1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /*
4 * zsmalloc memory allocator
5 *
6 * Copyright (C) 2011 Nitin Gupta
7 * Copyright (C) 2012, 2013 Minchan Kim
8 *
9 * This code is released using a dual license strategy: BSD/GPL
10 * You can choose the license that better fits your requirements.
11 *
12 * Released under the terms of 3-clause BSD License
13 * Released under the terms of GNU General Public License Version 2.0
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 /*
19 * lock ordering:
20 * page_lock
21 * pool->lock
22 * class->lock
23 * zspage->lock
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/errno.h>
30 #include <linux/highmem.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/sprintf.h>
35 #include <linux/shrinker.h>
36 #include <linux/types.h>
37 #include <linux/debugfs.h>
38 #include <linux/zsmalloc.h>
39 #include <linux/zpool.h>
40 #include <linux/fs.h>
41 #include <linux/workqueue.h>
42 #include "zpdesc.h"
43
44 #define ZSPAGE_MAGIC 0x58
45
46 /*
47 * This must be power of 2 and greater than or equal to sizeof(link_free).
48 * These two conditions ensure that any 'struct link_free' itself doesn't
49 * span more than 1 page which avoids complex case of mapping 2 pages simply
50 * to restore link_free pointer values.
51 */
52 #define ZS_ALIGN 8
53
54 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
55
56 /*
57 * Object location (<PFN>, <obj_idx>) is encoded as
58 * a single (unsigned long) handle value.
59 *
60 * Note that object index <obj_idx> starts from 0.
61 *
62 * This is made more complicated by various memory models and PAE.
63 */
64
65 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
66 #ifdef MAX_PHYSMEM_BITS
67 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
68 #else
69 /*
70 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
71 * be PAGE_SHIFT
72 */
73 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
74 #endif
75 #endif
76
77 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
78
79 /*
80 * Head in allocated object should have OBJ_ALLOCATED_TAG
81 * to identify the object was allocated or not.
82 * It's okay to add the status bit in the least bit because
83 * header keeps handle which is 4byte-aligned address so we
84 * have room for two bit at least.
85 */
86 #define OBJ_ALLOCATED_TAG 1
87
88 #define OBJ_TAG_BITS 1
89 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
90
91 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
92 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
93
94 #define HUGE_BITS 1
95 #define FULLNESS_BITS 4
96 #define CLASS_BITS 8
97 #define MAGIC_VAL_BITS 8
98
99 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
100
101 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
102 #define ZS_MIN_ALLOC_SIZE \
103 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
104 /* each chunk includes extra space to keep handle */
105 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
106
107 /*
108 * On systems with 4K page size, this gives 255 size classes! There is a
109 * trader-off here:
110 * - Large number of size classes is potentially wasteful as free page are
111 * spread across these classes
112 * - Small number of size classes causes large internal fragmentation
113 * - Probably its better to use specific size classes (empirically
114 * determined). NOTE: all those class sizes must be set as multiple of
115 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
116 *
117 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
118 * (reason above)
119 */
120 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
121 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
122 ZS_SIZE_CLASS_DELTA) + 1)
123
124 /*
125 * Pages are distinguished by the ratio of used memory (that is the ratio
126 * of ->inuse objects to all objects that page can store). For example,
127 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
128 *
129 * The number of fullness groups is not random. It allows us to keep
130 * difference between the least busy page in the group (minimum permitted
131 * number of ->inuse objects) and the most busy page (maximum permitted
132 * number of ->inuse objects) at a reasonable value.
133 */
134 enum fullness_group {
135 ZS_INUSE_RATIO_0,
136 ZS_INUSE_RATIO_10,
137 /* NOTE: 8 more fullness groups here */
138 ZS_INUSE_RATIO_99 = 10,
139 ZS_INUSE_RATIO_100,
140 NR_FULLNESS_GROUPS,
141 };
142
143 enum class_stat_type {
144 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
145 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
146 ZS_OBJS_INUSE,
147 NR_CLASS_STAT_TYPES,
148 };
149
150 struct zs_size_stat {
151 unsigned long objs[NR_CLASS_STAT_TYPES];
152 };
153
154 #ifdef CONFIG_ZSMALLOC_STAT
155 static struct dentry *zs_stat_root;
156 #endif
157
158 static size_t huge_class_size;
159
160 struct size_class {
161 spinlock_t lock;
162 struct list_head fullness_list[NR_FULLNESS_GROUPS];
163 /*
164 * Size of objects stored in this class. Must be multiple
165 * of ZS_ALIGN.
166 */
167 int size;
168 int objs_per_zspage;
169 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
170 int pages_per_zspage;
171
172 unsigned int index;
173 struct zs_size_stat stats;
174 };
175
176 /*
177 * Placed within free objects to form a singly linked list.
178 * For every zspage, zspage->freeobj gives head of this list.
179 *
180 * This must be power of 2 and less than or equal to ZS_ALIGN
181 */
182 struct link_free {
183 union {
184 /*
185 * Free object index;
186 * It's valid for non-allocated object
187 */
188 unsigned long next;
189 /*
190 * Handle of allocated object.
191 */
192 unsigned long handle;
193 };
194 };
195
196 struct zs_pool {
197 const char *name;
198
199 struct size_class *size_class[ZS_SIZE_CLASSES];
200 struct kmem_cache *handle_cachep;
201 struct kmem_cache *zspage_cachep;
202
203 atomic_long_t pages_allocated;
204
205 struct zs_pool_stats stats;
206
207 /* Compact classes */
208 struct shrinker *shrinker;
209
210 #ifdef CONFIG_ZSMALLOC_STAT
211 struct dentry *stat_dentry;
212 #endif
213 #ifdef CONFIG_COMPACTION
214 struct work_struct free_work;
215 #endif
216 /* protect zspage migration/compaction */
217 rwlock_t lock;
218 atomic_t compaction_in_progress;
219 };
220
zpdesc_set_first(struct zpdesc * zpdesc)221 static inline void zpdesc_set_first(struct zpdesc *zpdesc)
222 {
223 SetPagePrivate(zpdesc_page(zpdesc));
224 }
225
zpdesc_inc_zone_page_state(struct zpdesc * zpdesc)226 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
227 {
228 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
229 }
230
zpdesc_dec_zone_page_state(struct zpdesc * zpdesc)231 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
232 {
233 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
234 }
235
alloc_zpdesc(gfp_t gfp,const int nid)236 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid)
237 {
238 struct page *page = alloc_pages_node(nid, gfp, 0);
239
240 return page_zpdesc(page);
241 }
242
free_zpdesc(struct zpdesc * zpdesc)243 static inline void free_zpdesc(struct zpdesc *zpdesc)
244 {
245 struct page *page = zpdesc_page(zpdesc);
246
247 __free_page(page);
248 }
249
250 #define ZS_PAGE_UNLOCKED 0
251 #define ZS_PAGE_WRLOCKED -1
252
253 struct zspage_lock {
254 spinlock_t lock;
255 int cnt;
256 struct lockdep_map dep_map;
257 };
258
259 struct zspage {
260 struct {
261 unsigned int huge:HUGE_BITS;
262 unsigned int fullness:FULLNESS_BITS;
263 unsigned int class:CLASS_BITS + 1;
264 unsigned int magic:MAGIC_VAL_BITS;
265 };
266 unsigned int inuse;
267 unsigned int freeobj;
268 struct zpdesc *first_zpdesc;
269 struct list_head list; /* fullness list */
270 struct zs_pool *pool;
271 struct zspage_lock zsl;
272 };
273
zspage_lock_init(struct zspage * zspage)274 static void zspage_lock_init(struct zspage *zspage)
275 {
276 static struct lock_class_key __key;
277 struct zspage_lock *zsl = &zspage->zsl;
278
279 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
280 spin_lock_init(&zsl->lock);
281 zsl->cnt = ZS_PAGE_UNLOCKED;
282 }
283
284 /*
285 * The zspage lock can be held from atomic contexts, but it needs to remain
286 * preemptible when held for reading because it remains held outside of those
287 * atomic contexts, otherwise we unnecessarily lose preemptibility.
288 *
289 * To achieve this, the following rules are enforced on readers and writers:
290 *
291 * - Writers are blocked by both writers and readers, while readers are only
292 * blocked by writers (i.e. normal rwlock semantics).
293 *
294 * - Writers are always atomic (to allow readers to spin waiting for them).
295 *
296 * - Writers always use trylock (as the lock may be held be sleeping readers).
297 *
298 * - Readers may spin on the lock (as they can only wait for atomic writers).
299 *
300 * - Readers may sleep while holding the lock (as writes only use trylock).
301 */
zspage_read_lock(struct zspage * zspage)302 static void zspage_read_lock(struct zspage *zspage)
303 {
304 struct zspage_lock *zsl = &zspage->zsl;
305
306 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
307
308 spin_lock(&zsl->lock);
309 zsl->cnt++;
310 spin_unlock(&zsl->lock);
311
312 lock_acquired(&zsl->dep_map, _RET_IP_);
313 }
314
zspage_read_unlock(struct zspage * zspage)315 static void zspage_read_unlock(struct zspage *zspage)
316 {
317 struct zspage_lock *zsl = &zspage->zsl;
318
319 rwsem_release(&zsl->dep_map, _RET_IP_);
320
321 spin_lock(&zsl->lock);
322 zsl->cnt--;
323 spin_unlock(&zsl->lock);
324 }
325
zspage_write_trylock(struct zspage * zspage)326 static __must_check bool zspage_write_trylock(struct zspage *zspage)
327 {
328 struct zspage_lock *zsl = &zspage->zsl;
329
330 spin_lock(&zsl->lock);
331 if (zsl->cnt == ZS_PAGE_UNLOCKED) {
332 zsl->cnt = ZS_PAGE_WRLOCKED;
333 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
334 lock_acquired(&zsl->dep_map, _RET_IP_);
335 return true;
336 }
337
338 spin_unlock(&zsl->lock);
339 return false;
340 }
341
zspage_write_unlock(struct zspage * zspage)342 static void zspage_write_unlock(struct zspage *zspage)
343 {
344 struct zspage_lock *zsl = &zspage->zsl;
345
346 rwsem_release(&zsl->dep_map, _RET_IP_);
347
348 zsl->cnt = ZS_PAGE_UNLOCKED;
349 spin_unlock(&zsl->lock);
350 }
351
352 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)353 static void SetZsHugePage(struct zspage *zspage)
354 {
355 zspage->huge = 1;
356 }
357
ZsHugePage(struct zspage * zspage)358 static bool ZsHugePage(struct zspage *zspage)
359 {
360 return zspage->huge;
361 }
362
363 #ifdef CONFIG_COMPACTION
364 static void kick_deferred_free(struct zs_pool *pool);
365 static void init_deferred_free(struct zs_pool *pool);
366 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
367 #else
kick_deferred_free(struct zs_pool * pool)368 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)369 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)370 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
371 #endif
372
create_cache(struct zs_pool * pool)373 static int create_cache(struct zs_pool *pool)
374 {
375 char *name;
376
377 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
378 if (!name)
379 return -ENOMEM;
380 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
381 0, 0, NULL);
382 kfree(name);
383 if (!pool->handle_cachep)
384 return -EINVAL;
385
386 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
387 if (!name)
388 return -ENOMEM;
389 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
390 0, 0, NULL);
391 kfree(name);
392 if (!pool->zspage_cachep) {
393 kmem_cache_destroy(pool->handle_cachep);
394 pool->handle_cachep = NULL;
395 return -EINVAL;
396 }
397
398 return 0;
399 }
400
destroy_cache(struct zs_pool * pool)401 static void destroy_cache(struct zs_pool *pool)
402 {
403 kmem_cache_destroy(pool->handle_cachep);
404 kmem_cache_destroy(pool->zspage_cachep);
405 }
406
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)407 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
408 {
409 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
410 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
411 }
412
cache_free_handle(struct zs_pool * pool,unsigned long handle)413 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
414 {
415 kmem_cache_free(pool->handle_cachep, (void *)handle);
416 }
417
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)418 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
419 {
420 return kmem_cache_zalloc(pool->zspage_cachep,
421 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
422 }
423
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)424 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
425 {
426 kmem_cache_free(pool->zspage_cachep, zspage);
427 }
428
429 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)430 static void record_obj(unsigned long handle, unsigned long obj)
431 {
432 *(unsigned long *)handle = obj;
433 }
434
435 /* zpool driver */
436
437 #ifdef CONFIG_ZPOOL
438
zs_zpool_create(const char * name,gfp_t gfp)439 static void *zs_zpool_create(const char *name, gfp_t gfp)
440 {
441 /*
442 * Ignore global gfp flags: zs_malloc() may be invoked from
443 * different contexts and its caller must provide a valid
444 * gfp mask.
445 */
446 return zs_create_pool(name);
447 }
448
zs_zpool_destroy(void * pool)449 static void zs_zpool_destroy(void *pool)
450 {
451 zs_destroy_pool(pool);
452 }
453
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle,const int nid)454 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
455 unsigned long *handle, const int nid)
456 {
457 *handle = zs_malloc(pool, size, gfp, nid);
458
459 if (IS_ERR_VALUE(*handle))
460 return PTR_ERR((void *)*handle);
461 return 0;
462 }
zs_zpool_free(void * pool,unsigned long handle)463 static void zs_zpool_free(void *pool, unsigned long handle)
464 {
465 zs_free(pool, handle);
466 }
467
zs_zpool_obj_read_begin(void * pool,unsigned long handle,void * local_copy)468 static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle,
469 void *local_copy)
470 {
471 return zs_obj_read_begin(pool, handle, local_copy);
472 }
473
zs_zpool_obj_read_end(void * pool,unsigned long handle,void * handle_mem)474 static void zs_zpool_obj_read_end(void *pool, unsigned long handle,
475 void *handle_mem)
476 {
477 zs_obj_read_end(pool, handle, handle_mem);
478 }
479
zs_zpool_obj_write(void * pool,unsigned long handle,void * handle_mem,size_t mem_len)480 static void zs_zpool_obj_write(void *pool, unsigned long handle,
481 void *handle_mem, size_t mem_len)
482 {
483 zs_obj_write(pool, handle, handle_mem, mem_len);
484 }
485
zs_zpool_total_pages(void * pool)486 static u64 zs_zpool_total_pages(void *pool)
487 {
488 return zs_get_total_pages(pool);
489 }
490
491 static struct zpool_driver zs_zpool_driver = {
492 .type = "zsmalloc",
493 .owner = THIS_MODULE,
494 .create = zs_zpool_create,
495 .destroy = zs_zpool_destroy,
496 .malloc = zs_zpool_malloc,
497 .free = zs_zpool_free,
498 .obj_read_begin = zs_zpool_obj_read_begin,
499 .obj_read_end = zs_zpool_obj_read_end,
500 .obj_write = zs_zpool_obj_write,
501 .total_pages = zs_zpool_total_pages,
502 };
503
504 MODULE_ALIAS("zpool-zsmalloc");
505 #endif /* CONFIG_ZPOOL */
506
is_first_zpdesc(struct zpdesc * zpdesc)507 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
508 {
509 return PagePrivate(zpdesc_page(zpdesc));
510 }
511
512 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)513 static inline int get_zspage_inuse(struct zspage *zspage)
514 {
515 return zspage->inuse;
516 }
517
mod_zspage_inuse(struct zspage * zspage,int val)518 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
519 {
520 zspage->inuse += val;
521 }
522
get_first_zpdesc(struct zspage * zspage)523 static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
524 {
525 struct zpdesc *first_zpdesc = zspage->first_zpdesc;
526
527 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
528 return first_zpdesc;
529 }
530
531 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
532
get_first_obj_offset(struct zpdesc * zpdesc)533 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
534 {
535 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
536 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
537 }
538
set_first_obj_offset(struct zpdesc * zpdesc,unsigned int offset)539 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
540 {
541 /* With 24 bits available, we can support offsets into 16 MiB pages. */
542 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
543 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
544 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
545 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
546 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
547 }
548
get_freeobj(struct zspage * zspage)549 static inline unsigned int get_freeobj(struct zspage *zspage)
550 {
551 return zspage->freeobj;
552 }
553
set_freeobj(struct zspage * zspage,unsigned int obj)554 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
555 {
556 zspage->freeobj = obj;
557 }
558
zspage_class(struct zs_pool * pool,struct zspage * zspage)559 static struct size_class *zspage_class(struct zs_pool *pool,
560 struct zspage *zspage)
561 {
562 return pool->size_class[zspage->class];
563 }
564
565 /*
566 * zsmalloc divides the pool into various size classes where each
567 * class maintains a list of zspages where each zspage is divided
568 * into equal sized chunks. Each allocation falls into one of these
569 * classes depending on its size. This function returns index of the
570 * size class which has chunk size big enough to hold the given size.
571 */
get_size_class_index(int size)572 static int get_size_class_index(int size)
573 {
574 int idx = 0;
575
576 if (likely(size > ZS_MIN_ALLOC_SIZE))
577 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
578 ZS_SIZE_CLASS_DELTA);
579
580 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
581 }
582
class_stat_add(struct size_class * class,int type,unsigned long cnt)583 static inline void class_stat_add(struct size_class *class, int type,
584 unsigned long cnt)
585 {
586 class->stats.objs[type] += cnt;
587 }
588
class_stat_sub(struct size_class * class,int type,unsigned long cnt)589 static inline void class_stat_sub(struct size_class *class, int type,
590 unsigned long cnt)
591 {
592 class->stats.objs[type] -= cnt;
593 }
594
class_stat_read(struct size_class * class,int type)595 static inline unsigned long class_stat_read(struct size_class *class, int type)
596 {
597 return class->stats.objs[type];
598 }
599
600 #ifdef CONFIG_ZSMALLOC_STAT
601
zs_stat_init(void)602 static void __init zs_stat_init(void)
603 {
604 if (!debugfs_initialized()) {
605 pr_warn("debugfs not available, stat dir not created\n");
606 return;
607 }
608
609 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
610 }
611
zs_stat_exit(void)612 static void __exit zs_stat_exit(void)
613 {
614 debugfs_remove_recursive(zs_stat_root);
615 }
616
617 static unsigned long zs_can_compact(struct size_class *class);
618
zs_stats_size_show(struct seq_file * s,void * v)619 static int zs_stats_size_show(struct seq_file *s, void *v)
620 {
621 int i, fg;
622 struct zs_pool *pool = s->private;
623 struct size_class *class;
624 int objs_per_zspage;
625 unsigned long obj_allocated, obj_used, pages_used, freeable;
626 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
627 unsigned long total_freeable = 0;
628 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
629
630 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
631 "class", "size", "10%", "20%", "30%", "40%",
632 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
633 "obj_allocated", "obj_used", "pages_used",
634 "pages_per_zspage", "freeable");
635
636 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
637
638 class = pool->size_class[i];
639
640 if (class->index != i)
641 continue;
642
643 spin_lock(&class->lock);
644
645 seq_printf(s, " %5u %5u ", i, class->size);
646 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
647 inuse_totals[fg] += class_stat_read(class, fg);
648 seq_printf(s, "%9lu ", class_stat_read(class, fg));
649 }
650
651 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
652 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
653 freeable = zs_can_compact(class);
654 spin_unlock(&class->lock);
655
656 objs_per_zspage = class->objs_per_zspage;
657 pages_used = obj_allocated / objs_per_zspage *
658 class->pages_per_zspage;
659
660 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
661 obj_allocated, obj_used, pages_used,
662 class->pages_per_zspage, freeable);
663
664 total_objs += obj_allocated;
665 total_used_objs += obj_used;
666 total_pages += pages_used;
667 total_freeable += freeable;
668 }
669
670 seq_puts(s, "\n");
671 seq_printf(s, " %5s %5s ", "Total", "");
672
673 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
674 seq_printf(s, "%9lu ", inuse_totals[fg]);
675
676 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
677 total_objs, total_used_objs, total_pages, "",
678 total_freeable);
679
680 return 0;
681 }
682 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
683
zs_pool_stat_create(struct zs_pool * pool,const char * name)684 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
685 {
686 if (!zs_stat_root) {
687 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
688 return;
689 }
690
691 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
692
693 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
694 &zs_stats_size_fops);
695 }
696
zs_pool_stat_destroy(struct zs_pool * pool)697 static void zs_pool_stat_destroy(struct zs_pool *pool)
698 {
699 debugfs_remove_recursive(pool->stat_dentry);
700 }
701
702 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)703 static void __init zs_stat_init(void)
704 {
705 }
706
zs_stat_exit(void)707 static void __exit zs_stat_exit(void)
708 {
709 }
710
zs_pool_stat_create(struct zs_pool * pool,const char * name)711 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
712 {
713 }
714
zs_pool_stat_destroy(struct zs_pool * pool)715 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
716 {
717 }
718 #endif
719
720
721 /*
722 * For each size class, zspages are divided into different groups
723 * depending on their usage ratio. This function returns fullness
724 * status of the given page.
725 */
get_fullness_group(struct size_class * class,struct zspage * zspage)726 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
727 {
728 int inuse, objs_per_zspage, ratio;
729
730 inuse = get_zspage_inuse(zspage);
731 objs_per_zspage = class->objs_per_zspage;
732
733 if (inuse == 0)
734 return ZS_INUSE_RATIO_0;
735 if (inuse == objs_per_zspage)
736 return ZS_INUSE_RATIO_100;
737
738 ratio = 100 * inuse / objs_per_zspage;
739 /*
740 * Take integer division into consideration: a page with one inuse
741 * object out of 127 possible, will end up having 0 usage ratio,
742 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
743 */
744 return ratio / 10 + 1;
745 }
746
747 /*
748 * Each size class maintains various freelists and zspages are assigned
749 * to one of these freelists based on the number of live objects they
750 * have. This functions inserts the given zspage into the freelist
751 * identified by <class, fullness_group>.
752 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)753 static void insert_zspage(struct size_class *class,
754 struct zspage *zspage,
755 int fullness)
756 {
757 class_stat_add(class, fullness, 1);
758 list_add(&zspage->list, &class->fullness_list[fullness]);
759 zspage->fullness = fullness;
760 }
761
762 /*
763 * This function removes the given zspage from the freelist identified
764 * by <class, fullness_group>.
765 */
remove_zspage(struct size_class * class,struct zspage * zspage)766 static void remove_zspage(struct size_class *class, struct zspage *zspage)
767 {
768 int fullness = zspage->fullness;
769
770 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
771
772 list_del_init(&zspage->list);
773 class_stat_sub(class, fullness, 1);
774 }
775
776 /*
777 * Each size class maintains zspages in different fullness groups depending
778 * on the number of live objects they contain. When allocating or freeing
779 * objects, the fullness status of the page can change, for instance, from
780 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
781 * checks if such a status change has occurred for the given page and
782 * accordingly moves the page from the list of the old fullness group to that
783 * of the new fullness group.
784 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)785 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
786 {
787 int newfg;
788
789 newfg = get_fullness_group(class, zspage);
790 if (newfg == zspage->fullness)
791 goto out;
792
793 remove_zspage(class, zspage);
794 insert_zspage(class, zspage, newfg);
795 out:
796 return newfg;
797 }
798
get_zspage(struct zpdesc * zpdesc)799 static struct zspage *get_zspage(struct zpdesc *zpdesc)
800 {
801 struct zspage *zspage = zpdesc->zspage;
802
803 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
804 return zspage;
805 }
806
get_next_zpdesc(struct zpdesc * zpdesc)807 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
808 {
809 struct zspage *zspage = get_zspage(zpdesc);
810
811 if (unlikely(ZsHugePage(zspage)))
812 return NULL;
813
814 return zpdesc->next;
815 }
816
817 /**
818 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
819 * @obj: the encoded object value
820 * @zpdesc: zpdesc object resides in zspage
821 * @obj_idx: object index
822 */
obj_to_location(unsigned long obj,struct zpdesc ** zpdesc,unsigned int * obj_idx)823 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
824 unsigned int *obj_idx)
825 {
826 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
827 *obj_idx = (obj & OBJ_INDEX_MASK);
828 }
829
obj_to_zpdesc(unsigned long obj,struct zpdesc ** zpdesc)830 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
831 {
832 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
833 }
834
835 /**
836 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
837 * @zpdesc: zpdesc object resides in zspage
838 * @obj_idx: object index
839 */
location_to_obj(struct zpdesc * zpdesc,unsigned int obj_idx)840 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
841 {
842 unsigned long obj;
843
844 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
845 obj |= obj_idx & OBJ_INDEX_MASK;
846
847 return obj;
848 }
849
handle_to_obj(unsigned long handle)850 static unsigned long handle_to_obj(unsigned long handle)
851 {
852 return *(unsigned long *)handle;
853 }
854
obj_allocated(struct zpdesc * zpdesc,void * obj,unsigned long * phandle)855 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
856 unsigned long *phandle)
857 {
858 unsigned long handle;
859 struct zspage *zspage = get_zspage(zpdesc);
860
861 if (unlikely(ZsHugePage(zspage))) {
862 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
863 handle = zpdesc->handle;
864 } else
865 handle = *(unsigned long *)obj;
866
867 if (!(handle & OBJ_ALLOCATED_TAG))
868 return false;
869
870 /* Clear all tags before returning the handle */
871 *phandle = handle & ~OBJ_TAG_MASK;
872 return true;
873 }
874
reset_zpdesc(struct zpdesc * zpdesc)875 static void reset_zpdesc(struct zpdesc *zpdesc)
876 {
877 struct page *page = zpdesc_page(zpdesc);
878
879 __ClearPageMovable(page);
880 ClearPagePrivate(page);
881 zpdesc->zspage = NULL;
882 zpdesc->next = NULL;
883 __ClearPageZsmalloc(page);
884 }
885
trylock_zspage(struct zspage * zspage)886 static int trylock_zspage(struct zspage *zspage)
887 {
888 struct zpdesc *cursor, *fail;
889
890 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
891 get_next_zpdesc(cursor)) {
892 if (!zpdesc_trylock(cursor)) {
893 fail = cursor;
894 goto unlock;
895 }
896 }
897
898 return 1;
899 unlock:
900 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
901 get_next_zpdesc(cursor))
902 zpdesc_unlock(cursor);
903
904 return 0;
905 }
906
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)907 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
908 struct zspage *zspage)
909 {
910 struct zpdesc *zpdesc, *next;
911
912 assert_spin_locked(&class->lock);
913
914 VM_BUG_ON(get_zspage_inuse(zspage));
915 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
916
917 next = zpdesc = get_first_zpdesc(zspage);
918 do {
919 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
920 next = get_next_zpdesc(zpdesc);
921 reset_zpdesc(zpdesc);
922 zpdesc_unlock(zpdesc);
923 zpdesc_dec_zone_page_state(zpdesc);
924 zpdesc_put(zpdesc);
925 zpdesc = next;
926 } while (zpdesc != NULL);
927
928 cache_free_zspage(pool, zspage);
929
930 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
931 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
932 }
933
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)934 static void free_zspage(struct zs_pool *pool, struct size_class *class,
935 struct zspage *zspage)
936 {
937 VM_BUG_ON(get_zspage_inuse(zspage));
938 VM_BUG_ON(list_empty(&zspage->list));
939
940 /*
941 * Since zs_free couldn't be sleepable, this function cannot call
942 * lock_page. The page locks trylock_zspage got will be released
943 * by __free_zspage.
944 */
945 if (!trylock_zspage(zspage)) {
946 kick_deferred_free(pool);
947 return;
948 }
949
950 remove_zspage(class, zspage);
951 __free_zspage(pool, class, zspage);
952 }
953
954 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)955 static void init_zspage(struct size_class *class, struct zspage *zspage)
956 {
957 unsigned int freeobj = 1;
958 unsigned long off = 0;
959 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
960
961 while (zpdesc) {
962 struct zpdesc *next_zpdesc;
963 struct link_free *link;
964 void *vaddr;
965
966 set_first_obj_offset(zpdesc, off);
967
968 vaddr = kmap_local_zpdesc(zpdesc);
969 link = (struct link_free *)vaddr + off / sizeof(*link);
970
971 while ((off += class->size) < PAGE_SIZE) {
972 link->next = freeobj++ << OBJ_TAG_BITS;
973 link += class->size / sizeof(*link);
974 }
975
976 /*
977 * We now come to the last (full or partial) object on this
978 * page, which must point to the first object on the next
979 * page (if present)
980 */
981 next_zpdesc = get_next_zpdesc(zpdesc);
982 if (next_zpdesc) {
983 link->next = freeobj++ << OBJ_TAG_BITS;
984 } else {
985 /*
986 * Reset OBJ_TAG_BITS bit to last link to tell
987 * whether it's allocated object or not.
988 */
989 link->next = -1UL << OBJ_TAG_BITS;
990 }
991 kunmap_local(vaddr);
992 zpdesc = next_zpdesc;
993 off %= PAGE_SIZE;
994 }
995
996 set_freeobj(zspage, 0);
997 }
998
create_page_chain(struct size_class * class,struct zspage * zspage,struct zpdesc * zpdescs[])999 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1000 struct zpdesc *zpdescs[])
1001 {
1002 int i;
1003 struct zpdesc *zpdesc;
1004 struct zpdesc *prev_zpdesc = NULL;
1005 int nr_zpdescs = class->pages_per_zspage;
1006
1007 /*
1008 * Allocate individual pages and link them together as:
1009 * 1. all pages are linked together using zpdesc->next
1010 * 2. each sub-page point to zspage using zpdesc->zspage
1011 *
1012 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc
1013 * has this flag set).
1014 */
1015 for (i = 0; i < nr_zpdescs; i++) {
1016 zpdesc = zpdescs[i];
1017 zpdesc->zspage = zspage;
1018 zpdesc->next = NULL;
1019 if (i == 0) {
1020 zspage->first_zpdesc = zpdesc;
1021 zpdesc_set_first(zpdesc);
1022 if (unlikely(class->objs_per_zspage == 1 &&
1023 class->pages_per_zspage == 1))
1024 SetZsHugePage(zspage);
1025 } else {
1026 prev_zpdesc->next = zpdesc;
1027 }
1028 prev_zpdesc = zpdesc;
1029 }
1030 }
1031
1032 /*
1033 * Allocate a zspage for the given size class
1034 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp,const int nid)1035 static struct zspage *alloc_zspage(struct zs_pool *pool,
1036 struct size_class *class,
1037 gfp_t gfp, const int nid)
1038 {
1039 int i;
1040 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
1041 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1042
1043 if (!zspage)
1044 return NULL;
1045
1046 if (!IS_ENABLED(CONFIG_COMPACTION))
1047 gfp &= ~__GFP_MOVABLE;
1048
1049 zspage->magic = ZSPAGE_MAGIC;
1050 zspage->pool = pool;
1051 zspage->class = class->index;
1052 zspage_lock_init(zspage);
1053
1054 for (i = 0; i < class->pages_per_zspage; i++) {
1055 struct zpdesc *zpdesc;
1056
1057 zpdesc = alloc_zpdesc(gfp, nid);
1058 if (!zpdesc) {
1059 while (--i >= 0) {
1060 zpdesc_dec_zone_page_state(zpdescs[i]);
1061 __zpdesc_clear_zsmalloc(zpdescs[i]);
1062 free_zpdesc(zpdescs[i]);
1063 }
1064 cache_free_zspage(pool, zspage);
1065 return NULL;
1066 }
1067 __zpdesc_set_zsmalloc(zpdesc);
1068
1069 zpdesc_inc_zone_page_state(zpdesc);
1070 zpdescs[i] = zpdesc;
1071 }
1072
1073 create_page_chain(class, zspage, zpdescs);
1074 init_zspage(class, zspage);
1075
1076 return zspage;
1077 }
1078
find_get_zspage(struct size_class * class)1079 static struct zspage *find_get_zspage(struct size_class *class)
1080 {
1081 int i;
1082 struct zspage *zspage;
1083
1084 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1085 zspage = list_first_entry_or_null(&class->fullness_list[i],
1086 struct zspage, list);
1087 if (zspage)
1088 break;
1089 }
1090
1091 return zspage;
1092 }
1093
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1094 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1095 int objs_per_zspage)
1096 {
1097 if (prev->pages_per_zspage == pages_per_zspage &&
1098 prev->objs_per_zspage == objs_per_zspage)
1099 return true;
1100
1101 return false;
1102 }
1103
zspage_full(struct size_class * class,struct zspage * zspage)1104 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1105 {
1106 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1107 }
1108
zspage_empty(struct zspage * zspage)1109 static bool zspage_empty(struct zspage *zspage)
1110 {
1111 return get_zspage_inuse(zspage) == 0;
1112 }
1113
1114 /**
1115 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1116 * that hold objects of the provided size.
1117 * @pool: zsmalloc pool to use
1118 * @size: object size
1119 *
1120 * Context: Any context.
1121 *
1122 * Return: the index of the zsmalloc &size_class that hold objects of the
1123 * provided size.
1124 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1125 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1126 {
1127 struct size_class *class;
1128
1129 class = pool->size_class[get_size_class_index(size)];
1130
1131 return class->index;
1132 }
1133 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1134
zs_get_total_pages(struct zs_pool * pool)1135 unsigned long zs_get_total_pages(struct zs_pool *pool)
1136 {
1137 return atomic_long_read(&pool->pages_allocated);
1138 }
1139 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1140
zs_obj_read_begin(struct zs_pool * pool,unsigned long handle,void * local_copy)1141 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
1142 void *local_copy)
1143 {
1144 struct zspage *zspage;
1145 struct zpdesc *zpdesc;
1146 unsigned long obj, off;
1147 unsigned int obj_idx;
1148 struct size_class *class;
1149 void *addr;
1150
1151 /* Guarantee we can get zspage from handle safely */
1152 read_lock(&pool->lock);
1153 obj = handle_to_obj(handle);
1154 obj_to_location(obj, &zpdesc, &obj_idx);
1155 zspage = get_zspage(zpdesc);
1156
1157 /* Make sure migration doesn't move any pages in this zspage */
1158 zspage_read_lock(zspage);
1159 read_unlock(&pool->lock);
1160
1161 class = zspage_class(pool, zspage);
1162 off = offset_in_page(class->size * obj_idx);
1163
1164 if (off + class->size <= PAGE_SIZE) {
1165 /* this object is contained entirely within a page */
1166 addr = kmap_local_zpdesc(zpdesc);
1167 addr += off;
1168 } else {
1169 size_t sizes[2];
1170
1171 /* this object spans two pages */
1172 sizes[0] = PAGE_SIZE - off;
1173 sizes[1] = class->size - sizes[0];
1174 addr = local_copy;
1175
1176 memcpy_from_page(addr, zpdesc_page(zpdesc),
1177 off, sizes[0]);
1178 zpdesc = get_next_zpdesc(zpdesc);
1179 memcpy_from_page(addr + sizes[0],
1180 zpdesc_page(zpdesc),
1181 0, sizes[1]);
1182 }
1183
1184 if (!ZsHugePage(zspage))
1185 addr += ZS_HANDLE_SIZE;
1186
1187 return addr;
1188 }
1189 EXPORT_SYMBOL_GPL(zs_obj_read_begin);
1190
zs_obj_read_end(struct zs_pool * pool,unsigned long handle,void * handle_mem)1191 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
1192 void *handle_mem)
1193 {
1194 struct zspage *zspage;
1195 struct zpdesc *zpdesc;
1196 unsigned long obj, off;
1197 unsigned int obj_idx;
1198 struct size_class *class;
1199
1200 obj = handle_to_obj(handle);
1201 obj_to_location(obj, &zpdesc, &obj_idx);
1202 zspage = get_zspage(zpdesc);
1203 class = zspage_class(pool, zspage);
1204 off = offset_in_page(class->size * obj_idx);
1205
1206 if (off + class->size <= PAGE_SIZE) {
1207 if (!ZsHugePage(zspage))
1208 off += ZS_HANDLE_SIZE;
1209 handle_mem -= off;
1210 kunmap_local(handle_mem);
1211 }
1212
1213 zspage_read_unlock(zspage);
1214 }
1215 EXPORT_SYMBOL_GPL(zs_obj_read_end);
1216
zs_obj_write(struct zs_pool * pool,unsigned long handle,void * handle_mem,size_t mem_len)1217 void zs_obj_write(struct zs_pool *pool, unsigned long handle,
1218 void *handle_mem, size_t mem_len)
1219 {
1220 struct zspage *zspage;
1221 struct zpdesc *zpdesc;
1222 unsigned long obj, off;
1223 unsigned int obj_idx;
1224 struct size_class *class;
1225
1226 /* Guarantee we can get zspage from handle safely */
1227 read_lock(&pool->lock);
1228 obj = handle_to_obj(handle);
1229 obj_to_location(obj, &zpdesc, &obj_idx);
1230 zspage = get_zspage(zpdesc);
1231
1232 /* Make sure migration doesn't move any pages in this zspage */
1233 zspage_read_lock(zspage);
1234 read_unlock(&pool->lock);
1235
1236 class = zspage_class(pool, zspage);
1237 off = offset_in_page(class->size * obj_idx);
1238
1239 if (!ZsHugePage(zspage))
1240 off += ZS_HANDLE_SIZE;
1241
1242 if (off + mem_len <= PAGE_SIZE) {
1243 /* this object is contained entirely within a page */
1244 void *dst = kmap_local_zpdesc(zpdesc);
1245
1246 memcpy(dst + off, handle_mem, mem_len);
1247 kunmap_local(dst);
1248 } else {
1249 /* this object spans two pages */
1250 size_t sizes[2];
1251
1252 sizes[0] = PAGE_SIZE - off;
1253 sizes[1] = mem_len - sizes[0];
1254
1255 memcpy_to_page(zpdesc_page(zpdesc), off,
1256 handle_mem, sizes[0]);
1257 zpdesc = get_next_zpdesc(zpdesc);
1258 memcpy_to_page(zpdesc_page(zpdesc), 0,
1259 handle_mem + sizes[0], sizes[1]);
1260 }
1261
1262 zspage_read_unlock(zspage);
1263 }
1264 EXPORT_SYMBOL_GPL(zs_obj_write);
1265
1266 /**
1267 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1268 * zsmalloc &size_class.
1269 * @pool: zsmalloc pool to use
1270 *
1271 * The function returns the size of the first huge class - any object of equal
1272 * or bigger size will be stored in zspage consisting of a single physical
1273 * page.
1274 *
1275 * Context: Any context.
1276 *
1277 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1278 */
zs_huge_class_size(struct zs_pool * pool)1279 size_t zs_huge_class_size(struct zs_pool *pool)
1280 {
1281 return huge_class_size;
1282 }
1283 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1284
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1285 static unsigned long obj_malloc(struct zs_pool *pool,
1286 struct zspage *zspage, unsigned long handle)
1287 {
1288 int i, nr_zpdesc, offset;
1289 unsigned long obj;
1290 struct link_free *link;
1291 struct size_class *class;
1292
1293 struct zpdesc *m_zpdesc;
1294 unsigned long m_offset;
1295 void *vaddr;
1296
1297 class = pool->size_class[zspage->class];
1298 obj = get_freeobj(zspage);
1299
1300 offset = obj * class->size;
1301 nr_zpdesc = offset >> PAGE_SHIFT;
1302 m_offset = offset_in_page(offset);
1303 m_zpdesc = get_first_zpdesc(zspage);
1304
1305 for (i = 0; i < nr_zpdesc; i++)
1306 m_zpdesc = get_next_zpdesc(m_zpdesc);
1307
1308 vaddr = kmap_local_zpdesc(m_zpdesc);
1309 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1310 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1311 if (likely(!ZsHugePage(zspage)))
1312 /* record handle in the header of allocated chunk */
1313 link->handle = handle | OBJ_ALLOCATED_TAG;
1314 else
1315 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
1316
1317 kunmap_local(vaddr);
1318 mod_zspage_inuse(zspage, 1);
1319
1320 obj = location_to_obj(m_zpdesc, obj);
1321 record_obj(handle, obj);
1322
1323 return obj;
1324 }
1325
1326
1327 /**
1328 * zs_malloc - Allocate block of given size from pool.
1329 * @pool: pool to allocate from
1330 * @size: size of block to allocate
1331 * @gfp: gfp flags when allocating object
1332 * @nid: The preferred node id to allocate new zspage (if needed)
1333 *
1334 * On success, handle to the allocated object is returned,
1335 * otherwise an ERR_PTR().
1336 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1337 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp,const int nid)1338 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp,
1339 const int nid)
1340 {
1341 unsigned long handle;
1342 struct size_class *class;
1343 int newfg;
1344 struct zspage *zspage;
1345
1346 if (unlikely(!size))
1347 return (unsigned long)ERR_PTR(-EINVAL);
1348
1349 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1350 return (unsigned long)ERR_PTR(-ENOSPC);
1351
1352 handle = cache_alloc_handle(pool, gfp);
1353 if (!handle)
1354 return (unsigned long)ERR_PTR(-ENOMEM);
1355
1356 /* extra space in chunk to keep the handle */
1357 size += ZS_HANDLE_SIZE;
1358 class = pool->size_class[get_size_class_index(size)];
1359
1360 /* class->lock effectively protects the zpage migration */
1361 spin_lock(&class->lock);
1362 zspage = find_get_zspage(class);
1363 if (likely(zspage)) {
1364 obj_malloc(pool, zspage, handle);
1365 /* Now move the zspage to another fullness group, if required */
1366 fix_fullness_group(class, zspage);
1367 class_stat_add(class, ZS_OBJS_INUSE, 1);
1368
1369 goto out;
1370 }
1371
1372 spin_unlock(&class->lock);
1373
1374 zspage = alloc_zspage(pool, class, gfp, nid);
1375 if (!zspage) {
1376 cache_free_handle(pool, handle);
1377 return (unsigned long)ERR_PTR(-ENOMEM);
1378 }
1379
1380 spin_lock(&class->lock);
1381 obj_malloc(pool, zspage, handle);
1382 newfg = get_fullness_group(class, zspage);
1383 insert_zspage(class, zspage, newfg);
1384 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1385 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1386 class_stat_add(class, ZS_OBJS_INUSE, 1);
1387
1388 /* We completely set up zspage so mark them as movable */
1389 SetZsPageMovable(pool, zspage);
1390 out:
1391 spin_unlock(&class->lock);
1392
1393 return handle;
1394 }
1395 EXPORT_SYMBOL_GPL(zs_malloc);
1396
obj_free(int class_size,unsigned long obj)1397 static void obj_free(int class_size, unsigned long obj)
1398 {
1399 struct link_free *link;
1400 struct zspage *zspage;
1401 struct zpdesc *f_zpdesc;
1402 unsigned long f_offset;
1403 unsigned int f_objidx;
1404 void *vaddr;
1405
1406
1407 obj_to_location(obj, &f_zpdesc, &f_objidx);
1408 f_offset = offset_in_page(class_size * f_objidx);
1409 zspage = get_zspage(f_zpdesc);
1410
1411 vaddr = kmap_local_zpdesc(f_zpdesc);
1412 link = (struct link_free *)(vaddr + f_offset);
1413
1414 /* Insert this object in containing zspage's freelist */
1415 if (likely(!ZsHugePage(zspage)))
1416 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1417 else
1418 f_zpdesc->handle = 0;
1419 set_freeobj(zspage, f_objidx);
1420
1421 kunmap_local(vaddr);
1422 mod_zspage_inuse(zspage, -1);
1423 }
1424
zs_free(struct zs_pool * pool,unsigned long handle)1425 void zs_free(struct zs_pool *pool, unsigned long handle)
1426 {
1427 struct zspage *zspage;
1428 struct zpdesc *f_zpdesc;
1429 unsigned long obj;
1430 struct size_class *class;
1431 int fullness;
1432
1433 if (IS_ERR_OR_NULL((void *)handle))
1434 return;
1435
1436 /*
1437 * The pool->lock protects the race with zpage's migration
1438 * so it's safe to get the page from handle.
1439 */
1440 read_lock(&pool->lock);
1441 obj = handle_to_obj(handle);
1442 obj_to_zpdesc(obj, &f_zpdesc);
1443 zspage = get_zspage(f_zpdesc);
1444 class = zspage_class(pool, zspage);
1445 spin_lock(&class->lock);
1446 read_unlock(&pool->lock);
1447
1448 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1449 obj_free(class->size, obj);
1450
1451 fullness = fix_fullness_group(class, zspage);
1452 if (fullness == ZS_INUSE_RATIO_0)
1453 free_zspage(pool, class, zspage);
1454
1455 spin_unlock(&class->lock);
1456 cache_free_handle(pool, handle);
1457 }
1458 EXPORT_SYMBOL_GPL(zs_free);
1459
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1460 static void zs_object_copy(struct size_class *class, unsigned long dst,
1461 unsigned long src)
1462 {
1463 struct zpdesc *s_zpdesc, *d_zpdesc;
1464 unsigned int s_objidx, d_objidx;
1465 unsigned long s_off, d_off;
1466 void *s_addr, *d_addr;
1467 int s_size, d_size, size;
1468 int written = 0;
1469
1470 s_size = d_size = class->size;
1471
1472 obj_to_location(src, &s_zpdesc, &s_objidx);
1473 obj_to_location(dst, &d_zpdesc, &d_objidx);
1474
1475 s_off = offset_in_page(class->size * s_objidx);
1476 d_off = offset_in_page(class->size * d_objidx);
1477
1478 if (s_off + class->size > PAGE_SIZE)
1479 s_size = PAGE_SIZE - s_off;
1480
1481 if (d_off + class->size > PAGE_SIZE)
1482 d_size = PAGE_SIZE - d_off;
1483
1484 s_addr = kmap_local_zpdesc(s_zpdesc);
1485 d_addr = kmap_local_zpdesc(d_zpdesc);
1486
1487 while (1) {
1488 size = min(s_size, d_size);
1489 memcpy(d_addr + d_off, s_addr + s_off, size);
1490 written += size;
1491
1492 if (written == class->size)
1493 break;
1494
1495 s_off += size;
1496 s_size -= size;
1497 d_off += size;
1498 d_size -= size;
1499
1500 /*
1501 * Calling kunmap_local(d_addr) is necessary. kunmap_local()
1502 * calls must occurs in reverse order of calls to kmap_local_page().
1503 * So, to call kunmap_local(s_addr) we should first call
1504 * kunmap_local(d_addr). For more details see
1505 * Documentation/mm/highmem.rst.
1506 */
1507 if (s_off >= PAGE_SIZE) {
1508 kunmap_local(d_addr);
1509 kunmap_local(s_addr);
1510 s_zpdesc = get_next_zpdesc(s_zpdesc);
1511 s_addr = kmap_local_zpdesc(s_zpdesc);
1512 d_addr = kmap_local_zpdesc(d_zpdesc);
1513 s_size = class->size - written;
1514 s_off = 0;
1515 }
1516
1517 if (d_off >= PAGE_SIZE) {
1518 kunmap_local(d_addr);
1519 d_zpdesc = get_next_zpdesc(d_zpdesc);
1520 d_addr = kmap_local_zpdesc(d_zpdesc);
1521 d_size = class->size - written;
1522 d_off = 0;
1523 }
1524 }
1525
1526 kunmap_local(d_addr);
1527 kunmap_local(s_addr);
1528 }
1529
1530 /*
1531 * Find alloced object in zspage from index object and
1532 * return handle.
1533 */
find_alloced_obj(struct size_class * class,struct zpdesc * zpdesc,int * obj_idx)1534 static unsigned long find_alloced_obj(struct size_class *class,
1535 struct zpdesc *zpdesc, int *obj_idx)
1536 {
1537 unsigned int offset;
1538 int index = *obj_idx;
1539 unsigned long handle = 0;
1540 void *addr = kmap_local_zpdesc(zpdesc);
1541
1542 offset = get_first_obj_offset(zpdesc);
1543 offset += class->size * index;
1544
1545 while (offset < PAGE_SIZE) {
1546 if (obj_allocated(zpdesc, addr + offset, &handle))
1547 break;
1548
1549 offset += class->size;
1550 index++;
1551 }
1552
1553 kunmap_local(addr);
1554
1555 *obj_idx = index;
1556
1557 return handle;
1558 }
1559
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1560 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1561 struct zspage *dst_zspage)
1562 {
1563 unsigned long used_obj, free_obj;
1564 unsigned long handle;
1565 int obj_idx = 0;
1566 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
1567 struct size_class *class = pool->size_class[src_zspage->class];
1568
1569 while (1) {
1570 handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
1571 if (!handle) {
1572 s_zpdesc = get_next_zpdesc(s_zpdesc);
1573 if (!s_zpdesc)
1574 break;
1575 obj_idx = 0;
1576 continue;
1577 }
1578
1579 used_obj = handle_to_obj(handle);
1580 free_obj = obj_malloc(pool, dst_zspage, handle);
1581 zs_object_copy(class, free_obj, used_obj);
1582 obj_idx++;
1583 obj_free(class->size, used_obj);
1584
1585 /* Stop if there is no more space */
1586 if (zspage_full(class, dst_zspage))
1587 break;
1588
1589 /* Stop if there are no more objects to migrate */
1590 if (zspage_empty(src_zspage))
1591 break;
1592 }
1593 }
1594
isolate_src_zspage(struct size_class * class)1595 static struct zspage *isolate_src_zspage(struct size_class *class)
1596 {
1597 struct zspage *zspage;
1598 int fg;
1599
1600 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1601 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1602 struct zspage, list);
1603 if (zspage) {
1604 remove_zspage(class, zspage);
1605 return zspage;
1606 }
1607 }
1608
1609 return zspage;
1610 }
1611
isolate_dst_zspage(struct size_class * class)1612 static struct zspage *isolate_dst_zspage(struct size_class *class)
1613 {
1614 struct zspage *zspage;
1615 int fg;
1616
1617 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1618 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1619 struct zspage, list);
1620 if (zspage) {
1621 remove_zspage(class, zspage);
1622 return zspage;
1623 }
1624 }
1625
1626 return zspage;
1627 }
1628
1629 /*
1630 * putback_zspage - add @zspage into right class's fullness list
1631 * @class: destination class
1632 * @zspage: target page
1633 *
1634 * Return @zspage's fullness status
1635 */
putback_zspage(struct size_class * class,struct zspage * zspage)1636 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1637 {
1638 int fullness;
1639
1640 fullness = get_fullness_group(class, zspage);
1641 insert_zspage(class, zspage, fullness);
1642
1643 return fullness;
1644 }
1645
1646 #ifdef CONFIG_COMPACTION
1647 /*
1648 * To prevent zspage destroy during migration, zspage freeing should
1649 * hold locks of all pages in the zspage.
1650 */
lock_zspage(struct zspage * zspage)1651 static void lock_zspage(struct zspage *zspage)
1652 {
1653 struct zpdesc *curr_zpdesc, *zpdesc;
1654
1655 /*
1656 * Pages we haven't locked yet can be migrated off the list while we're
1657 * trying to lock them, so we need to be careful and only attempt to
1658 * lock each page under zspage_read_lock(). Otherwise, the page we lock
1659 * may no longer belong to the zspage. This means that we may wait for
1660 * the wrong page to unlock, so we must take a reference to the page
1661 * prior to waiting for it to unlock outside zspage_read_lock().
1662 */
1663 while (1) {
1664 zspage_read_lock(zspage);
1665 zpdesc = get_first_zpdesc(zspage);
1666 if (zpdesc_trylock(zpdesc))
1667 break;
1668 zpdesc_get(zpdesc);
1669 zspage_read_unlock(zspage);
1670 zpdesc_wait_locked(zpdesc);
1671 zpdesc_put(zpdesc);
1672 }
1673
1674 curr_zpdesc = zpdesc;
1675 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
1676 if (zpdesc_trylock(zpdesc)) {
1677 curr_zpdesc = zpdesc;
1678 } else {
1679 zpdesc_get(zpdesc);
1680 zspage_read_unlock(zspage);
1681 zpdesc_wait_locked(zpdesc);
1682 zpdesc_put(zpdesc);
1683 zspage_read_lock(zspage);
1684 }
1685 }
1686 zspage_read_unlock(zspage);
1687 }
1688 #endif /* CONFIG_COMPACTION */
1689
1690 #ifdef CONFIG_COMPACTION
1691
1692 static const struct movable_operations zsmalloc_mops;
1693
replace_sub_page(struct size_class * class,struct zspage * zspage,struct zpdesc * newzpdesc,struct zpdesc * oldzpdesc)1694 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1695 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
1696 {
1697 struct zpdesc *zpdesc;
1698 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1699 unsigned int first_obj_offset;
1700 int idx = 0;
1701
1702 zpdesc = get_first_zpdesc(zspage);
1703 do {
1704 if (zpdesc == oldzpdesc)
1705 zpdescs[idx] = newzpdesc;
1706 else
1707 zpdescs[idx] = zpdesc;
1708 idx++;
1709 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1710
1711 create_page_chain(class, zspage, zpdescs);
1712 first_obj_offset = get_first_obj_offset(oldzpdesc);
1713 set_first_obj_offset(newzpdesc, first_obj_offset);
1714 if (unlikely(ZsHugePage(zspage)))
1715 newzpdesc->handle = oldzpdesc->handle;
1716 __zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
1717 }
1718
zs_page_isolate(struct page * page,isolate_mode_t mode)1719 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1720 {
1721 /*
1722 * Page is locked so zspage couldn't be destroyed. For detail, look at
1723 * lock_zspage in free_zspage.
1724 */
1725 VM_BUG_ON_PAGE(PageIsolated(page), page);
1726
1727 return true;
1728 }
1729
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1730 static int zs_page_migrate(struct page *newpage, struct page *page,
1731 enum migrate_mode mode)
1732 {
1733 struct zs_pool *pool;
1734 struct size_class *class;
1735 struct zspage *zspage;
1736 struct zpdesc *dummy;
1737 struct zpdesc *newzpdesc = page_zpdesc(newpage);
1738 struct zpdesc *zpdesc = page_zpdesc(page);
1739 void *s_addr, *d_addr, *addr;
1740 unsigned int offset;
1741 unsigned long handle;
1742 unsigned long old_obj, new_obj;
1743 unsigned int obj_idx;
1744
1745 VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
1746
1747 /* The page is locked, so this pointer must remain valid */
1748 zspage = get_zspage(zpdesc);
1749 pool = zspage->pool;
1750
1751 /*
1752 * The pool migrate_lock protects the race between zpage migration
1753 * and zs_free.
1754 */
1755 write_lock(&pool->lock);
1756 class = zspage_class(pool, zspage);
1757
1758 /*
1759 * the class lock protects zpage alloc/free in the zspage.
1760 */
1761 spin_lock(&class->lock);
1762 /* the zspage write_lock protects zpage access via zs_obj_read/write() */
1763 if (!zspage_write_trylock(zspage)) {
1764 spin_unlock(&class->lock);
1765 write_unlock(&pool->lock);
1766 return -EINVAL;
1767 }
1768
1769 /* We're committed, tell the world that this is a Zsmalloc page. */
1770 __zpdesc_set_zsmalloc(newzpdesc);
1771
1772 offset = get_first_obj_offset(zpdesc);
1773 s_addr = kmap_local_zpdesc(zpdesc);
1774
1775 /*
1776 * Here, any user cannot access all objects in the zspage so let's move.
1777 */
1778 d_addr = kmap_local_zpdesc(newzpdesc);
1779 copy_page(d_addr, s_addr);
1780 kunmap_local(d_addr);
1781
1782 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1783 addr += class->size) {
1784 if (obj_allocated(zpdesc, addr, &handle)) {
1785
1786 old_obj = handle_to_obj(handle);
1787 obj_to_location(old_obj, &dummy, &obj_idx);
1788 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
1789 record_obj(handle, new_obj);
1790 }
1791 }
1792 kunmap_local(s_addr);
1793
1794 replace_sub_page(class, zspage, newzpdesc, zpdesc);
1795 /*
1796 * Since we complete the data copy and set up new zspage structure,
1797 * it's okay to release migration_lock.
1798 */
1799 write_unlock(&pool->lock);
1800 spin_unlock(&class->lock);
1801 zspage_write_unlock(zspage);
1802
1803 zpdesc_get(newzpdesc);
1804 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
1805 zpdesc_dec_zone_page_state(zpdesc);
1806 zpdesc_inc_zone_page_state(newzpdesc);
1807 }
1808
1809 reset_zpdesc(zpdesc);
1810 zpdesc_put(zpdesc);
1811
1812 return MIGRATEPAGE_SUCCESS;
1813 }
1814
zs_page_putback(struct page * page)1815 static void zs_page_putback(struct page *page)
1816 {
1817 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1818 }
1819
1820 static const struct movable_operations zsmalloc_mops = {
1821 .isolate_page = zs_page_isolate,
1822 .migrate_page = zs_page_migrate,
1823 .putback_page = zs_page_putback,
1824 };
1825
1826 /*
1827 * Caller should hold page_lock of all pages in the zspage
1828 * In here, we cannot use zspage meta data.
1829 */
async_free_zspage(struct work_struct * work)1830 static void async_free_zspage(struct work_struct *work)
1831 {
1832 int i;
1833 struct size_class *class;
1834 struct zspage *zspage, *tmp;
1835 LIST_HEAD(free_pages);
1836 struct zs_pool *pool = container_of(work, struct zs_pool,
1837 free_work);
1838
1839 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1840 class = pool->size_class[i];
1841 if (class->index != i)
1842 continue;
1843
1844 spin_lock(&class->lock);
1845 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1846 &free_pages);
1847 spin_unlock(&class->lock);
1848 }
1849
1850 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1851 list_del(&zspage->list);
1852 lock_zspage(zspage);
1853
1854 class = zspage_class(pool, zspage);
1855 spin_lock(&class->lock);
1856 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1857 __free_zspage(pool, class, zspage);
1858 spin_unlock(&class->lock);
1859 }
1860 };
1861
kick_deferred_free(struct zs_pool * pool)1862 static void kick_deferred_free(struct zs_pool *pool)
1863 {
1864 schedule_work(&pool->free_work);
1865 }
1866
zs_flush_migration(struct zs_pool * pool)1867 static void zs_flush_migration(struct zs_pool *pool)
1868 {
1869 flush_work(&pool->free_work);
1870 }
1871
init_deferred_free(struct zs_pool * pool)1872 static void init_deferred_free(struct zs_pool *pool)
1873 {
1874 INIT_WORK(&pool->free_work, async_free_zspage);
1875 }
1876
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1877 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1878 {
1879 struct zpdesc *zpdesc = get_first_zpdesc(zspage);
1880
1881 do {
1882 WARN_ON(!zpdesc_trylock(zpdesc));
1883 __zpdesc_set_movable(zpdesc, &zsmalloc_mops);
1884 zpdesc_unlock(zpdesc);
1885 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
1886 }
1887 #else
zs_flush_migration(struct zs_pool * pool)1888 static inline void zs_flush_migration(struct zs_pool *pool) { }
1889 #endif
1890
1891 /*
1892 *
1893 * Based on the number of unused allocated objects calculate
1894 * and return the number of pages that we can free.
1895 */
zs_can_compact(struct size_class * class)1896 static unsigned long zs_can_compact(struct size_class *class)
1897 {
1898 unsigned long obj_wasted;
1899 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1900 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1901
1902 if (obj_allocated <= obj_used)
1903 return 0;
1904
1905 obj_wasted = obj_allocated - obj_used;
1906 obj_wasted /= class->objs_per_zspage;
1907
1908 return obj_wasted * class->pages_per_zspage;
1909 }
1910
__zs_compact(struct zs_pool * pool,struct size_class * class)1911 static unsigned long __zs_compact(struct zs_pool *pool,
1912 struct size_class *class)
1913 {
1914 struct zspage *src_zspage = NULL;
1915 struct zspage *dst_zspage = NULL;
1916 unsigned long pages_freed = 0;
1917
1918 /*
1919 * protect the race between zpage migration and zs_free
1920 * as well as zpage allocation/free
1921 */
1922 write_lock(&pool->lock);
1923 spin_lock(&class->lock);
1924 while (zs_can_compact(class)) {
1925 int fg;
1926
1927 if (!dst_zspage) {
1928 dst_zspage = isolate_dst_zspage(class);
1929 if (!dst_zspage)
1930 break;
1931 }
1932
1933 src_zspage = isolate_src_zspage(class);
1934 if (!src_zspage)
1935 break;
1936
1937 if (!zspage_write_trylock(src_zspage))
1938 break;
1939
1940 migrate_zspage(pool, src_zspage, dst_zspage);
1941 zspage_write_unlock(src_zspage);
1942
1943 fg = putback_zspage(class, src_zspage);
1944 if (fg == ZS_INUSE_RATIO_0) {
1945 free_zspage(pool, class, src_zspage);
1946 pages_freed += class->pages_per_zspage;
1947 }
1948 src_zspage = NULL;
1949
1950 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1951 || rwlock_is_contended(&pool->lock)) {
1952 putback_zspage(class, dst_zspage);
1953 dst_zspage = NULL;
1954
1955 spin_unlock(&class->lock);
1956 write_unlock(&pool->lock);
1957 cond_resched();
1958 write_lock(&pool->lock);
1959 spin_lock(&class->lock);
1960 }
1961 }
1962
1963 if (src_zspage)
1964 putback_zspage(class, src_zspage);
1965
1966 if (dst_zspage)
1967 putback_zspage(class, dst_zspage);
1968
1969 spin_unlock(&class->lock);
1970 write_unlock(&pool->lock);
1971
1972 return pages_freed;
1973 }
1974
zs_compact(struct zs_pool * pool)1975 unsigned long zs_compact(struct zs_pool *pool)
1976 {
1977 int i;
1978 struct size_class *class;
1979 unsigned long pages_freed = 0;
1980
1981 /*
1982 * Pool compaction is performed under pool->lock so it is basically
1983 * single-threaded. Having more than one thread in __zs_compact()
1984 * will increase pool->lock contention, which will impact other
1985 * zsmalloc operations that need pool->lock.
1986 */
1987 if (atomic_xchg(&pool->compaction_in_progress, 1))
1988 return 0;
1989
1990 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1991 class = pool->size_class[i];
1992 if (class->index != i)
1993 continue;
1994 pages_freed += __zs_compact(pool, class);
1995 }
1996 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1997 atomic_set(&pool->compaction_in_progress, 0);
1998
1999 return pages_freed;
2000 }
2001 EXPORT_SYMBOL_GPL(zs_compact);
2002
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2003 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2004 {
2005 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2006 }
2007 EXPORT_SYMBOL_GPL(zs_pool_stats);
2008
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2009 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2010 struct shrink_control *sc)
2011 {
2012 unsigned long pages_freed;
2013 struct zs_pool *pool = shrinker->private_data;
2014
2015 /*
2016 * Compact classes and calculate compaction delta.
2017 * Can run concurrently with a manually triggered
2018 * (by user) compaction.
2019 */
2020 pages_freed = zs_compact(pool);
2021
2022 return pages_freed ? pages_freed : SHRINK_STOP;
2023 }
2024
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2025 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2026 struct shrink_control *sc)
2027 {
2028 int i;
2029 struct size_class *class;
2030 unsigned long pages_to_free = 0;
2031 struct zs_pool *pool = shrinker->private_data;
2032
2033 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2034 class = pool->size_class[i];
2035 if (class->index != i)
2036 continue;
2037
2038 pages_to_free += zs_can_compact(class);
2039 }
2040
2041 return pages_to_free;
2042 }
2043
zs_unregister_shrinker(struct zs_pool * pool)2044 static void zs_unregister_shrinker(struct zs_pool *pool)
2045 {
2046 shrinker_free(pool->shrinker);
2047 }
2048
zs_register_shrinker(struct zs_pool * pool)2049 static int zs_register_shrinker(struct zs_pool *pool)
2050 {
2051 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2052 if (!pool->shrinker)
2053 return -ENOMEM;
2054
2055 pool->shrinker->scan_objects = zs_shrinker_scan;
2056 pool->shrinker->count_objects = zs_shrinker_count;
2057 pool->shrinker->batch = 0;
2058 pool->shrinker->private_data = pool;
2059
2060 shrinker_register(pool->shrinker);
2061
2062 return 0;
2063 }
2064
calculate_zspage_chain_size(int class_size)2065 static int calculate_zspage_chain_size(int class_size)
2066 {
2067 int i, min_waste = INT_MAX;
2068 int chain_size = 1;
2069
2070 if (is_power_of_2(class_size))
2071 return chain_size;
2072
2073 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2074 int waste;
2075
2076 waste = (i * PAGE_SIZE) % class_size;
2077 if (waste < min_waste) {
2078 min_waste = waste;
2079 chain_size = i;
2080 }
2081 }
2082
2083 return chain_size;
2084 }
2085
2086 /**
2087 * zs_create_pool - Creates an allocation pool to work from.
2088 * @name: pool name to be created
2089 *
2090 * This function must be called before anything when using
2091 * the zsmalloc allocator.
2092 *
2093 * On success, a pointer to the newly created pool is returned,
2094 * otherwise NULL.
2095 */
zs_create_pool(const char * name)2096 struct zs_pool *zs_create_pool(const char *name)
2097 {
2098 int i;
2099 struct zs_pool *pool;
2100 struct size_class *prev_class = NULL;
2101
2102 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2103 if (!pool)
2104 return NULL;
2105
2106 init_deferred_free(pool);
2107 rwlock_init(&pool->lock);
2108 atomic_set(&pool->compaction_in_progress, 0);
2109
2110 pool->name = kstrdup(name, GFP_KERNEL);
2111 if (!pool->name)
2112 goto err;
2113
2114 if (create_cache(pool))
2115 goto err;
2116
2117 /*
2118 * Iterate reversely, because, size of size_class that we want to use
2119 * for merging should be larger or equal to current size.
2120 */
2121 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2122 int size;
2123 int pages_per_zspage;
2124 int objs_per_zspage;
2125 struct size_class *class;
2126 int fullness;
2127
2128 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2129 if (size > ZS_MAX_ALLOC_SIZE)
2130 size = ZS_MAX_ALLOC_SIZE;
2131 pages_per_zspage = calculate_zspage_chain_size(size);
2132 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2133
2134 /*
2135 * We iterate from biggest down to smallest classes,
2136 * so huge_class_size holds the size of the first huge
2137 * class. Any object bigger than or equal to that will
2138 * endup in the huge class.
2139 */
2140 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2141 !huge_class_size) {
2142 huge_class_size = size;
2143 /*
2144 * The object uses ZS_HANDLE_SIZE bytes to store the
2145 * handle. We need to subtract it, because zs_malloc()
2146 * unconditionally adds handle size before it performs
2147 * size class search - so object may be smaller than
2148 * huge class size, yet it still can end up in the huge
2149 * class because it grows by ZS_HANDLE_SIZE extra bytes
2150 * right before class lookup.
2151 */
2152 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2153 }
2154
2155 /*
2156 * size_class is used for normal zsmalloc operation such
2157 * as alloc/free for that size. Although it is natural that we
2158 * have one size_class for each size, there is a chance that we
2159 * can get more memory utilization if we use one size_class for
2160 * many different sizes whose size_class have same
2161 * characteristics. So, we makes size_class point to
2162 * previous size_class if possible.
2163 */
2164 if (prev_class) {
2165 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2166 pool->size_class[i] = prev_class;
2167 continue;
2168 }
2169 }
2170
2171 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2172 if (!class)
2173 goto err;
2174
2175 class->size = size;
2176 class->index = i;
2177 class->pages_per_zspage = pages_per_zspage;
2178 class->objs_per_zspage = objs_per_zspage;
2179 spin_lock_init(&class->lock);
2180 pool->size_class[i] = class;
2181
2182 fullness = ZS_INUSE_RATIO_0;
2183 while (fullness < NR_FULLNESS_GROUPS) {
2184 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2185 fullness++;
2186 }
2187
2188 prev_class = class;
2189 }
2190
2191 /* debug only, don't abort if it fails */
2192 zs_pool_stat_create(pool, name);
2193
2194 /*
2195 * Not critical since shrinker is only used to trigger internal
2196 * defragmentation of the pool which is pretty optional thing. If
2197 * registration fails we still can use the pool normally and user can
2198 * trigger compaction manually. Thus, ignore return code.
2199 */
2200 zs_register_shrinker(pool);
2201
2202 return pool;
2203
2204 err:
2205 zs_destroy_pool(pool);
2206 return NULL;
2207 }
2208 EXPORT_SYMBOL_GPL(zs_create_pool);
2209
zs_destroy_pool(struct zs_pool * pool)2210 void zs_destroy_pool(struct zs_pool *pool)
2211 {
2212 int i;
2213
2214 zs_unregister_shrinker(pool);
2215 zs_flush_migration(pool);
2216 zs_pool_stat_destroy(pool);
2217
2218 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2219 int fg;
2220 struct size_class *class = pool->size_class[i];
2221
2222 if (!class)
2223 continue;
2224
2225 if (class->index != i)
2226 continue;
2227
2228 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2229 if (list_empty(&class->fullness_list[fg]))
2230 continue;
2231
2232 pr_err("Class-%d fullness group %d is not empty\n",
2233 class->size, fg);
2234 }
2235 kfree(class);
2236 }
2237
2238 destroy_cache(pool);
2239 kfree(pool->name);
2240 kfree(pool);
2241 }
2242 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2243
zs_init(void)2244 static int __init zs_init(void)
2245 {
2246 #ifdef CONFIG_ZPOOL
2247 zpool_register_driver(&zs_zpool_driver);
2248 #endif
2249 zs_stat_init();
2250 return 0;
2251 }
2252
zs_exit(void)2253 static void __exit zs_exit(void)
2254 {
2255 #ifdef CONFIG_ZPOOL
2256 zpool_unregister_driver(&zs_zpool_driver);
2257 #endif
2258 zs_stat_exit();
2259 }
2260
2261 module_init(zs_init);
2262 module_exit(zs_exit);
2263
2264 MODULE_LICENSE("Dual BSD/GPL");
2265 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2266 MODULE_DESCRIPTION("zsmalloc memory allocator");
2267