1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel CPU scheduler code
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
9 */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 #include <linux/livepatch_sched.h>
70
71 #ifdef CONFIG_PREEMPT_DYNAMIC
72 # ifdef CONFIG_GENERIC_IRQ_ENTRY
73 # include <linux/irq-entry-common.h>
74 # endif
75 #endif
76
77 #include <uapi/linux/sched/types.h>
78
79 #include <asm/irq_regs.h>
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <linux/sched/rseq_api.h>
85 #include <trace/events/sched.h>
86 #include <trace/events/ipi.h>
87 #undef CREATE_TRACE_POINTS
88
89 #include "sched.h"
90 #include "stats.h"
91
92 #include "autogroup.h"
93 #include "pelt.h"
94 #include "smp.h"
95
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 #include "../locking/mutex.h"
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
102 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
103
104 /*
105 * Export tracepoints that act as a bare tracehook (ie: have no trace event
106 * associated with them) to allow external modules to probe them.
107 */
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
120
121 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
122
123 #ifdef CONFIG_SCHED_PROXY_EXEC
124 DEFINE_STATIC_KEY_TRUE(__sched_proxy_exec);
setup_proxy_exec(char * str)125 static int __init setup_proxy_exec(char *str)
126 {
127 bool proxy_enable = true;
128
129 if (*str && kstrtobool(str + 1, &proxy_enable)) {
130 pr_warn("Unable to parse sched_proxy_exec=\n");
131 return 0;
132 }
133
134 if (proxy_enable) {
135 pr_info("sched_proxy_exec enabled via boot arg\n");
136 static_branch_enable(&__sched_proxy_exec);
137 } else {
138 pr_info("sched_proxy_exec disabled via boot arg\n");
139 static_branch_disable(&__sched_proxy_exec);
140 }
141 return 1;
142 }
143 #else
setup_proxy_exec(char * str)144 static int __init setup_proxy_exec(char *str)
145 {
146 pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n");
147 return 0;
148 }
149 #endif
150 __setup("sched_proxy_exec", setup_proxy_exec);
151
152 /*
153 * Debugging: various feature bits
154 *
155 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
156 * sysctl_sched_features, defined in sched.h, to allow constants propagation
157 * at compile time and compiler optimization based on features default.
158 */
159 #define SCHED_FEAT(name, enabled) \
160 (1UL << __SCHED_FEAT_##name) * enabled |
161 __read_mostly unsigned int sysctl_sched_features =
162 #include "features.h"
163 0;
164 #undef SCHED_FEAT
165
166 /*
167 * Print a warning if need_resched is set for the given duration (if
168 * LATENCY_WARN is enabled).
169 *
170 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
171 * per boot.
172 */
173 __read_mostly int sysctl_resched_latency_warn_ms = 100;
174 __read_mostly int sysctl_resched_latency_warn_once = 1;
175
176 /*
177 * Number of tasks to iterate in a single balance run.
178 * Limited because this is done with IRQs disabled.
179 */
180 __read_mostly unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
181
182 __read_mostly int scheduler_running;
183
184 #ifdef CONFIG_SCHED_CORE
185
186 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
187
188 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)189 static inline int __task_prio(const struct task_struct *p)
190 {
191 if (p->sched_class == &stop_sched_class) /* trumps deadline */
192 return -2;
193
194 if (p->dl_server)
195 return -1; /* deadline */
196
197 if (rt_or_dl_prio(p->prio))
198 return p->prio; /* [-1, 99] */
199
200 if (p->sched_class == &idle_sched_class)
201 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
202
203 if (task_on_scx(p))
204 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
205
206 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
207 }
208
209 /*
210 * l(a,b)
211 * le(a,b) := !l(b,a)
212 * g(a,b) := l(b,a)
213 * ge(a,b) := !l(a,b)
214 */
215
216 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)217 static inline bool prio_less(const struct task_struct *a,
218 const struct task_struct *b, bool in_fi)
219 {
220
221 int pa = __task_prio(a), pb = __task_prio(b);
222
223 if (-pa < -pb)
224 return true;
225
226 if (-pb < -pa)
227 return false;
228
229 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
230 const struct sched_dl_entity *a_dl, *b_dl;
231
232 a_dl = &a->dl;
233 /*
234 * Since,'a' and 'b' can be CFS tasks served by DL server,
235 * __task_prio() can return -1 (for DL) even for those. In that
236 * case, get to the dl_server's DL entity.
237 */
238 if (a->dl_server)
239 a_dl = a->dl_server;
240
241 b_dl = &b->dl;
242 if (b->dl_server)
243 b_dl = b->dl_server;
244
245 return !dl_time_before(a_dl->deadline, b_dl->deadline);
246 }
247
248 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
249 return cfs_prio_less(a, b, in_fi);
250
251 #ifdef CONFIG_SCHED_CLASS_EXT
252 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */
253 return scx_prio_less(a, b, in_fi);
254 #endif
255
256 return false;
257 }
258
__sched_core_less(const struct task_struct * a,const struct task_struct * b)259 static inline bool __sched_core_less(const struct task_struct *a,
260 const struct task_struct *b)
261 {
262 if (a->core_cookie < b->core_cookie)
263 return true;
264
265 if (a->core_cookie > b->core_cookie)
266 return false;
267
268 /* flip prio, so high prio is leftmost */
269 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
270 return true;
271
272 return false;
273 }
274
275 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
276
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)277 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
278 {
279 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
280 }
281
rb_sched_core_cmp(const void * key,const struct rb_node * node)282 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
283 {
284 const struct task_struct *p = __node_2_sc(node);
285 unsigned long cookie = (unsigned long)key;
286
287 if (cookie < p->core_cookie)
288 return -1;
289
290 if (cookie > p->core_cookie)
291 return 1;
292
293 return 0;
294 }
295
sched_core_enqueue(struct rq * rq,struct task_struct * p)296 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
297 {
298 if (p->se.sched_delayed)
299 return;
300
301 rq->core->core_task_seq++;
302
303 if (!p->core_cookie)
304 return;
305
306 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
307 }
308
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)309 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
310 {
311 if (p->se.sched_delayed)
312 return;
313
314 rq->core->core_task_seq++;
315
316 if (sched_core_enqueued(p)) {
317 rb_erase(&p->core_node, &rq->core_tree);
318 RB_CLEAR_NODE(&p->core_node);
319 }
320
321 /*
322 * Migrating the last task off the cpu, with the cpu in forced idle
323 * state. Reschedule to create an accounting edge for forced idle,
324 * and re-examine whether the core is still in forced idle state.
325 */
326 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
327 rq->core->core_forceidle_count && rq->curr == rq->idle)
328 resched_curr(rq);
329 }
330
sched_task_is_throttled(struct task_struct * p,int cpu)331 static int sched_task_is_throttled(struct task_struct *p, int cpu)
332 {
333 if (p->sched_class->task_is_throttled)
334 return p->sched_class->task_is_throttled(p, cpu);
335
336 return 0;
337 }
338
sched_core_next(struct task_struct * p,unsigned long cookie)339 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
340 {
341 struct rb_node *node = &p->core_node;
342 int cpu = task_cpu(p);
343
344 do {
345 node = rb_next(node);
346 if (!node)
347 return NULL;
348
349 p = __node_2_sc(node);
350 if (p->core_cookie != cookie)
351 return NULL;
352
353 } while (sched_task_is_throttled(p, cpu));
354
355 return p;
356 }
357
358 /*
359 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
360 * If no suitable task is found, NULL will be returned.
361 */
sched_core_find(struct rq * rq,unsigned long cookie)362 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
363 {
364 struct task_struct *p;
365 struct rb_node *node;
366
367 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
368 if (!node)
369 return NULL;
370
371 p = __node_2_sc(node);
372 if (!sched_task_is_throttled(p, rq->cpu))
373 return p;
374
375 return sched_core_next(p, cookie);
376 }
377
378 /*
379 * Magic required such that:
380 *
381 * raw_spin_rq_lock(rq);
382 * ...
383 * raw_spin_rq_unlock(rq);
384 *
385 * ends up locking and unlocking the _same_ lock, and all CPUs
386 * always agree on what rq has what lock.
387 *
388 * XXX entirely possible to selectively enable cores, don't bother for now.
389 */
390
391 static DEFINE_MUTEX(sched_core_mutex);
392 static atomic_t sched_core_count;
393 static struct cpumask sched_core_mask;
394
sched_core_lock(int cpu,unsigned long * flags)395 static void sched_core_lock(int cpu, unsigned long *flags)
396 {
397 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
398 int t, i = 0;
399
400 local_irq_save(*flags);
401 for_each_cpu(t, smt_mask)
402 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
403 }
404
sched_core_unlock(int cpu,unsigned long * flags)405 static void sched_core_unlock(int cpu, unsigned long *flags)
406 {
407 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
408 int t;
409
410 for_each_cpu(t, smt_mask)
411 raw_spin_unlock(&cpu_rq(t)->__lock);
412 local_irq_restore(*flags);
413 }
414
__sched_core_flip(bool enabled)415 static void __sched_core_flip(bool enabled)
416 {
417 unsigned long flags;
418 int cpu, t;
419
420 cpus_read_lock();
421
422 /*
423 * Toggle the online cores, one by one.
424 */
425 cpumask_copy(&sched_core_mask, cpu_online_mask);
426 for_each_cpu(cpu, &sched_core_mask) {
427 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
428
429 sched_core_lock(cpu, &flags);
430
431 for_each_cpu(t, smt_mask)
432 cpu_rq(t)->core_enabled = enabled;
433
434 cpu_rq(cpu)->core->core_forceidle_start = 0;
435
436 sched_core_unlock(cpu, &flags);
437
438 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
439 }
440
441 /*
442 * Toggle the offline CPUs.
443 */
444 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
445 cpu_rq(cpu)->core_enabled = enabled;
446
447 cpus_read_unlock();
448 }
449
sched_core_assert_empty(void)450 static void sched_core_assert_empty(void)
451 {
452 int cpu;
453
454 for_each_possible_cpu(cpu)
455 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
456 }
457
__sched_core_enable(void)458 static void __sched_core_enable(void)
459 {
460 static_branch_enable(&__sched_core_enabled);
461 /*
462 * Ensure all previous instances of raw_spin_rq_*lock() have finished
463 * and future ones will observe !sched_core_disabled().
464 */
465 synchronize_rcu();
466 __sched_core_flip(true);
467 sched_core_assert_empty();
468 }
469
__sched_core_disable(void)470 static void __sched_core_disable(void)
471 {
472 sched_core_assert_empty();
473 __sched_core_flip(false);
474 static_branch_disable(&__sched_core_enabled);
475 }
476
sched_core_get(void)477 void sched_core_get(void)
478 {
479 if (atomic_inc_not_zero(&sched_core_count))
480 return;
481
482 mutex_lock(&sched_core_mutex);
483 if (!atomic_read(&sched_core_count))
484 __sched_core_enable();
485
486 smp_mb__before_atomic();
487 atomic_inc(&sched_core_count);
488 mutex_unlock(&sched_core_mutex);
489 }
490
__sched_core_put(struct work_struct * work)491 static void __sched_core_put(struct work_struct *work)
492 {
493 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
494 __sched_core_disable();
495 mutex_unlock(&sched_core_mutex);
496 }
497 }
498
sched_core_put(void)499 void sched_core_put(void)
500 {
501 static DECLARE_WORK(_work, __sched_core_put);
502
503 /*
504 * "There can be only one"
505 *
506 * Either this is the last one, or we don't actually need to do any
507 * 'work'. If it is the last *again*, we rely on
508 * WORK_STRUCT_PENDING_BIT.
509 */
510 if (!atomic_add_unless(&sched_core_count, -1, 1))
511 schedule_work(&_work);
512 }
513
514 #else /* !CONFIG_SCHED_CORE: */
515
sched_core_enqueue(struct rq * rq,struct task_struct * p)516 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
517 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)518 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
519
520 #endif /* !CONFIG_SCHED_CORE */
521
522 /* need a wrapper since we may need to trace from modules */
523 EXPORT_TRACEPOINT_SYMBOL(sched_set_state_tp);
524
525 /* Call via the helper macro trace_set_current_state. */
__trace_set_current_state(int state_value)526 void __trace_set_current_state(int state_value)
527 {
528 trace_sched_set_state_tp(current, state_value);
529 }
530 EXPORT_SYMBOL(__trace_set_current_state);
531
532 /*
533 * Serialization rules:
534 *
535 * Lock order:
536 *
537 * p->pi_lock
538 * rq->lock
539 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
540 *
541 * rq1->lock
542 * rq2->lock where: rq1 < rq2
543 *
544 * Regular state:
545 *
546 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
547 * local CPU's rq->lock, it optionally removes the task from the runqueue and
548 * always looks at the local rq data structures to find the most eligible task
549 * to run next.
550 *
551 * Task enqueue is also under rq->lock, possibly taken from another CPU.
552 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
553 * the local CPU to avoid bouncing the runqueue state around [ see
554 * ttwu_queue_wakelist() ]
555 *
556 * Task wakeup, specifically wakeups that involve migration, are horribly
557 * complicated to avoid having to take two rq->locks.
558 *
559 * Special state:
560 *
561 * System-calls and anything external will use task_rq_lock() which acquires
562 * both p->pi_lock and rq->lock. As a consequence the state they change is
563 * stable while holding either lock:
564 *
565 * - sched_setaffinity()/
566 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
567 * - set_user_nice(): p->se.load, p->*prio
568 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
569 * p->se.load, p->rt_priority,
570 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
571 * - sched_setnuma(): p->numa_preferred_nid
572 * - sched_move_task(): p->sched_task_group
573 * - uclamp_update_active() p->uclamp*
574 *
575 * p->state <- TASK_*:
576 *
577 * is changed locklessly using set_current_state(), __set_current_state() or
578 * set_special_state(), see their respective comments, or by
579 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
580 * concurrent self.
581 *
582 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
583 *
584 * is set by activate_task() and cleared by deactivate_task(), under
585 * rq->lock. Non-zero indicates the task is runnable, the special
586 * ON_RQ_MIGRATING state is used for migration without holding both
587 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
588 *
589 * Additionally it is possible to be ->on_rq but still be considered not
590 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue
591 * but will be dequeued as soon as they get picked again. See the
592 * task_is_runnable() helper.
593 *
594 * p->on_cpu <- { 0, 1 }:
595 *
596 * is set by prepare_task() and cleared by finish_task() such that it will be
597 * set before p is scheduled-in and cleared after p is scheduled-out, both
598 * under rq->lock. Non-zero indicates the task is running on its CPU.
599 *
600 * [ The astute reader will observe that it is possible for two tasks on one
601 * CPU to have ->on_cpu = 1 at the same time. ]
602 *
603 * task_cpu(p): is changed by set_task_cpu(), the rules are:
604 *
605 * - Don't call set_task_cpu() on a blocked task:
606 *
607 * We don't care what CPU we're not running on, this simplifies hotplug,
608 * the CPU assignment of blocked tasks isn't required to be valid.
609 *
610 * - for try_to_wake_up(), called under p->pi_lock:
611 *
612 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
613 *
614 * - for migration called under rq->lock:
615 * [ see task_on_rq_migrating() in task_rq_lock() ]
616 *
617 * o move_queued_task()
618 * o detach_task()
619 *
620 * - for migration called under double_rq_lock():
621 *
622 * o __migrate_swap_task()
623 * o push_rt_task() / pull_rt_task()
624 * o push_dl_task() / pull_dl_task()
625 * o dl_task_offline_migration()
626 *
627 */
628
raw_spin_rq_lock_nested(struct rq * rq,int subclass)629 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
630 {
631 raw_spinlock_t *lock;
632
633 /* Matches synchronize_rcu() in __sched_core_enable() */
634 preempt_disable();
635 if (sched_core_disabled()) {
636 raw_spin_lock_nested(&rq->__lock, subclass);
637 /* preempt_count *MUST* be > 1 */
638 preempt_enable_no_resched();
639 return;
640 }
641
642 for (;;) {
643 lock = __rq_lockp(rq);
644 raw_spin_lock_nested(lock, subclass);
645 if (likely(lock == __rq_lockp(rq))) {
646 /* preempt_count *MUST* be > 1 */
647 preempt_enable_no_resched();
648 return;
649 }
650 raw_spin_unlock(lock);
651 }
652 }
653
raw_spin_rq_trylock(struct rq * rq)654 bool raw_spin_rq_trylock(struct rq *rq)
655 {
656 raw_spinlock_t *lock;
657 bool ret;
658
659 /* Matches synchronize_rcu() in __sched_core_enable() */
660 preempt_disable();
661 if (sched_core_disabled()) {
662 ret = raw_spin_trylock(&rq->__lock);
663 preempt_enable();
664 return ret;
665 }
666
667 for (;;) {
668 lock = __rq_lockp(rq);
669 ret = raw_spin_trylock(lock);
670 if (!ret || (likely(lock == __rq_lockp(rq)))) {
671 preempt_enable();
672 return ret;
673 }
674 raw_spin_unlock(lock);
675 }
676 }
677
raw_spin_rq_unlock(struct rq * rq)678 void raw_spin_rq_unlock(struct rq *rq)
679 {
680 raw_spin_unlock(rq_lockp(rq));
681 }
682
683 /*
684 * double_rq_lock - safely lock two runqueues
685 */
double_rq_lock(struct rq * rq1,struct rq * rq2)686 void double_rq_lock(struct rq *rq1, struct rq *rq2)
687 {
688 lockdep_assert_irqs_disabled();
689
690 if (rq_order_less(rq2, rq1))
691 swap(rq1, rq2);
692
693 raw_spin_rq_lock(rq1);
694 if (__rq_lockp(rq1) != __rq_lockp(rq2))
695 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
696
697 double_rq_clock_clear_update(rq1, rq2);
698 }
699
700 /*
701 * __task_rq_lock - lock the rq @p resides on.
702 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)703 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
704 __acquires(rq->lock)
705 {
706 struct rq *rq;
707
708 lockdep_assert_held(&p->pi_lock);
709
710 for (;;) {
711 rq = task_rq(p);
712 raw_spin_rq_lock(rq);
713 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
714 rq_pin_lock(rq, rf);
715 return rq;
716 }
717 raw_spin_rq_unlock(rq);
718
719 while (unlikely(task_on_rq_migrating(p)))
720 cpu_relax();
721 }
722 }
723
724 /*
725 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
726 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)727 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
728 __acquires(p->pi_lock)
729 __acquires(rq->lock)
730 {
731 struct rq *rq;
732
733 for (;;) {
734 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
735 rq = task_rq(p);
736 raw_spin_rq_lock(rq);
737 /*
738 * move_queued_task() task_rq_lock()
739 *
740 * ACQUIRE (rq->lock)
741 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
742 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
743 * [S] ->cpu = new_cpu [L] task_rq()
744 * [L] ->on_rq
745 * RELEASE (rq->lock)
746 *
747 * If we observe the old CPU in task_rq_lock(), the acquire of
748 * the old rq->lock will fully serialize against the stores.
749 *
750 * If we observe the new CPU in task_rq_lock(), the address
751 * dependency headed by '[L] rq = task_rq()' and the acquire
752 * will pair with the WMB to ensure we then also see migrating.
753 */
754 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
755 rq_pin_lock(rq, rf);
756 return rq;
757 }
758 raw_spin_rq_unlock(rq);
759 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
760
761 while (unlikely(task_on_rq_migrating(p)))
762 cpu_relax();
763 }
764 }
765
766 /*
767 * RQ-clock updating methods:
768 */
769
update_rq_clock_task(struct rq * rq,s64 delta)770 static void update_rq_clock_task(struct rq *rq, s64 delta)
771 {
772 /*
773 * In theory, the compile should just see 0 here, and optimize out the call
774 * to sched_rt_avg_update. But I don't trust it...
775 */
776 s64 __maybe_unused steal = 0, irq_delta = 0;
777
778 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
779 if (irqtime_enabled()) {
780 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
781
782 /*
783 * Since irq_time is only updated on {soft,}irq_exit, we might run into
784 * this case when a previous update_rq_clock() happened inside a
785 * {soft,}IRQ region.
786 *
787 * When this happens, we stop ->clock_task and only update the
788 * prev_irq_time stamp to account for the part that fit, so that a next
789 * update will consume the rest. This ensures ->clock_task is
790 * monotonic.
791 *
792 * It does however cause some slight miss-attribution of {soft,}IRQ
793 * time, a more accurate solution would be to update the irq_time using
794 * the current rq->clock timestamp, except that would require using
795 * atomic ops.
796 */
797 if (irq_delta > delta)
798 irq_delta = delta;
799
800 rq->prev_irq_time += irq_delta;
801 delta -= irq_delta;
802 delayacct_irq(rq->curr, irq_delta);
803 }
804 #endif
805 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
806 if (static_key_false((¶virt_steal_rq_enabled))) {
807 u64 prev_steal;
808
809 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
810 steal -= rq->prev_steal_time_rq;
811
812 if (unlikely(steal > delta))
813 steal = delta;
814
815 rq->prev_steal_time_rq = prev_steal;
816 delta -= steal;
817 }
818 #endif
819
820 rq->clock_task += delta;
821
822 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
823 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
824 update_irq_load_avg(rq, irq_delta + steal);
825 #endif
826 update_rq_clock_pelt(rq, delta);
827 }
828
update_rq_clock(struct rq * rq)829 void update_rq_clock(struct rq *rq)
830 {
831 s64 delta;
832 u64 clock;
833
834 lockdep_assert_rq_held(rq);
835
836 if (rq->clock_update_flags & RQCF_ACT_SKIP)
837 return;
838
839 if (sched_feat(WARN_DOUBLE_CLOCK))
840 WARN_ON_ONCE(rq->clock_update_flags & RQCF_UPDATED);
841 rq->clock_update_flags |= RQCF_UPDATED;
842
843 clock = sched_clock_cpu(cpu_of(rq));
844 scx_rq_clock_update(rq, clock);
845
846 delta = clock - rq->clock;
847 if (delta < 0)
848 return;
849 rq->clock += delta;
850
851 update_rq_clock_task(rq, delta);
852 }
853
854 #ifdef CONFIG_SCHED_HRTICK
855 /*
856 * Use HR-timers to deliver accurate preemption points.
857 */
858
hrtick_clear(struct rq * rq)859 static void hrtick_clear(struct rq *rq)
860 {
861 if (hrtimer_active(&rq->hrtick_timer))
862 hrtimer_cancel(&rq->hrtick_timer);
863 }
864
865 /*
866 * High-resolution timer tick.
867 * Runs from hardirq context with interrupts disabled.
868 */
hrtick(struct hrtimer * timer)869 static enum hrtimer_restart hrtick(struct hrtimer *timer)
870 {
871 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
872 struct rq_flags rf;
873
874 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
875
876 rq_lock(rq, &rf);
877 update_rq_clock(rq);
878 rq->donor->sched_class->task_tick(rq, rq->curr, 1);
879 rq_unlock(rq, &rf);
880
881 return HRTIMER_NORESTART;
882 }
883
__hrtick_restart(struct rq * rq)884 static void __hrtick_restart(struct rq *rq)
885 {
886 struct hrtimer *timer = &rq->hrtick_timer;
887 ktime_t time = rq->hrtick_time;
888
889 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
890 }
891
892 /*
893 * called from hardirq (IPI) context
894 */
__hrtick_start(void * arg)895 static void __hrtick_start(void *arg)
896 {
897 struct rq *rq = arg;
898 struct rq_flags rf;
899
900 rq_lock(rq, &rf);
901 __hrtick_restart(rq);
902 rq_unlock(rq, &rf);
903 }
904
905 /*
906 * Called to set the hrtick timer state.
907 *
908 * called with rq->lock held and IRQs disabled
909 */
hrtick_start(struct rq * rq,u64 delay)910 void hrtick_start(struct rq *rq, u64 delay)
911 {
912 struct hrtimer *timer = &rq->hrtick_timer;
913 s64 delta;
914
915 /*
916 * Don't schedule slices shorter than 10000ns, that just
917 * doesn't make sense and can cause timer DoS.
918 */
919 delta = max_t(s64, delay, 10000LL);
920 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
921
922 if (rq == this_rq())
923 __hrtick_restart(rq);
924 else
925 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
926 }
927
hrtick_rq_init(struct rq * rq)928 static void hrtick_rq_init(struct rq *rq)
929 {
930 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
931 hrtimer_setup(&rq->hrtick_timer, hrtick, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
932 }
933 #else /* !CONFIG_SCHED_HRTICK: */
hrtick_clear(struct rq * rq)934 static inline void hrtick_clear(struct rq *rq)
935 {
936 }
937
hrtick_rq_init(struct rq * rq)938 static inline void hrtick_rq_init(struct rq *rq)
939 {
940 }
941 #endif /* !CONFIG_SCHED_HRTICK */
942
943 /*
944 * try_cmpxchg based fetch_or() macro so it works for different integer types:
945 */
946 #define fetch_or(ptr, mask) \
947 ({ \
948 typeof(ptr) _ptr = (ptr); \
949 typeof(mask) _mask = (mask); \
950 typeof(*_ptr) _val = *_ptr; \
951 \
952 do { \
953 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
954 _val; \
955 })
956
957 #ifdef TIF_POLLING_NRFLAG
958 /*
959 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
960 * this avoids any races wrt polling state changes and thereby avoids
961 * spurious IPIs.
962 */
set_nr_and_not_polling(struct thread_info * ti,int tif)963 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
964 {
965 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
966 }
967
968 /*
969 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
970 *
971 * If this returns true, then the idle task promises to call
972 * sched_ttwu_pending() and reschedule soon.
973 */
set_nr_if_polling(struct task_struct * p)974 static bool set_nr_if_polling(struct task_struct *p)
975 {
976 struct thread_info *ti = task_thread_info(p);
977 typeof(ti->flags) val = READ_ONCE(ti->flags);
978
979 do {
980 if (!(val & _TIF_POLLING_NRFLAG))
981 return false;
982 if (val & _TIF_NEED_RESCHED)
983 return true;
984 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
985
986 return true;
987 }
988
989 #else
set_nr_and_not_polling(struct thread_info * ti,int tif)990 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
991 {
992 set_ti_thread_flag(ti, tif);
993 return true;
994 }
995
set_nr_if_polling(struct task_struct * p)996 static inline bool set_nr_if_polling(struct task_struct *p)
997 {
998 return false;
999 }
1000 #endif
1001
__wake_q_add(struct wake_q_head * head,struct task_struct * task)1002 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1003 {
1004 struct wake_q_node *node = &task->wake_q;
1005
1006 /*
1007 * Atomically grab the task, if ->wake_q is !nil already it means
1008 * it's already queued (either by us or someone else) and will get the
1009 * wakeup due to that.
1010 *
1011 * In order to ensure that a pending wakeup will observe our pending
1012 * state, even in the failed case, an explicit smp_mb() must be used.
1013 */
1014 smp_mb__before_atomic();
1015 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1016 return false;
1017
1018 /*
1019 * The head is context local, there can be no concurrency.
1020 */
1021 *head->lastp = node;
1022 head->lastp = &node->next;
1023 return true;
1024 }
1025
1026 /**
1027 * wake_q_add() - queue a wakeup for 'later' waking.
1028 * @head: the wake_q_head to add @task to
1029 * @task: the task to queue for 'later' wakeup
1030 *
1031 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1032 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1033 * instantly.
1034 *
1035 * This function must be used as-if it were wake_up_process(); IOW the task
1036 * must be ready to be woken at this location.
1037 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1038 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1039 {
1040 if (__wake_q_add(head, task))
1041 get_task_struct(task);
1042 }
1043
1044 /**
1045 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1046 * @head: the wake_q_head to add @task to
1047 * @task: the task to queue for 'later' wakeup
1048 *
1049 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1050 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1051 * instantly.
1052 *
1053 * This function must be used as-if it were wake_up_process(); IOW the task
1054 * must be ready to be woken at this location.
1055 *
1056 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1057 * that already hold reference to @task can call the 'safe' version and trust
1058 * wake_q to do the right thing depending whether or not the @task is already
1059 * queued for wakeup.
1060 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1061 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1062 {
1063 if (!__wake_q_add(head, task))
1064 put_task_struct(task);
1065 }
1066
wake_up_q(struct wake_q_head * head)1067 void wake_up_q(struct wake_q_head *head)
1068 {
1069 struct wake_q_node *node = head->first;
1070
1071 while (node != WAKE_Q_TAIL) {
1072 struct task_struct *task;
1073
1074 task = container_of(node, struct task_struct, wake_q);
1075 node = node->next;
1076 /* pairs with cmpxchg_relaxed() in __wake_q_add() */
1077 WRITE_ONCE(task->wake_q.next, NULL);
1078 /* Task can safely be re-inserted now. */
1079
1080 /*
1081 * wake_up_process() executes a full barrier, which pairs with
1082 * the queueing in wake_q_add() so as not to miss wakeups.
1083 */
1084 wake_up_process(task);
1085 put_task_struct(task);
1086 }
1087 }
1088
1089 /*
1090 * resched_curr - mark rq's current task 'to be rescheduled now'.
1091 *
1092 * On UP this means the setting of the need_resched flag, on SMP it
1093 * might also involve a cross-CPU call to trigger the scheduler on
1094 * the target CPU.
1095 */
__resched_curr(struct rq * rq,int tif)1096 static void __resched_curr(struct rq *rq, int tif)
1097 {
1098 struct task_struct *curr = rq->curr;
1099 struct thread_info *cti = task_thread_info(curr);
1100 int cpu;
1101
1102 lockdep_assert_rq_held(rq);
1103
1104 /*
1105 * Always immediately preempt the idle task; no point in delaying doing
1106 * actual work.
1107 */
1108 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
1109 tif = TIF_NEED_RESCHED;
1110
1111 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
1112 return;
1113
1114 cpu = cpu_of(rq);
1115
1116 trace_sched_set_need_resched_tp(curr, cpu, tif);
1117 if (cpu == smp_processor_id()) {
1118 set_ti_thread_flag(cti, tif);
1119 if (tif == TIF_NEED_RESCHED)
1120 set_preempt_need_resched();
1121 return;
1122 }
1123
1124 if (set_nr_and_not_polling(cti, tif)) {
1125 if (tif == TIF_NEED_RESCHED)
1126 smp_send_reschedule(cpu);
1127 } else {
1128 trace_sched_wake_idle_without_ipi(cpu);
1129 }
1130 }
1131
__trace_set_need_resched(struct task_struct * curr,int tif)1132 void __trace_set_need_resched(struct task_struct *curr, int tif)
1133 {
1134 trace_sched_set_need_resched_tp(curr, smp_processor_id(), tif);
1135 }
1136
resched_curr(struct rq * rq)1137 void resched_curr(struct rq *rq)
1138 {
1139 __resched_curr(rq, TIF_NEED_RESCHED);
1140 }
1141
1142 #ifdef CONFIG_PREEMPT_DYNAMIC
1143 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
dynamic_preempt_lazy(void)1144 static __always_inline bool dynamic_preempt_lazy(void)
1145 {
1146 return static_branch_unlikely(&sk_dynamic_preempt_lazy);
1147 }
1148 #else
dynamic_preempt_lazy(void)1149 static __always_inline bool dynamic_preempt_lazy(void)
1150 {
1151 return IS_ENABLED(CONFIG_PREEMPT_LAZY);
1152 }
1153 #endif
1154
get_lazy_tif_bit(void)1155 static __always_inline int get_lazy_tif_bit(void)
1156 {
1157 if (dynamic_preempt_lazy())
1158 return TIF_NEED_RESCHED_LAZY;
1159
1160 return TIF_NEED_RESCHED;
1161 }
1162
resched_curr_lazy(struct rq * rq)1163 void resched_curr_lazy(struct rq *rq)
1164 {
1165 __resched_curr(rq, get_lazy_tif_bit());
1166 }
1167
resched_cpu(int cpu)1168 void resched_cpu(int cpu)
1169 {
1170 struct rq *rq = cpu_rq(cpu);
1171 unsigned long flags;
1172
1173 raw_spin_rq_lock_irqsave(rq, flags);
1174 if (cpu_online(cpu) || cpu == smp_processor_id())
1175 resched_curr(rq);
1176 raw_spin_rq_unlock_irqrestore(rq, flags);
1177 }
1178
1179 #ifdef CONFIG_NO_HZ_COMMON
1180 /*
1181 * In the semi idle case, use the nearest busy CPU for migrating timers
1182 * from an idle CPU. This is good for power-savings.
1183 *
1184 * We don't do similar optimization for completely idle system, as
1185 * selecting an idle CPU will add more delays to the timers than intended
1186 * (as that CPU's timer base may not be up to date wrt jiffies etc).
1187 */
get_nohz_timer_target(void)1188 int get_nohz_timer_target(void)
1189 {
1190 int i, cpu = smp_processor_id(), default_cpu = -1;
1191 struct sched_domain *sd;
1192 const struct cpumask *hk_mask;
1193
1194 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
1195 if (!idle_cpu(cpu))
1196 return cpu;
1197 default_cpu = cpu;
1198 }
1199
1200 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
1201
1202 guard(rcu)();
1203
1204 for_each_domain(cpu, sd) {
1205 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1206 if (cpu == i)
1207 continue;
1208
1209 if (!idle_cpu(i))
1210 return i;
1211 }
1212 }
1213
1214 if (default_cpu == -1)
1215 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
1216
1217 return default_cpu;
1218 }
1219
1220 /*
1221 * When add_timer_on() enqueues a timer into the timer wheel of an
1222 * idle CPU then this timer might expire before the next timer event
1223 * which is scheduled to wake up that CPU. In case of a completely
1224 * idle system the next event might even be infinite time into the
1225 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1226 * leaves the inner idle loop so the newly added timer is taken into
1227 * account when the CPU goes back to idle and evaluates the timer
1228 * wheel for the next timer event.
1229 */
wake_up_idle_cpu(int cpu)1230 static void wake_up_idle_cpu(int cpu)
1231 {
1232 struct rq *rq = cpu_rq(cpu);
1233
1234 if (cpu == smp_processor_id())
1235 return;
1236
1237 /*
1238 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1239 * part of the idle loop. This forces an exit from the idle loop
1240 * and a round trip to schedule(). Now this could be optimized
1241 * because a simple new idle loop iteration is enough to
1242 * re-evaluate the next tick. Provided some re-ordering of tick
1243 * nohz functions that would need to follow TIF_NR_POLLING
1244 * clearing:
1245 *
1246 * - On most architectures, a simple fetch_or on ti::flags with a
1247 * "0" value would be enough to know if an IPI needs to be sent.
1248 *
1249 * - x86 needs to perform a last need_resched() check between
1250 * monitor and mwait which doesn't take timers into account.
1251 * There a dedicated TIF_TIMER flag would be required to
1252 * fetch_or here and be checked along with TIF_NEED_RESCHED
1253 * before mwait().
1254 *
1255 * However, remote timer enqueue is not such a frequent event
1256 * and testing of the above solutions didn't appear to report
1257 * much benefits.
1258 */
1259 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
1260 smp_send_reschedule(cpu);
1261 else
1262 trace_sched_wake_idle_without_ipi(cpu);
1263 }
1264
wake_up_full_nohz_cpu(int cpu)1265 static bool wake_up_full_nohz_cpu(int cpu)
1266 {
1267 /*
1268 * We just need the target to call irq_exit() and re-evaluate
1269 * the next tick. The nohz full kick at least implies that.
1270 * If needed we can still optimize that later with an
1271 * empty IRQ.
1272 */
1273 if (cpu_is_offline(cpu))
1274 return true; /* Don't try to wake offline CPUs. */
1275 if (tick_nohz_full_cpu(cpu)) {
1276 if (cpu != smp_processor_id() ||
1277 tick_nohz_tick_stopped())
1278 tick_nohz_full_kick_cpu(cpu);
1279 return true;
1280 }
1281
1282 return false;
1283 }
1284
1285 /*
1286 * Wake up the specified CPU. If the CPU is going offline, it is the
1287 * caller's responsibility to deal with the lost wakeup, for example,
1288 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1289 */
wake_up_nohz_cpu(int cpu)1290 void wake_up_nohz_cpu(int cpu)
1291 {
1292 if (!wake_up_full_nohz_cpu(cpu))
1293 wake_up_idle_cpu(cpu);
1294 }
1295
nohz_csd_func(void * info)1296 static void nohz_csd_func(void *info)
1297 {
1298 struct rq *rq = info;
1299 int cpu = cpu_of(rq);
1300 unsigned int flags;
1301
1302 /*
1303 * Release the rq::nohz_csd.
1304 */
1305 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1306 WARN_ON(!(flags & NOHZ_KICK_MASK));
1307
1308 rq->idle_balance = idle_cpu(cpu);
1309 if (rq->idle_balance) {
1310 rq->nohz_idle_balance = flags;
1311 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1312 }
1313 }
1314
1315 #endif /* CONFIG_NO_HZ_COMMON */
1316
1317 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1318 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1319 {
1320 if (rq->nr_running != 1)
1321 return false;
1322
1323 if (p->sched_class != &fair_sched_class)
1324 return false;
1325
1326 if (!task_on_rq_queued(p))
1327 return false;
1328
1329 return true;
1330 }
1331
sched_can_stop_tick(struct rq * rq)1332 bool sched_can_stop_tick(struct rq *rq)
1333 {
1334 int fifo_nr_running;
1335
1336 /* Deadline tasks, even if single, need the tick */
1337 if (rq->dl.dl_nr_running)
1338 return false;
1339
1340 /*
1341 * If there are more than one RR tasks, we need the tick to affect the
1342 * actual RR behaviour.
1343 */
1344 if (rq->rt.rr_nr_running) {
1345 if (rq->rt.rr_nr_running == 1)
1346 return true;
1347 else
1348 return false;
1349 }
1350
1351 /*
1352 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1353 * forced preemption between FIFO tasks.
1354 */
1355 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1356 if (fifo_nr_running)
1357 return true;
1358
1359 /*
1360 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1361 * left. For CFS, if there's more than one we need the tick for
1362 * involuntary preemption. For SCX, ask.
1363 */
1364 if (scx_enabled() && !scx_can_stop_tick(rq))
1365 return false;
1366
1367 if (rq->cfs.h_nr_queued > 1)
1368 return false;
1369
1370 /*
1371 * If there is one task and it has CFS runtime bandwidth constraints
1372 * and it's on the cpu now we don't want to stop the tick.
1373 * This check prevents clearing the bit if a newly enqueued task here is
1374 * dequeued by migrating while the constrained task continues to run.
1375 * E.g. going from 2->1 without going through pick_next_task().
1376 */
1377 if (__need_bw_check(rq, rq->curr)) {
1378 if (cfs_task_bw_constrained(rq->curr))
1379 return false;
1380 }
1381
1382 return true;
1383 }
1384 #endif /* CONFIG_NO_HZ_FULL */
1385
1386 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_FAIR_GROUP_SCHED)
1387 /*
1388 * Iterate task_group tree rooted at *from, calling @down when first entering a
1389 * node and @up when leaving it for the final time.
1390 *
1391 * Caller must hold rcu_lock or sufficient equivalent.
1392 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1393 int walk_tg_tree_from(struct task_group *from,
1394 tg_visitor down, tg_visitor up, void *data)
1395 {
1396 struct task_group *parent, *child;
1397 int ret;
1398
1399 parent = from;
1400
1401 down:
1402 ret = (*down)(parent, data);
1403 if (ret)
1404 goto out;
1405 list_for_each_entry_rcu(child, &parent->children, siblings) {
1406 parent = child;
1407 goto down;
1408
1409 up:
1410 continue;
1411 }
1412 ret = (*up)(parent, data);
1413 if (ret || parent == from)
1414 goto out;
1415
1416 child = parent;
1417 parent = parent->parent;
1418 if (parent)
1419 goto up;
1420 out:
1421 return ret;
1422 }
1423
tg_nop(struct task_group * tg,void * data)1424 int tg_nop(struct task_group *tg, void *data)
1425 {
1426 return 0;
1427 }
1428 #endif
1429
set_load_weight(struct task_struct * p,bool update_load)1430 void set_load_weight(struct task_struct *p, bool update_load)
1431 {
1432 int prio = p->static_prio - MAX_RT_PRIO;
1433 struct load_weight lw;
1434
1435 if (task_has_idle_policy(p)) {
1436 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1437 lw.inv_weight = WMULT_IDLEPRIO;
1438 } else {
1439 lw.weight = scale_load(sched_prio_to_weight[prio]);
1440 lw.inv_weight = sched_prio_to_wmult[prio];
1441 }
1442
1443 /*
1444 * SCHED_OTHER tasks have to update their load when changing their
1445 * weight
1446 */
1447 if (update_load && p->sched_class->reweight_task)
1448 p->sched_class->reweight_task(task_rq(p), p, &lw);
1449 else
1450 p->se.load = lw;
1451 }
1452
1453 #ifdef CONFIG_UCLAMP_TASK
1454 /*
1455 * Serializes updates of utilization clamp values
1456 *
1457 * The (slow-path) user-space triggers utilization clamp value updates which
1458 * can require updates on (fast-path) scheduler's data structures used to
1459 * support enqueue/dequeue operations.
1460 * While the per-CPU rq lock protects fast-path update operations, user-space
1461 * requests are serialized using a mutex to reduce the risk of conflicting
1462 * updates or API abuses.
1463 */
1464 static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
1465
1466 /* Max allowed minimum utilization */
1467 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1468
1469 /* Max allowed maximum utilization */
1470 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1471
1472 /*
1473 * By default RT tasks run at the maximum performance point/capacity of the
1474 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1475 * SCHED_CAPACITY_SCALE.
1476 *
1477 * This knob allows admins to change the default behavior when uclamp is being
1478 * used. In battery powered devices, particularly, running at the maximum
1479 * capacity and frequency will increase energy consumption and shorten the
1480 * battery life.
1481 *
1482 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1483 *
1484 * This knob will not override the system default sched_util_clamp_min defined
1485 * above.
1486 */
1487 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1488
1489 /* All clamps are required to be less or equal than these values */
1490 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1491
1492 /*
1493 * This static key is used to reduce the uclamp overhead in the fast path. It
1494 * primarily disables the call to uclamp_rq_{inc, dec}() in
1495 * enqueue/dequeue_task().
1496 *
1497 * This allows users to continue to enable uclamp in their kernel config with
1498 * minimum uclamp overhead in the fast path.
1499 *
1500 * As soon as userspace modifies any of the uclamp knobs, the static key is
1501 * enabled, since we have an actual users that make use of uclamp
1502 * functionality.
1503 *
1504 * The knobs that would enable this static key are:
1505 *
1506 * * A task modifying its uclamp value with sched_setattr().
1507 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1508 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1509 */
1510 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1511
1512 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1513 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1514 unsigned int clamp_value)
1515 {
1516 /*
1517 * Avoid blocked utilization pushing up the frequency when we go
1518 * idle (which drops the max-clamp) by retaining the last known
1519 * max-clamp.
1520 */
1521 if (clamp_id == UCLAMP_MAX) {
1522 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1523 return clamp_value;
1524 }
1525
1526 return uclamp_none(UCLAMP_MIN);
1527 }
1528
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1529 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1530 unsigned int clamp_value)
1531 {
1532 /* Reset max-clamp retention only on idle exit */
1533 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1534 return;
1535
1536 uclamp_rq_set(rq, clamp_id, clamp_value);
1537 }
1538
1539 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1540 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1541 unsigned int clamp_value)
1542 {
1543 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1544 int bucket_id = UCLAMP_BUCKETS - 1;
1545
1546 /*
1547 * Since both min and max clamps are max aggregated, find the
1548 * top most bucket with tasks in.
1549 */
1550 for ( ; bucket_id >= 0; bucket_id--) {
1551 if (!bucket[bucket_id].tasks)
1552 continue;
1553 return bucket[bucket_id].value;
1554 }
1555
1556 /* No tasks -- default clamp values */
1557 return uclamp_idle_value(rq, clamp_id, clamp_value);
1558 }
1559
__uclamp_update_util_min_rt_default(struct task_struct * p)1560 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1561 {
1562 unsigned int default_util_min;
1563 struct uclamp_se *uc_se;
1564
1565 lockdep_assert_held(&p->pi_lock);
1566
1567 uc_se = &p->uclamp_req[UCLAMP_MIN];
1568
1569 /* Only sync if user didn't override the default */
1570 if (uc_se->user_defined)
1571 return;
1572
1573 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1574 uclamp_se_set(uc_se, default_util_min, false);
1575 }
1576
uclamp_update_util_min_rt_default(struct task_struct * p)1577 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1578 {
1579 if (!rt_task(p))
1580 return;
1581
1582 /* Protect updates to p->uclamp_* */
1583 guard(task_rq_lock)(p);
1584 __uclamp_update_util_min_rt_default(p);
1585 }
1586
1587 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1588 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1589 {
1590 /* Copy by value as we could modify it */
1591 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1592 #ifdef CONFIG_UCLAMP_TASK_GROUP
1593 unsigned int tg_min, tg_max, value;
1594
1595 /*
1596 * Tasks in autogroups or root task group will be
1597 * restricted by system defaults.
1598 */
1599 if (task_group_is_autogroup(task_group(p)))
1600 return uc_req;
1601 if (task_group(p) == &root_task_group)
1602 return uc_req;
1603
1604 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1605 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1606 value = uc_req.value;
1607 value = clamp(value, tg_min, tg_max);
1608 uclamp_se_set(&uc_req, value, false);
1609 #endif
1610
1611 return uc_req;
1612 }
1613
1614 /*
1615 * The effective clamp bucket index of a task depends on, by increasing
1616 * priority:
1617 * - the task specific clamp value, when explicitly requested from userspace
1618 * - the task group effective clamp value, for tasks not either in the root
1619 * group or in an autogroup
1620 * - the system default clamp value, defined by the sysadmin
1621 */
1622 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1623 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1624 {
1625 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1626 struct uclamp_se uc_max = uclamp_default[clamp_id];
1627
1628 /* System default restrictions always apply */
1629 if (unlikely(uc_req.value > uc_max.value))
1630 return uc_max;
1631
1632 return uc_req;
1633 }
1634
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1635 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1636 {
1637 struct uclamp_se uc_eff;
1638
1639 /* Task currently refcounted: use back-annotated (effective) value */
1640 if (p->uclamp[clamp_id].active)
1641 return (unsigned long)p->uclamp[clamp_id].value;
1642
1643 uc_eff = uclamp_eff_get(p, clamp_id);
1644
1645 return (unsigned long)uc_eff.value;
1646 }
1647
1648 /*
1649 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1650 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1651 * updates the rq's clamp value if required.
1652 *
1653 * Tasks can have a task-specific value requested from user-space, track
1654 * within each bucket the maximum value for tasks refcounted in it.
1655 * This "local max aggregation" allows to track the exact "requested" value
1656 * for each bucket when all its RUNNABLE tasks require the same clamp.
1657 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1658 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1659 enum uclamp_id clamp_id)
1660 {
1661 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1662 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1663 struct uclamp_bucket *bucket;
1664
1665 lockdep_assert_rq_held(rq);
1666
1667 /* Update task effective clamp */
1668 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1669
1670 bucket = &uc_rq->bucket[uc_se->bucket_id];
1671 bucket->tasks++;
1672 uc_se->active = true;
1673
1674 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1675
1676 /*
1677 * Local max aggregation: rq buckets always track the max
1678 * "requested" clamp value of its RUNNABLE tasks.
1679 */
1680 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1681 bucket->value = uc_se->value;
1682
1683 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1684 uclamp_rq_set(rq, clamp_id, uc_se->value);
1685 }
1686
1687 /*
1688 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1689 * is released. If this is the last task reference counting the rq's max
1690 * active clamp value, then the rq's clamp value is updated.
1691 *
1692 * Both refcounted tasks and rq's cached clamp values are expected to be
1693 * always valid. If it's detected they are not, as defensive programming,
1694 * enforce the expected state and warn.
1695 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1696 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1697 enum uclamp_id clamp_id)
1698 {
1699 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1700 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1701 struct uclamp_bucket *bucket;
1702 unsigned int bkt_clamp;
1703 unsigned int rq_clamp;
1704
1705 lockdep_assert_rq_held(rq);
1706
1707 /*
1708 * If sched_uclamp_used was enabled after task @p was enqueued,
1709 * we could end up with unbalanced call to uclamp_rq_dec_id().
1710 *
1711 * In this case the uc_se->active flag should be false since no uclamp
1712 * accounting was performed at enqueue time and we can just return
1713 * here.
1714 *
1715 * Need to be careful of the following enqueue/dequeue ordering
1716 * problem too
1717 *
1718 * enqueue(taskA)
1719 * // sched_uclamp_used gets enabled
1720 * enqueue(taskB)
1721 * dequeue(taskA)
1722 * // Must not decrement bucket->tasks here
1723 * dequeue(taskB)
1724 *
1725 * where we could end up with stale data in uc_se and
1726 * bucket[uc_se->bucket_id].
1727 *
1728 * The following check here eliminates the possibility of such race.
1729 */
1730 if (unlikely(!uc_se->active))
1731 return;
1732
1733 bucket = &uc_rq->bucket[uc_se->bucket_id];
1734
1735 WARN_ON_ONCE(!bucket->tasks);
1736 if (likely(bucket->tasks))
1737 bucket->tasks--;
1738
1739 uc_se->active = false;
1740
1741 /*
1742 * Keep "local max aggregation" simple and accept to (possibly)
1743 * overboost some RUNNABLE tasks in the same bucket.
1744 * The rq clamp bucket value is reset to its base value whenever
1745 * there are no more RUNNABLE tasks refcounting it.
1746 */
1747 if (likely(bucket->tasks))
1748 return;
1749
1750 rq_clamp = uclamp_rq_get(rq, clamp_id);
1751 /*
1752 * Defensive programming: this should never happen. If it happens,
1753 * e.g. due to future modification, warn and fix up the expected value.
1754 */
1755 WARN_ON_ONCE(bucket->value > rq_clamp);
1756 if (bucket->value >= rq_clamp) {
1757 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1758 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1759 }
1760 }
1761
uclamp_rq_inc(struct rq * rq,struct task_struct * p,int flags)1762 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1763 {
1764 enum uclamp_id clamp_id;
1765
1766 /*
1767 * Avoid any overhead until uclamp is actually used by the userspace.
1768 *
1769 * The condition is constructed such that a NOP is generated when
1770 * sched_uclamp_used is disabled.
1771 */
1772 if (!uclamp_is_used())
1773 return;
1774
1775 if (unlikely(!p->sched_class->uclamp_enabled))
1776 return;
1777
1778 /* Only inc the delayed task which being woken up. */
1779 if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1780 return;
1781
1782 for_each_clamp_id(clamp_id)
1783 uclamp_rq_inc_id(rq, p, clamp_id);
1784
1785 /* Reset clamp idle holding when there is one RUNNABLE task */
1786 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1787 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1788 }
1789
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1790 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1791 {
1792 enum uclamp_id clamp_id;
1793
1794 /*
1795 * Avoid any overhead until uclamp is actually used by the userspace.
1796 *
1797 * The condition is constructed such that a NOP is generated when
1798 * sched_uclamp_used is disabled.
1799 */
1800 if (!uclamp_is_used())
1801 return;
1802
1803 if (unlikely(!p->sched_class->uclamp_enabled))
1804 return;
1805
1806 if (p->se.sched_delayed)
1807 return;
1808
1809 for_each_clamp_id(clamp_id)
1810 uclamp_rq_dec_id(rq, p, clamp_id);
1811 }
1812
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1813 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1814 enum uclamp_id clamp_id)
1815 {
1816 if (!p->uclamp[clamp_id].active)
1817 return;
1818
1819 uclamp_rq_dec_id(rq, p, clamp_id);
1820 uclamp_rq_inc_id(rq, p, clamp_id);
1821
1822 /*
1823 * Make sure to clear the idle flag if we've transiently reached 0
1824 * active tasks on rq.
1825 */
1826 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1827 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1828 }
1829
1830 static inline void
uclamp_update_active(struct task_struct * p)1831 uclamp_update_active(struct task_struct *p)
1832 {
1833 enum uclamp_id clamp_id;
1834 struct rq_flags rf;
1835 struct rq *rq;
1836
1837 /*
1838 * Lock the task and the rq where the task is (or was) queued.
1839 *
1840 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1841 * price to pay to safely serialize util_{min,max} updates with
1842 * enqueues, dequeues and migration operations.
1843 * This is the same locking schema used by __set_cpus_allowed_ptr().
1844 */
1845 rq = task_rq_lock(p, &rf);
1846
1847 /*
1848 * Setting the clamp bucket is serialized by task_rq_lock().
1849 * If the task is not yet RUNNABLE and its task_struct is not
1850 * affecting a valid clamp bucket, the next time it's enqueued,
1851 * it will already see the updated clamp bucket value.
1852 */
1853 for_each_clamp_id(clamp_id)
1854 uclamp_rq_reinc_id(rq, p, clamp_id);
1855
1856 task_rq_unlock(rq, p, &rf);
1857 }
1858
1859 #ifdef CONFIG_UCLAMP_TASK_GROUP
1860 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1861 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1862 {
1863 struct css_task_iter it;
1864 struct task_struct *p;
1865
1866 css_task_iter_start(css, 0, &it);
1867 while ((p = css_task_iter_next(&it)))
1868 uclamp_update_active(p);
1869 css_task_iter_end(&it);
1870 }
1871
1872 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1873 #endif
1874
1875 #ifdef CONFIG_SYSCTL
1876 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1877 static void uclamp_update_root_tg(void)
1878 {
1879 struct task_group *tg = &root_task_group;
1880
1881 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1882 sysctl_sched_uclamp_util_min, false);
1883 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1884 sysctl_sched_uclamp_util_max, false);
1885
1886 guard(rcu)();
1887 cpu_util_update_eff(&root_task_group.css);
1888 }
1889 #else
uclamp_update_root_tg(void)1890 static void uclamp_update_root_tg(void) { }
1891 #endif
1892
uclamp_sync_util_min_rt_default(void)1893 static void uclamp_sync_util_min_rt_default(void)
1894 {
1895 struct task_struct *g, *p;
1896
1897 /*
1898 * copy_process() sysctl_uclamp
1899 * uclamp_min_rt = X;
1900 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1901 * // link thread smp_mb__after_spinlock()
1902 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1903 * sched_post_fork() for_each_process_thread()
1904 * __uclamp_sync_rt() __uclamp_sync_rt()
1905 *
1906 * Ensures that either sched_post_fork() will observe the new
1907 * uclamp_min_rt or for_each_process_thread() will observe the new
1908 * task.
1909 */
1910 read_lock(&tasklist_lock);
1911 smp_mb__after_spinlock();
1912 read_unlock(&tasklist_lock);
1913
1914 guard(rcu)();
1915 for_each_process_thread(g, p)
1916 uclamp_update_util_min_rt_default(p);
1917 }
1918
sysctl_sched_uclamp_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1919 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1920 void *buffer, size_t *lenp, loff_t *ppos)
1921 {
1922 bool update_root_tg = false;
1923 int old_min, old_max, old_min_rt;
1924 int result;
1925
1926 guard(mutex)(&uclamp_mutex);
1927
1928 old_min = sysctl_sched_uclamp_util_min;
1929 old_max = sysctl_sched_uclamp_util_max;
1930 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1931
1932 result = proc_dointvec(table, write, buffer, lenp, ppos);
1933 if (result)
1934 goto undo;
1935 if (!write)
1936 return 0;
1937
1938 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1939 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1940 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1941
1942 result = -EINVAL;
1943 goto undo;
1944 }
1945
1946 if (old_min != sysctl_sched_uclamp_util_min) {
1947 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1948 sysctl_sched_uclamp_util_min, false);
1949 update_root_tg = true;
1950 }
1951 if (old_max != sysctl_sched_uclamp_util_max) {
1952 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1953 sysctl_sched_uclamp_util_max, false);
1954 update_root_tg = true;
1955 }
1956
1957 if (update_root_tg) {
1958 sched_uclamp_enable();
1959 uclamp_update_root_tg();
1960 }
1961
1962 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1963 sched_uclamp_enable();
1964 uclamp_sync_util_min_rt_default();
1965 }
1966
1967 /*
1968 * We update all RUNNABLE tasks only when task groups are in use.
1969 * Otherwise, keep it simple and do just a lazy update at each next
1970 * task enqueue time.
1971 */
1972 return 0;
1973
1974 undo:
1975 sysctl_sched_uclamp_util_min = old_min;
1976 sysctl_sched_uclamp_util_max = old_max;
1977 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1978 return result;
1979 }
1980 #endif /* CONFIG_SYSCTL */
1981
uclamp_fork(struct task_struct * p)1982 static void uclamp_fork(struct task_struct *p)
1983 {
1984 enum uclamp_id clamp_id;
1985
1986 /*
1987 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1988 * as the task is still at its early fork stages.
1989 */
1990 for_each_clamp_id(clamp_id)
1991 p->uclamp[clamp_id].active = false;
1992
1993 if (likely(!p->sched_reset_on_fork))
1994 return;
1995
1996 for_each_clamp_id(clamp_id) {
1997 uclamp_se_set(&p->uclamp_req[clamp_id],
1998 uclamp_none(clamp_id), false);
1999 }
2000 }
2001
uclamp_post_fork(struct task_struct * p)2002 static void uclamp_post_fork(struct task_struct *p)
2003 {
2004 uclamp_update_util_min_rt_default(p);
2005 }
2006
init_uclamp_rq(struct rq * rq)2007 static void __init init_uclamp_rq(struct rq *rq)
2008 {
2009 enum uclamp_id clamp_id;
2010 struct uclamp_rq *uc_rq = rq->uclamp;
2011
2012 for_each_clamp_id(clamp_id) {
2013 uc_rq[clamp_id] = (struct uclamp_rq) {
2014 .value = uclamp_none(clamp_id)
2015 };
2016 }
2017
2018 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2019 }
2020
init_uclamp(void)2021 static void __init init_uclamp(void)
2022 {
2023 struct uclamp_se uc_max = {};
2024 enum uclamp_id clamp_id;
2025 int cpu;
2026
2027 for_each_possible_cpu(cpu)
2028 init_uclamp_rq(cpu_rq(cpu));
2029
2030 for_each_clamp_id(clamp_id) {
2031 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2032 uclamp_none(clamp_id), false);
2033 }
2034
2035 /* System defaults allow max clamp values for both indexes */
2036 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2037 for_each_clamp_id(clamp_id) {
2038 uclamp_default[clamp_id] = uc_max;
2039 #ifdef CONFIG_UCLAMP_TASK_GROUP
2040 root_task_group.uclamp_req[clamp_id] = uc_max;
2041 root_task_group.uclamp[clamp_id] = uc_max;
2042 #endif
2043 }
2044 }
2045
2046 #else /* !CONFIG_UCLAMP_TASK: */
uclamp_rq_inc(struct rq * rq,struct task_struct * p,int flags)2047 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2048 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_fork(struct task_struct * p)2049 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2050 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2051 static inline void init_uclamp(void) { }
2052 #endif /* !CONFIG_UCLAMP_TASK */
2053
sched_task_on_rq(struct task_struct * p)2054 bool sched_task_on_rq(struct task_struct *p)
2055 {
2056 return task_on_rq_queued(p);
2057 }
2058
get_wchan(struct task_struct * p)2059 unsigned long get_wchan(struct task_struct *p)
2060 {
2061 unsigned long ip = 0;
2062 unsigned int state;
2063
2064 if (!p || p == current)
2065 return 0;
2066
2067 /* Only get wchan if task is blocked and we can keep it that way. */
2068 raw_spin_lock_irq(&p->pi_lock);
2069 state = READ_ONCE(p->__state);
2070 smp_rmb(); /* see try_to_wake_up() */
2071 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2072 ip = __get_wchan(p);
2073 raw_spin_unlock_irq(&p->pi_lock);
2074
2075 return ip;
2076 }
2077
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2078 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2079 {
2080 if (!(flags & ENQUEUE_NOCLOCK))
2081 update_rq_clock(rq);
2082
2083 /*
2084 * Can be before ->enqueue_task() because uclamp considers the
2085 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2086 * in ->enqueue_task().
2087 */
2088 uclamp_rq_inc(rq, p, flags);
2089
2090 p->sched_class->enqueue_task(rq, p, flags);
2091
2092 psi_enqueue(p, flags);
2093
2094 if (!(flags & ENQUEUE_RESTORE))
2095 sched_info_enqueue(rq, p);
2096
2097 if (sched_core_enabled(rq))
2098 sched_core_enqueue(rq, p);
2099 }
2100
2101 /*
2102 * Must only return false when DEQUEUE_SLEEP.
2103 */
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2104 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2105 {
2106 if (sched_core_enabled(rq))
2107 sched_core_dequeue(rq, p, flags);
2108
2109 if (!(flags & DEQUEUE_NOCLOCK))
2110 update_rq_clock(rq);
2111
2112 if (!(flags & DEQUEUE_SAVE))
2113 sched_info_dequeue(rq, p);
2114
2115 psi_dequeue(p, flags);
2116
2117 /*
2118 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2119 * and mark the task ->sched_delayed.
2120 */
2121 uclamp_rq_dec(rq, p);
2122 return p->sched_class->dequeue_task(rq, p, flags);
2123 }
2124
activate_task(struct rq * rq,struct task_struct * p,int flags)2125 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2126 {
2127 if (task_on_rq_migrating(p))
2128 flags |= ENQUEUE_MIGRATED;
2129 if (flags & ENQUEUE_MIGRATED)
2130 sched_mm_cid_migrate_to(rq, p);
2131
2132 enqueue_task(rq, p, flags);
2133
2134 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2135 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2136 }
2137
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2138 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2139 {
2140 WARN_ON_ONCE(flags & DEQUEUE_SLEEP);
2141
2142 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2143 ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2144
2145 /*
2146 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2147 * dequeue_task() and cleared *after* enqueue_task().
2148 */
2149
2150 dequeue_task(rq, p, flags);
2151 }
2152
block_task(struct rq * rq,struct task_struct * p,int flags)2153 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2154 {
2155 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2156 __block_task(rq, p);
2157 }
2158
2159 /**
2160 * task_curr - is this task currently executing on a CPU?
2161 * @p: the task in question.
2162 *
2163 * Return: 1 if the task is currently executing. 0 otherwise.
2164 */
task_curr(const struct task_struct * p)2165 inline int task_curr(const struct task_struct *p)
2166 {
2167 return cpu_curr(task_cpu(p)) == p;
2168 }
2169
2170 /*
2171 * ->switching_to() is called with the pi_lock and rq_lock held and must not
2172 * mess with locking.
2173 */
check_class_changing(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class)2174 void check_class_changing(struct rq *rq, struct task_struct *p,
2175 const struct sched_class *prev_class)
2176 {
2177 if (prev_class != p->sched_class && p->sched_class->switching_to)
2178 p->sched_class->switching_to(rq, p);
2179 }
2180
2181 /*
2182 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2183 * use the balance_callback list if you want balancing.
2184 *
2185 * this means any call to check_class_changed() must be followed by a call to
2186 * balance_callback().
2187 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2188 void check_class_changed(struct rq *rq, struct task_struct *p,
2189 const struct sched_class *prev_class,
2190 int oldprio)
2191 {
2192 if (prev_class != p->sched_class) {
2193 if (prev_class->switched_from)
2194 prev_class->switched_from(rq, p);
2195
2196 p->sched_class->switched_to(rq, p);
2197 } else if (oldprio != p->prio || dl_task(p))
2198 p->sched_class->prio_changed(rq, p, oldprio);
2199 }
2200
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2201 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2202 {
2203 struct task_struct *donor = rq->donor;
2204
2205 if (p->sched_class == donor->sched_class)
2206 donor->sched_class->wakeup_preempt(rq, p, flags);
2207 else if (sched_class_above(p->sched_class, donor->sched_class))
2208 resched_curr(rq);
2209
2210 /*
2211 * A queue event has occurred, and we're going to schedule. In
2212 * this case, we can save a useless back to back clock update.
2213 */
2214 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2215 rq_clock_skip_update(rq);
2216 }
2217
2218 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2219 int __task_state_match(struct task_struct *p, unsigned int state)
2220 {
2221 if (READ_ONCE(p->__state) & state)
2222 return 1;
2223
2224 if (READ_ONCE(p->saved_state) & state)
2225 return -1;
2226
2227 return 0;
2228 }
2229
2230 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2231 int task_state_match(struct task_struct *p, unsigned int state)
2232 {
2233 /*
2234 * Serialize against current_save_and_set_rtlock_wait_state(),
2235 * current_restore_rtlock_saved_state(), and __refrigerator().
2236 */
2237 guard(raw_spinlock_irq)(&p->pi_lock);
2238 return __task_state_match(p, state);
2239 }
2240
2241 /*
2242 * wait_task_inactive - wait for a thread to unschedule.
2243 *
2244 * Wait for the thread to block in any of the states set in @match_state.
2245 * If it changes, i.e. @p might have woken up, then return zero. When we
2246 * succeed in waiting for @p to be off its CPU, we return a positive number
2247 * (its total switch count). If a second call a short while later returns the
2248 * same number, the caller can be sure that @p has remained unscheduled the
2249 * whole time.
2250 *
2251 * The caller must ensure that the task *will* unschedule sometime soon,
2252 * else this function might spin for a *long* time. This function can't
2253 * be called with interrupts off, or it may introduce deadlock with
2254 * smp_call_function() if an IPI is sent by the same process we are
2255 * waiting to become inactive.
2256 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2257 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2258 {
2259 int running, queued, match;
2260 struct rq_flags rf;
2261 unsigned long ncsw;
2262 struct rq *rq;
2263
2264 for (;;) {
2265 /*
2266 * We do the initial early heuristics without holding
2267 * any task-queue locks at all. We'll only try to get
2268 * the runqueue lock when things look like they will
2269 * work out!
2270 */
2271 rq = task_rq(p);
2272
2273 /*
2274 * If the task is actively running on another CPU
2275 * still, just relax and busy-wait without holding
2276 * any locks.
2277 *
2278 * NOTE! Since we don't hold any locks, it's not
2279 * even sure that "rq" stays as the right runqueue!
2280 * But we don't care, since "task_on_cpu()" will
2281 * return false if the runqueue has changed and p
2282 * is actually now running somewhere else!
2283 */
2284 while (task_on_cpu(rq, p)) {
2285 if (!task_state_match(p, match_state))
2286 return 0;
2287 cpu_relax();
2288 }
2289
2290 /*
2291 * Ok, time to look more closely! We need the rq
2292 * lock now, to be *sure*. If we're wrong, we'll
2293 * just go back and repeat.
2294 */
2295 rq = task_rq_lock(p, &rf);
2296 /*
2297 * If task is sched_delayed, force dequeue it, to avoid always
2298 * hitting the tick timeout in the queued case
2299 */
2300 if (p->se.sched_delayed)
2301 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2302 trace_sched_wait_task(p);
2303 running = task_on_cpu(rq, p);
2304 queued = task_on_rq_queued(p);
2305 ncsw = 0;
2306 if ((match = __task_state_match(p, match_state))) {
2307 /*
2308 * When matching on p->saved_state, consider this task
2309 * still queued so it will wait.
2310 */
2311 if (match < 0)
2312 queued = 1;
2313 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2314 }
2315 task_rq_unlock(rq, p, &rf);
2316
2317 /*
2318 * If it changed from the expected state, bail out now.
2319 */
2320 if (unlikely(!ncsw))
2321 break;
2322
2323 /*
2324 * Was it really running after all now that we
2325 * checked with the proper locks actually held?
2326 *
2327 * Oops. Go back and try again..
2328 */
2329 if (unlikely(running)) {
2330 cpu_relax();
2331 continue;
2332 }
2333
2334 /*
2335 * It's not enough that it's not actively running,
2336 * it must be off the runqueue _entirely_, and not
2337 * preempted!
2338 *
2339 * So if it was still runnable (but just not actively
2340 * running right now), it's preempted, and we should
2341 * yield - it could be a while.
2342 */
2343 if (unlikely(queued)) {
2344 ktime_t to = NSEC_PER_SEC / HZ;
2345
2346 set_current_state(TASK_UNINTERRUPTIBLE);
2347 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2348 continue;
2349 }
2350
2351 /*
2352 * Ahh, all good. It wasn't running, and it wasn't
2353 * runnable, which means that it will never become
2354 * running in the future either. We're all done!
2355 */
2356 break;
2357 }
2358
2359 return ncsw;
2360 }
2361
2362 static void
2363 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2364
migrate_disable_switch(struct rq * rq,struct task_struct * p)2365 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2366 {
2367 struct affinity_context ac = {
2368 .new_mask = cpumask_of(rq->cpu),
2369 .flags = SCA_MIGRATE_DISABLE,
2370 };
2371
2372 if (likely(!p->migration_disabled))
2373 return;
2374
2375 if (p->cpus_ptr != &p->cpus_mask)
2376 return;
2377
2378 /*
2379 * Violates locking rules! See comment in __do_set_cpus_allowed().
2380 */
2381 __do_set_cpus_allowed(p, &ac);
2382 }
2383
migrate_disable(void)2384 void migrate_disable(void)
2385 {
2386 struct task_struct *p = current;
2387
2388 if (p->migration_disabled) {
2389 #ifdef CONFIG_DEBUG_PREEMPT
2390 /*
2391 *Warn about overflow half-way through the range.
2392 */
2393 WARN_ON_ONCE((s16)p->migration_disabled < 0);
2394 #endif
2395 p->migration_disabled++;
2396 return;
2397 }
2398
2399 guard(preempt)();
2400 this_rq()->nr_pinned++;
2401 p->migration_disabled = 1;
2402 }
2403 EXPORT_SYMBOL_GPL(migrate_disable);
2404
migrate_enable(void)2405 void migrate_enable(void)
2406 {
2407 struct task_struct *p = current;
2408 struct affinity_context ac = {
2409 .new_mask = &p->cpus_mask,
2410 .flags = SCA_MIGRATE_ENABLE,
2411 };
2412
2413 #ifdef CONFIG_DEBUG_PREEMPT
2414 /*
2415 * Check both overflow from migrate_disable() and superfluous
2416 * migrate_enable().
2417 */
2418 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2419 return;
2420 #endif
2421
2422 if (p->migration_disabled > 1) {
2423 p->migration_disabled--;
2424 return;
2425 }
2426
2427 /*
2428 * Ensure stop_task runs either before or after this, and that
2429 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2430 */
2431 guard(preempt)();
2432 if (p->cpus_ptr != &p->cpus_mask)
2433 __set_cpus_allowed_ptr(p, &ac);
2434 /*
2435 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2436 * regular cpus_mask, otherwise things that race (eg.
2437 * select_fallback_rq) get confused.
2438 */
2439 barrier();
2440 p->migration_disabled = 0;
2441 this_rq()->nr_pinned--;
2442 }
2443 EXPORT_SYMBOL_GPL(migrate_enable);
2444
rq_has_pinned_tasks(struct rq * rq)2445 static inline bool rq_has_pinned_tasks(struct rq *rq)
2446 {
2447 return rq->nr_pinned;
2448 }
2449
2450 /*
2451 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2452 * __set_cpus_allowed_ptr() and select_fallback_rq().
2453 */
is_cpu_allowed(struct task_struct * p,int cpu)2454 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2455 {
2456 /* When not in the task's cpumask, no point in looking further. */
2457 if (!task_allowed_on_cpu(p, cpu))
2458 return false;
2459
2460 /* migrate_disabled() must be allowed to finish. */
2461 if (is_migration_disabled(p))
2462 return cpu_online(cpu);
2463
2464 /* Non kernel threads are not allowed during either online or offline. */
2465 if (!(p->flags & PF_KTHREAD))
2466 return cpu_active(cpu);
2467
2468 /* KTHREAD_IS_PER_CPU is always allowed. */
2469 if (kthread_is_per_cpu(p))
2470 return cpu_online(cpu);
2471
2472 /* Regular kernel threads don't get to stay during offline. */
2473 if (cpu_dying(cpu))
2474 return false;
2475
2476 /* But are allowed during online. */
2477 return cpu_online(cpu);
2478 }
2479
2480 /*
2481 * This is how migration works:
2482 *
2483 * 1) we invoke migration_cpu_stop() on the target CPU using
2484 * stop_one_cpu().
2485 * 2) stopper starts to run (implicitly forcing the migrated thread
2486 * off the CPU)
2487 * 3) it checks whether the migrated task is still in the wrong runqueue.
2488 * 4) if it's in the wrong runqueue then the migration thread removes
2489 * it and puts it into the right queue.
2490 * 5) stopper completes and stop_one_cpu() returns and the migration
2491 * is done.
2492 */
2493
2494 /*
2495 * move_queued_task - move a queued task to new rq.
2496 *
2497 * Returns (locked) new rq. Old rq's lock is released.
2498 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2499 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2500 struct task_struct *p, int new_cpu)
2501 {
2502 lockdep_assert_rq_held(rq);
2503
2504 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2505 set_task_cpu(p, new_cpu);
2506 rq_unlock(rq, rf);
2507
2508 rq = cpu_rq(new_cpu);
2509
2510 rq_lock(rq, rf);
2511 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2512 activate_task(rq, p, 0);
2513 wakeup_preempt(rq, p, 0);
2514
2515 return rq;
2516 }
2517
2518 struct migration_arg {
2519 struct task_struct *task;
2520 int dest_cpu;
2521 struct set_affinity_pending *pending;
2522 };
2523
2524 /*
2525 * @refs: number of wait_for_completion()
2526 * @stop_pending: is @stop_work in use
2527 */
2528 struct set_affinity_pending {
2529 refcount_t refs;
2530 unsigned int stop_pending;
2531 struct completion done;
2532 struct cpu_stop_work stop_work;
2533 struct migration_arg arg;
2534 };
2535
2536 /*
2537 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2538 * this because either it can't run here any more (set_cpus_allowed()
2539 * away from this CPU, or CPU going down), or because we're
2540 * attempting to rebalance this task on exec (sched_exec).
2541 *
2542 * So we race with normal scheduler movements, but that's OK, as long
2543 * as the task is no longer on this CPU.
2544 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2545 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2546 struct task_struct *p, int dest_cpu)
2547 {
2548 /* Affinity changed (again). */
2549 if (!is_cpu_allowed(p, dest_cpu))
2550 return rq;
2551
2552 rq = move_queued_task(rq, rf, p, dest_cpu);
2553
2554 return rq;
2555 }
2556
2557 /*
2558 * migration_cpu_stop - this will be executed by a high-prio stopper thread
2559 * and performs thread migration by bumping thread off CPU then
2560 * 'pushing' onto another runqueue.
2561 */
migration_cpu_stop(void * data)2562 static int migration_cpu_stop(void *data)
2563 {
2564 struct migration_arg *arg = data;
2565 struct set_affinity_pending *pending = arg->pending;
2566 struct task_struct *p = arg->task;
2567 struct rq *rq = this_rq();
2568 bool complete = false;
2569 struct rq_flags rf;
2570
2571 /*
2572 * The original target CPU might have gone down and we might
2573 * be on another CPU but it doesn't matter.
2574 */
2575 local_irq_save(rf.flags);
2576 /*
2577 * We need to explicitly wake pending tasks before running
2578 * __migrate_task() such that we will not miss enforcing cpus_ptr
2579 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2580 */
2581 flush_smp_call_function_queue();
2582
2583 raw_spin_lock(&p->pi_lock);
2584 rq_lock(rq, &rf);
2585
2586 /*
2587 * If we were passed a pending, then ->stop_pending was set, thus
2588 * p->migration_pending must have remained stable.
2589 */
2590 WARN_ON_ONCE(pending && pending != p->migration_pending);
2591
2592 /*
2593 * If task_rq(p) != rq, it cannot be migrated here, because we're
2594 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2595 * we're holding p->pi_lock.
2596 */
2597 if (task_rq(p) == rq) {
2598 if (is_migration_disabled(p))
2599 goto out;
2600
2601 if (pending) {
2602 p->migration_pending = NULL;
2603 complete = true;
2604
2605 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2606 goto out;
2607 }
2608
2609 if (task_on_rq_queued(p)) {
2610 update_rq_clock(rq);
2611 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2612 } else {
2613 p->wake_cpu = arg->dest_cpu;
2614 }
2615
2616 /*
2617 * XXX __migrate_task() can fail, at which point we might end
2618 * up running on a dodgy CPU, AFAICT this can only happen
2619 * during CPU hotplug, at which point we'll get pushed out
2620 * anyway, so it's probably not a big deal.
2621 */
2622
2623 } else if (pending) {
2624 /*
2625 * This happens when we get migrated between migrate_enable()'s
2626 * preempt_enable() and scheduling the stopper task. At that
2627 * point we're a regular task again and not current anymore.
2628 *
2629 * A !PREEMPT kernel has a giant hole here, which makes it far
2630 * more likely.
2631 */
2632
2633 /*
2634 * The task moved before the stopper got to run. We're holding
2635 * ->pi_lock, so the allowed mask is stable - if it got
2636 * somewhere allowed, we're done.
2637 */
2638 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2639 p->migration_pending = NULL;
2640 complete = true;
2641 goto out;
2642 }
2643
2644 /*
2645 * When migrate_enable() hits a rq mis-match we can't reliably
2646 * determine is_migration_disabled() and so have to chase after
2647 * it.
2648 */
2649 WARN_ON_ONCE(!pending->stop_pending);
2650 preempt_disable();
2651 task_rq_unlock(rq, p, &rf);
2652 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2653 &pending->arg, &pending->stop_work);
2654 preempt_enable();
2655 return 0;
2656 }
2657 out:
2658 if (pending)
2659 pending->stop_pending = false;
2660 task_rq_unlock(rq, p, &rf);
2661
2662 if (complete)
2663 complete_all(&pending->done);
2664
2665 return 0;
2666 }
2667
push_cpu_stop(void * arg)2668 int push_cpu_stop(void *arg)
2669 {
2670 struct rq *lowest_rq = NULL, *rq = this_rq();
2671 struct task_struct *p = arg;
2672
2673 raw_spin_lock_irq(&p->pi_lock);
2674 raw_spin_rq_lock(rq);
2675
2676 if (task_rq(p) != rq)
2677 goto out_unlock;
2678
2679 if (is_migration_disabled(p)) {
2680 p->migration_flags |= MDF_PUSH;
2681 goto out_unlock;
2682 }
2683
2684 p->migration_flags &= ~MDF_PUSH;
2685
2686 if (p->sched_class->find_lock_rq)
2687 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2688
2689 if (!lowest_rq)
2690 goto out_unlock;
2691
2692 // XXX validate p is still the highest prio task
2693 if (task_rq(p) == rq) {
2694 move_queued_task_locked(rq, lowest_rq, p);
2695 resched_curr(lowest_rq);
2696 }
2697
2698 double_unlock_balance(rq, lowest_rq);
2699
2700 out_unlock:
2701 rq->push_busy = false;
2702 raw_spin_rq_unlock(rq);
2703 raw_spin_unlock_irq(&p->pi_lock);
2704
2705 put_task_struct(p);
2706 return 0;
2707 }
2708
2709 /*
2710 * sched_class::set_cpus_allowed must do the below, but is not required to
2711 * actually call this function.
2712 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2713 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2714 {
2715 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2716 p->cpus_ptr = ctx->new_mask;
2717 return;
2718 }
2719
2720 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2721 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2722
2723 /*
2724 * Swap in a new user_cpus_ptr if SCA_USER flag set
2725 */
2726 if (ctx->flags & SCA_USER)
2727 swap(p->user_cpus_ptr, ctx->user_mask);
2728 }
2729
2730 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2731 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2732 {
2733 struct rq *rq = task_rq(p);
2734 bool queued, running;
2735
2736 /*
2737 * This here violates the locking rules for affinity, since we're only
2738 * supposed to change these variables while holding both rq->lock and
2739 * p->pi_lock.
2740 *
2741 * HOWEVER, it magically works, because ttwu() is the only code that
2742 * accesses these variables under p->pi_lock and only does so after
2743 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2744 * before finish_task().
2745 *
2746 * XXX do further audits, this smells like something putrid.
2747 */
2748 if (ctx->flags & SCA_MIGRATE_DISABLE)
2749 WARN_ON_ONCE(!p->on_cpu);
2750 else
2751 lockdep_assert_held(&p->pi_lock);
2752
2753 queued = task_on_rq_queued(p);
2754 running = task_current_donor(rq, p);
2755
2756 if (queued) {
2757 /*
2758 * Because __kthread_bind() calls this on blocked tasks without
2759 * holding rq->lock.
2760 */
2761 lockdep_assert_rq_held(rq);
2762 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2763 }
2764 if (running)
2765 put_prev_task(rq, p);
2766
2767 p->sched_class->set_cpus_allowed(p, ctx);
2768 mm_set_cpus_allowed(p->mm, ctx->new_mask);
2769
2770 if (queued)
2771 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2772 if (running)
2773 set_next_task(rq, p);
2774 }
2775
2776 /*
2777 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2778 * affinity (if any) should be destroyed too.
2779 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2780 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2781 {
2782 struct affinity_context ac = {
2783 .new_mask = new_mask,
2784 .user_mask = NULL,
2785 .flags = SCA_USER, /* clear the user requested mask */
2786 };
2787 union cpumask_rcuhead {
2788 cpumask_t cpumask;
2789 struct rcu_head rcu;
2790 };
2791
2792 __do_set_cpus_allowed(p, &ac);
2793
2794 /*
2795 * Because this is called with p->pi_lock held, it is not possible
2796 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2797 * kfree_rcu().
2798 */
2799 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2800 }
2801
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2802 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2803 int node)
2804 {
2805 cpumask_t *user_mask;
2806 unsigned long flags;
2807
2808 /*
2809 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2810 * may differ by now due to racing.
2811 */
2812 dst->user_cpus_ptr = NULL;
2813
2814 /*
2815 * This check is racy and losing the race is a valid situation.
2816 * It is not worth the extra overhead of taking the pi_lock on
2817 * every fork/clone.
2818 */
2819 if (data_race(!src->user_cpus_ptr))
2820 return 0;
2821
2822 user_mask = alloc_user_cpus_ptr(node);
2823 if (!user_mask)
2824 return -ENOMEM;
2825
2826 /*
2827 * Use pi_lock to protect content of user_cpus_ptr
2828 *
2829 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2830 * do_set_cpus_allowed().
2831 */
2832 raw_spin_lock_irqsave(&src->pi_lock, flags);
2833 if (src->user_cpus_ptr) {
2834 swap(dst->user_cpus_ptr, user_mask);
2835 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2836 }
2837 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2838
2839 if (unlikely(user_mask))
2840 kfree(user_mask);
2841
2842 return 0;
2843 }
2844
clear_user_cpus_ptr(struct task_struct * p)2845 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2846 {
2847 struct cpumask *user_mask = NULL;
2848
2849 swap(p->user_cpus_ptr, user_mask);
2850
2851 return user_mask;
2852 }
2853
release_user_cpus_ptr(struct task_struct * p)2854 void release_user_cpus_ptr(struct task_struct *p)
2855 {
2856 kfree(clear_user_cpus_ptr(p));
2857 }
2858
2859 /*
2860 * This function is wildly self concurrent; here be dragons.
2861 *
2862 *
2863 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2864 * designated task is enqueued on an allowed CPU. If that task is currently
2865 * running, we have to kick it out using the CPU stopper.
2866 *
2867 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2868 * Consider:
2869 *
2870 * Initial conditions: P0->cpus_mask = [0, 1]
2871 *
2872 * P0@CPU0 P1
2873 *
2874 * migrate_disable();
2875 * <preempted>
2876 * set_cpus_allowed_ptr(P0, [1]);
2877 *
2878 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2879 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2880 * This means we need the following scheme:
2881 *
2882 * P0@CPU0 P1
2883 *
2884 * migrate_disable();
2885 * <preempted>
2886 * set_cpus_allowed_ptr(P0, [1]);
2887 * <blocks>
2888 * <resumes>
2889 * migrate_enable();
2890 * __set_cpus_allowed_ptr();
2891 * <wakes local stopper>
2892 * `--> <woken on migration completion>
2893 *
2894 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2895 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2896 * task p are serialized by p->pi_lock, which we can leverage: the one that
2897 * should come into effect at the end of the Migrate-Disable region is the last
2898 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2899 * but we still need to properly signal those waiting tasks at the appropriate
2900 * moment.
2901 *
2902 * This is implemented using struct set_affinity_pending. The first
2903 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2904 * setup an instance of that struct and install it on the targeted task_struct.
2905 * Any and all further callers will reuse that instance. Those then wait for
2906 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2907 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2908 *
2909 *
2910 * (1) In the cases covered above. There is one more where the completion is
2911 * signaled within affine_move_task() itself: when a subsequent affinity request
2912 * occurs after the stopper bailed out due to the targeted task still being
2913 * Migrate-Disable. Consider:
2914 *
2915 * Initial conditions: P0->cpus_mask = [0, 1]
2916 *
2917 * CPU0 P1 P2
2918 * <P0>
2919 * migrate_disable();
2920 * <preempted>
2921 * set_cpus_allowed_ptr(P0, [1]);
2922 * <blocks>
2923 * <migration/0>
2924 * migration_cpu_stop()
2925 * is_migration_disabled()
2926 * <bails>
2927 * set_cpus_allowed_ptr(P0, [0, 1]);
2928 * <signal completion>
2929 * <awakes>
2930 *
2931 * Note that the above is safe vs a concurrent migrate_enable(), as any
2932 * pending affinity completion is preceded by an uninstallation of
2933 * p->migration_pending done with p->pi_lock held.
2934 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2935 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2936 int dest_cpu, unsigned int flags)
2937 __releases(rq->lock)
2938 __releases(p->pi_lock)
2939 {
2940 struct set_affinity_pending my_pending = { }, *pending = NULL;
2941 bool stop_pending, complete = false;
2942
2943 /*
2944 * Can the task run on the task's current CPU? If so, we're done
2945 *
2946 * We are also done if the task is the current donor, boosting a lock-
2947 * holding proxy, (and potentially has been migrated outside its
2948 * current or previous affinity mask)
2949 */
2950 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) ||
2951 (task_current_donor(rq, p) && !task_current(rq, p))) {
2952 struct task_struct *push_task = NULL;
2953
2954 if ((flags & SCA_MIGRATE_ENABLE) &&
2955 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2956 rq->push_busy = true;
2957 push_task = get_task_struct(p);
2958 }
2959
2960 /*
2961 * If there are pending waiters, but no pending stop_work,
2962 * then complete now.
2963 */
2964 pending = p->migration_pending;
2965 if (pending && !pending->stop_pending) {
2966 p->migration_pending = NULL;
2967 complete = true;
2968 }
2969
2970 preempt_disable();
2971 task_rq_unlock(rq, p, rf);
2972 if (push_task) {
2973 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2974 p, &rq->push_work);
2975 }
2976 preempt_enable();
2977
2978 if (complete)
2979 complete_all(&pending->done);
2980
2981 return 0;
2982 }
2983
2984 if (!(flags & SCA_MIGRATE_ENABLE)) {
2985 /* serialized by p->pi_lock */
2986 if (!p->migration_pending) {
2987 /* Install the request */
2988 refcount_set(&my_pending.refs, 1);
2989 init_completion(&my_pending.done);
2990 my_pending.arg = (struct migration_arg) {
2991 .task = p,
2992 .dest_cpu = dest_cpu,
2993 .pending = &my_pending,
2994 };
2995
2996 p->migration_pending = &my_pending;
2997 } else {
2998 pending = p->migration_pending;
2999 refcount_inc(&pending->refs);
3000 /*
3001 * Affinity has changed, but we've already installed a
3002 * pending. migration_cpu_stop() *must* see this, else
3003 * we risk a completion of the pending despite having a
3004 * task on a disallowed CPU.
3005 *
3006 * Serialized by p->pi_lock, so this is safe.
3007 */
3008 pending->arg.dest_cpu = dest_cpu;
3009 }
3010 }
3011 pending = p->migration_pending;
3012 /*
3013 * - !MIGRATE_ENABLE:
3014 * we'll have installed a pending if there wasn't one already.
3015 *
3016 * - MIGRATE_ENABLE:
3017 * we're here because the current CPU isn't matching anymore,
3018 * the only way that can happen is because of a concurrent
3019 * set_cpus_allowed_ptr() call, which should then still be
3020 * pending completion.
3021 *
3022 * Either way, we really should have a @pending here.
3023 */
3024 if (WARN_ON_ONCE(!pending)) {
3025 task_rq_unlock(rq, p, rf);
3026 return -EINVAL;
3027 }
3028
3029 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3030 /*
3031 * MIGRATE_ENABLE gets here because 'p == current', but for
3032 * anything else we cannot do is_migration_disabled(), punt
3033 * and have the stopper function handle it all race-free.
3034 */
3035 stop_pending = pending->stop_pending;
3036 if (!stop_pending)
3037 pending->stop_pending = true;
3038
3039 if (flags & SCA_MIGRATE_ENABLE)
3040 p->migration_flags &= ~MDF_PUSH;
3041
3042 preempt_disable();
3043 task_rq_unlock(rq, p, rf);
3044 if (!stop_pending) {
3045 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3046 &pending->arg, &pending->stop_work);
3047 }
3048 preempt_enable();
3049
3050 if (flags & SCA_MIGRATE_ENABLE)
3051 return 0;
3052 } else {
3053
3054 if (!is_migration_disabled(p)) {
3055 if (task_on_rq_queued(p))
3056 rq = move_queued_task(rq, rf, p, dest_cpu);
3057
3058 if (!pending->stop_pending) {
3059 p->migration_pending = NULL;
3060 complete = true;
3061 }
3062 }
3063 task_rq_unlock(rq, p, rf);
3064
3065 if (complete)
3066 complete_all(&pending->done);
3067 }
3068
3069 wait_for_completion(&pending->done);
3070
3071 if (refcount_dec_and_test(&pending->refs))
3072 wake_up_var(&pending->refs); /* No UaF, just an address */
3073
3074 /*
3075 * Block the original owner of &pending until all subsequent callers
3076 * have seen the completion and decremented the refcount
3077 */
3078 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3079
3080 /* ARGH */
3081 WARN_ON_ONCE(my_pending.stop_pending);
3082
3083 return 0;
3084 }
3085
3086 /*
3087 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3088 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3089 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3090 struct affinity_context *ctx,
3091 struct rq *rq,
3092 struct rq_flags *rf)
3093 __releases(rq->lock)
3094 __releases(p->pi_lock)
3095 {
3096 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3097 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3098 bool kthread = p->flags & PF_KTHREAD;
3099 unsigned int dest_cpu;
3100 int ret = 0;
3101
3102 update_rq_clock(rq);
3103
3104 if (kthread || is_migration_disabled(p)) {
3105 /*
3106 * Kernel threads are allowed on online && !active CPUs,
3107 * however, during cpu-hot-unplug, even these might get pushed
3108 * away if not KTHREAD_IS_PER_CPU.
3109 *
3110 * Specifically, migration_disabled() tasks must not fail the
3111 * cpumask_any_and_distribute() pick below, esp. so on
3112 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3113 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3114 */
3115 cpu_valid_mask = cpu_online_mask;
3116 }
3117
3118 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3119 ret = -EINVAL;
3120 goto out;
3121 }
3122
3123 /*
3124 * Must re-check here, to close a race against __kthread_bind(),
3125 * sched_setaffinity() is not guaranteed to observe the flag.
3126 */
3127 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3128 ret = -EINVAL;
3129 goto out;
3130 }
3131
3132 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3133 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3134 if (ctx->flags & SCA_USER)
3135 swap(p->user_cpus_ptr, ctx->user_mask);
3136 goto out;
3137 }
3138
3139 if (WARN_ON_ONCE(p == current &&
3140 is_migration_disabled(p) &&
3141 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3142 ret = -EBUSY;
3143 goto out;
3144 }
3145 }
3146
3147 /*
3148 * Picking a ~random cpu helps in cases where we are changing affinity
3149 * for groups of tasks (ie. cpuset), so that load balancing is not
3150 * immediately required to distribute the tasks within their new mask.
3151 */
3152 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3153 if (dest_cpu >= nr_cpu_ids) {
3154 ret = -EINVAL;
3155 goto out;
3156 }
3157
3158 __do_set_cpus_allowed(p, ctx);
3159
3160 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3161
3162 out:
3163 task_rq_unlock(rq, p, rf);
3164
3165 return ret;
3166 }
3167
3168 /*
3169 * Change a given task's CPU affinity. Migrate the thread to a
3170 * proper CPU and schedule it away if the CPU it's executing on
3171 * is removed from the allowed bitmask.
3172 *
3173 * NOTE: the caller must have a valid reference to the task, the
3174 * task must not exit() & deallocate itself prematurely. The
3175 * call is not atomic; no spinlocks may be held.
3176 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3177 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3178 {
3179 struct rq_flags rf;
3180 struct rq *rq;
3181
3182 rq = task_rq_lock(p, &rf);
3183 /*
3184 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3185 * flags are set.
3186 */
3187 if (p->user_cpus_ptr &&
3188 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3189 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3190 ctx->new_mask = rq->scratch_mask;
3191
3192 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3193 }
3194
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3195 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3196 {
3197 struct affinity_context ac = {
3198 .new_mask = new_mask,
3199 .flags = 0,
3200 };
3201
3202 return __set_cpus_allowed_ptr(p, &ac);
3203 }
3204 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3205
3206 /*
3207 * Change a given task's CPU affinity to the intersection of its current
3208 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3209 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3210 * affinity or use cpu_online_mask instead.
3211 *
3212 * If the resulting mask is empty, leave the affinity unchanged and return
3213 * -EINVAL.
3214 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3215 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3216 struct cpumask *new_mask,
3217 const struct cpumask *subset_mask)
3218 {
3219 struct affinity_context ac = {
3220 .new_mask = new_mask,
3221 .flags = 0,
3222 };
3223 struct rq_flags rf;
3224 struct rq *rq;
3225 int err;
3226
3227 rq = task_rq_lock(p, &rf);
3228
3229 /*
3230 * Forcefully restricting the affinity of a deadline task is
3231 * likely to cause problems, so fail and noisily override the
3232 * mask entirely.
3233 */
3234 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3235 err = -EPERM;
3236 goto err_unlock;
3237 }
3238
3239 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3240 err = -EINVAL;
3241 goto err_unlock;
3242 }
3243
3244 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3245
3246 err_unlock:
3247 task_rq_unlock(rq, p, &rf);
3248 return err;
3249 }
3250
3251 /*
3252 * Restrict the CPU affinity of task @p so that it is a subset of
3253 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3254 * old affinity mask. If the resulting mask is empty, we warn and walk
3255 * up the cpuset hierarchy until we find a suitable mask.
3256 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3257 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3258 {
3259 cpumask_var_t new_mask;
3260 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3261
3262 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3263
3264 /*
3265 * __migrate_task() can fail silently in the face of concurrent
3266 * offlining of the chosen destination CPU, so take the hotplug
3267 * lock to ensure that the migration succeeds.
3268 */
3269 cpus_read_lock();
3270 if (!cpumask_available(new_mask))
3271 goto out_set_mask;
3272
3273 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3274 goto out_free_mask;
3275
3276 /*
3277 * We failed to find a valid subset of the affinity mask for the
3278 * task, so override it based on its cpuset hierarchy.
3279 */
3280 cpuset_cpus_allowed(p, new_mask);
3281 override_mask = new_mask;
3282
3283 out_set_mask:
3284 if (printk_ratelimit()) {
3285 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3286 task_pid_nr(p), p->comm,
3287 cpumask_pr_args(override_mask));
3288 }
3289
3290 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3291 out_free_mask:
3292 cpus_read_unlock();
3293 free_cpumask_var(new_mask);
3294 }
3295
3296 /*
3297 * Restore the affinity of a task @p which was previously restricted by a
3298 * call to force_compatible_cpus_allowed_ptr().
3299 *
3300 * It is the caller's responsibility to serialise this with any calls to
3301 * force_compatible_cpus_allowed_ptr(@p).
3302 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3303 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3304 {
3305 struct affinity_context ac = {
3306 .new_mask = task_user_cpus(p),
3307 .flags = 0,
3308 };
3309 int ret;
3310
3311 /*
3312 * Try to restore the old affinity mask with __sched_setaffinity().
3313 * Cpuset masking will be done there too.
3314 */
3315 ret = __sched_setaffinity(p, &ac);
3316 WARN_ON_ONCE(ret);
3317 }
3318
3319 #ifdef CONFIG_SMP
3320
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3321 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3322 {
3323 unsigned int state = READ_ONCE(p->__state);
3324
3325 /*
3326 * We should never call set_task_cpu() on a blocked task,
3327 * ttwu() will sort out the placement.
3328 */
3329 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3330
3331 /*
3332 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3333 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3334 * time relying on p->on_rq.
3335 */
3336 WARN_ON_ONCE(state == TASK_RUNNING &&
3337 p->sched_class == &fair_sched_class &&
3338 (p->on_rq && !task_on_rq_migrating(p)));
3339
3340 #ifdef CONFIG_LOCKDEP
3341 /*
3342 * The caller should hold either p->pi_lock or rq->lock, when changing
3343 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3344 *
3345 * sched_move_task() holds both and thus holding either pins the cgroup,
3346 * see task_group().
3347 *
3348 * Furthermore, all task_rq users should acquire both locks, see
3349 * task_rq_lock().
3350 */
3351 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3352 lockdep_is_held(__rq_lockp(task_rq(p)))));
3353 #endif
3354 /*
3355 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3356 */
3357 WARN_ON_ONCE(!cpu_online(new_cpu));
3358
3359 WARN_ON_ONCE(is_migration_disabled(p));
3360
3361 trace_sched_migrate_task(p, new_cpu);
3362
3363 if (task_cpu(p) != new_cpu) {
3364 if (p->sched_class->migrate_task_rq)
3365 p->sched_class->migrate_task_rq(p, new_cpu);
3366 p->se.nr_migrations++;
3367 rseq_migrate(p);
3368 sched_mm_cid_migrate_from(p);
3369 perf_event_task_migrate(p);
3370 }
3371
3372 __set_task_cpu(p, new_cpu);
3373 }
3374 #endif /* CONFIG_SMP */
3375
3376 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3377 static void __migrate_swap_task(struct task_struct *p, int cpu)
3378 {
3379 if (task_on_rq_queued(p)) {
3380 struct rq *src_rq, *dst_rq;
3381 struct rq_flags srf, drf;
3382
3383 src_rq = task_rq(p);
3384 dst_rq = cpu_rq(cpu);
3385
3386 rq_pin_lock(src_rq, &srf);
3387 rq_pin_lock(dst_rq, &drf);
3388
3389 move_queued_task_locked(src_rq, dst_rq, p);
3390 wakeup_preempt(dst_rq, p, 0);
3391
3392 rq_unpin_lock(dst_rq, &drf);
3393 rq_unpin_lock(src_rq, &srf);
3394
3395 } else {
3396 /*
3397 * Task isn't running anymore; make it appear like we migrated
3398 * it before it went to sleep. This means on wakeup we make the
3399 * previous CPU our target instead of where it really is.
3400 */
3401 p->wake_cpu = cpu;
3402 }
3403 }
3404
3405 struct migration_swap_arg {
3406 struct task_struct *src_task, *dst_task;
3407 int src_cpu, dst_cpu;
3408 };
3409
migrate_swap_stop(void * data)3410 static int migrate_swap_stop(void *data)
3411 {
3412 struct migration_swap_arg *arg = data;
3413 struct rq *src_rq, *dst_rq;
3414
3415 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3416 return -EAGAIN;
3417
3418 src_rq = cpu_rq(arg->src_cpu);
3419 dst_rq = cpu_rq(arg->dst_cpu);
3420
3421 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3422 guard(double_rq_lock)(src_rq, dst_rq);
3423
3424 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3425 return -EAGAIN;
3426
3427 if (task_cpu(arg->src_task) != arg->src_cpu)
3428 return -EAGAIN;
3429
3430 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3431 return -EAGAIN;
3432
3433 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3434 return -EAGAIN;
3435
3436 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3437 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3438
3439 return 0;
3440 }
3441
3442 /*
3443 * Cross migrate two tasks
3444 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3445 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3446 int target_cpu, int curr_cpu)
3447 {
3448 struct migration_swap_arg arg;
3449 int ret = -EINVAL;
3450
3451 arg = (struct migration_swap_arg){
3452 .src_task = cur,
3453 .src_cpu = curr_cpu,
3454 .dst_task = p,
3455 .dst_cpu = target_cpu,
3456 };
3457
3458 if (arg.src_cpu == arg.dst_cpu)
3459 goto out;
3460
3461 /*
3462 * These three tests are all lockless; this is OK since all of them
3463 * will be re-checked with proper locks held further down the line.
3464 */
3465 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3466 goto out;
3467
3468 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3469 goto out;
3470
3471 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3472 goto out;
3473
3474 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3475 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3476
3477 out:
3478 return ret;
3479 }
3480 #endif /* CONFIG_NUMA_BALANCING */
3481
3482 /***
3483 * kick_process - kick a running thread to enter/exit the kernel
3484 * @p: the to-be-kicked thread
3485 *
3486 * Cause a process which is running on another CPU to enter
3487 * kernel-mode, without any delay. (to get signals handled.)
3488 *
3489 * NOTE: this function doesn't have to take the runqueue lock,
3490 * because all it wants to ensure is that the remote task enters
3491 * the kernel. If the IPI races and the task has been migrated
3492 * to another CPU then no harm is done and the purpose has been
3493 * achieved as well.
3494 */
kick_process(struct task_struct * p)3495 void kick_process(struct task_struct *p)
3496 {
3497 guard(preempt)();
3498 int cpu = task_cpu(p);
3499
3500 if ((cpu != smp_processor_id()) && task_curr(p))
3501 smp_send_reschedule(cpu);
3502 }
3503 EXPORT_SYMBOL_GPL(kick_process);
3504
3505 /*
3506 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3507 *
3508 * A few notes on cpu_active vs cpu_online:
3509 *
3510 * - cpu_active must be a subset of cpu_online
3511 *
3512 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3513 * see __set_cpus_allowed_ptr(). At this point the newly online
3514 * CPU isn't yet part of the sched domains, and balancing will not
3515 * see it.
3516 *
3517 * - on CPU-down we clear cpu_active() to mask the sched domains and
3518 * avoid the load balancer to place new tasks on the to be removed
3519 * CPU. Existing tasks will remain running there and will be taken
3520 * off.
3521 *
3522 * This means that fallback selection must not select !active CPUs.
3523 * And can assume that any active CPU must be online. Conversely
3524 * select_task_rq() below may allow selection of !active CPUs in order
3525 * to satisfy the above rules.
3526 */
select_fallback_rq(int cpu,struct task_struct * p)3527 static int select_fallback_rq(int cpu, struct task_struct *p)
3528 {
3529 int nid = cpu_to_node(cpu);
3530 const struct cpumask *nodemask = NULL;
3531 enum { cpuset, possible, fail } state = cpuset;
3532 int dest_cpu;
3533
3534 /*
3535 * If the node that the CPU is on has been offlined, cpu_to_node()
3536 * will return -1. There is no CPU on the node, and we should
3537 * select the CPU on the other node.
3538 */
3539 if (nid != -1) {
3540 nodemask = cpumask_of_node(nid);
3541
3542 /* Look for allowed, online CPU in same node. */
3543 for_each_cpu(dest_cpu, nodemask) {
3544 if (is_cpu_allowed(p, dest_cpu))
3545 return dest_cpu;
3546 }
3547 }
3548
3549 for (;;) {
3550 /* Any allowed, online CPU? */
3551 for_each_cpu(dest_cpu, p->cpus_ptr) {
3552 if (!is_cpu_allowed(p, dest_cpu))
3553 continue;
3554
3555 goto out;
3556 }
3557
3558 /* No more Mr. Nice Guy. */
3559 switch (state) {
3560 case cpuset:
3561 if (cpuset_cpus_allowed_fallback(p)) {
3562 state = possible;
3563 break;
3564 }
3565 fallthrough;
3566 case possible:
3567 /*
3568 * XXX When called from select_task_rq() we only
3569 * hold p->pi_lock and again violate locking order.
3570 *
3571 * More yuck to audit.
3572 */
3573 do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
3574 state = fail;
3575 break;
3576 case fail:
3577 BUG();
3578 break;
3579 }
3580 }
3581
3582 out:
3583 if (state != cpuset) {
3584 /*
3585 * Don't tell them about moving exiting tasks or
3586 * kernel threads (both mm NULL), since they never
3587 * leave kernel.
3588 */
3589 if (p->mm && printk_ratelimit()) {
3590 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3591 task_pid_nr(p), p->comm, cpu);
3592 }
3593 }
3594
3595 return dest_cpu;
3596 }
3597
3598 /*
3599 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3600 */
3601 static inline
select_task_rq(struct task_struct * p,int cpu,int * wake_flags)3602 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3603 {
3604 lockdep_assert_held(&p->pi_lock);
3605
3606 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3607 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3608 *wake_flags |= WF_RQ_SELECTED;
3609 } else {
3610 cpu = cpumask_any(p->cpus_ptr);
3611 }
3612
3613 /*
3614 * In order not to call set_task_cpu() on a blocking task we need
3615 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3616 * CPU.
3617 *
3618 * Since this is common to all placement strategies, this lives here.
3619 *
3620 * [ this allows ->select_task() to simply return task_cpu(p) and
3621 * not worry about this generic constraint ]
3622 */
3623 if (unlikely(!is_cpu_allowed(p, cpu)))
3624 cpu = select_fallback_rq(task_cpu(p), p);
3625
3626 return cpu;
3627 }
3628
sched_set_stop_task(int cpu,struct task_struct * stop)3629 void sched_set_stop_task(int cpu, struct task_struct *stop)
3630 {
3631 static struct lock_class_key stop_pi_lock;
3632 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3633 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3634
3635 if (stop) {
3636 /*
3637 * Make it appear like a SCHED_FIFO task, its something
3638 * userspace knows about and won't get confused about.
3639 *
3640 * Also, it will make PI more or less work without too
3641 * much confusion -- but then, stop work should not
3642 * rely on PI working anyway.
3643 */
3644 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3645
3646 stop->sched_class = &stop_sched_class;
3647
3648 /*
3649 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3650 * adjust the effective priority of a task. As a result,
3651 * rt_mutex_setprio() can trigger (RT) balancing operations,
3652 * which can then trigger wakeups of the stop thread to push
3653 * around the current task.
3654 *
3655 * The stop task itself will never be part of the PI-chain, it
3656 * never blocks, therefore that ->pi_lock recursion is safe.
3657 * Tell lockdep about this by placing the stop->pi_lock in its
3658 * own class.
3659 */
3660 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3661 }
3662
3663 cpu_rq(cpu)->stop = stop;
3664
3665 if (old_stop) {
3666 /*
3667 * Reset it back to a normal scheduling class so that
3668 * it can die in pieces.
3669 */
3670 old_stop->sched_class = &rt_sched_class;
3671 }
3672 }
3673
3674 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3675 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3676 {
3677 struct rq *rq;
3678
3679 if (!schedstat_enabled())
3680 return;
3681
3682 rq = this_rq();
3683
3684 if (cpu == rq->cpu) {
3685 __schedstat_inc(rq->ttwu_local);
3686 __schedstat_inc(p->stats.nr_wakeups_local);
3687 } else {
3688 struct sched_domain *sd;
3689
3690 __schedstat_inc(p->stats.nr_wakeups_remote);
3691
3692 guard(rcu)();
3693 for_each_domain(rq->cpu, sd) {
3694 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3695 __schedstat_inc(sd->ttwu_wake_remote);
3696 break;
3697 }
3698 }
3699 }
3700
3701 if (wake_flags & WF_MIGRATED)
3702 __schedstat_inc(p->stats.nr_wakeups_migrate);
3703
3704 __schedstat_inc(rq->ttwu_count);
3705 __schedstat_inc(p->stats.nr_wakeups);
3706
3707 if (wake_flags & WF_SYNC)
3708 __schedstat_inc(p->stats.nr_wakeups_sync);
3709 }
3710
3711 /*
3712 * Mark the task runnable.
3713 */
ttwu_do_wakeup(struct task_struct * p)3714 static inline void ttwu_do_wakeup(struct task_struct *p)
3715 {
3716 WRITE_ONCE(p->__state, TASK_RUNNING);
3717 trace_sched_wakeup(p);
3718 }
3719
3720 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3721 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3722 struct rq_flags *rf)
3723 {
3724 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3725
3726 lockdep_assert_rq_held(rq);
3727
3728 if (p->sched_contributes_to_load)
3729 rq->nr_uninterruptible--;
3730
3731 if (wake_flags & WF_RQ_SELECTED)
3732 en_flags |= ENQUEUE_RQ_SELECTED;
3733 if (wake_flags & WF_MIGRATED)
3734 en_flags |= ENQUEUE_MIGRATED;
3735 else
3736 if (p->in_iowait) {
3737 delayacct_blkio_end(p);
3738 atomic_dec(&task_rq(p)->nr_iowait);
3739 }
3740
3741 activate_task(rq, p, en_flags);
3742 wakeup_preempt(rq, p, wake_flags);
3743
3744 ttwu_do_wakeup(p);
3745
3746 if (p->sched_class->task_woken) {
3747 /*
3748 * Our task @p is fully woken up and running; so it's safe to
3749 * drop the rq->lock, hereafter rq is only used for statistics.
3750 */
3751 rq_unpin_lock(rq, rf);
3752 p->sched_class->task_woken(rq, p);
3753 rq_repin_lock(rq, rf);
3754 }
3755
3756 if (rq->idle_stamp) {
3757 u64 delta = rq_clock(rq) - rq->idle_stamp;
3758 u64 max = 2*rq->max_idle_balance_cost;
3759
3760 update_avg(&rq->avg_idle, delta);
3761
3762 if (rq->avg_idle > max)
3763 rq->avg_idle = max;
3764
3765 rq->idle_stamp = 0;
3766 }
3767 }
3768
3769 /*
3770 * Consider @p being inside a wait loop:
3771 *
3772 * for (;;) {
3773 * set_current_state(TASK_UNINTERRUPTIBLE);
3774 *
3775 * if (CONDITION)
3776 * break;
3777 *
3778 * schedule();
3779 * }
3780 * __set_current_state(TASK_RUNNING);
3781 *
3782 * between set_current_state() and schedule(). In this case @p is still
3783 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3784 * an atomic manner.
3785 *
3786 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3787 * then schedule() must still happen and p->state can be changed to
3788 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3789 * need to do a full wakeup with enqueue.
3790 *
3791 * Returns: %true when the wakeup is done,
3792 * %false otherwise.
3793 */
ttwu_runnable(struct task_struct * p,int wake_flags)3794 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3795 {
3796 struct rq_flags rf;
3797 struct rq *rq;
3798 int ret = 0;
3799
3800 rq = __task_rq_lock(p, &rf);
3801 if (task_on_rq_queued(p)) {
3802 update_rq_clock(rq);
3803 if (p->se.sched_delayed)
3804 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
3805 if (!task_on_cpu(rq, p)) {
3806 /*
3807 * When on_rq && !on_cpu the task is preempted, see if
3808 * it should preempt the task that is current now.
3809 */
3810 wakeup_preempt(rq, p, wake_flags);
3811 }
3812 ttwu_do_wakeup(p);
3813 ret = 1;
3814 }
3815 __task_rq_unlock(rq, &rf);
3816
3817 return ret;
3818 }
3819
sched_ttwu_pending(void * arg)3820 void sched_ttwu_pending(void *arg)
3821 {
3822 struct llist_node *llist = arg;
3823 struct rq *rq = this_rq();
3824 struct task_struct *p, *t;
3825 struct rq_flags rf;
3826
3827 if (!llist)
3828 return;
3829
3830 rq_lock_irqsave(rq, &rf);
3831 update_rq_clock(rq);
3832
3833 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3834 if (WARN_ON_ONCE(p->on_cpu))
3835 smp_cond_load_acquire(&p->on_cpu, !VAL);
3836
3837 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3838 set_task_cpu(p, cpu_of(rq));
3839
3840 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3841 }
3842
3843 /*
3844 * Must be after enqueueing at least once task such that
3845 * idle_cpu() does not observe a false-negative -- if it does,
3846 * it is possible for select_idle_siblings() to stack a number
3847 * of tasks on this CPU during that window.
3848 *
3849 * It is OK to clear ttwu_pending when another task pending.
3850 * We will receive IPI after local IRQ enabled and then enqueue it.
3851 * Since now nr_running > 0, idle_cpu() will always get correct result.
3852 */
3853 WRITE_ONCE(rq->ttwu_pending, 0);
3854 rq_unlock_irqrestore(rq, &rf);
3855 }
3856
3857 /*
3858 * Prepare the scene for sending an IPI for a remote smp_call
3859 *
3860 * Returns true if the caller can proceed with sending the IPI.
3861 * Returns false otherwise.
3862 */
call_function_single_prep_ipi(int cpu)3863 bool call_function_single_prep_ipi(int cpu)
3864 {
3865 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3866 trace_sched_wake_idle_without_ipi(cpu);
3867 return false;
3868 }
3869
3870 return true;
3871 }
3872
3873 /*
3874 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3875 * necessary. The wakee CPU on receipt of the IPI will queue the task
3876 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3877 * of the wakeup instead of the waker.
3878 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3879 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3880 {
3881 struct rq *rq = cpu_rq(cpu);
3882
3883 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3884
3885 WRITE_ONCE(rq->ttwu_pending, 1);
3886 #ifdef CONFIG_SMP
3887 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3888 #endif
3889 }
3890
wake_up_if_idle(int cpu)3891 void wake_up_if_idle(int cpu)
3892 {
3893 struct rq *rq = cpu_rq(cpu);
3894
3895 guard(rcu)();
3896 if (is_idle_task(rcu_dereference(rq->curr))) {
3897 guard(rq_lock_irqsave)(rq);
3898 if (is_idle_task(rq->curr))
3899 resched_curr(rq);
3900 }
3901 }
3902
cpus_equal_capacity(int this_cpu,int that_cpu)3903 bool cpus_equal_capacity(int this_cpu, int that_cpu)
3904 {
3905 if (!sched_asym_cpucap_active())
3906 return true;
3907
3908 if (this_cpu == that_cpu)
3909 return true;
3910
3911 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
3912 }
3913
cpus_share_cache(int this_cpu,int that_cpu)3914 bool cpus_share_cache(int this_cpu, int that_cpu)
3915 {
3916 if (this_cpu == that_cpu)
3917 return true;
3918
3919 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3920 }
3921
3922 /*
3923 * Whether CPUs are share cache resources, which means LLC on non-cluster
3924 * machines and LLC tag or L2 on machines with clusters.
3925 */
cpus_share_resources(int this_cpu,int that_cpu)3926 bool cpus_share_resources(int this_cpu, int that_cpu)
3927 {
3928 if (this_cpu == that_cpu)
3929 return true;
3930
3931 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3932 }
3933
ttwu_queue_cond(struct task_struct * p,int cpu)3934 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3935 {
3936 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */
3937 if (!scx_allow_ttwu_queue(p))
3938 return false;
3939
3940 #ifdef CONFIG_SMP
3941 if (p->sched_class == &stop_sched_class)
3942 return false;
3943 #endif
3944
3945 /*
3946 * Do not complicate things with the async wake_list while the CPU is
3947 * in hotplug state.
3948 */
3949 if (!cpu_active(cpu))
3950 return false;
3951
3952 /* Ensure the task will still be allowed to run on the CPU. */
3953 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3954 return false;
3955
3956 /*
3957 * If the CPU does not share cache, then queue the task on the
3958 * remote rqs wakelist to avoid accessing remote data.
3959 */
3960 if (!cpus_share_cache(smp_processor_id(), cpu))
3961 return true;
3962
3963 if (cpu == smp_processor_id())
3964 return false;
3965
3966 /*
3967 * If the wakee cpu is idle, or the task is descheduling and the
3968 * only running task on the CPU, then use the wakelist to offload
3969 * the task activation to the idle (or soon-to-be-idle) CPU as
3970 * the current CPU is likely busy. nr_running is checked to
3971 * avoid unnecessary task stacking.
3972 *
3973 * Note that we can only get here with (wakee) p->on_rq=0,
3974 * p->on_cpu can be whatever, we've done the dequeue, so
3975 * the wakee has been accounted out of ->nr_running.
3976 */
3977 if (!cpu_rq(cpu)->nr_running)
3978 return true;
3979
3980 return false;
3981 }
3982
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3983 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3984 {
3985 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3986 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3987 __ttwu_queue_wakelist(p, cpu, wake_flags);
3988 return true;
3989 }
3990
3991 return false;
3992 }
3993
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3994 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3995 {
3996 struct rq *rq = cpu_rq(cpu);
3997 struct rq_flags rf;
3998
3999 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4000 return;
4001
4002 rq_lock(rq, &rf);
4003 update_rq_clock(rq);
4004 ttwu_do_activate(rq, p, wake_flags, &rf);
4005 rq_unlock(rq, &rf);
4006 }
4007
4008 /*
4009 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4010 *
4011 * The caller holds p::pi_lock if p != current or has preemption
4012 * disabled when p == current.
4013 *
4014 * The rules of saved_state:
4015 *
4016 * The related locking code always holds p::pi_lock when updating
4017 * p::saved_state, which means the code is fully serialized in both cases.
4018 *
4019 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4020 * No other bits set. This allows to distinguish all wakeup scenarios.
4021 *
4022 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4023 * allows us to prevent early wakeup of tasks before they can be run on
4024 * asymmetric ISA architectures (eg ARMv9).
4025 */
4026 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4027 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4028 {
4029 int match;
4030
4031 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4032 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4033 state != TASK_RTLOCK_WAIT);
4034 }
4035
4036 *success = !!(match = __task_state_match(p, state));
4037
4038 /*
4039 * Saved state preserves the task state across blocking on
4040 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4041 * set p::saved_state to TASK_RUNNING, but do not wake the task
4042 * because it waits for a lock wakeup or __thaw_task(). Also
4043 * indicate success because from the regular waker's point of
4044 * view this has succeeded.
4045 *
4046 * After acquiring the lock the task will restore p::__state
4047 * from p::saved_state which ensures that the regular
4048 * wakeup is not lost. The restore will also set
4049 * p::saved_state to TASK_RUNNING so any further tests will
4050 * not result in false positives vs. @success
4051 */
4052 if (match < 0)
4053 p->saved_state = TASK_RUNNING;
4054
4055 return match > 0;
4056 }
4057
4058 /*
4059 * Notes on Program-Order guarantees on SMP systems.
4060 *
4061 * MIGRATION
4062 *
4063 * The basic program-order guarantee on SMP systems is that when a task [t]
4064 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4065 * execution on its new CPU [c1].
4066 *
4067 * For migration (of runnable tasks) this is provided by the following means:
4068 *
4069 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4070 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4071 * rq(c1)->lock (if not at the same time, then in that order).
4072 * C) LOCK of the rq(c1)->lock scheduling in task
4073 *
4074 * Release/acquire chaining guarantees that B happens after A and C after B.
4075 * Note: the CPU doing B need not be c0 or c1
4076 *
4077 * Example:
4078 *
4079 * CPU0 CPU1 CPU2
4080 *
4081 * LOCK rq(0)->lock
4082 * sched-out X
4083 * sched-in Y
4084 * UNLOCK rq(0)->lock
4085 *
4086 * LOCK rq(0)->lock // orders against CPU0
4087 * dequeue X
4088 * UNLOCK rq(0)->lock
4089 *
4090 * LOCK rq(1)->lock
4091 * enqueue X
4092 * UNLOCK rq(1)->lock
4093 *
4094 * LOCK rq(1)->lock // orders against CPU2
4095 * sched-out Z
4096 * sched-in X
4097 * UNLOCK rq(1)->lock
4098 *
4099 *
4100 * BLOCKING -- aka. SLEEP + WAKEUP
4101 *
4102 * For blocking we (obviously) need to provide the same guarantee as for
4103 * migration. However the means are completely different as there is no lock
4104 * chain to provide order. Instead we do:
4105 *
4106 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4107 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4108 *
4109 * Example:
4110 *
4111 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4112 *
4113 * LOCK rq(0)->lock LOCK X->pi_lock
4114 * dequeue X
4115 * sched-out X
4116 * smp_store_release(X->on_cpu, 0);
4117 *
4118 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4119 * X->state = WAKING
4120 * set_task_cpu(X,2)
4121 *
4122 * LOCK rq(2)->lock
4123 * enqueue X
4124 * X->state = RUNNING
4125 * UNLOCK rq(2)->lock
4126 *
4127 * LOCK rq(2)->lock // orders against CPU1
4128 * sched-out Z
4129 * sched-in X
4130 * UNLOCK rq(2)->lock
4131 *
4132 * UNLOCK X->pi_lock
4133 * UNLOCK rq(0)->lock
4134 *
4135 *
4136 * However, for wakeups there is a second guarantee we must provide, namely we
4137 * must ensure that CONDITION=1 done by the caller can not be reordered with
4138 * accesses to the task state; see try_to_wake_up() and set_current_state().
4139 */
4140
4141 /**
4142 * try_to_wake_up - wake up a thread
4143 * @p: the thread to be awakened
4144 * @state: the mask of task states that can be woken
4145 * @wake_flags: wake modifier flags (WF_*)
4146 *
4147 * Conceptually does:
4148 *
4149 * If (@state & @p->state) @p->state = TASK_RUNNING.
4150 *
4151 * If the task was not queued/runnable, also place it back on a runqueue.
4152 *
4153 * This function is atomic against schedule() which would dequeue the task.
4154 *
4155 * It issues a full memory barrier before accessing @p->state, see the comment
4156 * with set_current_state().
4157 *
4158 * Uses p->pi_lock to serialize against concurrent wake-ups.
4159 *
4160 * Relies on p->pi_lock stabilizing:
4161 * - p->sched_class
4162 * - p->cpus_ptr
4163 * - p->sched_task_group
4164 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4165 *
4166 * Tries really hard to only take one task_rq(p)->lock for performance.
4167 * Takes rq->lock in:
4168 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4169 * - ttwu_queue() -- new rq, for enqueue of the task;
4170 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4171 *
4172 * As a consequence we race really badly with just about everything. See the
4173 * many memory barriers and their comments for details.
4174 *
4175 * Return: %true if @p->state changes (an actual wakeup was done),
4176 * %false otherwise.
4177 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4178 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4179 {
4180 guard(preempt)();
4181 int cpu, success = 0;
4182
4183 wake_flags |= WF_TTWU;
4184
4185 if (p == current) {
4186 /*
4187 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4188 * == smp_processor_id()'. Together this means we can special
4189 * case the whole 'p->on_rq && ttwu_runnable()' case below
4190 * without taking any locks.
4191 *
4192 * Specifically, given current runs ttwu() we must be before
4193 * schedule()'s block_task(), as such this must not observe
4194 * sched_delayed.
4195 *
4196 * In particular:
4197 * - we rely on Program-Order guarantees for all the ordering,
4198 * - we're serialized against set_special_state() by virtue of
4199 * it disabling IRQs (this allows not taking ->pi_lock).
4200 */
4201 WARN_ON_ONCE(p->se.sched_delayed);
4202 if (!ttwu_state_match(p, state, &success))
4203 goto out;
4204
4205 trace_sched_waking(p);
4206 ttwu_do_wakeup(p);
4207 goto out;
4208 }
4209
4210 /*
4211 * If we are going to wake up a thread waiting for CONDITION we
4212 * need to ensure that CONDITION=1 done by the caller can not be
4213 * reordered with p->state check below. This pairs with smp_store_mb()
4214 * in set_current_state() that the waiting thread does.
4215 */
4216 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4217 smp_mb__after_spinlock();
4218 if (!ttwu_state_match(p, state, &success))
4219 break;
4220
4221 trace_sched_waking(p);
4222
4223 /*
4224 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4225 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4226 * in smp_cond_load_acquire() below.
4227 *
4228 * sched_ttwu_pending() try_to_wake_up()
4229 * STORE p->on_rq = 1 LOAD p->state
4230 * UNLOCK rq->lock
4231 *
4232 * __schedule() (switch to task 'p')
4233 * LOCK rq->lock smp_rmb();
4234 * smp_mb__after_spinlock();
4235 * UNLOCK rq->lock
4236 *
4237 * [task p]
4238 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4239 *
4240 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4241 * __schedule(). See the comment for smp_mb__after_spinlock().
4242 *
4243 * A similar smp_rmb() lives in __task_needs_rq_lock().
4244 */
4245 smp_rmb();
4246 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4247 break;
4248
4249 /*
4250 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4251 * possible to, falsely, observe p->on_cpu == 0.
4252 *
4253 * One must be running (->on_cpu == 1) in order to remove oneself
4254 * from the runqueue.
4255 *
4256 * __schedule() (switch to task 'p') try_to_wake_up()
4257 * STORE p->on_cpu = 1 LOAD p->on_rq
4258 * UNLOCK rq->lock
4259 *
4260 * __schedule() (put 'p' to sleep)
4261 * LOCK rq->lock smp_rmb();
4262 * smp_mb__after_spinlock();
4263 * STORE p->on_rq = 0 LOAD p->on_cpu
4264 *
4265 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4266 * __schedule(). See the comment for smp_mb__after_spinlock().
4267 *
4268 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4269 * schedule()'s deactivate_task() has 'happened' and p will no longer
4270 * care about it's own p->state. See the comment in __schedule().
4271 */
4272 smp_acquire__after_ctrl_dep();
4273
4274 /*
4275 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4276 * == 0), which means we need to do an enqueue, change p->state to
4277 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4278 * enqueue, such as ttwu_queue_wakelist().
4279 */
4280 WRITE_ONCE(p->__state, TASK_WAKING);
4281
4282 /*
4283 * If the owning (remote) CPU is still in the middle of schedule() with
4284 * this task as prev, considering queueing p on the remote CPUs wake_list
4285 * which potentially sends an IPI instead of spinning on p->on_cpu to
4286 * let the waker make forward progress. This is safe because IRQs are
4287 * disabled and the IPI will deliver after on_cpu is cleared.
4288 *
4289 * Ensure we load task_cpu(p) after p->on_cpu:
4290 *
4291 * set_task_cpu(p, cpu);
4292 * STORE p->cpu = @cpu
4293 * __schedule() (switch to task 'p')
4294 * LOCK rq->lock
4295 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4296 * STORE p->on_cpu = 1 LOAD p->cpu
4297 *
4298 * to ensure we observe the correct CPU on which the task is currently
4299 * scheduling.
4300 */
4301 if (smp_load_acquire(&p->on_cpu) &&
4302 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4303 break;
4304
4305 /*
4306 * If the owning (remote) CPU is still in the middle of schedule() with
4307 * this task as prev, wait until it's done referencing the task.
4308 *
4309 * Pairs with the smp_store_release() in finish_task().
4310 *
4311 * This ensures that tasks getting woken will be fully ordered against
4312 * their previous state and preserve Program Order.
4313 */
4314 smp_cond_load_acquire(&p->on_cpu, !VAL);
4315
4316 cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4317 if (task_cpu(p) != cpu) {
4318 if (p->in_iowait) {
4319 delayacct_blkio_end(p);
4320 atomic_dec(&task_rq(p)->nr_iowait);
4321 }
4322
4323 wake_flags |= WF_MIGRATED;
4324 psi_ttwu_dequeue(p);
4325 set_task_cpu(p, cpu);
4326 }
4327
4328 ttwu_queue(p, cpu, wake_flags);
4329 }
4330 out:
4331 if (success)
4332 ttwu_stat(p, task_cpu(p), wake_flags);
4333
4334 return success;
4335 }
4336
__task_needs_rq_lock(struct task_struct * p)4337 static bool __task_needs_rq_lock(struct task_struct *p)
4338 {
4339 unsigned int state = READ_ONCE(p->__state);
4340
4341 /*
4342 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4343 * the task is blocked. Make sure to check @state since ttwu() can drop
4344 * locks at the end, see ttwu_queue_wakelist().
4345 */
4346 if (state == TASK_RUNNING || state == TASK_WAKING)
4347 return true;
4348
4349 /*
4350 * Ensure we load p->on_rq after p->__state, otherwise it would be
4351 * possible to, falsely, observe p->on_rq == 0.
4352 *
4353 * See try_to_wake_up() for a longer comment.
4354 */
4355 smp_rmb();
4356 if (p->on_rq)
4357 return true;
4358
4359 /*
4360 * Ensure the task has finished __schedule() and will not be referenced
4361 * anymore. Again, see try_to_wake_up() for a longer comment.
4362 */
4363 smp_rmb();
4364 smp_cond_load_acquire(&p->on_cpu, !VAL);
4365
4366 return false;
4367 }
4368
4369 /**
4370 * task_call_func - Invoke a function on task in fixed state
4371 * @p: Process for which the function is to be invoked, can be @current.
4372 * @func: Function to invoke.
4373 * @arg: Argument to function.
4374 *
4375 * Fix the task in it's current state by avoiding wakeups and or rq operations
4376 * and call @func(@arg) on it. This function can use task_is_runnable() and
4377 * task_curr() to work out what the state is, if required. Given that @func
4378 * can be invoked with a runqueue lock held, it had better be quite
4379 * lightweight.
4380 *
4381 * Returns:
4382 * Whatever @func returns
4383 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4384 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4385 {
4386 struct rq *rq = NULL;
4387 struct rq_flags rf;
4388 int ret;
4389
4390 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4391
4392 if (__task_needs_rq_lock(p))
4393 rq = __task_rq_lock(p, &rf);
4394
4395 /*
4396 * At this point the task is pinned; either:
4397 * - blocked and we're holding off wakeups (pi->lock)
4398 * - woken, and we're holding off enqueue (rq->lock)
4399 * - queued, and we're holding off schedule (rq->lock)
4400 * - running, and we're holding off de-schedule (rq->lock)
4401 *
4402 * The called function (@func) can use: task_curr(), p->on_rq and
4403 * p->__state to differentiate between these states.
4404 */
4405 ret = func(p, arg);
4406
4407 if (rq)
4408 rq_unlock(rq, &rf);
4409
4410 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4411 return ret;
4412 }
4413
4414 /**
4415 * cpu_curr_snapshot - Return a snapshot of the currently running task
4416 * @cpu: The CPU on which to snapshot the task.
4417 *
4418 * Returns the task_struct pointer of the task "currently" running on
4419 * the specified CPU.
4420 *
4421 * If the specified CPU was offline, the return value is whatever it
4422 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4423 * task, but there is no guarantee. Callers wishing a useful return
4424 * value must take some action to ensure that the specified CPU remains
4425 * online throughout.
4426 *
4427 * This function executes full memory barriers before and after fetching
4428 * the pointer, which permits the caller to confine this function's fetch
4429 * with respect to the caller's accesses to other shared variables.
4430 */
cpu_curr_snapshot(int cpu)4431 struct task_struct *cpu_curr_snapshot(int cpu)
4432 {
4433 struct rq *rq = cpu_rq(cpu);
4434 struct task_struct *t;
4435 struct rq_flags rf;
4436
4437 rq_lock_irqsave(rq, &rf);
4438 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4439 t = rcu_dereference(cpu_curr(cpu));
4440 rq_unlock_irqrestore(rq, &rf);
4441 smp_mb(); /* Pairing determined by caller's synchronization design. */
4442
4443 return t;
4444 }
4445
4446 /**
4447 * wake_up_process - Wake up a specific process
4448 * @p: The process to be woken up.
4449 *
4450 * Attempt to wake up the nominated process and move it to the set of runnable
4451 * processes.
4452 *
4453 * Return: 1 if the process was woken up, 0 if it was already running.
4454 *
4455 * This function executes a full memory barrier before accessing the task state.
4456 */
wake_up_process(struct task_struct * p)4457 int wake_up_process(struct task_struct *p)
4458 {
4459 return try_to_wake_up(p, TASK_NORMAL, 0);
4460 }
4461 EXPORT_SYMBOL(wake_up_process);
4462
wake_up_state(struct task_struct * p,unsigned int state)4463 int wake_up_state(struct task_struct *p, unsigned int state)
4464 {
4465 return try_to_wake_up(p, state, 0);
4466 }
4467
4468 /*
4469 * Perform scheduler related setup for a newly forked process p.
4470 * p is forked by current.
4471 *
4472 * __sched_fork() is basic setup which is also used by sched_init() to
4473 * initialize the boot CPU's idle task.
4474 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4475 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4476 {
4477 p->on_rq = 0;
4478
4479 p->se.on_rq = 0;
4480 p->se.exec_start = 0;
4481 p->se.sum_exec_runtime = 0;
4482 p->se.prev_sum_exec_runtime = 0;
4483 p->se.nr_migrations = 0;
4484 p->se.vruntime = 0;
4485 p->se.vlag = 0;
4486 INIT_LIST_HEAD(&p->se.group_node);
4487
4488 /* A delayed task cannot be in clone(). */
4489 WARN_ON_ONCE(p->se.sched_delayed);
4490
4491 #ifdef CONFIG_FAIR_GROUP_SCHED
4492 p->se.cfs_rq = NULL;
4493 #endif
4494
4495 #ifdef CONFIG_SCHEDSTATS
4496 /* Even if schedstat is disabled, there should not be garbage */
4497 memset(&p->stats, 0, sizeof(p->stats));
4498 #endif
4499
4500 init_dl_entity(&p->dl);
4501
4502 INIT_LIST_HEAD(&p->rt.run_list);
4503 p->rt.timeout = 0;
4504 p->rt.time_slice = sched_rr_timeslice;
4505 p->rt.on_rq = 0;
4506 p->rt.on_list = 0;
4507
4508 #ifdef CONFIG_SCHED_CLASS_EXT
4509 init_scx_entity(&p->scx);
4510 #endif
4511
4512 #ifdef CONFIG_PREEMPT_NOTIFIERS
4513 INIT_HLIST_HEAD(&p->preempt_notifiers);
4514 #endif
4515
4516 #ifdef CONFIG_COMPACTION
4517 p->capture_control = NULL;
4518 #endif
4519 init_numa_balancing(clone_flags, p);
4520 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4521 p->migration_pending = NULL;
4522 init_sched_mm_cid(p);
4523 }
4524
4525 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4526
4527 #ifdef CONFIG_NUMA_BALANCING
4528
4529 int sysctl_numa_balancing_mode;
4530
__set_numabalancing_state(bool enabled)4531 static void __set_numabalancing_state(bool enabled)
4532 {
4533 if (enabled)
4534 static_branch_enable(&sched_numa_balancing);
4535 else
4536 static_branch_disable(&sched_numa_balancing);
4537 }
4538
set_numabalancing_state(bool enabled)4539 void set_numabalancing_state(bool enabled)
4540 {
4541 if (enabled)
4542 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4543 else
4544 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4545 __set_numabalancing_state(enabled);
4546 }
4547
4548 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4549 static void reset_memory_tiering(void)
4550 {
4551 struct pglist_data *pgdat;
4552
4553 for_each_online_pgdat(pgdat) {
4554 pgdat->nbp_threshold = 0;
4555 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4556 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4557 }
4558 }
4559
sysctl_numa_balancing(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4560 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
4561 void *buffer, size_t *lenp, loff_t *ppos)
4562 {
4563 struct ctl_table t;
4564 int err;
4565 int state = sysctl_numa_balancing_mode;
4566
4567 if (write && !capable(CAP_SYS_ADMIN))
4568 return -EPERM;
4569
4570 t = *table;
4571 t.data = &state;
4572 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4573 if (err < 0)
4574 return err;
4575 if (write) {
4576 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4577 (state & NUMA_BALANCING_MEMORY_TIERING))
4578 reset_memory_tiering();
4579 sysctl_numa_balancing_mode = state;
4580 __set_numabalancing_state(state);
4581 }
4582 return err;
4583 }
4584 #endif /* CONFIG_PROC_SYSCTL */
4585 #endif /* CONFIG_NUMA_BALANCING */
4586
4587 #ifdef CONFIG_SCHEDSTATS
4588
4589 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4590
set_schedstats(bool enabled)4591 static void set_schedstats(bool enabled)
4592 {
4593 if (enabled)
4594 static_branch_enable(&sched_schedstats);
4595 else
4596 static_branch_disable(&sched_schedstats);
4597 }
4598
force_schedstat_enabled(void)4599 void force_schedstat_enabled(void)
4600 {
4601 if (!schedstat_enabled()) {
4602 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4603 static_branch_enable(&sched_schedstats);
4604 }
4605 }
4606
setup_schedstats(char * str)4607 static int __init setup_schedstats(char *str)
4608 {
4609 int ret = 0;
4610 if (!str)
4611 goto out;
4612
4613 if (!strcmp(str, "enable")) {
4614 set_schedstats(true);
4615 ret = 1;
4616 } else if (!strcmp(str, "disable")) {
4617 set_schedstats(false);
4618 ret = 1;
4619 }
4620 out:
4621 if (!ret)
4622 pr_warn("Unable to parse schedstats=\n");
4623
4624 return ret;
4625 }
4626 __setup("schedstats=", setup_schedstats);
4627
4628 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4629 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
4630 size_t *lenp, loff_t *ppos)
4631 {
4632 struct ctl_table t;
4633 int err;
4634 int state = static_branch_likely(&sched_schedstats);
4635
4636 if (write && !capable(CAP_SYS_ADMIN))
4637 return -EPERM;
4638
4639 t = *table;
4640 t.data = &state;
4641 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4642 if (err < 0)
4643 return err;
4644 if (write)
4645 set_schedstats(state);
4646 return err;
4647 }
4648 #endif /* CONFIG_PROC_SYSCTL */
4649 #endif /* CONFIG_SCHEDSTATS */
4650
4651 #ifdef CONFIG_SYSCTL
4652 static const struct ctl_table sched_core_sysctls[] = {
4653 #ifdef CONFIG_SCHEDSTATS
4654 {
4655 .procname = "sched_schedstats",
4656 .data = NULL,
4657 .maxlen = sizeof(unsigned int),
4658 .mode = 0644,
4659 .proc_handler = sysctl_schedstats,
4660 .extra1 = SYSCTL_ZERO,
4661 .extra2 = SYSCTL_ONE,
4662 },
4663 #endif /* CONFIG_SCHEDSTATS */
4664 #ifdef CONFIG_UCLAMP_TASK
4665 {
4666 .procname = "sched_util_clamp_min",
4667 .data = &sysctl_sched_uclamp_util_min,
4668 .maxlen = sizeof(unsigned int),
4669 .mode = 0644,
4670 .proc_handler = sysctl_sched_uclamp_handler,
4671 },
4672 {
4673 .procname = "sched_util_clamp_max",
4674 .data = &sysctl_sched_uclamp_util_max,
4675 .maxlen = sizeof(unsigned int),
4676 .mode = 0644,
4677 .proc_handler = sysctl_sched_uclamp_handler,
4678 },
4679 {
4680 .procname = "sched_util_clamp_min_rt_default",
4681 .data = &sysctl_sched_uclamp_util_min_rt_default,
4682 .maxlen = sizeof(unsigned int),
4683 .mode = 0644,
4684 .proc_handler = sysctl_sched_uclamp_handler,
4685 },
4686 #endif /* CONFIG_UCLAMP_TASK */
4687 #ifdef CONFIG_NUMA_BALANCING
4688 {
4689 .procname = "numa_balancing",
4690 .data = NULL, /* filled in by handler */
4691 .maxlen = sizeof(unsigned int),
4692 .mode = 0644,
4693 .proc_handler = sysctl_numa_balancing,
4694 .extra1 = SYSCTL_ZERO,
4695 .extra2 = SYSCTL_FOUR,
4696 },
4697 #endif /* CONFIG_NUMA_BALANCING */
4698 };
sched_core_sysctl_init(void)4699 static int __init sched_core_sysctl_init(void)
4700 {
4701 register_sysctl_init("kernel", sched_core_sysctls);
4702 return 0;
4703 }
4704 late_initcall(sched_core_sysctl_init);
4705 #endif /* CONFIG_SYSCTL */
4706
4707 /*
4708 * fork()/clone()-time setup:
4709 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4710 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4711 {
4712 __sched_fork(clone_flags, p);
4713 /*
4714 * We mark the process as NEW here. This guarantees that
4715 * nobody will actually run it, and a signal or other external
4716 * event cannot wake it up and insert it on the runqueue either.
4717 */
4718 p->__state = TASK_NEW;
4719
4720 /*
4721 * Make sure we do not leak PI boosting priority to the child.
4722 */
4723 p->prio = current->normal_prio;
4724
4725 uclamp_fork(p);
4726
4727 /*
4728 * Revert to default priority/policy on fork if requested.
4729 */
4730 if (unlikely(p->sched_reset_on_fork)) {
4731 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4732 p->policy = SCHED_NORMAL;
4733 p->static_prio = NICE_TO_PRIO(0);
4734 p->rt_priority = 0;
4735 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4736 p->static_prio = NICE_TO_PRIO(0);
4737
4738 p->prio = p->normal_prio = p->static_prio;
4739 set_load_weight(p, false);
4740 p->se.custom_slice = 0;
4741 p->se.slice = sysctl_sched_base_slice;
4742
4743 /*
4744 * We don't need the reset flag anymore after the fork. It has
4745 * fulfilled its duty:
4746 */
4747 p->sched_reset_on_fork = 0;
4748 }
4749
4750 if (dl_prio(p->prio))
4751 return -EAGAIN;
4752
4753 scx_pre_fork(p);
4754
4755 if (rt_prio(p->prio)) {
4756 p->sched_class = &rt_sched_class;
4757 #ifdef CONFIG_SCHED_CLASS_EXT
4758 } else if (task_should_scx(p->policy)) {
4759 p->sched_class = &ext_sched_class;
4760 #endif
4761 } else {
4762 p->sched_class = &fair_sched_class;
4763 }
4764
4765 init_entity_runnable_average(&p->se);
4766
4767
4768 #ifdef CONFIG_SCHED_INFO
4769 if (likely(sched_info_on()))
4770 memset(&p->sched_info, 0, sizeof(p->sched_info));
4771 #endif
4772 p->on_cpu = 0;
4773 init_task_preempt_count(p);
4774 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4775 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4776
4777 return 0;
4778 }
4779
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4780 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4781 {
4782 unsigned long flags;
4783
4784 /*
4785 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4786 * required yet, but lockdep gets upset if rules are violated.
4787 */
4788 raw_spin_lock_irqsave(&p->pi_lock, flags);
4789 #ifdef CONFIG_CGROUP_SCHED
4790 if (1) {
4791 struct task_group *tg;
4792 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4793 struct task_group, css);
4794 tg = autogroup_task_group(p, tg);
4795 p->sched_task_group = tg;
4796 }
4797 #endif
4798 rseq_migrate(p);
4799 /*
4800 * We're setting the CPU for the first time, we don't migrate,
4801 * so use __set_task_cpu().
4802 */
4803 __set_task_cpu(p, smp_processor_id());
4804 if (p->sched_class->task_fork)
4805 p->sched_class->task_fork(p);
4806 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4807
4808 return scx_fork(p);
4809 }
4810
sched_cancel_fork(struct task_struct * p)4811 void sched_cancel_fork(struct task_struct *p)
4812 {
4813 scx_cancel_fork(p);
4814 }
4815
sched_post_fork(struct task_struct * p)4816 void sched_post_fork(struct task_struct *p)
4817 {
4818 uclamp_post_fork(p);
4819 scx_post_fork(p);
4820 }
4821
to_ratio(u64 period,u64 runtime)4822 unsigned long to_ratio(u64 period, u64 runtime)
4823 {
4824 if (runtime == RUNTIME_INF)
4825 return BW_UNIT;
4826
4827 /*
4828 * Doing this here saves a lot of checks in all
4829 * the calling paths, and returning zero seems
4830 * safe for them anyway.
4831 */
4832 if (period == 0)
4833 return 0;
4834
4835 return div64_u64(runtime << BW_SHIFT, period);
4836 }
4837
4838 /*
4839 * wake_up_new_task - wake up a newly created task for the first time.
4840 *
4841 * This function will do some initial scheduler statistics housekeeping
4842 * that must be done for every newly created context, then puts the task
4843 * on the runqueue and wakes it.
4844 */
wake_up_new_task(struct task_struct * p)4845 void wake_up_new_task(struct task_struct *p)
4846 {
4847 struct rq_flags rf;
4848 struct rq *rq;
4849 int wake_flags = WF_FORK;
4850
4851 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4852 WRITE_ONCE(p->__state, TASK_RUNNING);
4853 /*
4854 * Fork balancing, do it here and not earlier because:
4855 * - cpus_ptr can change in the fork path
4856 * - any previously selected CPU might disappear through hotplug
4857 *
4858 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4859 * as we're not fully set-up yet.
4860 */
4861 p->recent_used_cpu = task_cpu(p);
4862 rseq_migrate(p);
4863 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
4864 rq = __task_rq_lock(p, &rf);
4865 update_rq_clock(rq);
4866 post_init_entity_util_avg(p);
4867
4868 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
4869 trace_sched_wakeup_new(p);
4870 wakeup_preempt(rq, p, wake_flags);
4871 if (p->sched_class->task_woken) {
4872 /*
4873 * Nothing relies on rq->lock after this, so it's fine to
4874 * drop it.
4875 */
4876 rq_unpin_lock(rq, &rf);
4877 p->sched_class->task_woken(rq, p);
4878 rq_repin_lock(rq, &rf);
4879 }
4880 task_rq_unlock(rq, p, &rf);
4881 }
4882
4883 #ifdef CONFIG_PREEMPT_NOTIFIERS
4884
4885 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4886
preempt_notifier_inc(void)4887 void preempt_notifier_inc(void)
4888 {
4889 static_branch_inc(&preempt_notifier_key);
4890 }
4891 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4892
preempt_notifier_dec(void)4893 void preempt_notifier_dec(void)
4894 {
4895 static_branch_dec(&preempt_notifier_key);
4896 }
4897 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4898
4899 /**
4900 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4901 * @notifier: notifier struct to register
4902 */
preempt_notifier_register(struct preempt_notifier * notifier)4903 void preempt_notifier_register(struct preempt_notifier *notifier)
4904 {
4905 if (!static_branch_unlikely(&preempt_notifier_key))
4906 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4907
4908 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4909 }
4910 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4911
4912 /**
4913 * preempt_notifier_unregister - no longer interested in preemption notifications
4914 * @notifier: notifier struct to unregister
4915 *
4916 * This is *not* safe to call from within a preemption notifier.
4917 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4918 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4919 {
4920 hlist_del(¬ifier->link);
4921 }
4922 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4923
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4924 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4925 {
4926 struct preempt_notifier *notifier;
4927
4928 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4929 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4930 }
4931
fire_sched_in_preempt_notifiers(struct task_struct * curr)4932 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4933 {
4934 if (static_branch_unlikely(&preempt_notifier_key))
4935 __fire_sched_in_preempt_notifiers(curr);
4936 }
4937
4938 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4939 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4940 struct task_struct *next)
4941 {
4942 struct preempt_notifier *notifier;
4943
4944 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4945 notifier->ops->sched_out(notifier, next);
4946 }
4947
4948 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4949 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4950 struct task_struct *next)
4951 {
4952 if (static_branch_unlikely(&preempt_notifier_key))
4953 __fire_sched_out_preempt_notifiers(curr, next);
4954 }
4955
4956 #else /* !CONFIG_PREEMPT_NOTIFIERS: */
4957
fire_sched_in_preempt_notifiers(struct task_struct * curr)4958 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4959 {
4960 }
4961
4962 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4963 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4964 struct task_struct *next)
4965 {
4966 }
4967
4968 #endif /* !CONFIG_PREEMPT_NOTIFIERS */
4969
prepare_task(struct task_struct * next)4970 static inline void prepare_task(struct task_struct *next)
4971 {
4972 /*
4973 * Claim the task as running, we do this before switching to it
4974 * such that any running task will have this set.
4975 *
4976 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4977 * its ordering comment.
4978 */
4979 WRITE_ONCE(next->on_cpu, 1);
4980 }
4981
finish_task(struct task_struct * prev)4982 static inline void finish_task(struct task_struct *prev)
4983 {
4984 /*
4985 * This must be the very last reference to @prev from this CPU. After
4986 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4987 * must ensure this doesn't happen until the switch is completely
4988 * finished.
4989 *
4990 * In particular, the load of prev->state in finish_task_switch() must
4991 * happen before this.
4992 *
4993 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4994 */
4995 smp_store_release(&prev->on_cpu, 0);
4996 }
4997
do_balance_callbacks(struct rq * rq,struct balance_callback * head)4998 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4999 {
5000 void (*func)(struct rq *rq);
5001 struct balance_callback *next;
5002
5003 lockdep_assert_rq_held(rq);
5004
5005 while (head) {
5006 func = (void (*)(struct rq *))head->func;
5007 next = head->next;
5008 head->next = NULL;
5009 head = next;
5010
5011 func(rq);
5012 }
5013 }
5014
5015 static void balance_push(struct rq *rq);
5016
5017 /*
5018 * balance_push_callback is a right abuse of the callback interface and plays
5019 * by significantly different rules.
5020 *
5021 * Where the normal balance_callback's purpose is to be ran in the same context
5022 * that queued it (only later, when it's safe to drop rq->lock again),
5023 * balance_push_callback is specifically targeted at __schedule().
5024 *
5025 * This abuse is tolerated because it places all the unlikely/odd cases behind
5026 * a single test, namely: rq->balance_callback == NULL.
5027 */
5028 struct balance_callback balance_push_callback = {
5029 .next = NULL,
5030 .func = balance_push,
5031 };
5032
5033 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5034 __splice_balance_callbacks(struct rq *rq, bool split)
5035 {
5036 struct balance_callback *head = rq->balance_callback;
5037
5038 if (likely(!head))
5039 return NULL;
5040
5041 lockdep_assert_rq_held(rq);
5042 /*
5043 * Must not take balance_push_callback off the list when
5044 * splice_balance_callbacks() and balance_callbacks() are not
5045 * in the same rq->lock section.
5046 *
5047 * In that case it would be possible for __schedule() to interleave
5048 * and observe the list empty.
5049 */
5050 if (split && head == &balance_push_callback)
5051 head = NULL;
5052 else
5053 rq->balance_callback = NULL;
5054
5055 return head;
5056 }
5057
splice_balance_callbacks(struct rq * rq)5058 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5059 {
5060 return __splice_balance_callbacks(rq, true);
5061 }
5062
__balance_callbacks(struct rq * rq)5063 static void __balance_callbacks(struct rq *rq)
5064 {
5065 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5066 }
5067
balance_callbacks(struct rq * rq,struct balance_callback * head)5068 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5069 {
5070 unsigned long flags;
5071
5072 if (unlikely(head)) {
5073 raw_spin_rq_lock_irqsave(rq, flags);
5074 do_balance_callbacks(rq, head);
5075 raw_spin_rq_unlock_irqrestore(rq, flags);
5076 }
5077 }
5078
5079 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5080 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5081 {
5082 /*
5083 * Since the runqueue lock will be released by the next
5084 * task (which is an invalid locking op but in the case
5085 * of the scheduler it's an obvious special-case), so we
5086 * do an early lockdep release here:
5087 */
5088 rq_unpin_lock(rq, rf);
5089 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5090 #ifdef CONFIG_DEBUG_SPINLOCK
5091 /* this is a valid case when another task releases the spinlock */
5092 rq_lockp(rq)->owner = next;
5093 #endif
5094 }
5095
finish_lock_switch(struct rq * rq)5096 static inline void finish_lock_switch(struct rq *rq)
5097 {
5098 /*
5099 * If we are tracking spinlock dependencies then we have to
5100 * fix up the runqueue lock - which gets 'carried over' from
5101 * prev into current:
5102 */
5103 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5104 __balance_callbacks(rq);
5105 raw_spin_rq_unlock_irq(rq);
5106 }
5107
5108 /*
5109 * NOP if the arch has not defined these:
5110 */
5111
5112 #ifndef prepare_arch_switch
5113 # define prepare_arch_switch(next) do { } while (0)
5114 #endif
5115
5116 #ifndef finish_arch_post_lock_switch
5117 # define finish_arch_post_lock_switch() do { } while (0)
5118 #endif
5119
kmap_local_sched_out(void)5120 static inline void kmap_local_sched_out(void)
5121 {
5122 #ifdef CONFIG_KMAP_LOCAL
5123 if (unlikely(current->kmap_ctrl.idx))
5124 __kmap_local_sched_out();
5125 #endif
5126 }
5127
kmap_local_sched_in(void)5128 static inline void kmap_local_sched_in(void)
5129 {
5130 #ifdef CONFIG_KMAP_LOCAL
5131 if (unlikely(current->kmap_ctrl.idx))
5132 __kmap_local_sched_in();
5133 #endif
5134 }
5135
5136 /**
5137 * prepare_task_switch - prepare to switch tasks
5138 * @rq: the runqueue preparing to switch
5139 * @prev: the current task that is being switched out
5140 * @next: the task we are going to switch to.
5141 *
5142 * This is called with the rq lock held and interrupts off. It must
5143 * be paired with a subsequent finish_task_switch after the context
5144 * switch.
5145 *
5146 * prepare_task_switch sets up locking and calls architecture specific
5147 * hooks.
5148 */
5149 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5150 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5151 struct task_struct *next)
5152 {
5153 kcov_prepare_switch(prev);
5154 sched_info_switch(rq, prev, next);
5155 perf_event_task_sched_out(prev, next);
5156 rseq_preempt(prev);
5157 fire_sched_out_preempt_notifiers(prev, next);
5158 kmap_local_sched_out();
5159 prepare_task(next);
5160 prepare_arch_switch(next);
5161 }
5162
5163 /**
5164 * finish_task_switch - clean up after a task-switch
5165 * @prev: the thread we just switched away from.
5166 *
5167 * finish_task_switch must be called after the context switch, paired
5168 * with a prepare_task_switch call before the context switch.
5169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5170 * and do any other architecture-specific cleanup actions.
5171 *
5172 * Note that we may have delayed dropping an mm in context_switch(). If
5173 * so, we finish that here outside of the runqueue lock. (Doing it
5174 * with the lock held can cause deadlocks; see schedule() for
5175 * details.)
5176 *
5177 * The context switch have flipped the stack from under us and restored the
5178 * local variables which were saved when this task called schedule() in the
5179 * past. 'prev == current' is still correct but we need to recalculate this_rq
5180 * because prev may have moved to another CPU.
5181 */
finish_task_switch(struct task_struct * prev)5182 static struct rq *finish_task_switch(struct task_struct *prev)
5183 __releases(rq->lock)
5184 {
5185 struct rq *rq = this_rq();
5186 struct mm_struct *mm = rq->prev_mm;
5187 unsigned int prev_state;
5188
5189 /*
5190 * The previous task will have left us with a preempt_count of 2
5191 * because it left us after:
5192 *
5193 * schedule()
5194 * preempt_disable(); // 1
5195 * __schedule()
5196 * raw_spin_lock_irq(&rq->lock) // 2
5197 *
5198 * Also, see FORK_PREEMPT_COUNT.
5199 */
5200 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5201 "corrupted preempt_count: %s/%d/0x%x\n",
5202 current->comm, current->pid, preempt_count()))
5203 preempt_count_set(FORK_PREEMPT_COUNT);
5204
5205 rq->prev_mm = NULL;
5206
5207 /*
5208 * A task struct has one reference for the use as "current".
5209 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5210 * schedule one last time. The schedule call will never return, and
5211 * the scheduled task must drop that reference.
5212 *
5213 * We must observe prev->state before clearing prev->on_cpu (in
5214 * finish_task), otherwise a concurrent wakeup can get prev
5215 * running on another CPU and we could rave with its RUNNING -> DEAD
5216 * transition, resulting in a double drop.
5217 */
5218 prev_state = READ_ONCE(prev->__state);
5219 vtime_task_switch(prev);
5220 perf_event_task_sched_in(prev, current);
5221 finish_task(prev);
5222 tick_nohz_task_switch();
5223 finish_lock_switch(rq);
5224 finish_arch_post_lock_switch();
5225 kcov_finish_switch(current);
5226 /*
5227 * kmap_local_sched_out() is invoked with rq::lock held and
5228 * interrupts disabled. There is no requirement for that, but the
5229 * sched out code does not have an interrupt enabled section.
5230 * Restoring the maps on sched in does not require interrupts being
5231 * disabled either.
5232 */
5233 kmap_local_sched_in();
5234
5235 fire_sched_in_preempt_notifiers(current);
5236 /*
5237 * When switching through a kernel thread, the loop in
5238 * membarrier_{private,global}_expedited() may have observed that
5239 * kernel thread and not issued an IPI. It is therefore possible to
5240 * schedule between user->kernel->user threads without passing though
5241 * switch_mm(). Membarrier requires a barrier after storing to
5242 * rq->curr, before returning to userspace, so provide them here:
5243 *
5244 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5245 * provided by mmdrop_lazy_tlb(),
5246 * - a sync_core for SYNC_CORE.
5247 */
5248 if (mm) {
5249 membarrier_mm_sync_core_before_usermode(mm);
5250 mmdrop_lazy_tlb_sched(mm);
5251 }
5252
5253 if (unlikely(prev_state == TASK_DEAD)) {
5254 if (prev->sched_class->task_dead)
5255 prev->sched_class->task_dead(prev);
5256
5257 /* Task is done with its stack. */
5258 put_task_stack(prev);
5259
5260 put_task_struct_rcu_user(prev);
5261 }
5262
5263 return rq;
5264 }
5265
5266 /**
5267 * schedule_tail - first thing a freshly forked thread must call.
5268 * @prev: the thread we just switched away from.
5269 */
schedule_tail(struct task_struct * prev)5270 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5271 __releases(rq->lock)
5272 {
5273 /*
5274 * New tasks start with FORK_PREEMPT_COUNT, see there and
5275 * finish_task_switch() for details.
5276 *
5277 * finish_task_switch() will drop rq->lock() and lower preempt_count
5278 * and the preempt_enable() will end up enabling preemption (on
5279 * PREEMPT_COUNT kernels).
5280 */
5281
5282 finish_task_switch(prev);
5283 /*
5284 * This is a special case: the newly created task has just
5285 * switched the context for the first time. It is returning from
5286 * schedule for the first time in this path.
5287 */
5288 trace_sched_exit_tp(true);
5289 preempt_enable();
5290
5291 if (current->set_child_tid)
5292 put_user(task_pid_vnr(current), current->set_child_tid);
5293
5294 calculate_sigpending();
5295 }
5296
5297 /*
5298 * context_switch - switch to the new MM and the new thread's register state.
5299 */
5300 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5301 context_switch(struct rq *rq, struct task_struct *prev,
5302 struct task_struct *next, struct rq_flags *rf)
5303 {
5304 prepare_task_switch(rq, prev, next);
5305
5306 /*
5307 * For paravirt, this is coupled with an exit in switch_to to
5308 * combine the page table reload and the switch backend into
5309 * one hypercall.
5310 */
5311 arch_start_context_switch(prev);
5312
5313 /*
5314 * kernel -> kernel lazy + transfer active
5315 * user -> kernel lazy + mmgrab_lazy_tlb() active
5316 *
5317 * kernel -> user switch + mmdrop_lazy_tlb() active
5318 * user -> user switch
5319 *
5320 * switch_mm_cid() needs to be updated if the barriers provided
5321 * by context_switch() are modified.
5322 */
5323 if (!next->mm) { // to kernel
5324 enter_lazy_tlb(prev->active_mm, next);
5325
5326 next->active_mm = prev->active_mm;
5327 if (prev->mm) // from user
5328 mmgrab_lazy_tlb(prev->active_mm);
5329 else
5330 prev->active_mm = NULL;
5331 } else { // to user
5332 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5333 /*
5334 * sys_membarrier() requires an smp_mb() between setting
5335 * rq->curr / membarrier_switch_mm() and returning to userspace.
5336 *
5337 * The below provides this either through switch_mm(), or in
5338 * case 'prev->active_mm == next->mm' through
5339 * finish_task_switch()'s mmdrop().
5340 */
5341 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5342 lru_gen_use_mm(next->mm);
5343
5344 if (!prev->mm) { // from kernel
5345 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5346 rq->prev_mm = prev->active_mm;
5347 prev->active_mm = NULL;
5348 }
5349 }
5350
5351 /* switch_mm_cid() requires the memory barriers above. */
5352 switch_mm_cid(rq, prev, next);
5353
5354 prepare_lock_switch(rq, next, rf);
5355
5356 /* Here we just switch the register state and the stack. */
5357 switch_to(prev, next, prev);
5358 barrier();
5359
5360 return finish_task_switch(prev);
5361 }
5362
5363 /*
5364 * nr_running and nr_context_switches:
5365 *
5366 * externally visible scheduler statistics: current number of runnable
5367 * threads, total number of context switches performed since bootup.
5368 */
nr_running(void)5369 unsigned int nr_running(void)
5370 {
5371 unsigned int i, sum = 0;
5372
5373 for_each_online_cpu(i)
5374 sum += cpu_rq(i)->nr_running;
5375
5376 return sum;
5377 }
5378
5379 /*
5380 * Check if only the current task is running on the CPU.
5381 *
5382 * Caution: this function does not check that the caller has disabled
5383 * preemption, thus the result might have a time-of-check-to-time-of-use
5384 * race. The caller is responsible to use it correctly, for example:
5385 *
5386 * - from a non-preemptible section (of course)
5387 *
5388 * - from a thread that is bound to a single CPU
5389 *
5390 * - in a loop with very short iterations (e.g. a polling loop)
5391 */
single_task_running(void)5392 bool single_task_running(void)
5393 {
5394 return raw_rq()->nr_running == 1;
5395 }
5396 EXPORT_SYMBOL(single_task_running);
5397
nr_context_switches_cpu(int cpu)5398 unsigned long long nr_context_switches_cpu(int cpu)
5399 {
5400 return cpu_rq(cpu)->nr_switches;
5401 }
5402
nr_context_switches(void)5403 unsigned long long nr_context_switches(void)
5404 {
5405 int i;
5406 unsigned long long sum = 0;
5407
5408 for_each_possible_cpu(i)
5409 sum += cpu_rq(i)->nr_switches;
5410
5411 return sum;
5412 }
5413
5414 /*
5415 * Consumers of these two interfaces, like for example the cpuidle menu
5416 * governor, are using nonsensical data. Preferring shallow idle state selection
5417 * for a CPU that has IO-wait which might not even end up running the task when
5418 * it does become runnable.
5419 */
5420
nr_iowait_cpu(int cpu)5421 unsigned int nr_iowait_cpu(int cpu)
5422 {
5423 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5424 }
5425
5426 /*
5427 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5428 *
5429 * The idea behind IO-wait account is to account the idle time that we could
5430 * have spend running if it were not for IO. That is, if we were to improve the
5431 * storage performance, we'd have a proportional reduction in IO-wait time.
5432 *
5433 * This all works nicely on UP, where, when a task blocks on IO, we account
5434 * idle time as IO-wait, because if the storage were faster, it could've been
5435 * running and we'd not be idle.
5436 *
5437 * This has been extended to SMP, by doing the same for each CPU. This however
5438 * is broken.
5439 *
5440 * Imagine for instance the case where two tasks block on one CPU, only the one
5441 * CPU will have IO-wait accounted, while the other has regular idle. Even
5442 * though, if the storage were faster, both could've ran at the same time,
5443 * utilising both CPUs.
5444 *
5445 * This means, that when looking globally, the current IO-wait accounting on
5446 * SMP is a lower bound, by reason of under accounting.
5447 *
5448 * Worse, since the numbers are provided per CPU, they are sometimes
5449 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5450 * associated with any one particular CPU, it can wake to another CPU than it
5451 * blocked on. This means the per CPU IO-wait number is meaningless.
5452 *
5453 * Task CPU affinities can make all that even more 'interesting'.
5454 */
5455
nr_iowait(void)5456 unsigned int nr_iowait(void)
5457 {
5458 unsigned int i, sum = 0;
5459
5460 for_each_possible_cpu(i)
5461 sum += nr_iowait_cpu(i);
5462
5463 return sum;
5464 }
5465
5466 /*
5467 * sched_exec - execve() is a valuable balancing opportunity, because at
5468 * this point the task has the smallest effective memory and cache footprint.
5469 */
sched_exec(void)5470 void sched_exec(void)
5471 {
5472 struct task_struct *p = current;
5473 struct migration_arg arg;
5474 int dest_cpu;
5475
5476 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5477 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5478 if (dest_cpu == smp_processor_id())
5479 return;
5480
5481 if (unlikely(!cpu_active(dest_cpu)))
5482 return;
5483
5484 arg = (struct migration_arg){ p, dest_cpu };
5485 }
5486 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5487 }
5488
5489 DEFINE_PER_CPU(struct kernel_stat, kstat);
5490 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5491
5492 EXPORT_PER_CPU_SYMBOL(kstat);
5493 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5494
5495 /*
5496 * The function fair_sched_class.update_curr accesses the struct curr
5497 * and its field curr->exec_start; when called from task_sched_runtime(),
5498 * we observe a high rate of cache misses in practice.
5499 * Prefetching this data results in improved performance.
5500 */
prefetch_curr_exec_start(struct task_struct * p)5501 static inline void prefetch_curr_exec_start(struct task_struct *p)
5502 {
5503 #ifdef CONFIG_FAIR_GROUP_SCHED
5504 struct sched_entity *curr = p->se.cfs_rq->curr;
5505 #else
5506 struct sched_entity *curr = task_rq(p)->cfs.curr;
5507 #endif
5508 prefetch(curr);
5509 prefetch(&curr->exec_start);
5510 }
5511
5512 /*
5513 * Return accounted runtime for the task.
5514 * In case the task is currently running, return the runtime plus current's
5515 * pending runtime that have not been accounted yet.
5516 */
task_sched_runtime(struct task_struct * p)5517 unsigned long long task_sched_runtime(struct task_struct *p)
5518 {
5519 struct rq_flags rf;
5520 struct rq *rq;
5521 u64 ns;
5522
5523 #ifdef CONFIG_64BIT
5524 /*
5525 * 64-bit doesn't need locks to atomically read a 64-bit value.
5526 * So we have a optimization chance when the task's delta_exec is 0.
5527 * Reading ->on_cpu is racy, but this is OK.
5528 *
5529 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5530 * If we race with it entering CPU, unaccounted time is 0. This is
5531 * indistinguishable from the read occurring a few cycles earlier.
5532 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5533 * been accounted, so we're correct here as well.
5534 */
5535 if (!p->on_cpu || !task_on_rq_queued(p))
5536 return p->se.sum_exec_runtime;
5537 #endif
5538
5539 rq = task_rq_lock(p, &rf);
5540 /*
5541 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5542 * project cycles that may never be accounted to this
5543 * thread, breaking clock_gettime().
5544 */
5545 if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
5546 prefetch_curr_exec_start(p);
5547 update_rq_clock(rq);
5548 p->sched_class->update_curr(rq);
5549 }
5550 ns = p->se.sum_exec_runtime;
5551 task_rq_unlock(rq, p, &rf);
5552
5553 return ns;
5554 }
5555
cpu_resched_latency(struct rq * rq)5556 static u64 cpu_resched_latency(struct rq *rq)
5557 {
5558 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5559 u64 resched_latency, now = rq_clock(rq);
5560 static bool warned_once;
5561
5562 if (sysctl_resched_latency_warn_once && warned_once)
5563 return 0;
5564
5565 if (!need_resched() || !latency_warn_ms)
5566 return 0;
5567
5568 if (system_state == SYSTEM_BOOTING)
5569 return 0;
5570
5571 if (!rq->last_seen_need_resched_ns) {
5572 rq->last_seen_need_resched_ns = now;
5573 rq->ticks_without_resched = 0;
5574 return 0;
5575 }
5576
5577 rq->ticks_without_resched++;
5578 resched_latency = now - rq->last_seen_need_resched_ns;
5579 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5580 return 0;
5581
5582 warned_once = true;
5583
5584 return resched_latency;
5585 }
5586
setup_resched_latency_warn_ms(char * str)5587 static int __init setup_resched_latency_warn_ms(char *str)
5588 {
5589 long val;
5590
5591 if ((kstrtol(str, 0, &val))) {
5592 pr_warn("Unable to set resched_latency_warn_ms\n");
5593 return 1;
5594 }
5595
5596 sysctl_resched_latency_warn_ms = val;
5597 return 1;
5598 }
5599 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5600
5601 /*
5602 * This function gets called by the timer code, with HZ frequency.
5603 * We call it with interrupts disabled.
5604 */
sched_tick(void)5605 void sched_tick(void)
5606 {
5607 int cpu = smp_processor_id();
5608 struct rq *rq = cpu_rq(cpu);
5609 /* accounting goes to the donor task */
5610 struct task_struct *donor;
5611 struct rq_flags rf;
5612 unsigned long hw_pressure;
5613 u64 resched_latency;
5614
5615 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5616 arch_scale_freq_tick();
5617
5618 sched_clock_tick();
5619
5620 rq_lock(rq, &rf);
5621 donor = rq->donor;
5622
5623 psi_account_irqtime(rq, donor, NULL);
5624
5625 update_rq_clock(rq);
5626 hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
5627 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
5628
5629 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
5630 resched_curr(rq);
5631
5632 donor->sched_class->task_tick(rq, donor, 0);
5633 if (sched_feat(LATENCY_WARN))
5634 resched_latency = cpu_resched_latency(rq);
5635 calc_global_load_tick(rq);
5636 sched_core_tick(rq);
5637 task_tick_mm_cid(rq, donor);
5638 scx_tick(rq);
5639
5640 rq_unlock(rq, &rf);
5641
5642 if (sched_feat(LATENCY_WARN) && resched_latency)
5643 resched_latency_warn(cpu, resched_latency);
5644
5645 perf_event_task_tick();
5646
5647 if (donor->flags & PF_WQ_WORKER)
5648 wq_worker_tick(donor);
5649
5650 if (!scx_switched_all()) {
5651 rq->idle_balance = idle_cpu(cpu);
5652 sched_balance_trigger(rq);
5653 }
5654 }
5655
5656 #ifdef CONFIG_NO_HZ_FULL
5657
5658 struct tick_work {
5659 int cpu;
5660 atomic_t state;
5661 struct delayed_work work;
5662 };
5663 /* Values for ->state, see diagram below. */
5664 #define TICK_SCHED_REMOTE_OFFLINE 0
5665 #define TICK_SCHED_REMOTE_OFFLINING 1
5666 #define TICK_SCHED_REMOTE_RUNNING 2
5667
5668 /*
5669 * State diagram for ->state:
5670 *
5671 *
5672 * TICK_SCHED_REMOTE_OFFLINE
5673 * | ^
5674 * | |
5675 * | | sched_tick_remote()
5676 * | |
5677 * | |
5678 * +--TICK_SCHED_REMOTE_OFFLINING
5679 * | ^
5680 * | |
5681 * sched_tick_start() | | sched_tick_stop()
5682 * | |
5683 * V |
5684 * TICK_SCHED_REMOTE_RUNNING
5685 *
5686 *
5687 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5688 * and sched_tick_start() are happy to leave the state in RUNNING.
5689 */
5690
5691 static struct tick_work __percpu *tick_work_cpu;
5692
sched_tick_remote(struct work_struct * work)5693 static void sched_tick_remote(struct work_struct *work)
5694 {
5695 struct delayed_work *dwork = to_delayed_work(work);
5696 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5697 int cpu = twork->cpu;
5698 struct rq *rq = cpu_rq(cpu);
5699 int os;
5700
5701 /*
5702 * Handle the tick only if it appears the remote CPU is running in full
5703 * dynticks mode. The check is racy by nature, but missing a tick or
5704 * having one too much is no big deal because the scheduler tick updates
5705 * statistics and checks timeslices in a time-independent way, regardless
5706 * of when exactly it is running.
5707 */
5708 if (tick_nohz_tick_stopped_cpu(cpu)) {
5709 guard(rq_lock_irq)(rq);
5710 struct task_struct *curr = rq->curr;
5711
5712 if (cpu_online(cpu)) {
5713 /*
5714 * Since this is a remote tick for full dynticks mode,
5715 * we are always sure that there is no proxy (only a
5716 * single task is running).
5717 */
5718 WARN_ON_ONCE(rq->curr != rq->donor);
5719 update_rq_clock(rq);
5720
5721 if (!is_idle_task(curr)) {
5722 /*
5723 * Make sure the next tick runs within a
5724 * reasonable amount of time.
5725 */
5726 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5727 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5728 }
5729 curr->sched_class->task_tick(rq, curr, 0);
5730
5731 calc_load_nohz_remote(rq);
5732 }
5733 }
5734
5735 /*
5736 * Run the remote tick once per second (1Hz). This arbitrary
5737 * frequency is large enough to avoid overload but short enough
5738 * to keep scheduler internal stats reasonably up to date. But
5739 * first update state to reflect hotplug activity if required.
5740 */
5741 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5742 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5743 if (os == TICK_SCHED_REMOTE_RUNNING)
5744 queue_delayed_work(system_unbound_wq, dwork, HZ);
5745 }
5746
sched_tick_start(int cpu)5747 static void sched_tick_start(int cpu)
5748 {
5749 int os;
5750 struct tick_work *twork;
5751
5752 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5753 return;
5754
5755 WARN_ON_ONCE(!tick_work_cpu);
5756
5757 twork = per_cpu_ptr(tick_work_cpu, cpu);
5758 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5759 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5760 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5761 twork->cpu = cpu;
5762 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5763 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5764 }
5765 }
5766
5767 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5768 static void sched_tick_stop(int cpu)
5769 {
5770 struct tick_work *twork;
5771 int os;
5772
5773 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
5774 return;
5775
5776 WARN_ON_ONCE(!tick_work_cpu);
5777
5778 twork = per_cpu_ptr(tick_work_cpu, cpu);
5779 /* There cannot be competing actions, but don't rely on stop-machine. */
5780 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5781 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5782 /* Don't cancel, as this would mess up the state machine. */
5783 }
5784 #endif /* CONFIG_HOTPLUG_CPU */
5785
sched_tick_offload_init(void)5786 int __init sched_tick_offload_init(void)
5787 {
5788 tick_work_cpu = alloc_percpu(struct tick_work);
5789 BUG_ON(!tick_work_cpu);
5790 return 0;
5791 }
5792
5793 #else /* !CONFIG_NO_HZ_FULL: */
sched_tick_start(int cpu)5794 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5795 static inline void sched_tick_stop(int cpu) { }
5796 #endif /* !CONFIG_NO_HZ_FULL */
5797
5798 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5799 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5800 /*
5801 * If the value passed in is equal to the current preempt count
5802 * then we just disabled preemption. Start timing the latency.
5803 */
preempt_latency_start(int val)5804 static inline void preempt_latency_start(int val)
5805 {
5806 if (preempt_count() == val) {
5807 unsigned long ip = get_lock_parent_ip();
5808 #ifdef CONFIG_DEBUG_PREEMPT
5809 current->preempt_disable_ip = ip;
5810 #endif
5811 trace_preempt_off(CALLER_ADDR0, ip);
5812 }
5813 }
5814
preempt_count_add(int val)5815 void preempt_count_add(int val)
5816 {
5817 #ifdef CONFIG_DEBUG_PREEMPT
5818 /*
5819 * Underflow?
5820 */
5821 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5822 return;
5823 #endif
5824 __preempt_count_add(val);
5825 #ifdef CONFIG_DEBUG_PREEMPT
5826 /*
5827 * Spinlock count overflowing soon?
5828 */
5829 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5830 PREEMPT_MASK - 10);
5831 #endif
5832 preempt_latency_start(val);
5833 }
5834 EXPORT_SYMBOL(preempt_count_add);
5835 NOKPROBE_SYMBOL(preempt_count_add);
5836
5837 /*
5838 * If the value passed in equals to the current preempt count
5839 * then we just enabled preemption. Stop timing the latency.
5840 */
preempt_latency_stop(int val)5841 static inline void preempt_latency_stop(int val)
5842 {
5843 if (preempt_count() == val)
5844 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5845 }
5846
preempt_count_sub(int val)5847 void preempt_count_sub(int val)
5848 {
5849 #ifdef CONFIG_DEBUG_PREEMPT
5850 /*
5851 * Underflow?
5852 */
5853 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5854 return;
5855 /*
5856 * Is the spinlock portion underflowing?
5857 */
5858 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5859 !(preempt_count() & PREEMPT_MASK)))
5860 return;
5861 #endif
5862
5863 preempt_latency_stop(val);
5864 __preempt_count_sub(val);
5865 }
5866 EXPORT_SYMBOL(preempt_count_sub);
5867 NOKPROBE_SYMBOL(preempt_count_sub);
5868
5869 #else
preempt_latency_start(int val)5870 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5871 static inline void preempt_latency_stop(int val) { }
5872 #endif
5873
get_preempt_disable_ip(struct task_struct * p)5874 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5875 {
5876 #ifdef CONFIG_DEBUG_PREEMPT
5877 return p->preempt_disable_ip;
5878 #else
5879 return 0;
5880 #endif
5881 }
5882
5883 /*
5884 * Print scheduling while atomic bug:
5885 */
__schedule_bug(struct task_struct * prev)5886 static noinline void __schedule_bug(struct task_struct *prev)
5887 {
5888 /* Save this before calling printk(), since that will clobber it */
5889 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5890
5891 if (oops_in_progress)
5892 return;
5893
5894 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5895 prev->comm, prev->pid, preempt_count());
5896
5897 debug_show_held_locks(prev);
5898 print_modules();
5899 if (irqs_disabled())
5900 print_irqtrace_events(prev);
5901 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5902 pr_err("Preemption disabled at:");
5903 print_ip_sym(KERN_ERR, preempt_disable_ip);
5904 }
5905 check_panic_on_warn("scheduling while atomic");
5906
5907 dump_stack();
5908 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5909 }
5910
5911 /*
5912 * Various schedule()-time debugging checks and statistics:
5913 */
schedule_debug(struct task_struct * prev,bool preempt)5914 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5915 {
5916 #ifdef CONFIG_SCHED_STACK_END_CHECK
5917 if (task_stack_end_corrupted(prev))
5918 panic("corrupted stack end detected inside scheduler\n");
5919
5920 if (task_scs_end_corrupted(prev))
5921 panic("corrupted shadow stack detected inside scheduler\n");
5922 #endif
5923
5924 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5925 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5926 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5927 prev->comm, prev->pid, prev->non_block_count);
5928 dump_stack();
5929 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5930 }
5931 #endif
5932
5933 if (unlikely(in_atomic_preempt_off())) {
5934 __schedule_bug(prev);
5935 preempt_count_set(PREEMPT_DISABLED);
5936 }
5937 rcu_sleep_check();
5938 WARN_ON_ONCE(ct_state() == CT_STATE_USER);
5939
5940 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5941
5942 schedstat_inc(this_rq()->sched_count);
5943 }
5944
prev_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5945 static void prev_balance(struct rq *rq, struct task_struct *prev,
5946 struct rq_flags *rf)
5947 {
5948 const struct sched_class *start_class = prev->sched_class;
5949 const struct sched_class *class;
5950
5951 #ifdef CONFIG_SCHED_CLASS_EXT
5952 /*
5953 * SCX requires a balance() call before every pick_task() including when
5954 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
5955 * SCX instead. Also, set a flag to detect missing balance() call.
5956 */
5957 if (scx_enabled()) {
5958 rq->scx.flags |= SCX_RQ_BAL_PENDING;
5959 if (sched_class_above(&ext_sched_class, start_class))
5960 start_class = &ext_sched_class;
5961 }
5962 #endif
5963
5964 /*
5965 * We must do the balancing pass before put_prev_task(), such
5966 * that when we release the rq->lock the task is in the same
5967 * state as before we took rq->lock.
5968 *
5969 * We can terminate the balance pass as soon as we know there is
5970 * a runnable task of @class priority or higher.
5971 */
5972 for_active_class_range(class, start_class, &idle_sched_class) {
5973 if (class->balance && class->balance(rq, prev, rf))
5974 break;
5975 }
5976 }
5977
5978 /*
5979 * Pick up the highest-prio task:
5980 */
5981 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5982 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5983 {
5984 const struct sched_class *class;
5985 struct task_struct *p;
5986
5987 rq->dl_server = NULL;
5988
5989 if (scx_enabled())
5990 goto restart;
5991
5992 /*
5993 * Optimization: we know that if all tasks are in the fair class we can
5994 * call that function directly, but only if the @prev task wasn't of a
5995 * higher scheduling class, because otherwise those lose the
5996 * opportunity to pull in more work from other CPUs.
5997 */
5998 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5999 rq->nr_running == rq->cfs.h_nr_queued)) {
6000
6001 p = pick_next_task_fair(rq, prev, rf);
6002 if (unlikely(p == RETRY_TASK))
6003 goto restart;
6004
6005 /* Assume the next prioritized class is idle_sched_class */
6006 if (!p) {
6007 p = pick_task_idle(rq);
6008 put_prev_set_next_task(rq, prev, p);
6009 }
6010
6011 return p;
6012 }
6013
6014 restart:
6015 prev_balance(rq, prev, rf);
6016
6017 for_each_active_class(class) {
6018 if (class->pick_next_task) {
6019 p = class->pick_next_task(rq, prev);
6020 if (p)
6021 return p;
6022 } else {
6023 p = class->pick_task(rq);
6024 if (p) {
6025 put_prev_set_next_task(rq, prev, p);
6026 return p;
6027 }
6028 }
6029 }
6030
6031 BUG(); /* The idle class should always have a runnable task. */
6032 }
6033
6034 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6035 static inline bool is_task_rq_idle(struct task_struct *t)
6036 {
6037 return (task_rq(t)->idle == t);
6038 }
6039
cookie_equals(struct task_struct * a,unsigned long cookie)6040 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6041 {
6042 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6043 }
6044
cookie_match(struct task_struct * a,struct task_struct * b)6045 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6046 {
6047 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6048 return true;
6049
6050 return a->core_cookie == b->core_cookie;
6051 }
6052
pick_task(struct rq * rq)6053 static inline struct task_struct *pick_task(struct rq *rq)
6054 {
6055 const struct sched_class *class;
6056 struct task_struct *p;
6057
6058 rq->dl_server = NULL;
6059
6060 for_each_active_class(class) {
6061 p = class->pick_task(rq);
6062 if (p)
6063 return p;
6064 }
6065
6066 BUG(); /* The idle class should always have a runnable task. */
6067 }
6068
6069 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6070
6071 static void queue_core_balance(struct rq *rq);
6072
6073 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6074 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6075 {
6076 struct task_struct *next, *p, *max = NULL;
6077 const struct cpumask *smt_mask;
6078 bool fi_before = false;
6079 bool core_clock_updated = (rq == rq->core);
6080 unsigned long cookie;
6081 int i, cpu, occ = 0;
6082 struct rq *rq_i;
6083 bool need_sync;
6084
6085 if (!sched_core_enabled(rq))
6086 return __pick_next_task(rq, prev, rf);
6087
6088 cpu = cpu_of(rq);
6089
6090 /* Stopper task is switching into idle, no need core-wide selection. */
6091 if (cpu_is_offline(cpu)) {
6092 /*
6093 * Reset core_pick so that we don't enter the fastpath when
6094 * coming online. core_pick would already be migrated to
6095 * another cpu during offline.
6096 */
6097 rq->core_pick = NULL;
6098 rq->core_dl_server = NULL;
6099 return __pick_next_task(rq, prev, rf);
6100 }
6101
6102 /*
6103 * If there were no {en,de}queues since we picked (IOW, the task
6104 * pointers are all still valid), and we haven't scheduled the last
6105 * pick yet, do so now.
6106 *
6107 * rq->core_pick can be NULL if no selection was made for a CPU because
6108 * it was either offline or went offline during a sibling's core-wide
6109 * selection. In this case, do a core-wide selection.
6110 */
6111 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6112 rq->core->core_pick_seq != rq->core_sched_seq &&
6113 rq->core_pick) {
6114 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6115
6116 next = rq->core_pick;
6117 rq->dl_server = rq->core_dl_server;
6118 rq->core_pick = NULL;
6119 rq->core_dl_server = NULL;
6120 goto out_set_next;
6121 }
6122
6123 prev_balance(rq, prev, rf);
6124
6125 smt_mask = cpu_smt_mask(cpu);
6126 need_sync = !!rq->core->core_cookie;
6127
6128 /* reset state */
6129 rq->core->core_cookie = 0UL;
6130 if (rq->core->core_forceidle_count) {
6131 if (!core_clock_updated) {
6132 update_rq_clock(rq->core);
6133 core_clock_updated = true;
6134 }
6135 sched_core_account_forceidle(rq);
6136 /* reset after accounting force idle */
6137 rq->core->core_forceidle_start = 0;
6138 rq->core->core_forceidle_count = 0;
6139 rq->core->core_forceidle_occupation = 0;
6140 need_sync = true;
6141 fi_before = true;
6142 }
6143
6144 /*
6145 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6146 *
6147 * @task_seq guards the task state ({en,de}queues)
6148 * @pick_seq is the @task_seq we did a selection on
6149 * @sched_seq is the @pick_seq we scheduled
6150 *
6151 * However, preemptions can cause multiple picks on the same task set.
6152 * 'Fix' this by also increasing @task_seq for every pick.
6153 */
6154 rq->core->core_task_seq++;
6155
6156 /*
6157 * Optimize for common case where this CPU has no cookies
6158 * and there are no cookied tasks running on siblings.
6159 */
6160 if (!need_sync) {
6161 next = pick_task(rq);
6162 if (!next->core_cookie) {
6163 rq->core_pick = NULL;
6164 rq->core_dl_server = NULL;
6165 /*
6166 * For robustness, update the min_vruntime_fi for
6167 * unconstrained picks as well.
6168 */
6169 WARN_ON_ONCE(fi_before);
6170 task_vruntime_update(rq, next, false);
6171 goto out_set_next;
6172 }
6173 }
6174
6175 /*
6176 * For each thread: do the regular task pick and find the max prio task
6177 * amongst them.
6178 *
6179 * Tie-break prio towards the current CPU
6180 */
6181 for_each_cpu_wrap(i, smt_mask, cpu) {
6182 rq_i = cpu_rq(i);
6183
6184 /*
6185 * Current cpu always has its clock updated on entrance to
6186 * pick_next_task(). If the current cpu is not the core,
6187 * the core may also have been updated above.
6188 */
6189 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6190 update_rq_clock(rq_i);
6191
6192 rq_i->core_pick = p = pick_task(rq_i);
6193 rq_i->core_dl_server = rq_i->dl_server;
6194
6195 if (!max || prio_less(max, p, fi_before))
6196 max = p;
6197 }
6198
6199 cookie = rq->core->core_cookie = max->core_cookie;
6200
6201 /*
6202 * For each thread: try and find a runnable task that matches @max or
6203 * force idle.
6204 */
6205 for_each_cpu(i, smt_mask) {
6206 rq_i = cpu_rq(i);
6207 p = rq_i->core_pick;
6208
6209 if (!cookie_equals(p, cookie)) {
6210 p = NULL;
6211 if (cookie)
6212 p = sched_core_find(rq_i, cookie);
6213 if (!p)
6214 p = idle_sched_class.pick_task(rq_i);
6215 }
6216
6217 rq_i->core_pick = p;
6218 rq_i->core_dl_server = NULL;
6219
6220 if (p == rq_i->idle) {
6221 if (rq_i->nr_running) {
6222 rq->core->core_forceidle_count++;
6223 if (!fi_before)
6224 rq->core->core_forceidle_seq++;
6225 }
6226 } else {
6227 occ++;
6228 }
6229 }
6230
6231 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6232 rq->core->core_forceidle_start = rq_clock(rq->core);
6233 rq->core->core_forceidle_occupation = occ;
6234 }
6235
6236 rq->core->core_pick_seq = rq->core->core_task_seq;
6237 next = rq->core_pick;
6238 rq->core_sched_seq = rq->core->core_pick_seq;
6239
6240 /* Something should have been selected for current CPU */
6241 WARN_ON_ONCE(!next);
6242
6243 /*
6244 * Reschedule siblings
6245 *
6246 * NOTE: L1TF -- at this point we're no longer running the old task and
6247 * sending an IPI (below) ensures the sibling will no longer be running
6248 * their task. This ensures there is no inter-sibling overlap between
6249 * non-matching user state.
6250 */
6251 for_each_cpu(i, smt_mask) {
6252 rq_i = cpu_rq(i);
6253
6254 /*
6255 * An online sibling might have gone offline before a task
6256 * could be picked for it, or it might be offline but later
6257 * happen to come online, but its too late and nothing was
6258 * picked for it. That's Ok - it will pick tasks for itself,
6259 * so ignore it.
6260 */
6261 if (!rq_i->core_pick)
6262 continue;
6263
6264 /*
6265 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6266 * fi_before fi update?
6267 * 0 0 1
6268 * 0 1 1
6269 * 1 0 1
6270 * 1 1 0
6271 */
6272 if (!(fi_before && rq->core->core_forceidle_count))
6273 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6274
6275 rq_i->core_pick->core_occupation = occ;
6276
6277 if (i == cpu) {
6278 rq_i->core_pick = NULL;
6279 rq_i->core_dl_server = NULL;
6280 continue;
6281 }
6282
6283 /* Did we break L1TF mitigation requirements? */
6284 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6285
6286 if (rq_i->curr == rq_i->core_pick) {
6287 rq_i->core_pick = NULL;
6288 rq_i->core_dl_server = NULL;
6289 continue;
6290 }
6291
6292 resched_curr(rq_i);
6293 }
6294
6295 out_set_next:
6296 put_prev_set_next_task(rq, prev, next);
6297 if (rq->core->core_forceidle_count && next == rq->idle)
6298 queue_core_balance(rq);
6299
6300 return next;
6301 }
6302
try_steal_cookie(int this,int that)6303 static bool try_steal_cookie(int this, int that)
6304 {
6305 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6306 struct task_struct *p;
6307 unsigned long cookie;
6308 bool success = false;
6309
6310 guard(irq)();
6311 guard(double_rq_lock)(dst, src);
6312
6313 cookie = dst->core->core_cookie;
6314 if (!cookie)
6315 return false;
6316
6317 if (dst->curr != dst->idle)
6318 return false;
6319
6320 p = sched_core_find(src, cookie);
6321 if (!p)
6322 return false;
6323
6324 do {
6325 if (p == src->core_pick || p == src->curr)
6326 goto next;
6327
6328 if (!is_cpu_allowed(p, this))
6329 goto next;
6330
6331 if (p->core_occupation > dst->idle->core_occupation)
6332 goto next;
6333 /*
6334 * sched_core_find() and sched_core_next() will ensure
6335 * that task @p is not throttled now, we also need to
6336 * check whether the runqueue of the destination CPU is
6337 * being throttled.
6338 */
6339 if (sched_task_is_throttled(p, this))
6340 goto next;
6341
6342 move_queued_task_locked(src, dst, p);
6343 resched_curr(dst);
6344
6345 success = true;
6346 break;
6347
6348 next:
6349 p = sched_core_next(p, cookie);
6350 } while (p);
6351
6352 return success;
6353 }
6354
steal_cookie_task(int cpu,struct sched_domain * sd)6355 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6356 {
6357 int i;
6358
6359 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6360 if (i == cpu)
6361 continue;
6362
6363 if (need_resched())
6364 break;
6365
6366 if (try_steal_cookie(cpu, i))
6367 return true;
6368 }
6369
6370 return false;
6371 }
6372
sched_core_balance(struct rq * rq)6373 static void sched_core_balance(struct rq *rq)
6374 {
6375 struct sched_domain *sd;
6376 int cpu = cpu_of(rq);
6377
6378 guard(preempt)();
6379 guard(rcu)();
6380
6381 raw_spin_rq_unlock_irq(rq);
6382 for_each_domain(cpu, sd) {
6383 if (need_resched())
6384 break;
6385
6386 if (steal_cookie_task(cpu, sd))
6387 break;
6388 }
6389 raw_spin_rq_lock_irq(rq);
6390 }
6391
6392 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6393
queue_core_balance(struct rq * rq)6394 static void queue_core_balance(struct rq *rq)
6395 {
6396 if (!sched_core_enabled(rq))
6397 return;
6398
6399 if (!rq->core->core_cookie)
6400 return;
6401
6402 if (!rq->nr_running) /* not forced idle */
6403 return;
6404
6405 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6406 }
6407
6408 DEFINE_LOCK_GUARD_1(core_lock, int,
6409 sched_core_lock(*_T->lock, &_T->flags),
6410 sched_core_unlock(*_T->lock, &_T->flags),
6411 unsigned long flags)
6412
sched_core_cpu_starting(unsigned int cpu)6413 static void sched_core_cpu_starting(unsigned int cpu)
6414 {
6415 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6416 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6417 int t;
6418
6419 guard(core_lock)(&cpu);
6420
6421 WARN_ON_ONCE(rq->core != rq);
6422
6423 /* if we're the first, we'll be our own leader */
6424 if (cpumask_weight(smt_mask) == 1)
6425 return;
6426
6427 /* find the leader */
6428 for_each_cpu(t, smt_mask) {
6429 if (t == cpu)
6430 continue;
6431 rq = cpu_rq(t);
6432 if (rq->core == rq) {
6433 core_rq = rq;
6434 break;
6435 }
6436 }
6437
6438 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6439 return;
6440
6441 /* install and validate core_rq */
6442 for_each_cpu(t, smt_mask) {
6443 rq = cpu_rq(t);
6444
6445 if (t == cpu)
6446 rq->core = core_rq;
6447
6448 WARN_ON_ONCE(rq->core != core_rq);
6449 }
6450 }
6451
sched_core_cpu_deactivate(unsigned int cpu)6452 static void sched_core_cpu_deactivate(unsigned int cpu)
6453 {
6454 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6455 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6456 int t;
6457
6458 guard(core_lock)(&cpu);
6459
6460 /* if we're the last man standing, nothing to do */
6461 if (cpumask_weight(smt_mask) == 1) {
6462 WARN_ON_ONCE(rq->core != rq);
6463 return;
6464 }
6465
6466 /* if we're not the leader, nothing to do */
6467 if (rq->core != rq)
6468 return;
6469
6470 /* find a new leader */
6471 for_each_cpu(t, smt_mask) {
6472 if (t == cpu)
6473 continue;
6474 core_rq = cpu_rq(t);
6475 break;
6476 }
6477
6478 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6479 return;
6480
6481 /* copy the shared state to the new leader */
6482 core_rq->core_task_seq = rq->core_task_seq;
6483 core_rq->core_pick_seq = rq->core_pick_seq;
6484 core_rq->core_cookie = rq->core_cookie;
6485 core_rq->core_forceidle_count = rq->core_forceidle_count;
6486 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6487 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6488
6489 /*
6490 * Accounting edge for forced idle is handled in pick_next_task().
6491 * Don't need another one here, since the hotplug thread shouldn't
6492 * have a cookie.
6493 */
6494 core_rq->core_forceidle_start = 0;
6495
6496 /* install new leader */
6497 for_each_cpu(t, smt_mask) {
6498 rq = cpu_rq(t);
6499 rq->core = core_rq;
6500 }
6501 }
6502
sched_core_cpu_dying(unsigned int cpu)6503 static inline void sched_core_cpu_dying(unsigned int cpu)
6504 {
6505 struct rq *rq = cpu_rq(cpu);
6506
6507 if (rq->core != rq)
6508 rq->core = rq;
6509 }
6510
6511 #else /* !CONFIG_SCHED_CORE: */
6512
sched_core_cpu_starting(unsigned int cpu)6513 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6514 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6515 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6516
6517 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6518 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6519 {
6520 return __pick_next_task(rq, prev, rf);
6521 }
6522
6523 #endif /* !CONFIG_SCHED_CORE */
6524
6525 /*
6526 * Constants for the sched_mode argument of __schedule().
6527 *
6528 * The mode argument allows RT enabled kernels to differentiate a
6529 * preemption from blocking on an 'sleeping' spin/rwlock.
6530 */
6531 #define SM_IDLE (-1)
6532 #define SM_NONE 0
6533 #define SM_PREEMPT 1
6534 #define SM_RTLOCK_WAIT 2
6535
6536 /*
6537 * Helper function for __schedule()
6538 *
6539 * Tries to deactivate the task, unless the should_block arg
6540 * is false or if a signal is pending. In the case a signal
6541 * is pending, marks the task's __state as RUNNING (and clear
6542 * blocked_on).
6543 */
try_to_block_task(struct rq * rq,struct task_struct * p,unsigned long * task_state_p,bool should_block)6544 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
6545 unsigned long *task_state_p, bool should_block)
6546 {
6547 unsigned long task_state = *task_state_p;
6548 int flags = DEQUEUE_NOCLOCK;
6549
6550 if (signal_pending_state(task_state, p)) {
6551 WRITE_ONCE(p->__state, TASK_RUNNING);
6552 *task_state_p = TASK_RUNNING;
6553 return false;
6554 }
6555
6556 /*
6557 * We check should_block after signal_pending because we
6558 * will want to wake the task in that case. But if
6559 * should_block is false, its likely due to the task being
6560 * blocked on a mutex, and we want to keep it on the runqueue
6561 * to be selectable for proxy-execution.
6562 */
6563 if (!should_block)
6564 return false;
6565
6566 p->sched_contributes_to_load =
6567 (task_state & TASK_UNINTERRUPTIBLE) &&
6568 !(task_state & TASK_NOLOAD) &&
6569 !(task_state & TASK_FROZEN);
6570
6571 if (unlikely(is_special_task_state(task_state)))
6572 flags |= DEQUEUE_SPECIAL;
6573
6574 /*
6575 * __schedule() ttwu()
6576 * prev_state = prev->state; if (p->on_rq && ...)
6577 * if (prev_state) goto out;
6578 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6579 * p->state = TASK_WAKING
6580 *
6581 * Where __schedule() and ttwu() have matching control dependencies.
6582 *
6583 * After this, schedule() must not care about p->state any more.
6584 */
6585 block_task(rq, p, flags);
6586 return true;
6587 }
6588
6589 #ifdef CONFIG_SCHED_PROXY_EXEC
proxy_resched_idle(struct rq * rq)6590 static inline struct task_struct *proxy_resched_idle(struct rq *rq)
6591 {
6592 put_prev_set_next_task(rq, rq->donor, rq->idle);
6593 rq_set_donor(rq, rq->idle);
6594 set_tsk_need_resched(rq->idle);
6595 return rq->idle;
6596 }
6597
__proxy_deactivate(struct rq * rq,struct task_struct * donor)6598 static bool __proxy_deactivate(struct rq *rq, struct task_struct *donor)
6599 {
6600 unsigned long state = READ_ONCE(donor->__state);
6601
6602 /* Don't deactivate if the state has been changed to TASK_RUNNING */
6603 if (state == TASK_RUNNING)
6604 return false;
6605 /*
6606 * Because we got donor from pick_next_task(), it is *crucial*
6607 * that we call proxy_resched_idle() before we deactivate it.
6608 * As once we deactivate donor, donor->on_rq is set to zero,
6609 * which allows ttwu() to immediately try to wake the task on
6610 * another rq. So we cannot use *any* references to donor
6611 * after that point. So things like cfs_rq->curr or rq->donor
6612 * need to be changed from next *before* we deactivate.
6613 */
6614 proxy_resched_idle(rq);
6615 return try_to_block_task(rq, donor, &state, true);
6616 }
6617
proxy_deactivate(struct rq * rq,struct task_struct * donor)6618 static struct task_struct *proxy_deactivate(struct rq *rq, struct task_struct *donor)
6619 {
6620 if (!__proxy_deactivate(rq, donor)) {
6621 /*
6622 * XXX: For now, if deactivation failed, set donor
6623 * as unblocked, as we aren't doing proxy-migrations
6624 * yet (more logic will be needed then).
6625 */
6626 donor->blocked_on = NULL;
6627 }
6628 return NULL;
6629 }
6630
6631 /*
6632 * Find runnable lock owner to proxy for mutex blocked donor
6633 *
6634 * Follow the blocked-on relation:
6635 * task->blocked_on -> mutex->owner -> task...
6636 *
6637 * Lock order:
6638 *
6639 * p->pi_lock
6640 * rq->lock
6641 * mutex->wait_lock
6642 *
6643 * Returns the task that is going to be used as execution context (the one
6644 * that is actually going to be run on cpu_of(rq)).
6645 */
6646 static struct task_struct *
find_proxy_task(struct rq * rq,struct task_struct * donor,struct rq_flags * rf)6647 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6648 {
6649 struct task_struct *owner = NULL;
6650 int this_cpu = cpu_of(rq);
6651 struct task_struct *p;
6652 struct mutex *mutex;
6653
6654 /* Follow blocked_on chain. */
6655 for (p = donor; task_is_blocked(p); p = owner) {
6656 mutex = p->blocked_on;
6657 /* Something changed in the chain, so pick again */
6658 if (!mutex)
6659 return NULL;
6660 /*
6661 * By taking mutex->wait_lock we hold off concurrent mutex_unlock()
6662 * and ensure @owner sticks around.
6663 */
6664 guard(raw_spinlock)(&mutex->wait_lock);
6665
6666 /* Check again that p is blocked with wait_lock held */
6667 if (mutex != __get_task_blocked_on(p)) {
6668 /*
6669 * Something changed in the blocked_on chain and
6670 * we don't know if only at this level. So, let's
6671 * just bail out completely and let __schedule()
6672 * figure things out (pick_again loop).
6673 */
6674 return NULL;
6675 }
6676
6677 owner = __mutex_owner(mutex);
6678 if (!owner) {
6679 __clear_task_blocked_on(p, mutex);
6680 return p;
6681 }
6682
6683 if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) {
6684 /* XXX Don't handle blocked owners/delayed dequeue yet */
6685 return proxy_deactivate(rq, donor);
6686 }
6687
6688 if (task_cpu(owner) != this_cpu) {
6689 /* XXX Don't handle migrations yet */
6690 return proxy_deactivate(rq, donor);
6691 }
6692
6693 if (task_on_rq_migrating(owner)) {
6694 /*
6695 * One of the chain of mutex owners is currently migrating to this
6696 * CPU, but has not yet been enqueued because we are holding the
6697 * rq lock. As a simple solution, just schedule rq->idle to give
6698 * the migration a chance to complete. Much like the migrate_task
6699 * case we should end up back in find_proxy_task(), this time
6700 * hopefully with all relevant tasks already enqueued.
6701 */
6702 return proxy_resched_idle(rq);
6703 }
6704
6705 /*
6706 * Its possible to race where after we check owner->on_rq
6707 * but before we check (owner_cpu != this_cpu) that the
6708 * task on another cpu was migrated back to this cpu. In
6709 * that case it could slip by our checks. So double check
6710 * we are still on this cpu and not migrating. If we get
6711 * inconsistent results, try again.
6712 */
6713 if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu)
6714 return NULL;
6715
6716 if (owner == p) {
6717 /*
6718 * It's possible we interleave with mutex_unlock like:
6719 *
6720 * lock(&rq->lock);
6721 * find_proxy_task()
6722 * mutex_unlock()
6723 * lock(&wait_lock);
6724 * donor(owner) = current->blocked_donor;
6725 * unlock(&wait_lock);
6726 *
6727 * wake_up_q();
6728 * ...
6729 * ttwu_runnable()
6730 * __task_rq_lock()
6731 * lock(&wait_lock);
6732 * owner == p
6733 *
6734 * Which leaves us to finish the ttwu_runnable() and make it go.
6735 *
6736 * So schedule rq->idle so that ttwu_runnable() can get the rq
6737 * lock and mark owner as running.
6738 */
6739 return proxy_resched_idle(rq);
6740 }
6741 /*
6742 * OK, now we're absolutely sure @owner is on this
6743 * rq, therefore holding @rq->lock is sufficient to
6744 * guarantee its existence, as per ttwu_remote().
6745 */
6746 }
6747
6748 WARN_ON_ONCE(owner && !owner->on_rq);
6749 return owner;
6750 }
6751 #else /* SCHED_PROXY_EXEC */
6752 static struct task_struct *
find_proxy_task(struct rq * rq,struct task_struct * donor,struct rq_flags * rf)6753 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
6754 {
6755 WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n");
6756 return donor;
6757 }
6758 #endif /* SCHED_PROXY_EXEC */
6759
proxy_tag_curr(struct rq * rq,struct task_struct * owner)6760 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner)
6761 {
6762 if (!sched_proxy_exec())
6763 return;
6764 /*
6765 * pick_next_task() calls set_next_task() on the chosen task
6766 * at some point, which ensures it is not push/pullable.
6767 * However, the chosen/donor task *and* the mutex owner form an
6768 * atomic pair wrt push/pull.
6769 *
6770 * Make sure owner we run is not pushable. Unfortunately we can
6771 * only deal with that by means of a dequeue/enqueue cycle. :-/
6772 */
6773 dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE);
6774 enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE);
6775 }
6776
6777 /*
6778 * __schedule() is the main scheduler function.
6779 *
6780 * The main means of driving the scheduler and thus entering this function are:
6781 *
6782 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6783 *
6784 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6785 * paths. For example, see arch/x86/entry_64.S.
6786 *
6787 * To drive preemption between tasks, the scheduler sets the flag in timer
6788 * interrupt handler sched_tick().
6789 *
6790 * 3. Wakeups don't really cause entry into schedule(). They add a
6791 * task to the run-queue and that's it.
6792 *
6793 * Now, if the new task added to the run-queue preempts the current
6794 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6795 * called on the nearest possible occasion:
6796 *
6797 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6798 *
6799 * - in syscall or exception context, at the next outmost
6800 * preempt_enable(). (this might be as soon as the wake_up()'s
6801 * spin_unlock()!)
6802 *
6803 * - in IRQ context, return from interrupt-handler to
6804 * preemptible context
6805 *
6806 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6807 * then at the next:
6808 *
6809 * - cond_resched() call
6810 * - explicit schedule() call
6811 * - return from syscall or exception to user-space
6812 * - return from interrupt-handler to user-space
6813 *
6814 * WARNING: must be called with preemption disabled!
6815 */
__schedule(int sched_mode)6816 static void __sched notrace __schedule(int sched_mode)
6817 {
6818 struct task_struct *prev, *next;
6819 /*
6820 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
6821 * as a preemption by schedule_debug() and RCU.
6822 */
6823 bool preempt = sched_mode > SM_NONE;
6824 bool is_switch = false;
6825 unsigned long *switch_count;
6826 unsigned long prev_state;
6827 struct rq_flags rf;
6828 struct rq *rq;
6829 int cpu;
6830
6831 /* Trace preemptions consistently with task switches */
6832 trace_sched_entry_tp(sched_mode == SM_PREEMPT);
6833
6834 cpu = smp_processor_id();
6835 rq = cpu_rq(cpu);
6836 prev = rq->curr;
6837
6838 schedule_debug(prev, preempt);
6839
6840 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6841 hrtick_clear(rq);
6842
6843 klp_sched_try_switch(prev);
6844
6845 local_irq_disable();
6846 rcu_note_context_switch(preempt);
6847
6848 /*
6849 * Make sure that signal_pending_state()->signal_pending() below
6850 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6851 * done by the caller to avoid the race with signal_wake_up():
6852 *
6853 * __set_current_state(@state) signal_wake_up()
6854 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6855 * wake_up_state(p, state)
6856 * LOCK rq->lock LOCK p->pi_state
6857 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6858 * if (signal_pending_state()) if (p->state & @state)
6859 *
6860 * Also, the membarrier system call requires a full memory barrier
6861 * after coming from user-space, before storing to rq->curr; this
6862 * barrier matches a full barrier in the proximity of the membarrier
6863 * system call exit.
6864 */
6865 rq_lock(rq, &rf);
6866 smp_mb__after_spinlock();
6867
6868 /* Promote REQ to ACT */
6869 rq->clock_update_flags <<= 1;
6870 update_rq_clock(rq);
6871 rq->clock_update_flags = RQCF_UPDATED;
6872
6873 switch_count = &prev->nivcsw;
6874
6875 /* Task state changes only considers SM_PREEMPT as preemption */
6876 preempt = sched_mode == SM_PREEMPT;
6877
6878 /*
6879 * We must load prev->state once (task_struct::state is volatile), such
6880 * that we form a control dependency vs deactivate_task() below.
6881 */
6882 prev_state = READ_ONCE(prev->__state);
6883 if (sched_mode == SM_IDLE) {
6884 /* SCX must consult the BPF scheduler to tell if rq is empty */
6885 if (!rq->nr_running && !scx_enabled()) {
6886 next = prev;
6887 goto picked;
6888 }
6889 } else if (!preempt && prev_state) {
6890 /*
6891 * We pass task_is_blocked() as the should_block arg
6892 * in order to keep mutex-blocked tasks on the runqueue
6893 * for slection with proxy-exec (without proxy-exec
6894 * task_is_blocked() will always be false).
6895 */
6896 try_to_block_task(rq, prev, &prev_state,
6897 !task_is_blocked(prev));
6898 switch_count = &prev->nvcsw;
6899 }
6900
6901 pick_again:
6902 next = pick_next_task(rq, rq->donor, &rf);
6903 rq_set_donor(rq, next);
6904 if (unlikely(task_is_blocked(next))) {
6905 next = find_proxy_task(rq, next, &rf);
6906 if (!next)
6907 goto pick_again;
6908 if (next == rq->idle)
6909 goto keep_resched;
6910 }
6911 picked:
6912 clear_tsk_need_resched(prev);
6913 clear_preempt_need_resched();
6914 keep_resched:
6915 rq->last_seen_need_resched_ns = 0;
6916
6917 is_switch = prev != next;
6918 if (likely(is_switch)) {
6919 rq->nr_switches++;
6920 /*
6921 * RCU users of rcu_dereference(rq->curr) may not see
6922 * changes to task_struct made by pick_next_task().
6923 */
6924 RCU_INIT_POINTER(rq->curr, next);
6925
6926 if (!task_current_donor(rq, next))
6927 proxy_tag_curr(rq, next);
6928
6929 /*
6930 * The membarrier system call requires each architecture
6931 * to have a full memory barrier after updating
6932 * rq->curr, before returning to user-space.
6933 *
6934 * Here are the schemes providing that barrier on the
6935 * various architectures:
6936 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6937 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6938 * on PowerPC and on RISC-V.
6939 * - finish_lock_switch() for weakly-ordered
6940 * architectures where spin_unlock is a full barrier,
6941 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6942 * is a RELEASE barrier),
6943 *
6944 * The barrier matches a full barrier in the proximity of
6945 * the membarrier system call entry.
6946 *
6947 * On RISC-V, this barrier pairing is also needed for the
6948 * SYNC_CORE command when switching between processes, cf.
6949 * the inline comments in membarrier_arch_switch_mm().
6950 */
6951 ++*switch_count;
6952
6953 migrate_disable_switch(rq, prev);
6954 psi_account_irqtime(rq, prev, next);
6955 psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
6956 prev->se.sched_delayed);
6957
6958 trace_sched_switch(preempt, prev, next, prev_state);
6959
6960 /* Also unlocks the rq: */
6961 rq = context_switch(rq, prev, next, &rf);
6962 } else {
6963 /* In case next was already curr but just got blocked_donor */
6964 if (!task_current_donor(rq, next))
6965 proxy_tag_curr(rq, next);
6966
6967 rq_unpin_lock(rq, &rf);
6968 __balance_callbacks(rq);
6969 raw_spin_rq_unlock_irq(rq);
6970 }
6971 trace_sched_exit_tp(is_switch);
6972 }
6973
do_task_dead(void)6974 void __noreturn do_task_dead(void)
6975 {
6976 /* Causes final put_task_struct in finish_task_switch(): */
6977 set_special_state(TASK_DEAD);
6978
6979 /* Tell freezer to ignore us: */
6980 current->flags |= PF_NOFREEZE;
6981
6982 __schedule(SM_NONE);
6983 BUG();
6984
6985 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6986 for (;;)
6987 cpu_relax();
6988 }
6989
sched_submit_work(struct task_struct * tsk)6990 static inline void sched_submit_work(struct task_struct *tsk)
6991 {
6992 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6993 unsigned int task_flags;
6994
6995 /*
6996 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6997 * will use a blocking primitive -- which would lead to recursion.
6998 */
6999 lock_map_acquire_try(&sched_map);
7000
7001 task_flags = tsk->flags;
7002 /*
7003 * If a worker goes to sleep, notify and ask workqueue whether it
7004 * wants to wake up a task to maintain concurrency.
7005 */
7006 if (task_flags & PF_WQ_WORKER)
7007 wq_worker_sleeping(tsk);
7008 else if (task_flags & PF_IO_WORKER)
7009 io_wq_worker_sleeping(tsk);
7010
7011 /*
7012 * spinlock and rwlock must not flush block requests. This will
7013 * deadlock if the callback attempts to acquire a lock which is
7014 * already acquired.
7015 */
7016 WARN_ON_ONCE(current->__state & TASK_RTLOCK_WAIT);
7017
7018 /*
7019 * If we are going to sleep and we have plugged IO queued,
7020 * make sure to submit it to avoid deadlocks.
7021 */
7022 blk_flush_plug(tsk->plug, true);
7023
7024 lock_map_release(&sched_map);
7025 }
7026
sched_update_worker(struct task_struct * tsk)7027 static void sched_update_worker(struct task_struct *tsk)
7028 {
7029 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
7030 if (tsk->flags & PF_BLOCK_TS)
7031 blk_plug_invalidate_ts(tsk);
7032 if (tsk->flags & PF_WQ_WORKER)
7033 wq_worker_running(tsk);
7034 else if (tsk->flags & PF_IO_WORKER)
7035 io_wq_worker_running(tsk);
7036 }
7037 }
7038
__schedule_loop(int sched_mode)7039 static __always_inline void __schedule_loop(int sched_mode)
7040 {
7041 do {
7042 preempt_disable();
7043 __schedule(sched_mode);
7044 sched_preempt_enable_no_resched();
7045 } while (need_resched());
7046 }
7047
schedule(void)7048 asmlinkage __visible void __sched schedule(void)
7049 {
7050 struct task_struct *tsk = current;
7051
7052 #ifdef CONFIG_RT_MUTEXES
7053 lockdep_assert(!tsk->sched_rt_mutex);
7054 #endif
7055
7056 if (!task_is_running(tsk))
7057 sched_submit_work(tsk);
7058 __schedule_loop(SM_NONE);
7059 sched_update_worker(tsk);
7060 }
7061 EXPORT_SYMBOL(schedule);
7062
7063 /*
7064 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
7065 * state (have scheduled out non-voluntarily) by making sure that all
7066 * tasks have either left the run queue or have gone into user space.
7067 * As idle tasks do not do either, they must not ever be preempted
7068 * (schedule out non-voluntarily).
7069 *
7070 * schedule_idle() is similar to schedule_preempt_disable() except that it
7071 * never enables preemption because it does not call sched_submit_work().
7072 */
schedule_idle(void)7073 void __sched schedule_idle(void)
7074 {
7075 /*
7076 * As this skips calling sched_submit_work(), which the idle task does
7077 * regardless because that function is a NOP when the task is in a
7078 * TASK_RUNNING state, make sure this isn't used someplace that the
7079 * current task can be in any other state. Note, idle is always in the
7080 * TASK_RUNNING state.
7081 */
7082 WARN_ON_ONCE(current->__state);
7083 do {
7084 __schedule(SM_IDLE);
7085 } while (need_resched());
7086 }
7087
7088 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)7089 asmlinkage __visible void __sched schedule_user(void)
7090 {
7091 /*
7092 * If we come here after a random call to set_need_resched(),
7093 * or we have been woken up remotely but the IPI has not yet arrived,
7094 * we haven't yet exited the RCU idle mode. Do it here manually until
7095 * we find a better solution.
7096 *
7097 * NB: There are buggy callers of this function. Ideally we
7098 * should warn if prev_state != CT_STATE_USER, but that will trigger
7099 * too frequently to make sense yet.
7100 */
7101 enum ctx_state prev_state = exception_enter();
7102 schedule();
7103 exception_exit(prev_state);
7104 }
7105 #endif
7106
7107 /**
7108 * schedule_preempt_disabled - called with preemption disabled
7109 *
7110 * Returns with preemption disabled. Note: preempt_count must be 1
7111 */
schedule_preempt_disabled(void)7112 void __sched schedule_preempt_disabled(void)
7113 {
7114 sched_preempt_enable_no_resched();
7115 schedule();
7116 preempt_disable();
7117 }
7118
7119 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)7120 void __sched notrace schedule_rtlock(void)
7121 {
7122 __schedule_loop(SM_RTLOCK_WAIT);
7123 }
7124 NOKPROBE_SYMBOL(schedule_rtlock);
7125 #endif
7126
preempt_schedule_common(void)7127 static void __sched notrace preempt_schedule_common(void)
7128 {
7129 do {
7130 /*
7131 * Because the function tracer can trace preempt_count_sub()
7132 * and it also uses preempt_enable/disable_notrace(), if
7133 * NEED_RESCHED is set, the preempt_enable_notrace() called
7134 * by the function tracer will call this function again and
7135 * cause infinite recursion.
7136 *
7137 * Preemption must be disabled here before the function
7138 * tracer can trace. Break up preempt_disable() into two
7139 * calls. One to disable preemption without fear of being
7140 * traced. The other to still record the preemption latency,
7141 * which can also be traced by the function tracer.
7142 */
7143 preempt_disable_notrace();
7144 preempt_latency_start(1);
7145 __schedule(SM_PREEMPT);
7146 preempt_latency_stop(1);
7147 preempt_enable_no_resched_notrace();
7148
7149 /*
7150 * Check again in case we missed a preemption opportunity
7151 * between schedule and now.
7152 */
7153 } while (need_resched());
7154 }
7155
7156 #ifdef CONFIG_PREEMPTION
7157 /*
7158 * This is the entry point to schedule() from in-kernel preemption
7159 * off of preempt_enable.
7160 */
preempt_schedule(void)7161 asmlinkage __visible void __sched notrace preempt_schedule(void)
7162 {
7163 /*
7164 * If there is a non-zero preempt_count or interrupts are disabled,
7165 * we do not want to preempt the current task. Just return..
7166 */
7167 if (likely(!preemptible()))
7168 return;
7169 preempt_schedule_common();
7170 }
7171 NOKPROBE_SYMBOL(preempt_schedule);
7172 EXPORT_SYMBOL(preempt_schedule);
7173
7174 #ifdef CONFIG_PREEMPT_DYNAMIC
7175 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7176 # ifndef preempt_schedule_dynamic_enabled
7177 # define preempt_schedule_dynamic_enabled preempt_schedule
7178 # define preempt_schedule_dynamic_disabled NULL
7179 # endif
7180 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
7181 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
7182 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7183 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)7184 void __sched notrace dynamic_preempt_schedule(void)
7185 {
7186 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
7187 return;
7188 preempt_schedule();
7189 }
7190 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
7191 EXPORT_SYMBOL(dynamic_preempt_schedule);
7192 # endif
7193 #endif /* CONFIG_PREEMPT_DYNAMIC */
7194
7195 /**
7196 * preempt_schedule_notrace - preempt_schedule called by tracing
7197 *
7198 * The tracing infrastructure uses preempt_enable_notrace to prevent
7199 * recursion and tracing preempt enabling caused by the tracing
7200 * infrastructure itself. But as tracing can happen in areas coming
7201 * from userspace or just about to enter userspace, a preempt enable
7202 * can occur before user_exit() is called. This will cause the scheduler
7203 * to be called when the system is still in usermode.
7204 *
7205 * To prevent this, the preempt_enable_notrace will use this function
7206 * instead of preempt_schedule() to exit user context if needed before
7207 * calling the scheduler.
7208 */
preempt_schedule_notrace(void)7209 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
7210 {
7211 enum ctx_state prev_ctx;
7212
7213 if (likely(!preemptible()))
7214 return;
7215
7216 do {
7217 /*
7218 * Because the function tracer can trace preempt_count_sub()
7219 * and it also uses preempt_enable/disable_notrace(), if
7220 * NEED_RESCHED is set, the preempt_enable_notrace() called
7221 * by the function tracer will call this function again and
7222 * cause infinite recursion.
7223 *
7224 * Preemption must be disabled here before the function
7225 * tracer can trace. Break up preempt_disable() into two
7226 * calls. One to disable preemption without fear of being
7227 * traced. The other to still record the preemption latency,
7228 * which can also be traced by the function tracer.
7229 */
7230 preempt_disable_notrace();
7231 preempt_latency_start(1);
7232 /*
7233 * Needs preempt disabled in case user_exit() is traced
7234 * and the tracer calls preempt_enable_notrace() causing
7235 * an infinite recursion.
7236 */
7237 prev_ctx = exception_enter();
7238 __schedule(SM_PREEMPT);
7239 exception_exit(prev_ctx);
7240
7241 preempt_latency_stop(1);
7242 preempt_enable_no_resched_notrace();
7243 } while (need_resched());
7244 }
7245 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7246
7247 #ifdef CONFIG_PREEMPT_DYNAMIC
7248 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7249 # ifndef preempt_schedule_notrace_dynamic_enabled
7250 # define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7251 # define preempt_schedule_notrace_dynamic_disabled NULL
7252 # endif
7253 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7254 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7255 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7256 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7257 void __sched notrace dynamic_preempt_schedule_notrace(void)
7258 {
7259 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7260 return;
7261 preempt_schedule_notrace();
7262 }
7263 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7264 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7265 # endif
7266 #endif
7267
7268 #endif /* CONFIG_PREEMPTION */
7269
7270 /*
7271 * This is the entry point to schedule() from kernel preemption
7272 * off of IRQ context.
7273 * Note, that this is called and return with IRQs disabled. This will
7274 * protect us against recursive calling from IRQ contexts.
7275 */
preempt_schedule_irq(void)7276 asmlinkage __visible void __sched preempt_schedule_irq(void)
7277 {
7278 enum ctx_state prev_state;
7279
7280 /* Catch callers which need to be fixed */
7281 BUG_ON(preempt_count() || !irqs_disabled());
7282
7283 prev_state = exception_enter();
7284
7285 do {
7286 preempt_disable();
7287 local_irq_enable();
7288 __schedule(SM_PREEMPT);
7289 local_irq_disable();
7290 sched_preempt_enable_no_resched();
7291 } while (need_resched());
7292
7293 exception_exit(prev_state);
7294 }
7295
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7296 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7297 void *key)
7298 {
7299 WARN_ON_ONCE(wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7300 return try_to_wake_up(curr->private, mode, wake_flags);
7301 }
7302 EXPORT_SYMBOL(default_wake_function);
7303
__setscheduler_class(int policy,int prio)7304 const struct sched_class *__setscheduler_class(int policy, int prio)
7305 {
7306 if (dl_prio(prio))
7307 return &dl_sched_class;
7308
7309 if (rt_prio(prio))
7310 return &rt_sched_class;
7311
7312 #ifdef CONFIG_SCHED_CLASS_EXT
7313 if (task_should_scx(policy))
7314 return &ext_sched_class;
7315 #endif
7316
7317 return &fair_sched_class;
7318 }
7319
7320 #ifdef CONFIG_RT_MUTEXES
7321
7322 /*
7323 * Would be more useful with typeof()/auto_type but they don't mix with
7324 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7325 * name such that if someone were to implement this function we get to compare
7326 * notes.
7327 */
7328 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7329
rt_mutex_pre_schedule(void)7330 void rt_mutex_pre_schedule(void)
7331 {
7332 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7333 sched_submit_work(current);
7334 }
7335
rt_mutex_schedule(void)7336 void rt_mutex_schedule(void)
7337 {
7338 lockdep_assert(current->sched_rt_mutex);
7339 __schedule_loop(SM_NONE);
7340 }
7341
rt_mutex_post_schedule(void)7342 void rt_mutex_post_schedule(void)
7343 {
7344 sched_update_worker(current);
7345 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7346 }
7347
7348 /*
7349 * rt_mutex_setprio - set the current priority of a task
7350 * @p: task to boost
7351 * @pi_task: donor task
7352 *
7353 * This function changes the 'effective' priority of a task. It does
7354 * not touch ->normal_prio like __setscheduler().
7355 *
7356 * Used by the rt_mutex code to implement priority inheritance
7357 * logic. Call site only calls if the priority of the task changed.
7358 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7359 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7360 {
7361 int prio, oldprio, queued, running, queue_flag =
7362 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7363 const struct sched_class *prev_class, *next_class;
7364 struct rq_flags rf;
7365 struct rq *rq;
7366
7367 /* XXX used to be waiter->prio, not waiter->task->prio */
7368 prio = __rt_effective_prio(pi_task, p->normal_prio);
7369
7370 /*
7371 * If nothing changed; bail early.
7372 */
7373 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7374 return;
7375
7376 rq = __task_rq_lock(p, &rf);
7377 update_rq_clock(rq);
7378 /*
7379 * Set under pi_lock && rq->lock, such that the value can be used under
7380 * either lock.
7381 *
7382 * Note that there is loads of tricky to make this pointer cache work
7383 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7384 * ensure a task is de-boosted (pi_task is set to NULL) before the
7385 * task is allowed to run again (and can exit). This ensures the pointer
7386 * points to a blocked task -- which guarantees the task is present.
7387 */
7388 p->pi_top_task = pi_task;
7389
7390 /*
7391 * For FIFO/RR we only need to set prio, if that matches we're done.
7392 */
7393 if (prio == p->prio && !dl_prio(prio))
7394 goto out_unlock;
7395
7396 /*
7397 * Idle task boosting is a no-no in general. There is one
7398 * exception, when PREEMPT_RT and NOHZ is active:
7399 *
7400 * The idle task calls get_next_timer_interrupt() and holds
7401 * the timer wheel base->lock on the CPU and another CPU wants
7402 * to access the timer (probably to cancel it). We can safely
7403 * ignore the boosting request, as the idle CPU runs this code
7404 * with interrupts disabled and will complete the lock
7405 * protected section without being interrupted. So there is no
7406 * real need to boost.
7407 */
7408 if (unlikely(p == rq->idle)) {
7409 WARN_ON(p != rq->curr);
7410 WARN_ON(p->pi_blocked_on);
7411 goto out_unlock;
7412 }
7413
7414 trace_sched_pi_setprio(p, pi_task);
7415 oldprio = p->prio;
7416
7417 if (oldprio == prio)
7418 queue_flag &= ~DEQUEUE_MOVE;
7419
7420 prev_class = p->sched_class;
7421 next_class = __setscheduler_class(p->policy, prio);
7422
7423 if (prev_class != next_class && p->se.sched_delayed)
7424 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
7425
7426 queued = task_on_rq_queued(p);
7427 running = task_current_donor(rq, p);
7428 if (queued)
7429 dequeue_task(rq, p, queue_flag);
7430 if (running)
7431 put_prev_task(rq, p);
7432
7433 /*
7434 * Boosting condition are:
7435 * 1. -rt task is running and holds mutex A
7436 * --> -dl task blocks on mutex A
7437 *
7438 * 2. -dl task is running and holds mutex A
7439 * --> -dl task blocks on mutex A and could preempt the
7440 * running task
7441 */
7442 if (dl_prio(prio)) {
7443 if (!dl_prio(p->normal_prio) ||
7444 (pi_task && dl_prio(pi_task->prio) &&
7445 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7446 p->dl.pi_se = pi_task->dl.pi_se;
7447 queue_flag |= ENQUEUE_REPLENISH;
7448 } else {
7449 p->dl.pi_se = &p->dl;
7450 }
7451 } else if (rt_prio(prio)) {
7452 if (dl_prio(oldprio))
7453 p->dl.pi_se = &p->dl;
7454 if (oldprio < prio)
7455 queue_flag |= ENQUEUE_HEAD;
7456 } else {
7457 if (dl_prio(oldprio))
7458 p->dl.pi_se = &p->dl;
7459 if (rt_prio(oldprio))
7460 p->rt.timeout = 0;
7461 }
7462
7463 p->sched_class = next_class;
7464 p->prio = prio;
7465
7466 check_class_changing(rq, p, prev_class);
7467
7468 if (queued)
7469 enqueue_task(rq, p, queue_flag);
7470 if (running)
7471 set_next_task(rq, p);
7472
7473 check_class_changed(rq, p, prev_class, oldprio);
7474 out_unlock:
7475 /* Avoid rq from going away on us: */
7476 preempt_disable();
7477
7478 rq_unpin_lock(rq, &rf);
7479 __balance_callbacks(rq);
7480 raw_spin_rq_unlock(rq);
7481
7482 preempt_enable();
7483 }
7484 #endif /* CONFIG_RT_MUTEXES */
7485
7486 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)7487 int __sched __cond_resched(void)
7488 {
7489 if (should_resched(0) && !irqs_disabled()) {
7490 preempt_schedule_common();
7491 return 1;
7492 }
7493 /*
7494 * In PREEMPT_RCU kernels, ->rcu_read_lock_nesting tells the tick
7495 * whether the current CPU is in an RCU read-side critical section,
7496 * so the tick can report quiescent states even for CPUs looping
7497 * in kernel context. In contrast, in non-preemptible kernels,
7498 * RCU readers leave no in-memory hints, which means that CPU-bound
7499 * processes executing in kernel context might never report an
7500 * RCU quiescent state. Therefore, the following code causes
7501 * cond_resched() to report a quiescent state, but only when RCU
7502 * is in urgent need of one.
7503 * A third case, preemptible, but non-PREEMPT_RCU provides for
7504 * urgently needed quiescent states via rcu_flavor_sched_clock_irq().
7505 */
7506 #ifndef CONFIG_PREEMPT_RCU
7507 rcu_all_qs();
7508 #endif
7509 return 0;
7510 }
7511 EXPORT_SYMBOL(__cond_resched);
7512 #endif
7513
7514 #ifdef CONFIG_PREEMPT_DYNAMIC
7515 # ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
7516 # define cond_resched_dynamic_enabled __cond_resched
7517 # define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
7518 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7519 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7520
7521 # define might_resched_dynamic_enabled __cond_resched
7522 # define might_resched_dynamic_disabled ((void *)&__static_call_return0)
7523 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7524 EXPORT_STATIC_CALL_TRAMP(might_resched);
7525 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7526 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)7527 int __sched dynamic_cond_resched(void)
7528 {
7529 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
7530 return 0;
7531 return __cond_resched();
7532 }
7533 EXPORT_SYMBOL(dynamic_cond_resched);
7534
7535 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)7536 int __sched dynamic_might_resched(void)
7537 {
7538 if (!static_branch_unlikely(&sk_dynamic_might_resched))
7539 return 0;
7540 return __cond_resched();
7541 }
7542 EXPORT_SYMBOL(dynamic_might_resched);
7543 # endif
7544 #endif /* CONFIG_PREEMPT_DYNAMIC */
7545
7546 /*
7547 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7548 * call schedule, and on return reacquire the lock.
7549 *
7550 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7551 * operations here to prevent schedule() from being called twice (once via
7552 * spin_unlock(), once by hand).
7553 */
__cond_resched_lock(spinlock_t * lock)7554 int __cond_resched_lock(spinlock_t *lock)
7555 {
7556 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7557 int ret = 0;
7558
7559 lockdep_assert_held(lock);
7560
7561 if (spin_needbreak(lock) || resched) {
7562 spin_unlock(lock);
7563 if (!_cond_resched())
7564 cpu_relax();
7565 ret = 1;
7566 spin_lock(lock);
7567 }
7568 return ret;
7569 }
7570 EXPORT_SYMBOL(__cond_resched_lock);
7571
__cond_resched_rwlock_read(rwlock_t * lock)7572 int __cond_resched_rwlock_read(rwlock_t *lock)
7573 {
7574 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7575 int ret = 0;
7576
7577 lockdep_assert_held_read(lock);
7578
7579 if (rwlock_needbreak(lock) || resched) {
7580 read_unlock(lock);
7581 if (!_cond_resched())
7582 cpu_relax();
7583 ret = 1;
7584 read_lock(lock);
7585 }
7586 return ret;
7587 }
7588 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7589
__cond_resched_rwlock_write(rwlock_t * lock)7590 int __cond_resched_rwlock_write(rwlock_t *lock)
7591 {
7592 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7593 int ret = 0;
7594
7595 lockdep_assert_held_write(lock);
7596
7597 if (rwlock_needbreak(lock) || resched) {
7598 write_unlock(lock);
7599 if (!_cond_resched())
7600 cpu_relax();
7601 ret = 1;
7602 write_lock(lock);
7603 }
7604 return ret;
7605 }
7606 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7607
7608 #ifdef CONFIG_PREEMPT_DYNAMIC
7609
7610 # ifdef CONFIG_GENERIC_IRQ_ENTRY
7611 # include <linux/irq-entry-common.h>
7612 # endif
7613
7614 /*
7615 * SC:cond_resched
7616 * SC:might_resched
7617 * SC:preempt_schedule
7618 * SC:preempt_schedule_notrace
7619 * SC:irqentry_exit_cond_resched
7620 *
7621 *
7622 * NONE:
7623 * cond_resched <- __cond_resched
7624 * might_resched <- RET0
7625 * preempt_schedule <- NOP
7626 * preempt_schedule_notrace <- NOP
7627 * irqentry_exit_cond_resched <- NOP
7628 * dynamic_preempt_lazy <- false
7629 *
7630 * VOLUNTARY:
7631 * cond_resched <- __cond_resched
7632 * might_resched <- __cond_resched
7633 * preempt_schedule <- NOP
7634 * preempt_schedule_notrace <- NOP
7635 * irqentry_exit_cond_resched <- NOP
7636 * dynamic_preempt_lazy <- false
7637 *
7638 * FULL:
7639 * cond_resched <- RET0
7640 * might_resched <- RET0
7641 * preempt_schedule <- preempt_schedule
7642 * preempt_schedule_notrace <- preempt_schedule_notrace
7643 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7644 * dynamic_preempt_lazy <- false
7645 *
7646 * LAZY:
7647 * cond_resched <- RET0
7648 * might_resched <- RET0
7649 * preempt_schedule <- preempt_schedule
7650 * preempt_schedule_notrace <- preempt_schedule_notrace
7651 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
7652 * dynamic_preempt_lazy <- true
7653 */
7654
7655 enum {
7656 preempt_dynamic_undefined = -1,
7657 preempt_dynamic_none,
7658 preempt_dynamic_voluntary,
7659 preempt_dynamic_full,
7660 preempt_dynamic_lazy,
7661 };
7662
7663 int preempt_dynamic_mode = preempt_dynamic_undefined;
7664
sched_dynamic_mode(const char * str)7665 int sched_dynamic_mode(const char *str)
7666 {
7667 # ifndef CONFIG_PREEMPT_RT
7668 if (!strcmp(str, "none"))
7669 return preempt_dynamic_none;
7670
7671 if (!strcmp(str, "voluntary"))
7672 return preempt_dynamic_voluntary;
7673 # endif
7674
7675 if (!strcmp(str, "full"))
7676 return preempt_dynamic_full;
7677
7678 # ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
7679 if (!strcmp(str, "lazy"))
7680 return preempt_dynamic_lazy;
7681 # endif
7682
7683 return -EINVAL;
7684 }
7685
7686 # define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
7687 # define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
7688
7689 # if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7690 # define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
7691 # define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
7692 # elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7693 # define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
7694 # define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
7695 # else
7696 # error "Unsupported PREEMPT_DYNAMIC mechanism"
7697 # endif
7698
7699 static DEFINE_MUTEX(sched_dynamic_mutex);
7700
__sched_dynamic_update(int mode)7701 static void __sched_dynamic_update(int mode)
7702 {
7703 /*
7704 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
7705 * the ZERO state, which is invalid.
7706 */
7707 preempt_dynamic_enable(cond_resched);
7708 preempt_dynamic_enable(might_resched);
7709 preempt_dynamic_enable(preempt_schedule);
7710 preempt_dynamic_enable(preempt_schedule_notrace);
7711 preempt_dynamic_enable(irqentry_exit_cond_resched);
7712 preempt_dynamic_key_disable(preempt_lazy);
7713
7714 switch (mode) {
7715 case preempt_dynamic_none:
7716 preempt_dynamic_enable(cond_resched);
7717 preempt_dynamic_disable(might_resched);
7718 preempt_dynamic_disable(preempt_schedule);
7719 preempt_dynamic_disable(preempt_schedule_notrace);
7720 preempt_dynamic_disable(irqentry_exit_cond_resched);
7721 preempt_dynamic_key_disable(preempt_lazy);
7722 if (mode != preempt_dynamic_mode)
7723 pr_info("Dynamic Preempt: none\n");
7724 break;
7725
7726 case preempt_dynamic_voluntary:
7727 preempt_dynamic_enable(cond_resched);
7728 preempt_dynamic_enable(might_resched);
7729 preempt_dynamic_disable(preempt_schedule);
7730 preempt_dynamic_disable(preempt_schedule_notrace);
7731 preempt_dynamic_disable(irqentry_exit_cond_resched);
7732 preempt_dynamic_key_disable(preempt_lazy);
7733 if (mode != preempt_dynamic_mode)
7734 pr_info("Dynamic Preempt: voluntary\n");
7735 break;
7736
7737 case preempt_dynamic_full:
7738 preempt_dynamic_disable(cond_resched);
7739 preempt_dynamic_disable(might_resched);
7740 preempt_dynamic_enable(preempt_schedule);
7741 preempt_dynamic_enable(preempt_schedule_notrace);
7742 preempt_dynamic_enable(irqentry_exit_cond_resched);
7743 preempt_dynamic_key_disable(preempt_lazy);
7744 if (mode != preempt_dynamic_mode)
7745 pr_info("Dynamic Preempt: full\n");
7746 break;
7747
7748 case preempt_dynamic_lazy:
7749 preempt_dynamic_disable(cond_resched);
7750 preempt_dynamic_disable(might_resched);
7751 preempt_dynamic_enable(preempt_schedule);
7752 preempt_dynamic_enable(preempt_schedule_notrace);
7753 preempt_dynamic_enable(irqentry_exit_cond_resched);
7754 preempt_dynamic_key_enable(preempt_lazy);
7755 if (mode != preempt_dynamic_mode)
7756 pr_info("Dynamic Preempt: lazy\n");
7757 break;
7758 }
7759
7760 preempt_dynamic_mode = mode;
7761 }
7762
sched_dynamic_update(int mode)7763 void sched_dynamic_update(int mode)
7764 {
7765 mutex_lock(&sched_dynamic_mutex);
7766 __sched_dynamic_update(mode);
7767 mutex_unlock(&sched_dynamic_mutex);
7768 }
7769
setup_preempt_mode(char * str)7770 static int __init setup_preempt_mode(char *str)
7771 {
7772 int mode = sched_dynamic_mode(str);
7773 if (mode < 0) {
7774 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
7775 return 0;
7776 }
7777
7778 sched_dynamic_update(mode);
7779 return 1;
7780 }
7781 __setup("preempt=", setup_preempt_mode);
7782
preempt_dynamic_init(void)7783 static void __init preempt_dynamic_init(void)
7784 {
7785 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
7786 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
7787 sched_dynamic_update(preempt_dynamic_none);
7788 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
7789 sched_dynamic_update(preempt_dynamic_voluntary);
7790 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7791 sched_dynamic_update(preempt_dynamic_lazy);
7792 } else {
7793 /* Default static call setting, nothing to do */
7794 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
7795 preempt_dynamic_mode = preempt_dynamic_full;
7796 pr_info("Dynamic Preempt: full\n");
7797 }
7798 }
7799 }
7800
7801 # define PREEMPT_MODEL_ACCESSOR(mode) \
7802 bool preempt_model_##mode(void) \
7803 { \
7804 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
7805 return preempt_dynamic_mode == preempt_dynamic_##mode; \
7806 } \
7807 EXPORT_SYMBOL_GPL(preempt_model_##mode)
7808
7809 PREEMPT_MODEL_ACCESSOR(none);
7810 PREEMPT_MODEL_ACCESSOR(voluntary);
7811 PREEMPT_MODEL_ACCESSOR(full);
7812 PREEMPT_MODEL_ACCESSOR(lazy);
7813
7814 #else /* !CONFIG_PREEMPT_DYNAMIC: */
7815
7816 #define preempt_dynamic_mode -1
7817
preempt_dynamic_init(void)7818 static inline void preempt_dynamic_init(void) { }
7819
7820 #endif /* CONFIG_PREEMPT_DYNAMIC */
7821
7822 const char *preempt_modes[] = {
7823 "none", "voluntary", "full", "lazy", NULL,
7824 };
7825
preempt_model_str(void)7826 const char *preempt_model_str(void)
7827 {
7828 bool brace = IS_ENABLED(CONFIG_PREEMPT_RT) &&
7829 (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC) ||
7830 IS_ENABLED(CONFIG_PREEMPT_LAZY));
7831 static char buf[128];
7832
7833 if (IS_ENABLED(CONFIG_PREEMPT_BUILD)) {
7834 struct seq_buf s;
7835
7836 seq_buf_init(&s, buf, sizeof(buf));
7837 seq_buf_puts(&s, "PREEMPT");
7838
7839 if (IS_ENABLED(CONFIG_PREEMPT_RT))
7840 seq_buf_printf(&s, "%sRT%s",
7841 brace ? "_{" : "_",
7842 brace ? "," : "");
7843
7844 if (IS_ENABLED(CONFIG_PREEMPT_DYNAMIC)) {
7845 seq_buf_printf(&s, "(%s)%s",
7846 preempt_dynamic_mode >= 0 ?
7847 preempt_modes[preempt_dynamic_mode] : "undef",
7848 brace ? "}" : "");
7849 return seq_buf_str(&s);
7850 }
7851
7852 if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
7853 seq_buf_printf(&s, "LAZY%s",
7854 brace ? "}" : "");
7855 return seq_buf_str(&s);
7856 }
7857
7858 return seq_buf_str(&s);
7859 }
7860
7861 if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY_BUILD))
7862 return "VOLUNTARY";
7863
7864 return "NONE";
7865 }
7866
io_schedule_prepare(void)7867 int io_schedule_prepare(void)
7868 {
7869 int old_iowait = current->in_iowait;
7870
7871 current->in_iowait = 1;
7872 blk_flush_plug(current->plug, true);
7873 return old_iowait;
7874 }
7875
io_schedule_finish(int token)7876 void io_schedule_finish(int token)
7877 {
7878 current->in_iowait = token;
7879 }
7880
7881 /*
7882 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7883 * that process accounting knows that this is a task in IO wait state.
7884 */
io_schedule_timeout(long timeout)7885 long __sched io_schedule_timeout(long timeout)
7886 {
7887 int token;
7888 long ret;
7889
7890 token = io_schedule_prepare();
7891 ret = schedule_timeout(timeout);
7892 io_schedule_finish(token);
7893
7894 return ret;
7895 }
7896 EXPORT_SYMBOL(io_schedule_timeout);
7897
io_schedule(void)7898 void __sched io_schedule(void)
7899 {
7900 int token;
7901
7902 token = io_schedule_prepare();
7903 schedule();
7904 io_schedule_finish(token);
7905 }
7906 EXPORT_SYMBOL(io_schedule);
7907
sched_show_task(struct task_struct * p)7908 void sched_show_task(struct task_struct *p)
7909 {
7910 unsigned long free;
7911 int ppid;
7912
7913 if (!try_get_task_stack(p))
7914 return;
7915
7916 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7917
7918 if (task_is_running(p))
7919 pr_cont(" running task ");
7920 free = stack_not_used(p);
7921 ppid = 0;
7922 rcu_read_lock();
7923 if (pid_alive(p))
7924 ppid = task_pid_nr(rcu_dereference(p->real_parent));
7925 rcu_read_unlock();
7926 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
7927 free, task_pid_nr(p), task_tgid_nr(p),
7928 ppid, p->flags, read_task_thread_flags(p));
7929
7930 print_worker_info(KERN_INFO, p);
7931 print_stop_info(KERN_INFO, p);
7932 print_scx_info(KERN_INFO, p);
7933 show_stack(p, NULL, KERN_INFO);
7934 put_task_stack(p);
7935 }
7936 EXPORT_SYMBOL_GPL(sched_show_task);
7937
7938 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)7939 state_filter_match(unsigned long state_filter, struct task_struct *p)
7940 {
7941 unsigned int state = READ_ONCE(p->__state);
7942
7943 /* no filter, everything matches */
7944 if (!state_filter)
7945 return true;
7946
7947 /* filter, but doesn't match */
7948 if (!(state & state_filter))
7949 return false;
7950
7951 /*
7952 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7953 * TASK_KILLABLE).
7954 */
7955 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
7956 return false;
7957
7958 return true;
7959 }
7960
7961
show_state_filter(unsigned int state_filter)7962 void show_state_filter(unsigned int state_filter)
7963 {
7964 struct task_struct *g, *p;
7965
7966 rcu_read_lock();
7967 for_each_process_thread(g, p) {
7968 /*
7969 * reset the NMI-timeout, listing all files on a slow
7970 * console might take a lot of time:
7971 * Also, reset softlockup watchdogs on all CPUs, because
7972 * another CPU might be blocked waiting for us to process
7973 * an IPI.
7974 */
7975 touch_nmi_watchdog();
7976 touch_all_softlockup_watchdogs();
7977 if (state_filter_match(state_filter, p))
7978 sched_show_task(p);
7979 }
7980
7981 if (!state_filter)
7982 sysrq_sched_debug_show();
7983
7984 rcu_read_unlock();
7985 /*
7986 * Only show locks if all tasks are dumped:
7987 */
7988 if (!state_filter)
7989 debug_show_all_locks();
7990 }
7991
7992 /**
7993 * init_idle - set up an idle thread for a given CPU
7994 * @idle: task in question
7995 * @cpu: CPU the idle task belongs to
7996 *
7997 * NOTE: this function does not set the idle thread's NEED_RESCHED
7998 * flag, to make booting more robust.
7999 */
init_idle(struct task_struct * idle,int cpu)8000 void __init init_idle(struct task_struct *idle, int cpu)
8001 {
8002 struct affinity_context ac = (struct affinity_context) {
8003 .new_mask = cpumask_of(cpu),
8004 .flags = 0,
8005 };
8006 struct rq *rq = cpu_rq(cpu);
8007 unsigned long flags;
8008
8009 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8010 raw_spin_rq_lock(rq);
8011
8012 idle->__state = TASK_RUNNING;
8013 idle->se.exec_start = sched_clock();
8014 /*
8015 * PF_KTHREAD should already be set at this point; regardless, make it
8016 * look like a proper per-CPU kthread.
8017 */
8018 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
8019 kthread_set_per_cpu(idle, cpu);
8020
8021 /*
8022 * No validation and serialization required at boot time and for
8023 * setting up the idle tasks of not yet online CPUs.
8024 */
8025 set_cpus_allowed_common(idle, &ac);
8026 /*
8027 * We're having a chicken and egg problem, even though we are
8028 * holding rq->lock, the CPU isn't yet set to this CPU so the
8029 * lockdep check in task_group() will fail.
8030 *
8031 * Similar case to sched_fork(). / Alternatively we could
8032 * use task_rq_lock() here and obtain the other rq->lock.
8033 *
8034 * Silence PROVE_RCU
8035 */
8036 rcu_read_lock();
8037 __set_task_cpu(idle, cpu);
8038 rcu_read_unlock();
8039
8040 rq->idle = idle;
8041 rq_set_donor(rq, idle);
8042 rcu_assign_pointer(rq->curr, idle);
8043 idle->on_rq = TASK_ON_RQ_QUEUED;
8044 idle->on_cpu = 1;
8045 raw_spin_rq_unlock(rq);
8046 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8047
8048 /* Set the preempt count _outside_ the spinlocks! */
8049 init_idle_preempt_count(idle, cpu);
8050
8051 /*
8052 * The idle tasks have their own, simple scheduling class:
8053 */
8054 idle->sched_class = &idle_sched_class;
8055 ftrace_graph_init_idle_task(idle, cpu);
8056 vtime_init_idle(idle, cpu);
8057 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8058 }
8059
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)8060 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8061 const struct cpumask *trial)
8062 {
8063 int ret = 1;
8064
8065 if (cpumask_empty(cur))
8066 return ret;
8067
8068 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8069
8070 return ret;
8071 }
8072
task_can_attach(struct task_struct * p)8073 int task_can_attach(struct task_struct *p)
8074 {
8075 int ret = 0;
8076
8077 /*
8078 * Kthreads which disallow setaffinity shouldn't be moved
8079 * to a new cpuset; we don't want to change their CPU
8080 * affinity and isolating such threads by their set of
8081 * allowed nodes is unnecessary. Thus, cpusets are not
8082 * applicable for such threads. This prevents checking for
8083 * success of set_cpus_allowed_ptr() on all attached tasks
8084 * before cpus_mask may be changed.
8085 */
8086 if (p->flags & PF_NO_SETAFFINITY)
8087 ret = -EINVAL;
8088
8089 return ret;
8090 }
8091
8092 bool sched_smp_initialized __read_mostly;
8093
8094 #ifdef CONFIG_NUMA_BALANCING
8095 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)8096 int migrate_task_to(struct task_struct *p, int target_cpu)
8097 {
8098 struct migration_arg arg = { p, target_cpu };
8099 int curr_cpu = task_cpu(p);
8100
8101 if (curr_cpu == target_cpu)
8102 return 0;
8103
8104 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8105 return -EINVAL;
8106
8107 /* TODO: This is not properly updating schedstats */
8108
8109 trace_sched_move_numa(p, curr_cpu, target_cpu);
8110 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8111 }
8112
8113 /*
8114 * Requeue a task on a given node and accurately track the number of NUMA
8115 * tasks on the runqueues
8116 */
sched_setnuma(struct task_struct * p,int nid)8117 void sched_setnuma(struct task_struct *p, int nid)
8118 {
8119 bool queued, running;
8120 struct rq_flags rf;
8121 struct rq *rq;
8122
8123 rq = task_rq_lock(p, &rf);
8124 queued = task_on_rq_queued(p);
8125 running = task_current_donor(rq, p);
8126
8127 if (queued)
8128 dequeue_task(rq, p, DEQUEUE_SAVE);
8129 if (running)
8130 put_prev_task(rq, p);
8131
8132 p->numa_preferred_nid = nid;
8133
8134 if (queued)
8135 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8136 if (running)
8137 set_next_task(rq, p);
8138 task_rq_unlock(rq, p, &rf);
8139 }
8140 #endif /* CONFIG_NUMA_BALANCING */
8141
8142 #ifdef CONFIG_HOTPLUG_CPU
8143 /*
8144 * Invoked on the outgoing CPU in context of the CPU hotplug thread
8145 * after ensuring that there are no user space tasks left on the CPU.
8146 *
8147 * If there is a lazy mm in use on the hotplug thread, drop it and
8148 * switch to init_mm.
8149 *
8150 * The reference count on init_mm is dropped in finish_cpu().
8151 */
sched_force_init_mm(void)8152 static void sched_force_init_mm(void)
8153 {
8154 struct mm_struct *mm = current->active_mm;
8155
8156 if (mm != &init_mm) {
8157 mmgrab_lazy_tlb(&init_mm);
8158 local_irq_disable();
8159 current->active_mm = &init_mm;
8160 switch_mm_irqs_off(mm, &init_mm, current);
8161 local_irq_enable();
8162 finish_arch_post_lock_switch();
8163 mmdrop_lazy_tlb(mm);
8164 }
8165
8166 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8167 }
8168
__balance_push_cpu_stop(void * arg)8169 static int __balance_push_cpu_stop(void *arg)
8170 {
8171 struct task_struct *p = arg;
8172 struct rq *rq = this_rq();
8173 struct rq_flags rf;
8174 int cpu;
8175
8176 raw_spin_lock_irq(&p->pi_lock);
8177 rq_lock(rq, &rf);
8178
8179 update_rq_clock(rq);
8180
8181 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8182 cpu = select_fallback_rq(rq->cpu, p);
8183 rq = __migrate_task(rq, &rf, p, cpu);
8184 }
8185
8186 rq_unlock(rq, &rf);
8187 raw_spin_unlock_irq(&p->pi_lock);
8188
8189 put_task_struct(p);
8190
8191 return 0;
8192 }
8193
8194 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8195
8196 /*
8197 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8198 *
8199 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8200 * effective when the hotplug motion is down.
8201 */
balance_push(struct rq * rq)8202 static void balance_push(struct rq *rq)
8203 {
8204 struct task_struct *push_task = rq->curr;
8205
8206 lockdep_assert_rq_held(rq);
8207
8208 /*
8209 * Ensure the thing is persistent until balance_push_set(.on = false);
8210 */
8211 rq->balance_callback = &balance_push_callback;
8212
8213 /*
8214 * Only active while going offline and when invoked on the outgoing
8215 * CPU.
8216 */
8217 if (!cpu_dying(rq->cpu) || rq != this_rq())
8218 return;
8219
8220 /*
8221 * Both the cpu-hotplug and stop task are in this case and are
8222 * required to complete the hotplug process.
8223 */
8224 if (kthread_is_per_cpu(push_task) ||
8225 is_migration_disabled(push_task)) {
8226
8227 /*
8228 * If this is the idle task on the outgoing CPU try to wake
8229 * up the hotplug control thread which might wait for the
8230 * last task to vanish. The rcuwait_active() check is
8231 * accurate here because the waiter is pinned on this CPU
8232 * and can't obviously be running in parallel.
8233 *
8234 * On RT kernels this also has to check whether there are
8235 * pinned and scheduled out tasks on the runqueue. They
8236 * need to leave the migrate disabled section first.
8237 */
8238 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8239 rcuwait_active(&rq->hotplug_wait)) {
8240 raw_spin_rq_unlock(rq);
8241 rcuwait_wake_up(&rq->hotplug_wait);
8242 raw_spin_rq_lock(rq);
8243 }
8244 return;
8245 }
8246
8247 get_task_struct(push_task);
8248 /*
8249 * Temporarily drop rq->lock such that we can wake-up the stop task.
8250 * Both preemption and IRQs are still disabled.
8251 */
8252 preempt_disable();
8253 raw_spin_rq_unlock(rq);
8254 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8255 this_cpu_ptr(&push_work));
8256 preempt_enable();
8257 /*
8258 * At this point need_resched() is true and we'll take the loop in
8259 * schedule(). The next pick is obviously going to be the stop task
8260 * which kthread_is_per_cpu() and will push this task away.
8261 */
8262 raw_spin_rq_lock(rq);
8263 }
8264
balance_push_set(int cpu,bool on)8265 static void balance_push_set(int cpu, bool on)
8266 {
8267 struct rq *rq = cpu_rq(cpu);
8268 struct rq_flags rf;
8269
8270 rq_lock_irqsave(rq, &rf);
8271 if (on) {
8272 WARN_ON_ONCE(rq->balance_callback);
8273 rq->balance_callback = &balance_push_callback;
8274 } else if (rq->balance_callback == &balance_push_callback) {
8275 rq->balance_callback = NULL;
8276 }
8277 rq_unlock_irqrestore(rq, &rf);
8278 }
8279
8280 /*
8281 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8282 * inactive. All tasks which are not per CPU kernel threads are either
8283 * pushed off this CPU now via balance_push() or placed on a different CPU
8284 * during wakeup. Wait until the CPU is quiescent.
8285 */
balance_hotplug_wait(void)8286 static void balance_hotplug_wait(void)
8287 {
8288 struct rq *rq = this_rq();
8289
8290 rcuwait_wait_event(&rq->hotplug_wait,
8291 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8292 TASK_UNINTERRUPTIBLE);
8293 }
8294
8295 #else /* !CONFIG_HOTPLUG_CPU: */
8296
balance_push(struct rq * rq)8297 static inline void balance_push(struct rq *rq)
8298 {
8299 }
8300
balance_push_set(int cpu,bool on)8301 static inline void balance_push_set(int cpu, bool on)
8302 {
8303 }
8304
balance_hotplug_wait(void)8305 static inline void balance_hotplug_wait(void)
8306 {
8307 }
8308
8309 #endif /* !CONFIG_HOTPLUG_CPU */
8310
set_rq_online(struct rq * rq)8311 void set_rq_online(struct rq *rq)
8312 {
8313 if (!rq->online) {
8314 const struct sched_class *class;
8315
8316 cpumask_set_cpu(rq->cpu, rq->rd->online);
8317 rq->online = 1;
8318
8319 for_each_class(class) {
8320 if (class->rq_online)
8321 class->rq_online(rq);
8322 }
8323 }
8324 }
8325
set_rq_offline(struct rq * rq)8326 void set_rq_offline(struct rq *rq)
8327 {
8328 if (rq->online) {
8329 const struct sched_class *class;
8330
8331 update_rq_clock(rq);
8332 for_each_class(class) {
8333 if (class->rq_offline)
8334 class->rq_offline(rq);
8335 }
8336
8337 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8338 rq->online = 0;
8339 }
8340 }
8341
sched_set_rq_online(struct rq * rq,int cpu)8342 static inline void sched_set_rq_online(struct rq *rq, int cpu)
8343 {
8344 struct rq_flags rf;
8345
8346 rq_lock_irqsave(rq, &rf);
8347 if (rq->rd) {
8348 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8349 set_rq_online(rq);
8350 }
8351 rq_unlock_irqrestore(rq, &rf);
8352 }
8353
sched_set_rq_offline(struct rq * rq,int cpu)8354 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
8355 {
8356 struct rq_flags rf;
8357
8358 rq_lock_irqsave(rq, &rf);
8359 if (rq->rd) {
8360 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8361 set_rq_offline(rq);
8362 }
8363 rq_unlock_irqrestore(rq, &rf);
8364 }
8365
8366 /*
8367 * used to mark begin/end of suspend/resume:
8368 */
8369 static int num_cpus_frozen;
8370
8371 /*
8372 * Update cpusets according to cpu_active mask. If cpusets are
8373 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8374 * around partition_sched_domains().
8375 *
8376 * If we come here as part of a suspend/resume, don't touch cpusets because we
8377 * want to restore it back to its original state upon resume anyway.
8378 */
cpuset_cpu_active(void)8379 static void cpuset_cpu_active(void)
8380 {
8381 if (cpuhp_tasks_frozen) {
8382 /*
8383 * num_cpus_frozen tracks how many CPUs are involved in suspend
8384 * resume sequence. As long as this is not the last online
8385 * operation in the resume sequence, just build a single sched
8386 * domain, ignoring cpusets.
8387 */
8388 cpuset_reset_sched_domains();
8389 if (--num_cpus_frozen)
8390 return;
8391 /*
8392 * This is the last CPU online operation. So fall through and
8393 * restore the original sched domains by considering the
8394 * cpuset configurations.
8395 */
8396 cpuset_force_rebuild();
8397 }
8398 cpuset_update_active_cpus();
8399 }
8400
cpuset_cpu_inactive(unsigned int cpu)8401 static void cpuset_cpu_inactive(unsigned int cpu)
8402 {
8403 if (!cpuhp_tasks_frozen) {
8404 cpuset_update_active_cpus();
8405 } else {
8406 num_cpus_frozen++;
8407 cpuset_reset_sched_domains();
8408 }
8409 }
8410
sched_smt_present_inc(int cpu)8411 static inline void sched_smt_present_inc(int cpu)
8412 {
8413 #ifdef CONFIG_SCHED_SMT
8414 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8415 static_branch_inc_cpuslocked(&sched_smt_present);
8416 #endif
8417 }
8418
sched_smt_present_dec(int cpu)8419 static inline void sched_smt_present_dec(int cpu)
8420 {
8421 #ifdef CONFIG_SCHED_SMT
8422 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8423 static_branch_dec_cpuslocked(&sched_smt_present);
8424 #endif
8425 }
8426
sched_cpu_activate(unsigned int cpu)8427 int sched_cpu_activate(unsigned int cpu)
8428 {
8429 struct rq *rq = cpu_rq(cpu);
8430
8431 /*
8432 * Clear the balance_push callback and prepare to schedule
8433 * regular tasks.
8434 */
8435 balance_push_set(cpu, false);
8436
8437 /*
8438 * When going up, increment the number of cores with SMT present.
8439 */
8440 sched_smt_present_inc(cpu);
8441 set_cpu_active(cpu, true);
8442
8443 if (sched_smp_initialized) {
8444 sched_update_numa(cpu, true);
8445 sched_domains_numa_masks_set(cpu);
8446 cpuset_cpu_active();
8447 }
8448
8449 scx_rq_activate(rq);
8450
8451 /*
8452 * Put the rq online, if not already. This happens:
8453 *
8454 * 1) In the early boot process, because we build the real domains
8455 * after all CPUs have been brought up.
8456 *
8457 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8458 * domains.
8459 */
8460 sched_set_rq_online(rq, cpu);
8461
8462 return 0;
8463 }
8464
sched_cpu_deactivate(unsigned int cpu)8465 int sched_cpu_deactivate(unsigned int cpu)
8466 {
8467 struct rq *rq = cpu_rq(cpu);
8468 int ret;
8469
8470 ret = dl_bw_deactivate(cpu);
8471
8472 if (ret)
8473 return ret;
8474
8475 /*
8476 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8477 * load balancing when not active
8478 */
8479 nohz_balance_exit_idle(rq);
8480
8481 set_cpu_active(cpu, false);
8482
8483 /*
8484 * From this point forward, this CPU will refuse to run any task that
8485 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8486 * push those tasks away until this gets cleared, see
8487 * sched_cpu_dying().
8488 */
8489 balance_push_set(cpu, true);
8490
8491 /*
8492 * We've cleared cpu_active_mask / set balance_push, wait for all
8493 * preempt-disabled and RCU users of this state to go away such that
8494 * all new such users will observe it.
8495 *
8496 * Specifically, we rely on ttwu to no longer target this CPU, see
8497 * ttwu_queue_cond() and is_cpu_allowed().
8498 *
8499 * Do sync before park smpboot threads to take care the RCU boost case.
8500 */
8501 synchronize_rcu();
8502
8503 sched_set_rq_offline(rq, cpu);
8504
8505 scx_rq_deactivate(rq);
8506
8507 /*
8508 * When going down, decrement the number of cores with SMT present.
8509 */
8510 sched_smt_present_dec(cpu);
8511
8512 #ifdef CONFIG_SCHED_SMT
8513 sched_core_cpu_deactivate(cpu);
8514 #endif
8515
8516 if (!sched_smp_initialized)
8517 return 0;
8518
8519 sched_update_numa(cpu, false);
8520 cpuset_cpu_inactive(cpu);
8521 sched_domains_numa_masks_clear(cpu);
8522 return 0;
8523 }
8524
sched_rq_cpu_starting(unsigned int cpu)8525 static void sched_rq_cpu_starting(unsigned int cpu)
8526 {
8527 struct rq *rq = cpu_rq(cpu);
8528
8529 rq->calc_load_update = calc_load_update;
8530 update_max_interval();
8531 }
8532
sched_cpu_starting(unsigned int cpu)8533 int sched_cpu_starting(unsigned int cpu)
8534 {
8535 sched_core_cpu_starting(cpu);
8536 sched_rq_cpu_starting(cpu);
8537 sched_tick_start(cpu);
8538 return 0;
8539 }
8540
8541 #ifdef CONFIG_HOTPLUG_CPU
8542
8543 /*
8544 * Invoked immediately before the stopper thread is invoked to bring the
8545 * CPU down completely. At this point all per CPU kthreads except the
8546 * hotplug thread (current) and the stopper thread (inactive) have been
8547 * either parked or have been unbound from the outgoing CPU. Ensure that
8548 * any of those which might be on the way out are gone.
8549 *
8550 * If after this point a bound task is being woken on this CPU then the
8551 * responsible hotplug callback has failed to do it's job.
8552 * sched_cpu_dying() will catch it with the appropriate fireworks.
8553 */
sched_cpu_wait_empty(unsigned int cpu)8554 int sched_cpu_wait_empty(unsigned int cpu)
8555 {
8556 balance_hotplug_wait();
8557 sched_force_init_mm();
8558 return 0;
8559 }
8560
8561 /*
8562 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8563 * might have. Called from the CPU stopper task after ensuring that the
8564 * stopper is the last running task on the CPU, so nr_active count is
8565 * stable. We need to take the tear-down thread which is calling this into
8566 * account, so we hand in adjust = 1 to the load calculation.
8567 *
8568 * Also see the comment "Global load-average calculations".
8569 */
calc_load_migrate(struct rq * rq)8570 static void calc_load_migrate(struct rq *rq)
8571 {
8572 long delta = calc_load_fold_active(rq, 1);
8573
8574 if (delta)
8575 atomic_long_add(delta, &calc_load_tasks);
8576 }
8577
dump_rq_tasks(struct rq * rq,const char * loglvl)8578 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8579 {
8580 struct task_struct *g, *p;
8581 int cpu = cpu_of(rq);
8582
8583 lockdep_assert_rq_held(rq);
8584
8585 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8586 for_each_process_thread(g, p) {
8587 if (task_cpu(p) != cpu)
8588 continue;
8589
8590 if (!task_on_rq_queued(p))
8591 continue;
8592
8593 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8594 }
8595 }
8596
sched_cpu_dying(unsigned int cpu)8597 int sched_cpu_dying(unsigned int cpu)
8598 {
8599 struct rq *rq = cpu_rq(cpu);
8600 struct rq_flags rf;
8601
8602 /* Handle pending wakeups and then migrate everything off */
8603 sched_tick_stop(cpu);
8604
8605 rq_lock_irqsave(rq, &rf);
8606 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8607 WARN(true, "Dying CPU not properly vacated!");
8608 dump_rq_tasks(rq, KERN_WARNING);
8609 }
8610 rq_unlock_irqrestore(rq, &rf);
8611
8612 calc_load_migrate(rq);
8613 update_max_interval();
8614 hrtick_clear(rq);
8615 sched_core_cpu_dying(cpu);
8616 return 0;
8617 }
8618 #endif /* CONFIG_HOTPLUG_CPU */
8619
sched_init_smp(void)8620 void __init sched_init_smp(void)
8621 {
8622 sched_init_numa(NUMA_NO_NODE);
8623
8624 /*
8625 * There's no userspace yet to cause hotplug operations; hence all the
8626 * CPU masks are stable and all blatant races in the below code cannot
8627 * happen.
8628 */
8629 sched_domains_mutex_lock();
8630 sched_init_domains(cpu_active_mask);
8631 sched_domains_mutex_unlock();
8632
8633 /* Move init over to a non-isolated CPU */
8634 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
8635 BUG();
8636 current->flags &= ~PF_NO_SETAFFINITY;
8637 sched_init_granularity();
8638
8639 init_sched_rt_class();
8640 init_sched_dl_class();
8641
8642 sched_init_dl_servers();
8643
8644 sched_smp_initialized = true;
8645 }
8646
migration_init(void)8647 static int __init migration_init(void)
8648 {
8649 sched_cpu_starting(smp_processor_id());
8650 return 0;
8651 }
8652 early_initcall(migration_init);
8653
in_sched_functions(unsigned long addr)8654 int in_sched_functions(unsigned long addr)
8655 {
8656 return in_lock_functions(addr) ||
8657 (addr >= (unsigned long)__sched_text_start
8658 && addr < (unsigned long)__sched_text_end);
8659 }
8660
8661 #ifdef CONFIG_CGROUP_SCHED
8662 /*
8663 * Default task group.
8664 * Every task in system belongs to this group at bootup.
8665 */
8666 struct task_group root_task_group;
8667 LIST_HEAD(task_groups);
8668
8669 /* Cacheline aligned slab cache for task_group */
8670 static struct kmem_cache *task_group_cache __ro_after_init;
8671 #endif
8672
sched_init(void)8673 void __init sched_init(void)
8674 {
8675 unsigned long ptr = 0;
8676 int i;
8677
8678 /* Make sure the linker didn't screw up */
8679 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
8680 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
8681 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
8682 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
8683 #ifdef CONFIG_SCHED_CLASS_EXT
8684 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
8685 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
8686 #endif
8687
8688 wait_bit_init();
8689
8690 #ifdef CONFIG_FAIR_GROUP_SCHED
8691 ptr += 2 * nr_cpu_ids * sizeof(void **);
8692 #endif
8693 #ifdef CONFIG_RT_GROUP_SCHED
8694 ptr += 2 * nr_cpu_ids * sizeof(void **);
8695 #endif
8696 if (ptr) {
8697 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8698
8699 #ifdef CONFIG_FAIR_GROUP_SCHED
8700 root_task_group.se = (struct sched_entity **)ptr;
8701 ptr += nr_cpu_ids * sizeof(void **);
8702
8703 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8704 ptr += nr_cpu_ids * sizeof(void **);
8705
8706 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8707 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
8708 #endif /* CONFIG_FAIR_GROUP_SCHED */
8709 #ifdef CONFIG_EXT_GROUP_SCHED
8710 scx_tg_init(&root_task_group);
8711 #endif /* CONFIG_EXT_GROUP_SCHED */
8712 #ifdef CONFIG_RT_GROUP_SCHED
8713 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8714 ptr += nr_cpu_ids * sizeof(void **);
8715
8716 root_task_group.rt_rq = (struct rt_rq **)ptr;
8717 ptr += nr_cpu_ids * sizeof(void **);
8718
8719 #endif /* CONFIG_RT_GROUP_SCHED */
8720 }
8721
8722 init_defrootdomain();
8723
8724 #ifdef CONFIG_RT_GROUP_SCHED
8725 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8726 global_rt_period(), global_rt_runtime());
8727 #endif /* CONFIG_RT_GROUP_SCHED */
8728
8729 #ifdef CONFIG_CGROUP_SCHED
8730 task_group_cache = KMEM_CACHE(task_group, 0);
8731
8732 list_add(&root_task_group.list, &task_groups);
8733 INIT_LIST_HEAD(&root_task_group.children);
8734 INIT_LIST_HEAD(&root_task_group.siblings);
8735 autogroup_init(&init_task);
8736 #endif /* CONFIG_CGROUP_SCHED */
8737
8738 for_each_possible_cpu(i) {
8739 struct rq *rq;
8740
8741 rq = cpu_rq(i);
8742 raw_spin_lock_init(&rq->__lock);
8743 rq->nr_running = 0;
8744 rq->calc_load_active = 0;
8745 rq->calc_load_update = jiffies + LOAD_FREQ;
8746 init_cfs_rq(&rq->cfs);
8747 init_rt_rq(&rq->rt);
8748 init_dl_rq(&rq->dl);
8749 #ifdef CONFIG_FAIR_GROUP_SCHED
8750 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8751 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8752 /*
8753 * How much CPU bandwidth does root_task_group get?
8754 *
8755 * In case of task-groups formed through the cgroup filesystem, it
8756 * gets 100% of the CPU resources in the system. This overall
8757 * system CPU resource is divided among the tasks of
8758 * root_task_group and its child task-groups in a fair manner,
8759 * based on each entity's (task or task-group's) weight
8760 * (se->load.weight).
8761 *
8762 * In other words, if root_task_group has 10 tasks of weight
8763 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8764 * then A0's share of the CPU resource is:
8765 *
8766 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8767 *
8768 * We achieve this by letting root_task_group's tasks sit
8769 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8770 */
8771 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8772 #endif /* CONFIG_FAIR_GROUP_SCHED */
8773
8774 #ifdef CONFIG_RT_GROUP_SCHED
8775 /*
8776 * This is required for init cpu because rt.c:__enable_runtime()
8777 * starts working after scheduler_running, which is not the case
8778 * yet.
8779 */
8780 rq->rt.rt_runtime = global_rt_runtime();
8781 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8782 #endif
8783 rq->sd = NULL;
8784 rq->rd = NULL;
8785 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
8786 rq->balance_callback = &balance_push_callback;
8787 rq->active_balance = 0;
8788 rq->next_balance = jiffies;
8789 rq->push_cpu = 0;
8790 rq->cpu = i;
8791 rq->online = 0;
8792 rq->idle_stamp = 0;
8793 rq->avg_idle = 2*sysctl_sched_migration_cost;
8794 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8795
8796 INIT_LIST_HEAD(&rq->cfs_tasks);
8797
8798 rq_attach_root(rq, &def_root_domain);
8799 #ifdef CONFIG_NO_HZ_COMMON
8800 rq->last_blocked_load_update_tick = jiffies;
8801 atomic_set(&rq->nohz_flags, 0);
8802
8803 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8804 #endif
8805 #ifdef CONFIG_HOTPLUG_CPU
8806 rcuwait_init(&rq->hotplug_wait);
8807 #endif
8808 hrtick_rq_init(rq);
8809 atomic_set(&rq->nr_iowait, 0);
8810 fair_server_init(rq);
8811
8812 #ifdef CONFIG_SCHED_CORE
8813 rq->core = rq;
8814 rq->core_pick = NULL;
8815 rq->core_dl_server = NULL;
8816 rq->core_enabled = 0;
8817 rq->core_tree = RB_ROOT;
8818 rq->core_forceidle_count = 0;
8819 rq->core_forceidle_occupation = 0;
8820 rq->core_forceidle_start = 0;
8821
8822 rq->core_cookie = 0UL;
8823 #endif
8824 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
8825 }
8826
8827 set_load_weight(&init_task, false);
8828 init_task.se.slice = sysctl_sched_base_slice,
8829
8830 /*
8831 * The boot idle thread does lazy MMU switching as well:
8832 */
8833 mmgrab_lazy_tlb(&init_mm);
8834 enter_lazy_tlb(&init_mm, current);
8835
8836 /*
8837 * The idle task doesn't need the kthread struct to function, but it
8838 * is dressed up as a per-CPU kthread and thus needs to play the part
8839 * if we want to avoid special-casing it in code that deals with per-CPU
8840 * kthreads.
8841 */
8842 WARN_ON(!set_kthread_struct(current));
8843
8844 /*
8845 * Make us the idle thread. Technically, schedule() should not be
8846 * called from this thread, however somewhere below it might be,
8847 * but because we are the idle thread, we just pick up running again
8848 * when this runqueue becomes "idle".
8849 */
8850 __sched_fork(0, current);
8851 init_idle(current, smp_processor_id());
8852
8853 calc_load_update = jiffies + LOAD_FREQ;
8854
8855 idle_thread_set_boot_cpu();
8856
8857 balance_push_set(smp_processor_id(), false);
8858 init_sched_fair_class();
8859 init_sched_ext_class();
8860
8861 psi_init();
8862
8863 init_uclamp();
8864
8865 preempt_dynamic_init();
8866
8867 scheduler_running = 1;
8868 }
8869
8870 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8871
__might_sleep(const char * file,int line)8872 void __might_sleep(const char *file, int line)
8873 {
8874 unsigned int state = get_current_state();
8875 /*
8876 * Blocking primitives will set (and therefore destroy) current->state,
8877 * since we will exit with TASK_RUNNING make sure we enter with it,
8878 * otherwise we will destroy state.
8879 */
8880 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8881 "do not call blocking ops when !TASK_RUNNING; "
8882 "state=%x set at [<%p>] %pS\n", state,
8883 (void *)current->task_state_change,
8884 (void *)current->task_state_change);
8885
8886 __might_resched(file, line, 0);
8887 }
8888 EXPORT_SYMBOL(__might_sleep);
8889
print_preempt_disable_ip(int preempt_offset,unsigned long ip)8890 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
8891 {
8892 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
8893 return;
8894
8895 if (preempt_count() == preempt_offset)
8896 return;
8897
8898 pr_err("Preemption disabled at:");
8899 print_ip_sym(KERN_ERR, ip);
8900 }
8901
resched_offsets_ok(unsigned int offsets)8902 static inline bool resched_offsets_ok(unsigned int offsets)
8903 {
8904 unsigned int nested = preempt_count();
8905
8906 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
8907
8908 return nested == offsets;
8909 }
8910
__might_resched(const char * file,int line,unsigned int offsets)8911 void __might_resched(const char *file, int line, unsigned int offsets)
8912 {
8913 /* Ratelimiting timestamp: */
8914 static unsigned long prev_jiffy;
8915
8916 unsigned long preempt_disable_ip;
8917
8918 /* WARN_ON_ONCE() by default, no rate limit required: */
8919 rcu_sleep_check();
8920
8921 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
8922 !is_idle_task(current) && !current->non_block_count) ||
8923 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8924 oops_in_progress)
8925 return;
8926
8927 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8928 return;
8929 prev_jiffy = jiffies;
8930
8931 /* Save this before calling printk(), since that will clobber it: */
8932 preempt_disable_ip = get_preempt_disable_ip(current);
8933
8934 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
8935 file, line);
8936 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8937 in_atomic(), irqs_disabled(), current->non_block_count,
8938 current->pid, current->comm);
8939 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
8940 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8941
8942 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
8943 pr_err("RCU nest depth: %d, expected: %u\n",
8944 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8945 }
8946
8947 if (task_stack_end_corrupted(current))
8948 pr_emerg("Thread overran stack, or stack corrupted\n");
8949
8950 debug_show_held_locks(current);
8951 if (irqs_disabled())
8952 print_irqtrace_events(current);
8953
8954 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
8955 preempt_disable_ip);
8956
8957 dump_stack();
8958 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8959 }
8960 EXPORT_SYMBOL(__might_resched);
8961
__cant_sleep(const char * file,int line,int preempt_offset)8962 void __cant_sleep(const char *file, int line, int preempt_offset)
8963 {
8964 static unsigned long prev_jiffy;
8965
8966 if (irqs_disabled())
8967 return;
8968
8969 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8970 return;
8971
8972 if (preempt_count() > preempt_offset)
8973 return;
8974
8975 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8976 return;
8977 prev_jiffy = jiffies;
8978
8979 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8980 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8981 in_atomic(), irqs_disabled(),
8982 current->pid, current->comm);
8983
8984 debug_show_held_locks(current);
8985 dump_stack();
8986 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8987 }
8988 EXPORT_SYMBOL_GPL(__cant_sleep);
8989
8990 # ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)8991 void __cant_migrate(const char *file, int line)
8992 {
8993 static unsigned long prev_jiffy;
8994
8995 if (irqs_disabled())
8996 return;
8997
8998 if (is_migration_disabled(current))
8999 return;
9000
9001 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9002 return;
9003
9004 if (preempt_count() > 0)
9005 return;
9006
9007 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9008 return;
9009 prev_jiffy = jiffies;
9010
9011 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9012 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9013 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9014 current->pid, current->comm);
9015
9016 debug_show_held_locks(current);
9017 dump_stack();
9018 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9019 }
9020 EXPORT_SYMBOL_GPL(__cant_migrate);
9021 # endif /* CONFIG_SMP */
9022 #endif /* CONFIG_DEBUG_ATOMIC_SLEEP */
9023
9024 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9025 void normalize_rt_tasks(void)
9026 {
9027 struct task_struct *g, *p;
9028 struct sched_attr attr = {
9029 .sched_policy = SCHED_NORMAL,
9030 };
9031
9032 read_lock(&tasklist_lock);
9033 for_each_process_thread(g, p) {
9034 /*
9035 * Only normalize user tasks:
9036 */
9037 if (p->flags & PF_KTHREAD)
9038 continue;
9039
9040 p->se.exec_start = 0;
9041 schedstat_set(p->stats.wait_start, 0);
9042 schedstat_set(p->stats.sleep_start, 0);
9043 schedstat_set(p->stats.block_start, 0);
9044
9045 if (!rt_or_dl_task(p)) {
9046 /*
9047 * Renice negative nice level userspace
9048 * tasks back to 0:
9049 */
9050 if (task_nice(p) < 0)
9051 set_user_nice(p, 0);
9052 continue;
9053 }
9054
9055 __sched_setscheduler(p, &attr, false, false);
9056 }
9057 read_unlock(&tasklist_lock);
9058 }
9059
9060 #endif /* CONFIG_MAGIC_SYSRQ */
9061
9062 #ifdef CONFIG_KGDB_KDB
9063 /*
9064 * These functions are only useful for KDB.
9065 *
9066 * They can only be called when the whole system has been
9067 * stopped - every CPU needs to be quiescent, and no scheduling
9068 * activity can take place. Using them for anything else would
9069 * be a serious bug, and as a result, they aren't even visible
9070 * under any other configuration.
9071 */
9072
9073 /**
9074 * curr_task - return the current task for a given CPU.
9075 * @cpu: the processor in question.
9076 *
9077 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9078 *
9079 * Return: The current task for @cpu.
9080 */
curr_task(int cpu)9081 struct task_struct *curr_task(int cpu)
9082 {
9083 return cpu_curr(cpu);
9084 }
9085
9086 #endif /* CONFIG_KGDB_KDB */
9087
9088 #ifdef CONFIG_CGROUP_SCHED
9089 /* task_group_lock serializes the addition/removal of task groups */
9090 static DEFINE_SPINLOCK(task_group_lock);
9091
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)9092 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9093 struct task_group *parent)
9094 {
9095 #ifdef CONFIG_UCLAMP_TASK_GROUP
9096 enum uclamp_id clamp_id;
9097
9098 for_each_clamp_id(clamp_id) {
9099 uclamp_se_set(&tg->uclamp_req[clamp_id],
9100 uclamp_none(clamp_id), false);
9101 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9102 }
9103 #endif
9104 }
9105
sched_free_group(struct task_group * tg)9106 static void sched_free_group(struct task_group *tg)
9107 {
9108 free_fair_sched_group(tg);
9109 free_rt_sched_group(tg);
9110 autogroup_free(tg);
9111 kmem_cache_free(task_group_cache, tg);
9112 }
9113
sched_free_group_rcu(struct rcu_head * rcu)9114 static void sched_free_group_rcu(struct rcu_head *rcu)
9115 {
9116 sched_free_group(container_of(rcu, struct task_group, rcu));
9117 }
9118
sched_unregister_group(struct task_group * tg)9119 static void sched_unregister_group(struct task_group *tg)
9120 {
9121 unregister_fair_sched_group(tg);
9122 unregister_rt_sched_group(tg);
9123 /*
9124 * We have to wait for yet another RCU grace period to expire, as
9125 * print_cfs_stats() might run concurrently.
9126 */
9127 call_rcu(&tg->rcu, sched_free_group_rcu);
9128 }
9129
9130 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)9131 struct task_group *sched_create_group(struct task_group *parent)
9132 {
9133 struct task_group *tg;
9134
9135 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9136 if (!tg)
9137 return ERR_PTR(-ENOMEM);
9138
9139 if (!alloc_fair_sched_group(tg, parent))
9140 goto err;
9141
9142 if (!alloc_rt_sched_group(tg, parent))
9143 goto err;
9144
9145 scx_tg_init(tg);
9146 alloc_uclamp_sched_group(tg, parent);
9147
9148 return tg;
9149
9150 err:
9151 sched_free_group(tg);
9152 return ERR_PTR(-ENOMEM);
9153 }
9154
sched_online_group(struct task_group * tg,struct task_group * parent)9155 void sched_online_group(struct task_group *tg, struct task_group *parent)
9156 {
9157 unsigned long flags;
9158
9159 spin_lock_irqsave(&task_group_lock, flags);
9160 list_add_tail_rcu(&tg->list, &task_groups);
9161
9162 /* Root should already exist: */
9163 WARN_ON(!parent);
9164
9165 tg->parent = parent;
9166 INIT_LIST_HEAD(&tg->children);
9167 list_add_rcu(&tg->siblings, &parent->children);
9168 spin_unlock_irqrestore(&task_group_lock, flags);
9169
9170 online_fair_sched_group(tg);
9171 }
9172
9173 /* RCU callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)9174 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9175 {
9176 /* Now it should be safe to free those cfs_rqs: */
9177 sched_unregister_group(container_of(rhp, struct task_group, rcu));
9178 }
9179
sched_destroy_group(struct task_group * tg)9180 void sched_destroy_group(struct task_group *tg)
9181 {
9182 /* Wait for possible concurrent references to cfs_rqs complete: */
9183 call_rcu(&tg->rcu, sched_unregister_group_rcu);
9184 }
9185
sched_release_group(struct task_group * tg)9186 void sched_release_group(struct task_group *tg)
9187 {
9188 unsigned long flags;
9189
9190 /*
9191 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9192 * sched_cfs_period_timer()).
9193 *
9194 * For this to be effective, we have to wait for all pending users of
9195 * this task group to leave their RCU critical section to ensure no new
9196 * user will see our dying task group any more. Specifically ensure
9197 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9198 *
9199 * We therefore defer calling unregister_fair_sched_group() to
9200 * sched_unregister_group() which is guarantied to get called only after the
9201 * current RCU grace period has expired.
9202 */
9203 spin_lock_irqsave(&task_group_lock, flags);
9204 list_del_rcu(&tg->list);
9205 list_del_rcu(&tg->siblings);
9206 spin_unlock_irqrestore(&task_group_lock, flags);
9207 }
9208
sched_change_group(struct task_struct * tsk)9209 static void sched_change_group(struct task_struct *tsk)
9210 {
9211 struct task_group *tg;
9212
9213 /*
9214 * All callers are synchronized by task_rq_lock(); we do not use RCU
9215 * which is pointless here. Thus, we pass "true" to task_css_check()
9216 * to prevent lockdep warnings.
9217 */
9218 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9219 struct task_group, css);
9220 tg = autogroup_task_group(tsk, tg);
9221 tsk->sched_task_group = tg;
9222
9223 #ifdef CONFIG_FAIR_GROUP_SCHED
9224 if (tsk->sched_class->task_change_group)
9225 tsk->sched_class->task_change_group(tsk);
9226 else
9227 #endif
9228 set_task_rq(tsk, task_cpu(tsk));
9229 }
9230
9231 /*
9232 * Change task's runqueue when it moves between groups.
9233 *
9234 * The caller of this function should have put the task in its new group by
9235 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9236 * its new group.
9237 */
sched_move_task(struct task_struct * tsk,bool for_autogroup)9238 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
9239 {
9240 int queued, running, queue_flags =
9241 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9242 struct rq *rq;
9243
9244 CLASS(task_rq_lock, rq_guard)(tsk);
9245 rq = rq_guard.rq;
9246
9247 update_rq_clock(rq);
9248
9249 running = task_current_donor(rq, tsk);
9250 queued = task_on_rq_queued(tsk);
9251
9252 if (queued)
9253 dequeue_task(rq, tsk, queue_flags);
9254 if (running)
9255 put_prev_task(rq, tsk);
9256
9257 sched_change_group(tsk);
9258 if (!for_autogroup)
9259 scx_cgroup_move_task(tsk);
9260
9261 if (queued)
9262 enqueue_task(rq, tsk, queue_flags);
9263 if (running) {
9264 set_next_task(rq, tsk);
9265 /*
9266 * After changing group, the running task may have joined a
9267 * throttled one but it's still the running task. Trigger a
9268 * resched to make sure that task can still run.
9269 */
9270 resched_curr(rq);
9271 }
9272 }
9273
9274 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9275 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9276 {
9277 struct task_group *parent = css_tg(parent_css);
9278 struct task_group *tg;
9279
9280 if (!parent) {
9281 /* This is early initialization for the top cgroup */
9282 return &root_task_group.css;
9283 }
9284
9285 tg = sched_create_group(parent);
9286 if (IS_ERR(tg))
9287 return ERR_PTR(-ENOMEM);
9288
9289 return &tg->css;
9290 }
9291
9292 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)9293 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9294 {
9295 struct task_group *tg = css_tg(css);
9296 struct task_group *parent = css_tg(css->parent);
9297 int ret;
9298
9299 ret = scx_tg_online(tg);
9300 if (ret)
9301 return ret;
9302
9303 if (parent)
9304 sched_online_group(tg, parent);
9305
9306 #ifdef CONFIG_UCLAMP_TASK_GROUP
9307 /* Propagate the effective uclamp value for the new group */
9308 guard(mutex)(&uclamp_mutex);
9309 guard(rcu)();
9310 cpu_util_update_eff(css);
9311 #endif
9312
9313 return 0;
9314 }
9315
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)9316 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
9317 {
9318 struct task_group *tg = css_tg(css);
9319
9320 scx_tg_offline(tg);
9321 }
9322
cpu_cgroup_css_released(struct cgroup_subsys_state * css)9323 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9324 {
9325 struct task_group *tg = css_tg(css);
9326
9327 sched_release_group(tg);
9328 }
9329
cpu_cgroup_css_free(struct cgroup_subsys_state * css)9330 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9331 {
9332 struct task_group *tg = css_tg(css);
9333
9334 /*
9335 * Relies on the RCU grace period between css_released() and this.
9336 */
9337 sched_unregister_group(tg);
9338 }
9339
cpu_cgroup_can_attach(struct cgroup_taskset * tset)9340 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9341 {
9342 #ifdef CONFIG_RT_GROUP_SCHED
9343 struct task_struct *task;
9344 struct cgroup_subsys_state *css;
9345
9346 if (!rt_group_sched_enabled())
9347 goto scx_check;
9348
9349 cgroup_taskset_for_each(task, css, tset) {
9350 if (!sched_rt_can_attach(css_tg(css), task))
9351 return -EINVAL;
9352 }
9353 scx_check:
9354 #endif /* CONFIG_RT_GROUP_SCHED */
9355 return scx_cgroup_can_attach(tset);
9356 }
9357
cpu_cgroup_attach(struct cgroup_taskset * tset)9358 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9359 {
9360 struct task_struct *task;
9361 struct cgroup_subsys_state *css;
9362
9363 cgroup_taskset_for_each(task, css, tset)
9364 sched_move_task(task, false);
9365
9366 scx_cgroup_finish_attach();
9367 }
9368
cpu_cgroup_cancel_attach(struct cgroup_taskset * tset)9369 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
9370 {
9371 scx_cgroup_cancel_attach(tset);
9372 }
9373
9374 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)9375 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9376 {
9377 struct cgroup_subsys_state *top_css = css;
9378 struct uclamp_se *uc_parent = NULL;
9379 struct uclamp_se *uc_se = NULL;
9380 unsigned int eff[UCLAMP_CNT];
9381 enum uclamp_id clamp_id;
9382 unsigned int clamps;
9383
9384 lockdep_assert_held(&uclamp_mutex);
9385 WARN_ON_ONCE(!rcu_read_lock_held());
9386
9387 css_for_each_descendant_pre(css, top_css) {
9388 uc_parent = css_tg(css)->parent
9389 ? css_tg(css)->parent->uclamp : NULL;
9390
9391 for_each_clamp_id(clamp_id) {
9392 /* Assume effective clamps matches requested clamps */
9393 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9394 /* Cap effective clamps with parent's effective clamps */
9395 if (uc_parent &&
9396 eff[clamp_id] > uc_parent[clamp_id].value) {
9397 eff[clamp_id] = uc_parent[clamp_id].value;
9398 }
9399 }
9400 /* Ensure protection is always capped by limit */
9401 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9402
9403 /* Propagate most restrictive effective clamps */
9404 clamps = 0x0;
9405 uc_se = css_tg(css)->uclamp;
9406 for_each_clamp_id(clamp_id) {
9407 if (eff[clamp_id] == uc_se[clamp_id].value)
9408 continue;
9409 uc_se[clamp_id].value = eff[clamp_id];
9410 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9411 clamps |= (0x1 << clamp_id);
9412 }
9413 if (!clamps) {
9414 css = css_rightmost_descendant(css);
9415 continue;
9416 }
9417
9418 /* Immediately update descendants RUNNABLE tasks */
9419 uclamp_update_active_tasks(css);
9420 }
9421 }
9422
9423 /*
9424 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9425 * C expression. Since there is no way to convert a macro argument (N) into a
9426 * character constant, use two levels of macros.
9427 */
9428 #define _POW10(exp) ((unsigned int)1e##exp)
9429 #define POW10(exp) _POW10(exp)
9430
9431 struct uclamp_request {
9432 #define UCLAMP_PERCENT_SHIFT 2
9433 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9434 s64 percent;
9435 u64 util;
9436 int ret;
9437 };
9438
9439 static inline struct uclamp_request
capacity_from_percent(char * buf)9440 capacity_from_percent(char *buf)
9441 {
9442 struct uclamp_request req = {
9443 .percent = UCLAMP_PERCENT_SCALE,
9444 .util = SCHED_CAPACITY_SCALE,
9445 .ret = 0,
9446 };
9447
9448 buf = strim(buf);
9449 if (strcmp(buf, "max")) {
9450 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9451 &req.percent);
9452 if (req.ret)
9453 return req;
9454 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9455 req.ret = -ERANGE;
9456 return req;
9457 }
9458
9459 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9460 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9461 }
9462
9463 return req;
9464 }
9465
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)9466 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9467 size_t nbytes, loff_t off,
9468 enum uclamp_id clamp_id)
9469 {
9470 struct uclamp_request req;
9471 struct task_group *tg;
9472
9473 req = capacity_from_percent(buf);
9474 if (req.ret)
9475 return req.ret;
9476
9477 sched_uclamp_enable();
9478
9479 guard(mutex)(&uclamp_mutex);
9480 guard(rcu)();
9481
9482 tg = css_tg(of_css(of));
9483 if (tg->uclamp_req[clamp_id].value != req.util)
9484 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9485
9486 /*
9487 * Because of not recoverable conversion rounding we keep track of the
9488 * exact requested value
9489 */
9490 tg->uclamp_pct[clamp_id] = req.percent;
9491
9492 /* Update effective clamps to track the most restrictive value */
9493 cpu_util_update_eff(of_css(of));
9494
9495 return nbytes;
9496 }
9497
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9498 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9499 char *buf, size_t nbytes,
9500 loff_t off)
9501 {
9502 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9503 }
9504
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9505 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9506 char *buf, size_t nbytes,
9507 loff_t off)
9508 {
9509 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9510 }
9511
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)9512 static inline void cpu_uclamp_print(struct seq_file *sf,
9513 enum uclamp_id clamp_id)
9514 {
9515 struct task_group *tg;
9516 u64 util_clamp;
9517 u64 percent;
9518 u32 rem;
9519
9520 scoped_guard (rcu) {
9521 tg = css_tg(seq_css(sf));
9522 util_clamp = tg->uclamp_req[clamp_id].value;
9523 }
9524
9525 if (util_clamp == SCHED_CAPACITY_SCALE) {
9526 seq_puts(sf, "max\n");
9527 return;
9528 }
9529
9530 percent = tg->uclamp_pct[clamp_id];
9531 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9532 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9533 }
9534
cpu_uclamp_min_show(struct seq_file * sf,void * v)9535 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9536 {
9537 cpu_uclamp_print(sf, UCLAMP_MIN);
9538 return 0;
9539 }
9540
cpu_uclamp_max_show(struct seq_file * sf,void * v)9541 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9542 {
9543 cpu_uclamp_print(sf, UCLAMP_MAX);
9544 return 0;
9545 }
9546 #endif /* CONFIG_UCLAMP_TASK_GROUP */
9547
9548 #ifdef CONFIG_GROUP_SCHED_WEIGHT
tg_weight(struct task_group * tg)9549 static unsigned long tg_weight(struct task_group *tg)
9550 {
9551 #ifdef CONFIG_FAIR_GROUP_SCHED
9552 return scale_load_down(tg->shares);
9553 #else
9554 return sched_weight_from_cgroup(tg->scx_weight);
9555 #endif
9556 }
9557
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)9558 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9559 struct cftype *cftype, u64 shareval)
9560 {
9561 int ret;
9562
9563 if (shareval > scale_load_down(ULONG_MAX))
9564 shareval = MAX_SHARES;
9565 ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
9566 if (!ret)
9567 scx_group_set_weight(css_tg(css),
9568 sched_weight_to_cgroup(shareval));
9569 return ret;
9570 }
9571
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9572 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9573 struct cftype *cft)
9574 {
9575 return tg_weight(css_tg(css));
9576 }
9577 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9578
9579 #ifdef CONFIG_CFS_BANDWIDTH
9580 static DEFINE_MUTEX(cfs_constraints_mutex);
9581
9582 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9583
tg_set_cfs_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)9584 static int tg_set_cfs_bandwidth(struct task_group *tg,
9585 u64 period_us, u64 quota_us, u64 burst_us)
9586 {
9587 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9588 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9589 u64 period, quota, burst;
9590
9591 period = (u64)period_us * NSEC_PER_USEC;
9592
9593 if (quota_us == RUNTIME_INF)
9594 quota = RUNTIME_INF;
9595 else
9596 quota = (u64)quota_us * NSEC_PER_USEC;
9597
9598 burst = (u64)burst_us * NSEC_PER_USEC;
9599
9600 /*
9601 * Prevent race between setting of cfs_rq->runtime_enabled and
9602 * unthrottle_offline_cfs_rqs().
9603 */
9604 guard(cpus_read_lock)();
9605 guard(mutex)(&cfs_constraints_mutex);
9606
9607 ret = __cfs_schedulable(tg, period, quota);
9608 if (ret)
9609 return ret;
9610
9611 runtime_enabled = quota != RUNTIME_INF;
9612 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9613 /*
9614 * If we need to toggle cfs_bandwidth_used, off->on must occur
9615 * before making related changes, and on->off must occur afterwards
9616 */
9617 if (runtime_enabled && !runtime_was_enabled)
9618 cfs_bandwidth_usage_inc();
9619
9620 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
9621 cfs_b->period = ns_to_ktime(period);
9622 cfs_b->quota = quota;
9623 cfs_b->burst = burst;
9624
9625 __refill_cfs_bandwidth_runtime(cfs_b);
9626
9627 /*
9628 * Restart the period timer (if active) to handle new
9629 * period expiry:
9630 */
9631 if (runtime_enabled)
9632 start_cfs_bandwidth(cfs_b);
9633 }
9634
9635 for_each_online_cpu(i) {
9636 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9637 struct rq *rq = cfs_rq->rq;
9638
9639 guard(rq_lock_irq)(rq);
9640 cfs_rq->runtime_enabled = runtime_enabled;
9641 cfs_rq->runtime_remaining = 0;
9642
9643 if (cfs_rq->throttled)
9644 unthrottle_cfs_rq(cfs_rq);
9645 }
9646
9647 if (runtime_was_enabled && !runtime_enabled)
9648 cfs_bandwidth_usage_dec();
9649
9650 return 0;
9651 }
9652
tg_get_cfs_period(struct task_group * tg)9653 static u64 tg_get_cfs_period(struct task_group *tg)
9654 {
9655 u64 cfs_period_us;
9656
9657 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9658 do_div(cfs_period_us, NSEC_PER_USEC);
9659
9660 return cfs_period_us;
9661 }
9662
tg_get_cfs_quota(struct task_group * tg)9663 static u64 tg_get_cfs_quota(struct task_group *tg)
9664 {
9665 u64 quota_us;
9666
9667 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9668 return RUNTIME_INF;
9669
9670 quota_us = tg->cfs_bandwidth.quota;
9671 do_div(quota_us, NSEC_PER_USEC);
9672
9673 return quota_us;
9674 }
9675
tg_get_cfs_burst(struct task_group * tg)9676 static u64 tg_get_cfs_burst(struct task_group *tg)
9677 {
9678 u64 burst_us;
9679
9680 burst_us = tg->cfs_bandwidth.burst;
9681 do_div(burst_us, NSEC_PER_USEC);
9682
9683 return burst_us;
9684 }
9685
9686 struct cfs_schedulable_data {
9687 struct task_group *tg;
9688 u64 period, quota;
9689 };
9690
9691 /*
9692 * normalize group quota/period to be quota/max_period
9693 * note: units are usecs
9694 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)9695 static u64 normalize_cfs_quota(struct task_group *tg,
9696 struct cfs_schedulable_data *d)
9697 {
9698 u64 quota, period;
9699
9700 if (tg == d->tg) {
9701 period = d->period;
9702 quota = d->quota;
9703 } else {
9704 period = tg_get_cfs_period(tg);
9705 quota = tg_get_cfs_quota(tg);
9706 }
9707
9708 /* note: these should typically be equivalent */
9709 if (quota == RUNTIME_INF || quota == -1)
9710 return RUNTIME_INF;
9711
9712 return to_ratio(period, quota);
9713 }
9714
tg_cfs_schedulable_down(struct task_group * tg,void * data)9715 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9716 {
9717 struct cfs_schedulable_data *d = data;
9718 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9719 s64 quota = 0, parent_quota = -1;
9720
9721 if (!tg->parent) {
9722 quota = RUNTIME_INF;
9723 } else {
9724 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9725
9726 quota = normalize_cfs_quota(tg, d);
9727 parent_quota = parent_b->hierarchical_quota;
9728
9729 /*
9730 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9731 * always take the non-RUNTIME_INF min. On cgroup1, only
9732 * inherit when no limit is set. In both cases this is used
9733 * by the scheduler to determine if a given CFS task has a
9734 * bandwidth constraint at some higher level.
9735 */
9736 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9737 if (quota == RUNTIME_INF)
9738 quota = parent_quota;
9739 else if (parent_quota != RUNTIME_INF)
9740 quota = min(quota, parent_quota);
9741 } else {
9742 if (quota == RUNTIME_INF)
9743 quota = parent_quota;
9744 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9745 return -EINVAL;
9746 }
9747 }
9748 cfs_b->hierarchical_quota = quota;
9749
9750 return 0;
9751 }
9752
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)9753 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9754 {
9755 struct cfs_schedulable_data data = {
9756 .tg = tg,
9757 .period = period,
9758 .quota = quota,
9759 };
9760
9761 if (quota != RUNTIME_INF) {
9762 do_div(data.period, NSEC_PER_USEC);
9763 do_div(data.quota, NSEC_PER_USEC);
9764 }
9765
9766 guard(rcu)();
9767 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9768 }
9769
cpu_cfs_stat_show(struct seq_file * sf,void * v)9770 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9771 {
9772 struct task_group *tg = css_tg(seq_css(sf));
9773 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9774
9775 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9776 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9777 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9778
9779 if (schedstat_enabled() && tg != &root_task_group) {
9780 struct sched_statistics *stats;
9781 u64 ws = 0;
9782 int i;
9783
9784 for_each_possible_cpu(i) {
9785 stats = __schedstats_from_se(tg->se[i]);
9786 ws += schedstat_val(stats->wait_sum);
9787 }
9788
9789 seq_printf(sf, "wait_sum %llu\n", ws);
9790 }
9791
9792 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
9793 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
9794
9795 return 0;
9796 }
9797
throttled_time_self(struct task_group * tg)9798 static u64 throttled_time_self(struct task_group *tg)
9799 {
9800 int i;
9801 u64 total = 0;
9802
9803 for_each_possible_cpu(i) {
9804 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
9805 }
9806
9807 return total;
9808 }
9809
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)9810 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
9811 {
9812 struct task_group *tg = css_tg(seq_css(sf));
9813
9814 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
9815
9816 return 0;
9817 }
9818
9819 const u64 max_bw_quota_period_us = 1 * USEC_PER_SEC; /* 1s */
9820 static const u64 min_bw_quota_period_us = 1 * USEC_PER_MSEC; /* 1ms */
9821 /* More than 203 days if BW_SHIFT equals 20. */
9822 static const u64 max_bw_runtime_us = MAX_BW;
9823
tg_bandwidth(struct task_group * tg,u64 * period_us_p,u64 * quota_us_p,u64 * burst_us_p)9824 static void tg_bandwidth(struct task_group *tg,
9825 u64 *period_us_p, u64 *quota_us_p, u64 *burst_us_p)
9826 {
9827 if (period_us_p)
9828 *period_us_p = tg_get_cfs_period(tg);
9829 if (quota_us_p)
9830 *quota_us_p = tg_get_cfs_quota(tg);
9831 if (burst_us_p)
9832 *burst_us_p = tg_get_cfs_burst(tg);
9833 }
9834
cpu_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9835 static u64 cpu_period_read_u64(struct cgroup_subsys_state *css,
9836 struct cftype *cft)
9837 {
9838 u64 period_us;
9839
9840 tg_bandwidth(css_tg(css), &period_us, NULL, NULL);
9841 return period_us;
9842 }
9843
tg_set_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)9844 static int tg_set_bandwidth(struct task_group *tg,
9845 u64 period_us, u64 quota_us, u64 burst_us)
9846 {
9847 const u64 max_usec = U64_MAX / NSEC_PER_USEC;
9848
9849 if (tg == &root_task_group)
9850 return -EINVAL;
9851
9852 /* Values should survive translation to nsec */
9853 if (period_us > max_usec ||
9854 (quota_us != RUNTIME_INF && quota_us > max_usec) ||
9855 burst_us > max_usec)
9856 return -EINVAL;
9857
9858 /*
9859 * Ensure we have some amount of bandwidth every period. This is to
9860 * prevent reaching a state of large arrears when throttled via
9861 * entity_tick() resulting in prolonged exit starvation.
9862 */
9863 if (quota_us < min_bw_quota_period_us ||
9864 period_us < min_bw_quota_period_us)
9865 return -EINVAL;
9866
9867 /*
9868 * Likewise, bound things on the other side by preventing insane quota
9869 * periods. This also allows us to normalize in computing quota
9870 * feasibility.
9871 */
9872 if (period_us > max_bw_quota_period_us)
9873 return -EINVAL;
9874
9875 /*
9876 * Bound quota to defend quota against overflow during bandwidth shift.
9877 */
9878 if (quota_us != RUNTIME_INF && quota_us > max_bw_runtime_us)
9879 return -EINVAL;
9880
9881 if (quota_us != RUNTIME_INF && (burst_us > quota_us ||
9882 burst_us + quota_us > max_bw_runtime_us))
9883 return -EINVAL;
9884
9885 return tg_set_cfs_bandwidth(tg, period_us, quota_us, burst_us);
9886 }
9887
cpu_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9888 static s64 cpu_quota_read_s64(struct cgroup_subsys_state *css,
9889 struct cftype *cft)
9890 {
9891 u64 quota_us;
9892
9893 tg_bandwidth(css_tg(css), NULL, "a_us, NULL);
9894 return quota_us; /* (s64)RUNTIME_INF becomes -1 */
9895 }
9896
cpu_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)9897 static u64 cpu_burst_read_u64(struct cgroup_subsys_state *css,
9898 struct cftype *cft)
9899 {
9900 u64 burst_us;
9901
9902 tg_bandwidth(css_tg(css), NULL, NULL, &burst_us);
9903 return burst_us;
9904 }
9905
cpu_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 period_us)9906 static int cpu_period_write_u64(struct cgroup_subsys_state *css,
9907 struct cftype *cftype, u64 period_us)
9908 {
9909 struct task_group *tg = css_tg(css);
9910 u64 quota_us, burst_us;
9911
9912 tg_bandwidth(tg, NULL, "a_us, &burst_us);
9913 return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9914 }
9915
cpu_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 quota_us)9916 static int cpu_quota_write_s64(struct cgroup_subsys_state *css,
9917 struct cftype *cftype, s64 quota_us)
9918 {
9919 struct task_group *tg = css_tg(css);
9920 u64 period_us, burst_us;
9921
9922 if (quota_us < 0)
9923 quota_us = RUNTIME_INF;
9924
9925 tg_bandwidth(tg, &period_us, NULL, &burst_us);
9926 return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9927 }
9928
cpu_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 burst_us)9929 static int cpu_burst_write_u64(struct cgroup_subsys_state *css,
9930 struct cftype *cftype, u64 burst_us)
9931 {
9932 struct task_group *tg = css_tg(css);
9933 u64 period_us, quota_us;
9934
9935 tg_bandwidth(tg, &period_us, "a_us, NULL);
9936 return tg_set_bandwidth(tg, period_us, quota_us, burst_us);
9937 }
9938 #endif /* CONFIG_CFS_BANDWIDTH */
9939
9940 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)9941 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9942 struct cftype *cft, s64 val)
9943 {
9944 return sched_group_set_rt_runtime(css_tg(css), val);
9945 }
9946
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)9947 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9948 struct cftype *cft)
9949 {
9950 return sched_group_rt_runtime(css_tg(css));
9951 }
9952
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)9953 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9954 struct cftype *cftype, u64 rt_period_us)
9955 {
9956 return sched_group_set_rt_period(css_tg(css), rt_period_us);
9957 }
9958
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)9959 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9960 struct cftype *cft)
9961 {
9962 return sched_group_rt_period(css_tg(css));
9963 }
9964 #endif /* CONFIG_RT_GROUP_SCHED */
9965
9966 #ifdef CONFIG_GROUP_SCHED_WEIGHT
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)9967 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
9968 struct cftype *cft)
9969 {
9970 return css_tg(css)->idle;
9971 }
9972
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)9973 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
9974 struct cftype *cft, s64 idle)
9975 {
9976 int ret;
9977
9978 ret = sched_group_set_idle(css_tg(css), idle);
9979 if (!ret)
9980 scx_group_set_idle(css_tg(css), idle);
9981 return ret;
9982 }
9983 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
9984
9985 static struct cftype cpu_legacy_files[] = {
9986 #ifdef CONFIG_GROUP_SCHED_WEIGHT
9987 {
9988 .name = "shares",
9989 .read_u64 = cpu_shares_read_u64,
9990 .write_u64 = cpu_shares_write_u64,
9991 },
9992 {
9993 .name = "idle",
9994 .read_s64 = cpu_idle_read_s64,
9995 .write_s64 = cpu_idle_write_s64,
9996 },
9997 #endif
9998 #ifdef CONFIG_CFS_BANDWIDTH
9999 {
10000 .name = "cfs_period_us",
10001 .read_u64 = cpu_period_read_u64,
10002 .write_u64 = cpu_period_write_u64,
10003 },
10004 {
10005 .name = "cfs_quota_us",
10006 .read_s64 = cpu_quota_read_s64,
10007 .write_s64 = cpu_quota_write_s64,
10008 },
10009 {
10010 .name = "cfs_burst_us",
10011 .read_u64 = cpu_burst_read_u64,
10012 .write_u64 = cpu_burst_write_u64,
10013 },
10014 {
10015 .name = "stat",
10016 .seq_show = cpu_cfs_stat_show,
10017 },
10018 {
10019 .name = "stat.local",
10020 .seq_show = cpu_cfs_local_stat_show,
10021 },
10022 #endif
10023 #ifdef CONFIG_UCLAMP_TASK_GROUP
10024 {
10025 .name = "uclamp.min",
10026 .flags = CFTYPE_NOT_ON_ROOT,
10027 .seq_show = cpu_uclamp_min_show,
10028 .write = cpu_uclamp_min_write,
10029 },
10030 {
10031 .name = "uclamp.max",
10032 .flags = CFTYPE_NOT_ON_ROOT,
10033 .seq_show = cpu_uclamp_max_show,
10034 .write = cpu_uclamp_max_write,
10035 },
10036 #endif
10037 { } /* Terminate */
10038 };
10039
10040 #ifdef CONFIG_RT_GROUP_SCHED
10041 static struct cftype rt_group_files[] = {
10042 {
10043 .name = "rt_runtime_us",
10044 .read_s64 = cpu_rt_runtime_read,
10045 .write_s64 = cpu_rt_runtime_write,
10046 },
10047 {
10048 .name = "rt_period_us",
10049 .read_u64 = cpu_rt_period_read_uint,
10050 .write_u64 = cpu_rt_period_write_uint,
10051 },
10052 { } /* Terminate */
10053 };
10054
10055 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED
10056 DEFINE_STATIC_KEY_FALSE(rt_group_sched);
10057 # else
10058 DEFINE_STATIC_KEY_TRUE(rt_group_sched);
10059 # endif
10060
setup_rt_group_sched(char * str)10061 static int __init setup_rt_group_sched(char *str)
10062 {
10063 long val;
10064
10065 if (kstrtol(str, 0, &val) || val < 0 || val > 1) {
10066 pr_warn("Unable to set rt_group_sched\n");
10067 return 1;
10068 }
10069 if (val)
10070 static_branch_enable(&rt_group_sched);
10071 else
10072 static_branch_disable(&rt_group_sched);
10073
10074 return 1;
10075 }
10076 __setup("rt_group_sched=", setup_rt_group_sched);
10077
cpu_rt_group_init(void)10078 static int __init cpu_rt_group_init(void)
10079 {
10080 if (!rt_group_sched_enabled())
10081 return 0;
10082
10083 WARN_ON(cgroup_add_legacy_cftypes(&cpu_cgrp_subsys, rt_group_files));
10084 return 0;
10085 }
10086 subsys_initcall(cpu_rt_group_init);
10087 #endif /* CONFIG_RT_GROUP_SCHED */
10088
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10089 static int cpu_extra_stat_show(struct seq_file *sf,
10090 struct cgroup_subsys_state *css)
10091 {
10092 #ifdef CONFIG_CFS_BANDWIDTH
10093 {
10094 struct task_group *tg = css_tg(css);
10095 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10096 u64 throttled_usec, burst_usec;
10097
10098 throttled_usec = cfs_b->throttled_time;
10099 do_div(throttled_usec, NSEC_PER_USEC);
10100 burst_usec = cfs_b->burst_time;
10101 do_div(burst_usec, NSEC_PER_USEC);
10102
10103 seq_printf(sf, "nr_periods %d\n"
10104 "nr_throttled %d\n"
10105 "throttled_usec %llu\n"
10106 "nr_bursts %d\n"
10107 "burst_usec %llu\n",
10108 cfs_b->nr_periods, cfs_b->nr_throttled,
10109 throttled_usec, cfs_b->nr_burst, burst_usec);
10110 }
10111 #endif /* CONFIG_CFS_BANDWIDTH */
10112 return 0;
10113 }
10114
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10115 static int cpu_local_stat_show(struct seq_file *sf,
10116 struct cgroup_subsys_state *css)
10117 {
10118 #ifdef CONFIG_CFS_BANDWIDTH
10119 {
10120 struct task_group *tg = css_tg(css);
10121 u64 throttled_self_usec;
10122
10123 throttled_self_usec = throttled_time_self(tg);
10124 do_div(throttled_self_usec, NSEC_PER_USEC);
10125
10126 seq_printf(sf, "throttled_usec %llu\n",
10127 throttled_self_usec);
10128 }
10129 #endif
10130 return 0;
10131 }
10132
10133 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10134
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10135 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10136 struct cftype *cft)
10137 {
10138 return sched_weight_to_cgroup(tg_weight(css_tg(css)));
10139 }
10140
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 cgrp_weight)10141 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10142 struct cftype *cft, u64 cgrp_weight)
10143 {
10144 unsigned long weight;
10145 int ret;
10146
10147 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
10148 return -ERANGE;
10149
10150 weight = sched_weight_from_cgroup(cgrp_weight);
10151
10152 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10153 if (!ret)
10154 scx_group_set_weight(css_tg(css), cgrp_weight);
10155 return ret;
10156 }
10157
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10158 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10159 struct cftype *cft)
10160 {
10161 unsigned long weight = tg_weight(css_tg(css));
10162 int last_delta = INT_MAX;
10163 int prio, delta;
10164
10165 /* find the closest nice value to the current weight */
10166 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10167 delta = abs(sched_prio_to_weight[prio] - weight);
10168 if (delta >= last_delta)
10169 break;
10170 last_delta = delta;
10171 }
10172
10173 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10174 }
10175
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)10176 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10177 struct cftype *cft, s64 nice)
10178 {
10179 unsigned long weight;
10180 int idx, ret;
10181
10182 if (nice < MIN_NICE || nice > MAX_NICE)
10183 return -ERANGE;
10184
10185 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10186 idx = array_index_nospec(idx, 40);
10187 weight = sched_prio_to_weight[idx];
10188
10189 ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10190 if (!ret)
10191 scx_group_set_weight(css_tg(css),
10192 sched_weight_to_cgroup(weight));
10193 return ret;
10194 }
10195 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10196
cpu_period_quota_print(struct seq_file * sf,long period,long quota)10197 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10198 long period, long quota)
10199 {
10200 if (quota < 0)
10201 seq_puts(sf, "max");
10202 else
10203 seq_printf(sf, "%ld", quota);
10204
10205 seq_printf(sf, " %ld\n", period);
10206 }
10207
10208 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * period_us_p,u64 * quota_us_p)10209 static int __maybe_unused cpu_period_quota_parse(char *buf, u64 *period_us_p,
10210 u64 *quota_us_p)
10211 {
10212 char tok[21]; /* U64_MAX */
10213
10214 if (sscanf(buf, "%20s %llu", tok, period_us_p) < 1)
10215 return -EINVAL;
10216
10217 if (sscanf(tok, "%llu", quota_us_p) < 1) {
10218 if (!strcmp(tok, "max"))
10219 *quota_us_p = RUNTIME_INF;
10220 else
10221 return -EINVAL;
10222 }
10223
10224 return 0;
10225 }
10226
10227 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)10228 static int cpu_max_show(struct seq_file *sf, void *v)
10229 {
10230 struct task_group *tg = css_tg(seq_css(sf));
10231 u64 period_us, quota_us;
10232
10233 tg_bandwidth(tg, &period_us, "a_us, NULL);
10234 cpu_period_quota_print(sf, period_us, quota_us);
10235 return 0;
10236 }
10237
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10238 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10239 char *buf, size_t nbytes, loff_t off)
10240 {
10241 struct task_group *tg = css_tg(of_css(of));
10242 u64 period_us, quota_us, burst_us;
10243 int ret;
10244
10245 tg_bandwidth(tg, &period_us, NULL, &burst_us);
10246 ret = cpu_period_quota_parse(buf, &period_us, "a_us);
10247 if (!ret)
10248 ret = tg_set_bandwidth(tg, period_us, quota_us, burst_us);
10249 return ret ?: nbytes;
10250 }
10251 #endif /* CONFIG_CFS_BANDWIDTH */
10252
10253 static struct cftype cpu_files[] = {
10254 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10255 {
10256 .name = "weight",
10257 .flags = CFTYPE_NOT_ON_ROOT,
10258 .read_u64 = cpu_weight_read_u64,
10259 .write_u64 = cpu_weight_write_u64,
10260 },
10261 {
10262 .name = "weight.nice",
10263 .flags = CFTYPE_NOT_ON_ROOT,
10264 .read_s64 = cpu_weight_nice_read_s64,
10265 .write_s64 = cpu_weight_nice_write_s64,
10266 },
10267 {
10268 .name = "idle",
10269 .flags = CFTYPE_NOT_ON_ROOT,
10270 .read_s64 = cpu_idle_read_s64,
10271 .write_s64 = cpu_idle_write_s64,
10272 },
10273 #endif
10274 #ifdef CONFIG_CFS_BANDWIDTH
10275 {
10276 .name = "max",
10277 .flags = CFTYPE_NOT_ON_ROOT,
10278 .seq_show = cpu_max_show,
10279 .write = cpu_max_write,
10280 },
10281 {
10282 .name = "max.burst",
10283 .flags = CFTYPE_NOT_ON_ROOT,
10284 .read_u64 = cpu_burst_read_u64,
10285 .write_u64 = cpu_burst_write_u64,
10286 },
10287 #endif /* CONFIG_CFS_BANDWIDTH */
10288 #ifdef CONFIG_UCLAMP_TASK_GROUP
10289 {
10290 .name = "uclamp.min",
10291 .flags = CFTYPE_NOT_ON_ROOT,
10292 .seq_show = cpu_uclamp_min_show,
10293 .write = cpu_uclamp_min_write,
10294 },
10295 {
10296 .name = "uclamp.max",
10297 .flags = CFTYPE_NOT_ON_ROOT,
10298 .seq_show = cpu_uclamp_max_show,
10299 .write = cpu_uclamp_max_write,
10300 },
10301 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10302 { } /* terminate */
10303 };
10304
10305 struct cgroup_subsys cpu_cgrp_subsys = {
10306 .css_alloc = cpu_cgroup_css_alloc,
10307 .css_online = cpu_cgroup_css_online,
10308 .css_offline = cpu_cgroup_css_offline,
10309 .css_released = cpu_cgroup_css_released,
10310 .css_free = cpu_cgroup_css_free,
10311 .css_extra_stat_show = cpu_extra_stat_show,
10312 .css_local_stat_show = cpu_local_stat_show,
10313 .can_attach = cpu_cgroup_can_attach,
10314 .attach = cpu_cgroup_attach,
10315 .cancel_attach = cpu_cgroup_cancel_attach,
10316 .legacy_cftypes = cpu_legacy_files,
10317 .dfl_cftypes = cpu_files,
10318 .early_init = true,
10319 .threaded = true,
10320 };
10321
10322 #endif /* CONFIG_CGROUP_SCHED */
10323
dump_cpu_task(int cpu)10324 void dump_cpu_task(int cpu)
10325 {
10326 if (in_hardirq() && cpu == smp_processor_id()) {
10327 struct pt_regs *regs;
10328
10329 regs = get_irq_regs();
10330 if (regs) {
10331 show_regs(regs);
10332 return;
10333 }
10334 }
10335
10336 if (trigger_single_cpu_backtrace(cpu))
10337 return;
10338
10339 pr_info("Task dump for CPU %d:\n", cpu);
10340 sched_show_task(cpu_curr(cpu));
10341 }
10342
10343 /*
10344 * Nice levels are multiplicative, with a gentle 10% change for every
10345 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10346 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10347 * that remained on nice 0.
10348 *
10349 * The "10% effect" is relative and cumulative: from _any_ nice level,
10350 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10351 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10352 * If a task goes up by ~10% and another task goes down by ~10% then
10353 * the relative distance between them is ~25%.)
10354 */
10355 const int sched_prio_to_weight[40] = {
10356 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10357 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10358 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10359 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10360 /* 0 */ 1024, 820, 655, 526, 423,
10361 /* 5 */ 335, 272, 215, 172, 137,
10362 /* 10 */ 110, 87, 70, 56, 45,
10363 /* 15 */ 36, 29, 23, 18, 15,
10364 };
10365
10366 /*
10367 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
10368 *
10369 * In cases where the weight does not change often, we can use the
10370 * pre-calculated inverse to speed up arithmetics by turning divisions
10371 * into multiplications:
10372 */
10373 const u32 sched_prio_to_wmult[40] = {
10374 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10375 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10376 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10377 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10378 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10379 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10380 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10381 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10382 };
10383
call_trace_sched_update_nr_running(struct rq * rq,int count)10384 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10385 {
10386 trace_sched_update_nr_running_tp(rq, count);
10387 }
10388
10389 #ifdef CONFIG_SCHED_MM_CID
10390
10391 /*
10392 * @cid_lock: Guarantee forward-progress of cid allocation.
10393 *
10394 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
10395 * is only used when contention is detected by the lock-free allocation so
10396 * forward progress can be guaranteed.
10397 */
10398 DEFINE_RAW_SPINLOCK(cid_lock);
10399
10400 /*
10401 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
10402 *
10403 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
10404 * detected, it is set to 1 to ensure that all newly coming allocations are
10405 * serialized by @cid_lock until the allocation which detected contention
10406 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
10407 * of a cid allocation.
10408 */
10409 int use_cid_lock;
10410
10411 /*
10412 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
10413 * concurrently with respect to the execution of the source runqueue context
10414 * switch.
10415 *
10416 * There is one basic properties we want to guarantee here:
10417 *
10418 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
10419 * used by a task. That would lead to concurrent allocation of the cid and
10420 * userspace corruption.
10421 *
10422 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
10423 * that a pair of loads observe at least one of a pair of stores, which can be
10424 * shown as:
10425 *
10426 * X = Y = 0
10427 *
10428 * w[X]=1 w[Y]=1
10429 * MB MB
10430 * r[Y]=y r[X]=x
10431 *
10432 * Which guarantees that x==0 && y==0 is impossible. But rather than using
10433 * values 0 and 1, this algorithm cares about specific state transitions of the
10434 * runqueue current task (as updated by the scheduler context switch), and the
10435 * per-mm/cpu cid value.
10436 *
10437 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
10438 * task->mm != mm for the rest of the discussion. There are two scheduler state
10439 * transitions on context switch we care about:
10440 *
10441 * (TSA) Store to rq->curr with transition from (N) to (Y)
10442 *
10443 * (TSB) Store to rq->curr with transition from (Y) to (N)
10444 *
10445 * On the remote-clear side, there is one transition we care about:
10446 *
10447 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
10448 *
10449 * There is also a transition to UNSET state which can be performed from all
10450 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
10451 * guarantees that only a single thread will succeed:
10452 *
10453 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
10454 *
10455 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
10456 * when a thread is actively using the cid (property (1)).
10457 *
10458 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
10459 *
10460 * Scenario A) (TSA)+(TMA) (from next task perspective)
10461 *
10462 * CPU0 CPU1
10463 *
10464 * Context switch CS-1 Remote-clear
10465 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
10466 * (implied barrier after cmpxchg)
10467 * - switch_mm_cid()
10468 * - memory barrier (see switch_mm_cid()
10469 * comment explaining how this barrier
10470 * is combined with other scheduler
10471 * barriers)
10472 * - mm_cid_get (next)
10473 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
10474 *
10475 * This Dekker ensures that either task (Y) is observed by the
10476 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
10477 * observed.
10478 *
10479 * If task (Y) store is observed by rcu_dereference(), it means that there is
10480 * still an active task on the cpu. Remote-clear will therefore not transition
10481 * to UNSET, which fulfills property (1).
10482 *
10483 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
10484 * it will move its state to UNSET, which clears the percpu cid perhaps
10485 * uselessly (which is not an issue for correctness). Because task (Y) is not
10486 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
10487 * state to UNSET is done with a cmpxchg expecting that the old state has the
10488 * LAZY flag set, only one thread will successfully UNSET.
10489 *
10490 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
10491 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
10492 * CPU1 will observe task (Y) and do nothing more, which is fine.
10493 *
10494 * What we are effectively preventing with this Dekker is a scenario where
10495 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
10496 * because this would UNSET a cid which is actively used.
10497 */
10498
sched_mm_cid_migrate_from(struct task_struct * t)10499 void sched_mm_cid_migrate_from(struct task_struct *t)
10500 {
10501 t->migrate_from_cpu = task_cpu(t);
10502 }
10503
10504 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)10505 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
10506 struct task_struct *t,
10507 struct mm_cid *src_pcpu_cid)
10508 {
10509 struct mm_struct *mm = t->mm;
10510 struct task_struct *src_task;
10511 int src_cid, last_mm_cid;
10512
10513 if (!mm)
10514 return -1;
10515
10516 last_mm_cid = t->last_mm_cid;
10517 /*
10518 * If the migrated task has no last cid, or if the current
10519 * task on src rq uses the cid, it means the source cid does not need
10520 * to be moved to the destination cpu.
10521 */
10522 if (last_mm_cid == -1)
10523 return -1;
10524 src_cid = READ_ONCE(src_pcpu_cid->cid);
10525 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
10526 return -1;
10527
10528 /*
10529 * If we observe an active task using the mm on this rq, it means we
10530 * are not the last task to be migrated from this cpu for this mm, so
10531 * there is no need to move src_cid to the destination cpu.
10532 */
10533 guard(rcu)();
10534 src_task = rcu_dereference(src_rq->curr);
10535 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10536 t->last_mm_cid = -1;
10537 return -1;
10538 }
10539
10540 return src_cid;
10541 }
10542
10543 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)10544 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
10545 struct task_struct *t,
10546 struct mm_cid *src_pcpu_cid,
10547 int src_cid)
10548 {
10549 struct task_struct *src_task;
10550 struct mm_struct *mm = t->mm;
10551 int lazy_cid;
10552
10553 if (src_cid == -1)
10554 return -1;
10555
10556 /*
10557 * Attempt to clear the source cpu cid to move it to the destination
10558 * cpu.
10559 */
10560 lazy_cid = mm_cid_set_lazy_put(src_cid);
10561 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
10562 return -1;
10563
10564 /*
10565 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10566 * rq->curr->mm matches the scheduler barrier in context_switch()
10567 * between store to rq->curr and load of prev and next task's
10568 * per-mm/cpu cid.
10569 *
10570 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10571 * rq->curr->mm_cid_active matches the barrier in
10572 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10573 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10574 * load of per-mm/cpu cid.
10575 */
10576
10577 /*
10578 * If we observe an active task using the mm on this rq after setting
10579 * the lazy-put flag, this task will be responsible for transitioning
10580 * from lazy-put flag set to MM_CID_UNSET.
10581 */
10582 scoped_guard (rcu) {
10583 src_task = rcu_dereference(src_rq->curr);
10584 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
10585 /*
10586 * We observed an active task for this mm, there is therefore
10587 * no point in moving this cid to the destination cpu.
10588 */
10589 t->last_mm_cid = -1;
10590 return -1;
10591 }
10592 }
10593
10594 /*
10595 * The src_cid is unused, so it can be unset.
10596 */
10597 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10598 return -1;
10599 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
10600 return src_cid;
10601 }
10602
10603 /*
10604 * Migration to dst cpu. Called with dst_rq lock held.
10605 * Interrupts are disabled, which keeps the window of cid ownership without the
10606 * source rq lock held small.
10607 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)10608 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
10609 {
10610 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
10611 struct mm_struct *mm = t->mm;
10612 int src_cid, src_cpu;
10613 bool dst_cid_is_set;
10614 struct rq *src_rq;
10615
10616 lockdep_assert_rq_held(dst_rq);
10617
10618 if (!mm)
10619 return;
10620 src_cpu = t->migrate_from_cpu;
10621 if (src_cpu == -1) {
10622 t->last_mm_cid = -1;
10623 return;
10624 }
10625 /*
10626 * Move the src cid if the dst cid is unset. This keeps id
10627 * allocation closest to 0 in cases where few threads migrate around
10628 * many CPUs.
10629 *
10630 * If destination cid or recent cid is already set, we may have
10631 * to just clear the src cid to ensure compactness in frequent
10632 * migrations scenarios.
10633 *
10634 * It is not useful to clear the src cid when the number of threads is
10635 * greater or equal to the number of allowed CPUs, because user-space
10636 * can expect that the number of allowed cids can reach the number of
10637 * allowed CPUs.
10638 */
10639 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
10640 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
10641 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
10642 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
10643 return;
10644 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
10645 src_rq = cpu_rq(src_cpu);
10646 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
10647 if (src_cid == -1)
10648 return;
10649 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
10650 src_cid);
10651 if (src_cid == -1)
10652 return;
10653 if (dst_cid_is_set) {
10654 __mm_cid_put(mm, src_cid);
10655 return;
10656 }
10657 /* Move src_cid to dst cpu. */
10658 mm_cid_snapshot_time(dst_rq, mm);
10659 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
10660 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
10661 }
10662
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)10663 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
10664 int cpu)
10665 {
10666 struct rq *rq = cpu_rq(cpu);
10667 struct task_struct *t;
10668 int cid, lazy_cid;
10669
10670 cid = READ_ONCE(pcpu_cid->cid);
10671 if (!mm_cid_is_valid(cid))
10672 return;
10673
10674 /*
10675 * Clear the cpu cid if it is set to keep cid allocation compact. If
10676 * there happens to be other tasks left on the source cpu using this
10677 * mm, the next task using this mm will reallocate its cid on context
10678 * switch.
10679 */
10680 lazy_cid = mm_cid_set_lazy_put(cid);
10681 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
10682 return;
10683
10684 /*
10685 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10686 * rq->curr->mm matches the scheduler barrier in context_switch()
10687 * between store to rq->curr and load of prev and next task's
10688 * per-mm/cpu cid.
10689 *
10690 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
10691 * rq->curr->mm_cid_active matches the barrier in
10692 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
10693 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
10694 * load of per-mm/cpu cid.
10695 */
10696
10697 /*
10698 * If we observe an active task using the mm on this rq after setting
10699 * the lazy-put flag, that task will be responsible for transitioning
10700 * from lazy-put flag set to MM_CID_UNSET.
10701 */
10702 scoped_guard (rcu) {
10703 t = rcu_dereference(rq->curr);
10704 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
10705 return;
10706 }
10707
10708 /*
10709 * The cid is unused, so it can be unset.
10710 * Disable interrupts to keep the window of cid ownership without rq
10711 * lock small.
10712 */
10713 scoped_guard (irqsave) {
10714 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
10715 __mm_cid_put(mm, cid);
10716 }
10717 }
10718
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)10719 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
10720 {
10721 struct rq *rq = cpu_rq(cpu);
10722 struct mm_cid *pcpu_cid;
10723 struct task_struct *curr;
10724 u64 rq_clock;
10725
10726 /*
10727 * rq->clock load is racy on 32-bit but one spurious clear once in a
10728 * while is irrelevant.
10729 */
10730 rq_clock = READ_ONCE(rq->clock);
10731 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10732
10733 /*
10734 * In order to take care of infrequently scheduled tasks, bump the time
10735 * snapshot associated with this cid if an active task using the mm is
10736 * observed on this rq.
10737 */
10738 scoped_guard (rcu) {
10739 curr = rcu_dereference(rq->curr);
10740 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
10741 WRITE_ONCE(pcpu_cid->time, rq_clock);
10742 return;
10743 }
10744 }
10745
10746 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
10747 return;
10748 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10749 }
10750
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)10751 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
10752 int weight)
10753 {
10754 struct mm_cid *pcpu_cid;
10755 int cid;
10756
10757 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
10758 cid = READ_ONCE(pcpu_cid->cid);
10759 if (!mm_cid_is_valid(cid) || cid < weight)
10760 return;
10761 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
10762 }
10763
task_mm_cid_work(struct callback_head * work)10764 static void task_mm_cid_work(struct callback_head *work)
10765 {
10766 unsigned long now = jiffies, old_scan, next_scan;
10767 struct task_struct *t = current;
10768 struct cpumask *cidmask;
10769 struct mm_struct *mm;
10770 int weight, cpu;
10771
10772 WARN_ON_ONCE(t != container_of(work, struct task_struct, cid_work));
10773
10774 work->next = work; /* Prevent double-add */
10775 if (t->flags & PF_EXITING)
10776 return;
10777 mm = t->mm;
10778 if (!mm)
10779 return;
10780 old_scan = READ_ONCE(mm->mm_cid_next_scan);
10781 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10782 if (!old_scan) {
10783 unsigned long res;
10784
10785 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
10786 if (res != old_scan)
10787 old_scan = res;
10788 else
10789 old_scan = next_scan;
10790 }
10791 if (time_before(now, old_scan))
10792 return;
10793 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
10794 return;
10795 cidmask = mm_cidmask(mm);
10796 /* Clear cids that were not recently used. */
10797 for_each_possible_cpu(cpu)
10798 sched_mm_cid_remote_clear_old(mm, cpu);
10799 weight = cpumask_weight(cidmask);
10800 /*
10801 * Clear cids that are greater or equal to the cidmask weight to
10802 * recompact it.
10803 */
10804 for_each_possible_cpu(cpu)
10805 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
10806 }
10807
init_sched_mm_cid(struct task_struct * t)10808 void init_sched_mm_cid(struct task_struct *t)
10809 {
10810 struct mm_struct *mm = t->mm;
10811 int mm_users = 0;
10812
10813 if (mm) {
10814 mm_users = atomic_read(&mm->mm_users);
10815 if (mm_users == 1)
10816 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
10817 }
10818 t->cid_work.next = &t->cid_work; /* Protect against double add */
10819 init_task_work(&t->cid_work, task_mm_cid_work);
10820 }
10821
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)10822 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
10823 {
10824 struct callback_head *work = &curr->cid_work;
10825 unsigned long now = jiffies;
10826
10827 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
10828 work->next != work)
10829 return;
10830 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
10831 return;
10832
10833 /* No page allocation under rq lock */
10834 task_work_add(curr, work, TWA_RESUME);
10835 }
10836
sched_mm_cid_exit_signals(struct task_struct * t)10837 void sched_mm_cid_exit_signals(struct task_struct *t)
10838 {
10839 struct mm_struct *mm = t->mm;
10840 struct rq *rq;
10841
10842 if (!mm)
10843 return;
10844
10845 preempt_disable();
10846 rq = this_rq();
10847 guard(rq_lock_irqsave)(rq);
10848 preempt_enable_no_resched(); /* holding spinlock */
10849 WRITE_ONCE(t->mm_cid_active, 0);
10850 /*
10851 * Store t->mm_cid_active before loading per-mm/cpu cid.
10852 * Matches barrier in sched_mm_cid_remote_clear_old().
10853 */
10854 smp_mb();
10855 mm_cid_put(mm);
10856 t->last_mm_cid = t->mm_cid = -1;
10857 }
10858
sched_mm_cid_before_execve(struct task_struct * t)10859 void sched_mm_cid_before_execve(struct task_struct *t)
10860 {
10861 struct mm_struct *mm = t->mm;
10862 struct rq *rq;
10863
10864 if (!mm)
10865 return;
10866
10867 preempt_disable();
10868 rq = this_rq();
10869 guard(rq_lock_irqsave)(rq);
10870 preempt_enable_no_resched(); /* holding spinlock */
10871 WRITE_ONCE(t->mm_cid_active, 0);
10872 /*
10873 * Store t->mm_cid_active before loading per-mm/cpu cid.
10874 * Matches barrier in sched_mm_cid_remote_clear_old().
10875 */
10876 smp_mb();
10877 mm_cid_put(mm);
10878 t->last_mm_cid = t->mm_cid = -1;
10879 }
10880
sched_mm_cid_after_execve(struct task_struct * t)10881 void sched_mm_cid_after_execve(struct task_struct *t)
10882 {
10883 struct mm_struct *mm = t->mm;
10884 struct rq *rq;
10885
10886 if (!mm)
10887 return;
10888
10889 preempt_disable();
10890 rq = this_rq();
10891 scoped_guard (rq_lock_irqsave, rq) {
10892 preempt_enable_no_resched(); /* holding spinlock */
10893 WRITE_ONCE(t->mm_cid_active, 1);
10894 /*
10895 * Store t->mm_cid_active before loading per-mm/cpu cid.
10896 * Matches barrier in sched_mm_cid_remote_clear_old().
10897 */
10898 smp_mb();
10899 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
10900 }
10901 }
10902
sched_mm_cid_fork(struct task_struct * t)10903 void sched_mm_cid_fork(struct task_struct *t)
10904 {
10905 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
10906 t->mm_cid_active = 1;
10907 }
10908 #endif /* CONFIG_SCHED_MM_CID */
10909
10910 #ifdef CONFIG_SCHED_CLASS_EXT
sched_deq_and_put_task(struct task_struct * p,int queue_flags,struct sched_enq_and_set_ctx * ctx)10911 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
10912 struct sched_enq_and_set_ctx *ctx)
10913 {
10914 struct rq *rq = task_rq(p);
10915
10916 lockdep_assert_rq_held(rq);
10917
10918 *ctx = (struct sched_enq_and_set_ctx){
10919 .p = p,
10920 .queue_flags = queue_flags,
10921 .queued = task_on_rq_queued(p),
10922 .running = task_current(rq, p),
10923 };
10924
10925 update_rq_clock(rq);
10926 if (ctx->queued)
10927 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
10928 if (ctx->running)
10929 put_prev_task(rq, p);
10930 }
10931
sched_enq_and_set_task(struct sched_enq_and_set_ctx * ctx)10932 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
10933 {
10934 struct rq *rq = task_rq(ctx->p);
10935
10936 lockdep_assert_rq_held(rq);
10937
10938 if (ctx->queued)
10939 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
10940 if (ctx->running)
10941 set_next_task(rq, ctx->p);
10942 }
10943 #endif /* CONFIG_SCHED_CLASS_EXT */
10944