xref: /linux/kernel/locking/lockdep.c (revision 72b8944f147e151e845d976e7f48beff38967499)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 #include <linux/console.h>
60 #include <linux/kasan.h>
61 
62 #include <asm/sections.h>
63 
64 #include "lockdep_internals.h"
65 #include "lock_events.h"
66 
67 #include <trace/events/lock.h>
68 
69 #ifdef CONFIG_PROVE_LOCKING
70 static int prove_locking = 1;
71 module_param(prove_locking, int, 0644);
72 #else
73 #define prove_locking 0
74 #endif
75 
76 #ifdef CONFIG_LOCK_STAT
77 static int lock_stat = 1;
78 module_param(lock_stat, int, 0644);
79 #else
80 #define lock_stat 0
81 #endif
82 
83 #ifdef CONFIG_SYSCTL
84 static const struct ctl_table kern_lockdep_table[] = {
85 #ifdef CONFIG_PROVE_LOCKING
86 	{
87 		.procname       = "prove_locking",
88 		.data           = &prove_locking,
89 		.maxlen         = sizeof(int),
90 		.mode           = 0644,
91 		.proc_handler   = proc_dointvec,
92 	},
93 #endif /* CONFIG_PROVE_LOCKING */
94 #ifdef CONFIG_LOCK_STAT
95 	{
96 		.procname       = "lock_stat",
97 		.data           = &lock_stat,
98 		.maxlen         = sizeof(int),
99 		.mode           = 0644,
100 		.proc_handler   = proc_dointvec,
101 	},
102 #endif /* CONFIG_LOCK_STAT */
103 };
104 
kernel_lockdep_sysctls_init(void)105 static __init int kernel_lockdep_sysctls_init(void)
106 {
107 	register_sysctl_init("kernel", kern_lockdep_table);
108 	return 0;
109 }
110 late_initcall(kernel_lockdep_sysctls_init);
111 #endif /* CONFIG_SYSCTL */
112 
113 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
114 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
115 
lockdep_enabled(void)116 static __always_inline bool lockdep_enabled(void)
117 {
118 	if (!debug_locks)
119 		return false;
120 
121 	if (this_cpu_read(lockdep_recursion))
122 		return false;
123 
124 	if (current->lockdep_recursion)
125 		return false;
126 
127 	return true;
128 }
129 
130 /*
131  * lockdep_lock: protects the lockdep graph, the hashes and the
132  *               class/list/hash allocators.
133  *
134  * This is one of the rare exceptions where it's justified
135  * to use a raw spinlock - we really dont want the spinlock
136  * code to recurse back into the lockdep code...
137  */
138 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
139 static struct task_struct *__owner;
140 
lockdep_lock(void)141 static inline void lockdep_lock(void)
142 {
143 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
144 
145 	__this_cpu_inc(lockdep_recursion);
146 	arch_spin_lock(&__lock);
147 	__owner = current;
148 }
149 
lockdep_unlock(void)150 static inline void lockdep_unlock(void)
151 {
152 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
153 
154 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
155 		return;
156 
157 	__owner = NULL;
158 	arch_spin_unlock(&__lock);
159 	__this_cpu_dec(lockdep_recursion);
160 }
161 
162 #ifdef CONFIG_PROVE_LOCKING
lockdep_assert_locked(void)163 static inline bool lockdep_assert_locked(void)
164 {
165 	return DEBUG_LOCKS_WARN_ON(__owner != current);
166 }
167 #endif
168 
169 static struct task_struct *lockdep_selftest_task_struct;
170 
171 
graph_lock(void)172 static int graph_lock(void)
173 {
174 	lockdep_lock();
175 	lockevent_inc(lockdep_lock);
176 	/*
177 	 * Make sure that if another CPU detected a bug while
178 	 * walking the graph we dont change it (while the other
179 	 * CPU is busy printing out stuff with the graph lock
180 	 * dropped already)
181 	 */
182 	if (!debug_locks) {
183 		lockdep_unlock();
184 		return 0;
185 	}
186 	return 1;
187 }
188 
graph_unlock(void)189 static inline void graph_unlock(void)
190 {
191 	lockdep_unlock();
192 }
193 
194 /*
195  * Turn lock debugging off and return with 0 if it was off already,
196  * and also release the graph lock:
197  */
debug_locks_off_graph_unlock(void)198 static inline int debug_locks_off_graph_unlock(void)
199 {
200 	int ret = debug_locks_off();
201 
202 	lockdep_unlock();
203 
204 	return ret;
205 }
206 
207 unsigned long nr_list_entries;
208 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
209 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
210 
211 /*
212  * All data structures here are protected by the global debug_lock.
213  *
214  * nr_lock_classes is the number of elements of lock_classes[] that is
215  * in use.
216  */
217 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
218 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
219 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
220 unsigned long nr_lock_classes;
221 unsigned long nr_zapped_classes;
222 unsigned long nr_dynamic_keys;
223 unsigned long max_lock_class_idx;
224 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
225 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
226 
hlock_class(struct held_lock * hlock)227 static inline struct lock_class *hlock_class(struct held_lock *hlock)
228 {
229 	unsigned int class_idx = hlock->class_idx;
230 
231 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
232 	barrier();
233 
234 	if (!test_bit(class_idx, lock_classes_in_use)) {
235 		/*
236 		 * Someone passed in garbage, we give up.
237 		 */
238 		DEBUG_LOCKS_WARN_ON(1);
239 		return NULL;
240 	}
241 
242 	/*
243 	 * At this point, if the passed hlock->class_idx is still garbage,
244 	 * we just have to live with it
245 	 */
246 	return lock_classes + class_idx;
247 }
248 
249 #ifdef CONFIG_LOCK_STAT
250 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
251 
lockstat_clock(void)252 static inline u64 lockstat_clock(void)
253 {
254 	return local_clock();
255 }
256 
lock_point(unsigned long points[],unsigned long ip)257 static int lock_point(unsigned long points[], unsigned long ip)
258 {
259 	int i;
260 
261 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
262 		if (points[i] == 0) {
263 			points[i] = ip;
264 			break;
265 		}
266 		if (points[i] == ip)
267 			break;
268 	}
269 
270 	return i;
271 }
272 
lock_time_inc(struct lock_time * lt,u64 time)273 static void lock_time_inc(struct lock_time *lt, u64 time)
274 {
275 	if (time > lt->max)
276 		lt->max = time;
277 
278 	if (time < lt->min || !lt->nr)
279 		lt->min = time;
280 
281 	lt->total += time;
282 	lt->nr++;
283 }
284 
lock_time_add(struct lock_time * src,struct lock_time * dst)285 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
286 {
287 	if (!src->nr)
288 		return;
289 
290 	if (src->max > dst->max)
291 		dst->max = src->max;
292 
293 	if (src->min < dst->min || !dst->nr)
294 		dst->min = src->min;
295 
296 	dst->total += src->total;
297 	dst->nr += src->nr;
298 }
299 
lock_stats(struct lock_class * class,struct lock_class_stats * stats)300 void lock_stats(struct lock_class *class, struct lock_class_stats *stats)
301 {
302 	int cpu, i;
303 
304 	memset(stats, 0, sizeof(struct lock_class_stats));
305 	for_each_possible_cpu(cpu) {
306 		struct lock_class_stats *pcs =
307 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
308 
309 		for (i = 0; i < ARRAY_SIZE(stats->contention_point); i++)
310 			stats->contention_point[i] += pcs->contention_point[i];
311 
312 		for (i = 0; i < ARRAY_SIZE(stats->contending_point); i++)
313 			stats->contending_point[i] += pcs->contending_point[i];
314 
315 		lock_time_add(&pcs->read_waittime, &stats->read_waittime);
316 		lock_time_add(&pcs->write_waittime, &stats->write_waittime);
317 
318 		lock_time_add(&pcs->read_holdtime, &stats->read_holdtime);
319 		lock_time_add(&pcs->write_holdtime, &stats->write_holdtime);
320 
321 		for (i = 0; i < ARRAY_SIZE(stats->bounces); i++)
322 			stats->bounces[i] += pcs->bounces[i];
323 	}
324 }
325 
clear_lock_stats(struct lock_class * class)326 void clear_lock_stats(struct lock_class *class)
327 {
328 	int cpu;
329 
330 	for_each_possible_cpu(cpu) {
331 		struct lock_class_stats *cpu_stats =
332 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
333 
334 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
335 	}
336 	memset(class->contention_point, 0, sizeof(class->contention_point));
337 	memset(class->contending_point, 0, sizeof(class->contending_point));
338 }
339 
get_lock_stats(struct lock_class * class)340 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
341 {
342 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
343 }
344 
lock_release_holdtime(struct held_lock * hlock)345 static void lock_release_holdtime(struct held_lock *hlock)
346 {
347 	struct lock_class_stats *stats;
348 	u64 holdtime;
349 
350 	if (!lock_stat)
351 		return;
352 
353 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
354 
355 	stats = get_lock_stats(hlock_class(hlock));
356 	if (hlock->read)
357 		lock_time_inc(&stats->read_holdtime, holdtime);
358 	else
359 		lock_time_inc(&stats->write_holdtime, holdtime);
360 }
361 #else
lock_release_holdtime(struct held_lock * hlock)362 static inline void lock_release_holdtime(struct held_lock *hlock)
363 {
364 }
365 #endif
366 
367 /*
368  * We keep a global list of all lock classes. The list is only accessed with
369  * the lockdep spinlock lock held. free_lock_classes is a list with free
370  * elements. These elements are linked together by the lock_entry member in
371  * struct lock_class.
372  */
373 static LIST_HEAD(all_lock_classes);
374 static LIST_HEAD(free_lock_classes);
375 
376 /**
377  * struct pending_free - information about data structures about to be freed
378  * @zapped: Head of a list with struct lock_class elements.
379  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
380  *	are about to be freed.
381  */
382 struct pending_free {
383 	struct list_head zapped;
384 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
385 };
386 
387 /**
388  * struct delayed_free - data structures used for delayed freeing
389  *
390  * A data structure for delayed freeing of data structures that may be
391  * accessed by RCU readers at the time these were freed.
392  *
393  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
394  * @index:     Index of @pf to which freed data structures are added.
395  * @scheduled: Whether or not an RCU callback has been scheduled.
396  * @pf:        Array with information about data structures about to be freed.
397  */
398 static struct delayed_free {
399 	struct rcu_head		rcu_head;
400 	int			index;
401 	int			scheduled;
402 	struct pending_free	pf[2];
403 } delayed_free;
404 
405 /*
406  * The lockdep classes are in a hash-table as well, for fast lookup:
407  */
408 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
409 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
410 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
411 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
412 
413 static struct hlist_head classhash_table[CLASSHASH_SIZE];
414 
415 /*
416  * We put the lock dependency chains into a hash-table as well, to cache
417  * their existence:
418  */
419 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
420 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
421 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
422 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
423 
424 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
425 
426 /*
427  * the id of held_lock
428  */
hlock_id(struct held_lock * hlock)429 static inline u16 hlock_id(struct held_lock *hlock)
430 {
431 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
432 
433 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
434 }
435 
chain_hlock_class_idx(u16 hlock_id)436 static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id)
437 {
438 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
439 }
440 
441 /*
442  * The hash key of the lock dependency chains is a hash itself too:
443  * it's a hash of all locks taken up to that lock, including that lock.
444  * It's a 64-bit hash, because it's important for the keys to be
445  * unique.
446  */
iterate_chain_key(u64 key,u32 idx)447 static inline u64 iterate_chain_key(u64 key, u32 idx)
448 {
449 	u32 k0 = key, k1 = key >> 32;
450 
451 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
452 
453 	return k0 | (u64)k1 << 32;
454 }
455 
lockdep_init_task(struct task_struct * task)456 void lockdep_init_task(struct task_struct *task)
457 {
458 	task->lockdep_depth = 0; /* no locks held yet */
459 	task->curr_chain_key = INITIAL_CHAIN_KEY;
460 	task->lockdep_recursion = 0;
461 }
462 
lockdep_recursion_inc(void)463 static __always_inline void lockdep_recursion_inc(void)
464 {
465 	__this_cpu_inc(lockdep_recursion);
466 }
467 
lockdep_recursion_finish(void)468 static __always_inline void lockdep_recursion_finish(void)
469 {
470 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
471 		__this_cpu_write(lockdep_recursion, 0);
472 }
473 
lockdep_set_selftest_task(struct task_struct * task)474 void lockdep_set_selftest_task(struct task_struct *task)
475 {
476 	lockdep_selftest_task_struct = task;
477 }
478 
479 /*
480  * Debugging switches:
481  */
482 
483 #define VERBOSE			0
484 #define VERY_VERBOSE		0
485 
486 #if VERBOSE
487 # define HARDIRQ_VERBOSE	1
488 # define SOFTIRQ_VERBOSE	1
489 #else
490 # define HARDIRQ_VERBOSE	0
491 # define SOFTIRQ_VERBOSE	0
492 #endif
493 
494 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
495 /*
496  * Quick filtering for interesting events:
497  */
class_filter(struct lock_class * class)498 static int class_filter(struct lock_class *class)
499 {
500 #if 0
501 	/* Example */
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "lockname"))
504 		return 1;
505 	if (class->name_version == 1 &&
506 			!strcmp(class->name, "&struct->lockfield"))
507 		return 1;
508 #endif
509 	/* Filter everything else. 1 would be to allow everything else */
510 	return 0;
511 }
512 #endif
513 
verbose(struct lock_class * class)514 static int verbose(struct lock_class *class)
515 {
516 #if VERBOSE
517 	return class_filter(class);
518 #endif
519 	return 0;
520 }
521 
print_lockdep_off(const char * bug_msg)522 static void print_lockdep_off(const char *bug_msg)
523 {
524 	printk(KERN_DEBUG "%s\n", bug_msg);
525 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
526 #ifdef CONFIG_LOCK_STAT
527 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
528 #endif
529 }
530 
531 unsigned long nr_stack_trace_entries;
532 
533 #ifdef CONFIG_PROVE_LOCKING
534 /**
535  * struct lock_trace - single stack backtrace
536  * @hash_entry:	Entry in a stack_trace_hash[] list.
537  * @hash:	jhash() of @entries.
538  * @nr_entries:	Number of entries in @entries.
539  * @entries:	Actual stack backtrace.
540  */
541 struct lock_trace {
542 	struct hlist_node	hash_entry;
543 	u32			hash;
544 	u32			nr_entries;
545 	unsigned long		entries[] __aligned(sizeof(unsigned long));
546 };
547 #define LOCK_TRACE_SIZE_IN_LONGS				\
548 	(sizeof(struct lock_trace) / sizeof(unsigned long))
549 /*
550  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
551  */
552 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
553 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
554 
traces_identical(struct lock_trace * t1,struct lock_trace * t2)555 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
556 {
557 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
558 		memcmp(t1->entries, t2->entries,
559 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
560 }
561 
save_trace(void)562 static struct lock_trace *save_trace(void)
563 {
564 	struct lock_trace *trace, *t2;
565 	struct hlist_head *hash_head;
566 	u32 hash;
567 	int max_entries;
568 
569 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
570 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
571 
572 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
573 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
574 		LOCK_TRACE_SIZE_IN_LONGS;
575 
576 	if (max_entries <= 0) {
577 		if (!debug_locks_off_graph_unlock())
578 			return NULL;
579 
580 		nbcon_cpu_emergency_enter();
581 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
582 		dump_stack();
583 		nbcon_cpu_emergency_exit();
584 
585 		return NULL;
586 	}
587 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
588 
589 	hash = jhash(trace->entries, trace->nr_entries *
590 		     sizeof(trace->entries[0]), 0);
591 	trace->hash = hash;
592 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
593 	hlist_for_each_entry(t2, hash_head, hash_entry) {
594 		if (traces_identical(trace, t2))
595 			return t2;
596 	}
597 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
598 	hlist_add_head(&trace->hash_entry, hash_head);
599 
600 	return trace;
601 }
602 
603 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)604 u64 lockdep_stack_trace_count(void)
605 {
606 	struct lock_trace *trace;
607 	u64 c = 0;
608 	int i;
609 
610 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
611 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
612 			c++;
613 		}
614 	}
615 
616 	return c;
617 }
618 
619 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)620 u64 lockdep_stack_hash_count(void)
621 {
622 	u64 c = 0;
623 	int i;
624 
625 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
626 		if (!hlist_empty(&stack_trace_hash[i]))
627 			c++;
628 
629 	return c;
630 }
631 #endif
632 
633 unsigned int nr_hardirq_chains;
634 unsigned int nr_softirq_chains;
635 unsigned int nr_process_chains;
636 unsigned int max_lockdep_depth;
637 
638 #ifdef CONFIG_DEBUG_LOCKDEP
639 /*
640  * Various lockdep statistics:
641  */
642 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
643 #endif
644 
645 #ifdef CONFIG_PROVE_LOCKING
646 /*
647  * Locking printouts:
648  */
649 
650 #define __USAGE(__STATE)						\
651 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
652 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
653 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
654 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
655 
656 static const char *usage_str[] =
657 {
658 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
659 #include "lockdep_states.h"
660 #undef LOCKDEP_STATE
661 	[LOCK_USED] = "INITIAL USE",
662 	[LOCK_USED_READ] = "INITIAL READ USE",
663 	/* abused as string storage for verify_lock_unused() */
664 	[LOCK_USAGE_STATES] = "IN-NMI",
665 };
666 #endif
667 
__get_key_name(const struct lockdep_subclass_key * key,char * str)668 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
669 {
670 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
671 }
672 
lock_flag(enum lock_usage_bit bit)673 static inline unsigned long lock_flag(enum lock_usage_bit bit)
674 {
675 	return 1UL << bit;
676 }
677 
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)678 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
679 {
680 	/*
681 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
682 	 * irq context), which is the safest usage category.
683 	 */
684 	char c = '.';
685 
686 	/*
687 	 * The order of the following usage checks matters, which will
688 	 * result in the outcome character as follows:
689 	 *
690 	 * - '+': irq is enabled and not in irq context
691 	 * - '-': in irq context and irq is disabled
692 	 * - '?': in irq context and irq is enabled
693 	 */
694 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
695 		c = '+';
696 		if (class->usage_mask & lock_flag(bit))
697 			c = '?';
698 	} else if (class->usage_mask & lock_flag(bit))
699 		c = '-';
700 
701 	return c;
702 }
703 
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])704 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
705 {
706 	int i = 0;
707 
708 #define LOCKDEP_STATE(__STATE) 						\
709 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
710 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
711 #include "lockdep_states.h"
712 #undef LOCKDEP_STATE
713 
714 	usage[i] = '\0';
715 }
716 
__print_lock_name(struct held_lock * hlock,struct lock_class * class)717 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
718 {
719 	char str[KSYM_NAME_LEN];
720 	const char *name;
721 
722 	name = class->name;
723 	if (!name) {
724 		name = __get_key_name(class->key, str);
725 		printk(KERN_CONT "%s", name);
726 	} else {
727 		printk(KERN_CONT "%s", name);
728 		if (class->name_version > 1)
729 			printk(KERN_CONT "#%d", class->name_version);
730 		if (class->subclass)
731 			printk(KERN_CONT "/%d", class->subclass);
732 		if (hlock && class->print_fn)
733 			class->print_fn(hlock->instance);
734 	}
735 }
736 
print_lock_name(struct held_lock * hlock,struct lock_class * class)737 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
738 {
739 	char usage[LOCK_USAGE_CHARS];
740 
741 	get_usage_chars(class, usage);
742 
743 	printk(KERN_CONT " (");
744 	__print_lock_name(hlock, class);
745 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
746 			class->wait_type_outer ?: class->wait_type_inner,
747 			class->wait_type_inner);
748 }
749 
print_lockdep_cache(struct lockdep_map * lock)750 static void print_lockdep_cache(struct lockdep_map *lock)
751 {
752 	const char *name;
753 	char str[KSYM_NAME_LEN];
754 
755 	name = lock->name;
756 	if (!name)
757 		name = __get_key_name(lock->key->subkeys, str);
758 
759 	printk(KERN_CONT "%s", name);
760 }
761 
print_lock(struct held_lock * hlock)762 static void print_lock(struct held_lock *hlock)
763 {
764 	/*
765 	 * We can be called locklessly through debug_show_all_locks() so be
766 	 * extra careful, the hlock might have been released and cleared.
767 	 *
768 	 * If this indeed happens, lets pretend it does not hurt to continue
769 	 * to print the lock unless the hlock class_idx does not point to a
770 	 * registered class. The rationale here is: since we don't attempt
771 	 * to distinguish whether we are in this situation, if it just
772 	 * happened we can't count on class_idx to tell either.
773 	 */
774 	struct lock_class *lock = hlock_class(hlock);
775 
776 	if (!lock) {
777 		printk(KERN_CONT "<RELEASED>\n");
778 		return;
779 	}
780 
781 	printk(KERN_CONT "%px", hlock->instance);
782 	print_lock_name(hlock, lock);
783 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
784 }
785 
lockdep_print_held_locks(struct task_struct * p)786 static void lockdep_print_held_locks(struct task_struct *p)
787 {
788 	int i, depth = READ_ONCE(p->lockdep_depth);
789 
790 	if (!depth)
791 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
792 	else
793 		printk("%d lock%s held by %s/%d:\n", depth,
794 		       str_plural(depth), p->comm, task_pid_nr(p));
795 	/*
796 	 * It's not reliable to print a task's held locks if it's not sleeping
797 	 * and it's not the current task.
798 	 */
799 	if (p != current && task_is_running(p))
800 		return;
801 	for (i = 0; i < depth; i++) {
802 		printk(" #%d: ", i);
803 		print_lock(p->held_locks + i);
804 	}
805 }
806 
print_kernel_ident(void)807 static void print_kernel_ident(void)
808 {
809 	printk("%s %.*s %s\n", init_utsname()->release,
810 		(int)strcspn(init_utsname()->version, " "),
811 		init_utsname()->version,
812 		print_tainted());
813 }
814 
very_verbose(struct lock_class * class)815 static int very_verbose(struct lock_class *class)
816 {
817 #if VERY_VERBOSE
818 	return class_filter(class);
819 #endif
820 	return 0;
821 }
822 
823 /*
824  * Is this the address of a static object:
825  */
826 #ifdef __KERNEL__
static_obj(const void * obj)827 static int static_obj(const void *obj)
828 {
829 	unsigned long addr = (unsigned long) obj;
830 
831 	if (is_kernel_core_data(addr))
832 		return 1;
833 
834 	/*
835 	 * keys are allowed in the __ro_after_init section.
836 	 */
837 	if (is_kernel_rodata(addr))
838 		return 1;
839 
840 	/*
841 	 * in initdata section and used during bootup only?
842 	 * NOTE: On some platforms the initdata section is
843 	 * outside of the _stext ... _end range.
844 	 */
845 	if (system_state < SYSTEM_FREEING_INITMEM &&
846 		init_section_contains((void *)addr, 1))
847 		return 1;
848 
849 	/*
850 	 * in-kernel percpu var?
851 	 */
852 	if (is_kernel_percpu_address(addr))
853 		return 1;
854 
855 	/*
856 	 * module static or percpu var?
857 	 */
858 	return is_module_address(addr) || is_module_percpu_address(addr);
859 }
860 #endif
861 
862 /*
863  * To make lock name printouts unique, we calculate a unique
864  * class->name_version generation counter. The caller must hold the graph
865  * lock.
866  */
count_matching_names(struct lock_class * new_class)867 static int count_matching_names(struct lock_class *new_class)
868 {
869 	struct lock_class *class;
870 	int count = 0;
871 
872 	if (!new_class->name)
873 		return 0;
874 
875 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
876 		if (new_class->key - new_class->subclass == class->key)
877 			return class->name_version;
878 		if (class->name && !strcmp(class->name, new_class->name))
879 			count = max(count, class->name_version);
880 	}
881 
882 	return count + 1;
883 }
884 
885 /* used from NMI context -- must be lockless */
886 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)887 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
888 {
889 	struct lockdep_subclass_key *key;
890 	struct hlist_head *hash_head;
891 	struct lock_class *class;
892 
893 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
894 		instrumentation_begin();
895 		debug_locks_off();
896 		nbcon_cpu_emergency_enter();
897 		printk(KERN_ERR
898 			"BUG: looking up invalid subclass: %u\n", subclass);
899 		printk(KERN_ERR
900 			"turning off the locking correctness validator.\n");
901 		dump_stack();
902 		nbcon_cpu_emergency_exit();
903 		instrumentation_end();
904 		return NULL;
905 	}
906 
907 	/*
908 	 * If it is not initialised then it has never been locked,
909 	 * so it won't be present in the hash table.
910 	 */
911 	if (unlikely(!lock->key))
912 		return NULL;
913 
914 	/*
915 	 * NOTE: the class-key must be unique. For dynamic locks, a static
916 	 * lock_class_key variable is passed in through the mutex_init()
917 	 * (or spin_lock_init()) call - which acts as the key. For static
918 	 * locks we use the lock object itself as the key.
919 	 */
920 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
921 			sizeof(struct lockdep_map));
922 
923 	key = lock->key->subkeys + subclass;
924 
925 	hash_head = classhashentry(key);
926 
927 	/*
928 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
929 	 */
930 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
931 		return NULL;
932 
933 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
934 		if (class->key == key) {
935 			/*
936 			 * Huh! same key, different name? Did someone trample
937 			 * on some memory? We're most confused.
938 			 */
939 			WARN_ONCE(class->name != lock->name &&
940 				  lock->key != &__lockdep_no_validate__,
941 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
942 				  lock->name, lock->key, class->name);
943 			return class;
944 		}
945 	}
946 
947 	return NULL;
948 }
949 
950 /*
951  * Static locks do not have their class-keys yet - for them the key is
952  * the lock object itself. If the lock is in the per cpu area, the
953  * canonical address of the lock (per cpu offset removed) is used.
954  */
assign_lock_key(struct lockdep_map * lock)955 static bool assign_lock_key(struct lockdep_map *lock)
956 {
957 	unsigned long can_addr, addr = (unsigned long)lock;
958 
959 #ifdef __KERNEL__
960 	/*
961 	 * lockdep_free_key_range() assumes that struct lock_class_key
962 	 * objects do not overlap. Since we use the address of lock
963 	 * objects as class key for static objects, check whether the
964 	 * size of lock_class_key objects does not exceed the size of
965 	 * the smallest lock object.
966 	 */
967 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
968 #endif
969 
970 	if (__is_kernel_percpu_address(addr, &can_addr))
971 		lock->key = (void *)can_addr;
972 	else if (__is_module_percpu_address(addr, &can_addr))
973 		lock->key = (void *)can_addr;
974 	else if (static_obj(lock))
975 		lock->key = (void *)lock;
976 	else {
977 		/* Debug-check: all keys must be persistent! */
978 		debug_locks_off();
979 		nbcon_cpu_emergency_enter();
980 		pr_err("INFO: trying to register non-static key.\n");
981 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
982 		pr_err("you didn't initialize this object before use?\n");
983 		pr_err("turning off the locking correctness validator.\n");
984 		dump_stack();
985 		nbcon_cpu_emergency_exit();
986 		return false;
987 	}
988 
989 	return true;
990 }
991 
992 #ifdef CONFIG_DEBUG_LOCKDEP
993 
994 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)995 static bool in_list(struct list_head *e, struct list_head *h)
996 {
997 	struct list_head *f;
998 
999 	list_for_each(f, h) {
1000 		if (e == f)
1001 			return true;
1002 	}
1003 
1004 	return false;
1005 }
1006 
1007 /*
1008  * Check whether entry @e occurs in any of the locks_after or locks_before
1009  * lists.
1010  */
in_any_class_list(struct list_head * e)1011 static bool in_any_class_list(struct list_head *e)
1012 {
1013 	struct lock_class *class;
1014 	int i;
1015 
1016 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1017 		class = &lock_classes[i];
1018 		if (in_list(e, &class->locks_after) ||
1019 		    in_list(e, &class->locks_before))
1020 			return true;
1021 	}
1022 	return false;
1023 }
1024 
class_lock_list_valid(struct lock_class * c,struct list_head * h)1025 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1026 {
1027 	struct lock_list *e;
1028 
1029 	list_for_each_entry(e, h, entry) {
1030 		if (e->links_to != c) {
1031 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1032 			       c->name ? : "(?)",
1033 			       (unsigned long)(e - list_entries),
1034 			       e->links_to && e->links_to->name ?
1035 			       e->links_to->name : "(?)",
1036 			       e->class && e->class->name ? e->class->name :
1037 			       "(?)");
1038 			return false;
1039 		}
1040 	}
1041 	return true;
1042 }
1043 
1044 #ifdef CONFIG_PROVE_LOCKING
1045 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1046 #endif
1047 
check_lock_chain_key(struct lock_chain * chain)1048 static bool check_lock_chain_key(struct lock_chain *chain)
1049 {
1050 #ifdef CONFIG_PROVE_LOCKING
1051 	u64 chain_key = INITIAL_CHAIN_KEY;
1052 	int i;
1053 
1054 	for (i = chain->base; i < chain->base + chain->depth; i++)
1055 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1056 	/*
1057 	 * The 'unsigned long long' casts avoid that a compiler warning
1058 	 * is reported when building tools/lib/lockdep.
1059 	 */
1060 	if (chain->chain_key != chain_key) {
1061 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1062 		       (unsigned long long)(chain - lock_chains),
1063 		       (unsigned long long)chain->chain_key,
1064 		       (unsigned long long)chain_key);
1065 		return false;
1066 	}
1067 #endif
1068 	return true;
1069 }
1070 
in_any_zapped_class_list(struct lock_class * class)1071 static bool in_any_zapped_class_list(struct lock_class *class)
1072 {
1073 	struct pending_free *pf;
1074 	int i;
1075 
1076 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1077 		if (in_list(&class->lock_entry, &pf->zapped))
1078 			return true;
1079 	}
1080 
1081 	return false;
1082 }
1083 
__check_data_structures(void)1084 static bool __check_data_structures(void)
1085 {
1086 	struct lock_class *class;
1087 	struct lock_chain *chain;
1088 	struct hlist_head *head;
1089 	struct lock_list *e;
1090 	int i;
1091 
1092 	/* Check whether all classes occur in a lock list. */
1093 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1094 		class = &lock_classes[i];
1095 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1096 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1097 		    !in_any_zapped_class_list(class)) {
1098 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1099 			       class, class->name ? : "(?)");
1100 			return false;
1101 		}
1102 	}
1103 
1104 	/* Check whether all classes have valid lock lists. */
1105 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1106 		class = &lock_classes[i];
1107 		if (!class_lock_list_valid(class, &class->locks_before))
1108 			return false;
1109 		if (!class_lock_list_valid(class, &class->locks_after))
1110 			return false;
1111 	}
1112 
1113 	/* Check the chain_key of all lock chains. */
1114 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1115 		head = chainhash_table + i;
1116 		hlist_for_each_entry_rcu(chain, head, entry) {
1117 			if (!check_lock_chain_key(chain))
1118 				return false;
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Check whether all list entries that are in use occur in a class
1124 	 * lock list.
1125 	 */
1126 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1127 		e = list_entries + i;
1128 		if (!in_any_class_list(&e->entry)) {
1129 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1130 			       (unsigned int)(e - list_entries),
1131 			       e->class->name ? : "(?)",
1132 			       e->links_to->name ? : "(?)");
1133 			return false;
1134 		}
1135 	}
1136 
1137 	/*
1138 	 * Check whether all list entries that are not in use do not occur in
1139 	 * a class lock list.
1140 	 */
1141 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1142 		e = list_entries + i;
1143 		if (in_any_class_list(&e->entry)) {
1144 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1145 			       (unsigned int)(e - list_entries),
1146 			       e->class && e->class->name ? e->class->name :
1147 			       "(?)",
1148 			       e->links_to && e->links_to->name ?
1149 			       e->links_to->name : "(?)");
1150 			return false;
1151 		}
1152 	}
1153 
1154 	return true;
1155 }
1156 
1157 int check_consistency = 0;
1158 module_param(check_consistency, int, 0644);
1159 
check_data_structures(void)1160 static void check_data_structures(void)
1161 {
1162 	static bool once = false;
1163 
1164 	if (check_consistency && !once) {
1165 		if (!__check_data_structures()) {
1166 			once = true;
1167 			WARN_ON(once);
1168 		}
1169 	}
1170 }
1171 
1172 #else /* CONFIG_DEBUG_LOCKDEP */
1173 
check_data_structures(void)1174 static inline void check_data_structures(void) { }
1175 
1176 #endif /* CONFIG_DEBUG_LOCKDEP */
1177 
1178 static void init_chain_block_buckets(void);
1179 
1180 /*
1181  * Initialize the lock_classes[] array elements, the free_lock_classes list
1182  * and also the delayed_free structure.
1183  */
init_data_structures_once(void)1184 static void init_data_structures_once(void)
1185 {
1186 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1187 	int i;
1188 
1189 	if (likely(rcu_head_initialized))
1190 		return;
1191 
1192 	if (system_state >= SYSTEM_SCHEDULING) {
1193 		init_rcu_head(&delayed_free.rcu_head);
1194 		rcu_head_initialized = true;
1195 	}
1196 
1197 	if (ds_initialized)
1198 		return;
1199 
1200 	ds_initialized = true;
1201 
1202 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1203 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1204 
1205 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1206 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1207 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1208 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1209 	}
1210 	init_chain_block_buckets();
1211 }
1212 
keyhashentry(const struct lock_class_key * key)1213 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1214 {
1215 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1216 
1217 	return lock_keys_hash + hash;
1218 }
1219 
1220 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1221 void lockdep_register_key(struct lock_class_key *key)
1222 {
1223 	struct hlist_head *hash_head;
1224 	struct lock_class_key *k;
1225 	unsigned long flags;
1226 
1227 	if (WARN_ON_ONCE(static_obj(key)))
1228 		return;
1229 	hash_head = keyhashentry(key);
1230 
1231 	raw_local_irq_save(flags);
1232 	if (!graph_lock())
1233 		goto restore_irqs;
1234 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1235 		if (WARN_ON_ONCE(k == key))
1236 			goto out_unlock;
1237 	}
1238 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1239 	nr_dynamic_keys++;
1240 out_unlock:
1241 	graph_unlock();
1242 restore_irqs:
1243 	raw_local_irq_restore(flags);
1244 }
1245 EXPORT_SYMBOL_GPL(lockdep_register_key);
1246 
1247 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1248 static bool is_dynamic_key(const struct lock_class_key *key)
1249 {
1250 	struct hlist_head *hash_head;
1251 	struct lock_class_key *k;
1252 	bool found = false;
1253 
1254 	if (WARN_ON_ONCE(static_obj(key)))
1255 		return false;
1256 
1257 	/*
1258 	 * If lock debugging is disabled lock_keys_hash[] may contain
1259 	 * pointers to memory that has already been freed. Avoid triggering
1260 	 * a use-after-free in that case by returning early.
1261 	 */
1262 	if (!debug_locks)
1263 		return true;
1264 
1265 	hash_head = keyhashentry(key);
1266 
1267 	rcu_read_lock();
1268 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1269 		if (k == key) {
1270 			found = true;
1271 			break;
1272 		}
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	return found;
1277 }
1278 
1279 /*
1280  * Register a lock's class in the hash-table, if the class is not present
1281  * yet. Otherwise we look it up. We cache the result in the lock object
1282  * itself, so actual lookup of the hash should be once per lock object.
1283  */
1284 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1285 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1286 {
1287 	struct lockdep_subclass_key *key;
1288 	struct hlist_head *hash_head;
1289 	struct lock_class *class;
1290 	int idx;
1291 
1292 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1293 
1294 	class = look_up_lock_class(lock, subclass);
1295 	if (likely(class))
1296 		goto out_set_class_cache;
1297 
1298 	if (!lock->key) {
1299 		if (!assign_lock_key(lock))
1300 			return NULL;
1301 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1302 		return NULL;
1303 	}
1304 
1305 	key = lock->key->subkeys + subclass;
1306 	hash_head = classhashentry(key);
1307 
1308 	if (!graph_lock()) {
1309 		return NULL;
1310 	}
1311 	/*
1312 	 * We have to do the hash-walk again, to avoid races
1313 	 * with another CPU:
1314 	 */
1315 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1316 		if (class->key == key)
1317 			goto out_unlock_set;
1318 	}
1319 
1320 	init_data_structures_once();
1321 
1322 	/* Allocate a new lock class and add it to the hash. */
1323 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1324 					 lock_entry);
1325 	if (!class) {
1326 		if (!debug_locks_off_graph_unlock()) {
1327 			return NULL;
1328 		}
1329 
1330 		nbcon_cpu_emergency_enter();
1331 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1332 		dump_stack();
1333 		nbcon_cpu_emergency_exit();
1334 		return NULL;
1335 	}
1336 	nr_lock_classes++;
1337 	__set_bit(class - lock_classes, lock_classes_in_use);
1338 	debug_atomic_inc(nr_unused_locks);
1339 	class->key = key;
1340 	class->name = lock->name;
1341 	class->subclass = subclass;
1342 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1343 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1344 	class->name_version = count_matching_names(class);
1345 	class->wait_type_inner = lock->wait_type_inner;
1346 	class->wait_type_outer = lock->wait_type_outer;
1347 	class->lock_type = lock->lock_type;
1348 	/*
1349 	 * We use RCU's safe list-add method to make
1350 	 * parallel walking of the hash-list safe:
1351 	 */
1352 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1353 	/*
1354 	 * Remove the class from the free list and add it to the global list
1355 	 * of classes.
1356 	 */
1357 	list_move_tail(&class->lock_entry, &all_lock_classes);
1358 	idx = class - lock_classes;
1359 	if (idx > max_lock_class_idx)
1360 		max_lock_class_idx = idx;
1361 
1362 	if (verbose(class)) {
1363 		graph_unlock();
1364 
1365 		nbcon_cpu_emergency_enter();
1366 		printk("\nnew class %px: %s", class->key, class->name);
1367 		if (class->name_version > 1)
1368 			printk(KERN_CONT "#%d", class->name_version);
1369 		printk(KERN_CONT "\n");
1370 		dump_stack();
1371 		nbcon_cpu_emergency_exit();
1372 
1373 		if (!graph_lock()) {
1374 			return NULL;
1375 		}
1376 	}
1377 out_unlock_set:
1378 	graph_unlock();
1379 
1380 out_set_class_cache:
1381 	if (!subclass || force)
1382 		lock->class_cache[0] = class;
1383 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1384 		lock->class_cache[subclass] = class;
1385 
1386 	/*
1387 	 * Hash collision, did we smoke some? We found a class with a matching
1388 	 * hash but the subclass -- which is hashed in -- didn't match.
1389 	 */
1390 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1391 		return NULL;
1392 
1393 	return class;
1394 }
1395 
1396 #ifdef CONFIG_PROVE_LOCKING
1397 /*
1398  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1399  * with NULL on failure)
1400  */
alloc_list_entry(void)1401 static struct lock_list *alloc_list_entry(void)
1402 {
1403 	int idx = find_first_zero_bit(list_entries_in_use,
1404 				      ARRAY_SIZE(list_entries));
1405 
1406 	if (idx >= ARRAY_SIZE(list_entries)) {
1407 		if (!debug_locks_off_graph_unlock())
1408 			return NULL;
1409 
1410 		nbcon_cpu_emergency_enter();
1411 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1412 		dump_stack();
1413 		nbcon_cpu_emergency_exit();
1414 		return NULL;
1415 	}
1416 	nr_list_entries++;
1417 	__set_bit(idx, list_entries_in_use);
1418 	return list_entries + idx;
1419 }
1420 
1421 /*
1422  * Add a new dependency to the head of the list:
1423  */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1424 static int add_lock_to_list(struct lock_class *this,
1425 			    struct lock_class *links_to, struct list_head *head,
1426 			    u16 distance, u8 dep,
1427 			    const struct lock_trace *trace)
1428 {
1429 	struct lock_list *entry;
1430 	/*
1431 	 * Lock not present yet - get a new dependency struct and
1432 	 * add it to the list:
1433 	 */
1434 	entry = alloc_list_entry();
1435 	if (!entry)
1436 		return 0;
1437 
1438 	entry->class = this;
1439 	entry->links_to = links_to;
1440 	entry->dep = dep;
1441 	entry->distance = distance;
1442 	entry->trace = trace;
1443 	/*
1444 	 * Both allocation and removal are done under the graph lock; but
1445 	 * iteration is under RCU-sched; see look_up_lock_class() and
1446 	 * lockdep_free_key_range().
1447 	 */
1448 	list_add_tail_rcu(&entry->entry, head);
1449 
1450 	return 1;
1451 }
1452 
1453 /*
1454  * For good efficiency of modular, we use power of 2
1455  */
1456 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1457 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1458 
1459 /*
1460  * The circular_queue and helpers are used to implement graph
1461  * breadth-first search (BFS) algorithm, by which we can determine
1462  * whether there is a path from a lock to another. In deadlock checks,
1463  * a path from the next lock to be acquired to a previous held lock
1464  * indicates that adding the <prev> -> <next> lock dependency will
1465  * produce a circle in the graph. Breadth-first search instead of
1466  * depth-first search is used in order to find the shortest (circular)
1467  * path.
1468  */
1469 struct circular_queue {
1470 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1471 	unsigned int  front, rear;
1472 };
1473 
1474 static struct circular_queue lock_cq;
1475 
1476 unsigned int max_bfs_queue_depth;
1477 
1478 static unsigned int lockdep_dependency_gen_id;
1479 
__cq_init(struct circular_queue * cq)1480 static inline void __cq_init(struct circular_queue *cq)
1481 {
1482 	cq->front = cq->rear = 0;
1483 	lockdep_dependency_gen_id++;
1484 }
1485 
__cq_empty(struct circular_queue * cq)1486 static inline int __cq_empty(struct circular_queue *cq)
1487 {
1488 	return (cq->front == cq->rear);
1489 }
1490 
__cq_full(struct circular_queue * cq)1491 static inline int __cq_full(struct circular_queue *cq)
1492 {
1493 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1494 }
1495 
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1496 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1497 {
1498 	if (__cq_full(cq))
1499 		return -1;
1500 
1501 	cq->element[cq->rear] = elem;
1502 	cq->rear = (cq->rear + 1) & CQ_MASK;
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Dequeue an element from the circular_queue, return a lock_list if
1508  * the queue is not empty, or NULL if otherwise.
1509  */
__cq_dequeue(struct circular_queue * cq)1510 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1511 {
1512 	struct lock_list * lock;
1513 
1514 	if (__cq_empty(cq))
1515 		return NULL;
1516 
1517 	lock = cq->element[cq->front];
1518 	cq->front = (cq->front + 1) & CQ_MASK;
1519 
1520 	return lock;
1521 }
1522 
__cq_get_elem_count(struct circular_queue * cq)1523 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1524 {
1525 	return (cq->rear - cq->front) & CQ_MASK;
1526 }
1527 
mark_lock_accessed(struct lock_list * lock)1528 static inline void mark_lock_accessed(struct lock_list *lock)
1529 {
1530 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1531 }
1532 
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1533 static inline void visit_lock_entry(struct lock_list *lock,
1534 				    struct lock_list *parent)
1535 {
1536 	lock->parent = parent;
1537 }
1538 
lock_accessed(struct lock_list * lock)1539 static inline unsigned long lock_accessed(struct lock_list *lock)
1540 {
1541 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1542 }
1543 
get_lock_parent(struct lock_list * child)1544 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1545 {
1546 	return child->parent;
1547 }
1548 
get_lock_depth(struct lock_list * child)1549 static inline int get_lock_depth(struct lock_list *child)
1550 {
1551 	int depth = 0;
1552 	struct lock_list *parent;
1553 
1554 	while ((parent = get_lock_parent(child))) {
1555 		child = parent;
1556 		depth++;
1557 	}
1558 	return depth;
1559 }
1560 
1561 /*
1562  * Return the forward or backward dependency list.
1563  *
1564  * @lock:   the lock_list to get its class's dependency list
1565  * @offset: the offset to struct lock_class to determine whether it is
1566  *          locks_after or locks_before
1567  */
get_dep_list(struct lock_list * lock,int offset)1568 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1569 {
1570 	void *lock_class = lock->class;
1571 
1572 	return lock_class + offset;
1573 }
1574 /*
1575  * Return values of a bfs search:
1576  *
1577  * BFS_E* indicates an error
1578  * BFS_R* indicates a result (match or not)
1579  *
1580  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1581  *
1582  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1583  *
1584  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1585  *             *@target_entry.
1586  *
1587  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1588  *               _unchanged_.
1589  */
1590 enum bfs_result {
1591 	BFS_EINVALIDNODE = -2,
1592 	BFS_EQUEUEFULL = -1,
1593 	BFS_RMATCH = 0,
1594 	BFS_RNOMATCH = 1,
1595 };
1596 
1597 /*
1598  * bfs_result < 0 means error
1599  */
bfs_error(enum bfs_result res)1600 static inline bool bfs_error(enum bfs_result res)
1601 {
1602 	return res < 0;
1603 }
1604 
1605 /*
1606  * DEP_*_BIT in lock_list::dep
1607  *
1608  * For dependency @prev -> @next:
1609  *
1610  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1611  *       (->read == 2)
1612  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1613  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1614  *   EN: @prev is exclusive locker and @next is non-recursive locker
1615  *
1616  * Note that we define the value of DEP_*_BITs so that:
1617  *   bit0 is prev->read == 0
1618  *   bit1 is next->read != 2
1619  */
1620 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1621 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1622 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1623 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1624 
1625 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1626 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1627 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1628 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1629 
1630 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1631 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1632 {
1633 	return (prev->read == 0) + ((next->read != 2) << 1);
1634 }
1635 
calc_dep(struct held_lock * prev,struct held_lock * next)1636 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1637 {
1638 	return 1U << __calc_dep_bit(prev, next);
1639 }
1640 
1641 /*
1642  * calculate the dep_bit for backwards edges. We care about whether @prev is
1643  * shared and whether @next is recursive.
1644  */
1645 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1646 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1647 {
1648 	return (next->read != 2) + ((prev->read == 0) << 1);
1649 }
1650 
calc_depb(struct held_lock * prev,struct held_lock * next)1651 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1652 {
1653 	return 1U << __calc_dep_bitb(prev, next);
1654 }
1655 
1656 /*
1657  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1658  * search.
1659  */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1660 static inline void __bfs_init_root(struct lock_list *lock,
1661 				   struct lock_class *class)
1662 {
1663 	lock->class = class;
1664 	lock->parent = NULL;
1665 	lock->only_xr = 0;
1666 }
1667 
1668 /*
1669  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1670  * root for a BFS search.
1671  *
1672  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1673  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1674  * and -(S*)->.
1675  */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1676 static inline void bfs_init_root(struct lock_list *lock,
1677 				 struct held_lock *hlock)
1678 {
1679 	__bfs_init_root(lock, hlock_class(hlock));
1680 	lock->only_xr = (hlock->read == 2);
1681 }
1682 
1683 /*
1684  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1685  *
1686  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1687  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1688  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1689  */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1690 static inline void bfs_init_rootb(struct lock_list *lock,
1691 				  struct held_lock *hlock)
1692 {
1693 	__bfs_init_root(lock, hlock_class(hlock));
1694 	lock->only_xr = (hlock->read != 0);
1695 }
1696 
__bfs_next(struct lock_list * lock,int offset)1697 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1698 {
1699 	if (!lock || !lock->parent)
1700 		return NULL;
1701 
1702 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1703 				     &lock->entry, struct lock_list, entry);
1704 }
1705 
1706 /*
1707  * Breadth-First Search to find a strong path in the dependency graph.
1708  *
1709  * @source_entry: the source of the path we are searching for.
1710  * @data: data used for the second parameter of @match function
1711  * @match: match function for the search
1712  * @target_entry: pointer to the target of a matched path
1713  * @offset: the offset to struct lock_class to determine whether it is
1714  *          locks_after or locks_before
1715  *
1716  * We may have multiple edges (considering different kinds of dependencies,
1717  * e.g. ER and SN) between two nodes in the dependency graph. But
1718  * only the strong dependency path in the graph is relevant to deadlocks. A
1719  * strong dependency path is a dependency path that doesn't have two adjacent
1720  * dependencies as -(*R)-> -(S*)->, please see:
1721  *
1722  *         Documentation/locking/lockdep-design.rst
1723  *
1724  * for more explanation of the definition of strong dependency paths
1725  *
1726  * In __bfs(), we only traverse in the strong dependency path:
1727  *
1728  *     In lock_list::only_xr, we record whether the previous dependency only
1729  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1730  *     filter out any -(S*)-> in the current dependency and after that, the
1731  *     ->only_xr is set according to whether we only have -(*R)-> left.
1732  */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1733 static enum bfs_result __bfs(struct lock_list *source_entry,
1734 			     void *data,
1735 			     bool (*match)(struct lock_list *entry, void *data),
1736 			     bool (*skip)(struct lock_list *entry, void *data),
1737 			     struct lock_list **target_entry,
1738 			     int offset)
1739 {
1740 	struct circular_queue *cq = &lock_cq;
1741 	struct lock_list *lock = NULL;
1742 	struct lock_list *entry;
1743 	struct list_head *head;
1744 	unsigned int cq_depth;
1745 	bool first;
1746 
1747 	lockdep_assert_locked();
1748 
1749 	__cq_init(cq);
1750 	__cq_enqueue(cq, source_entry);
1751 
1752 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1753 		if (!lock->class)
1754 			return BFS_EINVALIDNODE;
1755 
1756 		/*
1757 		 * Step 1: check whether we already finish on this one.
1758 		 *
1759 		 * If we have visited all the dependencies from this @lock to
1760 		 * others (iow, if we have visited all lock_list entries in
1761 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1762 		 * and visit all the dependencies in the list and mark this
1763 		 * list accessed.
1764 		 */
1765 		if (lock_accessed(lock))
1766 			continue;
1767 		else
1768 			mark_lock_accessed(lock);
1769 
1770 		/*
1771 		 * Step 2: check whether prev dependency and this form a strong
1772 		 *         dependency path.
1773 		 */
1774 		if (lock->parent) { /* Parent exists, check prev dependency */
1775 			u8 dep = lock->dep;
1776 			bool prev_only_xr = lock->parent->only_xr;
1777 
1778 			/*
1779 			 * Mask out all -(S*)-> if we only have *R in previous
1780 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1781 			 * dependency.
1782 			 */
1783 			if (prev_only_xr)
1784 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1785 
1786 			/* If nothing left, we skip */
1787 			if (!dep)
1788 				continue;
1789 
1790 			/* If there are only -(*R)-> left, set that for the next step */
1791 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1792 		}
1793 
1794 		/*
1795 		 * Step 3: we haven't visited this and there is a strong
1796 		 *         dependency path to this, so check with @match.
1797 		 *         If @skip is provide and returns true, we skip this
1798 		 *         lock (and any path this lock is in).
1799 		 */
1800 		if (skip && skip(lock, data))
1801 			continue;
1802 
1803 		if (match(lock, data)) {
1804 			*target_entry = lock;
1805 			return BFS_RMATCH;
1806 		}
1807 
1808 		/*
1809 		 * Step 4: if not match, expand the path by adding the
1810 		 *         forward or backwards dependencies in the search
1811 		 *
1812 		 */
1813 		first = true;
1814 		head = get_dep_list(lock, offset);
1815 		list_for_each_entry_rcu(entry, head, entry) {
1816 			visit_lock_entry(entry, lock);
1817 
1818 			/*
1819 			 * Note we only enqueue the first of the list into the
1820 			 * queue, because we can always find a sibling
1821 			 * dependency from one (see __bfs_next()), as a result
1822 			 * the space of queue is saved.
1823 			 */
1824 			if (!first)
1825 				continue;
1826 
1827 			first = false;
1828 
1829 			if (__cq_enqueue(cq, entry))
1830 				return BFS_EQUEUEFULL;
1831 
1832 			cq_depth = __cq_get_elem_count(cq);
1833 			if (max_bfs_queue_depth < cq_depth)
1834 				max_bfs_queue_depth = cq_depth;
1835 		}
1836 	}
1837 
1838 	return BFS_RNOMATCH;
1839 }
1840 
1841 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1842 __bfs_forwards(struct lock_list *src_entry,
1843 	       void *data,
1844 	       bool (*match)(struct lock_list *entry, void *data),
1845 	       bool (*skip)(struct lock_list *entry, void *data),
1846 	       struct lock_list **target_entry)
1847 {
1848 	return __bfs(src_entry, data, match, skip, target_entry,
1849 		     offsetof(struct lock_class, locks_after));
1850 
1851 }
1852 
1853 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1854 __bfs_backwards(struct lock_list *src_entry,
1855 		void *data,
1856 		bool (*match)(struct lock_list *entry, void *data),
1857 	       bool (*skip)(struct lock_list *entry, void *data),
1858 		struct lock_list **target_entry)
1859 {
1860 	return __bfs(src_entry, data, match, skip, target_entry,
1861 		     offsetof(struct lock_class, locks_before));
1862 
1863 }
1864 
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1865 static void print_lock_trace(const struct lock_trace *trace,
1866 			     unsigned int spaces)
1867 {
1868 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1869 }
1870 
1871 /*
1872  * Print a dependency chain entry (this is only done when a deadlock
1873  * has been detected):
1874  */
1875 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1876 print_circular_bug_entry(struct lock_list *target, int depth)
1877 {
1878 	if (debug_locks_silent)
1879 		return;
1880 	printk("\n-> #%u", depth);
1881 	print_lock_name(NULL, target->class);
1882 	printk(KERN_CONT ":\n");
1883 	print_lock_trace(target->trace, 6);
1884 }
1885 
1886 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1887 print_circular_lock_scenario(struct held_lock *src,
1888 			     struct held_lock *tgt,
1889 			     struct lock_list *prt)
1890 {
1891 	struct lock_class *source = hlock_class(src);
1892 	struct lock_class *target = hlock_class(tgt);
1893 	struct lock_class *parent = prt->class;
1894 	int src_read = src->read;
1895 	int tgt_read = tgt->read;
1896 
1897 	/*
1898 	 * A direct locking problem where unsafe_class lock is taken
1899 	 * directly by safe_class lock, then all we need to show
1900 	 * is the deadlock scenario, as it is obvious that the
1901 	 * unsafe lock is taken under the safe lock.
1902 	 *
1903 	 * But if there is a chain instead, where the safe lock takes
1904 	 * an intermediate lock (middle_class) where this lock is
1905 	 * not the same as the safe lock, then the lock chain is
1906 	 * used to describe the problem. Otherwise we would need
1907 	 * to show a different CPU case for each link in the chain
1908 	 * from the safe_class lock to the unsafe_class lock.
1909 	 */
1910 	if (parent != source) {
1911 		printk("Chain exists of:\n  ");
1912 		__print_lock_name(src, source);
1913 		printk(KERN_CONT " --> ");
1914 		__print_lock_name(NULL, parent);
1915 		printk(KERN_CONT " --> ");
1916 		__print_lock_name(tgt, target);
1917 		printk(KERN_CONT "\n\n");
1918 	}
1919 
1920 	printk(" Possible unsafe locking scenario:\n\n");
1921 	printk("       CPU0                    CPU1\n");
1922 	printk("       ----                    ----\n");
1923 	if (tgt_read != 0)
1924 		printk("  rlock(");
1925 	else
1926 		printk("  lock(");
1927 	__print_lock_name(tgt, target);
1928 	printk(KERN_CONT ");\n");
1929 	printk("                               lock(");
1930 	__print_lock_name(NULL, parent);
1931 	printk(KERN_CONT ");\n");
1932 	printk("                               lock(");
1933 	__print_lock_name(tgt, target);
1934 	printk(KERN_CONT ");\n");
1935 	if (src_read != 0)
1936 		printk("  rlock(");
1937 	else if (src->sync)
1938 		printk("  sync(");
1939 	else
1940 		printk("  lock(");
1941 	__print_lock_name(src, source);
1942 	printk(KERN_CONT ");\n");
1943 	printk("\n *** DEADLOCK ***\n\n");
1944 }
1945 
1946 /*
1947  * When a circular dependency is detected, print the
1948  * header first:
1949  */
1950 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1951 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1952 			struct held_lock *check_src,
1953 			struct held_lock *check_tgt)
1954 {
1955 	struct task_struct *curr = current;
1956 
1957 	if (debug_locks_silent)
1958 		return;
1959 
1960 	pr_warn("\n");
1961 	pr_warn("======================================================\n");
1962 	pr_warn("WARNING: possible circular locking dependency detected\n");
1963 	print_kernel_ident();
1964 	pr_warn("------------------------------------------------------\n");
1965 	pr_warn("%s/%d is trying to acquire lock:\n",
1966 		curr->comm, task_pid_nr(curr));
1967 	print_lock(check_src);
1968 
1969 	pr_warn("\nbut task is already holding lock:\n");
1970 
1971 	print_lock(check_tgt);
1972 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1973 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1974 
1975 	print_circular_bug_entry(entry, depth);
1976 }
1977 
1978 /*
1979  * We are about to add B -> A into the dependency graph, and in __bfs() a
1980  * strong dependency path A -> .. -> B is found: hlock_class equals
1981  * entry->class.
1982  *
1983  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1984  * dependency cycle, that means:
1985  *
1986  * Either
1987  *
1988  *     a) B -> A is -(E*)->
1989  *
1990  * or
1991  *
1992  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1993  *
1994  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1995  */
hlock_conflict(struct lock_list * entry,void * data)1996 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1997 {
1998 	struct held_lock *hlock = (struct held_lock *)data;
1999 
2000 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2001 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2002 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2003 }
2004 
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)2005 static noinline void print_circular_bug(struct lock_list *this,
2006 				struct lock_list *target,
2007 				struct held_lock *check_src,
2008 				struct held_lock *check_tgt)
2009 {
2010 	struct task_struct *curr = current;
2011 	struct lock_list *parent;
2012 	struct lock_list *first_parent;
2013 	int depth;
2014 
2015 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2016 		return;
2017 
2018 	this->trace = save_trace();
2019 	if (!this->trace)
2020 		return;
2021 
2022 	depth = get_lock_depth(target);
2023 
2024 	nbcon_cpu_emergency_enter();
2025 
2026 	print_circular_bug_header(target, depth, check_src, check_tgt);
2027 
2028 	parent = get_lock_parent(target);
2029 	first_parent = parent;
2030 
2031 	while (parent) {
2032 		print_circular_bug_entry(parent, --depth);
2033 		parent = get_lock_parent(parent);
2034 	}
2035 
2036 	printk("\nother info that might help us debug this:\n\n");
2037 	print_circular_lock_scenario(check_src, check_tgt,
2038 				     first_parent);
2039 
2040 	lockdep_print_held_locks(curr);
2041 
2042 	printk("\nstack backtrace:\n");
2043 	dump_stack();
2044 
2045 	nbcon_cpu_emergency_exit();
2046 }
2047 
print_bfs_bug(int ret)2048 static noinline void print_bfs_bug(int ret)
2049 {
2050 	if (!debug_locks_off_graph_unlock())
2051 		return;
2052 
2053 	/*
2054 	 * Breadth-first-search failed, graph got corrupted?
2055 	 */
2056 	if (ret == BFS_EQUEUEFULL)
2057 		pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2058 
2059 	WARN(1, "lockdep bfs error:%d\n", ret);
2060 }
2061 
noop_count(struct lock_list * entry,void * data)2062 static bool noop_count(struct lock_list *entry, void *data)
2063 {
2064 	(*(unsigned long *)data)++;
2065 	return false;
2066 }
2067 
__lockdep_count_forward_deps(struct lock_list * this)2068 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2069 {
2070 	unsigned long  count = 0;
2071 	struct lock_list *target_entry;
2072 
2073 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2074 
2075 	return count;
2076 }
lockdep_count_forward_deps(struct lock_class * class)2077 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2078 {
2079 	unsigned long ret, flags;
2080 	struct lock_list this;
2081 
2082 	__bfs_init_root(&this, class);
2083 
2084 	raw_local_irq_save(flags);
2085 	lockdep_lock();
2086 	ret = __lockdep_count_forward_deps(&this);
2087 	lockdep_unlock();
2088 	raw_local_irq_restore(flags);
2089 
2090 	return ret;
2091 }
2092 
__lockdep_count_backward_deps(struct lock_list * this)2093 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2094 {
2095 	unsigned long  count = 0;
2096 	struct lock_list *target_entry;
2097 
2098 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2099 
2100 	return count;
2101 }
2102 
lockdep_count_backward_deps(struct lock_class * class)2103 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2104 {
2105 	unsigned long ret, flags;
2106 	struct lock_list this;
2107 
2108 	__bfs_init_root(&this, class);
2109 
2110 	raw_local_irq_save(flags);
2111 	lockdep_lock();
2112 	ret = __lockdep_count_backward_deps(&this);
2113 	lockdep_unlock();
2114 	raw_local_irq_restore(flags);
2115 
2116 	return ret;
2117 }
2118 
2119 /*
2120  * Check that the dependency graph starting at <src> can lead to
2121  * <target> or not.
2122  */
2123 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2124 check_path(struct held_lock *target, struct lock_list *src_entry,
2125 	   bool (*match)(struct lock_list *entry, void *data),
2126 	   bool (*skip)(struct lock_list *entry, void *data),
2127 	   struct lock_list **target_entry)
2128 {
2129 	enum bfs_result ret;
2130 
2131 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2132 
2133 	if (unlikely(bfs_error(ret)))
2134 		print_bfs_bug(ret);
2135 
2136 	return ret;
2137 }
2138 
2139 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2140 
2141 /*
2142  * Prove that the dependency graph starting at <src> can not
2143  * lead to <target>. If it can, there is a circle when adding
2144  * <target> -> <src> dependency.
2145  *
2146  * Print an error and return BFS_RMATCH if it does.
2147  */
2148 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2149 check_noncircular(struct held_lock *src, struct held_lock *target,
2150 		  struct lock_trace **const trace)
2151 {
2152 	enum bfs_result ret;
2153 	struct lock_list *target_entry;
2154 	struct lock_list src_entry;
2155 
2156 	bfs_init_root(&src_entry, src);
2157 
2158 	debug_atomic_inc(nr_cyclic_checks);
2159 
2160 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2161 
2162 	if (unlikely(ret == BFS_RMATCH)) {
2163 		if (!*trace) {
2164 			/*
2165 			 * If save_trace fails here, the printing might
2166 			 * trigger a WARN but because of the !nr_entries it
2167 			 * should not do bad things.
2168 			 */
2169 			*trace = save_trace();
2170 		}
2171 
2172 		if (src->class_idx == target->class_idx)
2173 			print_deadlock_bug(current, src, target);
2174 		else
2175 			print_circular_bug(&src_entry, target_entry, src, target);
2176 	}
2177 
2178 	return ret;
2179 }
2180 
2181 #ifdef CONFIG_TRACE_IRQFLAGS
2182 
2183 /*
2184  * Forwards and backwards subgraph searching, for the purposes of
2185  * proving that two subgraphs can be connected by a new dependency
2186  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2187  *
2188  * A irq safe->unsafe deadlock happens with the following conditions:
2189  *
2190  * 1) We have a strong dependency path A -> ... -> B
2191  *
2192  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2193  *    irq can create a new dependency B -> A (consider the case that a holder
2194  *    of B gets interrupted by an irq whose handler will try to acquire A).
2195  *
2196  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2197  *    strong circle:
2198  *
2199  *      For the usage bits of B:
2200  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2201  *           ENABLED_IRQ usage suffices.
2202  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2203  *           ENABLED_IRQ_*_READ usage suffices.
2204  *
2205  *      For the usage bits of A:
2206  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2207  *           USED_IN_IRQ usage suffices.
2208  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2209  *           USED_IN_IRQ_*_READ usage suffices.
2210  */
2211 
2212 /*
2213  * There is a strong dependency path in the dependency graph: A -> B, and now
2214  * we need to decide which usage bit of A should be accumulated to detect
2215  * safe->unsafe bugs.
2216  *
2217  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2218  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2219  *
2220  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2221  * path, any usage of A should be considered. Otherwise, we should only
2222  * consider _READ usage.
2223  */
usage_accumulate(struct lock_list * entry,void * mask)2224 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2225 {
2226 	if (!entry->only_xr)
2227 		*(unsigned long *)mask |= entry->class->usage_mask;
2228 	else /* Mask out _READ usage bits */
2229 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2230 
2231 	return false;
2232 }
2233 
2234 /*
2235  * There is a strong dependency path in the dependency graph: A -> B, and now
2236  * we need to decide which usage bit of B conflicts with the usage bits of A,
2237  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2238  *
2239  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2240  * path, any usage of B should be considered. Otherwise, we should only
2241  * consider _READ usage.
2242  */
usage_match(struct lock_list * entry,void * mask)2243 static inline bool usage_match(struct lock_list *entry, void *mask)
2244 {
2245 	if (!entry->only_xr)
2246 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2247 	else /* Mask out _READ usage bits */
2248 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2249 }
2250 
usage_skip(struct lock_list * entry,void * mask)2251 static inline bool usage_skip(struct lock_list *entry, void *mask)
2252 {
2253 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2254 		return false;
2255 
2256 	/*
2257 	 * Skip local_lock() for irq inversion detection.
2258 	 *
2259 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2260 	 * dependency.
2261 	 *
2262 	 * For RT, an irq inversion happens when we have lock A and B, and on
2263 	 * some CPU we can have:
2264 	 *
2265 	 *	lock(A);
2266 	 *	<interrupted>
2267 	 *	  lock(B);
2268 	 *
2269 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2270 	 *
2271 	 * Now we prove local_lock() cannot exist in that dependency. First we
2272 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2273 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2274 	 * wait context check will complain. And since B is not a sleep lock,
2275 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2276 	 * local_lock() is 3, which is greater than 2, therefore there is no
2277 	 * way the local_lock() exists in the dependency B -> ... -> A.
2278 	 *
2279 	 * As a result, we will skip local_lock(), when we search for irq
2280 	 * inversion bugs.
2281 	 */
2282 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2283 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2284 		return false;
2285 
2286 	/*
2287 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2288 	 * a lock and only used to override the wait_type.
2289 	 */
2290 
2291 	return true;
2292 }
2293 
2294 /*
2295  * Find a node in the forwards-direction dependency sub-graph starting
2296  * at @root->class that matches @bit.
2297  *
2298  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2299  * into *@target_entry.
2300  */
2301 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2302 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2303 			struct lock_list **target_entry)
2304 {
2305 	enum bfs_result result;
2306 
2307 	debug_atomic_inc(nr_find_usage_forwards_checks);
2308 
2309 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2310 
2311 	return result;
2312 }
2313 
2314 /*
2315  * Find a node in the backwards-direction dependency sub-graph starting
2316  * at @root->class that matches @bit.
2317  */
2318 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2319 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2320 			struct lock_list **target_entry)
2321 {
2322 	enum bfs_result result;
2323 
2324 	debug_atomic_inc(nr_find_usage_backwards_checks);
2325 
2326 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2327 
2328 	return result;
2329 }
2330 
print_lock_class_header(struct lock_class * class,int depth)2331 static void print_lock_class_header(struct lock_class *class, int depth)
2332 {
2333 	int bit;
2334 
2335 	printk("%*s->", depth, "");
2336 	print_lock_name(NULL, class);
2337 #ifdef CONFIG_DEBUG_LOCKDEP
2338 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2339 #endif
2340 	printk(KERN_CONT " {\n");
2341 
2342 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2343 		if (class->usage_mask & (1 << bit)) {
2344 			int len = depth;
2345 
2346 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2347 			len += printk(KERN_CONT " at:\n");
2348 			print_lock_trace(class->usage_traces[bit], len);
2349 		}
2350 	}
2351 	printk("%*s }\n", depth, "");
2352 
2353 	printk("%*s ... key      at: [<%px>] %pS\n",
2354 		depth, "", class->key, class->key);
2355 }
2356 
2357 /*
2358  * Dependency path printing:
2359  *
2360  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2361  * printing out each lock in the dependency path will help on understanding how
2362  * the deadlock could happen. Here are some details about dependency path
2363  * printing:
2364  *
2365  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2366  * 	for a lock dependency A -> B, there are two lock_lists:
2367  *
2368  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2369  * 		->links_to is A. In this case, we can say the lock_list is
2370  * 		"A -> B" (forwards case).
2371  *
2372  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2373  * 		and ->links_to is B. In this case, we can say the lock_list is
2374  * 		"B <- A" (bacwards case).
2375  *
2376  * 	The ->trace of both a) and b) point to the call trace where B was
2377  * 	acquired with A held.
2378  *
2379  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2380  * 	represent a certain lock dependency, it only provides an initial entry
2381  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2382  * 	->class is A, as a result BFS will search all dependencies starting with
2383  * 	A, e.g. A -> B or A -> C.
2384  *
2385  * 	The notation of a forwards helper lock_list is like "-> A", which means
2386  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2387  * 	or A -> C.
2388  *
2389  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2390  * 	we should search the backwards dependencies ending with "B", e.g.
2391  * 	B <- A or B <- C.
2392  */
2393 
2394 /*
2395  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2396  *
2397  * We have a lock dependency path as follow:
2398  *
2399  *    @root                                                                 @leaf
2400  *      |                                                                     |
2401  *      V                                                                     V
2402  *	          ->parent                                   ->parent
2403  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2404  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2405  *
2406  * , so it's natural that we start from @leaf and print every ->class and
2407  * ->trace until we reach the @root.
2408  */
2409 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2410 print_shortest_lock_dependencies(struct lock_list *leaf,
2411 				 struct lock_list *root)
2412 {
2413 	struct lock_list *entry = leaf;
2414 	int depth;
2415 
2416 	/*compute depth from generated tree by BFS*/
2417 	depth = get_lock_depth(leaf);
2418 
2419 	do {
2420 		print_lock_class_header(entry->class, depth);
2421 		printk("%*s ... acquired at:\n", depth, "");
2422 		print_lock_trace(entry->trace, 2);
2423 		printk("\n");
2424 
2425 		if (depth == 0 && (entry != root)) {
2426 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2427 			break;
2428 		}
2429 
2430 		entry = get_lock_parent(entry);
2431 		depth--;
2432 	} while (entry && (depth >= 0));
2433 }
2434 
2435 /*
2436  * printk the shortest lock dependencies from @leaf to @root.
2437  *
2438  * We have a lock dependency path (from a backwards search) as follow:
2439  *
2440  *    @leaf                                                                 @root
2441  *      |                                                                     |
2442  *      V                                                                     V
2443  *	          ->parent                                   ->parent
2444  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2445  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2446  *
2447  * , so when we iterate from @leaf to @root, we actually print the lock
2448  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2449  *
2450  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2451  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2452  * trace of L1 in the dependency path, which is alright, because most of the
2453  * time we can figure out where L1 is held from the call trace of L2.
2454  */
2455 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2456 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2457 					   struct lock_list *root)
2458 {
2459 	struct lock_list *entry = leaf;
2460 	const struct lock_trace *trace = NULL;
2461 	int depth;
2462 
2463 	/*compute depth from generated tree by BFS*/
2464 	depth = get_lock_depth(leaf);
2465 
2466 	do {
2467 		print_lock_class_header(entry->class, depth);
2468 		if (trace) {
2469 			printk("%*s ... acquired at:\n", depth, "");
2470 			print_lock_trace(trace, 2);
2471 			printk("\n");
2472 		}
2473 
2474 		/*
2475 		 * Record the pointer to the trace for the next lock_list
2476 		 * entry, see the comments for the function.
2477 		 */
2478 		trace = entry->trace;
2479 
2480 		if (depth == 0 && (entry != root)) {
2481 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2482 			break;
2483 		}
2484 
2485 		entry = get_lock_parent(entry);
2486 		depth--;
2487 	} while (entry && (depth >= 0));
2488 }
2489 
2490 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2491 print_irq_lock_scenario(struct lock_list *safe_entry,
2492 			struct lock_list *unsafe_entry,
2493 			struct lock_class *prev_class,
2494 			struct lock_class *next_class)
2495 {
2496 	struct lock_class *safe_class = safe_entry->class;
2497 	struct lock_class *unsafe_class = unsafe_entry->class;
2498 	struct lock_class *middle_class = prev_class;
2499 
2500 	if (middle_class == safe_class)
2501 		middle_class = next_class;
2502 
2503 	/*
2504 	 * A direct locking problem where unsafe_class lock is taken
2505 	 * directly by safe_class lock, then all we need to show
2506 	 * is the deadlock scenario, as it is obvious that the
2507 	 * unsafe lock is taken under the safe lock.
2508 	 *
2509 	 * But if there is a chain instead, where the safe lock takes
2510 	 * an intermediate lock (middle_class) where this lock is
2511 	 * not the same as the safe lock, then the lock chain is
2512 	 * used to describe the problem. Otherwise we would need
2513 	 * to show a different CPU case for each link in the chain
2514 	 * from the safe_class lock to the unsafe_class lock.
2515 	 */
2516 	if (middle_class != unsafe_class) {
2517 		printk("Chain exists of:\n  ");
2518 		__print_lock_name(NULL, safe_class);
2519 		printk(KERN_CONT " --> ");
2520 		__print_lock_name(NULL, middle_class);
2521 		printk(KERN_CONT " --> ");
2522 		__print_lock_name(NULL, unsafe_class);
2523 		printk(KERN_CONT "\n\n");
2524 	}
2525 
2526 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2527 	printk("       CPU0                    CPU1\n");
2528 	printk("       ----                    ----\n");
2529 	printk("  lock(");
2530 	__print_lock_name(NULL, unsafe_class);
2531 	printk(KERN_CONT ");\n");
2532 	printk("                               local_irq_disable();\n");
2533 	printk("                               lock(");
2534 	__print_lock_name(NULL, safe_class);
2535 	printk(KERN_CONT ");\n");
2536 	printk("                               lock(");
2537 	__print_lock_name(NULL, middle_class);
2538 	printk(KERN_CONT ");\n");
2539 	printk("  <Interrupt>\n");
2540 	printk("    lock(");
2541 	__print_lock_name(NULL, safe_class);
2542 	printk(KERN_CONT ");\n");
2543 	printk("\n *** DEADLOCK ***\n\n");
2544 }
2545 
2546 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2547 print_bad_irq_dependency(struct task_struct *curr,
2548 			 struct lock_list *prev_root,
2549 			 struct lock_list *next_root,
2550 			 struct lock_list *backwards_entry,
2551 			 struct lock_list *forwards_entry,
2552 			 struct held_lock *prev,
2553 			 struct held_lock *next,
2554 			 enum lock_usage_bit bit1,
2555 			 enum lock_usage_bit bit2,
2556 			 const char *irqclass)
2557 {
2558 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2559 		return;
2560 
2561 	nbcon_cpu_emergency_enter();
2562 
2563 	pr_warn("\n");
2564 	pr_warn("=====================================================\n");
2565 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2566 		irqclass, irqclass);
2567 	print_kernel_ident();
2568 	pr_warn("-----------------------------------------------------\n");
2569 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2570 		curr->comm, task_pid_nr(curr),
2571 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2572 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2573 		lockdep_hardirqs_enabled(),
2574 		curr->softirqs_enabled);
2575 	print_lock(next);
2576 
2577 	pr_warn("\nand this task is already holding:\n");
2578 	print_lock(prev);
2579 	pr_warn("which would create a new lock dependency:\n");
2580 	print_lock_name(prev, hlock_class(prev));
2581 	pr_cont(" ->");
2582 	print_lock_name(next, hlock_class(next));
2583 	pr_cont("\n");
2584 
2585 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2586 		irqclass);
2587 	print_lock_name(NULL, backwards_entry->class);
2588 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2589 
2590 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2591 
2592 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2593 	print_lock_name(NULL, forwards_entry->class);
2594 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2595 	pr_warn("...");
2596 
2597 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2598 
2599 	pr_warn("\nother info that might help us debug this:\n\n");
2600 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2601 				hlock_class(prev), hlock_class(next));
2602 
2603 	lockdep_print_held_locks(curr);
2604 
2605 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2606 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2607 
2608 	pr_warn("\nthe dependencies between the lock to be acquired");
2609 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2610 	next_root->trace = save_trace();
2611 	if (!next_root->trace)
2612 		goto out;
2613 	print_shortest_lock_dependencies(forwards_entry, next_root);
2614 
2615 	pr_warn("\nstack backtrace:\n");
2616 	dump_stack();
2617 out:
2618 	nbcon_cpu_emergency_exit();
2619 }
2620 
2621 static const char *state_names[] = {
2622 #define LOCKDEP_STATE(__STATE) \
2623 	__stringify(__STATE),
2624 #include "lockdep_states.h"
2625 #undef LOCKDEP_STATE
2626 };
2627 
2628 static const char *state_rnames[] = {
2629 #define LOCKDEP_STATE(__STATE) \
2630 	__stringify(__STATE)"-READ",
2631 #include "lockdep_states.h"
2632 #undef LOCKDEP_STATE
2633 };
2634 
state_name(enum lock_usage_bit bit)2635 static inline const char *state_name(enum lock_usage_bit bit)
2636 {
2637 	if (bit & LOCK_USAGE_READ_MASK)
2638 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2639 	else
2640 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2641 }
2642 
2643 /*
2644  * The bit number is encoded like:
2645  *
2646  *  bit0: 0 exclusive, 1 read lock
2647  *  bit1: 0 used in irq, 1 irq enabled
2648  *  bit2-n: state
2649  */
exclusive_bit(int new_bit)2650 static int exclusive_bit(int new_bit)
2651 {
2652 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2653 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2654 
2655 	/*
2656 	 * keep state, bit flip the direction and strip read.
2657 	 */
2658 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2659 }
2660 
2661 /*
2662  * Observe that when given a bitmask where each bitnr is encoded as above, a
2663  * right shift of the mask transforms the individual bitnrs as -1 and
2664  * conversely, a left shift transforms into +1 for the individual bitnrs.
2665  *
2666  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2667  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2668  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2669  *
2670  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2671  *
2672  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2673  * all bits set) and recompose with bitnr1 flipped.
2674  */
invert_dir_mask(unsigned long mask)2675 static unsigned long invert_dir_mask(unsigned long mask)
2676 {
2677 	unsigned long excl = 0;
2678 
2679 	/* Invert dir */
2680 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2681 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2682 
2683 	return excl;
2684 }
2685 
2686 /*
2687  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2688  * usage may cause deadlock too, for example:
2689  *
2690  * P1				P2
2691  * <irq disabled>
2692  * write_lock(l1);		<irq enabled>
2693  *				read_lock(l2);
2694  * write_lock(l2);
2695  * 				<in irq>
2696  * 				read_lock(l1);
2697  *
2698  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2699  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2700  * deadlock.
2701  *
2702  * In fact, all of the following cases may cause deadlocks:
2703  *
2704  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2705  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2706  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2707  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2708  *
2709  * As a result, to calculate the "exclusive mask", first we invert the
2710  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2711  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2712  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2713  */
exclusive_mask(unsigned long mask)2714 static unsigned long exclusive_mask(unsigned long mask)
2715 {
2716 	unsigned long excl = invert_dir_mask(mask);
2717 
2718 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2719 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2720 
2721 	return excl;
2722 }
2723 
2724 /*
2725  * Retrieve the _possible_ original mask to which @mask is
2726  * exclusive. Ie: this is the opposite of exclusive_mask().
2727  * Note that 2 possible original bits can match an exclusive
2728  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2729  * cleared. So both are returned for each exclusive bit.
2730  */
original_mask(unsigned long mask)2731 static unsigned long original_mask(unsigned long mask)
2732 {
2733 	unsigned long excl = invert_dir_mask(mask);
2734 
2735 	/* Include read in existing usages */
2736 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2737 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2738 
2739 	return excl;
2740 }
2741 
2742 /*
2743  * Find the first pair of bit match between an original
2744  * usage mask and an exclusive usage mask.
2745  */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2746 static int find_exclusive_match(unsigned long mask,
2747 				unsigned long excl_mask,
2748 				enum lock_usage_bit *bitp,
2749 				enum lock_usage_bit *excl_bitp)
2750 {
2751 	int bit, excl, excl_read;
2752 
2753 	for_each_set_bit(bit, &mask, LOCK_USED) {
2754 		/*
2755 		 * exclusive_bit() strips the read bit, however,
2756 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2757 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2758 		 */
2759 		excl = exclusive_bit(bit);
2760 		excl_read = excl | LOCK_USAGE_READ_MASK;
2761 		if (excl_mask & lock_flag(excl)) {
2762 			*bitp = bit;
2763 			*excl_bitp = excl;
2764 			return 0;
2765 		} else if (excl_mask & lock_flag(excl_read)) {
2766 			*bitp = bit;
2767 			*excl_bitp = excl_read;
2768 			return 0;
2769 		}
2770 	}
2771 	return -1;
2772 }
2773 
2774 /*
2775  * Prove that the new dependency does not connect a hardirq-safe(-read)
2776  * lock with a hardirq-unsafe lock - to achieve this we search
2777  * the backwards-subgraph starting at <prev>, and the
2778  * forwards-subgraph starting at <next>:
2779  */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2780 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2781 			   struct held_lock *next)
2782 {
2783 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2784 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2785 	struct lock_list *target_entry1;
2786 	struct lock_list *target_entry;
2787 	struct lock_list this, that;
2788 	enum bfs_result ret;
2789 
2790 	/*
2791 	 * Step 1: gather all hard/soft IRQs usages backward in an
2792 	 * accumulated usage mask.
2793 	 */
2794 	bfs_init_rootb(&this, prev);
2795 
2796 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2797 	if (bfs_error(ret)) {
2798 		print_bfs_bug(ret);
2799 		return 0;
2800 	}
2801 
2802 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2803 	if (!usage_mask)
2804 		return 1;
2805 
2806 	/*
2807 	 * Step 2: find exclusive uses forward that match the previous
2808 	 * backward accumulated mask.
2809 	 */
2810 	forward_mask = exclusive_mask(usage_mask);
2811 
2812 	bfs_init_root(&that, next);
2813 
2814 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2815 	if (bfs_error(ret)) {
2816 		print_bfs_bug(ret);
2817 		return 0;
2818 	}
2819 	if (ret == BFS_RNOMATCH)
2820 		return 1;
2821 
2822 	/*
2823 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2824 	 * list whose usage mask matches the exclusive usage mask from the
2825 	 * lock found on the forward list.
2826 	 *
2827 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2828 	 * the follow case:
2829 	 *
2830 	 * When trying to add A -> B to the graph, we find that there is a
2831 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2832 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2833 	 * invert bits of M's usage_mask, we will find another lock N that is
2834 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2835 	 * cause a inversion deadlock.
2836 	 */
2837 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2838 
2839 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2840 	if (bfs_error(ret)) {
2841 		print_bfs_bug(ret);
2842 		return 0;
2843 	}
2844 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2845 		return 1;
2846 
2847 	/*
2848 	 * Step 4: narrow down to a pair of incompatible usage bits
2849 	 * and report it.
2850 	 */
2851 	ret = find_exclusive_match(target_entry->class->usage_mask,
2852 				   target_entry1->class->usage_mask,
2853 				   &backward_bit, &forward_bit);
2854 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2855 		return 1;
2856 
2857 	print_bad_irq_dependency(curr, &this, &that,
2858 				 target_entry, target_entry1,
2859 				 prev, next,
2860 				 backward_bit, forward_bit,
2861 				 state_name(backward_bit));
2862 
2863 	return 0;
2864 }
2865 
2866 #else
2867 
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2868 static inline int check_irq_usage(struct task_struct *curr,
2869 				  struct held_lock *prev, struct held_lock *next)
2870 {
2871 	return 1;
2872 }
2873 
usage_skip(struct lock_list * entry,void * mask)2874 static inline bool usage_skip(struct lock_list *entry, void *mask)
2875 {
2876 	return false;
2877 }
2878 
2879 #endif /* CONFIG_TRACE_IRQFLAGS */
2880 
2881 #ifdef CONFIG_LOCKDEP_SMALL
2882 /*
2883  * We are about to add A -> B into the dependency graph, and in __bfs() a
2884  * strong dependency path A -> .. -> B is found: hlock_class equals
2885  * entry->class.
2886  *
2887  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
2888  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
2889  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
2890  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
2891  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
2892  * having dependency A -> B, we could already get a equivalent path ..-> A ->
2893  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
2894  *
2895  * We need to make sure both the start and the end of A -> .. -> B is not
2896  * weaker than A -> B. For the start part, please see the comment in
2897  * check_redundant(). For the end part, we need:
2898  *
2899  * Either
2900  *
2901  *     a) A -> B is -(*R)-> (everything is not weaker than that)
2902  *
2903  * or
2904  *
2905  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
2906  *
2907  */
hlock_equal(struct lock_list * entry,void * data)2908 static inline bool hlock_equal(struct lock_list *entry, void *data)
2909 {
2910 	struct held_lock *hlock = (struct held_lock *)data;
2911 
2912 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2913 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2914 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2915 }
2916 
2917 /*
2918  * Check that the dependency graph starting at <src> can lead to
2919  * <target> or not. If it can, <src> -> <target> dependency is already
2920  * in the graph.
2921  *
2922  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2923  * any error appears in the bfs search.
2924  */
2925 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2926 check_redundant(struct held_lock *src, struct held_lock *target)
2927 {
2928 	enum bfs_result ret;
2929 	struct lock_list *target_entry;
2930 	struct lock_list src_entry;
2931 
2932 	bfs_init_root(&src_entry, src);
2933 	/*
2934 	 * Special setup for check_redundant().
2935 	 *
2936 	 * To report redundant, we need to find a strong dependency path that
2937 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2938 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2939 	 * we achieve this by setting the initial node's ->only_xr to true in
2940 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2941 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2942 	 */
2943 	src_entry.only_xr = src->read == 0;
2944 
2945 	debug_atomic_inc(nr_redundant_checks);
2946 
2947 	/*
2948 	 * Note: we skip local_lock() for redundant check, because as the
2949 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2950 	 * the same.
2951 	 */
2952 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2953 
2954 	if (ret == BFS_RMATCH)
2955 		debug_atomic_inc(nr_redundant);
2956 
2957 	return ret;
2958 }
2959 
2960 #else
2961 
2962 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2963 check_redundant(struct held_lock *src, struct held_lock *target)
2964 {
2965 	return BFS_RNOMATCH;
2966 }
2967 
2968 #endif
2969 
inc_chains(int irq_context)2970 static void inc_chains(int irq_context)
2971 {
2972 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2973 		nr_hardirq_chains++;
2974 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2975 		nr_softirq_chains++;
2976 	else
2977 		nr_process_chains++;
2978 }
2979 
dec_chains(int irq_context)2980 static void dec_chains(int irq_context)
2981 {
2982 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2983 		nr_hardirq_chains--;
2984 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2985 		nr_softirq_chains--;
2986 	else
2987 		nr_process_chains--;
2988 }
2989 
2990 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2991 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2992 {
2993 	struct lock_class *next = hlock_class(nxt);
2994 	struct lock_class *prev = hlock_class(prv);
2995 
2996 	printk(" Possible unsafe locking scenario:\n\n");
2997 	printk("       CPU0\n");
2998 	printk("       ----\n");
2999 	printk("  lock(");
3000 	__print_lock_name(prv, prev);
3001 	printk(KERN_CONT ");\n");
3002 	printk("  lock(");
3003 	__print_lock_name(nxt, next);
3004 	printk(KERN_CONT ");\n");
3005 	printk("\n *** DEADLOCK ***\n\n");
3006 	printk(" May be due to missing lock nesting notation\n\n");
3007 }
3008 
3009 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)3010 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3011 		   struct held_lock *next)
3012 {
3013 	struct lock_class *class = hlock_class(prev);
3014 
3015 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3016 		return;
3017 
3018 	nbcon_cpu_emergency_enter();
3019 
3020 	pr_warn("\n");
3021 	pr_warn("============================================\n");
3022 	pr_warn("WARNING: possible recursive locking detected\n");
3023 	print_kernel_ident();
3024 	pr_warn("--------------------------------------------\n");
3025 	pr_warn("%s/%d is trying to acquire lock:\n",
3026 		curr->comm, task_pid_nr(curr));
3027 	print_lock(next);
3028 	pr_warn("\nbut task is already holding lock:\n");
3029 	print_lock(prev);
3030 
3031 	if (class->cmp_fn) {
3032 		pr_warn("and the lock comparison function returns %i:\n",
3033 			class->cmp_fn(prev->instance, next->instance));
3034 	}
3035 
3036 	pr_warn("\nother info that might help us debug this:\n");
3037 	print_deadlock_scenario(next, prev);
3038 	lockdep_print_held_locks(curr);
3039 
3040 	pr_warn("\nstack backtrace:\n");
3041 	dump_stack();
3042 
3043 	nbcon_cpu_emergency_exit();
3044 }
3045 
3046 /*
3047  * Check whether we are holding such a class already.
3048  *
3049  * (Note that this has to be done separately, because the graph cannot
3050  * detect such classes of deadlocks.)
3051  *
3052  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3053  * lock class is held but nest_lock is also held, i.e. we rely on the
3054  * nest_lock to avoid the deadlock.
3055  */
3056 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)3057 check_deadlock(struct task_struct *curr, struct held_lock *next)
3058 {
3059 	struct lock_class *class;
3060 	struct held_lock *prev;
3061 	struct held_lock *nest = NULL;
3062 	int i;
3063 
3064 	for (i = 0; i < curr->lockdep_depth; i++) {
3065 		prev = curr->held_locks + i;
3066 
3067 		if (prev->instance == next->nest_lock)
3068 			nest = prev;
3069 
3070 		if (hlock_class(prev) != hlock_class(next))
3071 			continue;
3072 
3073 		/*
3074 		 * Allow read-after-read recursion of the same
3075 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3076 		 */
3077 		if ((next->read == 2) && prev->read)
3078 			continue;
3079 
3080 		class = hlock_class(prev);
3081 
3082 		if (class->cmp_fn &&
3083 		    class->cmp_fn(prev->instance, next->instance) < 0)
3084 			continue;
3085 
3086 		/*
3087 		 * We're holding the nest_lock, which serializes this lock's
3088 		 * nesting behaviour.
3089 		 */
3090 		if (nest)
3091 			return 2;
3092 
3093 		print_deadlock_bug(curr, prev, next);
3094 		return 0;
3095 	}
3096 	return 1;
3097 }
3098 
3099 /*
3100  * There was a chain-cache miss, and we are about to add a new dependency
3101  * to a previous lock. We validate the following rules:
3102  *
3103  *  - would the adding of the <prev> -> <next> dependency create a
3104  *    circular dependency in the graph? [== circular deadlock]
3105  *
3106  *  - does the new prev->next dependency connect any hardirq-safe lock
3107  *    (in the full backwards-subgraph starting at <prev>) with any
3108  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3109  *    <next>)? [== illegal lock inversion with hardirq contexts]
3110  *
3111  *  - does the new prev->next dependency connect any softirq-safe lock
3112  *    (in the full backwards-subgraph starting at <prev>) with any
3113  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3114  *    <next>)? [== illegal lock inversion with softirq contexts]
3115  *
3116  * any of these scenarios could lead to a deadlock.
3117  *
3118  * Then if all the validations pass, we add the forwards and backwards
3119  * dependency.
3120  */
3121 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3122 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3123 	       struct held_lock *next, u16 distance,
3124 	       struct lock_trace **const trace)
3125 {
3126 	struct lock_list *entry;
3127 	enum bfs_result ret;
3128 
3129 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3130 		/*
3131 		 * The warning statements below may trigger a use-after-free
3132 		 * of the class name. It is better to trigger a use-after free
3133 		 * and to have the class name most of the time instead of not
3134 		 * having the class name available.
3135 		 */
3136 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3137 			  "Detected use-after-free of lock class %px/%s\n",
3138 			  hlock_class(prev),
3139 			  hlock_class(prev)->name);
3140 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3141 			  "Detected use-after-free of lock class %px/%s\n",
3142 			  hlock_class(next),
3143 			  hlock_class(next)->name);
3144 		return 2;
3145 	}
3146 
3147 	if (prev->class_idx == next->class_idx) {
3148 		struct lock_class *class = hlock_class(prev);
3149 
3150 		if (class->cmp_fn &&
3151 		    class->cmp_fn(prev->instance, next->instance) < 0)
3152 			return 2;
3153 	}
3154 
3155 	/*
3156 	 * Prove that the new <prev> -> <next> dependency would not
3157 	 * create a circular dependency in the graph. (We do this by
3158 	 * a breadth-first search into the graph starting at <next>,
3159 	 * and check whether we can reach <prev>.)
3160 	 *
3161 	 * The search is limited by the size of the circular queue (i.e.,
3162 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3163 	 * in the graph whose neighbours are to be checked.
3164 	 */
3165 	ret = check_noncircular(next, prev, trace);
3166 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3167 		return 0;
3168 
3169 	if (!check_irq_usage(curr, prev, next))
3170 		return 0;
3171 
3172 	/*
3173 	 * Is the <prev> -> <next> dependency already present?
3174 	 *
3175 	 * (this may occur even though this is a new chain: consider
3176 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3177 	 *  chains - the second one will be new, but L1 already has
3178 	 *  L2 added to its dependency list, due to the first chain.)
3179 	 */
3180 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3181 		if (entry->class == hlock_class(next)) {
3182 			if (distance == 1)
3183 				entry->distance = 1;
3184 			entry->dep |= calc_dep(prev, next);
3185 
3186 			/*
3187 			 * Also, update the reverse dependency in @next's
3188 			 * ->locks_before list.
3189 			 *
3190 			 *  Here we reuse @entry as the cursor, which is fine
3191 			 *  because we won't go to the next iteration of the
3192 			 *  outer loop:
3193 			 *
3194 			 *  For normal cases, we return in the inner loop.
3195 			 *
3196 			 *  If we fail to return, we have inconsistency, i.e.
3197 			 *  <prev>::locks_after contains <next> while
3198 			 *  <next>::locks_before doesn't contain <prev>. In
3199 			 *  that case, we return after the inner and indicate
3200 			 *  something is wrong.
3201 			 */
3202 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3203 				if (entry->class == hlock_class(prev)) {
3204 					if (distance == 1)
3205 						entry->distance = 1;
3206 					entry->dep |= calc_depb(prev, next);
3207 					return 1;
3208 				}
3209 			}
3210 
3211 			/* <prev> is not found in <next>::locks_before */
3212 			return 0;
3213 		}
3214 	}
3215 
3216 	/*
3217 	 * Is the <prev> -> <next> link redundant?
3218 	 */
3219 	ret = check_redundant(prev, next);
3220 	if (bfs_error(ret))
3221 		return 0;
3222 	else if (ret == BFS_RMATCH)
3223 		return 2;
3224 
3225 	if (!*trace) {
3226 		*trace = save_trace();
3227 		if (!*trace)
3228 			return 0;
3229 	}
3230 
3231 	/*
3232 	 * Ok, all validations passed, add the new lock
3233 	 * to the previous lock's dependency list:
3234 	 */
3235 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3236 			       &hlock_class(prev)->locks_after, distance,
3237 			       calc_dep(prev, next), *trace);
3238 
3239 	if (!ret)
3240 		return 0;
3241 
3242 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3243 			       &hlock_class(next)->locks_before, distance,
3244 			       calc_depb(prev, next), *trace);
3245 	if (!ret)
3246 		return 0;
3247 
3248 	return 2;
3249 }
3250 
3251 /*
3252  * Add the dependency to all directly-previous locks that are 'relevant'.
3253  * The ones that are relevant are (in increasing distance from curr):
3254  * all consecutive trylock entries and the final non-trylock entry - or
3255  * the end of this context's lock-chain - whichever comes first.
3256  */
3257 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3258 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3259 {
3260 	struct lock_trace *trace = NULL;
3261 	int depth = curr->lockdep_depth;
3262 	struct held_lock *hlock;
3263 
3264 	/*
3265 	 * Debugging checks.
3266 	 *
3267 	 * Depth must not be zero for a non-head lock:
3268 	 */
3269 	if (!depth)
3270 		goto out_bug;
3271 	/*
3272 	 * At least two relevant locks must exist for this
3273 	 * to be a head:
3274 	 */
3275 	if (curr->held_locks[depth].irq_context !=
3276 			curr->held_locks[depth-1].irq_context)
3277 		goto out_bug;
3278 
3279 	for (;;) {
3280 		u16 distance = curr->lockdep_depth - depth + 1;
3281 		hlock = curr->held_locks + depth - 1;
3282 
3283 		if (hlock->check) {
3284 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3285 			if (!ret)
3286 				return 0;
3287 
3288 			/*
3289 			 * Stop after the first non-trylock entry,
3290 			 * as non-trylock entries have added their
3291 			 * own direct dependencies already, so this
3292 			 * lock is connected to them indirectly:
3293 			 */
3294 			if (!hlock->trylock)
3295 				break;
3296 		}
3297 
3298 		depth--;
3299 		/*
3300 		 * End of lock-stack?
3301 		 */
3302 		if (!depth)
3303 			break;
3304 		/*
3305 		 * Stop the search if we cross into another context:
3306 		 */
3307 		if (curr->held_locks[depth].irq_context !=
3308 				curr->held_locks[depth-1].irq_context)
3309 			break;
3310 	}
3311 	return 1;
3312 out_bug:
3313 	if (!debug_locks_off_graph_unlock())
3314 		return 0;
3315 
3316 	/*
3317 	 * Clearly we all shouldn't be here, but since we made it we
3318 	 * can reliable say we messed up our state. See the above two
3319 	 * gotos for reasons why we could possibly end up here.
3320 	 */
3321 	WARN_ON(1);
3322 
3323 	return 0;
3324 }
3325 
3326 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3327 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3328 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3329 unsigned long nr_zapped_lock_chains;
3330 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3331 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3332 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3333 
3334 /*
3335  * The first 2 chain_hlocks entries in the chain block in the bucket
3336  * list contains the following meta data:
3337  *
3338  *   entry[0]:
3339  *     Bit    15 - always set to 1 (it is not a class index)
3340  *     Bits 0-14 - upper 15 bits of the next block index
3341  *   entry[1]    - lower 16 bits of next block index
3342  *
3343  * A next block index of all 1 bits means it is the end of the list.
3344  *
3345  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3346  * the chain block size:
3347  *
3348  *   entry[2] - upper 16 bits of the chain block size
3349  *   entry[3] - lower 16 bits of the chain block size
3350  */
3351 #define MAX_CHAIN_BUCKETS	16
3352 #define CHAIN_BLK_FLAG		(1U << 15)
3353 #define CHAIN_BLK_LIST_END	0xFFFFU
3354 
3355 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3356 
size_to_bucket(int size)3357 static inline int size_to_bucket(int size)
3358 {
3359 	if (size > MAX_CHAIN_BUCKETS)
3360 		return 0;
3361 
3362 	return size - 1;
3363 }
3364 
3365 /*
3366  * Iterate all the chain blocks in a bucket.
3367  */
3368 #define for_each_chain_block(bucket, prev, curr)		\
3369 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3370 	     (curr) >= 0;					\
3371 	     (prev) = (curr), (curr) = chain_block_next(curr))
3372 
3373 /*
3374  * next block or -1
3375  */
chain_block_next(int offset)3376 static inline int chain_block_next(int offset)
3377 {
3378 	int next = chain_hlocks[offset];
3379 
3380 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3381 
3382 	if (next == CHAIN_BLK_LIST_END)
3383 		return -1;
3384 
3385 	next &= ~CHAIN_BLK_FLAG;
3386 	next <<= 16;
3387 	next |= chain_hlocks[offset + 1];
3388 
3389 	return next;
3390 }
3391 
3392 /*
3393  * bucket-0 only
3394  */
chain_block_size(int offset)3395 static inline int chain_block_size(int offset)
3396 {
3397 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3398 }
3399 
init_chain_block(int offset,int next,int bucket,int size)3400 static inline void init_chain_block(int offset, int next, int bucket, int size)
3401 {
3402 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3403 	chain_hlocks[offset + 1] = (u16)next;
3404 
3405 	if (size && !bucket) {
3406 		chain_hlocks[offset + 2] = size >> 16;
3407 		chain_hlocks[offset + 3] = (u16)size;
3408 	}
3409 }
3410 
add_chain_block(int offset,int size)3411 static inline void add_chain_block(int offset, int size)
3412 {
3413 	int bucket = size_to_bucket(size);
3414 	int next = chain_block_buckets[bucket];
3415 	int prev, curr;
3416 
3417 	if (unlikely(size < 2)) {
3418 		/*
3419 		 * We can't store single entries on the freelist. Leak them.
3420 		 *
3421 		 * One possible way out would be to uniquely mark them, other
3422 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3423 		 * the block before it is re-added.
3424 		 */
3425 		if (size)
3426 			nr_lost_chain_hlocks++;
3427 		return;
3428 	}
3429 
3430 	nr_free_chain_hlocks += size;
3431 	if (!bucket) {
3432 		nr_large_chain_blocks++;
3433 
3434 		/*
3435 		 * Variable sized, sort large to small.
3436 		 */
3437 		for_each_chain_block(0, prev, curr) {
3438 			if (size >= chain_block_size(curr))
3439 				break;
3440 		}
3441 		init_chain_block(offset, curr, 0, size);
3442 		if (prev < 0)
3443 			chain_block_buckets[0] = offset;
3444 		else
3445 			init_chain_block(prev, offset, 0, 0);
3446 		return;
3447 	}
3448 	/*
3449 	 * Fixed size, add to head.
3450 	 */
3451 	init_chain_block(offset, next, bucket, size);
3452 	chain_block_buckets[bucket] = offset;
3453 }
3454 
3455 /*
3456  * Only the first block in the list can be deleted.
3457  *
3458  * For the variable size bucket[0], the first block (the largest one) is
3459  * returned, broken up and put back into the pool. So if a chain block of
3460  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3461  * queued up after the primordial chain block and never be used until the
3462  * hlock entries in the primordial chain block is almost used up. That
3463  * causes fragmentation and reduce allocation efficiency. That can be
3464  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3465  */
del_chain_block(int bucket,int size,int next)3466 static inline void del_chain_block(int bucket, int size, int next)
3467 {
3468 	nr_free_chain_hlocks -= size;
3469 	chain_block_buckets[bucket] = next;
3470 
3471 	if (!bucket)
3472 		nr_large_chain_blocks--;
3473 }
3474 
init_chain_block_buckets(void)3475 static void init_chain_block_buckets(void)
3476 {
3477 	int i;
3478 
3479 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3480 		chain_block_buckets[i] = -1;
3481 
3482 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3483 }
3484 
3485 /*
3486  * Return offset of a chain block of the right size or -1 if not found.
3487  *
3488  * Fairly simple worst-fit allocator with the addition of a number of size
3489  * specific free lists.
3490  */
alloc_chain_hlocks(int req)3491 static int alloc_chain_hlocks(int req)
3492 {
3493 	int bucket, curr, size;
3494 
3495 	/*
3496 	 * We rely on the MSB to act as an escape bit to denote freelist
3497 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3498 	 */
3499 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3500 
3501 	init_data_structures_once();
3502 
3503 	if (nr_free_chain_hlocks < req)
3504 		return -1;
3505 
3506 	/*
3507 	 * We require a minimum of 2 (u16) entries to encode a freelist
3508 	 * 'pointer'.
3509 	 */
3510 	req = max(req, 2);
3511 	bucket = size_to_bucket(req);
3512 	curr = chain_block_buckets[bucket];
3513 
3514 	if (bucket) {
3515 		if (curr >= 0) {
3516 			del_chain_block(bucket, req, chain_block_next(curr));
3517 			return curr;
3518 		}
3519 		/* Try bucket 0 */
3520 		curr = chain_block_buckets[0];
3521 	}
3522 
3523 	/*
3524 	 * The variable sized freelist is sorted by size; the first entry is
3525 	 * the largest. Use it if it fits.
3526 	 */
3527 	if (curr >= 0) {
3528 		size = chain_block_size(curr);
3529 		if (likely(size >= req)) {
3530 			del_chain_block(0, size, chain_block_next(curr));
3531 			if (size > req)
3532 				add_chain_block(curr + req, size - req);
3533 			return curr;
3534 		}
3535 	}
3536 
3537 	/*
3538 	 * Last resort, split a block in a larger sized bucket.
3539 	 */
3540 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3541 		bucket = size_to_bucket(size);
3542 		curr = chain_block_buckets[bucket];
3543 		if (curr < 0)
3544 			continue;
3545 
3546 		del_chain_block(bucket, size, chain_block_next(curr));
3547 		add_chain_block(curr + req, size - req);
3548 		return curr;
3549 	}
3550 
3551 	return -1;
3552 }
3553 
free_chain_hlocks(int base,int size)3554 static inline void free_chain_hlocks(int base, int size)
3555 {
3556 	add_chain_block(base, max(size, 2));
3557 }
3558 
lock_chain_get_class(struct lock_chain * chain,int i)3559 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3560 {
3561 	u16 chain_hlock = chain_hlocks[chain->base + i];
3562 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3563 
3564 	return lock_classes + class_idx;
3565 }
3566 
3567 /*
3568  * Returns the index of the first held_lock of the current chain
3569  */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3570 static inline int get_first_held_lock(struct task_struct *curr,
3571 					struct held_lock *hlock)
3572 {
3573 	int i;
3574 	struct held_lock *hlock_curr;
3575 
3576 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3577 		hlock_curr = curr->held_locks + i;
3578 		if (hlock_curr->irq_context != hlock->irq_context)
3579 			break;
3580 
3581 	}
3582 
3583 	return ++i;
3584 }
3585 
3586 #ifdef CONFIG_DEBUG_LOCKDEP
3587 /*
3588  * Returns the next chain_key iteration
3589  */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3590 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3591 {
3592 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3593 
3594 	printk(" hlock_id:%d -> chain_key:%016Lx",
3595 		(unsigned int)hlock_id,
3596 		(unsigned long long)new_chain_key);
3597 	return new_chain_key;
3598 }
3599 
3600 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3601 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3602 {
3603 	struct held_lock *hlock;
3604 	u64 chain_key = INITIAL_CHAIN_KEY;
3605 	int depth = curr->lockdep_depth;
3606 	int i = get_first_held_lock(curr, hlock_next);
3607 
3608 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3609 		hlock_next->irq_context);
3610 	for (; i < depth; i++) {
3611 		hlock = curr->held_locks + i;
3612 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3613 
3614 		print_lock(hlock);
3615 	}
3616 
3617 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3618 	print_lock(hlock_next);
3619 }
3620 
print_chain_keys_chain(struct lock_chain * chain)3621 static void print_chain_keys_chain(struct lock_chain *chain)
3622 {
3623 	int i;
3624 	u64 chain_key = INITIAL_CHAIN_KEY;
3625 	u16 hlock_id;
3626 
3627 	printk("depth: %u\n", chain->depth);
3628 	for (i = 0; i < chain->depth; i++) {
3629 		hlock_id = chain_hlocks[chain->base + i];
3630 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3631 
3632 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3633 		printk("\n");
3634 	}
3635 }
3636 
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3637 static void print_collision(struct task_struct *curr,
3638 			struct held_lock *hlock_next,
3639 			struct lock_chain *chain)
3640 {
3641 	nbcon_cpu_emergency_enter();
3642 
3643 	pr_warn("\n");
3644 	pr_warn("============================\n");
3645 	pr_warn("WARNING: chain_key collision\n");
3646 	print_kernel_ident();
3647 	pr_warn("----------------------------\n");
3648 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3649 	pr_warn("Hash chain already cached but the contents don't match!\n");
3650 
3651 	pr_warn("Held locks:");
3652 	print_chain_keys_held_locks(curr, hlock_next);
3653 
3654 	pr_warn("Locks in cached chain:");
3655 	print_chain_keys_chain(chain);
3656 
3657 	pr_warn("\nstack backtrace:\n");
3658 	dump_stack();
3659 
3660 	nbcon_cpu_emergency_exit();
3661 }
3662 #endif
3663 
3664 /*
3665  * Checks whether the chain and the current held locks are consistent
3666  * in depth and also in content. If they are not it most likely means
3667  * that there was a collision during the calculation of the chain_key.
3668  * Returns: 0 not passed, 1 passed
3669  */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3670 static int check_no_collision(struct task_struct *curr,
3671 			struct held_lock *hlock,
3672 			struct lock_chain *chain)
3673 {
3674 #ifdef CONFIG_DEBUG_LOCKDEP
3675 	int i, j, id;
3676 
3677 	i = get_first_held_lock(curr, hlock);
3678 
3679 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3680 		print_collision(curr, hlock, chain);
3681 		return 0;
3682 	}
3683 
3684 	for (j = 0; j < chain->depth - 1; j++, i++) {
3685 		id = hlock_id(&curr->held_locks[i]);
3686 
3687 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3688 			print_collision(curr, hlock, chain);
3689 			return 0;
3690 		}
3691 	}
3692 #endif
3693 	return 1;
3694 }
3695 
3696 /*
3697  * Given an index that is >= -1, return the index of the next lock chain.
3698  * Return -2 if there is no next lock chain.
3699  */
lockdep_next_lockchain(long i)3700 long lockdep_next_lockchain(long i)
3701 {
3702 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3703 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3704 }
3705 
lock_chain_count(void)3706 unsigned long lock_chain_count(void)
3707 {
3708 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3709 }
3710 
3711 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3712 static struct lock_chain *alloc_lock_chain(void)
3713 {
3714 	int idx = find_first_zero_bit(lock_chains_in_use,
3715 				      ARRAY_SIZE(lock_chains));
3716 
3717 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3718 		return NULL;
3719 	__set_bit(idx, lock_chains_in_use);
3720 	return lock_chains + idx;
3721 }
3722 
3723 /*
3724  * Adds a dependency chain into chain hashtable. And must be called with
3725  * graph_lock held.
3726  *
3727  * Return 0 if fail, and graph_lock is released.
3728  * Return 1 if succeed, with graph_lock held.
3729  */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3730 static inline int add_chain_cache(struct task_struct *curr,
3731 				  struct held_lock *hlock,
3732 				  u64 chain_key)
3733 {
3734 	struct hlist_head *hash_head = chainhashentry(chain_key);
3735 	struct lock_chain *chain;
3736 	int i, j;
3737 
3738 	/*
3739 	 * The caller must hold the graph lock, ensure we've got IRQs
3740 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3741 	 * lockdep won't complain about its own locking errors.
3742 	 */
3743 	if (lockdep_assert_locked())
3744 		return 0;
3745 
3746 	chain = alloc_lock_chain();
3747 	if (!chain) {
3748 		if (!debug_locks_off_graph_unlock())
3749 			return 0;
3750 
3751 		nbcon_cpu_emergency_enter();
3752 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3753 		dump_stack();
3754 		nbcon_cpu_emergency_exit();
3755 		return 0;
3756 	}
3757 	chain->chain_key = chain_key;
3758 	chain->irq_context = hlock->irq_context;
3759 	i = get_first_held_lock(curr, hlock);
3760 	chain->depth = curr->lockdep_depth + 1 - i;
3761 
3762 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3763 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3764 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3765 
3766 	j = alloc_chain_hlocks(chain->depth);
3767 	if (j < 0) {
3768 		if (!debug_locks_off_graph_unlock())
3769 			return 0;
3770 
3771 		nbcon_cpu_emergency_enter();
3772 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3773 		dump_stack();
3774 		nbcon_cpu_emergency_exit();
3775 		return 0;
3776 	}
3777 
3778 	chain->base = j;
3779 	for (j = 0; j < chain->depth - 1; j++, i++) {
3780 		int lock_id = hlock_id(curr->held_locks + i);
3781 
3782 		chain_hlocks[chain->base + j] = lock_id;
3783 	}
3784 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3785 	hlist_add_head_rcu(&chain->entry, hash_head);
3786 	debug_atomic_inc(chain_lookup_misses);
3787 	inc_chains(chain->irq_context);
3788 
3789 	return 1;
3790 }
3791 
3792 /*
3793  * Look up a dependency chain. Must be called with either the graph lock or
3794  * the RCU read lock held.
3795  */
lookup_chain_cache(u64 chain_key)3796 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3797 {
3798 	struct hlist_head *hash_head = chainhashentry(chain_key);
3799 	struct lock_chain *chain;
3800 
3801 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3802 		if (READ_ONCE(chain->chain_key) == chain_key) {
3803 			debug_atomic_inc(chain_lookup_hits);
3804 			return chain;
3805 		}
3806 	}
3807 	return NULL;
3808 }
3809 
3810 /*
3811  * If the key is not present yet in dependency chain cache then
3812  * add it and return 1 - in this case the new dependency chain is
3813  * validated. If the key is already hashed, return 0.
3814  * (On return with 1 graph_lock is held.)
3815  */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3816 static inline int lookup_chain_cache_add(struct task_struct *curr,
3817 					 struct held_lock *hlock,
3818 					 u64 chain_key)
3819 {
3820 	struct lock_class *class = hlock_class(hlock);
3821 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3822 
3823 	if (chain) {
3824 cache_hit:
3825 		if (!check_no_collision(curr, hlock, chain))
3826 			return 0;
3827 
3828 		if (very_verbose(class)) {
3829 			printk("\nhash chain already cached, key: "
3830 					"%016Lx tail class: [%px] %s\n",
3831 					(unsigned long long)chain_key,
3832 					class->key, class->name);
3833 		}
3834 
3835 		return 0;
3836 	}
3837 
3838 	if (very_verbose(class)) {
3839 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3840 			(unsigned long long)chain_key, class->key, class->name);
3841 	}
3842 
3843 	if (!graph_lock())
3844 		return 0;
3845 
3846 	/*
3847 	 * We have to walk the chain again locked - to avoid duplicates:
3848 	 */
3849 	chain = lookup_chain_cache(chain_key);
3850 	if (chain) {
3851 		graph_unlock();
3852 		goto cache_hit;
3853 	}
3854 
3855 	if (!add_chain_cache(curr, hlock, chain_key))
3856 		return 0;
3857 
3858 	return 1;
3859 }
3860 
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3861 static int validate_chain(struct task_struct *curr,
3862 			  struct held_lock *hlock,
3863 			  int chain_head, u64 chain_key)
3864 {
3865 	/*
3866 	 * Trylock needs to maintain the stack of held locks, but it
3867 	 * does not add new dependencies, because trylock can be done
3868 	 * in any order.
3869 	 *
3870 	 * We look up the chain_key and do the O(N^2) check and update of
3871 	 * the dependencies only if this is a new dependency chain.
3872 	 * (If lookup_chain_cache_add() return with 1 it acquires
3873 	 * graph_lock for us)
3874 	 */
3875 	if (!hlock->trylock && hlock->check &&
3876 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3877 		/*
3878 		 * Check whether last held lock:
3879 		 *
3880 		 * - is irq-safe, if this lock is irq-unsafe
3881 		 * - is softirq-safe, if this lock is hardirq-unsafe
3882 		 *
3883 		 * And check whether the new lock's dependency graph
3884 		 * could lead back to the previous lock:
3885 		 *
3886 		 * - within the current held-lock stack
3887 		 * - across our accumulated lock dependency records
3888 		 *
3889 		 * any of these scenarios could lead to a deadlock.
3890 		 */
3891 		/*
3892 		 * The simple case: does the current hold the same lock
3893 		 * already?
3894 		 */
3895 		int ret = check_deadlock(curr, hlock);
3896 
3897 		if (!ret)
3898 			return 0;
3899 		/*
3900 		 * Add dependency only if this lock is not the head
3901 		 * of the chain, and if the new lock introduces no more
3902 		 * lock dependency (because we already hold a lock with the
3903 		 * same lock class) nor deadlock (because the nest_lock
3904 		 * serializes nesting locks), see the comments for
3905 		 * check_deadlock().
3906 		 */
3907 		if (!chain_head && ret != 2) {
3908 			if (!check_prevs_add(curr, hlock))
3909 				return 0;
3910 		}
3911 
3912 		graph_unlock();
3913 	} else {
3914 		/* after lookup_chain_cache_add(): */
3915 		if (unlikely(!debug_locks))
3916 			return 0;
3917 	}
3918 
3919 	return 1;
3920 }
3921 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3922 static inline int validate_chain(struct task_struct *curr,
3923 				 struct held_lock *hlock,
3924 				 int chain_head, u64 chain_key)
3925 {
3926 	return 1;
3927 }
3928 
init_chain_block_buckets(void)3929 static void init_chain_block_buckets(void)	{ }
3930 #endif /* CONFIG_PROVE_LOCKING */
3931 
3932 /*
3933  * We are building curr_chain_key incrementally, so double-check
3934  * it from scratch, to make sure that it's done correctly:
3935  */
check_chain_key(struct task_struct * curr)3936 static void check_chain_key(struct task_struct *curr)
3937 {
3938 #ifdef CONFIG_DEBUG_LOCKDEP
3939 	struct held_lock *hlock, *prev_hlock = NULL;
3940 	unsigned int i;
3941 	u64 chain_key = INITIAL_CHAIN_KEY;
3942 
3943 	for (i = 0; i < curr->lockdep_depth; i++) {
3944 		hlock = curr->held_locks + i;
3945 		if (chain_key != hlock->prev_chain_key) {
3946 			debug_locks_off();
3947 			/*
3948 			 * We got mighty confused, our chain keys don't match
3949 			 * with what we expect, someone trample on our task state?
3950 			 */
3951 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3952 				curr->lockdep_depth, i,
3953 				(unsigned long long)chain_key,
3954 				(unsigned long long)hlock->prev_chain_key);
3955 			return;
3956 		}
3957 
3958 		/*
3959 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3960 		 * it registered lock class index?
3961 		 */
3962 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3963 			return;
3964 
3965 		if (prev_hlock && (prev_hlock->irq_context !=
3966 							hlock->irq_context))
3967 			chain_key = INITIAL_CHAIN_KEY;
3968 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3969 		prev_hlock = hlock;
3970 	}
3971 	if (chain_key != curr->curr_chain_key) {
3972 		debug_locks_off();
3973 		/*
3974 		 * More smoking hash instead of calculating it, damn see these
3975 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3976 		 */
3977 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3978 			curr->lockdep_depth, i,
3979 			(unsigned long long)chain_key,
3980 			(unsigned long long)curr->curr_chain_key);
3981 	}
3982 #endif
3983 }
3984 
3985 #ifdef CONFIG_PROVE_LOCKING
3986 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3987 		     enum lock_usage_bit new_bit);
3988 
print_usage_bug_scenario(struct held_lock * lock)3989 static void print_usage_bug_scenario(struct held_lock *lock)
3990 {
3991 	struct lock_class *class = hlock_class(lock);
3992 
3993 	printk(" Possible unsafe locking scenario:\n\n");
3994 	printk("       CPU0\n");
3995 	printk("       ----\n");
3996 	printk("  lock(");
3997 	__print_lock_name(lock, class);
3998 	printk(KERN_CONT ");\n");
3999 	printk("  <Interrupt>\n");
4000 	printk("    lock(");
4001 	__print_lock_name(lock, class);
4002 	printk(KERN_CONT ");\n");
4003 	printk("\n *** DEADLOCK ***\n\n");
4004 }
4005 
4006 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)4007 print_usage_bug(struct task_struct *curr, struct held_lock *this,
4008 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4009 {
4010 	if (!debug_locks_off() || debug_locks_silent)
4011 		return;
4012 
4013 	nbcon_cpu_emergency_enter();
4014 
4015 	pr_warn("\n");
4016 	pr_warn("================================\n");
4017 	pr_warn("WARNING: inconsistent lock state\n");
4018 	print_kernel_ident();
4019 	pr_warn("--------------------------------\n");
4020 
4021 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
4022 		usage_str[prev_bit], usage_str[new_bit]);
4023 
4024 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4025 		curr->comm, task_pid_nr(curr),
4026 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4027 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4028 		lockdep_hardirqs_enabled(),
4029 		lockdep_softirqs_enabled(curr));
4030 	print_lock(this);
4031 
4032 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4033 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4034 
4035 	print_irqtrace_events(curr);
4036 	pr_warn("\nother info that might help us debug this:\n");
4037 	print_usage_bug_scenario(this);
4038 
4039 	lockdep_print_held_locks(curr);
4040 
4041 	pr_warn("\nstack backtrace:\n");
4042 	dump_stack();
4043 
4044 	nbcon_cpu_emergency_exit();
4045 }
4046 
4047 /*
4048  * Print out an error if an invalid bit is set:
4049  */
4050 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)4051 valid_state(struct task_struct *curr, struct held_lock *this,
4052 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4053 {
4054 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4055 		graph_unlock();
4056 		print_usage_bug(curr, this, bad_bit, new_bit);
4057 		return 0;
4058 	}
4059 	return 1;
4060 }
4061 
4062 
4063 /*
4064  * print irq inversion bug:
4065  */
4066 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)4067 print_irq_inversion_bug(struct task_struct *curr,
4068 			struct lock_list *root, struct lock_list *other,
4069 			struct held_lock *this, int forwards,
4070 			const char *irqclass)
4071 {
4072 	struct lock_list *entry = other;
4073 	struct lock_list *middle = NULL;
4074 	int depth;
4075 
4076 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4077 		return;
4078 
4079 	nbcon_cpu_emergency_enter();
4080 
4081 	pr_warn("\n");
4082 	pr_warn("========================================================\n");
4083 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4084 	print_kernel_ident();
4085 	pr_warn("--------------------------------------------------------\n");
4086 	pr_warn("%s/%d just changed the state of lock:\n",
4087 		curr->comm, task_pid_nr(curr));
4088 	print_lock(this);
4089 	if (forwards)
4090 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4091 	else
4092 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4093 	print_lock_name(NULL, other->class);
4094 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4095 
4096 	pr_warn("\nother info that might help us debug this:\n");
4097 
4098 	/* Find a middle lock (if one exists) */
4099 	depth = get_lock_depth(other);
4100 	do {
4101 		if (depth == 0 && (entry != root)) {
4102 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4103 			break;
4104 		}
4105 		middle = entry;
4106 		entry = get_lock_parent(entry);
4107 		depth--;
4108 	} while (entry && entry != root && (depth >= 0));
4109 	if (forwards)
4110 		print_irq_lock_scenario(root, other,
4111 			middle ? middle->class : root->class, other->class);
4112 	else
4113 		print_irq_lock_scenario(other, root,
4114 			middle ? middle->class : other->class, root->class);
4115 
4116 	lockdep_print_held_locks(curr);
4117 
4118 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4119 	root->trace = save_trace();
4120 	if (!root->trace)
4121 		goto out;
4122 	print_shortest_lock_dependencies(other, root);
4123 
4124 	pr_warn("\nstack backtrace:\n");
4125 	dump_stack();
4126 out:
4127 	nbcon_cpu_emergency_exit();
4128 }
4129 
4130 /*
4131  * Prove that in the forwards-direction subgraph starting at <this>
4132  * there is no lock matching <mask>:
4133  */
4134 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4135 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4136 		     enum lock_usage_bit bit)
4137 {
4138 	enum bfs_result ret;
4139 	struct lock_list root;
4140 	struct lock_list *target_entry;
4141 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4142 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4143 
4144 	bfs_init_root(&root, this);
4145 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4146 	if (bfs_error(ret)) {
4147 		print_bfs_bug(ret);
4148 		return 0;
4149 	}
4150 	if (ret == BFS_RNOMATCH)
4151 		return 1;
4152 
4153 	/* Check whether write or read usage is the match */
4154 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4155 		print_irq_inversion_bug(curr, &root, target_entry,
4156 					this, 1, state_name(bit));
4157 	} else {
4158 		print_irq_inversion_bug(curr, &root, target_entry,
4159 					this, 1, state_name(read_bit));
4160 	}
4161 
4162 	return 0;
4163 }
4164 
4165 /*
4166  * Prove that in the backwards-direction subgraph starting at <this>
4167  * there is no lock matching <mask>:
4168  */
4169 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4170 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4171 		      enum lock_usage_bit bit)
4172 {
4173 	enum bfs_result ret;
4174 	struct lock_list root;
4175 	struct lock_list *target_entry;
4176 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4177 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4178 
4179 	bfs_init_rootb(&root, this);
4180 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4181 	if (bfs_error(ret)) {
4182 		print_bfs_bug(ret);
4183 		return 0;
4184 	}
4185 	if (ret == BFS_RNOMATCH)
4186 		return 1;
4187 
4188 	/* Check whether write or read usage is the match */
4189 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4190 		print_irq_inversion_bug(curr, &root, target_entry,
4191 					this, 0, state_name(bit));
4192 	} else {
4193 		print_irq_inversion_bug(curr, &root, target_entry,
4194 					this, 0, state_name(read_bit));
4195 	}
4196 
4197 	return 0;
4198 }
4199 
print_irqtrace_events(struct task_struct * curr)4200 void print_irqtrace_events(struct task_struct *curr)
4201 {
4202 	const struct irqtrace_events *trace = &curr->irqtrace;
4203 
4204 	nbcon_cpu_emergency_enter();
4205 
4206 	printk("irq event stamp: %u\n", trace->irq_events);
4207 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4208 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4209 		(void *)trace->hardirq_enable_ip);
4210 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4211 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4212 		(void *)trace->hardirq_disable_ip);
4213 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4214 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4215 		(void *)trace->softirq_enable_ip);
4216 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4217 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4218 		(void *)trace->softirq_disable_ip);
4219 
4220 	nbcon_cpu_emergency_exit();
4221 }
4222 
HARDIRQ_verbose(struct lock_class * class)4223 static int HARDIRQ_verbose(struct lock_class *class)
4224 {
4225 #if HARDIRQ_VERBOSE
4226 	return class_filter(class);
4227 #endif
4228 	return 0;
4229 }
4230 
SOFTIRQ_verbose(struct lock_class * class)4231 static int SOFTIRQ_verbose(struct lock_class *class)
4232 {
4233 #if SOFTIRQ_VERBOSE
4234 	return class_filter(class);
4235 #endif
4236 	return 0;
4237 }
4238 
4239 static int (*state_verbose_f[])(struct lock_class *class) = {
4240 #define LOCKDEP_STATE(__STATE) \
4241 	__STATE##_verbose,
4242 #include "lockdep_states.h"
4243 #undef LOCKDEP_STATE
4244 };
4245 
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4246 static inline int state_verbose(enum lock_usage_bit bit,
4247 				struct lock_class *class)
4248 {
4249 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4250 }
4251 
4252 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4253 			     enum lock_usage_bit bit, const char *name);
4254 
4255 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4256 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4257 		enum lock_usage_bit new_bit)
4258 {
4259 	int excl_bit = exclusive_bit(new_bit);
4260 	int read = new_bit & LOCK_USAGE_READ_MASK;
4261 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4262 
4263 	/*
4264 	 * Validate that this particular lock does not have conflicting
4265 	 * usage states.
4266 	 */
4267 	if (!valid_state(curr, this, new_bit, excl_bit))
4268 		return 0;
4269 
4270 	/*
4271 	 * Check for read in write conflicts
4272 	 */
4273 	if (!read && !valid_state(curr, this, new_bit,
4274 				  excl_bit + LOCK_USAGE_READ_MASK))
4275 		return 0;
4276 
4277 
4278 	/*
4279 	 * Validate that the lock dependencies don't have conflicting usage
4280 	 * states.
4281 	 */
4282 	if (dir) {
4283 		/*
4284 		 * mark ENABLED has to look backwards -- to ensure no dependee
4285 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4286 		 */
4287 		if (!check_usage_backwards(curr, this, excl_bit))
4288 			return 0;
4289 	} else {
4290 		/*
4291 		 * mark USED_IN has to look forwards -- to ensure no dependency
4292 		 * has ENABLED state, which would allow recursion deadlocks.
4293 		 */
4294 		if (!check_usage_forwards(curr, this, excl_bit))
4295 			return 0;
4296 	}
4297 
4298 	if (state_verbose(new_bit, hlock_class(this)))
4299 		return 2;
4300 
4301 	return 1;
4302 }
4303 
4304 /*
4305  * Mark all held locks with a usage bit:
4306  */
4307 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4308 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4309 {
4310 	struct held_lock *hlock;
4311 	int i;
4312 
4313 	for (i = 0; i < curr->lockdep_depth; i++) {
4314 		enum lock_usage_bit hlock_bit = base_bit;
4315 		hlock = curr->held_locks + i;
4316 
4317 		if (hlock->read)
4318 			hlock_bit += LOCK_USAGE_READ_MASK;
4319 
4320 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4321 
4322 		if (!hlock->check)
4323 			continue;
4324 
4325 		if (!mark_lock(curr, hlock, hlock_bit))
4326 			return 0;
4327 	}
4328 
4329 	return 1;
4330 }
4331 
4332 /*
4333  * Hardirqs will be enabled:
4334  */
__trace_hardirqs_on_caller(void)4335 static void __trace_hardirqs_on_caller(void)
4336 {
4337 	struct task_struct *curr = current;
4338 
4339 	/*
4340 	 * We are going to turn hardirqs on, so set the
4341 	 * usage bit for all held locks:
4342 	 */
4343 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4344 		return;
4345 	/*
4346 	 * If we have softirqs enabled, then set the usage
4347 	 * bit for all held locks. (disabled hardirqs prevented
4348 	 * this bit from being set before)
4349 	 */
4350 	if (curr->softirqs_enabled)
4351 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4352 }
4353 
4354 /**
4355  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4356  *
4357  * Invoked before a possible transition to RCU idle from exit to user or
4358  * guest mode. This ensures that all RCU operations are done before RCU
4359  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4360  * invoked to set the final state.
4361  */
lockdep_hardirqs_on_prepare(void)4362 void lockdep_hardirqs_on_prepare(void)
4363 {
4364 	if (unlikely(!debug_locks))
4365 		return;
4366 
4367 	/*
4368 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4369 	 */
4370 	if (unlikely(in_nmi()))
4371 		return;
4372 
4373 	if (unlikely(this_cpu_read(lockdep_recursion)))
4374 		return;
4375 
4376 	if (unlikely(lockdep_hardirqs_enabled())) {
4377 		/*
4378 		 * Neither irq nor preemption are disabled here
4379 		 * so this is racy by nature but losing one hit
4380 		 * in a stat is not a big deal.
4381 		 */
4382 		__debug_atomic_inc(redundant_hardirqs_on);
4383 		return;
4384 	}
4385 
4386 	/*
4387 	 * We're enabling irqs and according to our state above irqs weren't
4388 	 * already enabled, yet we find the hardware thinks they are in fact
4389 	 * enabled.. someone messed up their IRQ state tracing.
4390 	 */
4391 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4392 		return;
4393 
4394 	/*
4395 	 * See the fine text that goes along with this variable definition.
4396 	 */
4397 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4398 		return;
4399 
4400 	/*
4401 	 * Can't allow enabling interrupts while in an interrupt handler,
4402 	 * that's general bad form and such. Recursion, limited stack etc..
4403 	 */
4404 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4405 		return;
4406 
4407 	current->hardirq_chain_key = current->curr_chain_key;
4408 
4409 	lockdep_recursion_inc();
4410 	__trace_hardirqs_on_caller();
4411 	lockdep_recursion_finish();
4412 }
4413 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4414 
lockdep_hardirqs_on(unsigned long ip)4415 void noinstr lockdep_hardirqs_on(unsigned long ip)
4416 {
4417 	struct irqtrace_events *trace = &current->irqtrace;
4418 
4419 	if (unlikely(!debug_locks))
4420 		return;
4421 
4422 	/*
4423 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4424 	 * tracking state and hardware state are out of sync.
4425 	 *
4426 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4427 	 * and not rely on hardware state like normal interrupts.
4428 	 */
4429 	if (unlikely(in_nmi())) {
4430 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4431 			return;
4432 
4433 		/*
4434 		 * Skip:
4435 		 *  - recursion check, because NMI can hit lockdep;
4436 		 *  - hardware state check, because above;
4437 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4438 		 */
4439 		goto skip_checks;
4440 	}
4441 
4442 	if (unlikely(this_cpu_read(lockdep_recursion)))
4443 		return;
4444 
4445 	if (lockdep_hardirqs_enabled()) {
4446 		/*
4447 		 * Neither irq nor preemption are disabled here
4448 		 * so this is racy by nature but losing one hit
4449 		 * in a stat is not a big deal.
4450 		 */
4451 		__debug_atomic_inc(redundant_hardirqs_on);
4452 		return;
4453 	}
4454 
4455 	/*
4456 	 * We're enabling irqs and according to our state above irqs weren't
4457 	 * already enabled, yet we find the hardware thinks they are in fact
4458 	 * enabled.. someone messed up their IRQ state tracing.
4459 	 */
4460 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4461 		return;
4462 
4463 	/*
4464 	 * Ensure the lock stack remained unchanged between
4465 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4466 	 */
4467 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4468 			    current->curr_chain_key);
4469 
4470 skip_checks:
4471 	/* we'll do an OFF -> ON transition: */
4472 	__this_cpu_write(hardirqs_enabled, 1);
4473 	trace->hardirq_enable_ip = ip;
4474 	trace->hardirq_enable_event = ++trace->irq_events;
4475 	debug_atomic_inc(hardirqs_on_events);
4476 }
4477 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4478 
4479 /*
4480  * Hardirqs were disabled:
4481  */
lockdep_hardirqs_off(unsigned long ip)4482 void noinstr lockdep_hardirqs_off(unsigned long ip)
4483 {
4484 	if (unlikely(!debug_locks))
4485 		return;
4486 
4487 	/*
4488 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4489 	 * they will restore the software state. This ensures the software
4490 	 * state is consistent inside NMIs as well.
4491 	 */
4492 	if (in_nmi()) {
4493 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4494 			return;
4495 	} else if (__this_cpu_read(lockdep_recursion))
4496 		return;
4497 
4498 	/*
4499 	 * So we're supposed to get called after you mask local IRQs, but for
4500 	 * some reason the hardware doesn't quite think you did a proper job.
4501 	 */
4502 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4503 		return;
4504 
4505 	if (lockdep_hardirqs_enabled()) {
4506 		struct irqtrace_events *trace = &current->irqtrace;
4507 
4508 		/*
4509 		 * We have done an ON -> OFF transition:
4510 		 */
4511 		__this_cpu_write(hardirqs_enabled, 0);
4512 		trace->hardirq_disable_ip = ip;
4513 		trace->hardirq_disable_event = ++trace->irq_events;
4514 		debug_atomic_inc(hardirqs_off_events);
4515 	} else {
4516 		debug_atomic_inc(redundant_hardirqs_off);
4517 	}
4518 }
4519 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4520 
4521 /*
4522  * Softirqs will be enabled:
4523  */
lockdep_softirqs_on(unsigned long ip)4524 void lockdep_softirqs_on(unsigned long ip)
4525 {
4526 	struct irqtrace_events *trace = &current->irqtrace;
4527 
4528 	if (unlikely(!lockdep_enabled()))
4529 		return;
4530 
4531 	/*
4532 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4533 	 * funny state and nesting things.
4534 	 */
4535 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4536 		return;
4537 
4538 	if (current->softirqs_enabled) {
4539 		debug_atomic_inc(redundant_softirqs_on);
4540 		return;
4541 	}
4542 
4543 	lockdep_recursion_inc();
4544 	/*
4545 	 * We'll do an OFF -> ON transition:
4546 	 */
4547 	current->softirqs_enabled = 1;
4548 	trace->softirq_enable_ip = ip;
4549 	trace->softirq_enable_event = ++trace->irq_events;
4550 	debug_atomic_inc(softirqs_on_events);
4551 	/*
4552 	 * We are going to turn softirqs on, so set the
4553 	 * usage bit for all held locks, if hardirqs are
4554 	 * enabled too:
4555 	 */
4556 	if (lockdep_hardirqs_enabled())
4557 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4558 	lockdep_recursion_finish();
4559 }
4560 
4561 /*
4562  * Softirqs were disabled:
4563  */
lockdep_softirqs_off(unsigned long ip)4564 void lockdep_softirqs_off(unsigned long ip)
4565 {
4566 	if (unlikely(!lockdep_enabled()))
4567 		return;
4568 
4569 	/*
4570 	 * We fancy IRQs being disabled here, see softirq.c
4571 	 */
4572 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4573 		return;
4574 
4575 	if (current->softirqs_enabled) {
4576 		struct irqtrace_events *trace = &current->irqtrace;
4577 
4578 		/*
4579 		 * We have done an ON -> OFF transition:
4580 		 */
4581 		current->softirqs_enabled = 0;
4582 		trace->softirq_disable_ip = ip;
4583 		trace->softirq_disable_event = ++trace->irq_events;
4584 		debug_atomic_inc(softirqs_off_events);
4585 		/*
4586 		 * Whoops, we wanted softirqs off, so why aren't they?
4587 		 */
4588 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4589 	} else
4590 		debug_atomic_inc(redundant_softirqs_off);
4591 }
4592 
4593 /**
4594  * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
4595  *
4596  * @cpu: index of offlined CPU
4597  * @idle: task pointer for offlined CPU's idle thread
4598  *
4599  * Invoked after the CPU is dead. Ensures that the tracing infrastructure
4600  * is left in a suitable state for the CPU to be subsequently brought
4601  * online again.
4602  */
lockdep_cleanup_dead_cpu(unsigned int cpu,struct task_struct * idle)4603 void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
4604 {
4605 	if (unlikely(!debug_locks))
4606 		return;
4607 
4608 	if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
4609 		pr_warn("CPU %u left hardirqs enabled!", cpu);
4610 		if (idle)
4611 			print_irqtrace_events(idle);
4612 		/* Clean it up for when the CPU comes online again. */
4613 		per_cpu(hardirqs_enabled, cpu) = 0;
4614 	}
4615 }
4616 
4617 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4618 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4619 {
4620 	if (!check)
4621 		goto lock_used;
4622 
4623 	/*
4624 	 * If non-trylock use in a hardirq or softirq context, then
4625 	 * mark the lock as used in these contexts:
4626 	 */
4627 	if (!hlock->trylock) {
4628 		if (hlock->read) {
4629 			if (lockdep_hardirq_context())
4630 				if (!mark_lock(curr, hlock,
4631 						LOCK_USED_IN_HARDIRQ_READ))
4632 					return 0;
4633 			if (curr->softirq_context)
4634 				if (!mark_lock(curr, hlock,
4635 						LOCK_USED_IN_SOFTIRQ_READ))
4636 					return 0;
4637 		} else {
4638 			if (lockdep_hardirq_context())
4639 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4640 					return 0;
4641 			if (curr->softirq_context)
4642 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4643 					return 0;
4644 		}
4645 	}
4646 
4647 	/*
4648 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4649 	 * creates no critical section and no extra dependency can be introduced
4650 	 * by interrupts
4651 	 */
4652 	if (!hlock->hardirqs_off && !hlock->sync) {
4653 		if (hlock->read) {
4654 			if (!mark_lock(curr, hlock,
4655 					LOCK_ENABLED_HARDIRQ_READ))
4656 				return 0;
4657 			if (curr->softirqs_enabled)
4658 				if (!mark_lock(curr, hlock,
4659 						LOCK_ENABLED_SOFTIRQ_READ))
4660 					return 0;
4661 		} else {
4662 			if (!mark_lock(curr, hlock,
4663 					LOCK_ENABLED_HARDIRQ))
4664 				return 0;
4665 			if (curr->softirqs_enabled)
4666 				if (!mark_lock(curr, hlock,
4667 						LOCK_ENABLED_SOFTIRQ))
4668 					return 0;
4669 		}
4670 	}
4671 
4672 lock_used:
4673 	/* mark it as used: */
4674 	if (!mark_lock(curr, hlock, LOCK_USED))
4675 		return 0;
4676 
4677 	return 1;
4678 }
4679 
task_irq_context(struct task_struct * task)4680 static inline unsigned int task_irq_context(struct task_struct *task)
4681 {
4682 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4683 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4684 }
4685 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4686 static int separate_irq_context(struct task_struct *curr,
4687 		struct held_lock *hlock)
4688 {
4689 	unsigned int depth = curr->lockdep_depth;
4690 
4691 	/*
4692 	 * Keep track of points where we cross into an interrupt context:
4693 	 */
4694 	if (depth) {
4695 		struct held_lock *prev_hlock;
4696 
4697 		prev_hlock = curr->held_locks + depth-1;
4698 		/*
4699 		 * If we cross into another context, reset the
4700 		 * hash key (this also prevents the checking and the
4701 		 * adding of the dependency to 'prev'):
4702 		 */
4703 		if (prev_hlock->irq_context != hlock->irq_context)
4704 			return 1;
4705 	}
4706 	return 0;
4707 }
4708 
4709 /*
4710  * Mark a lock with a usage bit, and validate the state transition:
4711  */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4712 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4713 			     enum lock_usage_bit new_bit)
4714 {
4715 	unsigned int new_mask, ret = 1;
4716 
4717 	if (new_bit >= LOCK_USAGE_STATES) {
4718 		DEBUG_LOCKS_WARN_ON(1);
4719 		return 0;
4720 	}
4721 
4722 	if (new_bit == LOCK_USED && this->read)
4723 		new_bit = LOCK_USED_READ;
4724 
4725 	new_mask = 1 << new_bit;
4726 
4727 	/*
4728 	 * If already set then do not dirty the cacheline,
4729 	 * nor do any checks:
4730 	 */
4731 	if (likely(hlock_class(this)->usage_mask & new_mask))
4732 		return 1;
4733 
4734 	if (!graph_lock())
4735 		return 0;
4736 	/*
4737 	 * Make sure we didn't race:
4738 	 */
4739 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4740 		goto unlock;
4741 
4742 	if (!hlock_class(this)->usage_mask)
4743 		debug_atomic_dec(nr_unused_locks);
4744 
4745 	hlock_class(this)->usage_mask |= new_mask;
4746 
4747 	if (new_bit < LOCK_TRACE_STATES) {
4748 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4749 			return 0;
4750 	}
4751 
4752 	if (new_bit < LOCK_USED) {
4753 		ret = mark_lock_irq(curr, this, new_bit);
4754 		if (!ret)
4755 			return 0;
4756 	}
4757 
4758 unlock:
4759 	graph_unlock();
4760 
4761 	/*
4762 	 * We must printk outside of the graph_lock:
4763 	 */
4764 	if (ret == 2) {
4765 		nbcon_cpu_emergency_enter();
4766 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4767 		print_lock(this);
4768 		print_irqtrace_events(curr);
4769 		dump_stack();
4770 		nbcon_cpu_emergency_exit();
4771 	}
4772 
4773 	return ret;
4774 }
4775 
task_wait_context(struct task_struct * curr)4776 static inline short task_wait_context(struct task_struct *curr)
4777 {
4778 	/*
4779 	 * Set appropriate wait type for the context; for IRQs we have to take
4780 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4781 	 */
4782 	if (lockdep_hardirq_context()) {
4783 		/*
4784 		 * Check if force_irqthreads will run us threaded.
4785 		 */
4786 		if (curr->hardirq_threaded || curr->irq_config)
4787 			return LD_WAIT_CONFIG;
4788 
4789 		return LD_WAIT_SPIN;
4790 	} else if (curr->softirq_context) {
4791 		/*
4792 		 * Softirqs are always threaded.
4793 		 */
4794 		return LD_WAIT_CONFIG;
4795 	}
4796 
4797 	return LD_WAIT_MAX;
4798 }
4799 
4800 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4801 print_lock_invalid_wait_context(struct task_struct *curr,
4802 				struct held_lock *hlock)
4803 {
4804 	short curr_inner;
4805 
4806 	if (!debug_locks_off())
4807 		return 0;
4808 	if (debug_locks_silent)
4809 		return 0;
4810 
4811 	nbcon_cpu_emergency_enter();
4812 
4813 	pr_warn("\n");
4814 	pr_warn("=============================\n");
4815 	pr_warn("[ BUG: Invalid wait context ]\n");
4816 	print_kernel_ident();
4817 	pr_warn("-----------------------------\n");
4818 
4819 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4820 	print_lock(hlock);
4821 
4822 	pr_warn("other info that might help us debug this:\n");
4823 
4824 	curr_inner = task_wait_context(curr);
4825 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4826 
4827 	lockdep_print_held_locks(curr);
4828 
4829 	pr_warn("stack backtrace:\n");
4830 	dump_stack();
4831 
4832 	nbcon_cpu_emergency_exit();
4833 
4834 	return 0;
4835 }
4836 
4837 /*
4838  * Verify the wait_type context.
4839  *
4840  * This check validates we take locks in the right wait-type order; that is it
4841  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4842  * acquire spinlocks inside raw_spinlocks and the sort.
4843  *
4844  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4845  * can be taken from (pretty much) any context but also has constraints.
4846  * However when taken in a stricter environment the RCU lock does not loosen
4847  * the constraints.
4848  *
4849  * Therefore we must look for the strictest environment in the lock stack and
4850  * compare that to the lock we're trying to acquire.
4851  */
check_wait_context(struct task_struct * curr,struct held_lock * next)4852 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4853 {
4854 	u8 next_inner = hlock_class(next)->wait_type_inner;
4855 	u8 next_outer = hlock_class(next)->wait_type_outer;
4856 	u8 curr_inner;
4857 	int depth;
4858 
4859 	if (!next_inner || next->trylock)
4860 		return 0;
4861 
4862 	if (!next_outer)
4863 		next_outer = next_inner;
4864 
4865 	/*
4866 	 * Find start of current irq_context..
4867 	 */
4868 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4869 		struct held_lock *prev = curr->held_locks + depth;
4870 		if (prev->irq_context != next->irq_context)
4871 			break;
4872 	}
4873 	depth++;
4874 
4875 	curr_inner = task_wait_context(curr);
4876 
4877 	for (; depth < curr->lockdep_depth; depth++) {
4878 		struct held_lock *prev = curr->held_locks + depth;
4879 		struct lock_class *class = hlock_class(prev);
4880 		u8 prev_inner = class->wait_type_inner;
4881 
4882 		if (prev_inner) {
4883 			/*
4884 			 * We can have a bigger inner than a previous one
4885 			 * when outer is smaller than inner, as with RCU.
4886 			 *
4887 			 * Also due to trylocks.
4888 			 */
4889 			curr_inner = min(curr_inner, prev_inner);
4890 
4891 			/*
4892 			 * Allow override for annotations -- this is typically
4893 			 * only valid/needed for code that only exists when
4894 			 * CONFIG_PREEMPT_RT=n.
4895 			 */
4896 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4897 				curr_inner = prev_inner;
4898 		}
4899 	}
4900 
4901 	if (next_outer > curr_inner)
4902 		return print_lock_invalid_wait_context(curr, next);
4903 
4904 	return 0;
4905 }
4906 
4907 #else /* CONFIG_PROVE_LOCKING */
4908 
4909 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4910 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4911 {
4912 	return 1;
4913 }
4914 
task_irq_context(struct task_struct * task)4915 static inline unsigned int task_irq_context(struct task_struct *task)
4916 {
4917 	return 0;
4918 }
4919 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4920 static inline int separate_irq_context(struct task_struct *curr,
4921 		struct held_lock *hlock)
4922 {
4923 	return 0;
4924 }
4925 
check_wait_context(struct task_struct * curr,struct held_lock * next)4926 static inline int check_wait_context(struct task_struct *curr,
4927 				     struct held_lock *next)
4928 {
4929 	return 0;
4930 }
4931 
4932 #endif /* CONFIG_PROVE_LOCKING */
4933 
4934 /*
4935  * Initialize a lock instance's lock-class mapping info:
4936  */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4937 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4938 			    struct lock_class_key *key, int subclass,
4939 			    u8 inner, u8 outer, u8 lock_type)
4940 {
4941 	int i;
4942 
4943 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4944 		lock->class_cache[i] = NULL;
4945 
4946 #ifdef CONFIG_LOCK_STAT
4947 	lock->cpu = raw_smp_processor_id();
4948 #endif
4949 
4950 	/*
4951 	 * Can't be having no nameless bastards around this place!
4952 	 */
4953 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4954 		lock->name = "NULL";
4955 		return;
4956 	}
4957 
4958 	lock->name = name;
4959 
4960 	lock->wait_type_outer = outer;
4961 	lock->wait_type_inner = inner;
4962 	lock->lock_type = lock_type;
4963 
4964 	/*
4965 	 * No key, no joy, we need to hash something.
4966 	 */
4967 	if (DEBUG_LOCKS_WARN_ON(!key))
4968 		return;
4969 	/*
4970 	 * Sanity check, the lock-class key must either have been allocated
4971 	 * statically or must have been registered as a dynamic key.
4972 	 */
4973 	if (!static_obj(key) && !is_dynamic_key(key)) {
4974 		if (debug_locks)
4975 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4976 		DEBUG_LOCKS_WARN_ON(1);
4977 		return;
4978 	}
4979 	lock->key = key;
4980 
4981 	if (unlikely(!debug_locks))
4982 		return;
4983 
4984 	if (subclass) {
4985 		unsigned long flags;
4986 
4987 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4988 			return;
4989 
4990 		raw_local_irq_save(flags);
4991 		lockdep_recursion_inc();
4992 		register_lock_class(lock, subclass, 1);
4993 		lockdep_recursion_finish();
4994 		raw_local_irq_restore(flags);
4995 	}
4996 }
4997 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4998 
4999 struct lock_class_key __lockdep_no_validate__;
5000 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
5001 
5002 struct lock_class_key __lockdep_no_track__;
5003 EXPORT_SYMBOL_GPL(__lockdep_no_track__);
5004 
5005 #ifdef CONFIG_PROVE_LOCKING
lockdep_set_lock_cmp_fn(struct lockdep_map * lock,lock_cmp_fn cmp_fn,lock_print_fn print_fn)5006 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
5007 			     lock_print_fn print_fn)
5008 {
5009 	struct lock_class *class = lock->class_cache[0];
5010 	unsigned long flags;
5011 
5012 	raw_local_irq_save(flags);
5013 	lockdep_recursion_inc();
5014 
5015 	if (!class)
5016 		class = register_lock_class(lock, 0, 0);
5017 
5018 	if (class) {
5019 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
5020 		WARN_ON(class->print_fn && class->print_fn != print_fn);
5021 
5022 		class->cmp_fn	= cmp_fn;
5023 		class->print_fn = print_fn;
5024 	}
5025 
5026 	lockdep_recursion_finish();
5027 	raw_local_irq_restore(flags);
5028 }
5029 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5030 #endif
5031 
5032 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)5033 print_lock_nested_lock_not_held(struct task_struct *curr,
5034 				struct held_lock *hlock)
5035 {
5036 	if (!debug_locks_off())
5037 		return;
5038 	if (debug_locks_silent)
5039 		return;
5040 
5041 	nbcon_cpu_emergency_enter();
5042 
5043 	pr_warn("\n");
5044 	pr_warn("==================================\n");
5045 	pr_warn("WARNING: Nested lock was not taken\n");
5046 	print_kernel_ident();
5047 	pr_warn("----------------------------------\n");
5048 
5049 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5050 	print_lock(hlock);
5051 
5052 	pr_warn("\nbut this task is not holding:\n");
5053 	pr_warn("%s\n", hlock->nest_lock->name);
5054 
5055 	pr_warn("\nstack backtrace:\n");
5056 	dump_stack();
5057 
5058 	pr_warn("\nother info that might help us debug this:\n");
5059 	lockdep_print_held_locks(curr);
5060 
5061 	pr_warn("\nstack backtrace:\n");
5062 	dump_stack();
5063 
5064 	nbcon_cpu_emergency_exit();
5065 }
5066 
5067 static int __lock_is_held(const struct lockdep_map *lock, int read);
5068 
5069 /*
5070  * This gets called for every mutex_lock*()/spin_lock*() operation.
5071  * We maintain the dependency maps and validate the locking attempt:
5072  *
5073  * The callers must make sure that IRQs are disabled before calling it,
5074  * otherwise we could get an interrupt which would want to take locks,
5075  * which would end up in lockdep again.
5076  */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count,int sync)5077 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5078 			  int trylock, int read, int check, int hardirqs_off,
5079 			  struct lockdep_map *nest_lock, unsigned long ip,
5080 			  int references, int pin_count, int sync)
5081 {
5082 	struct task_struct *curr = current;
5083 	struct lock_class *class = NULL;
5084 	struct held_lock *hlock;
5085 	unsigned int depth;
5086 	int chain_head = 0;
5087 	int class_idx;
5088 	u64 chain_key;
5089 
5090 	if (unlikely(!debug_locks))
5091 		return 0;
5092 
5093 	if (unlikely(lock->key == &__lockdep_no_track__))
5094 		return 0;
5095 
5096 	lockevent_inc(lockdep_acquire);
5097 
5098 	if (!prove_locking || lock->key == &__lockdep_no_validate__) {
5099 		check = 0;
5100 		lockevent_inc(lockdep_nocheck);
5101 	}
5102 
5103 	if (DEBUG_LOCKS_WARN_ON(subclass >= MAX_LOCKDEP_SUBCLASSES))
5104 		return 0;
5105 
5106 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5107 		class = lock->class_cache[subclass];
5108 	/*
5109 	 * Not cached?
5110 	 */
5111 	if (unlikely(!class)) {
5112 		class = register_lock_class(lock, subclass, 0);
5113 		if (!class)
5114 			return 0;
5115 	}
5116 
5117 	debug_class_ops_inc(class);
5118 
5119 	if (very_verbose(class)) {
5120 		nbcon_cpu_emergency_enter();
5121 		printk("\nacquire class [%px] %s", class->key, class->name);
5122 		if (class->name_version > 1)
5123 			printk(KERN_CONT "#%d", class->name_version);
5124 		printk(KERN_CONT "\n");
5125 		dump_stack();
5126 		nbcon_cpu_emergency_exit();
5127 	}
5128 
5129 	/*
5130 	 * Add the lock to the list of currently held locks.
5131 	 * (we dont increase the depth just yet, up until the
5132 	 * dependency checks are done)
5133 	 */
5134 	depth = curr->lockdep_depth;
5135 	/*
5136 	 * Ran out of static storage for our per-task lock stack again have we?
5137 	 */
5138 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5139 		return 0;
5140 
5141 	class_idx = class - lock_classes;
5142 
5143 	if (depth && !sync) {
5144 		/* we're holding locks and the new held lock is not a sync */
5145 		hlock = curr->held_locks + depth - 1;
5146 		if (hlock->class_idx == class_idx && nest_lock) {
5147 			if (!references)
5148 				references++;
5149 
5150 			if (!hlock->references)
5151 				hlock->references++;
5152 
5153 			hlock->references += references;
5154 
5155 			/* Overflow */
5156 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5157 				return 0;
5158 
5159 			return 2;
5160 		}
5161 	}
5162 
5163 	hlock = curr->held_locks + depth;
5164 	/*
5165 	 * Plain impossible, we just registered it and checked it weren't no
5166 	 * NULL like.. I bet this mushroom I ate was good!
5167 	 */
5168 	if (DEBUG_LOCKS_WARN_ON(!class))
5169 		return 0;
5170 	hlock->class_idx = class_idx;
5171 	hlock->acquire_ip = ip;
5172 	hlock->instance = lock;
5173 	hlock->nest_lock = nest_lock;
5174 	hlock->irq_context = task_irq_context(curr);
5175 	hlock->trylock = trylock;
5176 	hlock->read = read;
5177 	hlock->check = check;
5178 	hlock->sync = !!sync;
5179 	hlock->hardirqs_off = !!hardirqs_off;
5180 	hlock->references = references;
5181 #ifdef CONFIG_LOCK_STAT
5182 	hlock->waittime_stamp = 0;
5183 	hlock->holdtime_stamp = lockstat_clock();
5184 #endif
5185 	hlock->pin_count = pin_count;
5186 
5187 	if (check_wait_context(curr, hlock))
5188 		return 0;
5189 
5190 	/* Initialize the lock usage bit */
5191 	if (!mark_usage(curr, hlock, check))
5192 		return 0;
5193 
5194 	/*
5195 	 * Calculate the chain hash: it's the combined hash of all the
5196 	 * lock keys along the dependency chain. We save the hash value
5197 	 * at every step so that we can get the current hash easily
5198 	 * after unlock. The chain hash is then used to cache dependency
5199 	 * results.
5200 	 *
5201 	 * The 'key ID' is what is the most compact key value to drive
5202 	 * the hash, not class->key.
5203 	 */
5204 	/*
5205 	 * Whoops, we did it again.. class_idx is invalid.
5206 	 */
5207 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5208 		return 0;
5209 
5210 	chain_key = curr->curr_chain_key;
5211 	if (!depth) {
5212 		/*
5213 		 * How can we have a chain hash when we ain't got no keys?!
5214 		 */
5215 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5216 			return 0;
5217 		chain_head = 1;
5218 	}
5219 
5220 	hlock->prev_chain_key = chain_key;
5221 	if (separate_irq_context(curr, hlock)) {
5222 		chain_key = INITIAL_CHAIN_KEY;
5223 		chain_head = 1;
5224 	}
5225 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5226 
5227 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5228 		print_lock_nested_lock_not_held(curr, hlock);
5229 		return 0;
5230 	}
5231 
5232 	if (!debug_locks_silent) {
5233 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5234 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5235 	}
5236 
5237 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5238 		return 0;
5239 
5240 	/* For lock_sync(), we are done here since no actual critical section */
5241 	if (hlock->sync)
5242 		return 1;
5243 
5244 	curr->curr_chain_key = chain_key;
5245 	curr->lockdep_depth++;
5246 	check_chain_key(curr);
5247 #ifdef CONFIG_DEBUG_LOCKDEP
5248 	if (unlikely(!debug_locks))
5249 		return 0;
5250 #endif
5251 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5252 		debug_locks_off();
5253 		nbcon_cpu_emergency_enter();
5254 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5255 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5256 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5257 
5258 		lockdep_print_held_locks(current);
5259 		debug_show_all_locks();
5260 		dump_stack();
5261 		nbcon_cpu_emergency_exit();
5262 
5263 		return 0;
5264 	}
5265 
5266 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5267 		max_lockdep_depth = curr->lockdep_depth;
5268 
5269 	return 1;
5270 }
5271 
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5272 static void print_unlock_imbalance_bug(struct task_struct *curr,
5273 				       struct lockdep_map *lock,
5274 				       unsigned long ip)
5275 {
5276 	if (!debug_locks_off())
5277 		return;
5278 	if (debug_locks_silent)
5279 		return;
5280 
5281 	nbcon_cpu_emergency_enter();
5282 
5283 	pr_warn("\n");
5284 	pr_warn("=====================================\n");
5285 	pr_warn("WARNING: bad unlock balance detected!\n");
5286 	print_kernel_ident();
5287 	pr_warn("-------------------------------------\n");
5288 	pr_warn("%s/%d is trying to release lock (",
5289 		curr->comm, task_pid_nr(curr));
5290 	print_lockdep_cache(lock);
5291 	pr_cont(") at:\n");
5292 	print_ip_sym(KERN_WARNING, ip);
5293 	pr_warn("but there are no more locks to release!\n");
5294 	pr_warn("\nother info that might help us debug this:\n");
5295 	lockdep_print_held_locks(curr);
5296 
5297 	pr_warn("\nstack backtrace:\n");
5298 	dump_stack();
5299 
5300 	nbcon_cpu_emergency_exit();
5301 }
5302 
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5303 static noinstr int match_held_lock(const struct held_lock *hlock,
5304 				   const struct lockdep_map *lock)
5305 {
5306 	if (hlock->instance == lock)
5307 		return 1;
5308 
5309 	if (hlock->references) {
5310 		const struct lock_class *class = lock->class_cache[0];
5311 
5312 		if (!class)
5313 			class = look_up_lock_class(lock, 0);
5314 
5315 		/*
5316 		 * If look_up_lock_class() failed to find a class, we're trying
5317 		 * to test if we hold a lock that has never yet been acquired.
5318 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5319 		 * holding it either, so report failure.
5320 		 */
5321 		if (!class)
5322 			return 0;
5323 
5324 		/*
5325 		 * References, but not a lock we're actually ref-counting?
5326 		 * State got messed up, follow the sites that change ->references
5327 		 * and try to make sense of it.
5328 		 */
5329 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5330 			return 0;
5331 
5332 		if (hlock->class_idx == class - lock_classes)
5333 			return 1;
5334 	}
5335 
5336 	return 0;
5337 }
5338 
5339 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5340 static struct held_lock *find_held_lock(struct task_struct *curr,
5341 					struct lockdep_map *lock,
5342 					unsigned int depth, int *idx)
5343 {
5344 	struct held_lock *ret, *hlock, *prev_hlock;
5345 	int i;
5346 
5347 	i = depth - 1;
5348 	hlock = curr->held_locks + i;
5349 	ret = hlock;
5350 	if (match_held_lock(hlock, lock))
5351 		goto out;
5352 
5353 	ret = NULL;
5354 	for (i--, prev_hlock = hlock--;
5355 	     i >= 0;
5356 	     i--, prev_hlock = hlock--) {
5357 		/*
5358 		 * We must not cross into another context:
5359 		 */
5360 		if (prev_hlock->irq_context != hlock->irq_context) {
5361 			ret = NULL;
5362 			break;
5363 		}
5364 		if (match_held_lock(hlock, lock)) {
5365 			ret = hlock;
5366 			break;
5367 		}
5368 	}
5369 
5370 out:
5371 	*idx = i;
5372 	return ret;
5373 }
5374 
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5375 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5376 				int idx, unsigned int *merged)
5377 {
5378 	struct held_lock *hlock;
5379 	int first_idx = idx;
5380 
5381 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5382 		return 0;
5383 
5384 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5385 		switch (__lock_acquire(hlock->instance,
5386 				    hlock_class(hlock)->subclass,
5387 				    hlock->trylock,
5388 				    hlock->read, hlock->check,
5389 				    hlock->hardirqs_off,
5390 				    hlock->nest_lock, hlock->acquire_ip,
5391 				    hlock->references, hlock->pin_count, 0)) {
5392 		case 0:
5393 			return 1;
5394 		case 1:
5395 			break;
5396 		case 2:
5397 			*merged += (idx == first_idx);
5398 			break;
5399 		default:
5400 			WARN_ON(1);
5401 			return 0;
5402 		}
5403 	}
5404 	return 0;
5405 }
5406 
5407 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5408 __lock_set_class(struct lockdep_map *lock, const char *name,
5409 		 struct lock_class_key *key, unsigned int subclass,
5410 		 unsigned long ip)
5411 {
5412 	struct task_struct *curr = current;
5413 	unsigned int depth, merged = 0;
5414 	struct held_lock *hlock;
5415 	struct lock_class *class;
5416 	int i;
5417 
5418 	if (unlikely(!debug_locks))
5419 		return 0;
5420 
5421 	depth = curr->lockdep_depth;
5422 	/*
5423 	 * This function is about (re)setting the class of a held lock,
5424 	 * yet we're not actually holding any locks. Naughty user!
5425 	 */
5426 	if (DEBUG_LOCKS_WARN_ON(!depth))
5427 		return 0;
5428 
5429 	hlock = find_held_lock(curr, lock, depth, &i);
5430 	if (!hlock) {
5431 		print_unlock_imbalance_bug(curr, lock, ip);
5432 		return 0;
5433 	}
5434 
5435 	lockdep_init_map_type(lock, name, key, 0,
5436 			      lock->wait_type_inner,
5437 			      lock->wait_type_outer,
5438 			      lock->lock_type);
5439 	class = register_lock_class(lock, subclass, 0);
5440 	hlock->class_idx = class - lock_classes;
5441 
5442 	curr->lockdep_depth = i;
5443 	curr->curr_chain_key = hlock->prev_chain_key;
5444 
5445 	if (reacquire_held_locks(curr, depth, i, &merged))
5446 		return 0;
5447 
5448 	/*
5449 	 * I took it apart and put it back together again, except now I have
5450 	 * these 'spare' parts.. where shall I put them.
5451 	 */
5452 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5453 		return 0;
5454 	return 1;
5455 }
5456 
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5457 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5458 {
5459 	struct task_struct *curr = current;
5460 	unsigned int depth, merged = 0;
5461 	struct held_lock *hlock;
5462 	int i;
5463 
5464 	if (unlikely(!debug_locks))
5465 		return 0;
5466 
5467 	depth = curr->lockdep_depth;
5468 	/*
5469 	 * This function is about (re)setting the class of a held lock,
5470 	 * yet we're not actually holding any locks. Naughty user!
5471 	 */
5472 	if (DEBUG_LOCKS_WARN_ON(!depth))
5473 		return 0;
5474 
5475 	hlock = find_held_lock(curr, lock, depth, &i);
5476 	if (!hlock) {
5477 		print_unlock_imbalance_bug(curr, lock, ip);
5478 		return 0;
5479 	}
5480 
5481 	curr->lockdep_depth = i;
5482 	curr->curr_chain_key = hlock->prev_chain_key;
5483 
5484 	WARN(hlock->read, "downgrading a read lock");
5485 	hlock->read = 1;
5486 	hlock->acquire_ip = ip;
5487 
5488 	if (reacquire_held_locks(curr, depth, i, &merged))
5489 		return 0;
5490 
5491 	/* Merging can't happen with unchanged classes.. */
5492 	if (DEBUG_LOCKS_WARN_ON(merged))
5493 		return 0;
5494 
5495 	/*
5496 	 * I took it apart and put it back together again, except now I have
5497 	 * these 'spare' parts.. where shall I put them.
5498 	 */
5499 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5500 		return 0;
5501 
5502 	return 1;
5503 }
5504 
5505 /*
5506  * Remove the lock from the list of currently held locks - this gets
5507  * called on mutex_unlock()/spin_unlock*() (or on a failed
5508  * mutex_lock_interruptible()).
5509  */
5510 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5511 __lock_release(struct lockdep_map *lock, unsigned long ip)
5512 {
5513 	struct task_struct *curr = current;
5514 	unsigned int depth, merged = 1;
5515 	struct held_lock *hlock;
5516 	int i;
5517 
5518 	if (unlikely(!debug_locks))
5519 		return 0;
5520 
5521 	depth = curr->lockdep_depth;
5522 	/*
5523 	 * So we're all set to release this lock.. wait what lock? We don't
5524 	 * own any locks, you've been drinking again?
5525 	 */
5526 	if (depth <= 0) {
5527 		print_unlock_imbalance_bug(curr, lock, ip);
5528 		return 0;
5529 	}
5530 
5531 	/*
5532 	 * Check whether the lock exists in the current stack
5533 	 * of held locks:
5534 	 */
5535 	hlock = find_held_lock(curr, lock, depth, &i);
5536 	if (!hlock) {
5537 		print_unlock_imbalance_bug(curr, lock, ip);
5538 		return 0;
5539 	}
5540 
5541 	if (hlock->instance == lock)
5542 		lock_release_holdtime(hlock);
5543 
5544 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5545 
5546 	if (hlock->references) {
5547 		hlock->references--;
5548 		if (hlock->references) {
5549 			/*
5550 			 * We had, and after removing one, still have
5551 			 * references, the current lock stack is still
5552 			 * valid. We're done!
5553 			 */
5554 			return 1;
5555 		}
5556 	}
5557 
5558 	/*
5559 	 * We have the right lock to unlock, 'hlock' points to it.
5560 	 * Now we remove it from the stack, and add back the other
5561 	 * entries (if any), recalculating the hash along the way:
5562 	 */
5563 
5564 	curr->lockdep_depth = i;
5565 	curr->curr_chain_key = hlock->prev_chain_key;
5566 
5567 	/*
5568 	 * The most likely case is when the unlock is on the innermost
5569 	 * lock. In this case, we are done!
5570 	 */
5571 	if (i == depth-1)
5572 		return 1;
5573 
5574 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5575 		return 0;
5576 
5577 	/*
5578 	 * We had N bottles of beer on the wall, we drank one, but now
5579 	 * there's not N-1 bottles of beer left on the wall...
5580 	 * Pouring two of the bottles together is acceptable.
5581 	 */
5582 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5583 
5584 	/*
5585 	 * Since reacquire_held_locks() would have called check_chain_key()
5586 	 * indirectly via __lock_acquire(), we don't need to do it again
5587 	 * on return.
5588 	 */
5589 	return 0;
5590 }
5591 
5592 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5593 int __lock_is_held(const struct lockdep_map *lock, int read)
5594 {
5595 	struct task_struct *curr = current;
5596 	int i;
5597 
5598 	for (i = 0; i < curr->lockdep_depth; i++) {
5599 		struct held_lock *hlock = curr->held_locks + i;
5600 
5601 		if (match_held_lock(hlock, lock)) {
5602 			if (read == -1 || !!hlock->read == read)
5603 				return LOCK_STATE_HELD;
5604 
5605 			return LOCK_STATE_NOT_HELD;
5606 		}
5607 	}
5608 
5609 	return LOCK_STATE_NOT_HELD;
5610 }
5611 
__lock_pin_lock(struct lockdep_map * lock)5612 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5613 {
5614 	struct pin_cookie cookie = NIL_COOKIE;
5615 	struct task_struct *curr = current;
5616 	int i;
5617 
5618 	if (unlikely(!debug_locks))
5619 		return cookie;
5620 
5621 	for (i = 0; i < curr->lockdep_depth; i++) {
5622 		struct held_lock *hlock = curr->held_locks + i;
5623 
5624 		if (match_held_lock(hlock, lock)) {
5625 			/*
5626 			 * Grab 16bits of randomness; this is sufficient to not
5627 			 * be guessable and still allows some pin nesting in
5628 			 * our u32 pin_count.
5629 			 */
5630 			cookie.val = 1 + (sched_clock() & 0xffff);
5631 			hlock->pin_count += cookie.val;
5632 			return cookie;
5633 		}
5634 	}
5635 
5636 	WARN(1, "pinning an unheld lock\n");
5637 	return cookie;
5638 }
5639 
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5640 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5641 {
5642 	struct task_struct *curr = current;
5643 	int i;
5644 
5645 	if (unlikely(!debug_locks))
5646 		return;
5647 
5648 	for (i = 0; i < curr->lockdep_depth; i++) {
5649 		struct held_lock *hlock = curr->held_locks + i;
5650 
5651 		if (match_held_lock(hlock, lock)) {
5652 			hlock->pin_count += cookie.val;
5653 			return;
5654 		}
5655 	}
5656 
5657 	WARN(1, "pinning an unheld lock\n");
5658 }
5659 
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5660 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5661 {
5662 	struct task_struct *curr = current;
5663 	int i;
5664 
5665 	if (unlikely(!debug_locks))
5666 		return;
5667 
5668 	for (i = 0; i < curr->lockdep_depth; i++) {
5669 		struct held_lock *hlock = curr->held_locks + i;
5670 
5671 		if (match_held_lock(hlock, lock)) {
5672 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5673 				return;
5674 
5675 			hlock->pin_count -= cookie.val;
5676 
5677 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5678 				hlock->pin_count = 0;
5679 
5680 			return;
5681 		}
5682 	}
5683 
5684 	WARN(1, "unpinning an unheld lock\n");
5685 }
5686 
5687 /*
5688  * Check whether we follow the irq-flags state precisely:
5689  */
check_flags(unsigned long flags)5690 static noinstr void check_flags(unsigned long flags)
5691 {
5692 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5693 	if (!debug_locks)
5694 		return;
5695 
5696 	/* Get the warning out..  */
5697 	instrumentation_begin();
5698 
5699 	if (irqs_disabled_flags(flags)) {
5700 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5701 			printk("possible reason: unannotated irqs-off.\n");
5702 		}
5703 	} else {
5704 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5705 			printk("possible reason: unannotated irqs-on.\n");
5706 		}
5707 	}
5708 
5709 #ifndef CONFIG_PREEMPT_RT
5710 	/*
5711 	 * We dont accurately track softirq state in e.g.
5712 	 * hardirq contexts (such as on 4KSTACKS), so only
5713 	 * check if not in hardirq contexts:
5714 	 */
5715 	if (!hardirq_count()) {
5716 		if (softirq_count()) {
5717 			/* like the above, but with softirqs */
5718 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5719 		} else {
5720 			/* lick the above, does it taste good? */
5721 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5722 		}
5723 	}
5724 #endif
5725 
5726 	if (!debug_locks)
5727 		print_irqtrace_events(current);
5728 
5729 	instrumentation_end();
5730 #endif
5731 }
5732 
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5733 void lock_set_class(struct lockdep_map *lock, const char *name,
5734 		    struct lock_class_key *key, unsigned int subclass,
5735 		    unsigned long ip)
5736 {
5737 	unsigned long flags;
5738 
5739 	if (unlikely(!lockdep_enabled()))
5740 		return;
5741 
5742 	raw_local_irq_save(flags);
5743 	lockdep_recursion_inc();
5744 	check_flags(flags);
5745 	if (__lock_set_class(lock, name, key, subclass, ip))
5746 		check_chain_key(current);
5747 	lockdep_recursion_finish();
5748 	raw_local_irq_restore(flags);
5749 }
5750 EXPORT_SYMBOL_GPL(lock_set_class);
5751 
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5752 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5753 {
5754 	unsigned long flags;
5755 
5756 	if (unlikely(!lockdep_enabled()))
5757 		return;
5758 
5759 	raw_local_irq_save(flags);
5760 	lockdep_recursion_inc();
5761 	check_flags(flags);
5762 	if (__lock_downgrade(lock, ip))
5763 		check_chain_key(current);
5764 	lockdep_recursion_finish();
5765 	raw_local_irq_restore(flags);
5766 }
5767 EXPORT_SYMBOL_GPL(lock_downgrade);
5768 
5769 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5770 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5771 {
5772 #ifdef CONFIG_PROVE_LOCKING
5773 	struct lock_class *class = look_up_lock_class(lock, subclass);
5774 	unsigned long mask = LOCKF_USED;
5775 
5776 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5777 	if (!class)
5778 		return;
5779 
5780 	/*
5781 	 * READ locks only conflict with USED, such that if we only ever use
5782 	 * READ locks, there is no deadlock possible -- RCU.
5783 	 */
5784 	if (!hlock->read)
5785 		mask |= LOCKF_USED_READ;
5786 
5787 	if (!(class->usage_mask & mask))
5788 		return;
5789 
5790 	hlock->class_idx = class - lock_classes;
5791 
5792 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5793 #endif
5794 }
5795 
lockdep_nmi(void)5796 static bool lockdep_nmi(void)
5797 {
5798 	if (raw_cpu_read(lockdep_recursion))
5799 		return false;
5800 
5801 	if (!in_nmi())
5802 		return false;
5803 
5804 	return true;
5805 }
5806 
5807 /*
5808  * read_lock() is recursive if:
5809  * 1. We force lockdep think this way in selftests or
5810  * 2. The implementation is not queued read/write lock or
5811  * 3. The locker is at an in_interrupt() context.
5812  */
read_lock_is_recursive(void)5813 bool read_lock_is_recursive(void)
5814 {
5815 	return force_read_lock_recursive ||
5816 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5817 	       in_interrupt();
5818 }
5819 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5820 
5821 /*
5822  * We are not always called with irqs disabled - do that here,
5823  * and also avoid lockdep recursion:
5824  */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5825 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5826 			  int trylock, int read, int check,
5827 			  struct lockdep_map *nest_lock, unsigned long ip)
5828 {
5829 	unsigned long flags;
5830 
5831 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5832 
5833 	if (!debug_locks)
5834 		return;
5835 
5836 	/*
5837 	 * As KASAN instrumentation is disabled and lock_acquire() is usually
5838 	 * the first lockdep call when a task tries to acquire a lock, add
5839 	 * kasan_check_byte() here to check for use-after-free and other
5840 	 * memory errors.
5841 	 */
5842 	kasan_check_byte(lock);
5843 
5844 	if (unlikely(!lockdep_enabled())) {
5845 		/* XXX allow trylock from NMI ?!? */
5846 		if (lockdep_nmi() && !trylock) {
5847 			struct held_lock hlock;
5848 
5849 			hlock.acquire_ip = ip;
5850 			hlock.instance = lock;
5851 			hlock.nest_lock = nest_lock;
5852 			hlock.irq_context = 2; // XXX
5853 			hlock.trylock = trylock;
5854 			hlock.read = read;
5855 			hlock.check = check;
5856 			hlock.hardirqs_off = true;
5857 			hlock.references = 0;
5858 
5859 			verify_lock_unused(lock, &hlock, subclass);
5860 		}
5861 		return;
5862 	}
5863 
5864 	raw_local_irq_save(flags);
5865 	check_flags(flags);
5866 
5867 	lockdep_recursion_inc();
5868 	__lock_acquire(lock, subclass, trylock, read, check,
5869 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5870 	lockdep_recursion_finish();
5871 	raw_local_irq_restore(flags);
5872 }
5873 EXPORT_SYMBOL_GPL(lock_acquire);
5874 
lock_release(struct lockdep_map * lock,unsigned long ip)5875 void lock_release(struct lockdep_map *lock, unsigned long ip)
5876 {
5877 	unsigned long flags;
5878 
5879 	trace_lock_release(lock, ip);
5880 
5881 	if (unlikely(!lockdep_enabled() ||
5882 		     lock->key == &__lockdep_no_track__))
5883 		return;
5884 
5885 	raw_local_irq_save(flags);
5886 	check_flags(flags);
5887 
5888 	lockdep_recursion_inc();
5889 	if (__lock_release(lock, ip))
5890 		check_chain_key(current);
5891 	lockdep_recursion_finish();
5892 	raw_local_irq_restore(flags);
5893 }
5894 EXPORT_SYMBOL_GPL(lock_release);
5895 
5896 /*
5897  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5898  *
5899  * No actual critical section is created by the APIs annotated with this: these
5900  * APIs are used to wait for one or multiple critical sections (on other CPUs
5901  * or threads), and it means that calling these APIs inside these critical
5902  * sections is potential deadlock.
5903  */
lock_sync(struct lockdep_map * lock,unsigned subclass,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5904 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5905 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5906 {
5907 	unsigned long flags;
5908 
5909 	if (unlikely(!lockdep_enabled()))
5910 		return;
5911 
5912 	raw_local_irq_save(flags);
5913 	check_flags(flags);
5914 
5915 	lockdep_recursion_inc();
5916 	__lock_acquire(lock, subclass, 0, read, check,
5917 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5918 	check_chain_key(current);
5919 	lockdep_recursion_finish();
5920 	raw_local_irq_restore(flags);
5921 }
5922 EXPORT_SYMBOL_GPL(lock_sync);
5923 
lock_is_held_type(const struct lockdep_map * lock,int read)5924 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5925 {
5926 	unsigned long flags;
5927 	int ret = LOCK_STATE_NOT_HELD;
5928 
5929 	/*
5930 	 * Avoid false negative lockdep_assert_held() and
5931 	 * lockdep_assert_not_held().
5932 	 */
5933 	if (unlikely(!lockdep_enabled()))
5934 		return LOCK_STATE_UNKNOWN;
5935 
5936 	raw_local_irq_save(flags);
5937 	check_flags(flags);
5938 
5939 	lockdep_recursion_inc();
5940 	ret = __lock_is_held(lock, read);
5941 	lockdep_recursion_finish();
5942 	raw_local_irq_restore(flags);
5943 
5944 	return ret;
5945 }
5946 EXPORT_SYMBOL_GPL(lock_is_held_type);
5947 NOKPROBE_SYMBOL(lock_is_held_type);
5948 
lock_pin_lock(struct lockdep_map * lock)5949 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5950 {
5951 	struct pin_cookie cookie = NIL_COOKIE;
5952 	unsigned long flags;
5953 
5954 	if (unlikely(!lockdep_enabled()))
5955 		return cookie;
5956 
5957 	raw_local_irq_save(flags);
5958 	check_flags(flags);
5959 
5960 	lockdep_recursion_inc();
5961 	cookie = __lock_pin_lock(lock);
5962 	lockdep_recursion_finish();
5963 	raw_local_irq_restore(flags);
5964 
5965 	return cookie;
5966 }
5967 EXPORT_SYMBOL_GPL(lock_pin_lock);
5968 
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5969 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5970 {
5971 	unsigned long flags;
5972 
5973 	if (unlikely(!lockdep_enabled()))
5974 		return;
5975 
5976 	raw_local_irq_save(flags);
5977 	check_flags(flags);
5978 
5979 	lockdep_recursion_inc();
5980 	__lock_repin_lock(lock, cookie);
5981 	lockdep_recursion_finish();
5982 	raw_local_irq_restore(flags);
5983 }
5984 EXPORT_SYMBOL_GPL(lock_repin_lock);
5985 
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5986 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5987 {
5988 	unsigned long flags;
5989 
5990 	if (unlikely(!lockdep_enabled()))
5991 		return;
5992 
5993 	raw_local_irq_save(flags);
5994 	check_flags(flags);
5995 
5996 	lockdep_recursion_inc();
5997 	__lock_unpin_lock(lock, cookie);
5998 	lockdep_recursion_finish();
5999 	raw_local_irq_restore(flags);
6000 }
6001 EXPORT_SYMBOL_GPL(lock_unpin_lock);
6002 
6003 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)6004 static void print_lock_contention_bug(struct task_struct *curr,
6005 				      struct lockdep_map *lock,
6006 				      unsigned long ip)
6007 {
6008 	if (!debug_locks_off())
6009 		return;
6010 	if (debug_locks_silent)
6011 		return;
6012 
6013 	nbcon_cpu_emergency_enter();
6014 
6015 	pr_warn("\n");
6016 	pr_warn("=================================\n");
6017 	pr_warn("WARNING: bad contention detected!\n");
6018 	print_kernel_ident();
6019 	pr_warn("---------------------------------\n");
6020 	pr_warn("%s/%d is trying to contend lock (",
6021 		curr->comm, task_pid_nr(curr));
6022 	print_lockdep_cache(lock);
6023 	pr_cont(") at:\n");
6024 	print_ip_sym(KERN_WARNING, ip);
6025 	pr_warn("but there are no locks held!\n");
6026 	pr_warn("\nother info that might help us debug this:\n");
6027 	lockdep_print_held_locks(curr);
6028 
6029 	pr_warn("\nstack backtrace:\n");
6030 	dump_stack();
6031 
6032 	nbcon_cpu_emergency_exit();
6033 }
6034 
6035 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)6036 __lock_contended(struct lockdep_map *lock, unsigned long ip)
6037 {
6038 	struct task_struct *curr = current;
6039 	struct held_lock *hlock;
6040 	struct lock_class_stats *stats;
6041 	unsigned int depth;
6042 	int i, contention_point, contending_point;
6043 
6044 	depth = curr->lockdep_depth;
6045 	/*
6046 	 * Whee, we contended on this lock, except it seems we're not
6047 	 * actually trying to acquire anything much at all..
6048 	 */
6049 	if (DEBUG_LOCKS_WARN_ON(!depth))
6050 		return;
6051 
6052 	if (unlikely(lock->key == &__lockdep_no_track__))
6053 		return;
6054 
6055 	hlock = find_held_lock(curr, lock, depth, &i);
6056 	if (!hlock) {
6057 		print_lock_contention_bug(curr, lock, ip);
6058 		return;
6059 	}
6060 
6061 	if (hlock->instance != lock)
6062 		return;
6063 
6064 	hlock->waittime_stamp = lockstat_clock();
6065 
6066 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6067 	contending_point = lock_point(hlock_class(hlock)->contending_point,
6068 				      lock->ip);
6069 
6070 	stats = get_lock_stats(hlock_class(hlock));
6071 	if (contention_point < LOCKSTAT_POINTS)
6072 		stats->contention_point[contention_point]++;
6073 	if (contending_point < LOCKSTAT_POINTS)
6074 		stats->contending_point[contending_point]++;
6075 	if (lock->cpu != smp_processor_id())
6076 		stats->bounces[bounce_contended + !!hlock->read]++;
6077 }
6078 
6079 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)6080 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
6081 {
6082 	struct task_struct *curr = current;
6083 	struct held_lock *hlock;
6084 	struct lock_class_stats *stats;
6085 	unsigned int depth;
6086 	u64 now, waittime = 0;
6087 	int i, cpu;
6088 
6089 	depth = curr->lockdep_depth;
6090 	/*
6091 	 * Yay, we acquired ownership of this lock we didn't try to
6092 	 * acquire, how the heck did that happen?
6093 	 */
6094 	if (DEBUG_LOCKS_WARN_ON(!depth))
6095 		return;
6096 
6097 	if (unlikely(lock->key == &__lockdep_no_track__))
6098 		return;
6099 
6100 	hlock = find_held_lock(curr, lock, depth, &i);
6101 	if (!hlock) {
6102 		print_lock_contention_bug(curr, lock, _RET_IP_);
6103 		return;
6104 	}
6105 
6106 	if (hlock->instance != lock)
6107 		return;
6108 
6109 	cpu = smp_processor_id();
6110 	if (hlock->waittime_stamp) {
6111 		now = lockstat_clock();
6112 		waittime = now - hlock->waittime_stamp;
6113 		hlock->holdtime_stamp = now;
6114 	}
6115 
6116 	stats = get_lock_stats(hlock_class(hlock));
6117 	if (waittime) {
6118 		if (hlock->read)
6119 			lock_time_inc(&stats->read_waittime, waittime);
6120 		else
6121 			lock_time_inc(&stats->write_waittime, waittime);
6122 	}
6123 	if (lock->cpu != cpu)
6124 		stats->bounces[bounce_acquired + !!hlock->read]++;
6125 
6126 	lock->cpu = cpu;
6127 	lock->ip = ip;
6128 }
6129 
lock_contended(struct lockdep_map * lock,unsigned long ip)6130 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6131 {
6132 	unsigned long flags;
6133 
6134 	trace_lock_contended(lock, ip);
6135 
6136 	if (unlikely(!lock_stat || !lockdep_enabled()))
6137 		return;
6138 
6139 	raw_local_irq_save(flags);
6140 	check_flags(flags);
6141 	lockdep_recursion_inc();
6142 	__lock_contended(lock, ip);
6143 	lockdep_recursion_finish();
6144 	raw_local_irq_restore(flags);
6145 }
6146 EXPORT_SYMBOL_GPL(lock_contended);
6147 
lock_acquired(struct lockdep_map * lock,unsigned long ip)6148 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6149 {
6150 	unsigned long flags;
6151 
6152 	trace_lock_acquired(lock, ip);
6153 
6154 	if (unlikely(!lock_stat || !lockdep_enabled()))
6155 		return;
6156 
6157 	raw_local_irq_save(flags);
6158 	check_flags(flags);
6159 	lockdep_recursion_inc();
6160 	__lock_acquired(lock, ip);
6161 	lockdep_recursion_finish();
6162 	raw_local_irq_restore(flags);
6163 }
6164 EXPORT_SYMBOL_GPL(lock_acquired);
6165 #endif
6166 
6167 /*
6168  * Used by the testsuite, sanitize the validator state
6169  * after a simulated failure:
6170  */
6171 
lockdep_reset(void)6172 void lockdep_reset(void)
6173 {
6174 	unsigned long flags;
6175 	int i;
6176 
6177 	raw_local_irq_save(flags);
6178 	lockdep_init_task(current);
6179 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6180 	nr_hardirq_chains = 0;
6181 	nr_softirq_chains = 0;
6182 	nr_process_chains = 0;
6183 	debug_locks = 1;
6184 	for (i = 0; i < CHAINHASH_SIZE; i++)
6185 		INIT_HLIST_HEAD(chainhash_table + i);
6186 	raw_local_irq_restore(flags);
6187 }
6188 
6189 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)6190 static void remove_class_from_lock_chain(struct pending_free *pf,
6191 					 struct lock_chain *chain,
6192 					 struct lock_class *class)
6193 {
6194 #ifdef CONFIG_PROVE_LOCKING
6195 	int i;
6196 
6197 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6198 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6199 			continue;
6200 		/*
6201 		 * Each lock class occurs at most once in a lock chain so once
6202 		 * we found a match we can break out of this loop.
6203 		 */
6204 		goto free_lock_chain;
6205 	}
6206 	/* Since the chain has not been modified, return. */
6207 	return;
6208 
6209 free_lock_chain:
6210 	free_chain_hlocks(chain->base, chain->depth);
6211 	/* Overwrite the chain key for concurrent RCU readers. */
6212 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6213 	dec_chains(chain->irq_context);
6214 
6215 	/*
6216 	 * Note: calling hlist_del_rcu() from inside a
6217 	 * hlist_for_each_entry_rcu() loop is safe.
6218 	 */
6219 	hlist_del_rcu(&chain->entry);
6220 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6221 	nr_zapped_lock_chains++;
6222 #endif
6223 }
6224 
6225 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)6226 static void remove_class_from_lock_chains(struct pending_free *pf,
6227 					  struct lock_class *class)
6228 {
6229 	struct lock_chain *chain;
6230 	struct hlist_head *head;
6231 	int i;
6232 
6233 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6234 		head = chainhash_table + i;
6235 		hlist_for_each_entry_rcu(chain, head, entry) {
6236 			remove_class_from_lock_chain(pf, chain, class);
6237 		}
6238 	}
6239 }
6240 
6241 /*
6242  * Remove all references to a lock class. The caller must hold the graph lock.
6243  */
zap_class(struct pending_free * pf,struct lock_class * class)6244 static void zap_class(struct pending_free *pf, struct lock_class *class)
6245 {
6246 	struct lock_list *entry;
6247 	int i;
6248 
6249 	WARN_ON_ONCE(!class->key);
6250 
6251 	/*
6252 	 * Remove all dependencies this lock is
6253 	 * involved in:
6254 	 */
6255 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6256 		entry = list_entries + i;
6257 		if (entry->class != class && entry->links_to != class)
6258 			continue;
6259 		__clear_bit(i, list_entries_in_use);
6260 		nr_list_entries--;
6261 		list_del_rcu(&entry->entry);
6262 	}
6263 	if (list_empty(&class->locks_after) &&
6264 	    list_empty(&class->locks_before)) {
6265 		list_move_tail(&class->lock_entry, &pf->zapped);
6266 		hlist_del_rcu(&class->hash_entry);
6267 		WRITE_ONCE(class->key, NULL);
6268 		WRITE_ONCE(class->name, NULL);
6269 		/* Class allocated but not used, -1 in nr_unused_locks */
6270 		if (class->usage_mask == 0)
6271 			debug_atomic_dec(nr_unused_locks);
6272 		nr_lock_classes--;
6273 		__clear_bit(class - lock_classes, lock_classes_in_use);
6274 		if (class - lock_classes == max_lock_class_idx)
6275 			max_lock_class_idx--;
6276 	} else {
6277 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6278 			  class->name);
6279 	}
6280 
6281 	remove_class_from_lock_chains(pf, class);
6282 	nr_zapped_classes++;
6283 }
6284 
reinit_class(struct lock_class * class)6285 static void reinit_class(struct lock_class *class)
6286 {
6287 	WARN_ON_ONCE(!class->lock_entry.next);
6288 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6289 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6290 	memset_startat(class, 0, key);
6291 	WARN_ON_ONCE(!class->lock_entry.next);
6292 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6293 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6294 }
6295 
within(const void * addr,void * start,unsigned long size)6296 static inline int within(const void *addr, void *start, unsigned long size)
6297 {
6298 	return addr >= start && addr < start + size;
6299 }
6300 
inside_selftest(void)6301 static bool inside_selftest(void)
6302 {
6303 	return current == lockdep_selftest_task_struct;
6304 }
6305 
6306 /* The caller must hold the graph lock. */
get_pending_free(void)6307 static struct pending_free *get_pending_free(void)
6308 {
6309 	return delayed_free.pf + delayed_free.index;
6310 }
6311 
6312 static void free_zapped_rcu(struct rcu_head *cb);
6313 
6314 /*
6315 * See if we need to queue an RCU callback, must called with
6316 * the lockdep lock held, returns false if either we don't have
6317 * any pending free or the callback is already scheduled.
6318 * Otherwise, a call_rcu() must follow this function call.
6319 */
prepare_call_rcu_zapped(struct pending_free * pf)6320 static bool prepare_call_rcu_zapped(struct pending_free *pf)
6321 {
6322 	WARN_ON_ONCE(inside_selftest());
6323 
6324 	if (list_empty(&pf->zapped))
6325 		return false;
6326 
6327 	if (delayed_free.scheduled)
6328 		return false;
6329 
6330 	delayed_free.scheduled = true;
6331 
6332 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6333 	delayed_free.index ^= 1;
6334 
6335 	return true;
6336 }
6337 
6338 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6339 static void __free_zapped_classes(struct pending_free *pf)
6340 {
6341 	struct lock_class *class;
6342 
6343 	check_data_structures();
6344 
6345 	list_for_each_entry(class, &pf->zapped, lock_entry)
6346 		reinit_class(class);
6347 
6348 	list_splice_init(&pf->zapped, &free_lock_classes);
6349 
6350 #ifdef CONFIG_PROVE_LOCKING
6351 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6352 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6353 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6354 #endif
6355 }
6356 
free_zapped_rcu(struct rcu_head * ch)6357 static void free_zapped_rcu(struct rcu_head *ch)
6358 {
6359 	struct pending_free *pf;
6360 	unsigned long flags;
6361 	bool need_callback;
6362 
6363 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6364 		return;
6365 
6366 	raw_local_irq_save(flags);
6367 	lockdep_lock();
6368 
6369 	/* closed head */
6370 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6371 	__free_zapped_classes(pf);
6372 	delayed_free.scheduled = false;
6373 	need_callback =
6374 		prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6375 	lockdep_unlock();
6376 	raw_local_irq_restore(flags);
6377 
6378 	/*
6379 	* If there's pending free and its callback has not been scheduled,
6380 	* queue an RCU callback.
6381 	*/
6382 	if (need_callback)
6383 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6384 
6385 }
6386 
6387 /*
6388  * Remove all lock classes from the class hash table and from the
6389  * all_lock_classes list whose key or name is in the address range [start,
6390  * start + size). Move these lock classes to the zapped_classes list. Must
6391  * be called with the graph lock held.
6392  */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6393 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6394 				     unsigned long size)
6395 {
6396 	struct lock_class *class;
6397 	struct hlist_head *head;
6398 	int i;
6399 
6400 	/* Unhash all classes that were created by a module. */
6401 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6402 		head = classhash_table + i;
6403 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6404 			if (!within(class->key, start, size) &&
6405 			    !within(class->name, start, size))
6406 				continue;
6407 			zap_class(pf, class);
6408 		}
6409 	}
6410 }
6411 
6412 /*
6413  * Used in module.c to remove lock classes from memory that is going to be
6414  * freed; and possibly re-used by other modules.
6415  *
6416  * We will have had one synchronize_rcu() before getting here, so we're
6417  * guaranteed nobody will look up these exact classes -- they're properly dead
6418  * but still allocated.
6419  */
lockdep_free_key_range_reg(void * start,unsigned long size)6420 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6421 {
6422 	struct pending_free *pf;
6423 	unsigned long flags;
6424 	bool need_callback;
6425 
6426 	init_data_structures_once();
6427 
6428 	raw_local_irq_save(flags);
6429 	lockdep_lock();
6430 	pf = get_pending_free();
6431 	__lockdep_free_key_range(pf, start, size);
6432 	need_callback = prepare_call_rcu_zapped(pf);
6433 	lockdep_unlock();
6434 	raw_local_irq_restore(flags);
6435 	if (need_callback)
6436 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6437 	/*
6438 	 * Wait for any possible iterators from look_up_lock_class() to pass
6439 	 * before continuing to free the memory they refer to.
6440 	 */
6441 	synchronize_rcu();
6442 }
6443 
6444 /*
6445  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6446  * Ignores debug_locks. Must only be used by the lockdep selftests.
6447  */
lockdep_free_key_range_imm(void * start,unsigned long size)6448 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6449 {
6450 	struct pending_free *pf = delayed_free.pf;
6451 	unsigned long flags;
6452 
6453 	init_data_structures_once();
6454 
6455 	raw_local_irq_save(flags);
6456 	lockdep_lock();
6457 	__lockdep_free_key_range(pf, start, size);
6458 	__free_zapped_classes(pf);
6459 	lockdep_unlock();
6460 	raw_local_irq_restore(flags);
6461 }
6462 
lockdep_free_key_range(void * start,unsigned long size)6463 void lockdep_free_key_range(void *start, unsigned long size)
6464 {
6465 	init_data_structures_once();
6466 
6467 	if (inside_selftest())
6468 		lockdep_free_key_range_imm(start, size);
6469 	else
6470 		lockdep_free_key_range_reg(start, size);
6471 }
6472 
6473 /*
6474  * Check whether any element of the @lock->class_cache[] array refers to a
6475  * registered lock class. The caller must hold either the graph lock or the
6476  * RCU read lock.
6477  */
lock_class_cache_is_registered(struct lockdep_map * lock)6478 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6479 {
6480 	struct lock_class *class;
6481 	struct hlist_head *head;
6482 	int i, j;
6483 
6484 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6485 		head = classhash_table + i;
6486 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6487 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6488 				if (lock->class_cache[j] == class)
6489 					return true;
6490 		}
6491 	}
6492 	return false;
6493 }
6494 
6495 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6496 static void __lockdep_reset_lock(struct pending_free *pf,
6497 				 struct lockdep_map *lock)
6498 {
6499 	struct lock_class *class;
6500 	int j;
6501 
6502 	/*
6503 	 * Remove all classes this lock might have:
6504 	 */
6505 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6506 		/*
6507 		 * If the class exists we look it up and zap it:
6508 		 */
6509 		class = look_up_lock_class(lock, j);
6510 		if (class)
6511 			zap_class(pf, class);
6512 	}
6513 	/*
6514 	 * Debug check: in the end all mapped classes should
6515 	 * be gone.
6516 	 */
6517 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6518 		debug_locks_off();
6519 }
6520 
6521 /*
6522  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6523  * released data structures from RCU context.
6524  */
lockdep_reset_lock_reg(struct lockdep_map * lock)6525 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6526 {
6527 	struct pending_free *pf;
6528 	unsigned long flags;
6529 	int locked;
6530 	bool need_callback = false;
6531 
6532 	raw_local_irq_save(flags);
6533 	locked = graph_lock();
6534 	if (!locked)
6535 		goto out_irq;
6536 
6537 	pf = get_pending_free();
6538 	__lockdep_reset_lock(pf, lock);
6539 	need_callback = prepare_call_rcu_zapped(pf);
6540 
6541 	graph_unlock();
6542 out_irq:
6543 	raw_local_irq_restore(flags);
6544 	if (need_callback)
6545 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6546 }
6547 
6548 /*
6549  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6550  * lockdep selftests.
6551  */
lockdep_reset_lock_imm(struct lockdep_map * lock)6552 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6553 {
6554 	struct pending_free *pf = delayed_free.pf;
6555 	unsigned long flags;
6556 
6557 	raw_local_irq_save(flags);
6558 	lockdep_lock();
6559 	__lockdep_reset_lock(pf, lock);
6560 	__free_zapped_classes(pf);
6561 	lockdep_unlock();
6562 	raw_local_irq_restore(flags);
6563 }
6564 
lockdep_reset_lock(struct lockdep_map * lock)6565 void lockdep_reset_lock(struct lockdep_map *lock)
6566 {
6567 	init_data_structures_once();
6568 
6569 	if (inside_selftest())
6570 		lockdep_reset_lock_imm(lock);
6571 	else
6572 		lockdep_reset_lock_reg(lock);
6573 }
6574 
6575 /*
6576  * Unregister a dynamically allocated key.
6577  *
6578  * Unlike lockdep_register_key(), a search is always done to find a matching
6579  * key irrespective of debug_locks to avoid potential invalid access to freed
6580  * memory in lock_class entry.
6581  */
lockdep_unregister_key(struct lock_class_key * key)6582 void lockdep_unregister_key(struct lock_class_key *key)
6583 {
6584 	struct hlist_head *hash_head = keyhashentry(key);
6585 	struct lock_class_key *k;
6586 	struct pending_free *pf;
6587 	unsigned long flags;
6588 	bool found = false;
6589 	bool need_callback = false;
6590 
6591 	might_sleep();
6592 
6593 	if (WARN_ON_ONCE(static_obj(key)))
6594 		return;
6595 
6596 	raw_local_irq_save(flags);
6597 	lockdep_lock();
6598 
6599 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6600 		if (k == key) {
6601 			hlist_del_rcu(&k->hash_entry);
6602 			found = true;
6603 			break;
6604 		}
6605 	}
6606 	WARN_ON_ONCE(!found && debug_locks);
6607 	if (found) {
6608 		pf = get_pending_free();
6609 		__lockdep_free_key_range(pf, key, 1);
6610 		need_callback = prepare_call_rcu_zapped(pf);
6611 		nr_dynamic_keys--;
6612 	}
6613 	lockdep_unlock();
6614 	raw_local_irq_restore(flags);
6615 
6616 	if (need_callback)
6617 		call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6618 
6619 	/*
6620 	 * Wait until is_dynamic_key() has finished accessing k->hash_entry.
6621 	 *
6622 	 * Some operations like __qdisc_destroy() will call this in a debug
6623 	 * kernel, and the network traffic is disabled while waiting, hence
6624 	 * the delay of the wait matters in debugging cases. Currently use a
6625 	 * synchronize_rcu_expedited() to speed up the wait at the cost of
6626 	 * system IPIs. TODO: Replace RCU with hazptr for this.
6627 	 */
6628 	synchronize_rcu_expedited();
6629 }
6630 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6631 
lockdep_init(void)6632 void __init lockdep_init(void)
6633 {
6634 	pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6635 
6636 	pr_info("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6637 	pr_info("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6638 	pr_info("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6639 	pr_info("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6640 	pr_info("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6641 	pr_info("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6642 	pr_info("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6643 
6644 	pr_info(" memory used by lock dependency info: %zu kB\n",
6645 	       (sizeof(lock_classes) +
6646 		sizeof(lock_classes_in_use) +
6647 		sizeof(classhash_table) +
6648 		sizeof(list_entries) +
6649 		sizeof(list_entries_in_use) +
6650 		sizeof(chainhash_table) +
6651 		sizeof(delayed_free)
6652 #ifdef CONFIG_PROVE_LOCKING
6653 		+ sizeof(lock_cq)
6654 		+ sizeof(lock_chains)
6655 		+ sizeof(lock_chains_in_use)
6656 		+ sizeof(chain_hlocks)
6657 #endif
6658 		) / 1024
6659 		);
6660 
6661 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6662 	pr_info(" memory used for stack traces: %zu kB\n",
6663 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6664 	       );
6665 #endif
6666 
6667 	pr_info(" per task-struct memory footprint: %zu bytes\n",
6668 	       sizeof(((struct task_struct *)NULL)->held_locks));
6669 }
6670 
6671 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6672 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6673 		     const void *mem_to, struct held_lock *hlock)
6674 {
6675 	if (!debug_locks_off())
6676 		return;
6677 	if (debug_locks_silent)
6678 		return;
6679 
6680 	nbcon_cpu_emergency_enter();
6681 
6682 	pr_warn("\n");
6683 	pr_warn("=========================\n");
6684 	pr_warn("WARNING: held lock freed!\n");
6685 	print_kernel_ident();
6686 	pr_warn("-------------------------\n");
6687 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6688 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6689 	print_lock(hlock);
6690 	lockdep_print_held_locks(curr);
6691 
6692 	pr_warn("\nstack backtrace:\n");
6693 	dump_stack();
6694 
6695 	nbcon_cpu_emergency_exit();
6696 }
6697 
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6698 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6699 				const void* lock_from, unsigned long lock_len)
6700 {
6701 	return lock_from + lock_len <= mem_from ||
6702 		mem_from + mem_len <= lock_from;
6703 }
6704 
6705 /*
6706  * Called when kernel memory is freed (or unmapped), or if a lock
6707  * is destroyed or reinitialized - this code checks whether there is
6708  * any held lock in the memory range of <from> to <to>:
6709  */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6710 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6711 {
6712 	struct task_struct *curr = current;
6713 	struct held_lock *hlock;
6714 	unsigned long flags;
6715 	int i;
6716 
6717 	if (unlikely(!debug_locks))
6718 		return;
6719 
6720 	raw_local_irq_save(flags);
6721 	for (i = 0; i < curr->lockdep_depth; i++) {
6722 		hlock = curr->held_locks + i;
6723 
6724 		if (not_in_range(mem_from, mem_len, hlock->instance,
6725 					sizeof(*hlock->instance)))
6726 			continue;
6727 
6728 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6729 		break;
6730 	}
6731 	raw_local_irq_restore(flags);
6732 }
6733 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6734 
print_held_locks_bug(void)6735 static void print_held_locks_bug(void)
6736 {
6737 	if (!debug_locks_off())
6738 		return;
6739 	if (debug_locks_silent)
6740 		return;
6741 
6742 	nbcon_cpu_emergency_enter();
6743 
6744 	pr_warn("\n");
6745 	pr_warn("====================================\n");
6746 	pr_warn("WARNING: %s/%d still has locks held!\n",
6747 	       current->comm, task_pid_nr(current));
6748 	print_kernel_ident();
6749 	pr_warn("------------------------------------\n");
6750 	lockdep_print_held_locks(current);
6751 	pr_warn("\nstack backtrace:\n");
6752 	dump_stack();
6753 
6754 	nbcon_cpu_emergency_exit();
6755 }
6756 
debug_check_no_locks_held(void)6757 void debug_check_no_locks_held(void)
6758 {
6759 	if (unlikely(current->lockdep_depth > 0))
6760 		print_held_locks_bug();
6761 }
6762 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6763 
6764 #ifdef __KERNEL__
debug_show_all_locks(void)6765 void debug_show_all_locks(void)
6766 {
6767 	struct task_struct *g, *p;
6768 
6769 	if (unlikely(!debug_locks)) {
6770 		pr_warn("INFO: lockdep is turned off.\n");
6771 		return;
6772 	}
6773 	pr_warn("\nShowing all locks held in the system:\n");
6774 
6775 	rcu_read_lock();
6776 	for_each_process_thread(g, p) {
6777 		if (!p->lockdep_depth)
6778 			continue;
6779 		lockdep_print_held_locks(p);
6780 		touch_nmi_watchdog();
6781 		touch_all_softlockup_watchdogs();
6782 	}
6783 	rcu_read_unlock();
6784 
6785 	pr_warn("\n");
6786 	pr_warn("=============================================\n\n");
6787 }
6788 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6789 #endif
6790 
6791 /*
6792  * Careful: only use this function if you are sure that
6793  * the task cannot run in parallel!
6794  */
debug_show_held_locks(struct task_struct * task)6795 void debug_show_held_locks(struct task_struct *task)
6796 {
6797 	if (unlikely(!debug_locks)) {
6798 		printk("INFO: lockdep is turned off.\n");
6799 		return;
6800 	}
6801 	lockdep_print_held_locks(task);
6802 }
6803 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6804 
lockdep_sys_exit(void)6805 asmlinkage __visible void lockdep_sys_exit(void)
6806 {
6807 	struct task_struct *curr = current;
6808 
6809 	if (unlikely(curr->lockdep_depth)) {
6810 		if (!debug_locks_off())
6811 			return;
6812 		nbcon_cpu_emergency_enter();
6813 		pr_warn("\n");
6814 		pr_warn("================================================\n");
6815 		pr_warn("WARNING: lock held when returning to user space!\n");
6816 		print_kernel_ident();
6817 		pr_warn("------------------------------------------------\n");
6818 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6819 				curr->comm, curr->pid);
6820 		lockdep_print_held_locks(curr);
6821 		nbcon_cpu_emergency_exit();
6822 	}
6823 
6824 	/*
6825 	 * The lock history for each syscall should be independent. So wipe the
6826 	 * slate clean on return to userspace.
6827 	 */
6828 	lockdep_invariant_state(false);
6829 }
6830 
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6831 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6832 {
6833 	struct task_struct *curr = current;
6834 	int dl = READ_ONCE(debug_locks);
6835 	bool rcu = warn_rcu_enter();
6836 
6837 	/* Note: the following can be executed concurrently, so be careful. */
6838 	nbcon_cpu_emergency_enter();
6839 	pr_warn("\n");
6840 	pr_warn("=============================\n");
6841 	pr_warn("WARNING: suspicious RCU usage\n");
6842 	print_kernel_ident();
6843 	pr_warn("-----------------------------\n");
6844 	pr_warn("%s:%d %s!\n", file, line, s);
6845 	pr_warn("\nother info that might help us debug this:\n\n");
6846 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6847 	       !rcu_lockdep_current_cpu_online()
6848 			? "RCU used illegally from offline CPU!\n"
6849 			: "",
6850 	       rcu_scheduler_active, dl,
6851 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6852 
6853 	/*
6854 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6855 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6856 	 * considers that CPU to be in an "extended quiescent state",
6857 	 * which means that RCU will be completely ignoring that CPU.
6858 	 * Therefore, rcu_read_lock() and friends have absolutely no
6859 	 * effect on a CPU running in that state. In other words, even if
6860 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6861 	 * delete data structures out from under it.  RCU really has no
6862 	 * choice here: we need to keep an RCU-free window in idle where
6863 	 * the CPU may possibly enter into low power mode. This way we can
6864 	 * notice an extended quiescent state to other CPUs that started a grace
6865 	 * period. Otherwise we would delay any grace period as long as we run
6866 	 * in the idle task.
6867 	 *
6868 	 * So complain bitterly if someone does call rcu_read_lock(),
6869 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6870 	 */
6871 	if (!rcu_is_watching())
6872 		pr_warn("RCU used illegally from extended quiescent state!\n");
6873 
6874 	lockdep_print_held_locks(curr);
6875 	pr_warn("\nstack backtrace:\n");
6876 	dump_stack();
6877 	nbcon_cpu_emergency_exit();
6878 	warn_rcu_exit(rcu);
6879 }
6880 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6881