1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77 };
78
79 struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88 };
89
90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91 #define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93 static DEFINE_IDR(loop_index_idr);
94 static DEFINE_MUTEX(loop_ctl_mutex);
95 static DEFINE_MUTEX(loop_validate_mutex);
96
97 /**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
loop_global_lock_killable(struct loop_device * lo,bool global)109 static int loop_global_lock_killable(struct loop_device *lo, bool global)
110 {
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122 }
123
124 /**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
loop_global_unlock(struct loop_device * lo,bool global)130 static void loop_global_unlock(struct loop_device *lo, bool global)
131 {
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135 }
136
137 static int max_part;
138 static int part_shift;
139
get_size(loff_t offset,loff_t sizelimit,struct file * file)140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
141 {
142 loff_t loopsize;
143
144 /* Compute loopsize in bytes */
145 loopsize = i_size_read(file->f_mapping->host);
146 if (offset > 0)
147 loopsize -= offset;
148 /* offset is beyond i_size, weird but possible */
149 if (loopsize < 0)
150 return 0;
151
152 if (sizelimit > 0 && sizelimit < loopsize)
153 loopsize = sizelimit;
154 /*
155 * Unfortunately, if we want to do I/O on the device,
156 * the number of 512-byte sectors has to fit into a sector_t.
157 */
158 return loopsize >> 9;
159 }
160
get_loop_size(struct loop_device * lo,struct file * file)161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 {
163 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
164 }
165
166 /*
167 * We support direct I/O only if lo_offset is aligned with the logical I/O size
168 * of backing device, and the logical block size of loop is bigger than that of
169 * the backing device.
170 */
lo_can_use_dio(struct loop_device * lo)171 static bool lo_can_use_dio(struct loop_device *lo)
172 {
173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
174 return false;
175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
176 return false;
177 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
178 return false;
179 return true;
180 }
181
182 /*
183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
185 * disabled when the device block size is too small or the offset is unaligned.
186 *
187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
188 * not the originally passed in one.
189 */
loop_update_dio(struct loop_device * lo)190 static inline void loop_update_dio(struct loop_device *lo)
191 {
192 lockdep_assert_held(&lo->lo_mutex);
193 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
194 lo->lo_queue->mq_freeze_depth == 0);
195
196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
198 }
199
200 /**
201 * loop_set_size() - sets device size and notifies userspace
202 * @lo: struct loop_device to set the size for
203 * @size: new size of the loop device
204 *
205 * Callers must validate that the size passed into this function fits into
206 * a sector_t, eg using loop_validate_size()
207 */
loop_set_size(struct loop_device * lo,loff_t size)208 static void loop_set_size(struct loop_device *lo, loff_t size)
209 {
210 if (!set_capacity_and_notify(lo->lo_disk, size))
211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
212 }
213
loop_clear_limits(struct loop_device * lo,int mode)214 static void loop_clear_limits(struct loop_device *lo, int mode)
215 {
216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
217
218 if (mode & FALLOC_FL_ZERO_RANGE)
219 lim.max_write_zeroes_sectors = 0;
220
221 if (mode & FALLOC_FL_PUNCH_HOLE) {
222 lim.max_hw_discard_sectors = 0;
223 lim.discard_granularity = 0;
224 }
225
226 /*
227 * XXX: this updates the queue limits without freezing the queue, which
228 * is against the locking protocol and dangerous. But we can't just
229 * freeze the queue as we're inside the ->queue_rq method here. So this
230 * should move out into a workqueue unless we get the file operations to
231 * advertise if they support specific fallocate operations.
232 */
233 queue_limits_commit_update(lo->lo_queue, &lim);
234 }
235
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
237 int mode)
238 {
239 /*
240 * We use fallocate to manipulate the space mappings used by the image
241 * a.k.a. discard/zerorange.
242 */
243 struct file *file = lo->lo_backing_file;
244 int ret;
245
246 mode |= FALLOC_FL_KEEP_SIZE;
247
248 if (!bdev_max_discard_sectors(lo->lo_device))
249 return -EOPNOTSUPP;
250
251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
253 return -EIO;
254
255 /*
256 * We initially configure the limits in a hope that fallocate is
257 * supported and clear them here if that turns out not to be true.
258 */
259 if (unlikely(ret == -EOPNOTSUPP))
260 loop_clear_limits(lo, mode);
261
262 return ret;
263 }
264
lo_req_flush(struct loop_device * lo,struct request * rq)265 static int lo_req_flush(struct loop_device *lo, struct request *rq)
266 {
267 int ret = vfs_fsync(lo->lo_backing_file, 0);
268 if (unlikely(ret && ret != -EINVAL))
269 ret = -EIO;
270
271 return ret;
272 }
273
lo_complete_rq(struct request * rq)274 static void lo_complete_rq(struct request *rq)
275 {
276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
277 blk_status_t ret = BLK_STS_OK;
278
279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
280 req_op(rq) != REQ_OP_READ) {
281 if (cmd->ret < 0)
282 ret = errno_to_blk_status(cmd->ret);
283 goto end_io;
284 }
285
286 /*
287 * Short READ - if we got some data, advance our request and
288 * retry it. If we got no data, end the rest with EIO.
289 */
290 if (cmd->ret) {
291 blk_update_request(rq, BLK_STS_OK, cmd->ret);
292 cmd->ret = 0;
293 blk_mq_requeue_request(rq, true);
294 } else {
295 struct bio *bio = rq->bio;
296
297 while (bio) {
298 zero_fill_bio(bio);
299 bio = bio->bi_next;
300 }
301
302 ret = BLK_STS_IOERR;
303 end_io:
304 blk_mq_end_request(rq, ret);
305 }
306 }
307
lo_rw_aio_do_completion(struct loop_cmd * cmd)308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
309 {
310 struct request *rq = blk_mq_rq_from_pdu(cmd);
311
312 if (!atomic_dec_and_test(&cmd->ref))
313 return;
314 kfree(cmd->bvec);
315 cmd->bvec = NULL;
316 if (req_op(rq) == REQ_OP_WRITE)
317 kiocb_end_write(&cmd->iocb);
318 if (likely(!blk_should_fake_timeout(rq->q)))
319 blk_mq_complete_request(rq);
320 }
321
lo_rw_aio_complete(struct kiocb * iocb,long ret)322 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
323 {
324 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
325
326 cmd->ret = ret;
327 lo_rw_aio_do_completion(cmd);
328 }
329
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)330 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
331 loff_t pos, int rw)
332 {
333 struct iov_iter iter;
334 struct req_iterator rq_iter;
335 struct bio_vec *bvec;
336 struct request *rq = blk_mq_rq_from_pdu(cmd);
337 struct bio *bio = rq->bio;
338 struct file *file = lo->lo_backing_file;
339 struct bio_vec tmp;
340 unsigned int offset;
341 int nr_bvec = 0;
342 int ret;
343
344 rq_for_each_bvec(tmp, rq, rq_iter)
345 nr_bvec++;
346
347 if (rq->bio != rq->biotail) {
348
349 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
350 GFP_NOIO);
351 if (!bvec)
352 return -EIO;
353 cmd->bvec = bvec;
354
355 /*
356 * The bios of the request may be started from the middle of
357 * the 'bvec' because of bio splitting, so we can't directly
358 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
359 * API will take care of all details for us.
360 */
361 rq_for_each_bvec(tmp, rq, rq_iter) {
362 *bvec = tmp;
363 bvec++;
364 }
365 bvec = cmd->bvec;
366 offset = 0;
367 } else {
368 /*
369 * Same here, this bio may be started from the middle of the
370 * 'bvec' because of bio splitting, so offset from the bvec
371 * must be passed to iov iterator
372 */
373 offset = bio->bi_iter.bi_bvec_done;
374 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
375 }
376 atomic_set(&cmd->ref, 2);
377
378 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
379 iter.iov_offset = offset;
380
381 cmd->iocb.ki_pos = pos;
382 cmd->iocb.ki_filp = file;
383 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
384 if (cmd->use_aio) {
385 cmd->iocb.ki_complete = lo_rw_aio_complete;
386 cmd->iocb.ki_flags = IOCB_DIRECT;
387 } else {
388 cmd->iocb.ki_complete = NULL;
389 cmd->iocb.ki_flags = 0;
390 }
391
392 if (rw == ITER_SOURCE) {
393 kiocb_start_write(&cmd->iocb);
394 ret = file->f_op->write_iter(&cmd->iocb, &iter);
395 } else
396 ret = file->f_op->read_iter(&cmd->iocb, &iter);
397
398 lo_rw_aio_do_completion(cmd);
399
400 if (ret != -EIOCBQUEUED)
401 lo_rw_aio_complete(&cmd->iocb, ret);
402 return -EIOCBQUEUED;
403 }
404
do_req_filebacked(struct loop_device * lo,struct request * rq)405 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
406 {
407 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
408 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
409
410 switch (req_op(rq)) {
411 case REQ_OP_FLUSH:
412 return lo_req_flush(lo, rq);
413 case REQ_OP_WRITE_ZEROES:
414 /*
415 * If the caller doesn't want deallocation, call zeroout to
416 * write zeroes the range. Otherwise, punch them out.
417 */
418 return lo_fallocate(lo, rq, pos,
419 (rq->cmd_flags & REQ_NOUNMAP) ?
420 FALLOC_FL_ZERO_RANGE :
421 FALLOC_FL_PUNCH_HOLE);
422 case REQ_OP_DISCARD:
423 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
424 case REQ_OP_WRITE:
425 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
426 case REQ_OP_READ:
427 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
428 default:
429 WARN_ON_ONCE(1);
430 return -EIO;
431 }
432 }
433
loop_reread_partitions(struct loop_device * lo)434 static void loop_reread_partitions(struct loop_device *lo)
435 {
436 int rc;
437
438 mutex_lock(&lo->lo_disk->open_mutex);
439 rc = bdev_disk_changed(lo->lo_disk, false);
440 mutex_unlock(&lo->lo_disk->open_mutex);
441 if (rc)
442 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
443 __func__, lo->lo_number, lo->lo_file_name, rc);
444 }
445
loop_query_min_dio_size(struct loop_device * lo)446 static unsigned int loop_query_min_dio_size(struct loop_device *lo)
447 {
448 struct file *file = lo->lo_backing_file;
449 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
450 struct kstat st;
451
452 /*
453 * Use the minimal dio alignment of the file system if provided.
454 */
455 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
456 (st.result_mask & STATX_DIOALIGN))
457 return st.dio_offset_align;
458
459 /*
460 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
461 * a handful of file systems support the STATX_DIOALIGN flag.
462 */
463 if (sb_bdev)
464 return bdev_logical_block_size(sb_bdev);
465 return SECTOR_SIZE;
466 }
467
is_loop_device(struct file * file)468 static inline int is_loop_device(struct file *file)
469 {
470 struct inode *i = file->f_mapping->host;
471
472 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
473 }
474
loop_validate_file(struct file * file,struct block_device * bdev)475 static int loop_validate_file(struct file *file, struct block_device *bdev)
476 {
477 struct inode *inode = file->f_mapping->host;
478 struct file *f = file;
479
480 /* Avoid recursion */
481 while (is_loop_device(f)) {
482 struct loop_device *l;
483
484 lockdep_assert_held(&loop_validate_mutex);
485 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
486 return -EBADF;
487
488 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
489 if (l->lo_state != Lo_bound)
490 return -EINVAL;
491 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
492 rmb();
493 f = l->lo_backing_file;
494 }
495 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
496 return -EINVAL;
497 return 0;
498 }
499
loop_assign_backing_file(struct loop_device * lo,struct file * file)500 static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
501 {
502 lo->lo_backing_file = file;
503 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
504 mapping_set_gfp_mask(file->f_mapping,
505 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
506 if (lo->lo_backing_file->f_flags & O_DIRECT)
507 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
508 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
509 }
510
loop_check_backing_file(struct file * file)511 static int loop_check_backing_file(struct file *file)
512 {
513 if (!file->f_op->read_iter)
514 return -EINVAL;
515
516 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
517 return -EINVAL;
518
519 return 0;
520 }
521
522 /*
523 * loop_change_fd switched the backing store of a loopback device to
524 * a new file. This is useful for operating system installers to free up
525 * the original file and in High Availability environments to switch to
526 * an alternative location for the content in case of server meltdown.
527 * This can only work if the loop device is used read-only, and if the
528 * new backing store is the same size and type as the old backing store.
529 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)530 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
531 unsigned int arg)
532 {
533 struct file *file = fget(arg);
534 struct file *old_file;
535 unsigned int memflags;
536 int error;
537 bool partscan;
538 bool is_loop;
539
540 if (!file)
541 return -EBADF;
542
543 error = loop_check_backing_file(file);
544 if (error)
545 return error;
546
547 /* suppress uevents while reconfiguring the device */
548 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
549
550 is_loop = is_loop_device(file);
551 error = loop_global_lock_killable(lo, is_loop);
552 if (error)
553 goto out_putf;
554 error = -ENXIO;
555 if (lo->lo_state != Lo_bound)
556 goto out_err;
557
558 /* the loop device has to be read-only */
559 error = -EINVAL;
560 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
561 goto out_err;
562
563 error = loop_validate_file(file, bdev);
564 if (error)
565 goto out_err;
566
567 old_file = lo->lo_backing_file;
568
569 error = -EINVAL;
570
571 /* size of the new backing store needs to be the same */
572 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
573 goto out_err;
574
575 /*
576 * We might switch to direct I/O mode for the loop device, write back
577 * all dirty data the page cache now that so that the individual I/O
578 * operations don't have to do that.
579 */
580 vfs_fsync(file, 0);
581
582 /* and ... switch */
583 disk_force_media_change(lo->lo_disk);
584 memflags = blk_mq_freeze_queue(lo->lo_queue);
585 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
586 loop_assign_backing_file(lo, file);
587 loop_update_dio(lo);
588 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
589 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
590 loop_global_unlock(lo, is_loop);
591
592 /*
593 * Flush loop_validate_file() before fput(), for l->lo_backing_file
594 * might be pointing at old_file which might be the last reference.
595 */
596 if (!is_loop) {
597 mutex_lock(&loop_validate_mutex);
598 mutex_unlock(&loop_validate_mutex);
599 }
600 /*
601 * We must drop file reference outside of lo_mutex as dropping
602 * the file ref can take open_mutex which creates circular locking
603 * dependency.
604 */
605 fput(old_file);
606 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
607 if (partscan)
608 loop_reread_partitions(lo);
609
610 error = 0;
611 done:
612 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
613 return error;
614
615 out_err:
616 loop_global_unlock(lo, is_loop);
617 out_putf:
618 fput(file);
619 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
620 goto done;
621 }
622
623 /* loop sysfs attributes */
624
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))625 static ssize_t loop_attr_show(struct device *dev, char *page,
626 ssize_t (*callback)(struct loop_device *, char *))
627 {
628 struct gendisk *disk = dev_to_disk(dev);
629 struct loop_device *lo = disk->private_data;
630
631 return callback(lo, page);
632 }
633
634 #define LOOP_ATTR_RO(_name) \
635 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
636 static ssize_t loop_attr_do_show_##_name(struct device *d, \
637 struct device_attribute *attr, char *b) \
638 { \
639 return loop_attr_show(d, b, loop_attr_##_name##_show); \
640 } \
641 static struct device_attribute loop_attr_##_name = \
642 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
643
loop_attr_backing_file_show(struct loop_device * lo,char * buf)644 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
645 {
646 ssize_t ret;
647 char *p = NULL;
648
649 spin_lock_irq(&lo->lo_lock);
650 if (lo->lo_backing_file)
651 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
652 spin_unlock_irq(&lo->lo_lock);
653
654 if (IS_ERR_OR_NULL(p))
655 ret = PTR_ERR(p);
656 else {
657 ret = strlen(p);
658 memmove(buf, p, ret);
659 buf[ret++] = '\n';
660 buf[ret] = 0;
661 }
662
663 return ret;
664 }
665
loop_attr_offset_show(struct loop_device * lo,char * buf)666 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
667 {
668 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
669 }
670
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)671 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
672 {
673 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
674 }
675
loop_attr_autoclear_show(struct loop_device * lo,char * buf)676 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
677 {
678 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
679
680 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
681 }
682
loop_attr_partscan_show(struct loop_device * lo,char * buf)683 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
684 {
685 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
686
687 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
688 }
689
loop_attr_dio_show(struct loop_device * lo,char * buf)690 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
691 {
692 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
693
694 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
695 }
696
697 LOOP_ATTR_RO(backing_file);
698 LOOP_ATTR_RO(offset);
699 LOOP_ATTR_RO(sizelimit);
700 LOOP_ATTR_RO(autoclear);
701 LOOP_ATTR_RO(partscan);
702 LOOP_ATTR_RO(dio);
703
704 static struct attribute *loop_attrs[] = {
705 &loop_attr_backing_file.attr,
706 &loop_attr_offset.attr,
707 &loop_attr_sizelimit.attr,
708 &loop_attr_autoclear.attr,
709 &loop_attr_partscan.attr,
710 &loop_attr_dio.attr,
711 NULL,
712 };
713
714 static struct attribute_group loop_attribute_group = {
715 .name = "loop",
716 .attrs= loop_attrs,
717 };
718
loop_sysfs_init(struct loop_device * lo)719 static void loop_sysfs_init(struct loop_device *lo)
720 {
721 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
722 &loop_attribute_group);
723 }
724
loop_sysfs_exit(struct loop_device * lo)725 static void loop_sysfs_exit(struct loop_device *lo)
726 {
727 if (lo->sysfs_inited)
728 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
729 &loop_attribute_group);
730 }
731
loop_get_discard_config(struct loop_device * lo,u32 * granularity,u32 * max_discard_sectors)732 static void loop_get_discard_config(struct loop_device *lo,
733 u32 *granularity, u32 *max_discard_sectors)
734 {
735 struct file *file = lo->lo_backing_file;
736 struct inode *inode = file->f_mapping->host;
737 struct kstatfs sbuf;
738
739 /*
740 * If the backing device is a block device, mirror its zeroing
741 * capability. Set the discard sectors to the block device's zeroing
742 * capabilities because loop discards result in blkdev_issue_zeroout(),
743 * not blkdev_issue_discard(). This maintains consistent behavior with
744 * file-backed loop devices: discarded regions read back as zero.
745 */
746 if (S_ISBLK(inode->i_mode)) {
747 struct block_device *bdev = I_BDEV(inode);
748
749 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
750 *granularity = bdev_discard_granularity(bdev);
751
752 /*
753 * We use punch hole to reclaim the free space used by the
754 * image a.k.a. discard.
755 */
756 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
757 *max_discard_sectors = UINT_MAX >> 9;
758 *granularity = sbuf.f_bsize;
759 }
760 }
761
762 struct loop_worker {
763 struct rb_node rb_node;
764 struct work_struct work;
765 struct list_head cmd_list;
766 struct list_head idle_list;
767 struct loop_device *lo;
768 struct cgroup_subsys_state *blkcg_css;
769 unsigned long last_ran_at;
770 };
771
772 static void loop_workfn(struct work_struct *work);
773
774 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)775 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
776 {
777 return !css || css == blkcg_root_css;
778 }
779 #else
queue_on_root_worker(struct cgroup_subsys_state * css)780 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
781 {
782 return !css;
783 }
784 #endif
785
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)786 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
787 {
788 struct rb_node **node, *parent = NULL;
789 struct loop_worker *cur_worker, *worker = NULL;
790 struct work_struct *work;
791 struct list_head *cmd_list;
792
793 spin_lock_irq(&lo->lo_work_lock);
794
795 if (queue_on_root_worker(cmd->blkcg_css))
796 goto queue_work;
797
798 node = &lo->worker_tree.rb_node;
799
800 while (*node) {
801 parent = *node;
802 cur_worker = container_of(*node, struct loop_worker, rb_node);
803 if (cur_worker->blkcg_css == cmd->blkcg_css) {
804 worker = cur_worker;
805 break;
806 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
807 node = &(*node)->rb_left;
808 } else {
809 node = &(*node)->rb_right;
810 }
811 }
812 if (worker)
813 goto queue_work;
814
815 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
816 /*
817 * In the event we cannot allocate a worker, just queue on the
818 * rootcg worker and issue the I/O as the rootcg
819 */
820 if (!worker) {
821 cmd->blkcg_css = NULL;
822 if (cmd->memcg_css)
823 css_put(cmd->memcg_css);
824 cmd->memcg_css = NULL;
825 goto queue_work;
826 }
827
828 worker->blkcg_css = cmd->blkcg_css;
829 css_get(worker->blkcg_css);
830 INIT_WORK(&worker->work, loop_workfn);
831 INIT_LIST_HEAD(&worker->cmd_list);
832 INIT_LIST_HEAD(&worker->idle_list);
833 worker->lo = lo;
834 rb_link_node(&worker->rb_node, parent, node);
835 rb_insert_color(&worker->rb_node, &lo->worker_tree);
836 queue_work:
837 if (worker) {
838 /*
839 * We need to remove from the idle list here while
840 * holding the lock so that the idle timer doesn't
841 * free the worker
842 */
843 if (!list_empty(&worker->idle_list))
844 list_del_init(&worker->idle_list);
845 work = &worker->work;
846 cmd_list = &worker->cmd_list;
847 } else {
848 work = &lo->rootcg_work;
849 cmd_list = &lo->rootcg_cmd_list;
850 }
851 list_add_tail(&cmd->list_entry, cmd_list);
852 queue_work(lo->workqueue, work);
853 spin_unlock_irq(&lo->lo_work_lock);
854 }
855
loop_set_timer(struct loop_device * lo)856 static void loop_set_timer(struct loop_device *lo)
857 {
858 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
859 }
860
loop_free_idle_workers(struct loop_device * lo,bool delete_all)861 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
862 {
863 struct loop_worker *pos, *worker;
864
865 spin_lock_irq(&lo->lo_work_lock);
866 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
867 idle_list) {
868 if (!delete_all &&
869 time_is_after_jiffies(worker->last_ran_at +
870 LOOP_IDLE_WORKER_TIMEOUT))
871 break;
872 list_del(&worker->idle_list);
873 rb_erase(&worker->rb_node, &lo->worker_tree);
874 css_put(worker->blkcg_css);
875 kfree(worker);
876 }
877 if (!list_empty(&lo->idle_worker_list))
878 loop_set_timer(lo);
879 spin_unlock_irq(&lo->lo_work_lock);
880 }
881
loop_free_idle_workers_timer(struct timer_list * timer)882 static void loop_free_idle_workers_timer(struct timer_list *timer)
883 {
884 struct loop_device *lo = container_of(timer, struct loop_device, timer);
885
886 return loop_free_idle_workers(lo, false);
887 }
888
889 /**
890 * loop_set_status_from_info - configure device from loop_info
891 * @lo: struct loop_device to configure
892 * @info: struct loop_info64 to configure the device with
893 *
894 * Configures the loop device parameters according to the passed
895 * in loop_info64 configuration.
896 */
897 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)898 loop_set_status_from_info(struct loop_device *lo,
899 const struct loop_info64 *info)
900 {
901 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
902 return -EINVAL;
903
904 switch (info->lo_encrypt_type) {
905 case LO_CRYPT_NONE:
906 break;
907 case LO_CRYPT_XOR:
908 pr_warn("support for the xor transformation has been removed.\n");
909 return -EINVAL;
910 case LO_CRYPT_CRYPTOAPI:
911 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
912 return -EINVAL;
913 default:
914 return -EINVAL;
915 }
916
917 /* Avoid assigning overflow values */
918 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
919 return -EOVERFLOW;
920
921 lo->lo_offset = info->lo_offset;
922 lo->lo_sizelimit = info->lo_sizelimit;
923
924 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
925 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
926 return 0;
927 }
928
loop_default_blocksize(struct loop_device * lo)929 static unsigned int loop_default_blocksize(struct loop_device *lo)
930 {
931 /* In case of direct I/O, match underlying minimum I/O size */
932 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
933 return lo->lo_min_dio_size;
934 return SECTOR_SIZE;
935 }
936
loop_update_limits(struct loop_device * lo,struct queue_limits * lim,unsigned int bsize)937 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
938 unsigned int bsize)
939 {
940 struct file *file = lo->lo_backing_file;
941 struct inode *inode = file->f_mapping->host;
942 struct block_device *backing_bdev = NULL;
943 u32 granularity = 0, max_discard_sectors = 0;
944
945 if (S_ISBLK(inode->i_mode))
946 backing_bdev = I_BDEV(inode);
947 else if (inode->i_sb->s_bdev)
948 backing_bdev = inode->i_sb->s_bdev;
949
950 if (!bsize)
951 bsize = loop_default_blocksize(lo);
952
953 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
954
955 lim->logical_block_size = bsize;
956 lim->physical_block_size = bsize;
957 lim->io_min = bsize;
958 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
959 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
960 lim->features |= BLK_FEAT_WRITE_CACHE;
961 if (backing_bdev && !bdev_nonrot(backing_bdev))
962 lim->features |= BLK_FEAT_ROTATIONAL;
963 lim->max_hw_discard_sectors = max_discard_sectors;
964 lim->max_write_zeroes_sectors = max_discard_sectors;
965 if (max_discard_sectors)
966 lim->discard_granularity = granularity;
967 else
968 lim->discard_granularity = 0;
969 }
970
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)971 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
972 struct block_device *bdev,
973 const struct loop_config *config)
974 {
975 struct file *file = fget(config->fd);
976 struct queue_limits lim;
977 int error;
978 loff_t size;
979 bool partscan;
980 bool is_loop;
981
982 if (!file)
983 return -EBADF;
984
985 error = loop_check_backing_file(file);
986 if (error)
987 return error;
988
989 is_loop = is_loop_device(file);
990
991 /* This is safe, since we have a reference from open(). */
992 __module_get(THIS_MODULE);
993
994 /*
995 * If we don't hold exclusive handle for the device, upgrade to it
996 * here to avoid changing device under exclusive owner.
997 */
998 if (!(mode & BLK_OPEN_EXCL)) {
999 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1000 if (error)
1001 goto out_putf;
1002 }
1003
1004 error = loop_global_lock_killable(lo, is_loop);
1005 if (error)
1006 goto out_bdev;
1007
1008 error = -EBUSY;
1009 if (lo->lo_state != Lo_unbound)
1010 goto out_unlock;
1011
1012 error = loop_validate_file(file, bdev);
1013 if (error)
1014 goto out_unlock;
1015
1016 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1017 error = -EINVAL;
1018 goto out_unlock;
1019 }
1020
1021 error = loop_set_status_from_info(lo, &config->info);
1022 if (error)
1023 goto out_unlock;
1024 lo->lo_flags = config->info.lo_flags;
1025
1026 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1027 !file->f_op->write_iter)
1028 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1029
1030 if (!lo->workqueue) {
1031 lo->workqueue = alloc_workqueue("loop%d",
1032 WQ_UNBOUND | WQ_FREEZABLE,
1033 0, lo->lo_number);
1034 if (!lo->workqueue) {
1035 error = -ENOMEM;
1036 goto out_unlock;
1037 }
1038 }
1039
1040 /* suppress uevents while reconfiguring the device */
1041 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1042
1043 disk_force_media_change(lo->lo_disk);
1044 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1045
1046 lo->lo_device = bdev;
1047 loop_assign_backing_file(lo, file);
1048
1049 lim = queue_limits_start_update(lo->lo_queue);
1050 loop_update_limits(lo, &lim, config->block_size);
1051 /* No need to freeze the queue as the device isn't bound yet. */
1052 error = queue_limits_commit_update(lo->lo_queue, &lim);
1053 if (error)
1054 goto out_unlock;
1055
1056 /*
1057 * We might switch to direct I/O mode for the loop device, write back
1058 * all dirty data the page cache now that so that the individual I/O
1059 * operations don't have to do that.
1060 */
1061 vfs_fsync(file, 0);
1062
1063 loop_update_dio(lo);
1064 loop_sysfs_init(lo);
1065
1066 size = get_loop_size(lo, file);
1067 loop_set_size(lo, size);
1068
1069 /* Order wrt reading lo_state in loop_validate_file(). */
1070 wmb();
1071
1072 lo->lo_state = Lo_bound;
1073 if (part_shift)
1074 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1075 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1076 if (partscan)
1077 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1078
1079 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1080 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1081
1082 loop_global_unlock(lo, is_loop);
1083 if (partscan)
1084 loop_reread_partitions(lo);
1085
1086 if (!(mode & BLK_OPEN_EXCL))
1087 bd_abort_claiming(bdev, loop_configure);
1088
1089 return 0;
1090
1091 out_unlock:
1092 loop_global_unlock(lo, is_loop);
1093 out_bdev:
1094 if (!(mode & BLK_OPEN_EXCL))
1095 bd_abort_claiming(bdev, loop_configure);
1096 out_putf:
1097 fput(file);
1098 /* This is safe: open() is still holding a reference. */
1099 module_put(THIS_MODULE);
1100 return error;
1101 }
1102
__loop_clr_fd(struct loop_device * lo)1103 static void __loop_clr_fd(struct loop_device *lo)
1104 {
1105 struct queue_limits lim;
1106 struct file *filp;
1107 gfp_t gfp = lo->old_gfp_mask;
1108
1109 spin_lock_irq(&lo->lo_lock);
1110 filp = lo->lo_backing_file;
1111 lo->lo_backing_file = NULL;
1112 spin_unlock_irq(&lo->lo_lock);
1113
1114 lo->lo_device = NULL;
1115 lo->lo_offset = 0;
1116 lo->lo_sizelimit = 0;
1117 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1118
1119 /*
1120 * Reset the block size to the default.
1121 *
1122 * No queue freezing needed because this is called from the final
1123 * ->release call only, so there can't be any outstanding I/O.
1124 */
1125 lim = queue_limits_start_update(lo->lo_queue);
1126 lim.logical_block_size = SECTOR_SIZE;
1127 lim.physical_block_size = SECTOR_SIZE;
1128 lim.io_min = SECTOR_SIZE;
1129 queue_limits_commit_update(lo->lo_queue, &lim);
1130
1131 invalidate_disk(lo->lo_disk);
1132 loop_sysfs_exit(lo);
1133 /* let user-space know about this change */
1134 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1135 mapping_set_gfp_mask(filp->f_mapping, gfp);
1136 /* This is safe: open() is still holding a reference. */
1137 module_put(THIS_MODULE);
1138
1139 disk_force_media_change(lo->lo_disk);
1140
1141 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1142 int err;
1143
1144 /*
1145 * open_mutex has been held already in release path, so don't
1146 * acquire it if this function is called in such case.
1147 *
1148 * If the reread partition isn't from release path, lo_refcnt
1149 * must be at least one and it can only become zero when the
1150 * current holder is released.
1151 */
1152 err = bdev_disk_changed(lo->lo_disk, false);
1153 if (err)
1154 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1155 __func__, lo->lo_number, err);
1156 /* Device is gone, no point in returning error */
1157 }
1158
1159 /*
1160 * lo->lo_state is set to Lo_unbound here after above partscan has
1161 * finished. There cannot be anybody else entering __loop_clr_fd() as
1162 * Lo_rundown state protects us from all the other places trying to
1163 * change the 'lo' device.
1164 */
1165 lo->lo_flags = 0;
1166 if (!part_shift)
1167 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1168 mutex_lock(&lo->lo_mutex);
1169 lo->lo_state = Lo_unbound;
1170 mutex_unlock(&lo->lo_mutex);
1171
1172 /*
1173 * Need not hold lo_mutex to fput backing file. Calling fput holding
1174 * lo_mutex triggers a circular lock dependency possibility warning as
1175 * fput can take open_mutex which is usually taken before lo_mutex.
1176 */
1177 fput(filp);
1178 }
1179
loop_clr_fd(struct loop_device * lo)1180 static int loop_clr_fd(struct loop_device *lo)
1181 {
1182 int err;
1183
1184 /*
1185 * Since lo_ioctl() is called without locks held, it is possible that
1186 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1187 *
1188 * Therefore, use global lock when setting Lo_rundown state in order to
1189 * make sure that loop_validate_file() will fail if the "struct file"
1190 * which loop_configure()/loop_change_fd() found via fget() was this
1191 * loop device.
1192 */
1193 err = loop_global_lock_killable(lo, true);
1194 if (err)
1195 return err;
1196 if (lo->lo_state != Lo_bound) {
1197 loop_global_unlock(lo, true);
1198 return -ENXIO;
1199 }
1200 /*
1201 * Mark the device for removing the backing device on last close.
1202 * If we are the only opener, also switch the state to roundown here to
1203 * prevent new openers from coming in.
1204 */
1205
1206 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1207 if (disk_openers(lo->lo_disk) == 1)
1208 lo->lo_state = Lo_rundown;
1209 loop_global_unlock(lo, true);
1210
1211 return 0;
1212 }
1213
1214 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1215 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1216 {
1217 int err;
1218 bool partscan = false;
1219 bool size_changed = false;
1220 unsigned int memflags;
1221
1222 err = mutex_lock_killable(&lo->lo_mutex);
1223 if (err)
1224 return err;
1225 if (lo->lo_state != Lo_bound) {
1226 err = -ENXIO;
1227 goto out_unlock;
1228 }
1229
1230 if (lo->lo_offset != info->lo_offset ||
1231 lo->lo_sizelimit != info->lo_sizelimit) {
1232 size_changed = true;
1233 sync_blockdev(lo->lo_device);
1234 invalidate_bdev(lo->lo_device);
1235 }
1236
1237 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1238 memflags = blk_mq_freeze_queue(lo->lo_queue);
1239
1240 err = loop_set_status_from_info(lo, info);
1241 if (err)
1242 goto out_unfreeze;
1243
1244 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1245 (info->lo_flags & LO_FLAGS_PARTSCAN);
1246
1247 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1248 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1249
1250 /* update the direct I/O flag if lo_offset changed */
1251 loop_update_dio(lo);
1252
1253 out_unfreeze:
1254 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1255 if (partscan)
1256 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1257 if (!err && size_changed) {
1258 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1259 lo->lo_backing_file);
1260 loop_set_size(lo, new_size);
1261 }
1262 out_unlock:
1263 mutex_unlock(&lo->lo_mutex);
1264 if (partscan)
1265 loop_reread_partitions(lo);
1266
1267 return err;
1268 }
1269
1270 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1271 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1272 {
1273 struct path path;
1274 struct kstat stat;
1275 int ret;
1276
1277 ret = mutex_lock_killable(&lo->lo_mutex);
1278 if (ret)
1279 return ret;
1280 if (lo->lo_state != Lo_bound) {
1281 mutex_unlock(&lo->lo_mutex);
1282 return -ENXIO;
1283 }
1284
1285 memset(info, 0, sizeof(*info));
1286 info->lo_number = lo->lo_number;
1287 info->lo_offset = lo->lo_offset;
1288 info->lo_sizelimit = lo->lo_sizelimit;
1289 info->lo_flags = lo->lo_flags;
1290 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1291
1292 /* Drop lo_mutex while we call into the filesystem. */
1293 path = lo->lo_backing_file->f_path;
1294 path_get(&path);
1295 mutex_unlock(&lo->lo_mutex);
1296 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1297 if (!ret) {
1298 info->lo_device = huge_encode_dev(stat.dev);
1299 info->lo_inode = stat.ino;
1300 info->lo_rdevice = huge_encode_dev(stat.rdev);
1301 }
1302 path_put(&path);
1303 return ret;
1304 }
1305
1306 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1307 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1308 {
1309 memset(info64, 0, sizeof(*info64));
1310 info64->lo_number = info->lo_number;
1311 info64->lo_device = info->lo_device;
1312 info64->lo_inode = info->lo_inode;
1313 info64->lo_rdevice = info->lo_rdevice;
1314 info64->lo_offset = info->lo_offset;
1315 info64->lo_sizelimit = 0;
1316 info64->lo_flags = info->lo_flags;
1317 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1318 }
1319
1320 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1321 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1322 {
1323 memset(info, 0, sizeof(*info));
1324 info->lo_number = info64->lo_number;
1325 info->lo_device = info64->lo_device;
1326 info->lo_inode = info64->lo_inode;
1327 info->lo_rdevice = info64->lo_rdevice;
1328 info->lo_offset = info64->lo_offset;
1329 info->lo_flags = info64->lo_flags;
1330 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1331
1332 /* error in case values were truncated */
1333 if (info->lo_device != info64->lo_device ||
1334 info->lo_rdevice != info64->lo_rdevice ||
1335 info->lo_inode != info64->lo_inode ||
1336 info->lo_offset != info64->lo_offset)
1337 return -EOVERFLOW;
1338
1339 return 0;
1340 }
1341
1342 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1343 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1344 {
1345 struct loop_info info;
1346 struct loop_info64 info64;
1347
1348 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1349 return -EFAULT;
1350 loop_info64_from_old(&info, &info64);
1351 return loop_set_status(lo, &info64);
1352 }
1353
1354 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1355 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1356 {
1357 struct loop_info64 info64;
1358
1359 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1360 return -EFAULT;
1361 return loop_set_status(lo, &info64);
1362 }
1363
1364 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1365 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1366 struct loop_info info;
1367 struct loop_info64 info64;
1368 int err;
1369
1370 if (!arg)
1371 return -EINVAL;
1372 err = loop_get_status(lo, &info64);
1373 if (!err)
1374 err = loop_info64_to_old(&info64, &info);
1375 if (!err && copy_to_user(arg, &info, sizeof(info)))
1376 err = -EFAULT;
1377
1378 return err;
1379 }
1380
1381 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1382 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1383 struct loop_info64 info64;
1384 int err;
1385
1386 if (!arg)
1387 return -EINVAL;
1388 err = loop_get_status(lo, &info64);
1389 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1390 err = -EFAULT;
1391
1392 return err;
1393 }
1394
loop_set_capacity(struct loop_device * lo)1395 static int loop_set_capacity(struct loop_device *lo)
1396 {
1397 loff_t size;
1398
1399 if (unlikely(lo->lo_state != Lo_bound))
1400 return -ENXIO;
1401
1402 size = get_loop_size(lo, lo->lo_backing_file);
1403 loop_set_size(lo, size);
1404
1405 return 0;
1406 }
1407
loop_set_dio(struct loop_device * lo,unsigned long arg)1408 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1409 {
1410 bool use_dio = !!arg;
1411 unsigned int memflags;
1412
1413 if (lo->lo_state != Lo_bound)
1414 return -ENXIO;
1415 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1416 return 0;
1417
1418 if (use_dio) {
1419 if (!lo_can_use_dio(lo))
1420 return -EINVAL;
1421 /* flush dirty pages before starting to use direct I/O */
1422 vfs_fsync(lo->lo_backing_file, 0);
1423 }
1424
1425 memflags = blk_mq_freeze_queue(lo->lo_queue);
1426 if (use_dio)
1427 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1428 else
1429 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1430 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1431 return 0;
1432 }
1433
loop_set_block_size(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,unsigned long arg)1434 static int loop_set_block_size(struct loop_device *lo, blk_mode_t mode,
1435 struct block_device *bdev, unsigned long arg)
1436 {
1437 struct queue_limits lim;
1438 unsigned int memflags;
1439 int err = 0;
1440
1441 /*
1442 * If we don't hold exclusive handle for the device, upgrade to it
1443 * here to avoid changing device under exclusive owner.
1444 */
1445 if (!(mode & BLK_OPEN_EXCL)) {
1446 err = bd_prepare_to_claim(bdev, loop_set_block_size, NULL);
1447 if (err)
1448 return err;
1449 }
1450
1451 err = mutex_lock_killable(&lo->lo_mutex);
1452 if (err)
1453 goto abort_claim;
1454
1455 if (lo->lo_state != Lo_bound) {
1456 err = -ENXIO;
1457 goto unlock;
1458 }
1459
1460 if (lo->lo_queue->limits.logical_block_size == arg)
1461 goto unlock;
1462
1463 sync_blockdev(lo->lo_device);
1464 invalidate_bdev(lo->lo_device);
1465
1466 lim = queue_limits_start_update(lo->lo_queue);
1467 loop_update_limits(lo, &lim, arg);
1468
1469 memflags = blk_mq_freeze_queue(lo->lo_queue);
1470 err = queue_limits_commit_update(lo->lo_queue, &lim);
1471 loop_update_dio(lo);
1472 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1473
1474 unlock:
1475 mutex_unlock(&lo->lo_mutex);
1476 abort_claim:
1477 if (!(mode & BLK_OPEN_EXCL))
1478 bd_abort_claiming(bdev, loop_set_block_size);
1479 return err;
1480 }
1481
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1482 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1483 unsigned long arg)
1484 {
1485 int err;
1486
1487 err = mutex_lock_killable(&lo->lo_mutex);
1488 if (err)
1489 return err;
1490 switch (cmd) {
1491 case LOOP_SET_CAPACITY:
1492 err = loop_set_capacity(lo);
1493 break;
1494 case LOOP_SET_DIRECT_IO:
1495 err = loop_set_dio(lo, arg);
1496 break;
1497 default:
1498 err = -EINVAL;
1499 }
1500 mutex_unlock(&lo->lo_mutex);
1501 return err;
1502 }
1503
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1504 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1505 unsigned int cmd, unsigned long arg)
1506 {
1507 struct loop_device *lo = bdev->bd_disk->private_data;
1508 void __user *argp = (void __user *) arg;
1509 int err;
1510
1511 switch (cmd) {
1512 case LOOP_SET_FD: {
1513 /*
1514 * Legacy case - pass in a zeroed out struct loop_config with
1515 * only the file descriptor set , which corresponds with the
1516 * default parameters we'd have used otherwise.
1517 */
1518 struct loop_config config;
1519
1520 memset(&config, 0, sizeof(config));
1521 config.fd = arg;
1522
1523 return loop_configure(lo, mode, bdev, &config);
1524 }
1525 case LOOP_CONFIGURE: {
1526 struct loop_config config;
1527
1528 if (copy_from_user(&config, argp, sizeof(config)))
1529 return -EFAULT;
1530
1531 return loop_configure(lo, mode, bdev, &config);
1532 }
1533 case LOOP_CHANGE_FD:
1534 return loop_change_fd(lo, bdev, arg);
1535 case LOOP_CLR_FD:
1536 return loop_clr_fd(lo);
1537 case LOOP_SET_STATUS:
1538 err = -EPERM;
1539 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1540 err = loop_set_status_old(lo, argp);
1541 break;
1542 case LOOP_GET_STATUS:
1543 return loop_get_status_old(lo, argp);
1544 case LOOP_SET_STATUS64:
1545 err = -EPERM;
1546 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1547 err = loop_set_status64(lo, argp);
1548 break;
1549 case LOOP_GET_STATUS64:
1550 return loop_get_status64(lo, argp);
1551 case LOOP_SET_BLOCK_SIZE:
1552 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1553 return -EPERM;
1554 return loop_set_block_size(lo, mode, bdev, arg);
1555 case LOOP_SET_CAPACITY:
1556 case LOOP_SET_DIRECT_IO:
1557 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1558 return -EPERM;
1559 fallthrough;
1560 default:
1561 err = lo_simple_ioctl(lo, cmd, arg);
1562 break;
1563 }
1564
1565 return err;
1566 }
1567
1568 #ifdef CONFIG_COMPAT
1569 struct compat_loop_info {
1570 compat_int_t lo_number; /* ioctl r/o */
1571 compat_dev_t lo_device; /* ioctl r/o */
1572 compat_ulong_t lo_inode; /* ioctl r/o */
1573 compat_dev_t lo_rdevice; /* ioctl r/o */
1574 compat_int_t lo_offset;
1575 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1576 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1577 compat_int_t lo_flags; /* ioctl r/o */
1578 char lo_name[LO_NAME_SIZE];
1579 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1580 compat_ulong_t lo_init[2];
1581 char reserved[4];
1582 };
1583
1584 /*
1585 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1586 * - noinlined to reduce stack space usage in main part of driver
1587 */
1588 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1589 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1590 struct loop_info64 *info64)
1591 {
1592 struct compat_loop_info info;
1593
1594 if (copy_from_user(&info, arg, sizeof(info)))
1595 return -EFAULT;
1596
1597 memset(info64, 0, sizeof(*info64));
1598 info64->lo_number = info.lo_number;
1599 info64->lo_device = info.lo_device;
1600 info64->lo_inode = info.lo_inode;
1601 info64->lo_rdevice = info.lo_rdevice;
1602 info64->lo_offset = info.lo_offset;
1603 info64->lo_sizelimit = 0;
1604 info64->lo_flags = info.lo_flags;
1605 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1606 return 0;
1607 }
1608
1609 /*
1610 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1611 * - noinlined to reduce stack space usage in main part of driver
1612 */
1613 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1614 loop_info64_to_compat(const struct loop_info64 *info64,
1615 struct compat_loop_info __user *arg)
1616 {
1617 struct compat_loop_info info;
1618
1619 memset(&info, 0, sizeof(info));
1620 info.lo_number = info64->lo_number;
1621 info.lo_device = info64->lo_device;
1622 info.lo_inode = info64->lo_inode;
1623 info.lo_rdevice = info64->lo_rdevice;
1624 info.lo_offset = info64->lo_offset;
1625 info.lo_flags = info64->lo_flags;
1626 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1627
1628 /* error in case values were truncated */
1629 if (info.lo_device != info64->lo_device ||
1630 info.lo_rdevice != info64->lo_rdevice ||
1631 info.lo_inode != info64->lo_inode ||
1632 info.lo_offset != info64->lo_offset)
1633 return -EOVERFLOW;
1634
1635 if (copy_to_user(arg, &info, sizeof(info)))
1636 return -EFAULT;
1637 return 0;
1638 }
1639
1640 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1641 loop_set_status_compat(struct loop_device *lo,
1642 const struct compat_loop_info __user *arg)
1643 {
1644 struct loop_info64 info64;
1645 int ret;
1646
1647 ret = loop_info64_from_compat(arg, &info64);
1648 if (ret < 0)
1649 return ret;
1650 return loop_set_status(lo, &info64);
1651 }
1652
1653 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1654 loop_get_status_compat(struct loop_device *lo,
1655 struct compat_loop_info __user *arg)
1656 {
1657 struct loop_info64 info64;
1658 int err;
1659
1660 if (!arg)
1661 return -EINVAL;
1662 err = loop_get_status(lo, &info64);
1663 if (!err)
1664 err = loop_info64_to_compat(&info64, arg);
1665 return err;
1666 }
1667
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1668 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1669 unsigned int cmd, unsigned long arg)
1670 {
1671 struct loop_device *lo = bdev->bd_disk->private_data;
1672 int err;
1673
1674 switch(cmd) {
1675 case LOOP_SET_STATUS:
1676 err = loop_set_status_compat(lo,
1677 (const struct compat_loop_info __user *)arg);
1678 break;
1679 case LOOP_GET_STATUS:
1680 err = loop_get_status_compat(lo,
1681 (struct compat_loop_info __user *)arg);
1682 break;
1683 case LOOP_SET_CAPACITY:
1684 case LOOP_CLR_FD:
1685 case LOOP_GET_STATUS64:
1686 case LOOP_SET_STATUS64:
1687 case LOOP_CONFIGURE:
1688 arg = (unsigned long) compat_ptr(arg);
1689 fallthrough;
1690 case LOOP_SET_FD:
1691 case LOOP_CHANGE_FD:
1692 case LOOP_SET_BLOCK_SIZE:
1693 case LOOP_SET_DIRECT_IO:
1694 err = lo_ioctl(bdev, mode, cmd, arg);
1695 break;
1696 default:
1697 err = -ENOIOCTLCMD;
1698 break;
1699 }
1700 return err;
1701 }
1702 #endif
1703
lo_open(struct gendisk * disk,blk_mode_t mode)1704 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1705 {
1706 struct loop_device *lo = disk->private_data;
1707 int err;
1708
1709 err = mutex_lock_killable(&lo->lo_mutex);
1710 if (err)
1711 return err;
1712
1713 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1714 err = -ENXIO;
1715 mutex_unlock(&lo->lo_mutex);
1716 return err;
1717 }
1718
lo_release(struct gendisk * disk)1719 static void lo_release(struct gendisk *disk)
1720 {
1721 struct loop_device *lo = disk->private_data;
1722 bool need_clear = false;
1723
1724 if (disk_openers(disk) > 0)
1725 return;
1726 /*
1727 * Clear the backing device information if this is the last close of
1728 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1729 * has been called.
1730 */
1731
1732 mutex_lock(&lo->lo_mutex);
1733 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1734 lo->lo_state = Lo_rundown;
1735
1736 need_clear = (lo->lo_state == Lo_rundown);
1737 mutex_unlock(&lo->lo_mutex);
1738
1739 if (need_clear)
1740 __loop_clr_fd(lo);
1741 }
1742
lo_free_disk(struct gendisk * disk)1743 static void lo_free_disk(struct gendisk *disk)
1744 {
1745 struct loop_device *lo = disk->private_data;
1746
1747 if (lo->workqueue)
1748 destroy_workqueue(lo->workqueue);
1749 loop_free_idle_workers(lo, true);
1750 timer_shutdown_sync(&lo->timer);
1751 mutex_destroy(&lo->lo_mutex);
1752 kfree(lo);
1753 }
1754
1755 static const struct block_device_operations lo_fops = {
1756 .owner = THIS_MODULE,
1757 .open = lo_open,
1758 .release = lo_release,
1759 .ioctl = lo_ioctl,
1760 #ifdef CONFIG_COMPAT
1761 .compat_ioctl = lo_compat_ioctl,
1762 #endif
1763 .free_disk = lo_free_disk,
1764 };
1765
1766 /*
1767 * And now the modules code and kernel interface.
1768 */
1769
1770 /*
1771 * If max_loop is specified, create that many devices upfront.
1772 * This also becomes a hard limit. If max_loop is not specified,
1773 * the default isn't a hard limit (as before commit 85c50197716c
1774 * changed the default value from 0 for max_loop=0 reasons), just
1775 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1776 * init time. Loop devices can be requested on-demand with the
1777 * /dev/loop-control interface, or be instantiated by accessing
1778 * a 'dead' device node.
1779 */
1780 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1781
1782 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1783 static bool max_loop_specified;
1784
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1785 static int max_loop_param_set_int(const char *val,
1786 const struct kernel_param *kp)
1787 {
1788 int ret;
1789
1790 ret = param_set_int(val, kp);
1791 if (ret < 0)
1792 return ret;
1793
1794 max_loop_specified = true;
1795 return 0;
1796 }
1797
1798 static const struct kernel_param_ops max_loop_param_ops = {
1799 .set = max_loop_param_set_int,
1800 .get = param_get_int,
1801 };
1802
1803 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1804 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1805 #else
1806 module_param(max_loop, int, 0444);
1807 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1808 #endif
1809
1810 module_param(max_part, int, 0444);
1811 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1812
1813 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1814
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1815 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1816 {
1817 int qd, ret;
1818
1819 ret = kstrtoint(s, 0, &qd);
1820 if (ret < 0)
1821 return ret;
1822 if (qd < 1)
1823 return -EINVAL;
1824 hw_queue_depth = qd;
1825 return 0;
1826 }
1827
1828 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1829 .set = loop_set_hw_queue_depth,
1830 .get = param_get_int,
1831 };
1832
1833 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1834 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1835
1836 MODULE_DESCRIPTION("Loopback device support");
1837 MODULE_LICENSE("GPL");
1838 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1839
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1840 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1841 const struct blk_mq_queue_data *bd)
1842 {
1843 struct request *rq = bd->rq;
1844 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1845 struct loop_device *lo = rq->q->queuedata;
1846
1847 blk_mq_start_request(rq);
1848
1849 if (lo->lo_state != Lo_bound)
1850 return BLK_STS_IOERR;
1851
1852 switch (req_op(rq)) {
1853 case REQ_OP_FLUSH:
1854 case REQ_OP_DISCARD:
1855 case REQ_OP_WRITE_ZEROES:
1856 cmd->use_aio = false;
1857 break;
1858 default:
1859 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1860 break;
1861 }
1862
1863 /* always use the first bio's css */
1864 cmd->blkcg_css = NULL;
1865 cmd->memcg_css = NULL;
1866 #ifdef CONFIG_BLK_CGROUP
1867 if (rq->bio) {
1868 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1869 #ifdef CONFIG_MEMCG
1870 if (cmd->blkcg_css) {
1871 cmd->memcg_css =
1872 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1873 &memory_cgrp_subsys);
1874 }
1875 #endif
1876 }
1877 #endif
1878 loop_queue_work(lo, cmd);
1879
1880 return BLK_STS_OK;
1881 }
1882
loop_handle_cmd(struct loop_cmd * cmd)1883 static void loop_handle_cmd(struct loop_cmd *cmd)
1884 {
1885 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1886 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1887 struct request *rq = blk_mq_rq_from_pdu(cmd);
1888 const bool write = op_is_write(req_op(rq));
1889 struct loop_device *lo = rq->q->queuedata;
1890 int ret = 0;
1891 struct mem_cgroup *old_memcg = NULL;
1892
1893 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1894 ret = -EIO;
1895 goto failed;
1896 }
1897
1898 if (cmd_blkcg_css)
1899 kthread_associate_blkcg(cmd_blkcg_css);
1900 if (cmd_memcg_css)
1901 old_memcg = set_active_memcg(
1902 mem_cgroup_from_css(cmd_memcg_css));
1903
1904 /*
1905 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1906 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1907 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1908 * not yet been completed.
1909 */
1910 ret = do_req_filebacked(lo, rq);
1911
1912 if (cmd_blkcg_css)
1913 kthread_associate_blkcg(NULL);
1914
1915 if (cmd_memcg_css) {
1916 set_active_memcg(old_memcg);
1917 css_put(cmd_memcg_css);
1918 }
1919 failed:
1920 /* complete non-aio request */
1921 if (ret != -EIOCBQUEUED) {
1922 if (ret == -EOPNOTSUPP)
1923 cmd->ret = ret;
1924 else
1925 cmd->ret = ret ? -EIO : 0;
1926 if (likely(!blk_should_fake_timeout(rq->q)))
1927 blk_mq_complete_request(rq);
1928 }
1929 }
1930
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1931 static void loop_process_work(struct loop_worker *worker,
1932 struct list_head *cmd_list, struct loop_device *lo)
1933 {
1934 int orig_flags = current->flags;
1935 struct loop_cmd *cmd;
1936
1937 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1938 spin_lock_irq(&lo->lo_work_lock);
1939 while (!list_empty(cmd_list)) {
1940 cmd = container_of(
1941 cmd_list->next, struct loop_cmd, list_entry);
1942 list_del(cmd_list->next);
1943 spin_unlock_irq(&lo->lo_work_lock);
1944
1945 loop_handle_cmd(cmd);
1946 cond_resched();
1947
1948 spin_lock_irq(&lo->lo_work_lock);
1949 }
1950
1951 /*
1952 * We only add to the idle list if there are no pending cmds
1953 * *and* the worker will not run again which ensures that it
1954 * is safe to free any worker on the idle list
1955 */
1956 if (worker && !work_pending(&worker->work)) {
1957 worker->last_ran_at = jiffies;
1958 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1959 loop_set_timer(lo);
1960 }
1961 spin_unlock_irq(&lo->lo_work_lock);
1962 current->flags = orig_flags;
1963 }
1964
loop_workfn(struct work_struct * work)1965 static void loop_workfn(struct work_struct *work)
1966 {
1967 struct loop_worker *worker =
1968 container_of(work, struct loop_worker, work);
1969 loop_process_work(worker, &worker->cmd_list, worker->lo);
1970 }
1971
loop_rootcg_workfn(struct work_struct * work)1972 static void loop_rootcg_workfn(struct work_struct *work)
1973 {
1974 struct loop_device *lo =
1975 container_of(work, struct loop_device, rootcg_work);
1976 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1977 }
1978
1979 static const struct blk_mq_ops loop_mq_ops = {
1980 .queue_rq = loop_queue_rq,
1981 .complete = lo_complete_rq,
1982 };
1983
loop_add(int i)1984 static int loop_add(int i)
1985 {
1986 struct queue_limits lim = {
1987 /*
1988 * Random number picked from the historic block max_sectors cap.
1989 */
1990 .max_hw_sectors = 2560u,
1991 };
1992 struct loop_device *lo;
1993 struct gendisk *disk;
1994 int err;
1995
1996 err = -ENOMEM;
1997 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1998 if (!lo)
1999 goto out;
2000 lo->worker_tree = RB_ROOT;
2001 INIT_LIST_HEAD(&lo->idle_worker_list);
2002 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2003 lo->lo_state = Lo_unbound;
2004
2005 err = mutex_lock_killable(&loop_ctl_mutex);
2006 if (err)
2007 goto out_free_dev;
2008
2009 /* allocate id, if @id >= 0, we're requesting that specific id */
2010 if (i >= 0) {
2011 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2012 if (err == -ENOSPC)
2013 err = -EEXIST;
2014 } else {
2015 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2016 }
2017 mutex_unlock(&loop_ctl_mutex);
2018 if (err < 0)
2019 goto out_free_dev;
2020 i = err;
2021
2022 lo->tag_set.ops = &loop_mq_ops;
2023 lo->tag_set.nr_hw_queues = 1;
2024 lo->tag_set.queue_depth = hw_queue_depth;
2025 lo->tag_set.numa_node = NUMA_NO_NODE;
2026 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2027 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2028 lo->tag_set.driver_data = lo;
2029
2030 err = blk_mq_alloc_tag_set(&lo->tag_set);
2031 if (err)
2032 goto out_free_idr;
2033
2034 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2035 if (IS_ERR(disk)) {
2036 err = PTR_ERR(disk);
2037 goto out_cleanup_tags;
2038 }
2039 lo->lo_queue = lo->lo_disk->queue;
2040
2041 /*
2042 * Disable partition scanning by default. The in-kernel partition
2043 * scanning can be requested individually per-device during its
2044 * setup. Userspace can always add and remove partitions from all
2045 * devices. The needed partition minors are allocated from the
2046 * extended minor space, the main loop device numbers will continue
2047 * to match the loop minors, regardless of the number of partitions
2048 * used.
2049 *
2050 * If max_part is given, partition scanning is globally enabled for
2051 * all loop devices. The minors for the main loop devices will be
2052 * multiples of max_part.
2053 *
2054 * Note: Global-for-all-devices, set-only-at-init, read-only module
2055 * parameteters like 'max_loop' and 'max_part' make things needlessly
2056 * complicated, are too static, inflexible and may surprise
2057 * userspace tools. Parameters like this in general should be avoided.
2058 */
2059 if (!part_shift)
2060 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2061 mutex_init(&lo->lo_mutex);
2062 lo->lo_number = i;
2063 spin_lock_init(&lo->lo_lock);
2064 spin_lock_init(&lo->lo_work_lock);
2065 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2066 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2067 disk->major = LOOP_MAJOR;
2068 disk->first_minor = i << part_shift;
2069 disk->minors = 1 << part_shift;
2070 disk->fops = &lo_fops;
2071 disk->private_data = lo;
2072 disk->queue = lo->lo_queue;
2073 disk->events = DISK_EVENT_MEDIA_CHANGE;
2074 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2075 sprintf(disk->disk_name, "loop%d", i);
2076 /* Make this loop device reachable from pathname. */
2077 err = add_disk(disk);
2078 if (err)
2079 goto out_cleanup_disk;
2080
2081 /* Show this loop device. */
2082 mutex_lock(&loop_ctl_mutex);
2083 lo->idr_visible = true;
2084 mutex_unlock(&loop_ctl_mutex);
2085
2086 return i;
2087
2088 out_cleanup_disk:
2089 put_disk(disk);
2090 out_cleanup_tags:
2091 blk_mq_free_tag_set(&lo->tag_set);
2092 out_free_idr:
2093 mutex_lock(&loop_ctl_mutex);
2094 idr_remove(&loop_index_idr, i);
2095 mutex_unlock(&loop_ctl_mutex);
2096 out_free_dev:
2097 kfree(lo);
2098 out:
2099 return err;
2100 }
2101
loop_remove(struct loop_device * lo)2102 static void loop_remove(struct loop_device *lo)
2103 {
2104 /* Make this loop device unreachable from pathname. */
2105 del_gendisk(lo->lo_disk);
2106 blk_mq_free_tag_set(&lo->tag_set);
2107
2108 mutex_lock(&loop_ctl_mutex);
2109 idr_remove(&loop_index_idr, lo->lo_number);
2110 mutex_unlock(&loop_ctl_mutex);
2111
2112 put_disk(lo->lo_disk);
2113 }
2114
2115 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2116 static void loop_probe(dev_t dev)
2117 {
2118 int idx = MINOR(dev) >> part_shift;
2119
2120 if (max_loop_specified && max_loop && idx >= max_loop)
2121 return;
2122 loop_add(idx);
2123 }
2124 #else
2125 #define loop_probe NULL
2126 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2127
loop_control_remove(int idx)2128 static int loop_control_remove(int idx)
2129 {
2130 struct loop_device *lo;
2131 int ret;
2132
2133 if (idx < 0) {
2134 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2135 return -EINVAL;
2136 }
2137
2138 /* Hide this loop device for serialization. */
2139 ret = mutex_lock_killable(&loop_ctl_mutex);
2140 if (ret)
2141 return ret;
2142 lo = idr_find(&loop_index_idr, idx);
2143 if (!lo || !lo->idr_visible)
2144 ret = -ENODEV;
2145 else
2146 lo->idr_visible = false;
2147 mutex_unlock(&loop_ctl_mutex);
2148 if (ret)
2149 return ret;
2150
2151 /* Check whether this loop device can be removed. */
2152 ret = mutex_lock_killable(&lo->lo_mutex);
2153 if (ret)
2154 goto mark_visible;
2155 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2156 mutex_unlock(&lo->lo_mutex);
2157 ret = -EBUSY;
2158 goto mark_visible;
2159 }
2160 /* Mark this loop device as no more bound, but not quite unbound yet */
2161 lo->lo_state = Lo_deleting;
2162 mutex_unlock(&lo->lo_mutex);
2163
2164 loop_remove(lo);
2165 return 0;
2166
2167 mark_visible:
2168 /* Show this loop device again. */
2169 mutex_lock(&loop_ctl_mutex);
2170 lo->idr_visible = true;
2171 mutex_unlock(&loop_ctl_mutex);
2172 return ret;
2173 }
2174
loop_control_get_free(int idx)2175 static int loop_control_get_free(int idx)
2176 {
2177 struct loop_device *lo;
2178 int id, ret;
2179
2180 ret = mutex_lock_killable(&loop_ctl_mutex);
2181 if (ret)
2182 return ret;
2183 idr_for_each_entry(&loop_index_idr, lo, id) {
2184 /* Hitting a race results in creating a new loop device which is harmless. */
2185 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2186 goto found;
2187 }
2188 mutex_unlock(&loop_ctl_mutex);
2189 return loop_add(-1);
2190 found:
2191 mutex_unlock(&loop_ctl_mutex);
2192 return id;
2193 }
2194
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2195 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2196 unsigned long parm)
2197 {
2198 switch (cmd) {
2199 case LOOP_CTL_ADD:
2200 return loop_add(parm);
2201 case LOOP_CTL_REMOVE:
2202 return loop_control_remove(parm);
2203 case LOOP_CTL_GET_FREE:
2204 return loop_control_get_free(parm);
2205 default:
2206 return -ENOSYS;
2207 }
2208 }
2209
2210 static const struct file_operations loop_ctl_fops = {
2211 .open = nonseekable_open,
2212 .unlocked_ioctl = loop_control_ioctl,
2213 .compat_ioctl = loop_control_ioctl,
2214 .owner = THIS_MODULE,
2215 .llseek = noop_llseek,
2216 };
2217
2218 static struct miscdevice loop_misc = {
2219 .minor = LOOP_CTRL_MINOR,
2220 .name = "loop-control",
2221 .fops = &loop_ctl_fops,
2222 };
2223
2224 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2225 MODULE_ALIAS("devname:loop-control");
2226
loop_init(void)2227 static int __init loop_init(void)
2228 {
2229 int i;
2230 int err;
2231
2232 part_shift = 0;
2233 if (max_part > 0) {
2234 part_shift = fls(max_part);
2235
2236 /*
2237 * Adjust max_part according to part_shift as it is exported
2238 * to user space so that user can decide correct minor number
2239 * if [s]he want to create more devices.
2240 *
2241 * Note that -1 is required because partition 0 is reserved
2242 * for the whole disk.
2243 */
2244 max_part = (1UL << part_shift) - 1;
2245 }
2246
2247 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2248 err = -EINVAL;
2249 goto err_out;
2250 }
2251
2252 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2253 err = -EINVAL;
2254 goto err_out;
2255 }
2256
2257 err = misc_register(&loop_misc);
2258 if (err < 0)
2259 goto err_out;
2260
2261
2262 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2263 err = -EIO;
2264 goto misc_out;
2265 }
2266
2267 /* pre-create number of devices given by config or max_loop */
2268 for (i = 0; i < max_loop; i++)
2269 loop_add(i);
2270
2271 printk(KERN_INFO "loop: module loaded\n");
2272 return 0;
2273
2274 misc_out:
2275 misc_deregister(&loop_misc);
2276 err_out:
2277 return err;
2278 }
2279
loop_exit(void)2280 static void __exit loop_exit(void)
2281 {
2282 struct loop_device *lo;
2283 int id;
2284
2285 unregister_blkdev(LOOP_MAJOR, "loop");
2286 misc_deregister(&loop_misc);
2287
2288 /*
2289 * There is no need to use loop_ctl_mutex here, for nobody else can
2290 * access loop_index_idr when this module is unloading (unless forced
2291 * module unloading is requested). If this is not a clean unloading,
2292 * we have no means to avoid kernel crash.
2293 */
2294 idr_for_each_entry(&loop_index_idr, lo, id)
2295 loop_remove(lo);
2296
2297 idr_destroy(&loop_index_idr);
2298 }
2299
2300 module_init(loop_init);
2301 module_exit(loop_exit);
2302
2303 #ifndef MODULE
max_loop_setup(char * str)2304 static int __init max_loop_setup(char *str)
2305 {
2306 max_loop = simple_strtol(str, NULL, 0);
2307 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2308 max_loop_specified = true;
2309 #endif
2310 return 1;
2311 }
2312
2313 __setup("max_loop=", max_loop_setup);
2314 #endif
2315