1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS 128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
38
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 0, BIOSET_NEED_BVECS);
43 }
44
f2fs_destroy_bioset(void)45 void f2fs_destroy_bioset(void)
46 {
47 bioset_exit(&f2fs_bioset);
48 }
49
f2fs_is_cp_guaranteed(const struct folio * folio)50 bool f2fs_is_cp_guaranteed(const struct folio *folio)
51 {
52 struct address_space *mapping = folio->mapping;
53 struct inode *inode;
54 struct f2fs_sb_info *sbi;
55
56 if (fscrypt_is_bounce_folio(folio))
57 return folio_test_f2fs_gcing(fscrypt_pagecache_folio(folio));
58
59 inode = mapping->host;
60 sbi = F2FS_I_SB(inode);
61
62 if (inode->i_ino == F2FS_META_INO(sbi) ||
63 inode->i_ino == F2FS_NODE_INO(sbi) ||
64 S_ISDIR(inode->i_mode))
65 return true;
66
67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 folio_test_f2fs_gcing(folio))
69 return true;
70 return false;
71 }
72
__read_io_type(struct folio * folio)73 static enum count_type __read_io_type(struct folio *folio)
74 {
75 struct address_space *mapping = folio->mapping;
76
77 if (mapping) {
78 struct inode *inode = mapping->host;
79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80
81 if (inode->i_ino == F2FS_META_INO(sbi))
82 return F2FS_RD_META;
83
84 if (inode->i_ino == F2FS_NODE_INO(sbi))
85 return F2FS_RD_NODE;
86 }
87 return F2FS_RD_DATA;
88 }
89
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 STEP_DECRYPT = BIT(0),
94 #else
95 STEP_DECRYPT = 0, /* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 STEP_DECOMPRESS = BIT(1),
99 #else
100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 STEP_VERITY = BIT(2),
104 #else
105 STEP_VERITY = 0, /* compile out the verity-related code */
106 #endif
107 };
108
109 struct bio_post_read_ctx {
110 struct bio *bio;
111 struct f2fs_sb_info *sbi;
112 struct work_struct work;
113 unsigned int enabled_steps;
114 /*
115 * decompression_attempted keeps track of whether
116 * f2fs_end_read_compressed_page() has been called on the pages in the
117 * bio that belong to a compressed cluster yet.
118 */
119 bool decompression_attempted;
120 block_t fs_blkaddr;
121 };
122
123 /*
124 * Update and unlock a bio's pages, and free the bio.
125 *
126 * This marks pages up-to-date only if there was no error in the bio (I/O error,
127 * decryption error, or verity error), as indicated by bio->bi_status.
128 *
129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130 * aren't marked up-to-date here, as decompression is done on a per-compression-
131 * cluster basis rather than a per-bio basis. Instead, we only must do two
132 * things for each compressed page here: call f2fs_end_read_compressed_page()
133 * with failed=true if an error occurred before it would have normally gotten
134 * called (i.e., I/O error or decryption error, but *not* verity error), and
135 * release the bio's reference to the decompress_io_ctx of the page's cluster.
136 */
f2fs_finish_read_bio(struct bio * bio,bool in_task)137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 struct folio_iter fi;
140 struct bio_post_read_ctx *ctx = bio->bi_private;
141
142 bio_for_each_folio_all(fi, bio) {
143 struct folio *folio = fi.folio;
144
145 if (f2fs_is_compressed_page(folio)) {
146 if (ctx && !ctx->decompression_attempted)
147 f2fs_end_read_compressed_page(folio, true, 0,
148 in_task);
149 f2fs_put_folio_dic(folio, in_task);
150 continue;
151 }
152
153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio));
154 folio_end_read(folio, bio->bi_status == BLK_STS_OK);
155 }
156
157 if (ctx)
158 mempool_free(ctx, bio_post_read_ctx_pool);
159 bio_put(bio);
160 }
161
f2fs_verify_bio(struct work_struct * work)162 static void f2fs_verify_bio(struct work_struct *work)
163 {
164 struct bio_post_read_ctx *ctx =
165 container_of(work, struct bio_post_read_ctx, work);
166 struct bio *bio = ctx->bio;
167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
168
169 /*
170 * fsverity_verify_bio() may call readahead() again, and while verity
171 * will be disabled for this, decryption and/or decompression may still
172 * be needed, resulting in another bio_post_read_ctx being allocated.
173 * So to prevent deadlocks we need to release the current ctx to the
174 * mempool first. This assumes that verity is the last post-read step.
175 */
176 mempool_free(ctx, bio_post_read_ctx_pool);
177 bio->bi_private = NULL;
178
179 /*
180 * Verify the bio's pages with fs-verity. Exclude compressed pages,
181 * as those were handled separately by f2fs_end_read_compressed_page().
182 */
183 if (may_have_compressed_pages) {
184 struct folio_iter fi;
185
186 bio_for_each_folio_all(fi, bio) {
187 struct folio *folio = fi.folio;
188
189 if (!f2fs_is_compressed_page(folio) &&
190 !fsverity_verify_page(&folio->page)) {
191 bio->bi_status = BLK_STS_IOERR;
192 break;
193 }
194 }
195 } else {
196 fsverity_verify_bio(bio);
197 }
198
199 f2fs_finish_read_bio(bio, true);
200 }
201
202 /*
203 * If the bio's data needs to be verified with fs-verity, then enqueue the
204 * verity work for the bio. Otherwise finish the bio now.
205 *
206 * Note that to avoid deadlocks, the verity work can't be done on the
207 * decryption/decompression workqueue. This is because verifying the data pages
208 * can involve reading verity metadata pages from the file, and these verity
209 * metadata pages may be encrypted and/or compressed.
210 */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)211 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
212 {
213 struct bio_post_read_ctx *ctx = bio->bi_private;
214
215 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
216 INIT_WORK(&ctx->work, f2fs_verify_bio);
217 fsverity_enqueue_verify_work(&ctx->work);
218 } else {
219 f2fs_finish_read_bio(bio, in_task);
220 }
221 }
222
223 /*
224 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
225 * remaining page was read by @ctx->bio.
226 *
227 * Note that a bio may span clusters (even a mix of compressed and uncompressed
228 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
229 * that the bio includes at least one compressed page. The actual decompression
230 * is done on a per-cluster basis, not a per-bio basis.
231 */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)232 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
233 bool in_task)
234 {
235 struct folio_iter fi;
236 bool all_compressed = true;
237 block_t blkaddr = ctx->fs_blkaddr;
238
239 bio_for_each_folio_all(fi, ctx->bio) {
240 struct folio *folio = fi.folio;
241
242 if (f2fs_is_compressed_page(folio))
243 f2fs_end_read_compressed_page(folio, false, blkaddr,
244 in_task);
245 else
246 all_compressed = false;
247
248 blkaddr++;
249 }
250
251 ctx->decompression_attempted = true;
252
253 /*
254 * Optimization: if all the bio's pages are compressed, then scheduling
255 * the per-bio verity work is unnecessary, as verity will be fully
256 * handled at the compression cluster level.
257 */
258 if (all_compressed)
259 ctx->enabled_steps &= ~STEP_VERITY;
260 }
261
f2fs_post_read_work(struct work_struct * work)262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264 struct bio_post_read_ctx *ctx =
265 container_of(work, struct bio_post_read_ctx, work);
266 struct bio *bio = ctx->bio;
267
268 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
269 f2fs_finish_read_bio(bio, true);
270 return;
271 }
272
273 if (ctx->enabled_steps & STEP_DECOMPRESS)
274 f2fs_handle_step_decompress(ctx, true);
275
276 f2fs_verify_and_finish_bio(bio, true);
277 }
278
f2fs_read_end_io(struct bio * bio)279 static void f2fs_read_end_io(struct bio *bio)
280 {
281 struct f2fs_sb_info *sbi = F2FS_F_SB(bio_first_folio_all(bio));
282 struct bio_post_read_ctx *ctx;
283 bool intask = in_task() && !irqs_disabled();
284
285 iostat_update_and_unbind_ctx(bio);
286 ctx = bio->bi_private;
287
288 if (time_to_inject(sbi, FAULT_READ_IO))
289 bio->bi_status = BLK_STS_IOERR;
290
291 if (bio->bi_status != BLK_STS_OK) {
292 f2fs_finish_read_bio(bio, intask);
293 return;
294 }
295
296 if (ctx) {
297 unsigned int enabled_steps = ctx->enabled_steps &
298 (STEP_DECRYPT | STEP_DECOMPRESS);
299
300 /*
301 * If we have only decompression step between decompression and
302 * decrypt, we don't need post processing for this.
303 */
304 if (enabled_steps == STEP_DECOMPRESS &&
305 !f2fs_low_mem_mode(sbi)) {
306 f2fs_handle_step_decompress(ctx, intask);
307 } else if (enabled_steps) {
308 INIT_WORK(&ctx->work, f2fs_post_read_work);
309 queue_work(ctx->sbi->post_read_wq, &ctx->work);
310 return;
311 }
312 }
313
314 f2fs_verify_and_finish_bio(bio, intask);
315 }
316
f2fs_write_end_io(struct bio * bio)317 static void f2fs_write_end_io(struct bio *bio)
318 {
319 struct f2fs_sb_info *sbi;
320 struct folio_iter fi;
321
322 iostat_update_and_unbind_ctx(bio);
323 sbi = bio->bi_private;
324
325 if (time_to_inject(sbi, FAULT_WRITE_IO))
326 bio->bi_status = BLK_STS_IOERR;
327
328 bio_for_each_folio_all(fi, bio) {
329 struct folio *folio = fi.folio;
330 enum count_type type;
331
332 if (fscrypt_is_bounce_folio(folio)) {
333 struct folio *io_folio = folio;
334
335 folio = fscrypt_pagecache_folio(io_folio);
336 fscrypt_free_bounce_page(&io_folio->page);
337 }
338
339 #ifdef CONFIG_F2FS_FS_COMPRESSION
340 if (f2fs_is_compressed_page(folio)) {
341 f2fs_compress_write_end_io(bio, folio);
342 continue;
343 }
344 #endif
345
346 type = WB_DATA_TYPE(folio, false);
347
348 if (unlikely(bio->bi_status != BLK_STS_OK)) {
349 mapping_set_error(folio->mapping, -EIO);
350 if (type == F2FS_WB_CP_DATA)
351 f2fs_stop_checkpoint(sbi, true,
352 STOP_CP_REASON_WRITE_FAIL);
353 }
354
355 f2fs_bug_on(sbi, is_node_folio(folio) &&
356 folio->index != nid_of_node(folio));
357
358 dec_page_count(sbi, type);
359 if (f2fs_in_warm_node_list(sbi, folio))
360 f2fs_del_fsync_node_entry(sbi, folio);
361 folio_clear_f2fs_gcing(folio);
362 folio_end_writeback(folio);
363 }
364 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
365 wq_has_sleeper(&sbi->cp_wait))
366 wake_up(&sbi->cp_wait);
367
368 bio_put(bio);
369 }
370
371 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_zone_write_end_io(struct bio * bio)372 static void f2fs_zone_write_end_io(struct bio *bio)
373 {
374 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
375
376 bio->bi_private = io->bi_private;
377 complete(&io->zone_wait);
378 f2fs_write_end_io(bio);
379 }
380 #endif
381
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,sector_t * sector)382 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
383 block_t blk_addr, sector_t *sector)
384 {
385 struct block_device *bdev = sbi->sb->s_bdev;
386 int i;
387
388 if (f2fs_is_multi_device(sbi)) {
389 for (i = 0; i < sbi->s_ndevs; i++) {
390 if (FDEV(i).start_blk <= blk_addr &&
391 FDEV(i).end_blk >= blk_addr) {
392 blk_addr -= FDEV(i).start_blk;
393 bdev = FDEV(i).bdev;
394 break;
395 }
396 }
397 }
398
399 if (sector)
400 *sector = SECTOR_FROM_BLOCK(blk_addr);
401 return bdev;
402 }
403
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)404 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
405 {
406 int i;
407
408 if (!f2fs_is_multi_device(sbi))
409 return 0;
410
411 for (i = 0; i < sbi->s_ndevs; i++)
412 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
413 return i;
414 return 0;
415 }
416
f2fs_io_flags(struct f2fs_io_info * fio)417 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
418 {
419 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
420 unsigned int fua_flag, meta_flag, io_flag;
421 blk_opf_t op_flags = 0;
422
423 if (fio->op != REQ_OP_WRITE)
424 return 0;
425 if (fio->type == DATA)
426 io_flag = fio->sbi->data_io_flag;
427 else if (fio->type == NODE)
428 io_flag = fio->sbi->node_io_flag;
429 else
430 return 0;
431
432 fua_flag = io_flag & temp_mask;
433 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
434
435 /*
436 * data/node io flag bits per temp:
437 * REQ_META | REQ_FUA |
438 * 5 | 4 | 3 | 2 | 1 | 0 |
439 * Cold | Warm | Hot | Cold | Warm | Hot |
440 */
441 if (BIT(fio->temp) & meta_flag)
442 op_flags |= REQ_META;
443 if (BIT(fio->temp) & fua_flag)
444 op_flags |= REQ_FUA;
445
446 if (fio->type == DATA &&
447 F2FS_I(fio->folio->mapping->host)->ioprio_hint == F2FS_IOPRIO_WRITE)
448 op_flags |= REQ_PRIO;
449
450 return op_flags;
451 }
452
__bio_alloc(struct f2fs_io_info * fio,int npages)453 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
454 {
455 struct f2fs_sb_info *sbi = fio->sbi;
456 struct block_device *bdev;
457 sector_t sector;
458 struct bio *bio;
459
460 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
461 bio = bio_alloc_bioset(bdev, npages,
462 fio->op | fio->op_flags | f2fs_io_flags(fio),
463 GFP_NOIO, &f2fs_bioset);
464 bio->bi_iter.bi_sector = sector;
465 if (is_read_io(fio->op)) {
466 bio->bi_end_io = f2fs_read_end_io;
467 bio->bi_private = NULL;
468 } else {
469 bio->bi_end_io = f2fs_write_end_io;
470 bio->bi_private = sbi;
471 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
472 fio->type, fio->temp);
473 }
474 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
475
476 if (fio->io_wbc)
477 wbc_init_bio(fio->io_wbc, bio);
478
479 return bio;
480 }
481
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)482 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
483 pgoff_t first_idx,
484 const struct f2fs_io_info *fio,
485 gfp_t gfp_mask)
486 {
487 /*
488 * The f2fs garbage collector sets ->encrypted_page when it wants to
489 * read/write raw data without encryption.
490 */
491 if (!fio || !fio->encrypted_page)
492 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
493 }
494
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)495 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
496 pgoff_t next_idx,
497 const struct f2fs_io_info *fio)
498 {
499 /*
500 * The f2fs garbage collector sets ->encrypted_page when it wants to
501 * read/write raw data without encryption.
502 */
503 if (fio && fio->encrypted_page)
504 return !bio_has_crypt_ctx(bio);
505
506 return fscrypt_mergeable_bio(bio, inode, next_idx);
507 }
508
f2fs_submit_read_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)509 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
510 enum page_type type)
511 {
512 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
513 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
514
515 iostat_update_submit_ctx(bio, type);
516 submit_bio(bio);
517 }
518
f2fs_submit_write_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)519 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
520 enum page_type type)
521 {
522 WARN_ON_ONCE(is_read_io(bio_op(bio)));
523 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524 iostat_update_submit_ctx(bio, type);
525 submit_bio(bio);
526 }
527
__submit_merged_bio(struct f2fs_bio_info * io)528 static void __submit_merged_bio(struct f2fs_bio_info *io)
529 {
530 struct f2fs_io_info *fio = &io->fio;
531
532 if (!io->bio)
533 return;
534
535 if (is_read_io(fio->op)) {
536 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
537 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
538 } else {
539 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
540 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
541 }
542 io->bio = NULL;
543 }
544
__has_merged_page(struct bio * bio,struct inode * inode,struct folio * folio,nid_t ino)545 static bool __has_merged_page(struct bio *bio, struct inode *inode,
546 struct folio *folio, nid_t ino)
547 {
548 struct folio_iter fi;
549
550 if (!bio)
551 return false;
552
553 if (!inode && !folio && !ino)
554 return true;
555
556 bio_for_each_folio_all(fi, bio) {
557 struct folio *target = fi.folio;
558
559 if (fscrypt_is_bounce_folio(target)) {
560 target = fscrypt_pagecache_folio(target);
561 if (IS_ERR(target))
562 continue;
563 }
564 if (f2fs_is_compressed_page(target)) {
565 target = f2fs_compress_control_folio(target);
566 if (IS_ERR(target))
567 continue;
568 }
569
570 if (inode && inode == target->mapping->host)
571 return true;
572 if (folio && folio == target)
573 return true;
574 if (ino && ino == ino_of_node(target))
575 return true;
576 }
577
578 return false;
579 }
580
f2fs_init_write_merge_io(struct f2fs_sb_info * sbi)581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 int i;
584
585 for (i = 0; i < NR_PAGE_TYPE; i++) {
586 int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 int j;
588
589 sbi->write_io[i] = f2fs_kmalloc(sbi,
590 array_size(n, sizeof(struct f2fs_bio_info)),
591 GFP_KERNEL);
592 if (!sbi->write_io[i])
593 return -ENOMEM;
594
595 for (j = HOT; j < n; j++) {
596 struct f2fs_bio_info *io = &sbi->write_io[i][j];
597
598 init_f2fs_rwsem(&io->io_rwsem);
599 io->sbi = sbi;
600 io->bio = NULL;
601 io->last_block_in_bio = 0;
602 spin_lock_init(&io->io_lock);
603 INIT_LIST_HEAD(&io->io_list);
604 INIT_LIST_HEAD(&io->bio_list);
605 init_f2fs_rwsem(&io->bio_list_lock);
606 #ifdef CONFIG_BLK_DEV_ZONED
607 init_completion(&io->zone_wait);
608 io->zone_pending_bio = NULL;
609 io->bi_private = NULL;
610 #endif
611 }
612 }
613
614 return 0;
615 }
616
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)617 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
618 enum page_type type, enum temp_type temp)
619 {
620 enum page_type btype = PAGE_TYPE_OF_BIO(type);
621 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
622
623 f2fs_down_write(&io->io_rwsem);
624
625 if (!io->bio)
626 goto unlock_out;
627
628 /* change META to META_FLUSH in the checkpoint procedure */
629 if (type >= META_FLUSH) {
630 io->fio.type = META_FLUSH;
631 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
632 if (!test_opt(sbi, NOBARRIER))
633 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
634 }
635 __submit_merged_bio(io);
636 unlock_out:
637 f2fs_up_write(&io->io_rwsem);
638 }
639
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct folio * folio,nid_t ino,enum page_type type,bool force)640 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
641 struct inode *inode, struct folio *folio,
642 nid_t ino, enum page_type type, bool force)
643 {
644 enum temp_type temp;
645 bool ret = true;
646
647 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
648 if (!force) {
649 enum page_type btype = PAGE_TYPE_OF_BIO(type);
650 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
651
652 f2fs_down_read(&io->io_rwsem);
653 ret = __has_merged_page(io->bio, inode, folio, ino);
654 f2fs_up_read(&io->io_rwsem);
655 }
656 if (ret)
657 __f2fs_submit_merged_write(sbi, type, temp);
658
659 /* TODO: use HOT temp only for meta pages now. */
660 if (type >= META)
661 break;
662 }
663 }
664
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)665 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
666 {
667 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
668 }
669
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct folio * folio,nid_t ino,enum page_type type)670 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
671 struct inode *inode, struct folio *folio,
672 nid_t ino, enum page_type type)
673 {
674 __submit_merged_write_cond(sbi, inode, folio, ino, type, false);
675 }
676
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)677 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
678 {
679 f2fs_submit_merged_write(sbi, DATA);
680 f2fs_submit_merged_write(sbi, NODE);
681 f2fs_submit_merged_write(sbi, META);
682 }
683
684 /*
685 * Fill the locked page with data located in the block address.
686 * A caller needs to unlock the page on failure.
687 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)688 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
689 {
690 struct bio *bio;
691 struct folio *fio_folio = fio->folio;
692 struct folio *data_folio = fio->encrypted_page ?
693 page_folio(fio->encrypted_page) : fio_folio;
694
695 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696 fio->is_por ? META_POR : (__is_meta_io(fio) ?
697 META_GENERIC : DATA_GENERIC_ENHANCE)))
698 return -EFSCORRUPTED;
699
700 trace_f2fs_submit_folio_bio(data_folio, fio);
701
702 /* Allocate a new bio */
703 bio = __bio_alloc(fio, 1);
704
705 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host,
706 fio_folio->index, fio, GFP_NOIO);
707 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0);
708
709 if (fio->io_wbc && !is_read_io(fio->op))
710 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE);
711
712 inc_page_count(fio->sbi, is_read_io(fio->op) ?
713 __read_io_type(data_folio) : WB_DATA_TYPE(fio->folio, false));
714
715 if (is_read_io(bio_op(bio)))
716 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
717 else
718 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
719 return 0;
720 }
721
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)722 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
723 block_t last_blkaddr, block_t cur_blkaddr)
724 {
725 if (unlikely(sbi->max_io_bytes &&
726 bio->bi_iter.bi_size >= sbi->max_io_bytes))
727 return false;
728 if (last_blkaddr + 1 != cur_blkaddr)
729 return false;
730 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
731 }
732
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)733 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
734 struct f2fs_io_info *fio)
735 {
736 if (io->fio.op != fio->op)
737 return false;
738 return io->fio.op_flags == fio->op_flags;
739 }
740
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)741 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
742 struct f2fs_bio_info *io,
743 struct f2fs_io_info *fio,
744 block_t last_blkaddr,
745 block_t cur_blkaddr)
746 {
747 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
748 return false;
749 return io_type_is_mergeable(io, fio);
750 }
751
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)752 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
753 struct page *page, enum temp_type temp)
754 {
755 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
756 struct bio_entry *be;
757
758 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
759 be->bio = bio;
760 bio_get(bio);
761
762 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
763 f2fs_bug_on(sbi, 1);
764
765 f2fs_down_write(&io->bio_list_lock);
766 list_add_tail(&be->list, &io->bio_list);
767 f2fs_up_write(&io->bio_list_lock);
768 }
769
del_bio_entry(struct bio_entry * be)770 static void del_bio_entry(struct bio_entry *be)
771 {
772 list_del(&be->list);
773 kmem_cache_free(bio_entry_slab, be);
774 }
775
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)776 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
777 struct page *page)
778 {
779 struct folio *fio_folio = fio->folio;
780 struct f2fs_sb_info *sbi = fio->sbi;
781 enum temp_type temp;
782 bool found = false;
783 int ret = -EAGAIN;
784
785 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
786 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
787 struct list_head *head = &io->bio_list;
788 struct bio_entry *be;
789
790 f2fs_down_write(&io->bio_list_lock);
791 list_for_each_entry(be, head, list) {
792 if (be->bio != *bio)
793 continue;
794
795 found = true;
796
797 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
798 *fio->last_block,
799 fio->new_blkaddr));
800 if (f2fs_crypt_mergeable_bio(*bio,
801 fio_folio->mapping->host,
802 fio_folio->index, fio) &&
803 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
804 PAGE_SIZE) {
805 ret = 0;
806 break;
807 }
808
809 /* page can't be merged into bio; submit the bio */
810 del_bio_entry(be);
811 f2fs_submit_write_bio(sbi, *bio, DATA);
812 break;
813 }
814 f2fs_up_write(&io->bio_list_lock);
815 }
816
817 if (ret) {
818 bio_put(*bio);
819 *bio = NULL;
820 }
821
822 return ret;
823 }
824
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct folio * folio)825 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
826 struct bio **bio, struct folio *folio)
827 {
828 enum temp_type temp;
829 bool found = false;
830 struct bio *target = bio ? *bio : NULL;
831
832 f2fs_bug_on(sbi, !target && !folio);
833
834 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
835 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
836 struct list_head *head = &io->bio_list;
837 struct bio_entry *be;
838
839 if (list_empty(head))
840 continue;
841
842 f2fs_down_read(&io->bio_list_lock);
843 list_for_each_entry(be, head, list) {
844 if (target)
845 found = (target == be->bio);
846 else
847 found = __has_merged_page(be->bio, NULL,
848 folio, 0);
849 if (found)
850 break;
851 }
852 f2fs_up_read(&io->bio_list_lock);
853
854 if (!found)
855 continue;
856
857 found = false;
858
859 f2fs_down_write(&io->bio_list_lock);
860 list_for_each_entry(be, head, list) {
861 if (target)
862 found = (target == be->bio);
863 else
864 found = __has_merged_page(be->bio, NULL,
865 folio, 0);
866 if (found) {
867 target = be->bio;
868 del_bio_entry(be);
869 break;
870 }
871 }
872 f2fs_up_write(&io->bio_list_lock);
873 }
874
875 if (found)
876 f2fs_submit_write_bio(sbi, target, DATA);
877 if (bio && *bio) {
878 bio_put(*bio);
879 *bio = NULL;
880 }
881 }
882
f2fs_merge_page_bio(struct f2fs_io_info * fio)883 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
884 {
885 struct bio *bio = *fio->bio;
886 struct folio *data_folio = fio->encrypted_page ?
887 page_folio(fio->encrypted_page) : fio->folio;
888 struct folio *folio = fio->folio;
889
890 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
891 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
892 return -EFSCORRUPTED;
893
894 trace_f2fs_submit_folio_bio(data_folio, fio);
895
896 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
897 fio->new_blkaddr))
898 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
899 alloc_new:
900 if (!bio) {
901 bio = __bio_alloc(fio, BIO_MAX_VECS);
902 f2fs_set_bio_crypt_ctx(bio, folio->mapping->host,
903 folio->index, fio, GFP_NOIO);
904
905 add_bio_entry(fio->sbi, bio, &data_folio->page, fio->temp);
906 } else {
907 if (add_ipu_page(fio, &bio, &data_folio->page))
908 goto alloc_new;
909 }
910
911 if (fio->io_wbc)
912 wbc_account_cgroup_owner(fio->io_wbc, folio, folio_size(folio));
913
914 inc_page_count(fio->sbi, WB_DATA_TYPE(data_folio, false));
915
916 *fio->last_block = fio->new_blkaddr;
917 *fio->bio = bio;
918
919 return 0;
920 }
921
922 #ifdef CONFIG_BLK_DEV_ZONED
is_end_zone_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr)923 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
924 {
925 struct block_device *bdev = sbi->sb->s_bdev;
926 int devi = 0;
927
928 if (f2fs_is_multi_device(sbi)) {
929 devi = f2fs_target_device_index(sbi, blkaddr);
930 if (blkaddr < FDEV(devi).start_blk ||
931 blkaddr > FDEV(devi).end_blk) {
932 f2fs_err(sbi, "Invalid block %x", blkaddr);
933 return false;
934 }
935 blkaddr -= FDEV(devi).start_blk;
936 bdev = FDEV(devi).bdev;
937 }
938 return bdev_is_zoned(bdev) &&
939 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
940 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
941 }
942 #endif
943
f2fs_submit_page_write(struct f2fs_io_info * fio)944 void f2fs_submit_page_write(struct f2fs_io_info *fio)
945 {
946 struct f2fs_sb_info *sbi = fio->sbi;
947 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
948 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
949 struct folio *bio_folio;
950 enum count_type type;
951
952 f2fs_bug_on(sbi, is_read_io(fio->op));
953
954 f2fs_down_write(&io->io_rwsem);
955 next:
956 #ifdef CONFIG_BLK_DEV_ZONED
957 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
958 wait_for_completion_io(&io->zone_wait);
959 bio_put(io->zone_pending_bio);
960 io->zone_pending_bio = NULL;
961 io->bi_private = NULL;
962 }
963 #endif
964
965 if (fio->in_list) {
966 spin_lock(&io->io_lock);
967 if (list_empty(&io->io_list)) {
968 spin_unlock(&io->io_lock);
969 goto out;
970 }
971 fio = list_first_entry(&io->io_list,
972 struct f2fs_io_info, list);
973 list_del(&fio->list);
974 spin_unlock(&io->io_lock);
975 }
976
977 verify_fio_blkaddr(fio);
978
979 if (fio->encrypted_page)
980 bio_folio = page_folio(fio->encrypted_page);
981 else if (fio->compressed_page)
982 bio_folio = page_folio(fio->compressed_page);
983 else
984 bio_folio = fio->folio;
985
986 /* set submitted = true as a return value */
987 fio->submitted = 1;
988
989 type = WB_DATA_TYPE(bio_folio, fio->compressed_page);
990 inc_page_count(sbi, type);
991
992 if (io->bio &&
993 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
994 fio->new_blkaddr) ||
995 !f2fs_crypt_mergeable_bio(io->bio, fio_inode(fio),
996 bio_folio->index, fio)))
997 __submit_merged_bio(io);
998 alloc_new:
999 if (io->bio == NULL) {
1000 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1001 f2fs_set_bio_crypt_ctx(io->bio, fio_inode(fio),
1002 bio_folio->index, fio, GFP_NOIO);
1003 io->fio = *fio;
1004 }
1005
1006 if (!bio_add_folio(io->bio, bio_folio, folio_size(bio_folio), 0)) {
1007 __submit_merged_bio(io);
1008 goto alloc_new;
1009 }
1010
1011 if (fio->io_wbc)
1012 wbc_account_cgroup_owner(fio->io_wbc, fio->folio,
1013 folio_size(fio->folio));
1014
1015 io->last_block_in_bio = fio->new_blkaddr;
1016
1017 trace_f2fs_submit_folio_write(fio->folio, fio);
1018 #ifdef CONFIG_BLK_DEV_ZONED
1019 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1020 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1021 bio_get(io->bio);
1022 reinit_completion(&io->zone_wait);
1023 io->bi_private = io->bio->bi_private;
1024 io->bio->bi_private = io;
1025 io->bio->bi_end_io = f2fs_zone_write_end_io;
1026 io->zone_pending_bio = io->bio;
1027 __submit_merged_bio(io);
1028 }
1029 #endif
1030 if (fio->in_list)
1031 goto next;
1032 out:
1033 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1034 !f2fs_is_checkpoint_ready(sbi))
1035 __submit_merged_bio(io);
1036 f2fs_up_write(&io->io_rwsem);
1037 }
1038
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,blk_opf_t op_flag,pgoff_t first_idx,bool for_write)1039 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1040 unsigned nr_pages, blk_opf_t op_flag,
1041 pgoff_t first_idx, bool for_write)
1042 {
1043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1044 struct bio *bio;
1045 struct bio_post_read_ctx *ctx = NULL;
1046 unsigned int post_read_steps = 0;
1047 sector_t sector;
1048 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1049
1050 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1051 REQ_OP_READ | op_flag,
1052 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1053 bio->bi_iter.bi_sector = sector;
1054 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1055 bio->bi_end_io = f2fs_read_end_io;
1056
1057 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1058 post_read_steps |= STEP_DECRYPT;
1059
1060 if (f2fs_need_verity(inode, first_idx))
1061 post_read_steps |= STEP_VERITY;
1062
1063 /*
1064 * STEP_DECOMPRESS is handled specially, since a compressed file might
1065 * contain both compressed and uncompressed clusters. We'll allocate a
1066 * bio_post_read_ctx if the file is compressed, but the caller is
1067 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1068 */
1069
1070 if (post_read_steps || f2fs_compressed_file(inode)) {
1071 /* Due to the mempool, this never fails. */
1072 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1073 ctx->bio = bio;
1074 ctx->sbi = sbi;
1075 ctx->enabled_steps = post_read_steps;
1076 ctx->fs_blkaddr = blkaddr;
1077 ctx->decompression_attempted = false;
1078 bio->bi_private = ctx;
1079 }
1080 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1081
1082 return bio;
1083 }
1084
1085 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct folio * folio,block_t blkaddr,blk_opf_t op_flags,bool for_write)1086 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1087 block_t blkaddr, blk_opf_t op_flags,
1088 bool for_write)
1089 {
1090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1091 struct bio *bio;
1092
1093 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1094 folio->index, for_write);
1095 if (IS_ERR(bio))
1096 return PTR_ERR(bio);
1097
1098 /* wait for GCed page writeback via META_MAPPING */
1099 f2fs_wait_on_block_writeback(inode, blkaddr);
1100
1101 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1102 iostat_update_and_unbind_ctx(bio);
1103 if (bio->bi_private)
1104 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1105 bio_put(bio);
1106 return -EFAULT;
1107 }
1108 inc_page_count(sbi, F2FS_RD_DATA);
1109 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1110 f2fs_submit_read_bio(sbi, bio, DATA);
1111 return 0;
1112 }
1113
__set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1114 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1115 {
1116 __le32 *addr = get_dnode_addr(dn->inode, dn->node_folio);
1117
1118 dn->data_blkaddr = blkaddr;
1119 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1120 }
1121
1122 /*
1123 * Lock ordering for the change of data block address:
1124 * ->data_page
1125 * ->node_folio
1126 * update block addresses in the node page
1127 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1128 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1129 {
1130 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1131 __set_data_blkaddr(dn, blkaddr);
1132 if (folio_mark_dirty(dn->node_folio))
1133 dn->node_changed = true;
1134 }
1135
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1136 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1137 {
1138 f2fs_set_data_blkaddr(dn, blkaddr);
1139 f2fs_update_read_extent_cache(dn);
1140 }
1141
1142 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1143 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1144 {
1145 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1146 int err;
1147
1148 if (!count)
1149 return 0;
1150
1151 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1152 return -EPERM;
1153 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1154 if (unlikely(err))
1155 return err;
1156
1157 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1158 dn->ofs_in_node, count);
1159
1160 f2fs_folio_wait_writeback(dn->node_folio, NODE, true, true);
1161
1162 for (; count > 0; dn->ofs_in_node++) {
1163 block_t blkaddr = f2fs_data_blkaddr(dn);
1164
1165 if (blkaddr == NULL_ADDR) {
1166 __set_data_blkaddr(dn, NEW_ADDR);
1167 count--;
1168 }
1169 }
1170
1171 if (folio_mark_dirty(dn->node_folio))
1172 dn->node_changed = true;
1173 return 0;
1174 }
1175
1176 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1177 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1178 {
1179 unsigned int ofs_in_node = dn->ofs_in_node;
1180 int ret;
1181
1182 ret = f2fs_reserve_new_blocks(dn, 1);
1183 dn->ofs_in_node = ofs_in_node;
1184 return ret;
1185 }
1186
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1187 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1188 {
1189 bool need_put = dn->inode_folio ? false : true;
1190 int err;
1191
1192 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1193 if (err)
1194 return err;
1195
1196 if (dn->data_blkaddr == NULL_ADDR)
1197 err = f2fs_reserve_new_block(dn);
1198 if (err || need_put)
1199 f2fs_put_dnode(dn);
1200 return err;
1201 }
1202
f2fs_get_read_data_folio(struct inode * inode,pgoff_t index,blk_opf_t op_flags,bool for_write,pgoff_t * next_pgofs)1203 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
1204 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs)
1205 {
1206 struct address_space *mapping = inode->i_mapping;
1207 struct dnode_of_data dn;
1208 struct folio *folio;
1209 int err;
1210
1211 folio = f2fs_grab_cache_folio(mapping, index, for_write);
1212 if (IS_ERR(folio))
1213 return folio;
1214
1215 if (f2fs_lookup_read_extent_cache_block(inode, index,
1216 &dn.data_blkaddr)) {
1217 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1218 DATA_GENERIC_ENHANCE_READ)) {
1219 err = -EFSCORRUPTED;
1220 goto put_err;
1221 }
1222 goto got_it;
1223 }
1224
1225 set_new_dnode(&dn, inode, NULL, NULL, 0);
1226 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1227 if (err) {
1228 if (err == -ENOENT && next_pgofs)
1229 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1230 goto put_err;
1231 }
1232 f2fs_put_dnode(&dn);
1233
1234 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1235 err = -ENOENT;
1236 if (next_pgofs)
1237 *next_pgofs = index + 1;
1238 goto put_err;
1239 }
1240 if (dn.data_blkaddr != NEW_ADDR &&
1241 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1242 dn.data_blkaddr,
1243 DATA_GENERIC_ENHANCE)) {
1244 err = -EFSCORRUPTED;
1245 goto put_err;
1246 }
1247 got_it:
1248 if (folio_test_uptodate(folio)) {
1249 folio_unlock(folio);
1250 return folio;
1251 }
1252
1253 /*
1254 * A new dentry page is allocated but not able to be written, since its
1255 * new inode page couldn't be allocated due to -ENOSPC.
1256 * In such the case, its blkaddr can be remained as NEW_ADDR.
1257 * see, f2fs_add_link -> f2fs_get_new_data_folio ->
1258 * f2fs_init_inode_metadata.
1259 */
1260 if (dn.data_blkaddr == NEW_ADDR) {
1261 folio_zero_segment(folio, 0, folio_size(folio));
1262 if (!folio_test_uptodate(folio))
1263 folio_mark_uptodate(folio);
1264 folio_unlock(folio);
1265 return folio;
1266 }
1267
1268 err = f2fs_submit_page_read(inode, folio, dn.data_blkaddr,
1269 op_flags, for_write);
1270 if (err)
1271 goto put_err;
1272 return folio;
1273
1274 put_err:
1275 f2fs_folio_put(folio, true);
1276 return ERR_PTR(err);
1277 }
1278
f2fs_find_data_folio(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)1279 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
1280 pgoff_t *next_pgofs)
1281 {
1282 struct address_space *mapping = inode->i_mapping;
1283 struct folio *folio;
1284
1285 folio = __filemap_get_folio(mapping, index, FGP_ACCESSED, 0);
1286 if (IS_ERR(folio))
1287 goto read;
1288 if (folio_test_uptodate(folio))
1289 return folio;
1290 f2fs_folio_put(folio, false);
1291
1292 read:
1293 folio = f2fs_get_read_data_folio(inode, index, 0, false, next_pgofs);
1294 if (IS_ERR(folio))
1295 return folio;
1296
1297 if (folio_test_uptodate(folio))
1298 return folio;
1299
1300 folio_wait_locked(folio);
1301 if (unlikely(!folio_test_uptodate(folio))) {
1302 f2fs_folio_put(folio, false);
1303 return ERR_PTR(-EIO);
1304 }
1305 return folio;
1306 }
1307
1308 /*
1309 * If it tries to access a hole, return an error.
1310 * Because, the callers, functions in dir.c and GC, should be able to know
1311 * whether this page exists or not.
1312 */
f2fs_get_lock_data_folio(struct inode * inode,pgoff_t index,bool for_write)1313 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
1314 bool for_write)
1315 {
1316 struct address_space *mapping = inode->i_mapping;
1317 struct folio *folio;
1318
1319 folio = f2fs_get_read_data_folio(inode, index, 0, for_write, NULL);
1320 if (IS_ERR(folio))
1321 return folio;
1322
1323 /* wait for read completion */
1324 folio_lock(folio);
1325 if (unlikely(folio->mapping != mapping || !folio_test_uptodate(folio))) {
1326 f2fs_folio_put(folio, true);
1327 return ERR_PTR(-EIO);
1328 }
1329 return folio;
1330 }
1331
1332 /*
1333 * Caller ensures that this data page is never allocated.
1334 * A new zero-filled data page is allocated in the page cache.
1335 *
1336 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1337 * f2fs_unlock_op().
1338 * Note that, ifolio is set only by make_empty_dir, and if any error occur,
1339 * ifolio should be released by this function.
1340 */
f2fs_get_new_data_folio(struct inode * inode,struct folio * ifolio,pgoff_t index,bool new_i_size)1341 struct folio *f2fs_get_new_data_folio(struct inode *inode,
1342 struct folio *ifolio, pgoff_t index, bool new_i_size)
1343 {
1344 struct address_space *mapping = inode->i_mapping;
1345 struct folio *folio;
1346 struct dnode_of_data dn;
1347 int err;
1348
1349 folio = f2fs_grab_cache_folio(mapping, index, true);
1350 if (IS_ERR(folio)) {
1351 /*
1352 * before exiting, we should make sure ifolio will be released
1353 * if any error occur.
1354 */
1355 f2fs_folio_put(ifolio, true);
1356 return ERR_PTR(-ENOMEM);
1357 }
1358
1359 set_new_dnode(&dn, inode, ifolio, NULL, 0);
1360 err = f2fs_reserve_block(&dn, index);
1361 if (err) {
1362 f2fs_folio_put(folio, true);
1363 return ERR_PTR(err);
1364 }
1365 if (!ifolio)
1366 f2fs_put_dnode(&dn);
1367
1368 if (folio_test_uptodate(folio))
1369 goto got_it;
1370
1371 if (dn.data_blkaddr == NEW_ADDR) {
1372 folio_zero_segment(folio, 0, folio_size(folio));
1373 if (!folio_test_uptodate(folio))
1374 folio_mark_uptodate(folio);
1375 } else {
1376 f2fs_folio_put(folio, true);
1377
1378 /* if ifolio exists, blkaddr should be NEW_ADDR */
1379 f2fs_bug_on(F2FS_I_SB(inode), ifolio);
1380 folio = f2fs_get_lock_data_folio(inode, index, true);
1381 if (IS_ERR(folio))
1382 return folio;
1383 }
1384 got_it:
1385 if (new_i_size && i_size_read(inode) <
1386 ((loff_t)(index + 1) << PAGE_SHIFT))
1387 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1388 return folio;
1389 }
1390
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1391 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1392 {
1393 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1394 struct f2fs_summary sum;
1395 struct node_info ni;
1396 block_t old_blkaddr;
1397 blkcnt_t count = 1;
1398 int err;
1399
1400 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1401 return -EPERM;
1402
1403 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1404 if (err)
1405 return err;
1406
1407 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1408 if (dn->data_blkaddr == NULL_ADDR) {
1409 err = inc_valid_block_count(sbi, dn->inode, &count, true);
1410 if (unlikely(err))
1411 return err;
1412 }
1413
1414 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1415 old_blkaddr = dn->data_blkaddr;
1416 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1417 &dn->data_blkaddr, &sum, seg_type, NULL);
1418 if (err)
1419 return err;
1420
1421 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1422 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
1423
1424 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1425 return 0;
1426 }
1427
f2fs_map_lock(struct f2fs_sb_info * sbi,int flag)1428 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1429 {
1430 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1431 f2fs_down_read(&sbi->node_change);
1432 else
1433 f2fs_lock_op(sbi);
1434 }
1435
f2fs_map_unlock(struct f2fs_sb_info * sbi,int flag)1436 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1437 {
1438 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1439 f2fs_up_read(&sbi->node_change);
1440 else
1441 f2fs_unlock_op(sbi);
1442 }
1443
f2fs_get_block_locked(struct dnode_of_data * dn,pgoff_t index)1444 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1445 {
1446 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1447 int err = 0;
1448
1449 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1450 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1451 &dn->data_blkaddr))
1452 err = f2fs_reserve_block(dn, index);
1453 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1454
1455 return err;
1456 }
1457
f2fs_map_no_dnode(struct inode * inode,struct f2fs_map_blocks * map,struct dnode_of_data * dn,pgoff_t pgoff)1458 static int f2fs_map_no_dnode(struct inode *inode,
1459 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1460 pgoff_t pgoff)
1461 {
1462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1463
1464 /*
1465 * There is one exceptional case that read_node_page() may return
1466 * -ENOENT due to filesystem has been shutdown or cp_error, return
1467 * -EIO in that case.
1468 */
1469 if (map->m_may_create &&
1470 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1471 return -EIO;
1472
1473 if (map->m_next_pgofs)
1474 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1475 if (map->m_next_extent)
1476 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1477 return 0;
1478 }
1479
f2fs_map_blocks_cached(struct inode * inode,struct f2fs_map_blocks * map,int flag)1480 static bool f2fs_map_blocks_cached(struct inode *inode,
1481 struct f2fs_map_blocks *map, int flag)
1482 {
1483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1484 unsigned int maxblocks = map->m_len;
1485 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1486 struct extent_info ei = {};
1487
1488 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1489 return false;
1490
1491 map->m_pblk = ei.blk + pgoff - ei.fofs;
1492 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1493 map->m_flags = F2FS_MAP_MAPPED;
1494 if (map->m_next_extent)
1495 *map->m_next_extent = pgoff + map->m_len;
1496
1497 /* for hardware encryption, but to avoid potential issue in future */
1498 if (flag == F2FS_GET_BLOCK_DIO)
1499 f2fs_wait_on_block_writeback_range(inode,
1500 map->m_pblk, map->m_len);
1501
1502 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1503 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1504 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1505
1506 map->m_bdev = dev->bdev;
1507 map->m_pblk -= dev->start_blk;
1508 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1509 } else {
1510 map->m_bdev = inode->i_sb->s_bdev;
1511 }
1512 return true;
1513 }
1514
map_is_mergeable(struct f2fs_sb_info * sbi,struct f2fs_map_blocks * map,block_t blkaddr,int flag,int bidx,int ofs)1515 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1516 struct f2fs_map_blocks *map,
1517 block_t blkaddr, int flag, int bidx,
1518 int ofs)
1519 {
1520 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1521 return false;
1522 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1523 return true;
1524 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1525 return true;
1526 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1527 return true;
1528 if (flag == F2FS_GET_BLOCK_DIO &&
1529 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1530 return true;
1531 return false;
1532 }
1533
1534 /*
1535 * f2fs_map_blocks() tries to find or build mapping relationship which
1536 * maps continuous logical blocks to physical blocks, and return such
1537 * info via f2fs_map_blocks structure.
1538 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int flag)1539 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1540 {
1541 unsigned int maxblocks = map->m_len;
1542 struct dnode_of_data dn;
1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1544 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1545 pgoff_t pgofs, end_offset, end;
1546 int err = 0, ofs = 1;
1547 unsigned int ofs_in_node, last_ofs_in_node;
1548 blkcnt_t prealloc;
1549 block_t blkaddr;
1550 unsigned int start_pgofs;
1551 int bidx = 0;
1552 bool is_hole;
1553 bool lfs_dio_write;
1554
1555 if (!maxblocks)
1556 return 0;
1557
1558 lfs_dio_write = (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1559 map->m_may_create);
1560
1561 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1562 goto out;
1563
1564 map->m_bdev = inode->i_sb->s_bdev;
1565 map->m_multidev_dio =
1566 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1567
1568 map->m_len = 0;
1569 map->m_flags = 0;
1570
1571 /* it only supports block size == page size */
1572 pgofs = (pgoff_t)map->m_lblk;
1573 end = pgofs + maxblocks;
1574
1575 next_dnode:
1576 if (map->m_may_create) {
1577 if (f2fs_lfs_mode(sbi))
1578 f2fs_balance_fs(sbi, true);
1579 f2fs_map_lock(sbi, flag);
1580 }
1581
1582 /* When reading holes, we need its node page */
1583 set_new_dnode(&dn, inode, NULL, NULL, 0);
1584 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1585 if (err) {
1586 if (flag == F2FS_GET_BLOCK_BMAP)
1587 map->m_pblk = 0;
1588 if (err == -ENOENT)
1589 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1590 goto unlock_out;
1591 }
1592
1593 start_pgofs = pgofs;
1594 prealloc = 0;
1595 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1596 end_offset = ADDRS_PER_PAGE(dn.node_folio, inode);
1597
1598 next_block:
1599 blkaddr = f2fs_data_blkaddr(&dn);
1600 is_hole = !__is_valid_data_blkaddr(blkaddr);
1601 if (!is_hole &&
1602 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1603 err = -EFSCORRUPTED;
1604 goto sync_out;
1605 }
1606
1607 /* use out-place-update for direct IO under LFS mode */
1608 if (map->m_may_create && (is_hole ||
1609 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1610 !f2fs_is_pinned_file(inode) && map->m_last_pblk != blkaddr))) {
1611 if (unlikely(f2fs_cp_error(sbi))) {
1612 err = -EIO;
1613 goto sync_out;
1614 }
1615
1616 switch (flag) {
1617 case F2FS_GET_BLOCK_PRE_AIO:
1618 if (blkaddr == NULL_ADDR) {
1619 prealloc++;
1620 last_ofs_in_node = dn.ofs_in_node;
1621 }
1622 break;
1623 case F2FS_GET_BLOCK_PRE_DIO:
1624 case F2FS_GET_BLOCK_DIO:
1625 err = __allocate_data_block(&dn, map->m_seg_type);
1626 if (err)
1627 goto sync_out;
1628 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1629 file_need_truncate(inode);
1630 set_inode_flag(inode, FI_APPEND_WRITE);
1631 break;
1632 default:
1633 WARN_ON_ONCE(1);
1634 err = -EIO;
1635 goto sync_out;
1636 }
1637
1638 blkaddr = dn.data_blkaddr;
1639 if (is_hole)
1640 map->m_flags |= F2FS_MAP_NEW;
1641 } else if (is_hole) {
1642 if (f2fs_compressed_file(inode) &&
1643 f2fs_sanity_check_cluster(&dn)) {
1644 err = -EFSCORRUPTED;
1645 f2fs_handle_error(sbi,
1646 ERROR_CORRUPTED_CLUSTER);
1647 goto sync_out;
1648 }
1649
1650 switch (flag) {
1651 case F2FS_GET_BLOCK_PRECACHE:
1652 goto sync_out;
1653 case F2FS_GET_BLOCK_BMAP:
1654 map->m_pblk = 0;
1655 goto sync_out;
1656 case F2FS_GET_BLOCK_FIEMAP:
1657 if (blkaddr == NULL_ADDR) {
1658 if (map->m_next_pgofs)
1659 *map->m_next_pgofs = pgofs + 1;
1660 goto sync_out;
1661 }
1662 break;
1663 case F2FS_GET_BLOCK_DIO:
1664 if (map->m_next_pgofs)
1665 *map->m_next_pgofs = pgofs + 1;
1666 break;
1667 default:
1668 /* for defragment case */
1669 if (map->m_next_pgofs)
1670 *map->m_next_pgofs = pgofs + 1;
1671 goto sync_out;
1672 }
1673 }
1674
1675 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1676 goto skip;
1677
1678 if (map->m_multidev_dio)
1679 bidx = f2fs_target_device_index(sbi, blkaddr);
1680
1681 if (map->m_len == 0) {
1682 /* reserved delalloc block should be mapped for fiemap. */
1683 if (blkaddr == NEW_ADDR)
1684 map->m_flags |= F2FS_MAP_DELALLOC;
1685 /* DIO READ and hole case, should not map the blocks. */
1686 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create))
1687 map->m_flags |= F2FS_MAP_MAPPED;
1688
1689 map->m_pblk = blkaddr;
1690 map->m_len = 1;
1691
1692 if (map->m_multidev_dio)
1693 map->m_bdev = FDEV(bidx).bdev;
1694
1695 if (lfs_dio_write)
1696 map->m_last_pblk = NULL_ADDR;
1697 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1698 ofs++;
1699 map->m_len++;
1700 } else {
1701 if (lfs_dio_write && !f2fs_is_pinned_file(inode))
1702 map->m_last_pblk = blkaddr;
1703 goto sync_out;
1704 }
1705
1706 skip:
1707 dn.ofs_in_node++;
1708 pgofs++;
1709
1710 /* preallocate blocks in batch for one dnode page */
1711 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1712 (pgofs == end || dn.ofs_in_node == end_offset)) {
1713
1714 dn.ofs_in_node = ofs_in_node;
1715 err = f2fs_reserve_new_blocks(&dn, prealloc);
1716 if (err)
1717 goto sync_out;
1718
1719 map->m_len += dn.ofs_in_node - ofs_in_node;
1720 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1721 err = -ENOSPC;
1722 goto sync_out;
1723 }
1724 dn.ofs_in_node = end_offset;
1725 }
1726
1727 if (pgofs >= end)
1728 goto sync_out;
1729 else if (dn.ofs_in_node < end_offset)
1730 goto next_block;
1731
1732 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1733 if (map->m_flags & F2FS_MAP_MAPPED) {
1734 unsigned int ofs = start_pgofs - map->m_lblk;
1735
1736 f2fs_update_read_extent_cache_range(&dn,
1737 start_pgofs, map->m_pblk + ofs,
1738 map->m_len - ofs);
1739 }
1740 }
1741
1742 f2fs_put_dnode(&dn);
1743
1744 if (map->m_may_create) {
1745 f2fs_map_unlock(sbi, flag);
1746 f2fs_balance_fs(sbi, dn.node_changed);
1747 }
1748 goto next_dnode;
1749
1750 sync_out:
1751
1752 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1753 /*
1754 * for hardware encryption, but to avoid potential issue
1755 * in future
1756 */
1757 f2fs_wait_on_block_writeback_range(inode,
1758 map->m_pblk, map->m_len);
1759
1760 if (map->m_multidev_dio) {
1761 block_t blk_addr = map->m_pblk;
1762
1763 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1764
1765 map->m_bdev = FDEV(bidx).bdev;
1766 map->m_pblk -= FDEV(bidx).start_blk;
1767
1768 if (map->m_may_create)
1769 f2fs_update_device_state(sbi, inode->i_ino,
1770 blk_addr, map->m_len);
1771
1772 f2fs_bug_on(sbi, blk_addr + map->m_len >
1773 FDEV(bidx).end_blk + 1);
1774 }
1775 }
1776
1777 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1778 if (map->m_flags & F2FS_MAP_MAPPED) {
1779 unsigned int ofs = start_pgofs - map->m_lblk;
1780
1781 f2fs_update_read_extent_cache_range(&dn,
1782 start_pgofs, map->m_pblk + ofs,
1783 map->m_len - ofs);
1784 }
1785 if (map->m_next_extent)
1786 *map->m_next_extent = pgofs + 1;
1787 }
1788 f2fs_put_dnode(&dn);
1789 unlock_out:
1790 if (map->m_may_create) {
1791 f2fs_map_unlock(sbi, flag);
1792 f2fs_balance_fs(sbi, dn.node_changed);
1793 }
1794 out:
1795 trace_f2fs_map_blocks(inode, map, flag, err);
1796 return err;
1797 }
1798
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1799 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1800 {
1801 struct f2fs_map_blocks map;
1802 block_t last_lblk;
1803 int err;
1804
1805 if (pos + len > i_size_read(inode))
1806 return false;
1807
1808 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1809 map.m_next_pgofs = NULL;
1810 map.m_next_extent = NULL;
1811 map.m_seg_type = NO_CHECK_TYPE;
1812 map.m_may_create = false;
1813 last_lblk = F2FS_BLK_ALIGN(pos + len);
1814
1815 while (map.m_lblk < last_lblk) {
1816 map.m_len = last_lblk - map.m_lblk;
1817 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1818 if (err || map.m_len == 0)
1819 return false;
1820 map.m_lblk += map.m_len;
1821 }
1822 return true;
1823 }
1824
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1825 static int f2fs_xattr_fiemap(struct inode *inode,
1826 struct fiemap_extent_info *fieinfo)
1827 {
1828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1829 struct node_info ni;
1830 __u64 phys = 0, len;
1831 __u32 flags;
1832 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833 int err = 0;
1834
1835 if (f2fs_has_inline_xattr(inode)) {
1836 int offset;
1837 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1838 inode->i_ino, false);
1839
1840 if (IS_ERR(folio))
1841 return PTR_ERR(folio);
1842
1843 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1844 if (err) {
1845 f2fs_folio_put(folio, true);
1846 return err;
1847 }
1848
1849 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1850 offset = offsetof(struct f2fs_inode, i_addr) +
1851 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1852 get_inline_xattr_addrs(inode));
1853
1854 phys += offset;
1855 len = inline_xattr_size(inode);
1856
1857 f2fs_folio_put(folio, true);
1858
1859 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860
1861 if (!xnid)
1862 flags |= FIEMAP_EXTENT_LAST;
1863
1864 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1865 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1866 if (err)
1867 return err;
1868 }
1869
1870 if (xnid) {
1871 struct folio *folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi),
1872 xnid, false);
1873
1874 if (IS_ERR(folio))
1875 return PTR_ERR(folio);
1876
1877 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1878 if (err) {
1879 f2fs_folio_put(folio, true);
1880 return err;
1881 }
1882
1883 phys = F2FS_BLK_TO_BYTES(ni.blk_addr);
1884 len = inode->i_sb->s_blocksize;
1885
1886 f2fs_folio_put(folio, true);
1887
1888 flags = FIEMAP_EXTENT_LAST;
1889 }
1890
1891 if (phys) {
1892 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1893 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1894 }
1895
1896 return (err < 0 ? err : 0);
1897 }
1898
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1899 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1900 u64 start, u64 len)
1901 {
1902 struct f2fs_map_blocks map;
1903 sector_t start_blk, last_blk, blk_len, max_len;
1904 pgoff_t next_pgofs;
1905 u64 logical = 0, phys = 0, size = 0;
1906 u32 flags = 0;
1907 int ret = 0;
1908 bool compr_cluster = false, compr_appended;
1909 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1910 unsigned int count_in_cluster = 0;
1911 loff_t maxbytes;
1912
1913 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1914 ret = f2fs_precache_extents(inode);
1915 if (ret)
1916 return ret;
1917 }
1918
1919 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1920 if (ret)
1921 return ret;
1922
1923 inode_lock_shared(inode);
1924
1925 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1926 if (start > maxbytes) {
1927 ret = -EFBIG;
1928 goto out;
1929 }
1930
1931 if (len > maxbytes || (maxbytes - len) < start)
1932 len = maxbytes - start;
1933
1934 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1935 ret = f2fs_xattr_fiemap(inode, fieinfo);
1936 goto out;
1937 }
1938
1939 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1940 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1941 if (ret != -EAGAIN)
1942 goto out;
1943 }
1944
1945 start_blk = F2FS_BYTES_TO_BLK(start);
1946 last_blk = F2FS_BYTES_TO_BLK(start + len - 1);
1947 blk_len = last_blk - start_blk + 1;
1948 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk;
1949
1950 next:
1951 memset(&map, 0, sizeof(map));
1952 map.m_lblk = start_blk;
1953 map.m_len = blk_len;
1954 map.m_next_pgofs = &next_pgofs;
1955 map.m_seg_type = NO_CHECK_TYPE;
1956
1957 if (compr_cluster) {
1958 map.m_lblk += 1;
1959 map.m_len = cluster_size - count_in_cluster;
1960 }
1961
1962 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1963 if (ret)
1964 goto out;
1965
1966 /* HOLE */
1967 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1968 start_blk = next_pgofs;
1969
1970 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes)
1971 goto prep_next;
1972
1973 flags |= FIEMAP_EXTENT_LAST;
1974 }
1975
1976 /*
1977 * current extent may cross boundary of inquiry, increase len to
1978 * requery.
1979 */
1980 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) &&
1981 map.m_lblk + map.m_len - 1 == last_blk &&
1982 blk_len != max_len) {
1983 blk_len = max_len;
1984 goto next;
1985 }
1986
1987 compr_appended = false;
1988 /* In a case of compressed cluster, append this to the last extent */
1989 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1990 !(map.m_flags & F2FS_MAP_FLAGS))) {
1991 compr_appended = true;
1992 goto skip_fill;
1993 }
1994
1995 if (size) {
1996 flags |= FIEMAP_EXTENT_MERGED;
1997 if (IS_ENCRYPTED(inode))
1998 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1999
2000 ret = fiemap_fill_next_extent(fieinfo, logical,
2001 phys, size, flags);
2002 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2003 if (ret)
2004 goto out;
2005 size = 0;
2006 }
2007
2008 if (start_blk > last_blk)
2009 goto out;
2010
2011 skip_fill:
2012 if (map.m_pblk == COMPRESS_ADDR) {
2013 compr_cluster = true;
2014 count_in_cluster = 1;
2015 } else if (compr_appended) {
2016 unsigned int appended_blks = cluster_size -
2017 count_in_cluster + 1;
2018 size += F2FS_BLK_TO_BYTES(appended_blks);
2019 start_blk += appended_blks;
2020 compr_cluster = false;
2021 } else {
2022 logical = F2FS_BLK_TO_BYTES(start_blk);
2023 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2024 F2FS_BLK_TO_BYTES(map.m_pblk) : 0;
2025 size = F2FS_BLK_TO_BYTES(map.m_len);
2026 flags = 0;
2027
2028 if (compr_cluster) {
2029 flags = FIEMAP_EXTENT_ENCODED;
2030 count_in_cluster += map.m_len;
2031 if (count_in_cluster == cluster_size) {
2032 compr_cluster = false;
2033 size += F2FS_BLKSIZE;
2034 }
2035 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2036 flags = FIEMAP_EXTENT_UNWRITTEN;
2037 }
2038
2039 start_blk += F2FS_BYTES_TO_BLK(size);
2040 }
2041
2042 prep_next:
2043 cond_resched();
2044 if (fatal_signal_pending(current))
2045 ret = -EINTR;
2046 else
2047 goto next;
2048 out:
2049 if (ret == 1)
2050 ret = 0;
2051
2052 inode_unlock_shared(inode);
2053 return ret;
2054 }
2055
f2fs_readpage_limit(struct inode * inode)2056 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2057 {
2058 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2059 return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2060
2061 return i_size_read(inode);
2062 }
2063
f2fs_ra_op_flags(struct readahead_control * rac)2064 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2065 {
2066 return rac ? REQ_RAHEAD : 0;
2067 }
2068
f2fs_read_single_page(struct inode * inode,struct folio * folio,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,struct readahead_control * rac)2069 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2070 unsigned nr_pages,
2071 struct f2fs_map_blocks *map,
2072 struct bio **bio_ret,
2073 sector_t *last_block_in_bio,
2074 struct readahead_control *rac)
2075 {
2076 struct bio *bio = *bio_ret;
2077 const unsigned int blocksize = F2FS_BLKSIZE;
2078 sector_t block_in_file;
2079 sector_t last_block;
2080 sector_t last_block_in_file;
2081 sector_t block_nr;
2082 pgoff_t index = folio->index;
2083 int ret = 0;
2084
2085 block_in_file = (sector_t)index;
2086 last_block = block_in_file + nr_pages;
2087 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2088 blocksize - 1);
2089 if (last_block > last_block_in_file)
2090 last_block = last_block_in_file;
2091
2092 /* just zeroing out page which is beyond EOF */
2093 if (block_in_file >= last_block)
2094 goto zero_out;
2095 /*
2096 * Map blocks using the previous result first.
2097 */
2098 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2099 block_in_file > map->m_lblk &&
2100 block_in_file < (map->m_lblk + map->m_len))
2101 goto got_it;
2102
2103 /*
2104 * Then do more f2fs_map_blocks() calls until we are
2105 * done with this page.
2106 */
2107 map->m_lblk = block_in_file;
2108 map->m_len = last_block - block_in_file;
2109
2110 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2111 if (ret)
2112 goto out;
2113 got_it:
2114 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2115 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2116 folio_set_mappedtodisk(folio);
2117
2118 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2119 DATA_GENERIC_ENHANCE_READ)) {
2120 ret = -EFSCORRUPTED;
2121 goto out;
2122 }
2123 } else {
2124 zero_out:
2125 folio_zero_segment(folio, 0, folio_size(folio));
2126 if (f2fs_need_verity(inode, index) &&
2127 !fsverity_verify_folio(folio)) {
2128 ret = -EIO;
2129 goto out;
2130 }
2131 if (!folio_test_uptodate(folio))
2132 folio_mark_uptodate(folio);
2133 folio_unlock(folio);
2134 goto out;
2135 }
2136
2137 /*
2138 * This page will go to BIO. Do we need to send this
2139 * BIO off first?
2140 */
2141 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2142 *last_block_in_bio, block_nr) ||
2143 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2144 submit_and_realloc:
2145 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2146 bio = NULL;
2147 }
2148 if (bio == NULL) {
2149 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2150 f2fs_ra_op_flags(rac), index,
2151 false);
2152 if (IS_ERR(bio)) {
2153 ret = PTR_ERR(bio);
2154 bio = NULL;
2155 goto out;
2156 }
2157 }
2158
2159 /*
2160 * If the page is under writeback, we need to wait for
2161 * its completion to see the correct decrypted data.
2162 */
2163 f2fs_wait_on_block_writeback(inode, block_nr);
2164
2165 if (!bio_add_folio(bio, folio, blocksize, 0))
2166 goto submit_and_realloc;
2167
2168 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2169 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2170 F2FS_BLKSIZE);
2171 *last_block_in_bio = block_nr;
2172 out:
2173 *bio_ret = bio;
2174 return ret;
2175 }
2176
2177 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,struct readahead_control * rac,bool for_write)2178 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2179 unsigned nr_pages, sector_t *last_block_in_bio,
2180 struct readahead_control *rac, bool for_write)
2181 {
2182 struct dnode_of_data dn;
2183 struct inode *inode = cc->inode;
2184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2185 struct bio *bio = *bio_ret;
2186 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2187 sector_t last_block_in_file;
2188 const unsigned int blocksize = F2FS_BLKSIZE;
2189 struct decompress_io_ctx *dic = NULL;
2190 struct extent_info ei = {};
2191 bool from_dnode = true;
2192 int i;
2193 int ret = 0;
2194
2195 if (unlikely(f2fs_cp_error(sbi))) {
2196 ret = -EIO;
2197 from_dnode = false;
2198 goto out_put_dnode;
2199 }
2200
2201 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2202
2203 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) +
2204 blocksize - 1);
2205
2206 /* get rid of pages beyond EOF */
2207 for (i = 0; i < cc->cluster_size; i++) {
2208 struct page *page = cc->rpages[i];
2209 struct folio *folio;
2210
2211 if (!page)
2212 continue;
2213
2214 folio = page_folio(page);
2215 if ((sector_t)folio->index >= last_block_in_file) {
2216 folio_zero_segment(folio, 0, folio_size(folio));
2217 if (!folio_test_uptodate(folio))
2218 folio_mark_uptodate(folio);
2219 } else if (!folio_test_uptodate(folio)) {
2220 continue;
2221 }
2222 folio_unlock(folio);
2223 if (for_write)
2224 folio_put(folio);
2225 cc->rpages[i] = NULL;
2226 cc->nr_rpages--;
2227 }
2228
2229 /* we are done since all pages are beyond EOF */
2230 if (f2fs_cluster_is_empty(cc))
2231 goto out;
2232
2233 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2234 from_dnode = false;
2235
2236 if (!from_dnode)
2237 goto skip_reading_dnode;
2238
2239 set_new_dnode(&dn, inode, NULL, NULL, 0);
2240 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2241 if (ret)
2242 goto out;
2243
2244 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2245
2246 skip_reading_dnode:
2247 for (i = 1; i < cc->cluster_size; i++) {
2248 block_t blkaddr;
2249
2250 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2251 dn.ofs_in_node + i) :
2252 ei.blk + i - 1;
2253
2254 if (!__is_valid_data_blkaddr(blkaddr))
2255 break;
2256
2257 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2258 ret = -EFAULT;
2259 goto out_put_dnode;
2260 }
2261 cc->nr_cpages++;
2262
2263 if (!from_dnode && i >= ei.c_len)
2264 break;
2265 }
2266
2267 /* nothing to decompress */
2268 if (cc->nr_cpages == 0) {
2269 ret = 0;
2270 goto out_put_dnode;
2271 }
2272
2273 dic = f2fs_alloc_dic(cc);
2274 if (IS_ERR(dic)) {
2275 ret = PTR_ERR(dic);
2276 goto out_put_dnode;
2277 }
2278
2279 for (i = 0; i < cc->nr_cpages; i++) {
2280 struct folio *folio = page_folio(dic->cpages[i]);
2281 block_t blkaddr;
2282 struct bio_post_read_ctx *ctx;
2283
2284 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_folio,
2285 dn.ofs_in_node + i + 1) :
2286 ei.blk + i;
2287
2288 f2fs_wait_on_block_writeback(inode, blkaddr);
2289
2290 if (f2fs_load_compressed_folio(sbi, folio, blkaddr)) {
2291 if (atomic_dec_and_test(&dic->remaining_pages)) {
2292 f2fs_decompress_cluster(dic, true);
2293 break;
2294 }
2295 continue;
2296 }
2297
2298 if (bio && (!page_is_mergeable(sbi, bio,
2299 *last_block_in_bio, blkaddr) ||
2300 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2301 submit_and_realloc:
2302 f2fs_submit_read_bio(sbi, bio, DATA);
2303 bio = NULL;
2304 }
2305
2306 if (!bio) {
2307 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages - i,
2308 f2fs_ra_op_flags(rac),
2309 folio->index, for_write);
2310 if (IS_ERR(bio)) {
2311 ret = PTR_ERR(bio);
2312 f2fs_decompress_end_io(dic, ret, true);
2313 f2fs_put_dnode(&dn);
2314 *bio_ret = NULL;
2315 return ret;
2316 }
2317 }
2318
2319 if (!bio_add_folio(bio, folio, blocksize, 0))
2320 goto submit_and_realloc;
2321
2322 ctx = get_post_read_ctx(bio);
2323 ctx->enabled_steps |= STEP_DECOMPRESS;
2324 refcount_inc(&dic->refcnt);
2325
2326 inc_page_count(sbi, F2FS_RD_DATA);
2327 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2328 *last_block_in_bio = blkaddr;
2329 }
2330
2331 if (from_dnode)
2332 f2fs_put_dnode(&dn);
2333
2334 *bio_ret = bio;
2335 return 0;
2336
2337 out_put_dnode:
2338 if (from_dnode)
2339 f2fs_put_dnode(&dn);
2340 out:
2341 for (i = 0; i < cc->cluster_size; i++) {
2342 if (cc->rpages[i]) {
2343 ClearPageUptodate(cc->rpages[i]);
2344 unlock_page(cc->rpages[i]);
2345 }
2346 }
2347 *bio_ret = bio;
2348 return ret;
2349 }
2350 #endif
2351
2352 /*
2353 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2354 * Major change was from block_size == page_size in f2fs by default.
2355 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct folio * folio)2356 static int f2fs_mpage_readpages(struct inode *inode,
2357 struct readahead_control *rac, struct folio *folio)
2358 {
2359 struct bio *bio = NULL;
2360 sector_t last_block_in_bio = 0;
2361 struct f2fs_map_blocks map;
2362 #ifdef CONFIG_F2FS_FS_COMPRESSION
2363 struct compress_ctx cc = {
2364 .inode = inode,
2365 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2366 .cluster_size = F2FS_I(inode)->i_cluster_size,
2367 .cluster_idx = NULL_CLUSTER,
2368 .rpages = NULL,
2369 .cpages = NULL,
2370 .nr_rpages = 0,
2371 .nr_cpages = 0,
2372 };
2373 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2374 pgoff_t index;
2375 #endif
2376 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2377 unsigned max_nr_pages = nr_pages;
2378 int ret = 0;
2379
2380 #ifdef CONFIG_F2FS_FS_COMPRESSION
2381 if (f2fs_compressed_file(inode)) {
2382 index = rac ? readahead_index(rac) : folio->index;
2383 max_nr_pages = round_up(index + nr_pages, cc.cluster_size) -
2384 round_down(index, cc.cluster_size);
2385 }
2386 #endif
2387
2388 map.m_pblk = 0;
2389 map.m_lblk = 0;
2390 map.m_len = 0;
2391 map.m_flags = 0;
2392 map.m_next_pgofs = NULL;
2393 map.m_next_extent = NULL;
2394 map.m_seg_type = NO_CHECK_TYPE;
2395 map.m_may_create = false;
2396
2397 for (; nr_pages; nr_pages--) {
2398 if (rac) {
2399 folio = readahead_folio(rac);
2400 prefetchw(&folio->flags);
2401 }
2402
2403 #ifdef CONFIG_F2FS_FS_COMPRESSION
2404 index = folio->index;
2405
2406 if (!f2fs_compressed_file(inode))
2407 goto read_single_page;
2408
2409 /* there are remained compressed pages, submit them */
2410 if (!f2fs_cluster_can_merge_page(&cc, index)) {
2411 ret = f2fs_read_multi_pages(&cc, &bio,
2412 max_nr_pages,
2413 &last_block_in_bio,
2414 rac, false);
2415 f2fs_destroy_compress_ctx(&cc, false);
2416 if (ret)
2417 goto set_error_page;
2418 }
2419 if (cc.cluster_idx == NULL_CLUSTER) {
2420 if (nc_cluster_idx == index >> cc.log_cluster_size)
2421 goto read_single_page;
2422
2423 ret = f2fs_is_compressed_cluster(inode, index);
2424 if (ret < 0)
2425 goto set_error_page;
2426 else if (!ret) {
2427 nc_cluster_idx =
2428 index >> cc.log_cluster_size;
2429 goto read_single_page;
2430 }
2431
2432 nc_cluster_idx = NULL_CLUSTER;
2433 }
2434 ret = f2fs_init_compress_ctx(&cc);
2435 if (ret)
2436 goto set_error_page;
2437
2438 f2fs_compress_ctx_add_page(&cc, folio);
2439
2440 goto next_page;
2441 read_single_page:
2442 #endif
2443
2444 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2445 &bio, &last_block_in_bio, rac);
2446 if (ret) {
2447 #ifdef CONFIG_F2FS_FS_COMPRESSION
2448 set_error_page:
2449 #endif
2450 folio_zero_segment(folio, 0, folio_size(folio));
2451 folio_unlock(folio);
2452 }
2453 #ifdef CONFIG_F2FS_FS_COMPRESSION
2454 next_page:
2455 #endif
2456
2457 #ifdef CONFIG_F2FS_FS_COMPRESSION
2458 if (f2fs_compressed_file(inode)) {
2459 /* last page */
2460 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2461 ret = f2fs_read_multi_pages(&cc, &bio,
2462 max_nr_pages,
2463 &last_block_in_bio,
2464 rac, false);
2465 f2fs_destroy_compress_ctx(&cc, false);
2466 }
2467 }
2468 #endif
2469 }
2470 if (bio)
2471 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2472 return ret;
2473 }
2474
f2fs_read_data_folio(struct file * file,struct folio * folio)2475 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2476 {
2477 struct inode *inode = folio->mapping->host;
2478 int ret = -EAGAIN;
2479
2480 trace_f2fs_readpage(folio, DATA);
2481
2482 if (!f2fs_is_compress_backend_ready(inode)) {
2483 folio_unlock(folio);
2484 return -EOPNOTSUPP;
2485 }
2486
2487 /* If the file has inline data, try to read it directly */
2488 if (f2fs_has_inline_data(inode))
2489 ret = f2fs_read_inline_data(inode, folio);
2490 if (ret == -EAGAIN)
2491 ret = f2fs_mpage_readpages(inode, NULL, folio);
2492 return ret;
2493 }
2494
f2fs_readahead(struct readahead_control * rac)2495 static void f2fs_readahead(struct readahead_control *rac)
2496 {
2497 struct inode *inode = rac->mapping->host;
2498
2499 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2500
2501 if (!f2fs_is_compress_backend_ready(inode))
2502 return;
2503
2504 /* If the file has inline data, skip readahead */
2505 if (f2fs_has_inline_data(inode))
2506 return;
2507
2508 f2fs_mpage_readpages(inode, rac, NULL);
2509 }
2510
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2511 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2512 {
2513 struct inode *inode = fio_inode(fio);
2514 struct folio *mfolio;
2515 struct page *page;
2516 gfp_t gfp_flags = GFP_NOFS;
2517
2518 if (!f2fs_encrypted_file(inode))
2519 return 0;
2520
2521 page = fio->compressed_page ? fio->compressed_page : fio->page;
2522
2523 if (fscrypt_inode_uses_inline_crypto(inode))
2524 return 0;
2525
2526 retry_encrypt:
2527 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page_folio(page),
2528 PAGE_SIZE, 0, gfp_flags);
2529 if (IS_ERR(fio->encrypted_page)) {
2530 /* flush pending IOs and wait for a while in the ENOMEM case */
2531 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2532 f2fs_flush_merged_writes(fio->sbi);
2533 memalloc_retry_wait(GFP_NOFS);
2534 gfp_flags |= __GFP_NOFAIL;
2535 goto retry_encrypt;
2536 }
2537 return PTR_ERR(fio->encrypted_page);
2538 }
2539
2540 mfolio = filemap_lock_folio(META_MAPPING(fio->sbi), fio->old_blkaddr);
2541 if (!IS_ERR(mfolio)) {
2542 if (folio_test_uptodate(mfolio))
2543 memcpy(folio_address(mfolio),
2544 page_address(fio->encrypted_page), PAGE_SIZE);
2545 f2fs_folio_put(mfolio, true);
2546 }
2547 return 0;
2548 }
2549
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2550 static inline bool check_inplace_update_policy(struct inode *inode,
2551 struct f2fs_io_info *fio)
2552 {
2553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2554
2555 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2556 is_inode_flag_set(inode, FI_OPU_WRITE))
2557 return false;
2558 if (IS_F2FS_IPU_FORCE(sbi))
2559 return true;
2560 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2561 return true;
2562 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2563 return true;
2564 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2565 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2566 return true;
2567
2568 /*
2569 * IPU for rewrite async pages
2570 */
2571 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2572 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2573 return true;
2574
2575 /* this is only set during fdatasync */
2576 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2577 return true;
2578
2579 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2580 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2581 return true;
2582
2583 return false;
2584 }
2585
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2586 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2587 {
2588 /* swap file is migrating in aligned write mode */
2589 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2590 return false;
2591
2592 if (f2fs_is_pinned_file(inode))
2593 return true;
2594
2595 /* if this is cold file, we should overwrite to avoid fragmentation */
2596 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2597 return true;
2598
2599 return check_inplace_update_policy(inode, fio);
2600 }
2601
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2602 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2603 {
2604 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2605
2606 /* The below cases were checked when setting it. */
2607 if (f2fs_is_pinned_file(inode))
2608 return false;
2609 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2610 return true;
2611 if (f2fs_lfs_mode(sbi))
2612 return true;
2613 if (S_ISDIR(inode->i_mode))
2614 return true;
2615 if (IS_NOQUOTA(inode))
2616 return true;
2617 if (f2fs_used_in_atomic_write(inode))
2618 return true;
2619 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2620 if (f2fs_compressed_file(inode) &&
2621 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2622 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2623 return true;
2624
2625 /* swap file is migrating in aligned write mode */
2626 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2627 return true;
2628
2629 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2630 return true;
2631
2632 if (fio) {
2633 if (page_private_gcing(fio->page))
2634 return true;
2635 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2636 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2637 return true;
2638 }
2639 return false;
2640 }
2641
need_inplace_update(struct f2fs_io_info * fio)2642 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2643 {
2644 struct inode *inode = fio_inode(fio);
2645
2646 if (f2fs_should_update_outplace(inode, fio))
2647 return false;
2648
2649 return f2fs_should_update_inplace(inode, fio);
2650 }
2651
f2fs_do_write_data_page(struct f2fs_io_info * fio)2652 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2653 {
2654 struct folio *folio = fio->folio;
2655 struct inode *inode = folio->mapping->host;
2656 struct dnode_of_data dn;
2657 struct node_info ni;
2658 bool ipu_force = false;
2659 bool atomic_commit;
2660 int err = 0;
2661
2662 /* Use COW inode to make dnode_of_data for atomic write */
2663 atomic_commit = f2fs_is_atomic_file(inode) &&
2664 folio_test_f2fs_atomic(folio);
2665 if (atomic_commit)
2666 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2667 else
2668 set_new_dnode(&dn, inode, NULL, NULL, 0);
2669
2670 if (need_inplace_update(fio) &&
2671 f2fs_lookup_read_extent_cache_block(inode, folio->index,
2672 &fio->old_blkaddr)) {
2673 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2674 DATA_GENERIC_ENHANCE))
2675 return -EFSCORRUPTED;
2676
2677 ipu_force = true;
2678 fio->need_lock = LOCK_DONE;
2679 goto got_it;
2680 }
2681
2682 /* Deadlock due to between page->lock and f2fs_lock_op */
2683 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2684 return -EAGAIN;
2685
2686 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2687 if (err)
2688 goto out;
2689
2690 fio->old_blkaddr = dn.data_blkaddr;
2691
2692 /* This page is already truncated */
2693 if (fio->old_blkaddr == NULL_ADDR) {
2694 folio_clear_uptodate(folio);
2695 folio_clear_f2fs_gcing(folio);
2696 goto out_writepage;
2697 }
2698 got_it:
2699 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2700 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2701 DATA_GENERIC_ENHANCE)) {
2702 err = -EFSCORRUPTED;
2703 goto out_writepage;
2704 }
2705
2706 /* wait for GCed page writeback via META_MAPPING */
2707 if (fio->meta_gc)
2708 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2709
2710 /*
2711 * If current allocation needs SSR,
2712 * it had better in-place writes for updated data.
2713 */
2714 if (ipu_force ||
2715 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2716 need_inplace_update(fio))) {
2717 err = f2fs_encrypt_one_page(fio);
2718 if (err)
2719 goto out_writepage;
2720
2721 folio_start_writeback(folio);
2722 f2fs_put_dnode(&dn);
2723 if (fio->need_lock == LOCK_REQ)
2724 f2fs_unlock_op(fio->sbi);
2725 err = f2fs_inplace_write_data(fio);
2726 if (err) {
2727 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2728 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2729 folio_end_writeback(folio);
2730 } else {
2731 set_inode_flag(inode, FI_UPDATE_WRITE);
2732 }
2733 trace_f2fs_do_write_data_page(folio, IPU);
2734 return err;
2735 }
2736
2737 if (fio->need_lock == LOCK_RETRY) {
2738 if (!f2fs_trylock_op(fio->sbi)) {
2739 err = -EAGAIN;
2740 goto out_writepage;
2741 }
2742 fio->need_lock = LOCK_REQ;
2743 }
2744
2745 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2746 if (err)
2747 goto out_writepage;
2748
2749 fio->version = ni.version;
2750
2751 err = f2fs_encrypt_one_page(fio);
2752 if (err)
2753 goto out_writepage;
2754
2755 folio_start_writeback(folio);
2756
2757 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2758 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2759
2760 /* LFS mode write path */
2761 f2fs_outplace_write_data(&dn, fio);
2762 trace_f2fs_do_write_data_page(folio, OPU);
2763 set_inode_flag(inode, FI_APPEND_WRITE);
2764 if (atomic_commit)
2765 folio_clear_f2fs_atomic(folio);
2766 out_writepage:
2767 f2fs_put_dnode(&dn);
2768 out:
2769 if (fio->need_lock == LOCK_REQ)
2770 f2fs_unlock_op(fio->sbi);
2771 return err;
2772 }
2773
f2fs_write_single_data_page(struct folio * folio,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2774 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2775 struct bio **bio,
2776 sector_t *last_block,
2777 struct writeback_control *wbc,
2778 enum iostat_type io_type,
2779 int compr_blocks,
2780 bool allow_balance)
2781 {
2782 struct inode *inode = folio->mapping->host;
2783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2784 loff_t i_size = i_size_read(inode);
2785 const pgoff_t end_index = ((unsigned long long)i_size)
2786 >> PAGE_SHIFT;
2787 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2788 unsigned offset = 0;
2789 bool need_balance_fs = false;
2790 bool quota_inode = IS_NOQUOTA(inode);
2791 int err = 0;
2792 struct f2fs_io_info fio = {
2793 .sbi = sbi,
2794 .ino = inode->i_ino,
2795 .type = DATA,
2796 .op = REQ_OP_WRITE,
2797 .op_flags = wbc_to_write_flags(wbc),
2798 .old_blkaddr = NULL_ADDR,
2799 .folio = folio,
2800 .encrypted_page = NULL,
2801 .submitted = 0,
2802 .compr_blocks = compr_blocks,
2803 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2804 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2805 .io_type = io_type,
2806 .io_wbc = wbc,
2807 .bio = bio,
2808 .last_block = last_block,
2809 };
2810
2811 trace_f2fs_writepage(folio, DATA);
2812
2813 /* we should bypass data pages to proceed the kworker jobs */
2814 if (unlikely(f2fs_cp_error(sbi))) {
2815 mapping_set_error(folio->mapping, -EIO);
2816 /*
2817 * don't drop any dirty dentry pages for keeping lastest
2818 * directory structure.
2819 */
2820 if (S_ISDIR(inode->i_mode) &&
2821 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2822 goto redirty_out;
2823
2824 /* keep data pages in remount-ro mode */
2825 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2826 goto redirty_out;
2827 goto out;
2828 }
2829
2830 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2831 goto redirty_out;
2832
2833 if (folio->index < end_index ||
2834 f2fs_verity_in_progress(inode) ||
2835 compr_blocks)
2836 goto write;
2837
2838 /*
2839 * If the offset is out-of-range of file size,
2840 * this page does not have to be written to disk.
2841 */
2842 offset = i_size & (PAGE_SIZE - 1);
2843 if ((folio->index >= end_index + 1) || !offset)
2844 goto out;
2845
2846 folio_zero_segment(folio, offset, folio_size(folio));
2847 write:
2848 /* Dentry/quota blocks are controlled by checkpoint */
2849 if (S_ISDIR(inode->i_mode) || quota_inode) {
2850 /*
2851 * We need to wait for node_write to avoid block allocation during
2852 * checkpoint. This can only happen to quota writes which can cause
2853 * the below discard race condition.
2854 */
2855 if (quota_inode)
2856 f2fs_down_read(&sbi->node_write);
2857
2858 fio.need_lock = LOCK_DONE;
2859 err = f2fs_do_write_data_page(&fio);
2860
2861 if (quota_inode)
2862 f2fs_up_read(&sbi->node_write);
2863
2864 goto done;
2865 }
2866
2867 need_balance_fs = true;
2868 err = -EAGAIN;
2869 if (f2fs_has_inline_data(inode)) {
2870 err = f2fs_write_inline_data(inode, folio);
2871 if (!err)
2872 goto out;
2873 }
2874
2875 if (err == -EAGAIN) {
2876 err = f2fs_do_write_data_page(&fio);
2877 if (err == -EAGAIN) {
2878 f2fs_bug_on(sbi, compr_blocks);
2879 fio.need_lock = LOCK_REQ;
2880 err = f2fs_do_write_data_page(&fio);
2881 }
2882 }
2883
2884 if (err) {
2885 file_set_keep_isize(inode);
2886 } else {
2887 spin_lock(&F2FS_I(inode)->i_size_lock);
2888 if (F2FS_I(inode)->last_disk_size < psize)
2889 F2FS_I(inode)->last_disk_size = psize;
2890 spin_unlock(&F2FS_I(inode)->i_size_lock);
2891 }
2892
2893 done:
2894 if (err && err != -ENOENT)
2895 goto redirty_out;
2896
2897 out:
2898 inode_dec_dirty_pages(inode);
2899 if (err) {
2900 folio_clear_uptodate(folio);
2901 folio_clear_f2fs_gcing(folio);
2902 }
2903 folio_unlock(folio);
2904 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2905 !F2FS_I(inode)->wb_task && allow_balance)
2906 f2fs_balance_fs(sbi, need_balance_fs);
2907
2908 if (unlikely(f2fs_cp_error(sbi))) {
2909 f2fs_submit_merged_write(sbi, DATA);
2910 if (bio && *bio)
2911 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2912 submitted = NULL;
2913 }
2914
2915 if (submitted)
2916 *submitted = fio.submitted;
2917
2918 return 0;
2919
2920 redirty_out:
2921 folio_redirty_for_writepage(wbc, folio);
2922 /*
2923 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2924 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2925 * file_write_and_wait_range() will see EIO error, which is critical
2926 * to return value of fsync() followed by atomic_write failure to user.
2927 */
2928 folio_unlock(folio);
2929 if (!err)
2930 return 1;
2931 return err;
2932 }
2933
2934 /*
2935 * This function was copied from write_cache_pages from mm/page-writeback.c.
2936 * The major change is making write step of cold data page separately from
2937 * warm/hot data page.
2938 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2939 static int f2fs_write_cache_pages(struct address_space *mapping,
2940 struct writeback_control *wbc,
2941 enum iostat_type io_type)
2942 {
2943 int ret = 0;
2944 int done = 0, retry = 0;
2945 struct page *pages_local[F2FS_ONSTACK_PAGES];
2946 struct page **pages = pages_local;
2947 struct folio_batch fbatch;
2948 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2949 struct bio *bio = NULL;
2950 sector_t last_block;
2951 #ifdef CONFIG_F2FS_FS_COMPRESSION
2952 struct inode *inode = mapping->host;
2953 struct compress_ctx cc = {
2954 .inode = inode,
2955 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2956 .cluster_size = F2FS_I(inode)->i_cluster_size,
2957 .cluster_idx = NULL_CLUSTER,
2958 .rpages = NULL,
2959 .nr_rpages = 0,
2960 .cpages = NULL,
2961 .valid_nr_cpages = 0,
2962 .rbuf = NULL,
2963 .cbuf = NULL,
2964 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2965 .private = NULL,
2966 };
2967 #endif
2968 int nr_folios, p, idx;
2969 int nr_pages;
2970 unsigned int max_pages = F2FS_ONSTACK_PAGES;
2971 pgoff_t index;
2972 pgoff_t end; /* Inclusive */
2973 pgoff_t done_index;
2974 int range_whole = 0;
2975 xa_mark_t tag;
2976 int nwritten = 0;
2977 int submitted = 0;
2978 int i;
2979
2980 #ifdef CONFIG_F2FS_FS_COMPRESSION
2981 if (f2fs_compressed_file(inode) &&
2982 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2983 pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2984 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2985 max_pages = 1 << cc.log_cluster_size;
2986 }
2987 #endif
2988
2989 folio_batch_init(&fbatch);
2990
2991 if (get_dirty_pages(mapping->host) <=
2992 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2993 set_inode_flag(mapping->host, FI_HOT_DATA);
2994 else
2995 clear_inode_flag(mapping->host, FI_HOT_DATA);
2996
2997 if (wbc->range_cyclic) {
2998 index = mapping->writeback_index; /* prev offset */
2999 end = -1;
3000 } else {
3001 index = wbc->range_start >> PAGE_SHIFT;
3002 end = wbc->range_end >> PAGE_SHIFT;
3003 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3004 range_whole = 1;
3005 }
3006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3007 tag = PAGECACHE_TAG_TOWRITE;
3008 else
3009 tag = PAGECACHE_TAG_DIRTY;
3010 retry:
3011 retry = 0;
3012 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3013 tag_pages_for_writeback(mapping, index, end);
3014 done_index = index;
3015 while (!done && !retry && (index <= end)) {
3016 nr_pages = 0;
3017 again:
3018 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3019 tag, &fbatch);
3020 if (nr_folios == 0) {
3021 if (nr_pages)
3022 goto write;
3023 break;
3024 }
3025
3026 for (i = 0; i < nr_folios; i++) {
3027 struct folio *folio = fbatch.folios[i];
3028
3029 idx = 0;
3030 p = folio_nr_pages(folio);
3031 add_more:
3032 pages[nr_pages] = folio_page(folio, idx);
3033 folio_get(folio);
3034 if (++nr_pages == max_pages) {
3035 index = folio->index + idx + 1;
3036 folio_batch_release(&fbatch);
3037 goto write;
3038 }
3039 if (++idx < p)
3040 goto add_more;
3041 }
3042 folio_batch_release(&fbatch);
3043 goto again;
3044 write:
3045 for (i = 0; i < nr_pages; i++) {
3046 struct page *page = pages[i];
3047 struct folio *folio = page_folio(page);
3048 bool need_readd;
3049 readd:
3050 need_readd = false;
3051 #ifdef CONFIG_F2FS_FS_COMPRESSION
3052 if (f2fs_compressed_file(inode)) {
3053 void *fsdata = NULL;
3054 struct page *pagep;
3055 int ret2;
3056
3057 ret = f2fs_init_compress_ctx(&cc);
3058 if (ret) {
3059 done = 1;
3060 break;
3061 }
3062
3063 if (!f2fs_cluster_can_merge_page(&cc,
3064 folio->index)) {
3065 ret = f2fs_write_multi_pages(&cc,
3066 &submitted, wbc, io_type);
3067 if (!ret)
3068 need_readd = true;
3069 goto result;
3070 }
3071
3072 if (unlikely(f2fs_cp_error(sbi)))
3073 goto lock_folio;
3074
3075 if (!f2fs_cluster_is_empty(&cc))
3076 goto lock_folio;
3077
3078 if (f2fs_all_cluster_page_ready(&cc,
3079 pages, i, nr_pages, true))
3080 goto lock_folio;
3081
3082 ret2 = f2fs_prepare_compress_overwrite(
3083 inode, &pagep,
3084 folio->index, &fsdata);
3085 if (ret2 < 0) {
3086 ret = ret2;
3087 done = 1;
3088 break;
3089 } else if (ret2 &&
3090 (!f2fs_compress_write_end(inode,
3091 fsdata, folio->index, 1) ||
3092 !f2fs_all_cluster_page_ready(&cc,
3093 pages, i, nr_pages,
3094 false))) {
3095 retry = 1;
3096 break;
3097 }
3098 }
3099 #endif
3100 /* give a priority to WB_SYNC threads */
3101 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3102 wbc->sync_mode == WB_SYNC_NONE) {
3103 done = 1;
3104 break;
3105 }
3106 #ifdef CONFIG_F2FS_FS_COMPRESSION
3107 lock_folio:
3108 #endif
3109 done_index = folio->index;
3110 retry_write:
3111 folio_lock(folio);
3112
3113 if (unlikely(folio->mapping != mapping)) {
3114 continue_unlock:
3115 folio_unlock(folio);
3116 continue;
3117 }
3118
3119 if (!folio_test_dirty(folio)) {
3120 /* someone wrote it for us */
3121 goto continue_unlock;
3122 }
3123
3124 if (folio_test_writeback(folio)) {
3125 if (wbc->sync_mode == WB_SYNC_NONE)
3126 goto continue_unlock;
3127 f2fs_folio_wait_writeback(folio, DATA, true, true);
3128 }
3129
3130 if (!folio_clear_dirty_for_io(folio))
3131 goto continue_unlock;
3132
3133 #ifdef CONFIG_F2FS_FS_COMPRESSION
3134 if (f2fs_compressed_file(inode)) {
3135 folio_get(folio);
3136 f2fs_compress_ctx_add_page(&cc, folio);
3137 continue;
3138 }
3139 #endif
3140 submitted = 0;
3141 ret = f2fs_write_single_data_page(folio,
3142 &submitted, &bio, &last_block,
3143 wbc, io_type, 0, true);
3144 #ifdef CONFIG_F2FS_FS_COMPRESSION
3145 result:
3146 #endif
3147 nwritten += submitted;
3148 wbc->nr_to_write -= submitted;
3149
3150 if (unlikely(ret)) {
3151 /*
3152 * keep nr_to_write, since vfs uses this to
3153 * get # of written pages.
3154 */
3155 if (ret == 1) {
3156 ret = 0;
3157 goto next;
3158 } else if (ret == -EAGAIN) {
3159 ret = 0;
3160 if (wbc->sync_mode == WB_SYNC_ALL) {
3161 f2fs_io_schedule_timeout(
3162 DEFAULT_IO_TIMEOUT);
3163 goto retry_write;
3164 }
3165 goto next;
3166 }
3167 done_index = folio_next_index(folio);
3168 done = 1;
3169 break;
3170 }
3171
3172 if (wbc->nr_to_write <= 0 &&
3173 wbc->sync_mode == WB_SYNC_NONE) {
3174 done = 1;
3175 break;
3176 }
3177 next:
3178 if (need_readd)
3179 goto readd;
3180 }
3181 release_pages(pages, nr_pages);
3182 cond_resched();
3183 }
3184 #ifdef CONFIG_F2FS_FS_COMPRESSION
3185 /* flush remained pages in compress cluster */
3186 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3187 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3188 nwritten += submitted;
3189 wbc->nr_to_write -= submitted;
3190 if (ret) {
3191 done = 1;
3192 retry = 0;
3193 }
3194 }
3195 if (f2fs_compressed_file(inode))
3196 f2fs_destroy_compress_ctx(&cc, false);
3197 #endif
3198 if (retry) {
3199 index = 0;
3200 end = -1;
3201 goto retry;
3202 }
3203 if (wbc->range_cyclic && !done)
3204 done_index = 0;
3205 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3206 mapping->writeback_index = done_index;
3207
3208 if (nwritten)
3209 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3210 NULL, 0, DATA);
3211 /* submit cached bio of IPU write */
3212 if (bio)
3213 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3214
3215 #ifdef CONFIG_F2FS_FS_COMPRESSION
3216 if (pages != pages_local)
3217 kfree(pages);
3218 #endif
3219
3220 return ret;
3221 }
3222
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3223 static inline bool __should_serialize_io(struct inode *inode,
3224 struct writeback_control *wbc)
3225 {
3226 /* to avoid deadlock in path of data flush */
3227 if (F2FS_I(inode)->wb_task)
3228 return false;
3229
3230 if (!S_ISREG(inode->i_mode))
3231 return false;
3232 if (IS_NOQUOTA(inode))
3233 return false;
3234
3235 if (f2fs_need_compress_data(inode))
3236 return true;
3237 if (wbc->sync_mode != WB_SYNC_ALL)
3238 return true;
3239 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3240 return true;
3241 return false;
3242 }
3243
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3244 static int __f2fs_write_data_pages(struct address_space *mapping,
3245 struct writeback_control *wbc,
3246 enum iostat_type io_type)
3247 {
3248 struct inode *inode = mapping->host;
3249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3250 struct blk_plug plug;
3251 int ret;
3252 bool locked = false;
3253
3254 /* skip writing if there is no dirty page in this inode */
3255 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3256 return 0;
3257
3258 /* during POR, we don't need to trigger writepage at all. */
3259 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3260 goto skip_write;
3261
3262 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3263 wbc->sync_mode == WB_SYNC_NONE &&
3264 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3265 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3266 goto skip_write;
3267
3268 /* skip writing in file defragment preparing stage */
3269 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3270 goto skip_write;
3271
3272 trace_f2fs_writepages(mapping->host, wbc, DATA);
3273
3274 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3275 if (wbc->sync_mode == WB_SYNC_ALL)
3276 atomic_inc(&sbi->wb_sync_req[DATA]);
3277 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3278 /* to avoid potential deadlock */
3279 if (current->plug)
3280 blk_finish_plug(current->plug);
3281 goto skip_write;
3282 }
3283
3284 if (__should_serialize_io(inode, wbc)) {
3285 mutex_lock(&sbi->writepages);
3286 locked = true;
3287 }
3288
3289 blk_start_plug(&plug);
3290 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3291 blk_finish_plug(&plug);
3292
3293 if (locked)
3294 mutex_unlock(&sbi->writepages);
3295
3296 if (wbc->sync_mode == WB_SYNC_ALL)
3297 atomic_dec(&sbi->wb_sync_req[DATA]);
3298 /*
3299 * if some pages were truncated, we cannot guarantee its mapping->host
3300 * to detect pending bios.
3301 */
3302
3303 f2fs_remove_dirty_inode(inode);
3304 return ret;
3305
3306 skip_write:
3307 wbc->pages_skipped += get_dirty_pages(inode);
3308 trace_f2fs_writepages(mapping->host, wbc, DATA);
3309 return 0;
3310 }
3311
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3312 static int f2fs_write_data_pages(struct address_space *mapping,
3313 struct writeback_control *wbc)
3314 {
3315 struct inode *inode = mapping->host;
3316
3317 return __f2fs_write_data_pages(mapping, wbc,
3318 F2FS_I(inode)->cp_task == current ?
3319 FS_CP_DATA_IO : FS_DATA_IO);
3320 }
3321
f2fs_write_failed(struct inode * inode,loff_t to)3322 void f2fs_write_failed(struct inode *inode, loff_t to)
3323 {
3324 loff_t i_size = i_size_read(inode);
3325
3326 if (IS_NOQUOTA(inode))
3327 return;
3328
3329 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3330 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3331 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3332 filemap_invalidate_lock(inode->i_mapping);
3333
3334 truncate_pagecache(inode, i_size);
3335 f2fs_truncate_blocks(inode, i_size, true);
3336
3337 filemap_invalidate_unlock(inode->i_mapping);
3338 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3339 }
3340 }
3341
prepare_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed)3342 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3343 struct folio *folio, loff_t pos, unsigned int len,
3344 block_t *blk_addr, bool *node_changed)
3345 {
3346 struct inode *inode = folio->mapping->host;
3347 pgoff_t index = folio->index;
3348 struct dnode_of_data dn;
3349 struct folio *ifolio;
3350 bool locked = false;
3351 int flag = F2FS_GET_BLOCK_PRE_AIO;
3352 int err = 0;
3353
3354 /*
3355 * If a whole page is being written and we already preallocated all the
3356 * blocks, then there is no need to get a block address now.
3357 */
3358 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3359 return 0;
3360
3361 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3362 if (f2fs_has_inline_data(inode)) {
3363 if (pos + len > MAX_INLINE_DATA(inode))
3364 flag = F2FS_GET_BLOCK_DEFAULT;
3365 f2fs_map_lock(sbi, flag);
3366 locked = true;
3367 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3368 f2fs_map_lock(sbi, flag);
3369 locked = true;
3370 }
3371
3372 restart:
3373 /* check inline_data */
3374 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3375 if (IS_ERR(ifolio)) {
3376 err = PTR_ERR(ifolio);
3377 goto unlock_out;
3378 }
3379
3380 set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3381
3382 if (f2fs_has_inline_data(inode)) {
3383 if (pos + len <= MAX_INLINE_DATA(inode)) {
3384 f2fs_do_read_inline_data(folio, ifolio);
3385 set_inode_flag(inode, FI_DATA_EXIST);
3386 if (inode->i_nlink)
3387 folio_set_f2fs_inline(ifolio);
3388 goto out;
3389 }
3390 err = f2fs_convert_inline_folio(&dn, folio);
3391 if (err || dn.data_blkaddr != NULL_ADDR)
3392 goto out;
3393 }
3394
3395 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3396 &dn.data_blkaddr)) {
3397 if (IS_DEVICE_ALIASING(inode)) {
3398 err = -ENODATA;
3399 goto out;
3400 }
3401
3402 if (locked) {
3403 err = f2fs_reserve_block(&dn, index);
3404 goto out;
3405 }
3406
3407 /* hole case */
3408 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3409 if (!err && dn.data_blkaddr != NULL_ADDR)
3410 goto out;
3411 f2fs_put_dnode(&dn);
3412 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3413 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3414 locked = true;
3415 goto restart;
3416 }
3417 out:
3418 if (!err) {
3419 /* convert_inline_page can make node_changed */
3420 *blk_addr = dn.data_blkaddr;
3421 *node_changed = dn.node_changed;
3422 }
3423 f2fs_put_dnode(&dn);
3424 unlock_out:
3425 if (locked)
3426 f2fs_map_unlock(sbi, flag);
3427 return err;
3428 }
3429
__find_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr)3430 static int __find_data_block(struct inode *inode, pgoff_t index,
3431 block_t *blk_addr)
3432 {
3433 struct dnode_of_data dn;
3434 struct folio *ifolio;
3435 int err = 0;
3436
3437 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
3438 if (IS_ERR(ifolio))
3439 return PTR_ERR(ifolio);
3440
3441 set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3442
3443 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3444 &dn.data_blkaddr)) {
3445 /* hole case */
3446 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3447 if (err) {
3448 dn.data_blkaddr = NULL_ADDR;
3449 err = 0;
3450 }
3451 }
3452 *blk_addr = dn.data_blkaddr;
3453 f2fs_put_dnode(&dn);
3454 return err;
3455 }
3456
__reserve_data_block(struct inode * inode,pgoff_t index,block_t * blk_addr,bool * node_changed)3457 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3458 block_t *blk_addr, bool *node_changed)
3459 {
3460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3461 struct dnode_of_data dn;
3462 struct folio *ifolio;
3463 int err = 0;
3464
3465 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3466
3467 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
3468 if (IS_ERR(ifolio)) {
3469 err = PTR_ERR(ifolio);
3470 goto unlock_out;
3471 }
3472 set_new_dnode(&dn, inode, ifolio, ifolio, 0);
3473
3474 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3475 &dn.data_blkaddr))
3476 err = f2fs_reserve_block(&dn, index);
3477
3478 *blk_addr = dn.data_blkaddr;
3479 *node_changed = dn.node_changed;
3480 f2fs_put_dnode(&dn);
3481
3482 unlock_out:
3483 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3484 return err;
3485 }
3486
prepare_atomic_write_begin(struct f2fs_sb_info * sbi,struct folio * folio,loff_t pos,unsigned int len,block_t * blk_addr,bool * node_changed,bool * use_cow)3487 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3488 struct folio *folio, loff_t pos, unsigned int len,
3489 block_t *blk_addr, bool *node_changed, bool *use_cow)
3490 {
3491 struct inode *inode = folio->mapping->host;
3492 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3493 pgoff_t index = folio->index;
3494 int err = 0;
3495 block_t ori_blk_addr = NULL_ADDR;
3496
3497 /* If pos is beyond the end of file, reserve a new block in COW inode */
3498 if ((pos & PAGE_MASK) >= i_size_read(inode))
3499 goto reserve_block;
3500
3501 /* Look for the block in COW inode first */
3502 err = __find_data_block(cow_inode, index, blk_addr);
3503 if (err) {
3504 return err;
3505 } else if (*blk_addr != NULL_ADDR) {
3506 *use_cow = true;
3507 return 0;
3508 }
3509
3510 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3511 goto reserve_block;
3512
3513 /* Look for the block in the original inode */
3514 err = __find_data_block(inode, index, &ori_blk_addr);
3515 if (err)
3516 return err;
3517
3518 reserve_block:
3519 /* Finally, we should reserve a new block in COW inode for the update */
3520 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3521 if (err)
3522 return err;
3523 inc_atomic_write_cnt(inode);
3524
3525 if (ori_blk_addr != NULL_ADDR)
3526 *blk_addr = ori_blk_addr;
3527 return 0;
3528 }
3529
f2fs_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3530 static int f2fs_write_begin(const struct kiocb *iocb,
3531 struct address_space *mapping,
3532 loff_t pos, unsigned len, struct folio **foliop,
3533 void **fsdata)
3534 {
3535 struct inode *inode = mapping->host;
3536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3537 struct folio *folio;
3538 pgoff_t index = pos >> PAGE_SHIFT;
3539 bool need_balance = false;
3540 bool use_cow = false;
3541 block_t blkaddr = NULL_ADDR;
3542 int err = 0;
3543
3544 trace_f2fs_write_begin(inode, pos, len);
3545
3546 if (!f2fs_is_checkpoint_ready(sbi)) {
3547 err = -ENOSPC;
3548 goto fail;
3549 }
3550
3551 /*
3552 * We should check this at this moment to avoid deadlock on inode page
3553 * and #0 page. The locking rule for inline_data conversion should be:
3554 * folio_lock(folio #0) -> folio_lock(inode_page)
3555 */
3556 if (index != 0) {
3557 err = f2fs_convert_inline_inode(inode);
3558 if (err)
3559 goto fail;
3560 }
3561
3562 #ifdef CONFIG_F2FS_FS_COMPRESSION
3563 if (f2fs_compressed_file(inode)) {
3564 int ret;
3565 struct page *page;
3566
3567 *fsdata = NULL;
3568
3569 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3570 goto repeat;
3571
3572 ret = f2fs_prepare_compress_overwrite(inode, &page,
3573 index, fsdata);
3574 if (ret < 0) {
3575 err = ret;
3576 goto fail;
3577 } else if (ret) {
3578 *foliop = page_folio(page);
3579 return 0;
3580 }
3581 }
3582 #endif
3583
3584 repeat:
3585 /*
3586 * Do not use FGP_STABLE to avoid deadlock.
3587 * Will wait that below with our IO control.
3588 */
3589 folio = __filemap_get_folio(mapping, index,
3590 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3591 if (IS_ERR(folio)) {
3592 err = PTR_ERR(folio);
3593 goto fail;
3594 }
3595
3596 /* TODO: cluster can be compressed due to race with .writepage */
3597
3598 *foliop = folio;
3599
3600 if (f2fs_is_atomic_file(inode))
3601 err = prepare_atomic_write_begin(sbi, folio, pos, len,
3602 &blkaddr, &need_balance, &use_cow);
3603 else
3604 err = prepare_write_begin(sbi, folio, pos, len,
3605 &blkaddr, &need_balance);
3606 if (err)
3607 goto put_folio;
3608
3609 if (need_balance && !IS_NOQUOTA(inode) &&
3610 has_not_enough_free_secs(sbi, 0, 0)) {
3611 folio_unlock(folio);
3612 f2fs_balance_fs(sbi, true);
3613 folio_lock(folio);
3614 if (folio->mapping != mapping) {
3615 /* The folio got truncated from under us */
3616 folio_unlock(folio);
3617 folio_put(folio);
3618 goto repeat;
3619 }
3620 }
3621
3622 f2fs_folio_wait_writeback(folio, DATA, false, true);
3623
3624 if (len == folio_size(folio) || folio_test_uptodate(folio))
3625 return 0;
3626
3627 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3628 !f2fs_verity_in_progress(inode)) {
3629 folio_zero_segment(folio, len, folio_size(folio));
3630 return 0;
3631 }
3632
3633 if (blkaddr == NEW_ADDR) {
3634 folio_zero_segment(folio, 0, folio_size(folio));
3635 folio_mark_uptodate(folio);
3636 } else {
3637 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3638 DATA_GENERIC_ENHANCE_READ)) {
3639 err = -EFSCORRUPTED;
3640 goto put_folio;
3641 }
3642 err = f2fs_submit_page_read(use_cow ?
3643 F2FS_I(inode)->cow_inode : inode,
3644 folio, blkaddr, 0, true);
3645 if (err)
3646 goto put_folio;
3647
3648 folio_lock(folio);
3649 if (unlikely(folio->mapping != mapping)) {
3650 folio_unlock(folio);
3651 folio_put(folio);
3652 goto repeat;
3653 }
3654 if (unlikely(!folio_test_uptodate(folio))) {
3655 err = -EIO;
3656 goto put_folio;
3657 }
3658 }
3659 return 0;
3660
3661 put_folio:
3662 folio_unlock(folio);
3663 folio_put(folio);
3664 fail:
3665 f2fs_write_failed(inode, pos + len);
3666 return err;
3667 }
3668
f2fs_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3669 static int f2fs_write_end(const struct kiocb *iocb,
3670 struct address_space *mapping,
3671 loff_t pos, unsigned len, unsigned copied,
3672 struct folio *folio, void *fsdata)
3673 {
3674 struct inode *inode = folio->mapping->host;
3675
3676 trace_f2fs_write_end(inode, pos, len, copied);
3677
3678 /*
3679 * This should be come from len == PAGE_SIZE, and we expect copied
3680 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3681 * let generic_perform_write() try to copy data again through copied=0.
3682 */
3683 if (!folio_test_uptodate(folio)) {
3684 if (unlikely(copied != len))
3685 copied = 0;
3686 else
3687 folio_mark_uptodate(folio);
3688 }
3689
3690 #ifdef CONFIG_F2FS_FS_COMPRESSION
3691 /* overwrite compressed file */
3692 if (f2fs_compressed_file(inode) && fsdata) {
3693 f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3694 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3695
3696 if (pos + copied > i_size_read(inode) &&
3697 !f2fs_verity_in_progress(inode))
3698 f2fs_i_size_write(inode, pos + copied);
3699 return copied;
3700 }
3701 #endif
3702
3703 if (!copied)
3704 goto unlock_out;
3705
3706 folio_mark_dirty(folio);
3707
3708 if (f2fs_is_atomic_file(inode))
3709 folio_set_f2fs_atomic(folio);
3710
3711 if (pos + copied > i_size_read(inode) &&
3712 !f2fs_verity_in_progress(inode)) {
3713 f2fs_i_size_write(inode, pos + copied);
3714 if (f2fs_is_atomic_file(inode))
3715 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3716 pos + copied);
3717 }
3718 unlock_out:
3719 folio_unlock(folio);
3720 folio_put(folio);
3721 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3722 return copied;
3723 }
3724
f2fs_invalidate_folio(struct folio * folio,size_t offset,size_t length)3725 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3726 {
3727 struct inode *inode = folio->mapping->host;
3728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3729
3730 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3731 (offset || length != folio_size(folio)))
3732 return;
3733
3734 if (folio_test_dirty(folio)) {
3735 if (inode->i_ino == F2FS_META_INO(sbi)) {
3736 dec_page_count(sbi, F2FS_DIRTY_META);
3737 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3738 dec_page_count(sbi, F2FS_DIRTY_NODES);
3739 } else {
3740 inode_dec_dirty_pages(inode);
3741 f2fs_remove_dirty_inode(inode);
3742 }
3743 }
3744 folio_detach_private(folio);
3745 }
3746
f2fs_release_folio(struct folio * folio,gfp_t wait)3747 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3748 {
3749 /* If this is dirty folio, keep private data */
3750 if (folio_test_dirty(folio))
3751 return false;
3752
3753 folio_detach_private(folio);
3754 return true;
3755 }
3756
f2fs_dirty_data_folio(struct address_space * mapping,struct folio * folio)3757 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3758 struct folio *folio)
3759 {
3760 struct inode *inode = mapping->host;
3761
3762 trace_f2fs_set_page_dirty(folio, DATA);
3763
3764 if (!folio_test_uptodate(folio))
3765 folio_mark_uptodate(folio);
3766 BUG_ON(folio_test_swapcache(folio));
3767
3768 if (filemap_dirty_folio(mapping, folio)) {
3769 f2fs_update_dirty_folio(inode, folio);
3770 return true;
3771 }
3772 return false;
3773 }
3774
3775
f2fs_bmap_compress(struct inode * inode,sector_t block)3776 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3777 {
3778 #ifdef CONFIG_F2FS_FS_COMPRESSION
3779 struct dnode_of_data dn;
3780 sector_t start_idx, blknr = 0;
3781 int ret;
3782
3783 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3784
3785 set_new_dnode(&dn, inode, NULL, NULL, 0);
3786 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3787 if (ret)
3788 return 0;
3789
3790 if (dn.data_blkaddr != COMPRESS_ADDR) {
3791 dn.ofs_in_node += block - start_idx;
3792 blknr = f2fs_data_blkaddr(&dn);
3793 if (!__is_valid_data_blkaddr(blknr))
3794 blknr = 0;
3795 }
3796
3797 f2fs_put_dnode(&dn);
3798 return blknr;
3799 #else
3800 return 0;
3801 #endif
3802 }
3803
3804
f2fs_bmap(struct address_space * mapping,sector_t block)3805 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3806 {
3807 struct inode *inode = mapping->host;
3808 sector_t blknr = 0;
3809
3810 if (f2fs_has_inline_data(inode))
3811 goto out;
3812
3813 /* make sure allocating whole blocks */
3814 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3815 filemap_write_and_wait(mapping);
3816
3817 /* Block number less than F2FS MAX BLOCKS */
3818 if (unlikely(block >= max_file_blocks(inode)))
3819 goto out;
3820
3821 if (f2fs_compressed_file(inode)) {
3822 blknr = f2fs_bmap_compress(inode, block);
3823 } else {
3824 struct f2fs_map_blocks map;
3825
3826 memset(&map, 0, sizeof(map));
3827 map.m_lblk = block;
3828 map.m_len = 1;
3829 map.m_next_pgofs = NULL;
3830 map.m_seg_type = NO_CHECK_TYPE;
3831
3832 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3833 blknr = map.m_pblk;
3834 }
3835 out:
3836 trace_f2fs_bmap(inode, block, blknr);
3837 return blknr;
3838 }
3839
3840 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3841 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3842 unsigned int blkcnt)
3843 {
3844 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3845 unsigned int blkofs;
3846 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3847 unsigned int end_blk = start_blk + blkcnt - 1;
3848 unsigned int secidx = start_blk / blk_per_sec;
3849 unsigned int end_sec;
3850 int ret = 0;
3851
3852 if (!blkcnt)
3853 return 0;
3854 end_sec = end_blk / blk_per_sec;
3855
3856 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3857 filemap_invalidate_lock(inode->i_mapping);
3858
3859 set_inode_flag(inode, FI_ALIGNED_WRITE);
3860 set_inode_flag(inode, FI_OPU_WRITE);
3861
3862 for (; secidx <= end_sec; secidx++) {
3863 unsigned int blkofs_end = secidx == end_sec ?
3864 end_blk % blk_per_sec : blk_per_sec - 1;
3865
3866 f2fs_down_write(&sbi->pin_sem);
3867
3868 ret = f2fs_allocate_pinning_section(sbi);
3869 if (ret) {
3870 f2fs_up_write(&sbi->pin_sem);
3871 break;
3872 }
3873
3874 set_inode_flag(inode, FI_SKIP_WRITES);
3875
3876 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3877 struct folio *folio;
3878 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3879
3880 folio = f2fs_get_lock_data_folio(inode, blkidx, true);
3881 if (IS_ERR(folio)) {
3882 f2fs_up_write(&sbi->pin_sem);
3883 ret = PTR_ERR(folio);
3884 goto done;
3885 }
3886
3887 folio_mark_dirty(folio);
3888 f2fs_folio_put(folio, true);
3889 }
3890
3891 clear_inode_flag(inode, FI_SKIP_WRITES);
3892
3893 ret = filemap_fdatawrite(inode->i_mapping);
3894
3895 f2fs_up_write(&sbi->pin_sem);
3896
3897 if (ret)
3898 break;
3899 }
3900
3901 done:
3902 clear_inode_flag(inode, FI_SKIP_WRITES);
3903 clear_inode_flag(inode, FI_OPU_WRITE);
3904 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3905
3906 filemap_invalidate_unlock(inode->i_mapping);
3907 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3908
3909 return ret;
3910 }
3911
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3912 static int check_swap_activate(struct swap_info_struct *sis,
3913 struct file *swap_file, sector_t *span)
3914 {
3915 struct address_space *mapping = swap_file->f_mapping;
3916 struct inode *inode = mapping->host;
3917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3918 block_t cur_lblock;
3919 block_t last_lblock;
3920 block_t pblock;
3921 block_t lowest_pblock = -1;
3922 block_t highest_pblock = 0;
3923 int nr_extents = 0;
3924 unsigned int nr_pblocks;
3925 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3926 unsigned int not_aligned = 0;
3927 int ret = 0;
3928
3929 /*
3930 * Map all the blocks into the extent list. This code doesn't try
3931 * to be very smart.
3932 */
3933 cur_lblock = 0;
3934 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode));
3935
3936 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3937 struct f2fs_map_blocks map;
3938 retry:
3939 cond_resched();
3940
3941 memset(&map, 0, sizeof(map));
3942 map.m_lblk = cur_lblock;
3943 map.m_len = last_lblock - cur_lblock;
3944 map.m_next_pgofs = NULL;
3945 map.m_next_extent = NULL;
3946 map.m_seg_type = NO_CHECK_TYPE;
3947 map.m_may_create = false;
3948
3949 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3950 if (ret)
3951 goto out;
3952
3953 /* hole */
3954 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3955 f2fs_err(sbi, "Swapfile has holes");
3956 ret = -EINVAL;
3957 goto out;
3958 }
3959
3960 pblock = map.m_pblk;
3961 nr_pblocks = map.m_len;
3962
3963 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
3964 nr_pblocks % blks_per_sec ||
3965 f2fs_is_sequential_zone_area(sbi, pblock)) {
3966 bool last_extent = false;
3967
3968 not_aligned++;
3969
3970 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3971 if (cur_lblock + nr_pblocks > sis->max)
3972 nr_pblocks -= blks_per_sec;
3973
3974 /* this extent is last one */
3975 if (!nr_pblocks) {
3976 nr_pblocks = last_lblock - cur_lblock;
3977 last_extent = true;
3978 }
3979
3980 ret = f2fs_migrate_blocks(inode, cur_lblock,
3981 nr_pblocks);
3982 if (ret) {
3983 if (ret == -ENOENT)
3984 ret = -EINVAL;
3985 goto out;
3986 }
3987
3988 if (!last_extent)
3989 goto retry;
3990 }
3991
3992 if (cur_lblock + nr_pblocks >= sis->max)
3993 nr_pblocks = sis->max - cur_lblock;
3994
3995 if (cur_lblock) { /* exclude the header page */
3996 if (pblock < lowest_pblock)
3997 lowest_pblock = pblock;
3998 if (pblock + nr_pblocks - 1 > highest_pblock)
3999 highest_pblock = pblock + nr_pblocks - 1;
4000 }
4001
4002 /*
4003 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4004 */
4005 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4006 if (ret < 0)
4007 goto out;
4008 nr_extents += ret;
4009 cur_lblock += nr_pblocks;
4010 }
4011 ret = nr_extents;
4012 *span = 1 + highest_pblock - lowest_pblock;
4013 if (cur_lblock == 0)
4014 cur_lblock = 1; /* force Empty message */
4015 sis->max = cur_lblock;
4016 sis->pages = cur_lblock - 1;
4017 out:
4018 if (not_aligned)
4019 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4020 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4021 return ret;
4022 }
4023
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4024 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4025 sector_t *span)
4026 {
4027 struct inode *inode = file_inode(file);
4028 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4029 int ret;
4030
4031 if (!S_ISREG(inode->i_mode))
4032 return -EINVAL;
4033
4034 if (f2fs_readonly(sbi->sb))
4035 return -EROFS;
4036
4037 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4038 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4039 return -EINVAL;
4040 }
4041
4042 ret = f2fs_convert_inline_inode(inode);
4043 if (ret)
4044 return ret;
4045
4046 if (!f2fs_disable_compressed_file(inode))
4047 return -EINVAL;
4048
4049 ret = filemap_fdatawrite(inode->i_mapping);
4050 if (ret < 0)
4051 return ret;
4052
4053 f2fs_precache_extents(inode);
4054
4055 ret = check_swap_activate(sis, file, span);
4056 if (ret < 0)
4057 return ret;
4058
4059 stat_inc_swapfile_inode(inode);
4060 set_inode_flag(inode, FI_PIN_FILE);
4061 f2fs_update_time(sbi, REQ_TIME);
4062 return ret;
4063 }
4064
f2fs_swap_deactivate(struct file * file)4065 static void f2fs_swap_deactivate(struct file *file)
4066 {
4067 struct inode *inode = file_inode(file);
4068
4069 stat_dec_swapfile_inode(inode);
4070 clear_inode_flag(inode, FI_PIN_FILE);
4071 }
4072 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4073 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4074 sector_t *span)
4075 {
4076 return -EOPNOTSUPP;
4077 }
4078
f2fs_swap_deactivate(struct file * file)4079 static void f2fs_swap_deactivate(struct file *file)
4080 {
4081 }
4082 #endif
4083
4084 const struct address_space_operations f2fs_dblock_aops = {
4085 .read_folio = f2fs_read_data_folio,
4086 .readahead = f2fs_readahead,
4087 .writepages = f2fs_write_data_pages,
4088 .write_begin = f2fs_write_begin,
4089 .write_end = f2fs_write_end,
4090 .dirty_folio = f2fs_dirty_data_folio,
4091 .migrate_folio = filemap_migrate_folio,
4092 .invalidate_folio = f2fs_invalidate_folio,
4093 .release_folio = f2fs_release_folio,
4094 .bmap = f2fs_bmap,
4095 .swap_activate = f2fs_swap_activate,
4096 .swap_deactivate = f2fs_swap_deactivate,
4097 };
4098
f2fs_clear_page_cache_dirty_tag(struct folio * folio)4099 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4100 {
4101 struct address_space *mapping = folio->mapping;
4102 unsigned long flags;
4103
4104 xa_lock_irqsave(&mapping->i_pages, flags);
4105 __xa_clear_mark(&mapping->i_pages, folio->index,
4106 PAGECACHE_TAG_DIRTY);
4107 xa_unlock_irqrestore(&mapping->i_pages, flags);
4108 }
4109
f2fs_init_post_read_processing(void)4110 int __init f2fs_init_post_read_processing(void)
4111 {
4112 bio_post_read_ctx_cache =
4113 kmem_cache_create("f2fs_bio_post_read_ctx",
4114 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4115 if (!bio_post_read_ctx_cache)
4116 goto fail;
4117 bio_post_read_ctx_pool =
4118 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4119 bio_post_read_ctx_cache);
4120 if (!bio_post_read_ctx_pool)
4121 goto fail_free_cache;
4122 return 0;
4123
4124 fail_free_cache:
4125 kmem_cache_destroy(bio_post_read_ctx_cache);
4126 fail:
4127 return -ENOMEM;
4128 }
4129
f2fs_destroy_post_read_processing(void)4130 void f2fs_destroy_post_read_processing(void)
4131 {
4132 mempool_destroy(bio_post_read_ctx_pool);
4133 kmem_cache_destroy(bio_post_read_ctx_cache);
4134 }
4135
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4136 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4137 {
4138 if (!f2fs_sb_has_encrypt(sbi) &&
4139 !f2fs_sb_has_verity(sbi) &&
4140 !f2fs_sb_has_compression(sbi))
4141 return 0;
4142
4143 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4144 WQ_UNBOUND | WQ_HIGHPRI,
4145 num_online_cpus());
4146 return sbi->post_read_wq ? 0 : -ENOMEM;
4147 }
4148
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4149 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4150 {
4151 if (sbi->post_read_wq)
4152 destroy_workqueue(sbi->post_read_wq);
4153 }
4154
f2fs_init_bio_entry_cache(void)4155 int __init f2fs_init_bio_entry_cache(void)
4156 {
4157 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4158 sizeof(struct bio_entry));
4159 return bio_entry_slab ? 0 : -ENOMEM;
4160 }
4161
f2fs_destroy_bio_entry_cache(void)4162 void f2fs_destroy_bio_entry_cache(void)
4163 {
4164 kmem_cache_destroy(bio_entry_slab);
4165 }
4166
f2fs_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)4167 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4168 unsigned int flags, struct iomap *iomap,
4169 struct iomap *srcmap)
4170 {
4171 struct f2fs_map_blocks map = { NULL, };
4172 pgoff_t next_pgofs = 0;
4173 int err;
4174
4175 map.m_lblk = F2FS_BYTES_TO_BLK(offset);
4176 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1;
4177 map.m_next_pgofs = &next_pgofs;
4178 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4179 inode->i_write_hint);
4180 if (flags & IOMAP_WRITE && iomap->private) {
4181 map.m_last_pblk = (unsigned long)iomap->private;
4182 iomap->private = NULL;
4183 }
4184
4185 /*
4186 * If the blocks being overwritten are already allocated,
4187 * f2fs_map_lock and f2fs_balance_fs are not necessary.
4188 */
4189 if ((flags & IOMAP_WRITE) &&
4190 !f2fs_overwrite_io(inode, offset, length))
4191 map.m_may_create = true;
4192
4193 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4194 if (err)
4195 return err;
4196
4197 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk);
4198
4199 /*
4200 * When inline encryption is enabled, sometimes I/O to an encrypted file
4201 * has to be broken up to guarantee DUN contiguity. Handle this by
4202 * limiting the length of the mapping returned.
4203 */
4204 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4205
4206 /*
4207 * We should never see delalloc or compressed extents here based on
4208 * prior flushing and checks.
4209 */
4210 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4211 return -EINVAL;
4212
4213 if (map.m_flags & F2FS_MAP_MAPPED) {
4214 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4215 return -EINVAL;
4216
4217 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4218 iomap->type = IOMAP_MAPPED;
4219 iomap->flags |= IOMAP_F_MERGED;
4220 iomap->bdev = map.m_bdev;
4221 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk);
4222
4223 if (flags & IOMAP_WRITE && map.m_last_pblk)
4224 iomap->private = (void *)map.m_last_pblk;
4225 } else {
4226 if (flags & IOMAP_WRITE)
4227 return -ENOTBLK;
4228
4229 if (map.m_pblk == NULL_ADDR) {
4230 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) -
4231 iomap->offset;
4232 iomap->type = IOMAP_HOLE;
4233 } else if (map.m_pblk == NEW_ADDR) {
4234 iomap->length = F2FS_BLK_TO_BYTES(map.m_len);
4235 iomap->type = IOMAP_UNWRITTEN;
4236 } else {
4237 f2fs_bug_on(F2FS_I_SB(inode), 1);
4238 }
4239 iomap->addr = IOMAP_NULL_ADDR;
4240 }
4241
4242 if (map.m_flags & F2FS_MAP_NEW)
4243 iomap->flags |= IOMAP_F_NEW;
4244 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4245 offset + length > i_size_read(inode))
4246 iomap->flags |= IOMAP_F_DIRTY;
4247
4248 return 0;
4249 }
4250
4251 const struct iomap_ops f2fs_iomap_ops = {
4252 .iomap_begin = f2fs_iomap_begin,
4253 };
4254