return 0;
674 }
675 
676 /* Module a uses b: caller needs module_mutex() */
677 static int ref_module(struct module *a, struct module *b)
678 {
679 	int err;
680 
681 	if (b == NULL || already_uses(a, b))
682 		return 0;
683 
684 	/* If module isn't available, we fail. */
685 	err = strong_try_module_get(b);
686 	if (err)
687 		return err;
688 
689 	err = add_module_usage(a, b);
690 	if (err) {
691 		module_put(b);
692 		return err;
693 	}
694 	return 0;
695 }
696 
697 /* Clear the unload stuff of the module. */
698 static void module_unload_free(struct module *mod)
699 {
700 	struct module_use *use, *tmp;
701 
702 	mutex_lock(&module_mutex);
703 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
704 		struct module *i = use->target;
705 		pr_debug("%s unusing %s\n", mod->name, i->name);
706 		module_put(i);
707 		list_del(&use->source_list);
708 		list_del(&use->target_list);
709 		kfree(use);
710 	}
711 	mutex_unlock(&module_mutex);
712 }
713 
714 #ifdef CONFIG_MODULE_FORCE_UNLOAD
715 static inline int try_force_unload(unsigned int flags)
716 {
717 	int ret = (flags & O_TRUNC);
718 	if (ret)
719 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
720 	return ret;
721 }
722 #else
723 static inline int try_force_unload(unsigned int flags)
724 {
725 	return 0;
726 }
727 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
728 
729 /* Try to release refcount of module, 0 means success. */
730 static int try_release_module_ref(struct module *mod)
731 {
732 	int ret;
733 
734 	/* Try to decrement refcnt which we set at loading */
735 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
736 	BUG_ON(ret < 0);
737 	if (ret)
738 		/* Someone can put this right now, recover with checking */
739 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
740 
741 	return ret;
742 }
743 
744 static int try_stop_module(struct module *mod, int flags, int *forced)
745 {
746 	/* If it's not unused, quit unless we're forcing. */
747 	if (try_release_module_ref(mod) != 0) {
748 		*forced = try_force_unload(flags);
749 		if (!(*forced))
750 			return -EWOULDBLOCK;
751 	}
752 
753 	/* Mark it as dying. */
754 	mod->state = MODULE_STATE_GOING;
755 
756 	return 0;
757 }
758 
759 /**
760  * module_refcount() - return the refcount or -1 if unloading
761  * @mod:	the module we're checking
762  *
763  * Return:
764  *	-1 if the module is in the process of unloading
765  *	otherwise the number of references in the kernel to the module
766  */
767 int module_refcount(struct module *mod)
768 {
769 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
770 }
771 EXPORT_SYMBOL(module_refcount);
772 
773 /* This exists whether we can unload or not */
774 static void free_module(struct module *mod);
775 
776 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
777 		unsigned int, flags)
778 {
779 	struct module *mod;
780 	char name[MODULE_NAME_LEN];
781 	char buf[MODULE_FLAGS_BUF_SIZE];
782 	int ret, len, forced = 0;
783 
784 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
785 		return -EPERM;
786 
787 	len = strncpy_from_user(name, name_user, MODULE_NAME_LEN);
788 	if (len == 0 || len == MODULE_NAME_LEN)
789 		return -ENOENT;
790 	if (len < 0)
791 		return len;
792 
793 	audit_log_kern_module(name);
794 
795 	if (mutex_lock_interruptible(&module_mutex) != 0)
796 		return -EINTR;
797 
798 	mod = find_module(name);
799 	if (!mod) {
800 		ret = -ENOENT;
801 		goto out;
802 	}
803 
804 	if (!list_empty(&mod->source_list)) {
805 		/* Other modules depend on us: get rid of them first. */
806 		ret = -EWOULDBLOCK;
807 		goto out;
808 	}
809 
810 	/* Doing init or already dying? */
811 	if (mod->state != MODULE_STATE_LIVE) {
812 		/* FIXME: if (force), slam module count damn the torpedoes */
813 		pr_debug("%s already dying\n", mod->name);
814 		ret = -EBUSY;
815 		goto out;
816 	}
817 
818 	/* If it has an init func, it must have an exit func to unload */
819 	if (mod->init && !mod->exit) {
820 		forced = try_force_unload(flags);
821 		if (!forced) {
822 			/* This module can't be removed */
823 			ret = -EBUSY;
824 			goto out;
825 		}
826 	}
827 
828 	ret = try_stop_module(mod, flags, &forced);
829 	if (ret != 0)
830 		goto out;
831 
832 	mutex_unlock(&module_mutex);
833 	/* Final destruction now no one is using it. */
834 	if (mod->exit != NULL)
835 		mod->exit();
836 	blocking_notifier_call_chain(&module_notify_list,
837 				     MODULE_STATE_GOING, mod);
838 	klp_module_going(mod);
839 	ftrace_release_mod(mod);
840 
841 	async_synchronize_full();
842 
843 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
844 	strscpy(last_unloaded_module.name, mod->name);
845 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
846 
847 	free_module(mod);
848 	/* someone could wait for the module in add_unformed_module() */
849 	wake_up_all(&module_wq);
850 	return 0;
851 out:
852 	mutex_unlock(&module_mutex);
853 	return ret;
854 }
855 
856 void __symbol_put(const char *symbol)
857 {
858 	struct find_symbol_arg fsa = {
859 		.name	= symbol,
860 		.gplok	= true,
861 	};
862 
863 	guard(rcu)();
864 	BUG_ON(!find_symbol(&fsa));
865 	module_put(fsa.owner);
866 }
867 EXPORT_SYMBOL(__symbol_put);
868 
869 /* Note this assumes addr is a function, which it currently always is. */
870 void symbol_put_addr(void *addr)
871 {
872 	struct module *modaddr;
873 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
874 
875 	if (core_kernel_text(a))
876 		return;
877 
878 	/*
879 	 * Even though we hold a reference on the module; we still need to
880 	 * RCU read section in order to safely traverse the data structure.
881 	 */
882 	guard(rcu)();
883 	modaddr = __module_text_address(a);
884 	BUG_ON(!modaddr);
885 	module_put(modaddr);
886 }
887 EXPORT_SYMBOL_GPL(symbol_put_addr);
888 
889 static ssize_t show_refcnt(const struct module_attribute *mattr,
890 			   struct module_kobject *mk, char *buffer)
891 {
892 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
893 }
894 
895 static const struct module_attribute modinfo_refcnt =
896 	__ATTR(refcnt, 0444, show_refcnt, NULL);
897 
898 void __module_get(struct module *module)
899 {
900 	if (module) {
901 		atomic_inc(&module->refcnt);
902 		trace_module_get(module, _RET_IP_);
903 	}
904 }
905 EXPORT_SYMBOL(__module_get);
906 
907 bool try_module_get(struct module *module)
908 {
909 	bool ret = true;
910 
911 	if (module) {
912 		/* Note: here, we can fail to get a reference */
913 		if (likely(module_is_live(module) &&
914 			   atomic_inc_not_zero(&module->refcnt) != 0))
915 			trace_module_get(module, _RET_IP_);
916 		else
917 			ret = false;
918 	}
919 	return ret;
920 }
921 EXPORT_SYMBOL(try_module_get);
922 
923 void module_put(struct module *module)
924 {
925 	int ret;
926 
927 	if (module) {
928 		ret = atomic_dec_if_positive(&module->refcnt);
929 		WARN_ON(ret < 0);	/* Failed to put refcount */
930 		trace_module_put(module, _RET_IP_);
931 	}
932 }
933 EXPORT_SYMBOL(module_put);
934 
935 #else /* !CONFIG_MODULE_UNLOAD */
936 static inline void module_unload_free(struct module *mod)
937 {
938 }
939 
940 static int ref_module(struct module *a, struct module *b)
941 {
942 	return strong_try_module_get(b);
943 }
944 
945 static inline int module_unload_init(struct module *mod)
946 {
947 	return 0;
948 }
949 #endif /* CONFIG_MODULE_UNLOAD */
950 
951 size_t module_flags_taint(unsigned long taints, char *buf)
952 {
953 	size_t l = 0;
954 	int i;
955 
956 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
957 		if (taint_flags[i].module && test_bit(i, &taints))
958 			buf[l++] = taint_flags[i].c_true;
959 	}
960 
961 	return l;
962 }
963 
964 static ssize_t show_initstate(const struct module_attribute *mattr,
965 			      struct module_kobject *mk, char *buffer)
966 {
967 	const char *state = "unknown";
968 
969 	switch (mk->mod->state) {
970 	case MODULE_STATE_LIVE:
971 		state = "live";
972 		break;
973 	case MODULE_STATE_COMING:
974 		state = "coming";
975 		break;
976 	case MODULE_STATE_GOING:
977 		state = "going";
978 		break;
979 	default:
980 		BUG();
981 	}
982 	return sprintf(buffer, "%s\n", state);
983 }
984 
985 static const struct module_attribute modinfo_initstate =
986 	__ATTR(initstate, 0444, show_initstate, NULL);
987 
988 static ssize_t store_uevent(const struct module_attribute *mattr,
989 			    struct module_kobject *mk,
990 			    const char *buffer, size_t count)
991 {
992 	int rc;
993 
994 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
995 	return rc ? rc : count;
996 }
997 
998 const struct module_attribute module_uevent =
999 	__ATTR(uevent, 0200, NULL, store_uevent);
1000 
1001 static ssize_t show_coresize(const struct module_attribute *mattr,
1002 			     struct module_kobject *mk, char *buffer)
1003 {
1004 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
1005 
1006 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
1007 		for_class_mod_mem_type(type, core_data)
1008 			size += mk->mod->mem[type].size;
1009 	}
1010 	return sprintf(buffer, "%u\n", size);
1011 }
1012 
1013 static const struct module_attribute modinfo_coresize =
1014 	__ATTR(coresize, 0444, show_coresize, NULL);
1015 
1016 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1017 static ssize_t show_datasize(const struct module_attribute *mattr,
1018 			     struct module_kobject *mk, char *buffer)
1019 {
1020 	unsigned int size = 0;
1021 
1022 	for_class_mod_mem_type(type, core_data)
1023 		size += mk->mod->mem[type].size;
1024 	return sprintf(buffer, "%u\n", size);
1025 }
1026 
1027 static const struct module_attribute modinfo_datasize =
1028 	__ATTR(datasize, 0444, show_datasize, NULL);
1029 #endif
1030 
1031 static ssize_t show_initsize(const struct module_attribute *mattr,
1032 			     struct module_kobject *mk, char *buffer)
1033 {
1034 	unsigned int size = 0;
1035 
1036 	for_class_mod_mem_type(type, init)
1037 		size += mk->mod->mem[type].size;
1038 	return sprintf(buffer, "%u\n", size);
1039 }
1040 
1041 static const struct module_attribute modinfo_initsize =
1042 	__ATTR(initsize, 0444, show_initsize, NULL);
1043 
1044 static ssize_t show_taint(const struct module_attribute *mattr,
1045 			  struct module_kobject *mk, char *buffer)
1046 {
1047 	size_t l;
1048 
1049 	l = module_flags_taint(mk->mod->taints, buffer);
1050 	buffer[l++] = '\n';
1051 	return l;
1052 }
1053 
1054 static const struct module_attribute modinfo_taint =
1055 	__ATTR(taint, 0444, show_taint, NULL);
1056 
1057 const struct module_attribute *const modinfo_attrs[] = {
1058 	&module_uevent,
1059 	&modinfo_version,
1060 	&modinfo_srcversion,
1061 	&modinfo_initstate,
1062 	&modinfo_coresize,
1063 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1064 	&modinfo_datasize,
1065 #endif
1066 	&modinfo_initsize,
1067 	&modinfo_taint,
1068 #ifdef CONFIG_MODULE_UNLOAD
1069 	&modinfo_refcnt,
1070 #endif
1071 	NULL,
1072 };
1073 
1074 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1075 
1076 static const char vermagic[] = VERMAGIC_STRING;
1077 
1078 int try_to_force_load(struct module *mod, const char *reason)
1079 {
1080 #ifdef CONFIG_MODULE_FORCE_LOAD
1081 	if (!test_taint(TAINT_FORCED_MODULE))
1082 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1083 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1084 	return 0;
1085 #else
1086 	return -ENOEXEC;
1087 #endif
1088 }
1089 
1090 /* Parse tag=value strings from .modinfo section */
1091 char *module_next_tag_pair(char *string, unsigned long *secsize)
1092 {
1093 	/* Skip non-zero chars */
1094 	while (string[0]) {
1095 		string++;
1096 		if ((*secsize)-- <= 1)
1097 			return NULL;
1098 	}
1099 
1100 	/* Skip any zero padding. */
1101 	while (!string[0]) {
1102 		string++;
1103 		if ((*secsize)-- <= 1)
1104 			return NULL;
1105 	}
1106 	return string;
1107 }
1108 
1109 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1110 			      char *prev)
1111 {
1112 	char *p;
1113 	unsigned int taglen = strlen(tag);
1114 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1115 	unsigned long size = infosec->sh_size;
1116 
1117 	/*
1118 	 * get_modinfo() calls made before rewrite_section_headers()
1119 	 * must use sh_offset, as sh_addr isn't set!
1120 	 */
1121 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1122 
1123 	if (prev) {
1124 		size -= prev - modinfo;
1125 		modinfo = module_next_tag_pair(prev, &size);
1126 	}
1127 
1128 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1129 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1130 			return p + taglen + 1;
1131 	}
1132 	return NULL;
1133 }
1134 
1135 static char *get_modinfo(const struct load_info *info, const char *tag)
1136 {
1137 	return get_next_modinfo(info, tag, NULL);
1138 }
1139 
1140 /**
1141  * verify_module_namespace() - does @modname have access to this symbol's @namespace
1142  * @namespace: export symbol namespace
1143  * @modname: module name
1144  *
1145  * If @namespace is prefixed with "module:" to indicate it is a module namespace
1146  * then test if @modname matches any of the comma separated patterns.
1147  *
1148  * The patterns only support tail-glob.
1149  */
1150 static bool verify_module_namespace(const char *namespace, const char *modname)
1151 {
1152 	size_t len, modlen = strlen(modname);
1153 	const char *prefix = "module:";
1154 	const char *sep;
1155 	bool glob;
1156 
1157 	if (!strstarts(namespace, prefix))
1158 		return false;
1159 
1160 	for (namespace += strlen(prefix); *namespace; namespace = sep) {
1161 		sep = strchrnul(namespace, ',');
1162 		len = sep - namespace;
1163 
1164 		glob = false;
1165 		if (sep[-1] == '*') {
1166 			len--;
1167 			glob = true;
1168 		}
1169 
1170 		if (*sep)
1171 			sep++;
1172 
1173 		if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1174 			return true;
1175 	}
1176 
1177 	return false;
1178 }
1179 
1180 static int verify_namespace_is_imported(const struct load_info *info,
1181 					const struct kernel_symbol *sym,
1182 					struct module *mod)
1183 {
1184 	const char *namespace;
1185 	char *imported_namespace;
1186 
1187 	namespace = kernel_symbol_namespace(sym);
1188 	if (namespace && namespace[0]) {
1189 
1190 		if (verify_module_namespace(namespace, mod->name))
1191 			return 0;
1192 
1193 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1194 			if (strcmp(namespace, imported_namespace) == 0)
1195 				return 0;
1196 		}
1197 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1198 		pr_warn(
1199 #else
1200 		pr_err(
1201 #endif
1202 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1203 			mod->name, kernel_symbol_name(sym), namespace);
1204 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1205 		return -EINVAL;
1206 #endif
1207 	}
1208 	return 0;
1209 }
1210 
1211 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1212 {
1213 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1214 		return true;
1215 
1216 	if (mod->using_gplonly_symbols) {
1217 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1218 			mod->name, name, owner->name);
1219 		return false;
1220 	}
1221 
1222 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1223 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1224 			mod->name, name, owner->name);
1225 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1226 	}
1227 	return true;
1228 }
1229 
1230 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1231 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1232 						  const struct load_info *info,
1233 						  const char *name,
1234 						  char ownername[])
1235 {
1236 	struct find_symbol_arg fsa = {
1237 		.name	= name,
1238 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1239 		.warn	= true,
1240 	};
1241 	int err;
1242 
1243 	/*
1244 	 * The module_mutex should not be a heavily contended lock;
1245 	 * if we get the occasional sleep here, we'll go an extra iteration
1246 	 * in the wait_event_interruptible(), which is harmless.
1247 	 */
1248 	sched_annotate_sleep();
1249 	mutex_lock(&module_mutex);
1250 	if (!find_symbol(&fsa))
1251 		goto unlock;
1252 
1253 	if (fsa.license == GPL_ONLY)
1254 		mod->using_gplonly_symbols = true;
1255 
1256 	if (!inherit_taint(mod, fsa.owner, name)) {
1257 		fsa.sym = NULL;
1258 		goto getname;
1259 	}
1260 
1261 	if (!check_version(info, name, mod, fsa.crc)) {
1262 		fsa.sym = ERR_PTR(-EINVAL);
1263 		goto getname;
1264 	}
1265 
1266 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1267 	if (err) {
1268 		fsa.sym = ERR_PTR(err);
1269 		goto getname;
1270 	}
1271 
1272 	err = ref_module(mod, fsa.owner);
1273 	if (err) {
1274 		fsa.sym = ERR_PTR(err);
1275 		goto getname;
1276 	}
1277 
1278 getname:
1279 	/* We must make copy under the lock if we failed to get ref. */
1280 	strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1281 unlock:
1282 	mutex_unlock(&module_mutex);
1283 	return fsa.sym;
1284 }
1285 
1286 static const struct kernel_symbol *
1287 resolve_symbol_wait(struct module *mod,
1288 		    const struct load_info *info,
1289 		    const char *name)
1290 {
1291 	const struct kernel_symbol *ksym;
1292 	char owner[MODULE_NAME_LEN];
1293 
1294 	if (wait_event_interruptible_timeout(module_wq,
1295 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1296 			|| PTR_ERR(ksym) != -EBUSY,
1297 					     30 * HZ) <= 0) {
1298 		pr_warn("%s: gave up waiting for init of module %s.\n",
1299 			mod->name, owner);
1300 	}
1301 	return ksym;
1302 }
1303 
1304 void __weak module_arch_cleanup(struct module *mod)
1305 {
1306 }
1307 
1308 void __weak module_arch_freeing_init(struct module *mod)
1309 {
1310 }
1311 
1312 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1313 {
1314 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1315 	enum execmem_type execmem_type;
1316 	void *ptr;
1317 
1318 	mod->mem[type].size = size;
1319 
1320 	if (mod_mem_type_is_data(type))
1321 		execmem_type = EXECMEM_MODULE_DATA;
1322 	else
1323 		execmem_type = EXECMEM_MODULE_TEXT;
1324 
1325 	ptr = execmem_alloc_rw(execmem_type, size);
1326 	if (!ptr)
1327 		return -ENOMEM;
1328 
1329 	mod->mem[type].is_rox = execmem_is_rox(execmem_type);
1330 
1331 	/*
1332 	 * The pointer to these blocks of memory are stored on the module
1333 	 * structure and we keep that around so long as the module is
1334 	 * around. We only free that memory when we unload the module.
1335 	 * Just mark them as not being a leak then. The .init* ELF
1336 	 * sections *do* get freed after boot so we *could* treat them
1337 	 * slightly differently with kmemleak_ignore() and only grey
1338 	 * them out as they work as typical memory allocations which
1339 	 * *do* eventually get freed, but let's just keep things simple
1340 	 * and avoid *any* false positives.
1341 	 */
1342 	if (!mod->mem[type].is_rox)
1343 		kmemleak_not_leak(ptr);
1344 
1345 	memset(ptr, 0, size);
1346 	mod->mem[type].base = ptr;
1347 
1348 	return 0;
1349 }
1350 
1351 static void module_memory_restore_rox(struct module *mod)
1352 {
1353 	for_class_mod_mem_type(type, text) {
1354 		struct module_memory *mem = &mod->mem[type];
1355 
1356 		if (mem->is_rox)
1357 			execmem_restore_rox(mem->base, mem->size);
1358 	}
1359 }
1360 
1361 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1362 {
1363 	struct module_memory *mem = &mod->mem[type];
1364 
1365 	execmem_free(mem->base);
1366 }
1367 
1368 static void free_mod_mem(struct module *mod)
1369 {
1370 	for_each_mod_mem_type(type) {
1371 		struct module_memory *mod_mem = &mod->mem[type];
1372 
1373 		if (type == MOD_DATA)
1374 			continue;
1375 
1376 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1377 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1378 		if (mod_mem->size)
1379 			module_memory_free(mod, type);
1380 	}
1381 
1382 	/* MOD_DATA hosts mod, so free it at last */
1383 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1384 	module_memory_free(mod, MOD_DATA);
1385 }
1386 
1387 /* Free a module, remove from lists, etc. */
1388 static void free_module(struct module *mod)
1389 {
1390 	trace_module_free(mod);
1391 
1392 	codetag_unload_module(mod);
1393 
1394 	mod_sysfs_teardown(mod);
1395 
1396 	/*
1397 	 * We leave it in list to prevent duplicate loads, but make sure
1398 	 * that noone uses it while it's being deconstructed.
1399 	 */
1400 	mutex_lock(&module_mutex);
1401 	mod->state = MODULE_STATE_UNFORMED;
1402 	mutex_unlock(&module_mutex);
1403 
1404 	/* Arch-specific cleanup. */
1405 	module_arch_cleanup(mod);
1406 
1407 	/* Module unload stuff */
1408 	module_unload_free(mod);
1409 
1410 	/* Free any allocated parameters. */
1411 	destroy_params(mod->kp, mod->num_kp);
1412 
1413 	if (is_livepatch_module(mod))
1414 		free_module_elf(mod);
1415 
1416 	/* Now we can delete it from the lists */
1417 	mutex_lock(&module_mutex);
1418 	/* Unlink carefully: kallsyms could be walking list. */
1419 	list_del_rcu(&mod->list);
1420 	mod_tree_remove(mod);
1421 	/* Remove this module from bug list, this uses list_del_rcu */
1422 	module_bug_cleanup(mod);
1423 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1424 	synchronize_rcu();
1425 	if (try_add_tainted_module(mod))
1426 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1427 		       mod->name);
1428 	mutex_unlock(&module_mutex);
1429 
1430 	/* This may be empty, but that's OK */
1431 	module_arch_freeing_init(mod);
1432 	kfree(mod->args);
1433 	percpu_modfree(mod);
1434 
1435 	free_mod_mem(mod);
1436 }
1437 
1438 void *__symbol_get(const char *symbol)
1439 {
1440 	struct find_symbol_arg fsa = {
1441 		.name	= symbol,
1442 		.gplok	= true,
1443 		.warn	= true,
1444 	};
1445 
1446 	scoped_guard(rcu) {
1447 		if (!find_symbol(&fsa))
1448 			return NULL;
1449 		if (fsa.license != GPL_ONLY) {
1450 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1451 				symbol);
1452 			return NULL;
1453 		}
1454 		if (strong_try_module_get(fsa.owner))
1455 			return NULL;
1456 	}
1457 	return (void *)kernel_symbol_value(fsa.sym);
1458 }
1459 EXPORT_SYMBOL_GPL(__symbol_get);
1460 
1461 /*
1462  * Ensure that an exported symbol [global namespace] does not already exist
1463  * in the kernel or in some other module's exported symbol table.
1464  *
1465  * You must hold the module_mutex.
1466  */
1467 static int verify_exported_symbols(struct module *mod)
1468 {
1469 	unsigned int i;
1470 	const struct kernel_symbol *s;
1471 	struct {
1472 		const struct kernel_symbol *sym;
1473 		unsigned int num;
1474 	} arr[] = {
1475 		{ mod->syms, mod->num_syms },
1476 		{ mod->gpl_syms, mod->num_gpl_syms },
1477 	};
1478 
1479 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1480 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1481 			struct find_symbol_arg fsa = {
1482 				.name	= kernel_symbol_name(s),
1483 				.gplok	= true,
1484 			};
1485 			if (find_symbol(&fsa)) {
1486 				pr_err("%s: exports duplicate symbol %s"
1487 				       " (owned by %s)\n",
1488 				       mod->name, kernel_symbol_name(s),
1489 				       module_name(fsa.owner));
1490 				return -ENOEXEC;
1491 			}
1492 		}
1493 	}
1494 	return 0;
1495 }
1496 
1497 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1498 {
1499 	/*
1500 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1501 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1502 	 * i386 has a similar problem but may not deserve a fix.
1503 	 *
1504 	 * If we ever have to ignore many symbols, consider refactoring the code to
1505 	 * only warn if referenced by a relocation.
1506 	 */
1507 	if (emachine == EM_386 || emachine == EM_X86_64)
1508 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1509 	return false;
1510 }
1511 
1512 /* Change all symbols so that st_value encodes the pointer directly. */
1513 static int simplify_symbols(struct module *mod, const struct load_info *info)
1514 {
1515 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1516 	Elf_Sym *sym = (void *)symsec->sh_addr;
1517 	unsigned long secbase;
1518 	unsigned int i;
1519 	int ret = 0;
1520 	const struct kernel_symbol *ksym;
1521 
1522 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1523 		const char *name = info->strtab + sym[i].st_name;
1524 
1525 		switch (sym[i].st_shndx) {
1526 		case SHN_COMMON:
1527 			/* Ignore common symbols */
1528 			if (!strncmp(name, "__gnu_lto", 9))
1529 				break;
1530 
1531 			/*
1532 			 * We compiled with -fno-common.  These are not
1533 			 * supposed to happen.
1534 			 */
1535 			pr_debug("Common symbol: %s\n", name);
1536 			pr_warn("%s: please compile with -fno-common\n",
1537 			       mod->name);
1538 			ret = -ENOEXEC;
1539 			break;
1540 
1541 		case SHN_ABS:
1542 			/* Don't need to do anything */
1543 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1544 				 (long)sym[i].st_value, name);
1545 			break;
1546 
1547 		case SHN_LIVEPATCH:
1548 			/* Livepatch symbols are resolved by livepatch */
1549 			break;
1550 
1551 		case SHN_UNDEF:
1552 			ksym = resolve_symbol_wait(mod, info, name);
1553 			/* Ok if resolved.  */
1554 			if (ksym && !IS_ERR(ksym)) {
1555 				sym[i].st_value = kernel_symbol_value(ksym);
1556 				break;
1557 			}
1558 
1559 			/* Ok if weak or ignored.  */
1560 			if (!ksym &&
1561 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1562 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1563 				break;
1564 
1565 			ret = PTR_ERR(ksym) ?: -ENOENT;
1566 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1567 				mod->name, name, ret);
1568 			break;
1569 
1570 		default:
1571 			/* Divert to percpu allocation if a percpu var. */
1572 			if (sym[i].st_shndx == info->index.pcpu)
1573 				secbase = (unsigned long)mod_percpu(mod);
1574 			else
1575 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1576 			sym[i].st_value += secbase;
1577 			break;
1578 		}
1579 	}
1580 
1581 	return ret;
1582 }
1583 
1584 static int apply_relocations(struct module *mod, const struct load_info *info)
1585 {
1586 	unsigned int i;
1587 	int err = 0;
1588 
1589 	/* Now do relocations. */
1590 	for (i = 1; i < info->hdr->e_shnum; i++) {
1591 		unsigned int infosec = info->sechdrs[i].sh_info;
1592 
1593 		/* Not a valid relocation section? */
1594 		if (infosec >= info->hdr->e_shnum)
1595 			continue;
1596 
1597 		/*
1598 		 * Don't bother with non-allocated sections.
1599 		 * An exception is the percpu section, which has separate allocations
1600 		 * for individual CPUs. We relocate the percpu section in the initial
1601 		 * ELF template and subsequently copy it to the per-CPU destinations.
1602 		 */
1603 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1604 		    (!infosec || infosec != info->index.pcpu))
1605 			continue;
1606 
1607 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1608 			err = klp_apply_section_relocs(mod, info->sechdrs,
1609 						       info->secstrings,
1610 						       info->strtab,
1611 						       info->index.sym, i,
1612 						       NULL);
1613 		else if (info->sechdrs[i].sh_type == SHT_REL)
1614 			err = apply_relocate(info->sechdrs, info->strtab,
1615 					     info->index.sym, i, mod);
1616 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1617 			err = apply_relocate_add(info->sechdrs, info->strtab,
1618 						 info->index.sym, i, mod);
1619 		if (err < 0)
1620 			break;
1621 	}
1622 	return err;
1623 }
1624 
1625 /* Additional bytes needed by arch in front of individual sections */
1626 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1627 					     unsigned int section)
1628 {
1629 	/* default implementation just returns zero */
1630 	return 0;
1631 }
1632 
1633 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1634 				Elf_Shdr *sechdr, unsigned int section)
1635 {
1636 	long offset;
1637 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1638 
1639 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1640 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1641 	mod->mem[type].size = offset + sechdr->sh_size;
1642 
1643 	WARN_ON_ONCE(offset & mask);
1644 	return offset | mask;
1645 }
1646 
1647 bool module_init_layout_section(const char *sname)
1648 {
1649 #ifndef CONFIG_MODULE_UNLOAD
1650 	if (module_exit_section(sname))
1651 		return true;
1652 #endif
1653 	return module_init_section(sname);
1654 }
1655 
1656 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1657 {
1658 	unsigned int m, i;
1659 
1660 	/*
1661 	 * { Mask of required section header flags,
1662 	 *   Mask of excluded section header flags }
1663 	 */
1664 	static const unsigned long masks[][2] = {
1665 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1666 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1667 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1668 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1669 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1670 	};
1671 	static const int core_m_to_mem_type[] = {
1672 		MOD_TEXT,
1673 		MOD_RODATA,
1674 		MOD_RO_AFTER_INIT,
1675 		MOD_DATA,
1676 		MOD_DATA,
1677 	};
1678 	static const int init_m_to_mem_type[] = {
1679 		MOD_INIT_TEXT,
1680 		MOD_INIT_RODATA,
1681 		MOD_INVALID,
1682 		MOD_INIT_DATA,
1683 		MOD_INIT_DATA,
1684 	};
1685 
1686 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1687 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1688 
1689 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1690 			Elf_Shdr *s = &info->sechdrs[i];
1691 			const char *sname = info->secstrings + s->sh_name;
1692 
1693 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1694 			    || (s->sh_flags & masks[m][1])
1695 			    || s->sh_entsize != ~0UL
1696 			    || is_init != module_init_layout_section(sname))
1697 				continue;
1698 
1699 			if (WARN_ON_ONCE(type == MOD_INVALID))
1700 				continue;
1701 
1702 			/*
1703 			 * Do not allocate codetag memory as we load it into
1704 			 * preallocated contiguous memory.
1705 			 */
1706 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1707 				/*
1708 				 * s->sh_entsize won't be used but populate the
1709 				 * type field to avoid confusion.
1710 				 */
1711 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1712 						<< SH_ENTSIZE_TYPE_SHIFT;
1713 				continue;
1714 			}
1715 
1716 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1717 			pr_debug("\t%s\n", sname);
1718 		}
1719 	}
1720 }
1721 
1722 /*
1723  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1724  * might -- code, read-only data, read-write data, small data.  Tally
1725  * sizes, and place the offsets into sh_entsize fields: high bit means it
1726  * belongs in init.
1727  */
1728 static void layout_sections(struct module *mod, struct load_info *info)
1729 {
1730 	unsigned int i;
1731 
1732 	for (i = 0; i < info->hdr->e_shnum; i++)
1733 		info->sechdrs[i].sh_entsize = ~0UL;
1734 
1735 	pr_debug("Core section allocation order for %s:\n", mod->name);
1736 	__layout_sections(mod, info, false);
1737 
1738 	pr_debug("Init section allocation order for %s:\n", mod->name);
1739 	__layout_sections(mod, info, true);
1740 }
1741 
1742 static void module_license_taint_check(struct module *mod, const char *license)
1743 {
1744 	if (!license)
1745 		license = "unspecified";
1746 
1747 	if (!license_is_gpl_compatible(license)) {
1748 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1749 			pr_warn("%s: module license '%s' taints kernel.\n",
1750 				mod->name, license);
1751 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1752 				 LOCKDEP_NOW_UNRELIABLE);
1753 	}
1754 }
1755 
1756 static int setup_modinfo(struct module *mod, struct load_info *info)
1757 {
1758 	const struct module_attribute *attr;
1759 	char *imported_namespace;
1760 	int i;
1761 
1762 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1763 		if (attr->setup)
1764 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1765 	}
1766 
1767 	for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1768 		/*
1769 		 * 'module:' prefixed namespaces are implicit, disallow
1770 		 * explicit imports.
1771 		 */
1772 		if (strstarts(imported_namespace, "module:")) {
1773 			pr_err("%s: module tries to import module namespace: %s\n",
1774 			       mod->name, imported_namespace);
1775 			return -EPERM;
1776 		}
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static void free_modinfo(struct module *mod)
1783 {
1784 	const struct module_attribute *attr;
1785 	int i;
1786 
1787 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1788 		if (attr->free)
1789 			attr->free(mod);
1790 	}
1791 }
1792 
1793 bool __weak module_init_section(const char *name)
1794 {
1795 	return strstarts(name, ".init");
1796 }
1797 
1798 bool __weak module_exit_section(const char *name)
1799 {
1800 	return strstarts(name, ".exit");
1801 }
1802 
1803 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1804 {
1805 #if defined(CONFIG_64BIT)
1806 	unsigned long long secend;
1807 #else
1808 	unsigned long secend;
1809 #endif
1810 
1811 	/*
1812 	 * Check for both overflow and offset/size being
1813 	 * too large.
1814 	 */
1815 	secend = shdr->sh_offset + shdr->sh_size;
1816 	if (secend < shdr->sh_offset || secend > info->len)
1817 		return -ENOEXEC;
1818 
1819 	return 0;
1820 }
1821 
1822 /**
1823  * elf_validity_ehdr() - Checks an ELF header for module validity
1824  * @info: Load info containing the ELF header to check
1825  *
1826  * Checks whether an ELF header could belong to a valid module. Checks:
1827  *
1828  * * ELF header is within the data the user provided
1829  * * ELF magic is present
1830  * * It is relocatable (not final linked, not core file, etc.)
1831  * * The header's machine type matches what the architecture expects.
1832  * * Optional arch-specific hook for other properties
1833  *   - module_elf_check_arch() is currently only used by PPC to check
1834  *   ELF ABI version, but may be used by others in the future.
1835  *
1836  * Return: %0 if valid, %-ENOEXEC on failure.
1837  */
1838 static int elf_validity_ehdr(const struct load_info *info)
1839 {
1840 	if (info->len < sizeof(*(info->hdr))) {
1841 		pr_err("Invalid ELF header len %lu\n", info->len);
1842 		return -ENOEXEC;
1843 	}
1844 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1845 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1846 		return -ENOEXEC;
1847 	}
1848 	if (info->hdr->e_type != ET_REL) {
1849 		pr_err("Invalid ELF header type: %u != %u\n",
1850 		       info->hdr->e_type, ET_REL);
1851 		return -ENOEXEC;
1852 	}
1853 	if (!elf_check_arch(info->hdr)) {
1854 		pr_err("Invalid architecture in ELF header: %u\n",
1855 		       info->hdr->e_machine);
1856 		return -ENOEXEC;
1857 	}
1858 	if (!module_elf_check_arch(info->hdr)) {
1859 		pr_err("Invalid module architecture in ELF header: %u\n",
1860 		       info->hdr->e_machine);
1861 		return -ENOEXEC;
1862 	}
1863 	return 0;
1864 }
1865 
1866 /**
1867  * elf_validity_cache_sechdrs() - Cache section headers if valid
1868  * @info: Load info to compute section headers from
1869  *
1870  * Checks:
1871  *
1872  * * ELF header is valid (see elf_validity_ehdr())
1873  * * Section headers are the size we expect
1874  * * Section array fits in the user provided data
1875  * * Section index 0 is NULL
1876  * * Section contents are inbounds
1877  *
1878  * Then updates @info with a &load_info->sechdrs pointer if valid.
1879  *
1880  * Return: %0 if valid, negative error code if validation failed.
1881  */
1882 static int elf_validity_cache_sechdrs(struct load_info *info)
1883 {
1884 	Elf_Shdr *sechdrs;
1885 	Elf_Shdr *shdr;
1886 	int i;
1887 	int err;
1888 
1889 	err = elf_validity_ehdr(info);
1890 	if (err < 0)
1891 		return err;
1892 
1893 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1894 		pr_err("Invalid ELF section header size\n");
1895 		return -ENOEXEC;
1896 	}
1897 
1898 	/*
1899 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1900 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1901 	 * will not overflow unsigned long on any platform.
1902 	 */
1903 	if (info->hdr->e_shoff >= info->len
1904 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1905 		info->len - info->hdr->e_shoff)) {
1906 		pr_err("Invalid ELF section header overflow\n");
1907 		return -ENOEXEC;
1908 	}
1909 
1910 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1911 
1912 	/*
1913 	 * The code assumes that section 0 has a length of zero and
1914 	 * an addr of zero, so check for it.
1915 	 */
1916 	if (sechdrs[0].sh_type != SHT_NULL
1917 	    || sechdrs[0].sh_size != 0
1918 	    || sechdrs[0].sh_addr != 0) {
1919 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1920 		       sechdrs[0].sh_type);
1921 		return -ENOEXEC;
1922 	}
1923 
1924 	/* Validate contents are inbounds */
1925 	for (i = 1; i < info->hdr->e_shnum; i++) {
1926 		shdr = &sechdrs[i];
1927 		switch (shdr->sh_type) {
1928 		case SHT_NULL:
1929 		case SHT_NOBITS:
1930 			/* No contents, offset/size don't mean anything */
1931 			continue;
1932 		default:
1933 			err = validate_section_offset(info, shdr);
1934 			if (err < 0) {
1935 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1936 				       i, shdr->sh_type);
1937 				return err;
1938 			}
1939 		}
1940 	}
1941 
1942 	info->sechdrs = sechdrs;
1943 
1944 	return 0;
1945 }
1946 
1947 /**
1948  * elf_validity_cache_secstrings() - Caches section names if valid
1949  * @info: Load info to cache section names from. Must have valid sechdrs.
1950  *
1951  * Specifically checks:
1952  *
1953  * * Section name table index is inbounds of section headers
1954  * * Section name table is not empty
1955  * * Section name table is NUL terminated
1956  * * All section name offsets are inbounds of the section
1957  *
1958  * Then updates @info with a &load_info->secstrings pointer if valid.
1959  *
1960  * Return: %0 if valid, negative error code if validation failed.
1961  */
1962 static int elf_validity_cache_secstrings(struct load_info *info)
1963 {
1964 	Elf_Shdr *strhdr, *shdr;
1965 	char *secstrings;
1966 	int i;
1967 
1968 	/*
1969 	 * Verify if the section name table index is valid.
1970 	 */
1971 	if (info->hdr->e_shstrndx == SHN_UNDEF
1972 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1973 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1974 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1975 		       info->hdr->e_shnum);
1976 		return -ENOEXEC;
1977 	}
1978 
1979 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1980 
1981 	/*
1982 	 * The section name table must be NUL-terminated, as required
1983 	 * by the spec. This makes strcmp and pr_* calls that access
1984 	 * strings in the section safe.
1985 	 */
1986 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1987 	if (strhdr->sh_size == 0) {
1988 		pr_err("empty section name table\n");
1989 		return -ENOEXEC;
1990 	}
1991 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1992 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1993 		return -ENOEXEC;
1994 	}
1995 
1996 	for (i = 0; i < info->hdr->e_shnum; i++) {
1997 		shdr = &info->sechdrs[i];
1998 		/* SHT_NULL means sh_name has an undefined value */
1999 		if (shdr->sh_type == SHT_NULL)
2000 			continue;
2001 		if (shdr->sh_name >= strhdr->sh_size) {
2002 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
2003 			       i, shdr->sh_type);
2004 			return -ENOEXEC;
2005 		}
2006 	}
2007 
2008 	info->secstrings = secstrings;
2009 	return 0;
2010 }
2011 
2012 /**
2013  * elf_validity_cache_index_info() - Validate and cache modinfo section
2014  * @info: Load info to populate the modinfo index on.
2015  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2016  *
2017  * Checks that if there is a .modinfo section, it is unique.
2018  * Then, it caches its index in &load_info->index.info.
2019  * Finally, it tries to populate the name to improve error messages.
2020  *
2021  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2022  */
2023 static int elf_validity_cache_index_info(struct load_info *info)
2024 {
2025 	int info_idx;
2026 
2027 	info_idx = find_any_unique_sec(info, ".modinfo");
2028 
2029 	if (info_idx == 0)
2030 		/* Early return, no .modinfo */
2031 		return 0;
2032 
2033 	if (info_idx < 0) {
2034 		pr_err("Only one .modinfo section must exist.\n");
2035 		return -ENOEXEC;
2036 	}
2037 
2038 	info->index.info = info_idx;
2039 	/* Try to find a name early so we can log errors with a module name */
2040 	info->name = get_modinfo(info, "name");
2041 
2042 	return 0;
2043 }
2044 
2045 /**
2046  * elf_validity_cache_index_mod() - Validates and caches this_module section
2047  * @info: Load info to cache this_module on.
2048  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2049  *
2050  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2051  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2052  * to &__this_module properly. The kernel's modpost declares it on each
2053  * modules's *.mod.c file. If the struct module of the kernel changes a full
2054  * kernel rebuild is required.
2055  *
2056  * We have a few expectations for this special section, this function
2057  * validates all this for us:
2058  *
2059  * * The section has contents
2060  * * The section is unique
2061  * * We expect the kernel to always have to allocate it: SHF_ALLOC
2062  * * The section size must match the kernel's run time's struct module
2063  *   size
2064  *
2065  * If all checks pass, the index will be cached in &load_info->index.mod
2066  *
2067  * Return: %0 on validation success, %-ENOEXEC on failure
2068  */
2069 static int elf_validity_cache_index_mod(struct load_info *info)
2070 {
2071 	Elf_Shdr *shdr;
2072 	int mod_idx;
2073 
2074 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2075 	if (mod_idx <= 0) {
2076 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2077 		       info->name ?: "(missing .modinfo section or name field)");
2078 		return -ENOEXEC;
2079 	}
2080 
2081 	shdr = &info->sechdrs[mod_idx];
2082 
2083 	if (shdr->sh_type == SHT_NOBITS) {
2084 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2085 		       info->name ?: "(missing .modinfo section or name field)");
2086 		return -ENOEXEC;
2087 	}
2088 
2089 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2090 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2091 		       info->name ?: "(missing .modinfo section or name field)");
2092 		return -ENOEXEC;
2093 	}
2094 
2095 	if (shdr->sh_size != sizeof(struct module)) {
2096 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2097 		       info->name ?: "(missing .modinfo section or name field)");
2098 		return -ENOEXEC;
2099 	}
2100 
2101 	info->index.mod = mod_idx;
2102 
2103 	return 0;
2104 }
2105 
2106 /**
2107  * elf_validity_cache_index_sym() - Validate and cache symtab index
2108  * @info: Load info to cache symtab index in.
2109  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2110  *
2111  * Checks that there is exactly one symbol table, then caches its index in
2112  * &load_info->index.sym.
2113  *
2114  * Return: %0 if valid, %-ENOEXEC on failure.
2115  */
2116 static int elf_validity_cache_index_sym(struct load_info *info)
2117 {
2118 	unsigned int sym_idx;
2119 	unsigned int num_sym_secs = 0;
2120 	int i;
2121 
2122 	for (i = 1; i < info->hdr->e_shnum; i++) {
2123 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2124 			num_sym_secs++;
2125 			sym_idx = i;
2126 		}
2127 	}
2128 
2129 	if (num_sym_secs != 1) {
2130 		pr_warn("%s: module has no symbols (stripped?)\n",
2131 			info->name ?: "(missing .modinfo section or name field)");
2132 		return -ENOEXEC;
2133 	}
2134 
2135 	info->index.sym = sym_idx;
2136 
2137 	return 0;
2138 }
2139 
2140 /**
2141  * elf_validity_cache_index_str() - Validate and cache strtab index
2142  * @info: Load info to cache strtab index in.
2143  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2144  *        Must have &load_info->index.sym populated.
2145  *
2146  * Looks at the symbol table's associated string table, makes sure it is
2147  * in-bounds, and caches it.
2148  *
2149  * Return: %0 if valid, %-ENOEXEC on failure.
2150  */
2151 static int elf_validity_cache_index_str(struct load_info *info)
2152 {
2153 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2154 
2155 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2156 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2157 		       str_idx, str_idx, info->hdr->e_shnum);
2158 		return -ENOEXEC;
2159 	}
2160 
2161 	info->index.str = str_idx;
2162 	return 0;
2163 }
2164 
2165 /**
2166  * elf_validity_cache_index_versions() - Validate and cache version indices
2167  * @info:  Load info to cache version indices in.
2168  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2169  * @flags: Load flags, relevant to suppress version loading, see
2170  *         uapi/linux/module.h
2171  *
2172  * If we're ignoring modversions based on @flags, zero all version indices
2173  * and return validity. Othewrise check:
2174  *
2175  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2176  * * There is a name present for every crc
2177  *
2178  * Then populate:
2179  *
2180  * * &load_info->index.vers
2181  * * &load_info->index.vers_ext_crc
2182  * * &load_info->index.vers_ext_names
2183  *
2184  * if present.
2185  *
2186  * Return: %0 if valid, %-ENOEXEC on failure.
2187  */
2188 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2189 {
2190 	unsigned int vers_ext_crc;
2191 	unsigned int vers_ext_name;
2192 	size_t crc_count;
2193 	size_t remaining_len;
2194 	size_t name_size;
2195 	char *name;
2196 
2197 	/* If modversions were suppressed, pretend we didn't find any */
2198 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2199 		info->index.vers = 0;
2200 		info->index.vers_ext_crc = 0;
2201 		info->index.vers_ext_name = 0;
2202 		return 0;
2203 	}
2204 
2205 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2206 	vers_ext_name = find_sec(info, "__version_ext_names");
2207 
2208 	/* If we have one field, we must have the other */
2209 	if (!!vers_ext_crc != !!vers_ext_name) {
2210 		pr_err("extended version crc+name presence does not match");
2211 		return -ENOEXEC;
2212 	}
2213 
2214 	/*
2215 	 * If we have extended version information, we should have the same
2216 	 * number of entries in every section.
2217 	 */
2218 	if (vers_ext_crc) {
2219 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2220 		name = (void *)info->hdr +
2221 			info->sechdrs[vers_ext_name].sh_offset;
2222 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2223 
2224 		while (crc_count--) {
2225 			name_size = strnlen(name, remaining_len) + 1;
2226 			if (name_size > remaining_len) {
2227 				pr_err("more extended version crcs than names");
2228 				return -ENOEXEC;
2229 			}
2230 			remaining_len -= name_size;
2231 			name += name_size;
2232 		}
2233 	}
2234 
2235 	info->index.vers = find_sec(info, "__versions");
2236 	info->index.vers_ext_crc = vers_ext_crc;
2237 	info->index.vers_ext_name = vers_ext_name;
2238 	return 0;
2239 }
2240 
2241 /**
2242  * elf_validity_cache_index() - Resolve, validate, cache section indices
2243  * @info:  Load info to read from and update.
2244  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2245  * @flags: Load flags, relevant to suppress version loading, see
2246  *         uapi/linux/module.h
2247  *
2248  * Populates &load_info->index, validating as it goes.
2249  * See child functions for per-field validation:
2250  *
2251  * * elf_validity_cache_index_info()
2252  * * elf_validity_cache_index_mod()
2253  * * elf_validity_cache_index_sym()
2254  * * elf_validity_cache_index_str()
2255  * * elf_validity_cache_index_versions()
2256  *
2257  * If CONFIG_SMP is enabled, load the percpu section by name with no
2258  * validation.
2259  *
2260  * Return: 0 on success, negative error code if an index failed validation.
2261  */
2262 static int elf_validity_cache_index(struct load_info *info, int flags)
2263 {
2264 	int err;
2265 
2266 	err = elf_validity_cache_index_info(info);
2267 	if (err < 0)
2268 		return err;
2269 	err = elf_validity_cache_index_mod(info);
2270 	if (err < 0)
2271 		return err;
2272 	err = elf_validity_cache_index_sym(info);
2273 	if (err < 0)
2274 		return err;
2275 	err = elf_validity_cache_index_str(info);
2276 	if (err < 0)
2277 		return err;
2278 	err = elf_validity_cache_index_versions(info, flags);
2279 	if (err < 0)
2280 		return err;
2281 
2282 	info->index.pcpu = find_pcpusec(info);
2283 
2284 	return 0;
2285 }
2286 
2287 /**
2288  * elf_validity_cache_strtab() - Validate and cache symbol string table
2289  * @info: Load info to read from and update.
2290  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2291  *        Must have &load_info->index populated.
2292  *
2293  * Checks:
2294  *
2295  * * The string table is not empty.
2296  * * The string table starts and ends with NUL (required by ELF spec).
2297  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2298  *   string table.
2299  *
2300  * And caches the pointer as &load_info->strtab in @info.
2301  *
2302  * Return: 0 on success, negative error code if a check failed.
2303  */
2304 static int elf_validity_cache_strtab(struct load_info *info)
2305 {
2306 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2307 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2308 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2309 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2310 	int i;
2311 
2312 	if (str_shdr->sh_size == 0) {
2313 		pr_err("empty symbol string table\n");
2314 		return -ENOEXEC;
2315 	}
2316 	if (strtab[0] != '\0') {
2317 		pr_err("symbol string table missing leading NUL\n");
2318 		return -ENOEXEC;
2319 	}
2320 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2321 		pr_err("symbol string table isn't NUL terminated\n");
2322 		return -ENOEXEC;
2323 	}
2324 
2325 	/*
2326 	 * Now that we know strtab is correctly structured, check symbol
2327 	 * starts are inbounds before they're used later.
2328 	 */
2329 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2330 		if (syms[i].st_name >= str_shdr->sh_size) {
2331 			pr_err("symbol name out of bounds in string table");
2332 			return -ENOEXEC;
2333 		}
2334 	}
2335 
2336 	info->strtab = strtab;
2337 	return 0;
2338 }
2339 
2340 /*
2341  * Check userspace passed ELF module against our expectations, and cache
2342  * useful variables for further processing as we go.
2343  *
2344  * This does basic validity checks against section offsets and sizes, the
2345  * section name string table, and the indices used for it (sh_name).
2346  *
2347  * As a last step, since we're already checking the ELF sections we cache
2348  * useful variables which will be used later for our convenience:
2349  *
2350  * 	o pointers to section headers
2351  * 	o cache the modinfo symbol section
2352  * 	o cache the string symbol section
2353  * 	o cache the module section
2354  *
2355  * As a last step we set info->mod to the temporary copy of the module in
2356  * info->hdr. The final one will be allocated in move_module(). Any
2357  * modifications we make to our copy of the module will be carried over
2358  * to the final minted module.
2359  */
2360 static int elf_validity_cache_copy(struct load_info *info, int flags)
2361 {
2362 	int err;
2363 
2364 	err = elf_validity_cache_sechdrs(info);
2365 	if (err < 0)
2366 		return err;
2367 	err = elf_validity_cache_secstrings(info);
2368 	if (err < 0)
2369 		return err;
2370 	err = elf_validity_cache_index(info, flags);
2371 	if (err < 0)
2372 		return err;
2373 	err = elf_validity_cache_strtab(info);
2374 	if (err < 0)
2375 		return err;
2376 
2377 	/* This is temporary: point mod into copy of data. */
2378 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2379 
2380 	/*
2381 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2382 	 * on-disk struct mod 'name' field.
2383 	 */
2384 	if (!info->name)
2385 		info->name = info->mod->name;
2386 
2387 	return 0;
2388 }
2389 
2390 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2391 
2392 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2393 {
2394 	do {
2395 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2396 
2397 		if (copy_from_user(dst, usrc, n) != 0)
2398 			return -EFAULT;
2399 		cond_resched();
2400 		dst += n;
2401 		usrc += n;
2402 		len -= n;
2403 	} while (len);
2404 	return 0;
2405 }
2406 
2407 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2408 {
2409 	if (!get_modinfo(info, "livepatch"))
2410 		/* Nothing more to do */
2411 		return 0;
2412 
2413 	if (set_livepatch_module(mod))
2414 		return 0;
2415 
2416 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2417 	       mod->name);
2418 	return -ENOEXEC;
2419 }
2420 
2421 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2422 {
2423 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2424 		return;
2425 
2426 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2427 		mod->name);
2428 }
2429 
2430 /* Sets info->hdr and info->len. */
2431 static int copy_module_from_user(const void __user *umod, unsigned long len,
2432 				  struct load_info *info)
2433 {
2434 	int err;
2435 
2436 	info->len = len;
2437 	if (info->len < sizeof(*(info->hdr)))
2438 		return -ENOEXEC;
2439 
2440 	err = security_kernel_load_data(LOADING_MODULE, true);
2441 	if (err)
2442 		return err;
2443 
2444 	/* Suck in entire file: we'll want most of it. */
2445 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2446 	if (!info->hdr)
2447 		return -ENOMEM;
2448 
2449 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2450 		err = -EFAULT;
2451 		goto out;
2452 	}
2453 
2454 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2455 					     LOADING_MODULE, "init_module");
2456 out:
2457 	if (err)
2458 		vfree(info->hdr);
2459 
2460 	return err;
2461 }
2462 
2463 static void free_copy(struct load_info *info, int flags)
2464 {
2465 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2466 		module_decompress_cleanup(info);
2467 	else
2468 		vfree(info->hdr);
2469 }
2470 
2471 static int rewrite_section_headers(struct load_info *info, int flags)
2472 {
2473 	unsigned int i;
2474 
2475 	/* This should always be true, but let's be sure. */
2476 	info->sechdrs[0].sh_addr = 0;
2477 
2478 	for (i = 1; i < info->hdr->e_shnum; i++) {
2479 		Elf_Shdr *shdr = &info->sechdrs[i];
2480 
2481 		/*
2482 		 * Mark all sections sh_addr with their address in the
2483 		 * temporary image.
2484 		 */
2485 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2486 
2487 	}
2488 
2489 	/* Track but don't keep modinfo and version sections. */
2490 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2491 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2492 		~(unsigned long)SHF_ALLOC;
2493 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2494 		~(unsigned long)SHF_ALLOC;
2495 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2496 
2497 	return 0;
2498 }
2499 
2500 static const char *const module_license_offenders[] = {
2501 	/* driverloader was caught wrongly pretending to be under GPL */
2502 	"driverloader",
2503 
2504 	/* lve claims to be GPL but upstream won't provide source */
2505 	"lve",
2506 };
2507 
2508 /*
2509  * These calls taint the kernel depending certain module circumstances */
2510 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2511 {
2512 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2513 	size_t i;
2514 
2515 	if (!get_modinfo(info, "intree")) {
2516 		if (!test_taint(TAINT_OOT_MODULE))
2517 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2518 				mod->name);
2519 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2520 	}
2521 
2522 	check_modinfo_retpoline(mod, info);
2523 
2524 	if (get_modinfo(info, "staging")) {
2525 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2526 		pr_warn("%s: module is from the staging directory, the quality "
2527 			"is unknown, you have been warned.\n", mod->name);
2528 	}
2529 
2530 	if (is_livepatch_module(mod)) {
2531 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2532 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2533 				mod->name);
2534 	}
2535 
2536 	module_license_taint_check(mod, get_modinfo(info, "license"));
2537 
2538 	if (get_modinfo(info, "test")) {
2539 		if (!test_taint(TAINT_TEST))
2540 			pr_warn("%s: loading test module taints kernel.\n",
2541 				mod->name);
2542 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2543 	}
2544 #ifdef CONFIG_MODULE_SIG
2545 	mod->sig_ok = info->sig_ok;
2546 	if (!mod->sig_ok) {
2547 		pr_notice_once("%s: module verification failed: signature "
2548 			       "and/or required key missing - tainting "
2549 			       "kernel\n", mod->name);
2550 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2551 	}
2552 #endif
2553 
2554 	/*
2555 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2556 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2557 	 * using GPL-only symbols it needs.
2558 	 */
2559 	if (strcmp(mod->name, "ndiswrapper") == 0)
2560 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2561 
2562 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2563 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2564 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2565 					 LOCKDEP_NOW_UNRELIABLE);
2566 	}
2567 
2568 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2569 		pr_warn("%s: module license taints kernel.\n", mod->name);
2570 
2571 }
2572 
2573 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2574 {
2575 	const char *modmagic = get_modinfo(info, "vermagic");
2576 	int err;
2577 
2578 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2579 		modmagic = NULL;
2580 
2581 	/* This is allowed: modprobe --force will invalidate it. */
2582 	if (!modmagic) {
2583 		err = try_to_force_load(mod, "bad vermagic");
2584 		if (err)
2585 			return err;
2586 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2587 		pr_err("%s: version magic '%s' should be '%s'\n",
2588 		       info->name, modmagic, vermagic);
2589 		return -ENOEXEC;
2590 	}
2591 
2592 	err = check_modinfo_livepatch(mod, info);
2593 	if (err)
2594 		return err;
2595 
2596 	return 0;
2597 }
2598 
2599 static int find_module_sections(struct module *mod, struct load_info *info)
2600 {
2601 	mod->kp = section_objs(info, "__param",
2602 			       sizeof(*mod->kp), &mod->num_kp);
2603 	mod->syms = section_objs(info, "__ksymtab",
2604 				 sizeof(*mod->syms), &mod->num_syms);
2605 	mod->crcs = section_addr(info, "__kcrctab");
2606 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2607 				     sizeof(*mod->gpl_syms),
2608 				     &mod->num_gpl_syms);
2609 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2610 
2611 #ifdef CONFIG_CONSTRUCTORS
2612 	mod->ctors = section_objs(info, ".ctors",
2613 				  sizeof(*mod->ctors), &mod->num_ctors);
2614 	if (!mod->ctors)
2615 		mod->ctors = section_objs(info, ".init_array",
2616 				sizeof(*mod->ctors), &mod->num_ctors);
2617 	else if (find_sec(info, ".init_array")) {
2618 		/*
2619 		 * This shouldn't happen with same compiler and binutils
2620 		 * building all parts of the module.
2621 		 */
2622 		pr_warn("%s: has both .ctors and .init_array.\n",
2623 		       mod->name);
2624 		return -EINVAL;
2625 	}
2626 #endif
2627 
2628 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2629 						&mod->noinstr_text_size);
2630 
2631 #ifdef CONFIG_TRACEPOINTS
2632 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2633 					     sizeof(*mod->tracepoints_ptrs),
2634 					     &mod->num_tracepoints);
2635 #endif
2636 #ifdef CONFIG_TREE_SRCU
2637 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2638 					     sizeof(*mod->srcu_struct_ptrs),
2639 					     &mod->num_srcu_structs);
2640 #endif
2641 #ifdef CONFIG_BPF_EVENTS
2642 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2643 					   sizeof(*mod->bpf_raw_events),
2644 					   &mod->num_bpf_raw_events);
2645 #endif
2646 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2647 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2648 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2649 					      &mod->btf_base_data_size);
2650 #endif
2651 #ifdef CONFIG_JUMP_LABEL
2652 	mod->jump_entries = section_objs(info, "__jump_table",
2653 					sizeof(*mod->jump_entries),
2654 					&mod->num_jump_entries);
2655 #endif
2656 #ifdef CONFIG_EVENT_TRACING
2657 	mod->trace_events = section_objs(info, "_ftrace_events",
2658 					 sizeof(*mod->trace_events),
2659 					 &mod->num_trace_events);
2660 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2661 					sizeof(*mod->trace_evals),
2662 					&mod->num_trace_evals);
2663 #endif
2664 #ifdef CONFIG_TRACING
2665 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2666 					 sizeof(*mod->trace_bprintk_fmt_start),
2667 					 &mod->num_trace_bprintk_fmt);
2668 #endif
2669 #ifdef CONFIG_DYNAMIC_FTRACE
2670 	/* sechdrs[0].sh_size is always zero */
2671 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2672 					     sizeof(*mod->ftrace_callsites),
2673 					     &mod->num_ftrace_callsites);
2674 #endif
2675 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2676 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2677 					    sizeof(*mod->ei_funcs),
2678 					    &mod->num_ei_funcs);
2679 #endif
2680 #ifdef CONFIG_KPROBES
2681 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2682 						&mod->kprobes_text_size);
2683 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2684 						sizeof(unsigned long),
2685 						&mod->num_kprobe_blacklist);
2686 #endif
2687 #ifdef CONFIG_PRINTK_INDEX
2688 	mod->printk_index_start = section_objs(info, ".printk_index",
2689 					       sizeof(*mod->printk_index_start),
2690 					       &mod->printk_index_size);
2691 #endif
2692 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2693 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2694 					      sizeof(*mod->static_call_sites),
2695 					      &mod->num_static_call_sites);
2696 #endif
2697 #if IS_ENABLED(CONFIG_KUNIT)
2698 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2699 					      sizeof(*mod->kunit_suites),
2700 					      &mod->num_kunit_suites);
2701 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2702 					      sizeof(*mod->kunit_init_suites),
2703 					      &mod->num_kunit_init_suites);
2704 #endif
2705 
2706 	mod->extable = section_objs(info, "__ex_table",
2707 				    sizeof(*mod->extable), &mod->num_exentries);
2708 
2709 	if (section_addr(info, "__obsparm"))
2710 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2711 
2712 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2713 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2714 					      sizeof(*mod->dyndbg_info.descs),
2715 					      &mod->dyndbg_info.num_descs);
2716 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2717 						sizeof(*mod->dyndbg_info.classes),
2718 						&mod->dyndbg_info.num_classes);
2719 #endif
2720 
2721 	return 0;
2722 }
2723 
2724 static int move_module(struct module *mod, struct load_info *info)
2725 {
2726 	int i, ret;
2727 	enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2728 	bool codetag_section_found = false;
2729 
2730 	for_each_mod_mem_type(type) {
2731 		if (!mod->mem[type].size) {
2732 			mod->mem[type].base = NULL;
2733 			continue;
2734 		}
2735 
2736 		ret = module_memory_alloc(mod, type);
2737 		if (ret) {
2738 			t = type;
2739 			goto out_err;
2740 		}
2741 	}
2742 
2743 	/* Transfer each section which specifies SHF_ALLOC */
2744 	pr_debug("Final section addresses for %s:\n", mod->name);
2745 	for (i = 0; i < info->hdr->e_shnum; i++) {
2746 		void *dest;
2747 		Elf_Shdr *shdr = &info->sechdrs[i];
2748 		const char *sname;
2749 
2750 		if (!(shdr->sh_flags & SHF_ALLOC))
2751 			continue;
2752 
2753 		sname = info->secstrings + shdr->sh_name;
2754 		/*
2755 		 * Load codetag sections separately as they might still be used
2756 		 * after module unload.
2757 		 */
2758 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2759 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2760 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2761 			if (WARN_ON(!dest)) {
2762 				ret = -EINVAL;
2763 				goto out_err;
2764 			}
2765 			if (IS_ERR(dest)) {
2766 				ret = PTR_ERR(dest);
2767 				goto out_err;
2768 			}
2769 			codetag_section_found = true;
2770 		} else {
2771 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2772 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2773 
2774 			dest = mod->mem[type].base + offset;
2775 		}
2776 
2777 		if (shdr->sh_type != SHT_NOBITS) {
2778 			/*
2779 			 * Our ELF checker already validated this, but let's
2780 			 * be pedantic and make the goal clearer. We actually
2781 			 * end up copying over all modifications made to the
2782 			 * userspace copy of the entire struct module.
2783 			 */
2784 			if (i == info->index.mod &&
2785 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2786 				ret = -ENOEXEC;
2787 				goto out_err;
2788 			}
2789 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2790 		}
2791 		/*
2792 		 * Update the userspace copy's ELF section address to point to
2793 		 * our newly allocated memory as a pure convenience so that
2794 		 * users of info can keep taking advantage and using the newly
2795 		 * minted official memory area.
2796 		 */
2797 		shdr->sh_addr = (unsigned long)dest;
2798 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2799 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2800 	}
2801 
2802 	return 0;
2803 out_err:
2804 	module_memory_restore_rox(mod);
2805 	while (t--)
2806 		module_memory_free(mod, t);
2807 	if (codetag_section_found)
2808 		codetag_free_module_sections(mod);
2809 
2810 	return ret;
2811 }
2812 
2813 static int check_export_symbol_versions(struct module *mod)
2814 {
2815 #ifdef CONFIG_MODVERSIONS
2816 	if ((mod->num_syms && !mod->crcs) ||
2817 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2818 		return try_to_force_load(mod,
2819 					 "no versions for exported symbols");
2820 	}
2821 #endif
2822 	return 0;
2823 }
2824 
2825 static void flush_module_icache(const struct module *mod)
2826 {
2827 	/*
2828 	 * Flush the instruction cache, since we've played with text.
2829 	 * Do it before processing of module parameters, so the module
2830 	 * can provide parameter accessor functions of its own.
2831 	 */
2832 	for_each_mod_mem_type(type) {
2833 		const struct module_memory *mod_mem = &mod->mem[type];
2834 
2835 		if (mod_mem->size) {
2836 			flush_icache_range((unsigned long)mod_mem->base,
2837 					   (unsigned long)mod_mem->base + mod_mem->size);
2838 		}
2839 	}
2840 }
2841 
2842 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2843 {
2844 	return true;
2845 }
2846 
2847 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2848 				     Elf_Shdr *sechdrs,
2849 				     char *secstrings,
2850 				     struct module *mod)
2851 {
2852 	return 0;
2853 }
2854 
2855 /* module_blacklist is a comma-separated list of module names */
2856 static char *module_blacklist;
2857 static bool blacklisted(const char *module_name)
2858 {
2859 	const char *p;
2860 	size_t len;
2861 
2862 	if (!module_blacklist)
2863 		return false;
2864 
2865 	for (p = module_blacklist; *p; p += len) {
2866 		len = strcspn(p, ",");
2867 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2868 			return true;
2869 		if (p[len] == ',')
2870 			len++;
2871 	}
2872 	return false;
2873 }
2874 core_param(module_blacklist, module_blacklist, charp, 0400);
2875 
2876 static struct module *layout_and_allocate(struct load_info *info, int flags)
2877 {
2878 	struct module *mod;
2879 	int err;
2880 
2881 	/* Allow arches to frob section contents and sizes.  */
2882 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2883 					info->secstrings, info->mod);
2884 	if (err < 0)
2885 		return ERR_PTR(err);
2886 
2887 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2888 					  info->secstrings, info->mod);
2889 	if (err < 0)
2890 		return ERR_PTR(err);
2891 
2892 	/* We will do a special allocation for per-cpu sections later. */
2893 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2894 
2895 	/*
2896 	 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2897 	 * put them in the right place.
2898 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2899 	 */
2900 	module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2901 
2902 	/*
2903 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2904 	 * this is done generically; there doesn't appear to be any
2905 	 * special cases for the architectures.
2906 	 */
2907 	layout_sections(info->mod, info);
2908 	layout_symtab(info->mod, info);
2909 
2910 	/* Allocate and move to the final place */
2911 	err = move_module(info->mod, info);
2912 	if (err)
2913 		return ERR_PTR(err);
2914 
2915 	/* Module has been copied to its final place now: return it. */
2916 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2917 	kmemleak_load_module(mod, info);
2918 	codetag_module_replaced(info->mod, mod);
2919 
2920 	return mod;
2921 }
2922 
2923 /* mod is no longer valid after this! */
2924 static void module_deallocate(struct module *mod, struct load_info *info)
2925 {
2926 	percpu_modfree(mod);
2927 	module_arch_freeing_init(mod);
2928 	codetag_free_module_sections(mod);
2929 
2930 	free_mod_mem(mod);
2931 }
2932 
2933 int __weak module_finalize(const Elf_Ehdr *hdr,
2934 			   const Elf_Shdr *sechdrs,
2935 			   struct module *me)
2936 {
2937 	return 0;
2938 }
2939 
2940 static int post_relocation(struct module *mod, const struct load_info *info)
2941 {
2942 	/* Sort exception table now relocations are done. */
2943 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2944 
2945 	/* Copy relocated percpu area over. */
2946 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2947 		       info->sechdrs[info->index.pcpu].sh_size);
2948 
2949 	/* Setup kallsyms-specific fields. */
2950 	add_kallsyms(mod, info);
2951 
2952 	/* Arch-specific module finalizing. */
2953 	return module_finalize(info->hdr, info->sechdrs, mod);
2954 }
2955 
2956 /* Call module constructors. */
2957 static void do_mod_ctors(struct module *mod)
2958 {
2959 #ifdef CONFIG_CONSTRUCTORS
2960 	unsigned long i;
2961 
2962 	for (i = 0; i < mod->num_ctors; i++)
2963 		mod->ctors[i]();
2964 #endif
2965 }
2966 
2967 /* For freeing module_init on success, in case kallsyms traversing */
2968 struct mod_initfree {
2969 	struct llist_node node;
2970 	void *init_text;
2971 	void *init_data;
2972 	void *init_rodata;
2973 };
2974 
2975 static void do_free_init(struct work_struct *w)
2976 {
2977 	struct llist_node *pos, *n, *list;
2978 	struct mod_initfree *initfree;
2979 
2980 	list = llist_del_all(&init_free_list);
2981 
2982 	synchronize_rcu();
2983 
2984 	llist_for_each_safe(pos, n, list) {
2985 		initfree = container_of(pos, struct mod_initfree, node);
2986 		execmem_free(initfree->init_text);
2987 		execmem_free(initfree->init_data);
2988 		execmem_free(initfree->init_rodata);
2989 		kfree(initfree);
2990 	}
2991 }
2992 
2993 void flush_module_init_free_work(void)
2994 {
2995 	flush_work(&init_free_wq);
2996 }
2997 
2998 #undef MODULE_PARAM_PREFIX
2999 #define MODULE_PARAM_PREFIX "module."
3000 /* Default value for module->async_probe_requested */
3001 static bool async_probe;
3002 module_param(async_probe, bool, 0644);
3003 
3004 /*
3005  * This is where the real work happens.
3006  *
3007  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3008  * helper command 'lx-symbols'.
3009  */
3010 static noinline int do_init_module(struct module *mod)
3011 {
3012 	int ret = 0;
3013 	struct mod_initfree *freeinit;
3014 #if defined(CONFIG_MODULE_STATS)
3015 	unsigned int text_size = 0, total_size = 0;
3016 
3017 	for_each_mod_mem_type(type) {
3018 		const struct module_memory *mod_mem = &mod->mem[type];
3019 		if (mod_mem->size) {
3020 			total_size += mod_mem->size;
3021 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3022 				text_size += mod_mem->size;
3023 		}
3024 	}
3025 #endif
3026 
3027 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3028 	if (!freeinit) {
3029 		ret = -ENOMEM;
3030 		goto fail;
3031 	}
3032 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3033 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3034 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3035 
3036 	do_mod_ctors(mod);
3037 	/* Start the module */
3038 	if (mod->init != NULL)
3039 		ret = do_one_initcall(mod->init);
3040 	if (ret < 0) {
3041 		goto fail_free_freeinit;
3042 	}
3043 	if (ret > 0) {
3044 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3045 			"follow 0/-E convention\n"
3046 			"%s: loading module anyway...\n",
3047 			__func__, mod->name, ret, __func__);
3048 		dump_stack();
3049 	}
3050 
3051 	/* Now it's a first class citizen! */
3052 	mod->state = MODULE_STATE_LIVE;
3053 	blocking_notifier_call_chain(&module_notify_list,
3054 				     MODULE_STATE_LIVE, mod);
3055 
3056 	/* Delay uevent until module has finished its init routine */
3057 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3058 
3059 	/*
3060 	 * We need to finish all async code before the module init sequence
3061 	 * is done. This has potential to deadlock if synchronous module
3062 	 * loading is requested from async (which is not allowed!).
3063 	 *
3064 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3065 	 * request_module() from async workers") for more details.
3066 	 */
3067 	if (!mod->async_probe_requested)
3068 		async_synchronize_full();
3069 
3070 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3071 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3072 	mutex_lock(&module_mutex);
3073 	/* Drop initial reference. */
3074 	module_put(mod);
3075 	trim_init_extable(mod);
3076 #ifdef CONFIG_KALLSYMS
3077 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3078 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3079 #endif
3080 	ret = module_enable_rodata_ro_after_init(mod);
3081 	if (ret)
3082 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3083 			"ro_after_init data might still be writable\n",
3084 			mod->name, ret);
3085 
3086 	mod_tree_remove_init(mod);
3087 	module_arch_freeing_init(mod);
3088 	for_class_mod_mem_type(type, init) {
3089 		mod->mem[type].base = NULL;
3090 		mod->mem[type].size = 0;
3091 	}
3092 
3093 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3094 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3095 	mod->btf_data = NULL;
3096 	mod->btf_base_data = NULL;
3097 #endif
3098 	/*
3099 	 * We want to free module_init, but be aware that kallsyms may be
3100 	 * walking this within an RCU read section. In all the failure paths, we
3101 	 * call synchronize_rcu(), but we don't want to slow down the success
3102 	 * path. execmem_free() cannot be called in an interrupt, so do the
3103 	 * work and call synchronize_rcu() in a work queue.
3104 	 *
3105 	 * Note that execmem_alloc() on most architectures creates W+X page
3106 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3107 	 * code such as mark_rodata_ro() which depends on those mappings to
3108 	 * be cleaned up needs to sync with the queued work by invoking
3109 	 * flush_module_init_free_work().
3110 	 */
3111 	if (llist_add(&freeinit->node, &init_free_list))
3112 		schedule_work(&init_free_wq);
3113 
3114 	mutex_unlock(&module_mutex);
3115 	wake_up_all(&module_wq);
3116 
3117 	mod_stat_add_long(text_size, &total_text_size);
3118 	mod_stat_add_long(total_size, &total_mod_size);
3119 
3120 	mod_stat_inc(&modcount);
3121 
3122 	return 0;
3123 
3124 fail_free_freeinit:
3125 	kfree(freeinit);
3126 fail:
3127 	/* Try to protect us from buggy refcounters. */
3128 	mod->state = MODULE_STATE_GOING;
3129 	synchronize_rcu();
3130 	module_put(mod);
3131 	blocking_notifier_call_chain(&module_notify_list,
3132 				     MODULE_STATE_GOING, mod);
3133 	klp_module_going(mod);
3134 	ftrace_release_mod(mod);
3135 	free_module(mod);
3136 	wake_up_all(&module_wq);
3137 
3138 	return ret;
3139 }
3140 
3141 static int may_init_module(void)
3142 {
3143 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3144 		return -EPERM;
3145 
3146 	return 0;
3147 }
3148 
3149 /* Is this module of this name done loading?  No locks held. */
3150 static bool finished_loading(const char *name)
3151 {
3152 	struct module *mod;
3153 	bool ret;
3154 
3155 	/*
3156 	 * The module_mutex should not be a heavily contended lock;
3157 	 * if we get the occasional sleep here, we'll go an extra iteration
3158 	 * in the wait_event_interruptible(), which is harmless.
3159 	 */
3160 	sched_annotate_sleep();
3161 	mutex_lock(&module_mutex);
3162 	mod = find_module_all(name, strlen(name), true);
3163 	ret = !mod || mod->state == MODULE_STATE_LIVE
3164 		|| mod->state == MODULE_STATE_GOING;
3165 	mutex_unlock(&module_mutex);
3166 
3167 	return ret;
3168 }
3169 
3170 /* Must be called with module_mutex held */
3171 static int module_patient_check_exists(const char *name,
3172 				       enum fail_dup_mod_reason reason)
3173 {
3174 	struct module *old;
3175 	int err = 0;
3176 
3177 	old = find_module_all(name, strlen(name), true);
3178 	if (old == NULL)
3179 		return 0;
3180 
3181 	if (old->state == MODULE_STATE_COMING ||
3182 	    old->state == MODULE_STATE_UNFORMED) {
3183 		/* Wait in case it fails to load. */
3184 		mutex_unlock(&module_mutex);
3185 		err = wait_event_interruptible(module_wq,
3186 				       finished_loading(name));
3187 		mutex_lock(&module_mutex);
3188 		if (err)
3189 			return err;
3190 
3191 		/* The module might have gone in the meantime. */
3192 		old = find_module_all(name, strlen(name), true);
3193 	}
3194 
3195 	if (try_add_failed_module(name, reason))
3196 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3197 
3198 	/*
3199 	 * We are here only when the same module was being loaded. Do
3200 	 * not try to load it again right now. It prevents long delays
3201 	 * caused by serialized module load failures. It might happen
3202 	 * when more devices of the same type trigger load of
3203 	 * a particular module.
3204 	 */
3205 	if (old && old->state == MODULE_STATE_LIVE)
3206 		return -EEXIST;
3207 	return -EBUSY;
3208 }
3209 
3210 /*
3211  * We try to place it in the list now to make sure it's unique before
3212  * we dedicate too many resources.  In particular, temporary percpu
3213  * memory exhaustion.
3214  */
3215 static int add_unformed_module(struct module *mod)
3216 {
3217 	int err;
3218 
3219 	mod->state = MODULE_STATE_UNFORMED;
3220 
3221 	mutex_lock(&module_mutex);
3222 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3223 	if (err)
3224 		goto out;
3225 
3226 	mod_update_bounds(mod);
3227 	list_add_rcu(&mod->list, &modules);
3228 	mod_tree_insert(mod);
3229 	err = 0;
3230 
3231 out:
3232 	mutex_unlock(&module_mutex);
3233 	return err;
3234 }
3235 
3236 static int complete_formation(struct module *mod, struct load_info *info)
3237 {
3238 	int err;
3239 
3240 	mutex_lock(&module_mutex);
3241 
3242 	/* Find duplicate symbols (must be called under lock). */
3243 	err = verify_exported_symbols(mod);
3244 	if (err < 0)
3245 		goto out;
3246 
3247 	/* These rely on module_mutex for list integrity. */
3248 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3249 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3250 
3251 	err = module_enable_rodata_ro(mod);
3252 	if (err)
3253 		goto out_strict_rwx;
3254 	err = module_enable_data_nx(mod);
3255 	if (err)
3256 		goto out_strict_rwx;
3257 	err = module_enable_text_rox(mod);
3258 	if (err)
3259 		goto out_strict_rwx;
3260 
3261 	/*
3262 	 * Mark state as coming so strong_try_module_get() ignores us,
3263 	 * but kallsyms etc. can see us.
3264 	 */
3265 	mod->state = MODULE_STATE_COMING;
3266 	mutex_unlock(&module_mutex);
3267 
3268 	return 0;
3269 
3270 out_strict_rwx:
3271 	module_bug_cleanup(mod);
3272 out:
3273 	mutex_unlock(&module_mutex);
3274 	return err;
3275 }
3276 
3277 static int prepare_coming_module(struct module *mod)
3278 {
3279 	int err;
3280 
3281 	ftrace_module_enable(mod);
3282 	err = klp_module_coming(mod);
3283 	if (err)
3284 		return err;
3285 
3286 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3287 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3288 	err = notifier_to_errno(err);
3289 	if (err)
3290 		klp_module_going(mod);
3291 
3292 	return err;
3293 }
3294 
3295 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3296 				   void *arg)
3297 {
3298 	struct module *mod = arg;
3299 	int ret;
3300 
3301 	if (strcmp(param, "async_probe") == 0) {
3302 		if (kstrtobool(val, &mod->async_probe_requested))
3303 			mod->async_probe_requested = true;
3304 		return 0;
3305 	}
3306 
3307 	/* Check for magic 'dyndbg' arg */
3308 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3309 	if (ret != 0)
3310 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3311 	return 0;
3312 }
3313 
3314 /* Module within temporary copy, this doesn't do any allocation  */
3315 static int early_mod_check(struct load_info *info, int flags)
3316 {
3317 	int err;
3318 
3319 	/*
3320 	 * Now that we know we have the correct module name, check
3321 	 * if it's blacklisted.
3322 	 */
3323 	if (blacklisted(info->name)) {
3324 		pr_err("Module %s is blacklisted\n", info->name);
3325 		return -EPERM;
3326 	}
3327 
3328 	err = rewrite_section_headers(info, flags);
3329 	if (err)
3330 		return err;
3331 
3332 	/* Check module struct version now, before we try to use module. */
3333 	if (!check_modstruct_version(info, info->mod))
3334 		return -ENOEXEC;
3335 
3336 	err = check_modinfo(info->mod, info, flags);
3337 	if (err)
3338 		return err;
3339 
3340 	mutex_lock(&module_mutex);
3341 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3342 	mutex_unlock(&module_mutex);
3343 
3344 	return err;
3345 }
3346 
3347 /*
3348  * Allocate and load the module: note that size of section 0 is always
3349  * zero, and we rely on this for optional sections.
3350  */
3351 static int load_module(struct load_info *info, const char __user *uargs,
3352 		       int flags)
3353 {
3354 	struct module *mod;
3355 	bool module_allocated = false;
3356 	long err = 0;
3357 	char *after_dashes;
3358 
3359 	/*
3360 	 * Do the signature check (if any) first. All that
3361 	 * the signature check needs is info->len, it does
3362 	 * not need any of the section info. That can be
3363 	 * set up later. This will minimize the chances
3364 	 * of a corrupt module causing problems before
3365 	 * we even get to the signature check.
3366 	 *
3367 	 * The check will also adjust info->len by stripping
3368 	 * off the sig length at the end of the module, making
3369 	 * checks against info->len more correct.
3370 	 */
3371 	err = module_sig_check(info, flags);
3372 	if (err)
3373 		goto free_copy;
3374 
3375 	/*
3376 	 * Do basic sanity checks against the ELF header and
3377 	 * sections. Cache useful sections and set the
3378 	 * info->mod to the userspace passed struct module.
3379 	 */
3380 	err = elf_validity_cache_copy(info, flags);
3381 	if (err)
3382 		goto free_copy;
3383 
3384 	err = early_mod_check(info, flags);
3385 	if (err)
3386 		goto free_copy;
3387 
3388 	/* Figure out module layout, and allocate all the memory. */
3389 	mod = layout_and_allocate(info, flags);
3390 	if (IS_ERR(mod)) {
3391 		err = PTR_ERR(mod);
3392 		goto free_copy;
3393 	}
3394 
3395 	module_allocated = true;
3396 
3397 	audit_log_kern_module(info->name);
3398 
3399 	/* Reserve our place in the list. */
3400 	err = add_unformed_module(mod);
3401 	if (err)
3402 		goto free_module;
3403 
3404 	/*
3405 	 * We are tainting your kernel if your module gets into
3406 	 * the modules linked list somehow.
3407 	 */
3408 	module_augment_kernel_taints(mod, info);
3409 
3410 	/* To avoid stressing percpu allocator, do this once we're unique. */
3411 	err = percpu_modalloc(mod, info);
3412 	if (err)
3413 		goto unlink_mod;
3414 
3415 	/* Now module is in final location, initialize linked lists, etc. */
3416 	err = module_unload_init(mod);
3417 	if (err)
3418 		goto unlink_mod;
3419 
3420 	init_param_lock(mod);
3421 
3422 	/*
3423 	 * Now we've got everything in the final locations, we can
3424 	 * find optional sections.
3425 	 */
3426 	err = find_module_sections(mod, info);
3427 	if (err)
3428 		goto free_unload;
3429 
3430 	err = check_export_symbol_versions(mod);
3431 	if (err)
3432 		goto free_unload;
3433 
3434 	/* Set up MODINFO_ATTR fields */
3435 	err = setup_modinfo(mod, info);
3436 	if (err)
3437 		goto free_modinfo;
3438 
3439 	/* Fix up syms, so that st_value is a pointer to location. */
3440 	err = simplify_symbols(mod, info);
3441 	if (err < 0)
3442 		goto free_modinfo;
3443 
3444 	err = apply_relocations(mod, info);
3445 	if (err < 0)
3446 		goto free_modinfo;
3447 
3448 	err = post_relocation(mod, info);
3449 	if (err < 0)
3450 		goto free_modinfo;
3451 
3452 	flush_module_icache(mod);
3453 
3454 	/* Now copy in args */
3455 	mod->args = strndup_user(uargs, ~0UL >> 1);
3456 	if (IS_ERR(mod->args)) {
3457 		err = PTR_ERR(mod->args);
3458 		goto free_arch_cleanup;
3459 	}
3460 
3461 	init_build_id(mod, info);
3462 
3463 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3464 	ftrace_module_init(mod);
3465 
3466 	/* Finally it's fully formed, ready to start executing. */
3467 	err = complete_formation(mod, info);
3468 	if (err)
3469 		goto ddebug_cleanup;
3470 
3471 	err = prepare_coming_module(mod);
3472 	if (err)
3473 		goto bug_cleanup;
3474 
3475 	mod->async_probe_requested = async_probe;
3476 
3477 	/* Module is ready to execute: parsing args may do that. */
3478 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3479 				  -32768, 32767, mod,
3480 				  unknown_module_param_cb);
3481 	if (IS_ERR(after_dashes)) {
3482 		err = PTR_ERR(after_dashes);
3483 		goto coming_cleanup;
3484 	} else if (after_dashes) {
3485 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3486 		       mod->name, after_dashes);
3487 	}
3488 
3489 	/* Link in to sysfs. */
3490 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3491 	if (err < 0)
3492 		goto coming_cleanup;
3493 
3494 	if (is_livepatch_module(mod)) {
3495 		err = copy_module_elf(mod, info);
3496 		if (err < 0)
3497 			goto sysfs_cleanup;
3498 	}
3499 
3500 	if (codetag_load_module(mod))
3501 		goto sysfs_cleanup;
3502 
3503 	/* Get rid of temporary copy. */
3504 	free_copy(info, flags);
3505 
3506 	/* Done! */
3507 	trace_module_load(mod);
3508 
3509 	return do_init_module(mod);
3510 
3511  sysfs_cleanup:
3512 	mod_sysfs_teardown(mod);
3513  coming_cleanup:
3514 	mod->state = MODULE_STATE_GOING;
3515 	destroy_params(mod->kp, mod->num_kp);
3516 	blocking_notifier_call_chain(&module_notify_list,
3517 				     MODULE_STATE_GOING, mod);
3518 	klp_module_going(mod);
3519  bug_cleanup:
3520 	mod->state = MODULE_STATE_GOING;
3521 	/* module_bug_cleanup needs module_mutex protection */
3522 	mutex_lock(&module_mutex);
3523 	module_bug_cleanup(mod);
3524 	mutex_unlock(&module_mutex);
3525 
3526  ddebug_cleanup:
3527 	ftrace_release_mod(mod);
3528 	synchronize_rcu();
3529 	kfree(mod->args);
3530  free_arch_cleanup:
3531 	module_arch_cleanup(mod);
3532  free_modinfo:
3533 	free_modinfo(mod);
3534  free_unload:
3535 	module_unload_free(mod);
3536  unlink_mod:
3537 	mutex_lock(&module_mutex);
3538 	/* Unlink carefully: kallsyms could be walking list. */
3539 	list_del_rcu(&mod->list);
3540 	mod_tree_remove(mod);
3541 	wake_up_all(&module_wq);
3542 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3543 	synchronize_rcu();
3544 	mutex_unlock(&module_mutex);
3545  free_module:
3546 	mod_stat_bump_invalid(info, flags);
3547 	/* Free lock-classes; relies on the preceding sync_rcu() */
3548 	for_class_mod_mem_type(type, core_data) {
3549 		lockdep_free_key_range(mod->mem[type].base,
3550 				       mod->mem[type].size);
3551 	}
3552 
3553 	module_memory_restore_rox(mod);
3554 	module_deallocate(mod, info);
3555  free_copy:
3556 	/*
3557 	 * The info->len is always set. We distinguish between
3558 	 * failures once the proper module was allocated and
3559 	 * before that.
3560 	 */
3561 	if (!module_allocated) {
3562 		audit_log_kern_module(info->name ? info->name : "?");
3563 		mod_stat_bump_becoming(info, flags);
3564 	}
3565 	free_copy(info, flags);
3566 	return err;
3567 }
3568 
3569 SYSCALL_DEFINE3(init_module, void __user *, umod,
3570 		unsigned long, len, const char __user *, uargs)
3571 {
3572 	int err;
3573 	struct load_info info = { };
3574 
3575 	err = may_init_module();
3576 	if (err)
3577 		return err;
3578 
3579 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3580 	       umod, len, uargs);
3581 
3582 	err = copy_module_from_user(umod, len, &info);
3583 	if (err) {
3584 		mod_stat_inc(&failed_kreads);
3585 		mod_stat_add_long(len, &invalid_kread_bytes);
3586 		return err;
3587 	}
3588 
3589 	return load_module(&info, uargs, 0);
3590 }
3591 
3592 struct idempotent {
3593 	const void *cookie;
3594 	struct hlist_node entry;
3595 	struct completion complete;
3596 	int ret;
3597 };
3598 
3599 #define IDEM_HASH_BITS 8
3600 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3601 static DEFINE_SPINLOCK(idem_lock);
3602 
3603 static bool idempotent(struct idempotent *u, const void *cookie)
3604 {
3605 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3606 	struct hlist_head *head = idem_hash + hash;
3607 	struct idempotent *existing;
3608 	bool first;
3609 
3610 	u->ret = -EINTR;
3611 	u->cookie = cookie;
3612 	init_completion(&u->complete);
3613 
3614 	spin_lock(&idem_lock);
3615 	first = true;
3616 	hlist_for_each_entry(existing, head, entry) {
3617 		if (existing->cookie != cookie)
3618 			continue;
3619 		first = false;
3620 		break;
3621 	}
3622 	hlist_add_head(&u->entry, idem_hash + hash);
3623 	spin_unlock(&idem_lock);
3624 
3625 	return !first;
3626 }
3627 
3628 /*
3629  * We were the first one with 'cookie' on the list, and we ended
3630  * up completing the operation. We now need to walk the list,
3631  * remove everybody - which includes ourselves - fill in the return
3632  * value, and then complete the operation.
3633  */
3634 static int idempotent_complete(struct idempotent *u, int ret)
3635 {
3636 	const void *cookie = u->cookie;
3637 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3638 	struct hlist_head *head = idem_hash + hash;
3639 	struct hlist_node *next;
3640 	struct idempotent *pos;
3641 
3642 	spin_lock(&idem_lock);
3643 	hlist_for_each_entry_safe(pos, next, head, entry) {
3644 		if (pos->cookie != cookie)
3645 			continue;
3646 		hlist_del_init(&pos->entry);
3647 		pos->ret = ret;
3648 		complete(&pos->complete);
3649 	}
3650 	spin_unlock(&idem_lock);
3651 	return ret;
3652 }
3653 
3654 /*
3655  * Wait for the idempotent worker.
3656  *
3657  * If we get interrupted, we need to remove ourselves from the
3658  * the idempotent list, and the completion may still come in.
3659  *
3660  * The 'idem_lock' protects against the race, and 'idem.ret' was
3661  * initialized to -EINTR and is thus always the right return
3662  * value even if the idempotent work then completes between
3663  * the wait_for_completion and the cleanup.
3664  */
3665 static int idempotent_wait_for_completion(struct idempotent *u)
3666 {
3667 	if (wait_for_completion_interruptible(&u->complete)) {
3668 		spin_lock(&idem_lock);
3669 		if (!hlist_unhashed(&u->entry))
3670 			hlist_del(&u->entry);
3671 		spin_unlock(&idem_lock);
3672 	}
3673 	return u->ret;
3674 }
3675 
3676 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3677 {
3678 	struct load_info info = { };
3679 	void *buf = NULL;
3680 	int len;
3681 
3682 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3683 	if (len < 0) {
3684 		mod_stat_inc(&failed_kreads);
3685 		return len;
3686 	}
3687 
3688 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3689 		int err = module_decompress(&info, buf, len);
3690 		vfree(buf); /* compressed data is no longer needed */
3691 		if (err) {
3692 			mod_stat_inc(&failed_decompress);
3693 			mod_stat_add_long(len, &invalid_decompress_bytes);
3694 			return err;
3695 		}
3696 	} else {
3697 		info.hdr = buf;
3698 		info.len = len;
3699 	}
3700 
3701 	return load_module(&info, uargs, flags);
3702 }
3703 
3704 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3705 {
3706 	struct idempotent idem;
3707 
3708 	if (!(f->f_mode & FMODE_READ))
3709 		return -EBADF;
3710 
3711 	/* Are we the winners of the race and get to do this? */
3712 	if (!idempotent(&idem, file_inode(f))) {
3713 		int ret = init_module_from_file(f, uargs, flags);
3714 		return idempotent_complete(&idem, ret);
3715 	}
3716 
3717 	/*
3718 	 * Somebody else won the race and is loading the module.
3719 	 */
3720 	return idempotent_wait_for_completion(&idem);
3721 }
3722 
3723 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3724 {
3725 	int err = may_init_module();
3726 	if (err)
3727 		return err;
3728 
3729 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3730 
3731 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3732 		      |MODULE_INIT_IGNORE_VERMAGIC
3733 		      |MODULE_INIT_COMPRESSED_FILE))
3734 		return -EINVAL;
3735 
3736 	CLASS(fd, f)(fd);
3737 	if (fd_empty(f))
3738 		return -EBADF;
3739 	return idempotent_init_module(fd_file(f), uargs, flags);
3740 }
3741 
3742 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3743 char *module_flags(struct module *mod, char *buf, bool show_state)
3744 {
3745 	int bx = 0;
3746 
3747 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3748 	if (!mod->taints && !show_state)
3749 		goto out;
3750 	if (mod->taints ||
3751 	    mod->state == MODULE_STATE_GOING ||
3752 	    mod->state == MODULE_STATE_COMING) {
3753 		buf[bx++] = '(';
3754 		bx += module_flags_taint(mod->taints, buf + bx);
3755 		/* Show a - for module-is-being-unloaded */
3756 		if (mod->state == MODULE_STATE_GOING && show_state)
3757 			buf[bx++] = '-';
3758 		/* Show a + for module-is-being-loaded */
3759 		if (mod->state == MODULE_STATE_COMING && show_state)
3760 			buf[bx++] = '+';
3761 		buf[bx++] = ')';
3762 	}
3763 out:
3764 	buf[bx] = '\0';
3765 
3766 	return buf;
3767 }
3768 
3769 /* Given an address, look for it in the module exception tables. */
3770 const struct exception_table_entry *search_module_extables(unsigned long addr)
3771 {
3772 	struct module *mod;
3773 
3774 	guard(rcu)();
3775 	mod = __module_address(addr);
3776 	if (!mod)
3777 		return NULL;
3778 
3779 	if (!mod->num_exentries)
3780 		return NULL;
3781 	/*
3782 	 * The address passed here belongs to a module that is currently
3783 	 * invoked (we are running inside it). Therefore its module::refcnt
3784 	 * needs already be >0 to ensure that it is not removed at this stage.
3785 	 * All other user need to invoke this function within a RCU read
3786 	 * section.
3787 	 */
3788 	return search_extable(mod->extable, mod->num_exentries, addr);
3789 }
3790 
3791 /**
3792  * is_module_address() - is this address inside a module?
3793  * @addr: the address to check.
3794  *
3795  * See is_module_text_address() if you simply want to see if the address
3796  * is code (not data).
3797  */
3798 bool is_module_address(unsigned long addr)
3799 {
3800 	guard(rcu)();
3801 	return __module_address(addr) != NULL;
3802 }
3803 
3804 /**
3805  * __module_address() - get the module which contains an address.
3806  * @addr: the address.
3807  *
3808  * Must be called within RCU read section or module mutex held so that
3809  * module doesn't get freed during this.
3810  */
3811 struct module *__module_address(unsigned long addr)
3812 {
3813 	struct module *mod;
3814 
3815 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3816 		goto lookup;
3817 
3818 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3819 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3820 		goto lookup;
3821 #endif
3822 
3823 	return NULL;
3824 
3825 lookup:
3826 	mod = mod_find(addr, &mod_tree);
3827 	if (mod) {
3828 		BUG_ON(!within_module(addr, mod));
3829 		if (mod->state == MODULE_STATE_UNFORMED)
3830 			mod = NULL;
3831 	}
3832 	return mod;
3833 }
3834 
3835 /**
3836  * is_module_text_address() - is this address inside module code?
3837  * @addr: the address to check.
3838  *
3839  * See is_module_address() if you simply want to see if the address is
3840  * anywhere in a module.  See kernel_text_address() for testing if an
3841  * address corresponds to kernel or module code.
3842  */
3843 bool is_module_text_address(unsigned long addr)
3844 {
3845 	guard(rcu)();
3846 	return __module_text_address(addr) != NULL;
3847 }
3848 
3849 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3850 {
3851 	struct module *mod;
3852 
3853 	guard(rcu)();
3854 	list_for_each_entry_rcu(mod, &modules, list) {
3855 		if (mod->state == MODULE_STATE_UNFORMED)
3856 			continue;
3857 		if (func(mod, data))
3858 			break;
3859 	}
3860 }
3861 
3862 /**
3863  * __module_text_address() - get the module whose code contains an address.
3864  * @addr: the address.
3865  *
3866  * Must be called within RCU read section or module mutex held so that
3867  * module doesn't get freed during this.
3868  */
3869 struct module *__module_text_address(unsigned long addr)
3870 {
3871 	struct module *mod = __module_address(addr);
3872 	if (mod) {
3873 		/* Make sure it's within the text section. */
3874 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3875 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3876 			mod = NULL;
3877 	}
3878 	return mod;
3879 }
3880 
3881 /* Don't grab lock, we're oopsing. */
3882 void print_modules(void)
3883 {
3884 	struct module *mod;
3885 	char buf[MODULE_FLAGS_BUF_SIZE];
3886 
3887 	printk(KERN_DEFAULT "Modules linked in:");
3888 	/* Most callers should already have preempt disabled, but make sure */
3889 	guard(rcu)();
3890 	list_for_each_entry_rcu(mod, &modules, list) {
3891 		if (mod->state == MODULE_STATE_UNFORMED)
3892 			continue;
3893 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3894 	}
3895 
3896 	print_unloaded_tainted_modules();
3897 	if (last_unloaded_module.name[0])
3898 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3899 			last_unloaded_module.taints);
3900 	pr_cont("\n");
3901 }
3902 
3903 #ifdef CONFIG_MODULE_DEBUGFS
3904 struct dentry *mod_debugfs_root;
3905 
3906 static int module_debugfs_init(void)
3907 {
3908 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3909 	return 0;
3910 }
3911 module_init(module_debugfs_init);
3912 #endif
3913