1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * 2002-10-15 Posix Clocks & timers 4 * by George Anzinger george@mvista.com 5 * Copyright (C) 2002 2003 by MontaVista Software. 6 * 7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 8 * Copyright (C) 2004 Boris Hu 9 * 10 * These are all the functions necessary to implement POSIX clocks & timers 11 */ 12 #include <linux/compat.h> 13 #include <linux/compiler.h> 14 #include <linux/init.h> 15 #include <linux/jhash.h> 16 #include <linux/interrupt.h> 17 #include <linux/list.h> 18 #include <linux/memblock.h> 19 #include <linux/nospec.h> 20 #include <linux/posix-clock.h> 21 #include <linux/posix-timers.h> 22 #include <linux/prctl.h> 23 #include <linux/sched/task.h> 24 #include <linux/slab.h> 25 #include <linux/syscalls.h> 26 #include <linux/time.h> 27 #include <linux/time_namespace.h> 28 #include <linux/uaccess.h> 29 30 #include "timekeeping.h" 31 #include "posix-timers.h" 32 33 /* 34 * Timers are managed in a hash table for lockless lookup. The hash key is 35 * constructed from current::signal and the timer ID and the timer is 36 * matched against current::signal and the timer ID when walking the hash 37 * bucket list. 38 * 39 * This allows checkpoint/restore to reconstruct the exact timer IDs for 40 * a process. 41 */ 42 struct timer_hash_bucket { 43 spinlock_t lock; 44 struct hlist_head head; 45 }; 46 47 static struct { 48 struct timer_hash_bucket *buckets; 49 unsigned long mask; 50 struct kmem_cache *cache; 51 } __timer_data __ro_after_init __aligned(4*sizeof(long)); 52 53 #define timer_buckets (__timer_data.buckets) 54 #define timer_hashmask (__timer_data.mask) 55 #define posix_timers_cache (__timer_data.cache) 56 57 static const struct k_clock * const posix_clocks[]; 58 static const struct k_clock *clockid_to_kclock(const clockid_t id); 59 static const struct k_clock clock_realtime, clock_monotonic; 60 61 #define TIMER_ANY_ID INT_MIN 62 63 /* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */ 64 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 65 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 66 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 67 #endif 68 69 static struct k_itimer *lock_timer(timer_t timer_id); 70 static inline void unlock_timer(struct k_itimer *timr) 71 { 72 if (likely((timr))) 73 spin_unlock_irq(&timr->it_lock); 74 } 75 76 #define scoped_timer_get_or_fail(_id) \ 77 scoped_cond_guard(lock_timer, return -EINVAL, _id) 78 79 #define scoped_timer (scope) 80 81 DEFINE_CLASS(lock_timer, struct k_itimer *, unlock_timer(_T), lock_timer(id), timer_t id); 82 DEFINE_CLASS_IS_COND_GUARD(lock_timer); 83 84 static struct timer_hash_bucket *hash_bucket(struct signal_struct *sig, unsigned int nr) 85 { 86 return &timer_buckets[jhash2((u32 *)&sig, sizeof(sig) / sizeof(u32), nr) & timer_hashmask]; 87 } 88 89 static struct k_itimer *posix_timer_by_id(timer_t id) 90 { 91 struct signal_struct *sig = current->signal; 92 struct timer_hash_bucket *bucket = hash_bucket(sig, id); 93 struct k_itimer *timer; 94 95 hlist_for_each_entry_rcu(timer, &bucket->head, t_hash) { 96 /* timer->it_signal can be set concurrently */ 97 if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id)) 98 return timer; 99 } 100 return NULL; 101 } 102 103 static inline struct signal_struct *posix_sig_owner(const struct k_itimer *timer) 104 { 105 unsigned long val = (unsigned long)timer->it_signal; 106 107 /* 108 * Mask out bit 0, which acts as invalid marker to prevent 109 * posix_timer_by_id() detecting it as valid. 110 */ 111 return (struct signal_struct *)(val & ~1UL); 112 } 113 114 static bool posix_timer_hashed(struct timer_hash_bucket *bucket, struct signal_struct *sig, 115 timer_t id) 116 { 117 struct hlist_head *head = &bucket->head; 118 struct k_itimer *timer; 119 120 hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&bucket->lock)) { 121 if ((posix_sig_owner(timer) == sig) && (timer->it_id == id)) 122 return true; 123 } 124 return false; 125 } 126 127 static bool posix_timer_add_at(struct k_itimer *timer, struct signal_struct *sig, unsigned int id) 128 { 129 struct timer_hash_bucket *bucket = hash_bucket(sig, id); 130 131 scoped_guard (spinlock, &bucket->lock) { 132 /* 133 * Validate under the lock as this could have raced against 134 * another thread ending up with the same ID, which is 135 * highly unlikely, but possible. 136 */ 137 if (!posix_timer_hashed(bucket, sig, id)) { 138 /* 139 * Set the timer ID and the signal pointer to make 140 * it identifiable in the hash table. The signal 141 * pointer has bit 0 set to indicate that it is not 142 * yet fully initialized. posix_timer_hashed() 143 * masks this bit out, but the syscall lookup fails 144 * to match due to it being set. This guarantees 145 * that there can't be duplicate timer IDs handed 146 * out. 147 */ 148 timer->it_id = (timer_t)id; 149 timer->it_signal = (struct signal_struct *)((unsigned long)sig | 1UL); 150 hlist_add_head_rcu(&timer->t_hash, &bucket->head); 151 return true; 152 } 153 } 154 return false; 155 } 156 157 static int posix_timer_add(struct k_itimer *timer, int req_id) 158 { 159 struct signal_struct *sig = current->signal; 160 161 if (unlikely(req_id != TIMER_ANY_ID)) { 162 if (!posix_timer_add_at(timer, sig, req_id)) 163 return -EBUSY; 164 165 /* 166 * Move the ID counter past the requested ID, so that after 167 * switching back to normal mode the IDs are outside of the 168 * exact allocated region. That avoids ID collisions on the 169 * next regular timer_create() invocations. 170 */ 171 atomic_set(&sig->next_posix_timer_id, req_id + 1); 172 return req_id; 173 } 174 175 for (unsigned int cnt = 0; cnt <= INT_MAX; cnt++) { 176 /* Get the next timer ID and clamp it to positive space */ 177 unsigned int id = atomic_fetch_inc(&sig->next_posix_timer_id) & INT_MAX; 178 179 if (posix_timer_add_at(timer, sig, id)) 180 return id; 181 cond_resched(); 182 } 183 /* POSIX return code when no timer ID could be allocated */ 184 return -EAGAIN; 185 } 186 187 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) 188 { 189 ktime_get_real_ts64(tp); 190 return 0; 191 } 192 193 static ktime_t posix_get_realtime_ktime(clockid_t which_clock) 194 { 195 return ktime_get_real(); 196 } 197 198 static int posix_clock_realtime_set(const clockid_t which_clock, 199 const struct timespec64 *tp) 200 { 201 return do_sys_settimeofday64(tp, NULL); 202 } 203 204 static int posix_clock_realtime_adj(const clockid_t which_clock, 205 struct __kernel_timex *t) 206 { 207 return do_adjtimex(t); 208 } 209 210 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) 211 { 212 ktime_get_ts64(tp); 213 timens_add_monotonic(tp); 214 return 0; 215 } 216 217 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) 218 { 219 return ktime_get(); 220 } 221 222 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 223 { 224 ktime_get_raw_ts64(tp); 225 timens_add_monotonic(tp); 226 return 0; 227 } 228 229 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 230 { 231 ktime_get_coarse_real_ts64(tp); 232 return 0; 233 } 234 235 static int posix_get_monotonic_coarse(clockid_t which_clock, 236 struct timespec64 *tp) 237 { 238 ktime_get_coarse_ts64(tp); 239 timens_add_monotonic(tp); 240 return 0; 241 } 242 243 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 244 { 245 *tp = ktime_to_timespec64(KTIME_LOW_RES); 246 return 0; 247 } 248 249 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) 250 { 251 ktime_get_boottime_ts64(tp); 252 timens_add_boottime(tp); 253 return 0; 254 } 255 256 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) 257 { 258 return ktime_get_boottime(); 259 } 260 261 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) 262 { 263 ktime_get_clocktai_ts64(tp); 264 return 0; 265 } 266 267 static ktime_t posix_get_tai_ktime(clockid_t which_clock) 268 { 269 return ktime_get_clocktai(); 270 } 271 272 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 273 { 274 tp->tv_sec = 0; 275 tp->tv_nsec = hrtimer_resolution; 276 return 0; 277 } 278 279 /* 280 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 281 * are of type int. Clamp the overrun value to INT_MAX 282 */ 283 static inline int timer_overrun_to_int(struct k_itimer *timr) 284 { 285 if (timr->it_overrun_last > (s64)INT_MAX) 286 return INT_MAX; 287 288 return (int)timr->it_overrun_last; 289 } 290 291 static void common_hrtimer_rearm(struct k_itimer *timr) 292 { 293 struct hrtimer *timer = &timr->it.real.timer; 294 295 timr->it_overrun += hrtimer_forward_now(timer, timr->it_interval); 296 hrtimer_restart(timer); 297 } 298 299 static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr) 300 { 301 guard(spinlock)(&timr->it_lock); 302 303 /* 304 * Check if the timer is still alive or whether it got modified 305 * since the signal was queued. In either case, don't rearm and 306 * drop the signal. 307 */ 308 if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!posixtimer_valid(timr))) 309 return false; 310 311 if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING)) 312 return true; 313 314 timr->kclock->timer_rearm(timr); 315 timr->it_status = POSIX_TIMER_ARMED; 316 timr->it_overrun_last = timr->it_overrun; 317 timr->it_overrun = -1LL; 318 ++timr->it_signal_seq; 319 info->si_overrun = timer_overrun_to_int(timr); 320 return true; 321 } 322 323 /* 324 * This function is called from the signal delivery code. It decides 325 * whether the signal should be dropped and rearms interval timers. The 326 * timer can be unconditionally accessed as there is a reference held on 327 * it. 328 */ 329 bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq) 330 { 331 struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq); 332 bool ret; 333 334 /* 335 * Release siglock to ensure proper locking order versus 336 * timr::it_lock. Keep interrupts disabled. 337 */ 338 spin_unlock(¤t->sighand->siglock); 339 340 ret = __posixtimer_deliver_signal(info, timr); 341 342 /* Drop the reference which was acquired when the signal was queued */ 343 posixtimer_putref(timr); 344 345 spin_lock(¤t->sighand->siglock); 346 return ret; 347 } 348 349 void posix_timer_queue_signal(struct k_itimer *timr) 350 { 351 lockdep_assert_held(&timr->it_lock); 352 353 if (!posixtimer_valid(timr)) 354 return; 355 356 timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED; 357 posixtimer_send_sigqueue(timr); 358 } 359 360 /* 361 * This function gets called when a POSIX.1b interval timer expires from 362 * the HRTIMER interrupt (soft interrupt on RT kernels). 363 * 364 * Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI 365 * based timers. 366 */ 367 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 368 { 369 struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer); 370 371 guard(spinlock_irqsave)(&timr->it_lock); 372 posix_timer_queue_signal(timr); 373 return HRTIMER_NORESTART; 374 } 375 376 long posixtimer_create_prctl(unsigned long ctrl) 377 { 378 switch (ctrl) { 379 case PR_TIMER_CREATE_RESTORE_IDS_OFF: 380 current->signal->timer_create_restore_ids = 0; 381 return 0; 382 case PR_TIMER_CREATE_RESTORE_IDS_ON: 383 current->signal->timer_create_restore_ids = 1; 384 return 0; 385 case PR_TIMER_CREATE_RESTORE_IDS_GET: 386 return current->signal->timer_create_restore_ids; 387 } 388 return -EINVAL; 389 } 390 391 static struct pid *good_sigevent(sigevent_t * event) 392 { 393 struct pid *pid = task_tgid(current); 394 struct task_struct *rtn; 395 396 switch (event->sigev_notify) { 397 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 398 pid = find_vpid(event->sigev_notify_thread_id); 399 rtn = pid_task(pid, PIDTYPE_PID); 400 if (!rtn || !same_thread_group(rtn, current)) 401 return NULL; 402 fallthrough; 403 case SIGEV_SIGNAL: 404 case SIGEV_THREAD: 405 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 406 return NULL; 407 fallthrough; 408 case SIGEV_NONE: 409 return pid; 410 default: 411 return NULL; 412 } 413 } 414 415 static struct k_itimer *alloc_posix_timer(void) 416 { 417 struct k_itimer *tmr; 418 419 if (unlikely(!posix_timers_cache)) 420 return NULL; 421 422 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 423 if (!tmr) 424 return tmr; 425 426 if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) { 427 kmem_cache_free(posix_timers_cache, tmr); 428 return NULL; 429 } 430 rcuref_init(&tmr->rcuref, 1); 431 return tmr; 432 } 433 434 void posixtimer_free_timer(struct k_itimer *tmr) 435 { 436 put_pid(tmr->it_pid); 437 if (tmr->sigq.ucounts) 438 dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING); 439 kfree_rcu(tmr, rcu); 440 } 441 442 static void posix_timer_unhash_and_free(struct k_itimer *tmr) 443 { 444 struct timer_hash_bucket *bucket = hash_bucket(posix_sig_owner(tmr), tmr->it_id); 445 446 scoped_guard (spinlock, &bucket->lock) 447 hlist_del_rcu(&tmr->t_hash); 448 posixtimer_putref(tmr); 449 } 450 451 static int common_timer_create(struct k_itimer *new_timer) 452 { 453 hrtimer_setup(&new_timer->it.real.timer, posix_timer_fn, new_timer->it_clock, 0); 454 return 0; 455 } 456 457 /* Create a POSIX.1b interval timer. */ 458 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 459 timer_t __user *created_timer_id) 460 { 461 const struct k_clock *kc = clockid_to_kclock(which_clock); 462 timer_t req_id = TIMER_ANY_ID; 463 struct k_itimer *new_timer; 464 int error, new_timer_id; 465 466 if (!kc) 467 return -EINVAL; 468 if (!kc->timer_create) 469 return -EOPNOTSUPP; 470 471 /* Special case for CRIU to restore timers with a given timer ID. */ 472 if (unlikely(current->signal->timer_create_restore_ids)) { 473 if (copy_from_user(&req_id, created_timer_id, sizeof(req_id))) 474 return -EFAULT; 475 /* Valid IDs are 0..INT_MAX */ 476 if ((unsigned int)req_id > INT_MAX) 477 return -EINVAL; 478 } 479 480 new_timer = alloc_posix_timer(); 481 if (unlikely(!new_timer)) 482 return -EAGAIN; 483 484 spin_lock_init(&new_timer->it_lock); 485 486 /* 487 * Add the timer to the hash table. The timer is not yet valid 488 * after insertion, but has a unique ID allocated. 489 */ 490 new_timer_id = posix_timer_add(new_timer, req_id); 491 if (new_timer_id < 0) { 492 posixtimer_free_timer(new_timer); 493 return new_timer_id; 494 } 495 496 new_timer->it_clock = which_clock; 497 new_timer->kclock = kc; 498 new_timer->it_overrun = -1LL; 499 500 if (event) { 501 scoped_guard (rcu) 502 new_timer->it_pid = get_pid(good_sigevent(event)); 503 if (!new_timer->it_pid) { 504 error = -EINVAL; 505 goto out; 506 } 507 new_timer->it_sigev_notify = event->sigev_notify; 508 new_timer->sigq.info.si_signo = event->sigev_signo; 509 new_timer->sigq.info.si_value = event->sigev_value; 510 } else { 511 new_timer->it_sigev_notify = SIGEV_SIGNAL; 512 new_timer->sigq.info.si_signo = SIGALRM; 513 new_timer->sigq.info.si_value.sival_int = new_timer->it_id; 514 new_timer->it_pid = get_pid(task_tgid(current)); 515 } 516 517 if (new_timer->it_sigev_notify & SIGEV_THREAD_ID) 518 new_timer->it_pid_type = PIDTYPE_PID; 519 else 520 new_timer->it_pid_type = PIDTYPE_TGID; 521 522 new_timer->sigq.info.si_tid = new_timer->it_id; 523 new_timer->sigq.info.si_code = SI_TIMER; 524 525 if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) { 526 error = -EFAULT; 527 goto out; 528 } 529 /* 530 * After successful copy out, the timer ID is visible to user space 531 * now but not yet valid because new_timer::signal low order bit is 1. 532 * 533 * Complete the initialization with the clock specific create 534 * callback. 535 */ 536 error = kc->timer_create(new_timer); 537 if (error) 538 goto out; 539 540 /* 541 * timer::it_lock ensures that __lock_timer() observes a fully 542 * initialized timer when it observes a valid timer::it_signal. 543 * 544 * sighand::siglock is required to protect signal::posix_timers. 545 */ 546 scoped_guard (spinlock_irq, &new_timer->it_lock) { 547 guard(spinlock)(¤t->sighand->siglock); 548 /* 549 * new_timer::it_signal contains the signal pointer with 550 * bit 0 set, which makes it invalid for syscall operations. 551 * Store the unmodified signal pointer to make it valid. 552 */ 553 WRITE_ONCE(new_timer->it_signal, current->signal); 554 hlist_add_head_rcu(&new_timer->list, ¤t->signal->posix_timers); 555 } 556 /* 557 * After unlocking @new_timer is subject to concurrent removal and 558 * cannot be touched anymore 559 */ 560 return 0; 561 out: 562 posix_timer_unhash_and_free(new_timer); 563 return error; 564 } 565 566 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 567 struct sigevent __user *, timer_event_spec, 568 timer_t __user *, created_timer_id) 569 { 570 if (timer_event_spec) { 571 sigevent_t event; 572 573 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 574 return -EFAULT; 575 return do_timer_create(which_clock, &event, created_timer_id); 576 } 577 return do_timer_create(which_clock, NULL, created_timer_id); 578 } 579 580 #ifdef CONFIG_COMPAT 581 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 582 struct compat_sigevent __user *, timer_event_spec, 583 timer_t __user *, created_timer_id) 584 { 585 if (timer_event_spec) { 586 sigevent_t event; 587 588 if (get_compat_sigevent(&event, timer_event_spec)) 589 return -EFAULT; 590 return do_timer_create(which_clock, &event, created_timer_id); 591 } 592 return do_timer_create(which_clock, NULL, created_timer_id); 593 } 594 #endif 595 596 static struct k_itimer *lock_timer(timer_t timer_id) 597 { 598 struct k_itimer *timr; 599 600 /* 601 * timer_t could be any type >= int and we want to make sure any 602 * @timer_id outside positive int range fails lookup. 603 */ 604 if ((unsigned long long)timer_id > INT_MAX) 605 return NULL; 606 607 /* 608 * The hash lookup and the timers are RCU protected. 609 * 610 * Timers are added to the hash in invalid state where 611 * timr::it_signal is marked invalid. timer::it_signal is only set 612 * after the rest of the initialization succeeded. 613 * 614 * Timer destruction happens in steps: 615 * 1) Set timr::it_signal marked invalid with timr::it_lock held 616 * 2) Release timr::it_lock 617 * 3) Remove from the hash under hash_lock 618 * 4) Put the reference count. 619 * 620 * The reference count might not drop to zero if timr::sigq is 621 * queued. In that case the signal delivery or flush will put the 622 * last reference count. 623 * 624 * When the reference count reaches zero, the timer is scheduled 625 * for RCU removal after the grace period. 626 * 627 * Holding rcu_read_lock() across the lookup ensures that 628 * the timer cannot be freed. 629 * 630 * The lookup validates locklessly that timr::it_signal == 631 * current::it_signal and timr::it_id == @timer_id. timr::it_id 632 * can't change, but timr::it_signal can become invalid during 633 * destruction, which makes the locked check fail. 634 */ 635 guard(rcu)(); 636 timr = posix_timer_by_id(timer_id); 637 if (timr) { 638 spin_lock_irq(&timr->it_lock); 639 /* 640 * Validate under timr::it_lock that timr::it_signal is 641 * still valid. Pairs with #1 above. 642 */ 643 if (timr->it_signal == current->signal) 644 return timr; 645 spin_unlock_irq(&timr->it_lock); 646 } 647 return NULL; 648 } 649 650 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 651 { 652 struct hrtimer *timer = &timr->it.real.timer; 653 654 return __hrtimer_expires_remaining_adjusted(timer, now); 655 } 656 657 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 658 { 659 struct hrtimer *timer = &timr->it.real.timer; 660 661 return hrtimer_forward(timer, now, timr->it_interval); 662 } 663 664 /* 665 * Get the time remaining on a POSIX.1b interval timer. 666 * 667 * Two issues to handle here: 668 * 669 * 1) The timer has a requeue pending. The return value must appear as 670 * if the timer has been requeued right now. 671 * 672 * 2) The timer is a SIGEV_NONE timer. These timers are never enqueued 673 * into the hrtimer queue and therefore never expired. Emulate expiry 674 * here taking #1 into account. 675 */ 676 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 677 { 678 const struct k_clock *kc = timr->kclock; 679 ktime_t now, remaining, iv; 680 bool sig_none; 681 682 sig_none = timr->it_sigev_notify == SIGEV_NONE; 683 iv = timr->it_interval; 684 685 /* interval timer ? */ 686 if (iv) { 687 cur_setting->it_interval = ktime_to_timespec64(iv); 688 } else if (timr->it_status == POSIX_TIMER_DISARMED) { 689 /* 690 * SIGEV_NONE oneshot timers are never queued and therefore 691 * timr->it_status is always DISARMED. The check below 692 * vs. remaining time will handle this case. 693 * 694 * For all other timers there is nothing to update here, so 695 * return. 696 */ 697 if (!sig_none) 698 return; 699 } 700 701 now = kc->clock_get_ktime(timr->it_clock); 702 703 /* 704 * If this is an interval timer and either has requeue pending or 705 * is a SIGEV_NONE timer move the expiry time forward by intervals, 706 * so expiry is > now. 707 */ 708 if (iv && timr->it_status != POSIX_TIMER_ARMED) 709 timr->it_overrun += kc->timer_forward(timr, now); 710 711 remaining = kc->timer_remaining(timr, now); 712 /* 713 * As @now is retrieved before a possible timer_forward() and 714 * cannot be reevaluated by the compiler @remaining is based on the 715 * same @now value. Therefore @remaining is consistent vs. @now. 716 * 717 * Consequently all interval timers, i.e. @iv > 0, cannot have a 718 * remaining time <= 0 because timer_forward() guarantees to move 719 * them forward so that the next timer expiry is > @now. 720 */ 721 if (remaining <= 0) { 722 /* 723 * A single shot SIGEV_NONE timer must return 0, when it is 724 * expired! Timers which have a real signal delivery mode 725 * must return a remaining time greater than 0 because the 726 * signal has not yet been delivered. 727 */ 728 if (!sig_none) 729 cur_setting->it_value.tv_nsec = 1; 730 } else { 731 cur_setting->it_value = ktime_to_timespec64(remaining); 732 } 733 } 734 735 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 736 { 737 memset(setting, 0, sizeof(*setting)); 738 scoped_timer_get_or_fail(timer_id) 739 scoped_timer->kclock->timer_get(scoped_timer, setting); 740 return 0; 741 } 742 743 /* Get the time remaining on a POSIX.1b interval timer. */ 744 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 745 struct __kernel_itimerspec __user *, setting) 746 { 747 struct itimerspec64 cur_setting; 748 749 int ret = do_timer_gettime(timer_id, &cur_setting); 750 if (!ret) { 751 if (put_itimerspec64(&cur_setting, setting)) 752 ret = -EFAULT; 753 } 754 return ret; 755 } 756 757 #ifdef CONFIG_COMPAT_32BIT_TIME 758 759 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, 760 struct old_itimerspec32 __user *, setting) 761 { 762 struct itimerspec64 cur_setting; 763 764 int ret = do_timer_gettime(timer_id, &cur_setting); 765 if (!ret) { 766 if (put_old_itimerspec32(&cur_setting, setting)) 767 ret = -EFAULT; 768 } 769 return ret; 770 } 771 772 #endif 773 774 /** 775 * sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer 776 * @timer_id: The timer ID which identifies the timer 777 * 778 * The "overrun count" of a timer is one plus the number of expiration 779 * intervals which have elapsed between the first expiry, which queues the 780 * signal and the actual signal delivery. On signal delivery the "overrun 781 * count" is calculated and cached, so it can be returned directly here. 782 * 783 * As this is relative to the last queued signal the returned overrun count 784 * is meaningless outside of the signal delivery path and even there it 785 * does not accurately reflect the current state when user space evaluates 786 * it. 787 * 788 * Returns: 789 * -EINVAL @timer_id is invalid 790 * 1..INT_MAX The number of overruns related to the last delivered signal 791 */ 792 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 793 { 794 scoped_timer_get_or_fail(timer_id) 795 return timer_overrun_to_int(scoped_timer); 796 } 797 798 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 799 bool absolute, bool sigev_none) 800 { 801 struct hrtimer *timer = &timr->it.real.timer; 802 enum hrtimer_mode mode; 803 804 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 805 /* 806 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 807 * clock modifications, so they become CLOCK_MONOTONIC based under the 808 * hood. See hrtimer_setup(). Update timr->kclock, so the generic 809 * functions which use timr->kclock->clock_get_*() work. 810 * 811 * Note: it_clock stays unmodified, because the next timer_set() might 812 * use ABSTIME, so it needs to switch back. 813 */ 814 if (timr->it_clock == CLOCK_REALTIME) 815 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 816 817 hrtimer_setup(&timr->it.real.timer, posix_timer_fn, timr->it_clock, mode); 818 819 if (!absolute) 820 expires = ktime_add_safe(expires, hrtimer_cb_get_time(timer)); 821 hrtimer_set_expires(timer, expires); 822 823 if (!sigev_none) 824 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 825 } 826 827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 828 { 829 return hrtimer_try_to_cancel(&timr->it.real.timer); 830 } 831 832 static void common_timer_wait_running(struct k_itimer *timer) 833 { 834 hrtimer_cancel_wait_running(&timer->it.real.timer); 835 } 836 837 /* 838 * On PREEMPT_RT this prevents priority inversion and a potential livelock 839 * against the ksoftirqd thread in case that ksoftirqd gets preempted while 840 * executing a hrtimer callback. 841 * 842 * See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this 843 * just results in a cpu_relax(). 844 * 845 * For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is 846 * just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this 847 * prevents spinning on an eventually scheduled out task and a livelock 848 * when the task which tries to delete or disarm the timer has preempted 849 * the task which runs the expiry in task work context. 850 */ 851 static void timer_wait_running(struct k_itimer *timer) 852 { 853 /* 854 * kc->timer_wait_running() might drop RCU lock. So @timer 855 * cannot be touched anymore after the function returns! 856 */ 857 timer->kclock->timer_wait_running(timer); 858 } 859 860 /* 861 * Set up the new interval and reset the signal delivery data 862 */ 863 void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting) 864 { 865 if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec) 866 timer->it_interval = timespec64_to_ktime(new_setting->it_interval); 867 else 868 timer->it_interval = 0; 869 870 /* Reset overrun accounting */ 871 timer->it_overrun_last = 0; 872 timer->it_overrun = -1LL; 873 } 874 875 /* Set a POSIX.1b interval timer. */ 876 int common_timer_set(struct k_itimer *timr, int flags, 877 struct itimerspec64 *new_setting, 878 struct itimerspec64 *old_setting) 879 { 880 const struct k_clock *kc = timr->kclock; 881 bool sigev_none; 882 ktime_t expires; 883 884 if (old_setting) 885 common_timer_get(timr, old_setting); 886 887 /* 888 * Careful here. On SMP systems the timer expiry function could be 889 * active and spinning on timr->it_lock. 890 */ 891 if (kc->timer_try_to_cancel(timr) < 0) 892 return TIMER_RETRY; 893 894 timr->it_status = POSIX_TIMER_DISARMED; 895 posix_timer_set_common(timr, new_setting); 896 897 /* Keep timer disarmed when it_value is zero */ 898 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 899 return 0; 900 901 expires = timespec64_to_ktime(new_setting->it_value); 902 if (flags & TIMER_ABSTIME) 903 expires = timens_ktime_to_host(timr->it_clock, expires); 904 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 905 906 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 907 if (!sigev_none) 908 timr->it_status = POSIX_TIMER_ARMED; 909 return 0; 910 } 911 912 static int do_timer_settime(timer_t timer_id, int tmr_flags, struct itimerspec64 *new_spec64, 913 struct itimerspec64 *old_spec64) 914 { 915 if (!timespec64_valid(&new_spec64->it_interval) || 916 !timespec64_valid(&new_spec64->it_value)) 917 return -EINVAL; 918 919 if (old_spec64) 920 memset(old_spec64, 0, sizeof(*old_spec64)); 921 922 for (; ; old_spec64 = NULL) { 923 struct k_itimer *timr; 924 925 scoped_timer_get_or_fail(timer_id) { 926 timr = scoped_timer; 927 928 if (old_spec64) 929 old_spec64->it_interval = ktime_to_timespec64(timr->it_interval); 930 931 /* Prevent signal delivery and rearming. */ 932 timr->it_signal_seq++; 933 934 int ret = timr->kclock->timer_set(timr, tmr_flags, new_spec64, old_spec64); 935 if (ret != TIMER_RETRY) 936 return ret; 937 938 /* Protect the timer from being freed when leaving the lock scope */ 939 rcu_read_lock(); 940 } 941 timer_wait_running(timr); 942 rcu_read_unlock(); 943 } 944 } 945 946 /* Set a POSIX.1b interval timer */ 947 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 948 const struct __kernel_itimerspec __user *, new_setting, 949 struct __kernel_itimerspec __user *, old_setting) 950 { 951 struct itimerspec64 new_spec, old_spec, *rtn; 952 int error = 0; 953 954 if (!new_setting) 955 return -EINVAL; 956 957 if (get_itimerspec64(&new_spec, new_setting)) 958 return -EFAULT; 959 960 rtn = old_setting ? &old_spec : NULL; 961 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 962 if (!error && old_setting) { 963 if (put_itimerspec64(&old_spec, old_setting)) 964 error = -EFAULT; 965 } 966 return error; 967 } 968 969 #ifdef CONFIG_COMPAT_32BIT_TIME 970 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, 971 struct old_itimerspec32 __user *, new, 972 struct old_itimerspec32 __user *, old) 973 { 974 struct itimerspec64 new_spec, old_spec; 975 struct itimerspec64 *rtn = old ? &old_spec : NULL; 976 int error = 0; 977 978 if (!new) 979 return -EINVAL; 980 if (get_old_itimerspec32(&new_spec, new)) 981 return -EFAULT; 982 983 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 984 if (!error && old) { 985 if (put_old_itimerspec32(&old_spec, old)) 986 error = -EFAULT; 987 } 988 return error; 989 } 990 #endif 991 992 int common_timer_del(struct k_itimer *timer) 993 { 994 const struct k_clock *kc = timer->kclock; 995 996 if (kc->timer_try_to_cancel(timer) < 0) 997 return TIMER_RETRY; 998 timer->it_status = POSIX_TIMER_DISARMED; 999 return 0; 1000 } 1001 1002 /* 1003 * If the deleted timer is on the ignored list, remove it and 1004 * drop the associated reference. 1005 */ 1006 static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr) 1007 { 1008 if (!hlist_unhashed(&tmr->ignored_list)) { 1009 hlist_del_init(&tmr->ignored_list); 1010 posixtimer_putref(tmr); 1011 } 1012 } 1013 1014 static void posix_timer_delete(struct k_itimer *timer) 1015 { 1016 /* 1017 * Invalidate the timer, remove it from the linked list and remove 1018 * it from the ignored list if pending. 1019 * 1020 * The invalidation must be written with siglock held so that the 1021 * signal code observes the invalidated timer::it_signal in 1022 * do_sigaction(), which prevents it from moving a pending signal 1023 * of a deleted timer to the ignore list. 1024 * 1025 * The invalidation also prevents signal queueing, signal delivery 1026 * and therefore rearming from the signal delivery path. 1027 * 1028 * A concurrent lookup can still find the timer in the hash, but it 1029 * will check timer::it_signal with timer::it_lock held and observe 1030 * bit 0 set, which invalidates it. That also prevents the timer ID 1031 * from being handed out before this timer is completely gone. 1032 */ 1033 timer->it_signal_seq++; 1034 1035 scoped_guard (spinlock, ¤t->sighand->siglock) { 1036 unsigned long sig = (unsigned long)timer->it_signal | 1UL; 1037 1038 WRITE_ONCE(timer->it_signal, (struct signal_struct *)sig); 1039 hlist_del_rcu(&timer->list); 1040 posix_timer_cleanup_ignored(timer); 1041 } 1042 1043 while (timer->kclock->timer_del(timer) == TIMER_RETRY) { 1044 guard(rcu)(); 1045 spin_unlock_irq(&timer->it_lock); 1046 timer_wait_running(timer); 1047 spin_lock_irq(&timer->it_lock); 1048 } 1049 } 1050 1051 /* Delete a POSIX.1b interval timer. */ 1052 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 1053 { 1054 struct k_itimer *timer; 1055 1056 scoped_timer_get_or_fail(timer_id) { 1057 timer = scoped_timer; 1058 posix_timer_delete(timer); 1059 } 1060 /* Remove it from the hash, which frees up the timer ID */ 1061 posix_timer_unhash_and_free(timer); 1062 return 0; 1063 } 1064 1065 /* 1066 * Invoked from do_exit() when the last thread of a thread group exits. 1067 * At that point no other task can access the timers of the dying 1068 * task anymore. 1069 */ 1070 void exit_itimers(struct task_struct *tsk) 1071 { 1072 struct hlist_head timers; 1073 struct hlist_node *next; 1074 struct k_itimer *timer; 1075 1076 /* Clear restore mode for exec() */ 1077 tsk->signal->timer_create_restore_ids = 0; 1078 1079 if (hlist_empty(&tsk->signal->posix_timers)) 1080 return; 1081 1082 /* Protect against concurrent read via /proc/$PID/timers */ 1083 scoped_guard (spinlock_irq, &tsk->sighand->siglock) 1084 hlist_move_list(&tsk->signal->posix_timers, &timers); 1085 1086 /* The timers are not longer accessible via tsk::signal */ 1087 hlist_for_each_entry_safe(timer, next, &timers, list) { 1088 scoped_guard (spinlock_irq, &timer->it_lock) 1089 posix_timer_delete(timer); 1090 posix_timer_unhash_and_free(timer); 1091 cond_resched(); 1092 } 1093 1094 /* 1095 * There should be no timers on the ignored list. itimer_delete() has 1096 * mopped them up. 1097 */ 1098 if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers))) 1099 return; 1100 1101 hlist_move_list(&tsk->signal->ignored_posix_timers, &timers); 1102 while (!hlist_empty(&timers)) { 1103 posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer, 1104 ignored_list)); 1105 } 1106 } 1107 1108 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1109 const struct __kernel_timespec __user *, tp) 1110 { 1111 const struct k_clock *kc = clockid_to_kclock(which_clock); 1112 struct timespec64 new_tp; 1113 1114 if (!kc || !kc->clock_set) 1115 return -EINVAL; 1116 1117 if (get_timespec64(&new_tp, tp)) 1118 return -EFAULT; 1119 1120 /* 1121 * Permission checks have to be done inside the clock specific 1122 * setter callback. 1123 */ 1124 return kc->clock_set(which_clock, &new_tp); 1125 } 1126 1127 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1128 struct __kernel_timespec __user *, tp) 1129 { 1130 const struct k_clock *kc = clockid_to_kclock(which_clock); 1131 struct timespec64 kernel_tp; 1132 int error; 1133 1134 if (!kc) 1135 return -EINVAL; 1136 1137 error = kc->clock_get_timespec(which_clock, &kernel_tp); 1138 1139 if (!error && put_timespec64(&kernel_tp, tp)) 1140 error = -EFAULT; 1141 1142 return error; 1143 } 1144 1145 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) 1146 { 1147 const struct k_clock *kc = clockid_to_kclock(which_clock); 1148 1149 if (!kc) 1150 return -EINVAL; 1151 if (!kc->clock_adj) 1152 return -EOPNOTSUPP; 1153 1154 return kc->clock_adj(which_clock, ktx); 1155 } 1156 1157 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1158 struct __kernel_timex __user *, utx) 1159 { 1160 struct __kernel_timex ktx; 1161 int err; 1162 1163 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1164 return -EFAULT; 1165 1166 err = do_clock_adjtime(which_clock, &ktx); 1167 1168 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1169 return -EFAULT; 1170 1171 return err; 1172 } 1173 1174 /** 1175 * sys_clock_getres - Get the resolution of a clock 1176 * @which_clock: The clock to get the resolution for 1177 * @tp: Pointer to a a user space timespec64 for storage 1178 * 1179 * POSIX defines: 1180 * 1181 * "The clock_getres() function shall return the resolution of any 1182 * clock. Clock resolutions are implementation-defined and cannot be set by 1183 * a process. If the argument res is not NULL, the resolution of the 1184 * specified clock shall be stored in the location pointed to by res. If 1185 * res is NULL, the clock resolution is not returned. If the time argument 1186 * of clock_settime() is not a multiple of res, then the value is truncated 1187 * to a multiple of res." 1188 * 1189 * Due to the various hardware constraints the real resolution can vary 1190 * wildly and even change during runtime when the underlying devices are 1191 * replaced. The kernel also can use hardware devices with different 1192 * resolutions for reading the time and for arming timers. 1193 * 1194 * The kernel therefore deviates from the POSIX spec in various aspects: 1195 * 1196 * 1) The resolution returned to user space 1197 * 1198 * For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI, 1199 * CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW 1200 * the kernel differentiates only two cases: 1201 * 1202 * I) Low resolution mode: 1203 * 1204 * When high resolution timers are disabled at compile or runtime 1205 * the resolution returned is nanoseconds per tick, which represents 1206 * the precision at which timers expire. 1207 * 1208 * II) High resolution mode: 1209 * 1210 * When high resolution timers are enabled the resolution returned 1211 * is always one nanosecond independent of the actual resolution of 1212 * the underlying hardware devices. 1213 * 1214 * For CLOCK_*_ALARM the actual resolution depends on system 1215 * state. When system is running the resolution is the same as the 1216 * resolution of the other clocks. During suspend the actual 1217 * resolution is the resolution of the underlying RTC device which 1218 * might be way less precise than the clockevent device used during 1219 * running state. 1220 * 1221 * For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution 1222 * returned is always nanoseconds per tick. 1223 * 1224 * For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution 1225 * returned is always one nanosecond under the assumption that the 1226 * underlying scheduler clock has a better resolution than nanoseconds 1227 * per tick. 1228 * 1229 * For dynamic POSIX clocks (PTP devices) the resolution returned is 1230 * always one nanosecond. 1231 * 1232 * 2) Affect on sys_clock_settime() 1233 * 1234 * The kernel does not truncate the time which is handed in to 1235 * sys_clock_settime(). The kernel internal timekeeping is always using 1236 * nanoseconds precision independent of the clocksource device which is 1237 * used to read the time from. The resolution of that device only 1238 * affects the precision of the time returned by sys_clock_gettime(). 1239 * 1240 * Returns: 1241 * 0 Success. @tp contains the resolution 1242 * -EINVAL @which_clock is not a valid clock ID 1243 * -EFAULT Copying the resolution to @tp faulted 1244 * -ENODEV Dynamic POSIX clock is not backed by a device 1245 * -EOPNOTSUPP Dynamic POSIX clock does not support getres() 1246 */ 1247 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1248 struct __kernel_timespec __user *, tp) 1249 { 1250 const struct k_clock *kc = clockid_to_kclock(which_clock); 1251 struct timespec64 rtn_tp; 1252 int error; 1253 1254 if (!kc) 1255 return -EINVAL; 1256 1257 error = kc->clock_getres(which_clock, &rtn_tp); 1258 1259 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1260 error = -EFAULT; 1261 1262 return error; 1263 } 1264 1265 #ifdef CONFIG_COMPAT_32BIT_TIME 1266 1267 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, 1268 struct old_timespec32 __user *, tp) 1269 { 1270 const struct k_clock *kc = clockid_to_kclock(which_clock); 1271 struct timespec64 ts; 1272 1273 if (!kc || !kc->clock_set) 1274 return -EINVAL; 1275 1276 if (get_old_timespec32(&ts, tp)) 1277 return -EFAULT; 1278 1279 return kc->clock_set(which_clock, &ts); 1280 } 1281 1282 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, 1283 struct old_timespec32 __user *, tp) 1284 { 1285 const struct k_clock *kc = clockid_to_kclock(which_clock); 1286 struct timespec64 ts; 1287 int err; 1288 1289 if (!kc) 1290 return -EINVAL; 1291 1292 err = kc->clock_get_timespec(which_clock, &ts); 1293 1294 if (!err && put_old_timespec32(&ts, tp)) 1295 err = -EFAULT; 1296 1297 return err; 1298 } 1299 1300 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, 1301 struct old_timex32 __user *, utp) 1302 { 1303 struct __kernel_timex ktx; 1304 int err; 1305 1306 err = get_old_timex32(&ktx, utp); 1307 if (err) 1308 return err; 1309 1310 err = do_clock_adjtime(which_clock, &ktx); 1311 1312 if (err >= 0 && put_old_timex32(utp, &ktx)) 1313 return -EFAULT; 1314 1315 return err; 1316 } 1317 1318 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, 1319 struct old_timespec32 __user *, tp) 1320 { 1321 const struct k_clock *kc = clockid_to_kclock(which_clock); 1322 struct timespec64 ts; 1323 int err; 1324 1325 if (!kc) 1326 return -EINVAL; 1327 1328 err = kc->clock_getres(which_clock, &ts); 1329 if (!err && tp && put_old_timespec32(&ts, tp)) 1330 return -EFAULT; 1331 1332 return err; 1333 } 1334 1335 #endif 1336 1337 /* 1338 * sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI 1339 */ 1340 static int common_nsleep(const clockid_t which_clock, int flags, 1341 const struct timespec64 *rqtp) 1342 { 1343 ktime_t texp = timespec64_to_ktime(*rqtp); 1344 1345 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? 1346 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1347 which_clock); 1348 } 1349 1350 /* 1351 * sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME 1352 * 1353 * Absolute nanosleeps for these clocks are time-namespace adjusted. 1354 */ 1355 static int common_nsleep_timens(const clockid_t which_clock, int flags, 1356 const struct timespec64 *rqtp) 1357 { 1358 ktime_t texp = timespec64_to_ktime(*rqtp); 1359 1360 if (flags & TIMER_ABSTIME) 1361 texp = timens_ktime_to_host(which_clock, texp); 1362 1363 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? 1364 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1365 which_clock); 1366 } 1367 1368 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1369 const struct __kernel_timespec __user *, rqtp, 1370 struct __kernel_timespec __user *, rmtp) 1371 { 1372 const struct k_clock *kc = clockid_to_kclock(which_clock); 1373 struct timespec64 t; 1374 1375 if (!kc) 1376 return -EINVAL; 1377 if (!kc->nsleep) 1378 return -EOPNOTSUPP; 1379 1380 if (get_timespec64(&t, rqtp)) 1381 return -EFAULT; 1382 1383 if (!timespec64_valid(&t)) 1384 return -EINVAL; 1385 if (flags & TIMER_ABSTIME) 1386 rmtp = NULL; 1387 current->restart_block.fn = do_no_restart_syscall; 1388 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1389 current->restart_block.nanosleep.rmtp = rmtp; 1390 1391 return kc->nsleep(which_clock, flags, &t); 1392 } 1393 1394 #ifdef CONFIG_COMPAT_32BIT_TIME 1395 1396 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, 1397 struct old_timespec32 __user *, rqtp, 1398 struct old_timespec32 __user *, rmtp) 1399 { 1400 const struct k_clock *kc = clockid_to_kclock(which_clock); 1401 struct timespec64 t; 1402 1403 if (!kc) 1404 return -EINVAL; 1405 if (!kc->nsleep) 1406 return -EOPNOTSUPP; 1407 1408 if (get_old_timespec32(&t, rqtp)) 1409 return -EFAULT; 1410 1411 if (!timespec64_valid(&t)) 1412 return -EINVAL; 1413 if (flags & TIMER_ABSTIME) 1414 rmtp = NULL; 1415 current->restart_block.fn = do_no_restart_syscall; 1416 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1417 current->restart_block.nanosleep.compat_rmtp = rmtp; 1418 1419 return kc->nsleep(which_clock, flags, &t); 1420 } 1421 1422 #endif 1423 1424 static const struct k_clock clock_realtime = { 1425 .clock_getres = posix_get_hrtimer_res, 1426 .clock_get_timespec = posix_get_realtime_timespec, 1427 .clock_get_ktime = posix_get_realtime_ktime, 1428 .clock_set = posix_clock_realtime_set, 1429 .clock_adj = posix_clock_realtime_adj, 1430 .nsleep = common_nsleep, 1431 .timer_create = common_timer_create, 1432 .timer_set = common_timer_set, 1433 .timer_get = common_timer_get, 1434 .timer_del = common_timer_del, 1435 .timer_rearm = common_hrtimer_rearm, 1436 .timer_forward = common_hrtimer_forward, 1437 .timer_remaining = common_hrtimer_remaining, 1438 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1439 .timer_wait_running = common_timer_wait_running, 1440 .timer_arm = common_hrtimer_arm, 1441 }; 1442 1443 static const struct k_clock clock_monotonic = { 1444 .clock_getres = posix_get_hrtimer_res, 1445 .clock_get_timespec = posix_get_monotonic_timespec, 1446 .clock_get_ktime = posix_get_monotonic_ktime, 1447 .nsleep = common_nsleep_timens, 1448 .timer_create = common_timer_create, 1449 .timer_set = common_timer_set, 1450 .timer_get = common_timer_get, 1451 .timer_del = common_timer_del, 1452 .timer_rearm = common_hrtimer_rearm, 1453 .timer_forward = common_hrtimer_forward, 1454 .timer_remaining = common_hrtimer_remaining, 1455 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1456 .timer_wait_running = common_timer_wait_running, 1457 .timer_arm = common_hrtimer_arm, 1458 }; 1459 1460 static const struct k_clock clock_monotonic_raw = { 1461 .clock_getres = posix_get_hrtimer_res, 1462 .clock_get_timespec = posix_get_monotonic_raw, 1463 }; 1464 1465 static const struct k_clock clock_realtime_coarse = { 1466 .clock_getres = posix_get_coarse_res, 1467 .clock_get_timespec = posix_get_realtime_coarse, 1468 }; 1469 1470 static const struct k_clock clock_monotonic_coarse = { 1471 .clock_getres = posix_get_coarse_res, 1472 .clock_get_timespec = posix_get_monotonic_coarse, 1473 }; 1474 1475 static const struct k_clock clock_tai = { 1476 .clock_getres = posix_get_hrtimer_res, 1477 .clock_get_ktime = posix_get_tai_ktime, 1478 .clock_get_timespec = posix_get_tai_timespec, 1479 .nsleep = common_nsleep, 1480 .timer_create = common_timer_create, 1481 .timer_set = common_timer_set, 1482 .timer_get = common_timer_get, 1483 .timer_del = common_timer_del, 1484 .timer_rearm = common_hrtimer_rearm, 1485 .timer_forward = common_hrtimer_forward, 1486 .timer_remaining = common_hrtimer_remaining, 1487 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1488 .timer_wait_running = common_timer_wait_running, 1489 .timer_arm = common_hrtimer_arm, 1490 }; 1491 1492 static const struct k_clock clock_boottime = { 1493 .clock_getres = posix_get_hrtimer_res, 1494 .clock_get_ktime = posix_get_boottime_ktime, 1495 .clock_get_timespec = posix_get_boottime_timespec, 1496 .nsleep = common_nsleep_timens, 1497 .timer_create = common_timer_create, 1498 .timer_set = common_timer_set, 1499 .timer_get = common_timer_get, 1500 .timer_del = common_timer_del, 1501 .timer_rearm = common_hrtimer_rearm, 1502 .timer_forward = common_hrtimer_forward, 1503 .timer_remaining = common_hrtimer_remaining, 1504 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1505 .timer_wait_running = common_timer_wait_running, 1506 .timer_arm = common_hrtimer_arm, 1507 }; 1508 1509 static const struct k_clock * const posix_clocks[] = { 1510 [CLOCK_REALTIME] = &clock_realtime, 1511 [CLOCK_MONOTONIC] = &clock_monotonic, 1512 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1513 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1514 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1515 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1516 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1517 [CLOCK_BOOTTIME] = &clock_boottime, 1518 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1519 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1520 [CLOCK_TAI] = &clock_tai, 1521 #ifdef CONFIG_POSIX_AUX_CLOCKS 1522 [CLOCK_AUX ... CLOCK_AUX_LAST] = &clock_aux, 1523 #endif 1524 }; 1525 1526 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1527 { 1528 clockid_t idx = id; 1529 1530 if (id < 0) { 1531 return (id & CLOCKFD_MASK) == CLOCKFD ? 1532 &clock_posix_dynamic : &clock_posix_cpu; 1533 } 1534 1535 if (id >= ARRAY_SIZE(posix_clocks)) 1536 return NULL; 1537 1538 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1539 } 1540 1541 static int __init posixtimer_init(void) 1542 { 1543 unsigned long i, size; 1544 unsigned int shift; 1545 1546 posix_timers_cache = kmem_cache_create("posix_timers_cache", 1547 sizeof(struct k_itimer), 1548 __alignof__(struct k_itimer), 1549 SLAB_ACCOUNT, NULL); 1550 1551 if (IS_ENABLED(CONFIG_BASE_SMALL)) 1552 size = 512; 1553 else 1554 size = roundup_pow_of_two(512 * num_possible_cpus()); 1555 1556 timer_buckets = alloc_large_system_hash("posixtimers", sizeof(*timer_buckets), 1557 size, 0, 0, &shift, NULL, size, size); 1558 size = 1UL << shift; 1559 timer_hashmask = size - 1; 1560 1561 for (i = 0; i < size; i++) { 1562 spin_lock_init(&timer_buckets[i].lock); 1563 INIT_HLIST_HEAD(&timer_buckets[i].head); 1564 } 1565 return 0; 1566 } 1567 core_initcall(posixtimer_init); 1568