xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision b676b5e5e07fde53e6dafd0fa6c360ca56ac7154)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2016, 2025 Chelsio Communications.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_inet.h"
30 
31 #include <sys/param.h>
32 #include <sys/eventhandler.h>
33 
34 #include "common.h"
35 #include "t4_regs.h"
36 #include "t4_regs_values.h"
37 #include "firmware/t4fw_interface.h"
38 
39 #undef msleep
40 #define msleep(x) do { \
41 	if (cold) \
42 		DELAY((x) * 1000); \
43 	else \
44 		pause("t4hw", (x) * hz / 1000); \
45 } while (0)
46 
47 /**
48  *	t4_wait_op_done_val - wait until an operation is completed
49  *	@adapter: the adapter performing the operation
50  *	@reg: the register to check for completion
51  *	@mask: a single-bit field within @reg that indicates completion
52  *	@polarity: the value of the field when the operation is completed
53  *	@attempts: number of check iterations
54  *	@delay: delay in usecs between iterations
55  *	@valp: where to store the value of the register at completion time
56  *
57  *	Wait until an operation is completed by checking a bit in a register
58  *	up to @attempts times.  If @valp is not NULL the value of the register
59  *	at the time it indicated completion is stored there.  Returns 0 if the
60  *	operation completes and	-EAGAIN	otherwise.
61  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)62 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
63 			       int polarity, int attempts, int delay, u32 *valp)
64 {
65 	while (1) {
66 		u32 val = t4_read_reg(adapter, reg);
67 
68 		if (!!(val & mask) == polarity) {
69 			if (valp)
70 				*valp = val;
71 			return 0;
72 		}
73 		if (--attempts == 0)
74 			return -EAGAIN;
75 		if (delay)
76 			udelay(delay);
77 	}
78 }
79 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)80 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
81 				  int polarity, int attempts, int delay)
82 {
83 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
84 				   delay, NULL);
85 }
86 
87  /**
88  *	t7_wait_sram_done - wait until an operation is completed
89  *	@adapter: the adapter performing the operation
90  *	@reg: the register to check for completion
91  *	@result_reg: register that holds the result value
92  *	@attempts: number of check iterations
93  *	@delay: delay in usecs between iterations
94  *	@valp: where to store the value of the result register at completion time
95  *
96  *	Waits until a specific bit in @reg is cleared, checking up to
97  *	@attempts times.Once the bit is cleared, reads from @result_reg
98  *	and stores the value in @valp if it is not NULL. Returns 0 if the
99  *	operation completes successfully and -EAGAIN if it times out.
100  */
t7_wait_sram_done(struct adapter * adap,int reg,int result_reg,int attempts,int delay,u32 * valp)101 static int t7_wait_sram_done(struct adapter *adap, int reg, int result_reg,
102 			     int attempts, int delay, u32 *valp)
103 {
104 	while (1) {
105 		u32 val = t4_read_reg(adap, reg);
106 
107 		/* Check if SramStart (bit 19) is cleared */
108 		if (!(val & (1 << 19))) {
109 			if (valp)
110 				*valp  = t4_read_reg(adap, result_reg);
111 			return 0;
112 		}
113 
114 		if (--attempts == 0)
115 			return -EAGAIN;
116 
117 		if (delay)
118 			udelay(delay);
119 	}
120 }
121 
122 /**
123  *	t4_set_reg_field - set a register field to a value
124  *	@adapter: the adapter to program
125  *	@addr: the register address
126  *	@mask: specifies the portion of the register to modify
127  *	@val: the new value for the register field
128  *
129  *	Sets a register field specified by the supplied mask to the
130  *	given value.
131  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)132 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
133 		      u32 val)
134 {
135 	u32 v = t4_read_reg(adapter, addr) & ~mask;
136 
137 	t4_write_reg(adapter, addr, v | val);
138 	(void) t4_read_reg(adapter, addr);      /* flush */
139 }
140 
141 /**
142  *	t4_read_indirect - read indirectly addressed registers
143  *	@adap: the adapter
144  *	@addr_reg: register holding the indirect address
145  *	@data_reg: register holding the value of the indirect register
146  *	@vals: where the read register values are stored
147  *	@nregs: how many indirect registers to read
148  *	@start_idx: index of first indirect register to read
149  *
150  *	Reads registers that are accessed indirectly through an address/data
151  *	register pair.
152  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)153 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
154 			     unsigned int data_reg, u32 *vals,
155 			     unsigned int nregs, unsigned int start_idx)
156 {
157 	while (nregs--) {
158 		t4_write_reg(adap, addr_reg, start_idx);
159 		*vals++ = t4_read_reg(adap, data_reg);
160 		start_idx++;
161 	}
162 }
163 
164 /**
165  *	t4_write_indirect - write indirectly addressed registers
166  *	@adap: the adapter
167  *	@addr_reg: register holding the indirect addresses
168  *	@data_reg: register holding the value for the indirect registers
169  *	@vals: values to write
170  *	@nregs: how many indirect registers to write
171  *	@start_idx: address of first indirect register to write
172  *
173  *	Writes a sequential block of registers that are accessed indirectly
174  *	through an address/data register pair.
175  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)176 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
177 		       unsigned int data_reg, const u32 *vals,
178 		       unsigned int nregs, unsigned int start_idx)
179 {
180 	while (nregs--) {
181 		t4_write_reg(adap, addr_reg, start_idx++);
182 		t4_write_reg(adap, data_reg, *vals++);
183 	}
184 }
185 
186 /*
187  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
188  * mechanism.  This guarantees that we get the real value even if we're
189  * operating within a Virtual Machine and the Hypervisor is trapping our
190  * Configuration Space accesses.
191  *
192  * N.B. This routine should only be used as a last resort: the firmware uses
193  *      the backdoor registers on a regular basis and we can end up
194  *      conflicting with it's uses!
195  */
t4_hw_pci_read_cfg4(adapter_t * adap,int reg)196 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
197 {
198 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
199 	u32 val;
200 
201 	if (chip_id(adap) <= CHELSIO_T5)
202 		req |= F_ENABLE;
203 	else
204 		req |= F_T6_ENABLE;
205 
206 	if (is_t4(adap))
207 		req |= F_LOCALCFG;
208 
209 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
210 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
211 
212 	/*
213 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
214 	 * Configuration Space read.  (None of the other fields matter when
215 	 * F_ENABLE is 0 so a simple register write is easier than a
216 	 * read-modify-write via t4_set_reg_field().)
217 	 */
218 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
219 
220 	return val;
221 }
222 
223 /*
224  * t4_report_fw_error - report firmware error
225  * @adap: the adapter
226  *
227  * The adapter firmware can indicate error conditions to the host.
228  * If the firmware has indicated an error, print out the reason for
229  * the firmware error.
230  */
t4_report_fw_error(struct adapter * adap)231 void t4_report_fw_error(struct adapter *adap)
232 {
233 	static const char *const reason[] = {
234 		"Crash",			/* PCIE_FW_EVAL_CRASH */
235 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
236 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
237 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
238 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
239 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
240 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
241 		"Reserved",			/* reserved */
242 	};
243 	u32 pcie_fw;
244 
245 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
246 	if (pcie_fw & F_PCIE_FW_ERR) {
247 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
248 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
249 	}
250 }
251 
252 /*
253  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
254  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)255 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
256 			 u32 mbox_addr)
257 {
258 	for ( ; nflit; nflit--, mbox_addr += 8)
259 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
260 }
261 
262 /*
263  * Handle a FW assertion reported in a mailbox.
264  */
fw_asrt(struct adapter * adap,struct fw_debug_cmd * asrt)265 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
266 {
267 	CH_ALERT(adap,
268 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
269 		  asrt->u.assert.filename_0_7,
270 		  be32_to_cpu(asrt->u.assert.line),
271 		  be32_to_cpu(asrt->u.assert.x),
272 		  be32_to_cpu(asrt->u.assert.y));
273 }
274 
275 struct port_tx_state {
276 	uint64_t rx_pause;
277 	uint64_t tx_frames;
278 };
279 
280 u32
t4_port_reg(struct adapter * adap,u8 port,u32 reg)281 t4_port_reg(struct adapter *adap, u8 port, u32 reg)
282 {
283 	if (chip_id(adap) > CHELSIO_T6)
284 		return T7_PORT_REG(port, reg);
285 	if (chip_id(adap) > CHELSIO_T4)
286 		return T5_PORT_REG(port, reg);
287 	return PORT_REG(port, reg);
288 }
289 
290 static void
read_tx_state_one(struct adapter * sc,int i,struct port_tx_state * tx_state)291 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
292 {
293 	uint32_t rx_pause_reg, tx_frames_reg;
294 
295 	rx_pause_reg = t4_port_reg(sc, i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
296 	tx_frames_reg = t4_port_reg(sc, i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
297 
298 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
299 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
300 }
301 
302 static void
read_tx_state(struct adapter * sc,struct port_tx_state * tx_state)303 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
304 {
305 	int i;
306 
307 	for (i = 0; i < MAX_NCHAN; i++) {
308 		if (sc->chan_map[i] != 0xff)
309 			read_tx_state_one(sc, i, &tx_state[i]);
310 	}
311 }
312 
313 static void
check_tx_state(struct adapter * sc,struct port_tx_state * tx_state)314 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
315 {
316 	uint32_t port_ctl_reg;
317 	uint64_t tx_frames, rx_pause;
318 	int i;
319 
320 	for (i = 0; i < MAX_NCHAN; i++) {
321 		if (sc->chan_map[i] == 0xff)
322 			continue;
323 		rx_pause = tx_state[i].rx_pause;
324 		tx_frames = tx_state[i].tx_frames;
325 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
326 
327 		port_ctl_reg = t4_port_reg(sc, i, A_MPS_PORT_CTL);
328 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
329 		    rx_pause != tx_state[i].rx_pause &&
330 		    tx_frames == tx_state[i].tx_frames) {
331 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
332 			mdelay(1);
333 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
334 		}
335 	}
336 }
337 
338 #define X_CIM_PF_NOACCESS 0xeeeeeeee
339 /**
340  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
341  *	@adap: the adapter
342  *	@mbox: index of the mailbox to use
343  *	@cmd: the command to write
344  *	@size: command length in bytes
345  *	@rpl: where to optionally store the reply
346  *	@sleep_ok: if true we may sleep while awaiting command completion
347  *	@timeout: time to wait for command to finish before timing out
348  *		(negative implies @sleep_ok=false)
349  *
350  *	Sends the given command to FW through the selected mailbox and waits
351  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
352  *	store the FW's reply to the command.  The command and its optional
353  *	reply are of the same length.  Some FW commands like RESET and
354  *	INITIALIZE can take a considerable amount of time to execute.
355  *	@sleep_ok determines whether we may sleep while awaiting the response.
356  *	If sleeping is allowed we use progressive backoff otherwise we spin.
357  *	Note that passing in a negative @timeout is an alternate mechanism
358  *	for specifying @sleep_ok=false.  This is useful when a higher level
359  *	interface allows for specification of @timeout but not @sleep_ok ...
360  *
361  *	The return value is 0 on success or a negative errno on failure.  A
362  *	failure can happen either because we are not able to execute the
363  *	command or FW executes it but signals an error.  In the latter case
364  *	the return value is the error code indicated by FW (negated).
365  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)366 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
367 			    int size, void *rpl, bool sleep_ok, int timeout)
368 {
369 	/*
370 	 * We delay in small increments at first in an effort to maintain
371 	 * responsiveness for simple, fast executing commands but then back
372 	 * off to larger delays to a maximum retry delay.
373 	 */
374 	static const int delay[] = {
375 		1, 1, 3, 5, 10, 10, 20, 50, 100
376 	};
377 	u32 v;
378 	u64 res;
379 	int i, ms, delay_idx, ret, next_tx_check;
380 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
381 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
382 	u32 ctl;
383 	__be64 cmd_rpl[MBOX_LEN/8];
384 	u32 pcie_fw;
385 	struct port_tx_state tx_state[MAX_NPORTS];
386 
387 	if (adap->flags & CHK_MBOX_ACCESS)
388 		ASSERT_SYNCHRONIZED_OP(adap);
389 
390 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
391 		return -EINVAL;
392 
393 	if (adap->flags & IS_VF) {
394 		if (chip_id(adap) >= CHELSIO_T6)
395 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
396 		else
397 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
398 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
399 	}
400 
401 	/*
402 	 * If we have a negative timeout, that implies that we can't sleep.
403 	 */
404 	if (timeout < 0) {
405 		sleep_ok = false;
406 		timeout = -timeout;
407 	}
408 
409 	/*
410 	 * Attempt to gain access to the mailbox.
411 	 */
412 	pcie_fw = 0;
413 	if (!(adap->flags & IS_VF)) {
414 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
415 		if (pcie_fw & F_PCIE_FW_ERR)
416 			goto failed;
417 	}
418 	for (i = 0; i < 4; i++) {
419 		ctl = t4_read_reg(adap, ctl_reg);
420 		v = G_MBOWNER(ctl);
421 		if (v != X_MBOWNER_NONE)
422 			break;
423 	}
424 
425 	/*
426 	 * If we were unable to gain access, report the error to our caller.
427 	 */
428 	if (v != X_MBOWNER_PL) {
429 		if (!(adap->flags & IS_VF)) {
430 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
431 			if (pcie_fw & F_PCIE_FW_ERR)
432 				goto failed;
433 		}
434 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
435 		return ret;
436 	}
437 
438 	/*
439 	 * If we gain ownership of the mailbox and there's a "valid" message
440 	 * in it, this is likely an asynchronous error message from the
441 	 * firmware.  So we'll report that and then proceed on with attempting
442 	 * to issue our own command ... which may well fail if the error
443 	 * presaged the firmware crashing ...
444 	 */
445 	if (ctl & F_MBMSGVALID) {
446 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
447 	}
448 
449 	/*
450 	 * Copy in the new mailbox command and send it on its way ...
451 	 */
452 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
453 	memcpy(cmd_rpl, cmd, size);
454 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
455 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
456 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
457 
458 	if (adap->flags & IS_VF) {
459 		/*
460 		 * For the VFs, the Mailbox Data "registers" are
461 		 * actually backed by T4's "MA" interface rather than
462 		 * PL Registers (as is the case for the PFs).  Because
463 		 * these are in different coherency domains, the write
464 		 * to the VF's PL-register-backed Mailbox Control can
465 		 * race in front of the writes to the MA-backed VF
466 		 * Mailbox Data "registers".  So we need to do a
467 		 * read-back on at least one byte of the VF Mailbox
468 		 * Data registers before doing the write to the VF
469 		 * Mailbox Control register.
470 		 */
471 		t4_read_reg(adap, data_reg);
472 	}
473 
474 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
475 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
476 	next_tx_check = 1000;
477 	delay_idx = 0;
478 	ms = delay[0];
479 
480 	/*
481 	 * Loop waiting for the reply; bail out if we time out or the firmware
482 	 * reports an error.
483 	 */
484 	for (i = 0; i < timeout; i += ms) {
485 		if (!(adap->flags & IS_VF)) {
486 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
487 			if (pcie_fw & F_PCIE_FW_ERR)
488 				break;
489 		}
490 
491 		if (i >= next_tx_check) {
492 			check_tx_state(adap, &tx_state[0]);
493 			next_tx_check = i + 1000;
494 		}
495 
496 		if (sleep_ok) {
497 			ms = delay[delay_idx];  /* last element may repeat */
498 			if (delay_idx < ARRAY_SIZE(delay) - 1)
499 				delay_idx++;
500 			msleep(ms);
501 		} else {
502 			mdelay(ms);
503 		}
504 
505 		v = t4_read_reg(adap, ctl_reg);
506 		if (v == X_CIM_PF_NOACCESS)
507 			continue;
508 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
509 			if (!(v & F_MBMSGVALID)) {
510 				t4_write_reg(adap, ctl_reg,
511 					     V_MBOWNER(X_MBOWNER_NONE));
512 				continue;
513 			}
514 
515 			/*
516 			 * Retrieve the command reply and release the mailbox.
517 			 */
518 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
519 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
520 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
521 
522 			res = be64_to_cpu(cmd_rpl[0]);
523 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
524 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
525 				res = V_FW_CMD_RETVAL(EIO);
526 			} else if (rpl)
527 				memcpy(rpl, cmd_rpl, size);
528 			return -G_FW_CMD_RETVAL((int)res);
529 		}
530 	}
531 
532 	/*
533 	 * We timed out waiting for a reply to our mailbox command.  Report
534 	 * the error and also check to see if the firmware reported any
535 	 * errors ...
536 	 */
537 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
538 	    *(const u8 *)cmd, mbox, pcie_fw);
539 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
540 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
541 failed:
542 	adap->flags &= ~FW_OK;
543 	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
544 	t4_fatal_err(adap, true);
545 	return ret;
546 }
547 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)548 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
549 		    void *rpl, bool sleep_ok)
550 {
551 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
552 				       sleep_ok, FW_CMD_MAX_TIMEOUT);
553 }
554 
t4_edc_err_read(struct adapter * adap,int idx)555 static int t4_edc_err_read(struct adapter *adap, int idx)
556 {
557 	u32 edc_ecc_err_addr_reg;
558 	u32 edc_bist_status_rdata_reg;
559 
560 	if (is_t4(adap)) {
561 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
562 		return 0;
563 	}
564 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
565 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
566 		return 0;
567 	}
568 
569 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
570 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
571 
572 	CH_WARN(adap,
573 		"  edc%d err addr 0x%x: 0x%x.\n",
574 		idx, edc_ecc_err_addr_reg,
575 		t4_read_reg(adap, edc_ecc_err_addr_reg));
576 	CH_WARN(adap,
577 		"  bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
578 		edc_bist_status_rdata_reg,
579 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
580 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
581 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
582 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
583 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
584 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
585 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
586 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
587 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
588 
589 	return 0;
590 }
591 
592 /**
593  *	t4_mc_read - read from MC through backdoor accesses
594  *	@adap: the adapter
595  *	@idx: which MC to access
596  *	@addr: address of first byte requested
597  *	@data: 64 bytes of data containing the requested address
598  *	@ecc: where to store the corresponding 64-bit ECC word
599  *
600  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
601  *	that covers the requested address @addr.  If @parity is not %NULL it
602  *	is assigned the 64-bit ECC word for the read data.
603  */
t4_mc_read(struct adapter * adap,int idx,u32 addr,__be32 * data,u64 * ecc)604 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
605 {
606 	int i;
607 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
608 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
609 
610 	if (is_t4(adap)) {
611 		mc_bist_cmd_reg = A_MC_BIST_CMD;
612 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
613 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
614 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
615 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
616 	} else if (chip_id(adap) < CHELSIO_T7) {
617 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
618 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
619 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
620 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, idx);
621 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, idx);
622 	} else {
623 		/* Need to figure out split mode and the rest. */
624 		return (-ENOTSUP);
625 	}
626 
627 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
628 		return -EBUSY;
629 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
630 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
631 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
632 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
633 		     F_START_BIST | V_BIST_CMD_GAP(1));
634 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
635 	if (i)
636 		return i;
637 
638 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
639 
640 	for (i = 15; i >= 0; i--)
641 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
642 	if (ecc)
643 		*ecc = t4_read_reg64(adap, MC_DATA(16));
644 #undef MC_DATA
645 	return 0;
646 }
647 
648 /**
649  *	t4_edc_read - read from EDC through backdoor accesses
650  *	@adap: the adapter
651  *	@idx: which EDC to access
652  *	@addr: address of first byte requested
653  *	@data: 64 bytes of data containing the requested address
654  *	@ecc: where to store the corresponding 64-bit ECC word
655  *
656  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
657  *	that covers the requested address @addr.  If @parity is not %NULL it
658  *	is assigned the 64-bit ECC word for the read data.
659  */
t4_edc_read(struct adapter * adap,int idx,u32 addr,__be32 * data,u64 * ecc)660 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
661 {
662 	int i;
663 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
664 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
665 
666 	if (is_t4(adap)) {
667 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
668 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
669 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
670 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
671 						    idx);
672 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
673 						    idx);
674 	} else {
675 		edc_bist_cmd_reg = EDC_T5_REG(A_EDC_H_BIST_CMD, idx);
676 		edc_bist_cmd_addr_reg = EDC_T5_REG(A_EDC_H_BIST_CMD_ADDR, idx);
677 		edc_bist_cmd_len_reg = EDC_T5_REG(A_EDC_H_BIST_CMD_LEN, idx);
678 		edc_bist_cmd_data_pattern = EDC_T5_REG(A_EDC_H_BIST_DATA_PATTERN,
679 						    idx);
680 		edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA,
681 						    idx);
682 	}
683 
684 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
685 		return -EBUSY;
686 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
687 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
688 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
689 	t4_write_reg(adap, edc_bist_cmd_reg,
690 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
691 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
692 	if (i)
693 		return i;
694 
695 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
696 
697 	for (i = 15; i >= 0; i--)
698 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
699 	if (ecc)
700 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
701 #undef EDC_DATA
702 	return 0;
703 }
704 
705 /**
706  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
707  *	@adap: the adapter
708  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
709  *	@addr: address within indicated memory type
710  *	@len: amount of memory to read
711  *	@buf: host memory buffer
712  *
713  *	Reads an [almost] arbitrary memory region in the firmware: the
714  *	firmware memory address, length and host buffer must be aligned on
715  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
716  *	the firmware's memory.  If this memory contains data structures which
717  *	contain multi-byte integers, it's the callers responsibility to
718  *	perform appropriate byte order conversions.
719  */
t4_mem_read(struct adapter * adap,int mtype,u32 addr,u32 len,__be32 * buf)720 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
721 		__be32 *buf)
722 {
723 	u32 pos, start, end, offset;
724 	int ret;
725 
726 	/*
727 	 * Argument sanity checks ...
728 	 */
729 	if ((addr & 0x3) || (len & 0x3))
730 		return -EINVAL;
731 
732 	/*
733 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
734 	 * need to round down the start and round up the end.  We'll start
735 	 * copying out of the first line at (addr - start) a word at a time.
736 	 */
737 	start = rounddown2(addr, 64);
738 	end = roundup2(addr + len, 64);
739 	offset = (addr - start)/sizeof(__be32);
740 
741 	for (pos = start; pos < end; pos += 64, offset = 0) {
742 		__be32 data[16];
743 
744 		/*
745 		 * Read the chip's memory block and bail if there's an error.
746 		 */
747 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
748 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
749 		else
750 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
751 		if (ret)
752 			return ret;
753 
754 		/*
755 		 * Copy the data into the caller's memory buffer.
756 		 */
757 		while (offset < 16 && len > 0) {
758 			*buf++ = data[offset++];
759 			len -= sizeof(__be32);
760 		}
761 	}
762 
763 	return 0;
764 }
765 
766 /*
767  * Return the specified PCI-E Configuration Space register from our Physical
768  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
769  * since we prefer to let the firmware own all of these registers, but if that
770  * fails we go for it directly ourselves.
771  */
t4_read_pcie_cfg4(struct adapter * adap,int reg,int drv_fw_attach)772 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
773 {
774 
775 	/*
776 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
777 	 * retrieve the specified PCI-E Configuration Space register.
778 	 */
779 	if (drv_fw_attach != 0) {
780 		struct fw_ldst_cmd ldst_cmd;
781 		int ret;
782 
783 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
784 		ldst_cmd.op_to_addrspace =
785 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
786 				    F_FW_CMD_REQUEST |
787 				    F_FW_CMD_READ |
788 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
789 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
790 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
791 		ldst_cmd.u.pcie.ctrl_to_fn =
792 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
793 		ldst_cmd.u.pcie.r = reg;
794 
795 		/*
796 		 * If the LDST Command succeeds, return the result, otherwise
797 		 * fall through to reading it directly ourselves ...
798 		 */
799 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
800 				 &ldst_cmd);
801 		if (ret == 0)
802 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
803 
804 		CH_WARN(adap, "Firmware failed to return "
805 			"Configuration Space register %d, err = %d\n",
806 			reg, -ret);
807 	}
808 
809 	/*
810 	 * Read the desired Configuration Space register via the PCI-E
811 	 * Backdoor mechanism.
812 	 */
813 	return t4_hw_pci_read_cfg4(adap, reg);
814 }
815 
816 /**
817  *	t4_get_regs_len - return the size of the chips register set
818  *	@adapter: the adapter
819  *
820  *	Returns the size of the chip's BAR0 register space.
821  */
t4_get_regs_len(struct adapter * adapter)822 unsigned int t4_get_regs_len(struct adapter *adapter)
823 {
824 	unsigned int chip_version = chip_id(adapter);
825 
826 	switch (chip_version) {
827 	case CHELSIO_T4:
828 		if (adapter->flags & IS_VF)
829 			return FW_T4VF_REGMAP_SIZE;
830 		return T4_REGMAP_SIZE;
831 
832 	case CHELSIO_T5:
833 	case CHELSIO_T6:
834 	case CHELSIO_T7:
835 		if (adapter->flags & IS_VF)
836 			return FW_T4VF_REGMAP_SIZE;
837 		return T5_REGMAP_SIZE;
838 	}
839 
840 	CH_ERR(adapter,
841 		"Unsupported chip version %d\n", chip_version);
842 	return 0;
843 }
844 
845 /**
846  *	t4_get_regs - read chip registers into provided buffer
847  *	@adap: the adapter
848  *	@buf: register buffer
849  *	@buf_size: size (in bytes) of register buffer
850  *
851  *	If the provided register buffer isn't large enough for the chip's
852  *	full register range, the register dump will be truncated to the
853  *	register buffer's size.
854  */
t4_get_regs(struct adapter * adap,u8 * buf,size_t buf_size)855 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
856 {
857 	static const unsigned int t4_reg_ranges[] = {
858 		0x1008, 0x1108,
859 		0x1180, 0x1184,
860 		0x1190, 0x1194,
861 		0x11a0, 0x11a4,
862 		0x11b0, 0x11b4,
863 		0x11fc, 0x123c,
864 		0x1300, 0x173c,
865 		0x1800, 0x18fc,
866 		0x3000, 0x30d8,
867 		0x30e0, 0x30e4,
868 		0x30ec, 0x5910,
869 		0x5920, 0x5924,
870 		0x5960, 0x5960,
871 		0x5968, 0x5968,
872 		0x5970, 0x5970,
873 		0x5978, 0x5978,
874 		0x5980, 0x5980,
875 		0x5988, 0x5988,
876 		0x5990, 0x5990,
877 		0x5998, 0x5998,
878 		0x59a0, 0x59d4,
879 		0x5a00, 0x5ae0,
880 		0x5ae8, 0x5ae8,
881 		0x5af0, 0x5af0,
882 		0x5af8, 0x5af8,
883 		0x6000, 0x6098,
884 		0x6100, 0x6150,
885 		0x6200, 0x6208,
886 		0x6240, 0x6248,
887 		0x6280, 0x62b0,
888 		0x62c0, 0x6338,
889 		0x6370, 0x638c,
890 		0x6400, 0x643c,
891 		0x6500, 0x6524,
892 		0x6a00, 0x6a04,
893 		0x6a14, 0x6a38,
894 		0x6a60, 0x6a70,
895 		0x6a78, 0x6a78,
896 		0x6b00, 0x6b0c,
897 		0x6b1c, 0x6b84,
898 		0x6bf0, 0x6bf8,
899 		0x6c00, 0x6c0c,
900 		0x6c1c, 0x6c84,
901 		0x6cf0, 0x6cf8,
902 		0x6d00, 0x6d0c,
903 		0x6d1c, 0x6d84,
904 		0x6df0, 0x6df8,
905 		0x6e00, 0x6e0c,
906 		0x6e1c, 0x6e84,
907 		0x6ef0, 0x6ef8,
908 		0x6f00, 0x6f0c,
909 		0x6f1c, 0x6f84,
910 		0x6ff0, 0x6ff8,
911 		0x7000, 0x700c,
912 		0x701c, 0x7084,
913 		0x70f0, 0x70f8,
914 		0x7100, 0x710c,
915 		0x711c, 0x7184,
916 		0x71f0, 0x71f8,
917 		0x7200, 0x720c,
918 		0x721c, 0x7284,
919 		0x72f0, 0x72f8,
920 		0x7300, 0x730c,
921 		0x731c, 0x7384,
922 		0x73f0, 0x73f8,
923 		0x7400, 0x7450,
924 		0x7500, 0x7530,
925 		0x7600, 0x760c,
926 		0x7614, 0x761c,
927 		0x7680, 0x76cc,
928 		0x7700, 0x7798,
929 		0x77c0, 0x77fc,
930 		0x7900, 0x79fc,
931 		0x7b00, 0x7b58,
932 		0x7b60, 0x7b84,
933 		0x7b8c, 0x7c38,
934 		0x7d00, 0x7d38,
935 		0x7d40, 0x7d80,
936 		0x7d8c, 0x7ddc,
937 		0x7de4, 0x7e04,
938 		0x7e10, 0x7e1c,
939 		0x7e24, 0x7e38,
940 		0x7e40, 0x7e44,
941 		0x7e4c, 0x7e78,
942 		0x7e80, 0x7ea4,
943 		0x7eac, 0x7edc,
944 		0x7ee8, 0x7efc,
945 		0x8dc0, 0x8e04,
946 		0x8e10, 0x8e1c,
947 		0x8e30, 0x8e78,
948 		0x8ea0, 0x8eb8,
949 		0x8ec0, 0x8f6c,
950 		0x8fc0, 0x9008,
951 		0x9010, 0x9058,
952 		0x9060, 0x9060,
953 		0x9068, 0x9074,
954 		0x90fc, 0x90fc,
955 		0x9400, 0x9408,
956 		0x9410, 0x9458,
957 		0x9600, 0x9600,
958 		0x9608, 0x9638,
959 		0x9640, 0x96bc,
960 		0x9800, 0x9808,
961 		0x9820, 0x983c,
962 		0x9850, 0x9864,
963 		0x9c00, 0x9c6c,
964 		0x9c80, 0x9cec,
965 		0x9d00, 0x9d6c,
966 		0x9d80, 0x9dec,
967 		0x9e00, 0x9e6c,
968 		0x9e80, 0x9eec,
969 		0x9f00, 0x9f6c,
970 		0x9f80, 0x9fec,
971 		0xd004, 0xd004,
972 		0xd010, 0xd03c,
973 		0xdfc0, 0xdfe0,
974 		0xe000, 0xea7c,
975 		0xf000, 0x11110,
976 		0x11118, 0x11190,
977 		0x19040, 0x1906c,
978 		0x19078, 0x19080,
979 		0x1908c, 0x190e4,
980 		0x190f0, 0x190f8,
981 		0x19100, 0x19110,
982 		0x19120, 0x19124,
983 		0x19150, 0x19194,
984 		0x1919c, 0x191b0,
985 		0x191d0, 0x191e8,
986 		0x19238, 0x1924c,
987 		0x193f8, 0x1943c,
988 		0x1944c, 0x19474,
989 		0x19490, 0x194e0,
990 		0x194f0, 0x194f8,
991 		0x19800, 0x19c08,
992 		0x19c10, 0x19c90,
993 		0x19ca0, 0x19ce4,
994 		0x19cf0, 0x19d40,
995 		0x19d50, 0x19d94,
996 		0x19da0, 0x19de8,
997 		0x19df0, 0x19e40,
998 		0x19e50, 0x19e90,
999 		0x19ea0, 0x19f4c,
1000 		0x1a000, 0x1a004,
1001 		0x1a010, 0x1a06c,
1002 		0x1a0b0, 0x1a0e4,
1003 		0x1a0ec, 0x1a0f4,
1004 		0x1a100, 0x1a108,
1005 		0x1a114, 0x1a120,
1006 		0x1a128, 0x1a130,
1007 		0x1a138, 0x1a138,
1008 		0x1a190, 0x1a1c4,
1009 		0x1a1fc, 0x1a1fc,
1010 		0x1e040, 0x1e04c,
1011 		0x1e284, 0x1e28c,
1012 		0x1e2c0, 0x1e2c0,
1013 		0x1e2e0, 0x1e2e0,
1014 		0x1e300, 0x1e384,
1015 		0x1e3c0, 0x1e3c8,
1016 		0x1e440, 0x1e44c,
1017 		0x1e684, 0x1e68c,
1018 		0x1e6c0, 0x1e6c0,
1019 		0x1e6e0, 0x1e6e0,
1020 		0x1e700, 0x1e784,
1021 		0x1e7c0, 0x1e7c8,
1022 		0x1e840, 0x1e84c,
1023 		0x1ea84, 0x1ea8c,
1024 		0x1eac0, 0x1eac0,
1025 		0x1eae0, 0x1eae0,
1026 		0x1eb00, 0x1eb84,
1027 		0x1ebc0, 0x1ebc8,
1028 		0x1ec40, 0x1ec4c,
1029 		0x1ee84, 0x1ee8c,
1030 		0x1eec0, 0x1eec0,
1031 		0x1eee0, 0x1eee0,
1032 		0x1ef00, 0x1ef84,
1033 		0x1efc0, 0x1efc8,
1034 		0x1f040, 0x1f04c,
1035 		0x1f284, 0x1f28c,
1036 		0x1f2c0, 0x1f2c0,
1037 		0x1f2e0, 0x1f2e0,
1038 		0x1f300, 0x1f384,
1039 		0x1f3c0, 0x1f3c8,
1040 		0x1f440, 0x1f44c,
1041 		0x1f684, 0x1f68c,
1042 		0x1f6c0, 0x1f6c0,
1043 		0x1f6e0, 0x1f6e0,
1044 		0x1f700, 0x1f784,
1045 		0x1f7c0, 0x1f7c8,
1046 		0x1f840, 0x1f84c,
1047 		0x1fa84, 0x1fa8c,
1048 		0x1fac0, 0x1fac0,
1049 		0x1fae0, 0x1fae0,
1050 		0x1fb00, 0x1fb84,
1051 		0x1fbc0, 0x1fbc8,
1052 		0x1fc40, 0x1fc4c,
1053 		0x1fe84, 0x1fe8c,
1054 		0x1fec0, 0x1fec0,
1055 		0x1fee0, 0x1fee0,
1056 		0x1ff00, 0x1ff84,
1057 		0x1ffc0, 0x1ffc8,
1058 		0x20000, 0x2002c,
1059 		0x20100, 0x2013c,
1060 		0x20190, 0x201a0,
1061 		0x201a8, 0x201b8,
1062 		0x201c4, 0x201c8,
1063 		0x20200, 0x20318,
1064 		0x20400, 0x204b4,
1065 		0x204c0, 0x20528,
1066 		0x20540, 0x20614,
1067 		0x21000, 0x21040,
1068 		0x2104c, 0x21060,
1069 		0x210c0, 0x210ec,
1070 		0x21200, 0x21268,
1071 		0x21270, 0x21284,
1072 		0x212fc, 0x21388,
1073 		0x21400, 0x21404,
1074 		0x21500, 0x21500,
1075 		0x21510, 0x21518,
1076 		0x2152c, 0x21530,
1077 		0x2153c, 0x2153c,
1078 		0x21550, 0x21554,
1079 		0x21600, 0x21600,
1080 		0x21608, 0x2161c,
1081 		0x21624, 0x21628,
1082 		0x21630, 0x21634,
1083 		0x2163c, 0x2163c,
1084 		0x21700, 0x2171c,
1085 		0x21780, 0x2178c,
1086 		0x21800, 0x21818,
1087 		0x21820, 0x21828,
1088 		0x21830, 0x21848,
1089 		0x21850, 0x21854,
1090 		0x21860, 0x21868,
1091 		0x21870, 0x21870,
1092 		0x21878, 0x21898,
1093 		0x218a0, 0x218a8,
1094 		0x218b0, 0x218c8,
1095 		0x218d0, 0x218d4,
1096 		0x218e0, 0x218e8,
1097 		0x218f0, 0x218f0,
1098 		0x218f8, 0x21a18,
1099 		0x21a20, 0x21a28,
1100 		0x21a30, 0x21a48,
1101 		0x21a50, 0x21a54,
1102 		0x21a60, 0x21a68,
1103 		0x21a70, 0x21a70,
1104 		0x21a78, 0x21a98,
1105 		0x21aa0, 0x21aa8,
1106 		0x21ab0, 0x21ac8,
1107 		0x21ad0, 0x21ad4,
1108 		0x21ae0, 0x21ae8,
1109 		0x21af0, 0x21af0,
1110 		0x21af8, 0x21c18,
1111 		0x21c20, 0x21c20,
1112 		0x21c28, 0x21c30,
1113 		0x21c38, 0x21c38,
1114 		0x21c80, 0x21c98,
1115 		0x21ca0, 0x21ca8,
1116 		0x21cb0, 0x21cc8,
1117 		0x21cd0, 0x21cd4,
1118 		0x21ce0, 0x21ce8,
1119 		0x21cf0, 0x21cf0,
1120 		0x21cf8, 0x21d7c,
1121 		0x21e00, 0x21e04,
1122 		0x22000, 0x2202c,
1123 		0x22100, 0x2213c,
1124 		0x22190, 0x221a0,
1125 		0x221a8, 0x221b8,
1126 		0x221c4, 0x221c8,
1127 		0x22200, 0x22318,
1128 		0x22400, 0x224b4,
1129 		0x224c0, 0x22528,
1130 		0x22540, 0x22614,
1131 		0x23000, 0x23040,
1132 		0x2304c, 0x23060,
1133 		0x230c0, 0x230ec,
1134 		0x23200, 0x23268,
1135 		0x23270, 0x23284,
1136 		0x232fc, 0x23388,
1137 		0x23400, 0x23404,
1138 		0x23500, 0x23500,
1139 		0x23510, 0x23518,
1140 		0x2352c, 0x23530,
1141 		0x2353c, 0x2353c,
1142 		0x23550, 0x23554,
1143 		0x23600, 0x23600,
1144 		0x23608, 0x2361c,
1145 		0x23624, 0x23628,
1146 		0x23630, 0x23634,
1147 		0x2363c, 0x2363c,
1148 		0x23700, 0x2371c,
1149 		0x23780, 0x2378c,
1150 		0x23800, 0x23818,
1151 		0x23820, 0x23828,
1152 		0x23830, 0x23848,
1153 		0x23850, 0x23854,
1154 		0x23860, 0x23868,
1155 		0x23870, 0x23870,
1156 		0x23878, 0x23898,
1157 		0x238a0, 0x238a8,
1158 		0x238b0, 0x238c8,
1159 		0x238d0, 0x238d4,
1160 		0x238e0, 0x238e8,
1161 		0x238f0, 0x238f0,
1162 		0x238f8, 0x23a18,
1163 		0x23a20, 0x23a28,
1164 		0x23a30, 0x23a48,
1165 		0x23a50, 0x23a54,
1166 		0x23a60, 0x23a68,
1167 		0x23a70, 0x23a70,
1168 		0x23a78, 0x23a98,
1169 		0x23aa0, 0x23aa8,
1170 		0x23ab0, 0x23ac8,
1171 		0x23ad0, 0x23ad4,
1172 		0x23ae0, 0x23ae8,
1173 		0x23af0, 0x23af0,
1174 		0x23af8, 0x23c18,
1175 		0x23c20, 0x23c20,
1176 		0x23c28, 0x23c30,
1177 		0x23c38, 0x23c38,
1178 		0x23c80, 0x23c98,
1179 		0x23ca0, 0x23ca8,
1180 		0x23cb0, 0x23cc8,
1181 		0x23cd0, 0x23cd4,
1182 		0x23ce0, 0x23ce8,
1183 		0x23cf0, 0x23cf0,
1184 		0x23cf8, 0x23d7c,
1185 		0x23e00, 0x23e04,
1186 		0x24000, 0x2402c,
1187 		0x24100, 0x2413c,
1188 		0x24190, 0x241a0,
1189 		0x241a8, 0x241b8,
1190 		0x241c4, 0x241c8,
1191 		0x24200, 0x24318,
1192 		0x24400, 0x244b4,
1193 		0x244c0, 0x24528,
1194 		0x24540, 0x24614,
1195 		0x25000, 0x25040,
1196 		0x2504c, 0x25060,
1197 		0x250c0, 0x250ec,
1198 		0x25200, 0x25268,
1199 		0x25270, 0x25284,
1200 		0x252fc, 0x25388,
1201 		0x25400, 0x25404,
1202 		0x25500, 0x25500,
1203 		0x25510, 0x25518,
1204 		0x2552c, 0x25530,
1205 		0x2553c, 0x2553c,
1206 		0x25550, 0x25554,
1207 		0x25600, 0x25600,
1208 		0x25608, 0x2561c,
1209 		0x25624, 0x25628,
1210 		0x25630, 0x25634,
1211 		0x2563c, 0x2563c,
1212 		0x25700, 0x2571c,
1213 		0x25780, 0x2578c,
1214 		0x25800, 0x25818,
1215 		0x25820, 0x25828,
1216 		0x25830, 0x25848,
1217 		0x25850, 0x25854,
1218 		0x25860, 0x25868,
1219 		0x25870, 0x25870,
1220 		0x25878, 0x25898,
1221 		0x258a0, 0x258a8,
1222 		0x258b0, 0x258c8,
1223 		0x258d0, 0x258d4,
1224 		0x258e0, 0x258e8,
1225 		0x258f0, 0x258f0,
1226 		0x258f8, 0x25a18,
1227 		0x25a20, 0x25a28,
1228 		0x25a30, 0x25a48,
1229 		0x25a50, 0x25a54,
1230 		0x25a60, 0x25a68,
1231 		0x25a70, 0x25a70,
1232 		0x25a78, 0x25a98,
1233 		0x25aa0, 0x25aa8,
1234 		0x25ab0, 0x25ac8,
1235 		0x25ad0, 0x25ad4,
1236 		0x25ae0, 0x25ae8,
1237 		0x25af0, 0x25af0,
1238 		0x25af8, 0x25c18,
1239 		0x25c20, 0x25c20,
1240 		0x25c28, 0x25c30,
1241 		0x25c38, 0x25c38,
1242 		0x25c80, 0x25c98,
1243 		0x25ca0, 0x25ca8,
1244 		0x25cb0, 0x25cc8,
1245 		0x25cd0, 0x25cd4,
1246 		0x25ce0, 0x25ce8,
1247 		0x25cf0, 0x25cf0,
1248 		0x25cf8, 0x25d7c,
1249 		0x25e00, 0x25e04,
1250 		0x26000, 0x2602c,
1251 		0x26100, 0x2613c,
1252 		0x26190, 0x261a0,
1253 		0x261a8, 0x261b8,
1254 		0x261c4, 0x261c8,
1255 		0x26200, 0x26318,
1256 		0x26400, 0x264b4,
1257 		0x264c0, 0x26528,
1258 		0x26540, 0x26614,
1259 		0x27000, 0x27040,
1260 		0x2704c, 0x27060,
1261 		0x270c0, 0x270ec,
1262 		0x27200, 0x27268,
1263 		0x27270, 0x27284,
1264 		0x272fc, 0x27388,
1265 		0x27400, 0x27404,
1266 		0x27500, 0x27500,
1267 		0x27510, 0x27518,
1268 		0x2752c, 0x27530,
1269 		0x2753c, 0x2753c,
1270 		0x27550, 0x27554,
1271 		0x27600, 0x27600,
1272 		0x27608, 0x2761c,
1273 		0x27624, 0x27628,
1274 		0x27630, 0x27634,
1275 		0x2763c, 0x2763c,
1276 		0x27700, 0x2771c,
1277 		0x27780, 0x2778c,
1278 		0x27800, 0x27818,
1279 		0x27820, 0x27828,
1280 		0x27830, 0x27848,
1281 		0x27850, 0x27854,
1282 		0x27860, 0x27868,
1283 		0x27870, 0x27870,
1284 		0x27878, 0x27898,
1285 		0x278a0, 0x278a8,
1286 		0x278b0, 0x278c8,
1287 		0x278d0, 0x278d4,
1288 		0x278e0, 0x278e8,
1289 		0x278f0, 0x278f0,
1290 		0x278f8, 0x27a18,
1291 		0x27a20, 0x27a28,
1292 		0x27a30, 0x27a48,
1293 		0x27a50, 0x27a54,
1294 		0x27a60, 0x27a68,
1295 		0x27a70, 0x27a70,
1296 		0x27a78, 0x27a98,
1297 		0x27aa0, 0x27aa8,
1298 		0x27ab0, 0x27ac8,
1299 		0x27ad0, 0x27ad4,
1300 		0x27ae0, 0x27ae8,
1301 		0x27af0, 0x27af0,
1302 		0x27af8, 0x27c18,
1303 		0x27c20, 0x27c20,
1304 		0x27c28, 0x27c30,
1305 		0x27c38, 0x27c38,
1306 		0x27c80, 0x27c98,
1307 		0x27ca0, 0x27ca8,
1308 		0x27cb0, 0x27cc8,
1309 		0x27cd0, 0x27cd4,
1310 		0x27ce0, 0x27ce8,
1311 		0x27cf0, 0x27cf0,
1312 		0x27cf8, 0x27d7c,
1313 		0x27e00, 0x27e04,
1314 	};
1315 
1316 	static const unsigned int t4vf_reg_ranges[] = {
1317 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1318 		VF_MPS_REG(A_MPS_VF_CTL),
1319 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1320 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1321 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1322 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1323 		FW_T4VF_MBDATA_BASE_ADDR,
1324 		FW_T4VF_MBDATA_BASE_ADDR +
1325 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1326 	};
1327 
1328 	static const unsigned int t5_reg_ranges[] = {
1329 		0x1008, 0x10c0,
1330 		0x10cc, 0x10f8,
1331 		0x1100, 0x1100,
1332 		0x110c, 0x1148,
1333 		0x1180, 0x1184,
1334 		0x1190, 0x1194,
1335 		0x11a0, 0x11a4,
1336 		0x11b0, 0x11b4,
1337 		0x11fc, 0x123c,
1338 		0x1280, 0x173c,
1339 		0x1800, 0x18fc,
1340 		0x3000, 0x3028,
1341 		0x3060, 0x30b0,
1342 		0x30b8, 0x30d8,
1343 		0x30e0, 0x30fc,
1344 		0x3140, 0x357c,
1345 		0x35a8, 0x35cc,
1346 		0x35ec, 0x35ec,
1347 		0x3600, 0x5624,
1348 		0x56cc, 0x56ec,
1349 		0x56f4, 0x5720,
1350 		0x5728, 0x575c,
1351 		0x580c, 0x5814,
1352 		0x5890, 0x589c,
1353 		0x58a4, 0x58ac,
1354 		0x58b8, 0x58bc,
1355 		0x5940, 0x59c8,
1356 		0x59d0, 0x59dc,
1357 		0x59fc, 0x5a18,
1358 		0x5a60, 0x5a70,
1359 		0x5a80, 0x5a9c,
1360 		0x5b94, 0x5bfc,
1361 		0x6000, 0x6020,
1362 		0x6028, 0x6040,
1363 		0x6058, 0x609c,
1364 		0x60a8, 0x614c,
1365 		0x7700, 0x7798,
1366 		0x77c0, 0x78fc,
1367 		0x7b00, 0x7b58,
1368 		0x7b60, 0x7b84,
1369 		0x7b8c, 0x7c54,
1370 		0x7d00, 0x7d38,
1371 		0x7d40, 0x7d80,
1372 		0x7d8c, 0x7ddc,
1373 		0x7de4, 0x7e04,
1374 		0x7e10, 0x7e1c,
1375 		0x7e24, 0x7e38,
1376 		0x7e40, 0x7e44,
1377 		0x7e4c, 0x7e78,
1378 		0x7e80, 0x7edc,
1379 		0x7ee8, 0x7efc,
1380 		0x8dc0, 0x8de0,
1381 		0x8df8, 0x8e04,
1382 		0x8e10, 0x8e84,
1383 		0x8ea0, 0x8f84,
1384 		0x8fc0, 0x9058,
1385 		0x9060, 0x9060,
1386 		0x9068, 0x90f8,
1387 		0x9400, 0x9408,
1388 		0x9410, 0x9470,
1389 		0x9600, 0x9600,
1390 		0x9608, 0x9638,
1391 		0x9640, 0x96f4,
1392 		0x9800, 0x9808,
1393 		0x9810, 0x9864,
1394 		0x9c00, 0x9c6c,
1395 		0x9c80, 0x9cec,
1396 		0x9d00, 0x9d6c,
1397 		0x9d80, 0x9dec,
1398 		0x9e00, 0x9e6c,
1399 		0x9e80, 0x9eec,
1400 		0x9f00, 0x9f6c,
1401 		0x9f80, 0xa020,
1402 		0xd000, 0xd004,
1403 		0xd010, 0xd03c,
1404 		0xdfc0, 0xdfe0,
1405 		0xe000, 0x1106c,
1406 		0x11074, 0x11088,
1407 		0x1109c, 0x11110,
1408 		0x11118, 0x1117c,
1409 		0x11190, 0x11204,
1410 		0x19040, 0x1906c,
1411 		0x19078, 0x19080,
1412 		0x1908c, 0x190e8,
1413 		0x190f0, 0x190f8,
1414 		0x19100, 0x19110,
1415 		0x19120, 0x19124,
1416 		0x19150, 0x19194,
1417 		0x1919c, 0x191b0,
1418 		0x191d0, 0x191e8,
1419 		0x19238, 0x19290,
1420 		0x193f8, 0x19428,
1421 		0x19430, 0x19444,
1422 		0x1944c, 0x1946c,
1423 		0x19474, 0x19474,
1424 		0x19490, 0x194cc,
1425 		0x194f0, 0x194f8,
1426 		0x19c00, 0x19c08,
1427 		0x19c10, 0x19c60,
1428 		0x19c94, 0x19ce4,
1429 		0x19cf0, 0x19d40,
1430 		0x19d50, 0x19d94,
1431 		0x19da0, 0x19de8,
1432 		0x19df0, 0x19e10,
1433 		0x19e50, 0x19e90,
1434 		0x19ea0, 0x19f24,
1435 		0x19f34, 0x19f34,
1436 		0x19f40, 0x19f50,
1437 		0x19f90, 0x19fb4,
1438 		0x19fc4, 0x19fe4,
1439 		0x1a000, 0x1a004,
1440 		0x1a010, 0x1a06c,
1441 		0x1a0b0, 0x1a0e4,
1442 		0x1a0ec, 0x1a0f8,
1443 		0x1a100, 0x1a108,
1444 		0x1a114, 0x1a130,
1445 		0x1a138, 0x1a1c4,
1446 		0x1a1fc, 0x1a1fc,
1447 		0x1e008, 0x1e00c,
1448 		0x1e040, 0x1e044,
1449 		0x1e04c, 0x1e04c,
1450 		0x1e284, 0x1e290,
1451 		0x1e2c0, 0x1e2c0,
1452 		0x1e2e0, 0x1e2e0,
1453 		0x1e300, 0x1e384,
1454 		0x1e3c0, 0x1e3c8,
1455 		0x1e408, 0x1e40c,
1456 		0x1e440, 0x1e444,
1457 		0x1e44c, 0x1e44c,
1458 		0x1e684, 0x1e690,
1459 		0x1e6c0, 0x1e6c0,
1460 		0x1e6e0, 0x1e6e0,
1461 		0x1e700, 0x1e784,
1462 		0x1e7c0, 0x1e7c8,
1463 		0x1e808, 0x1e80c,
1464 		0x1e840, 0x1e844,
1465 		0x1e84c, 0x1e84c,
1466 		0x1ea84, 0x1ea90,
1467 		0x1eac0, 0x1eac0,
1468 		0x1eae0, 0x1eae0,
1469 		0x1eb00, 0x1eb84,
1470 		0x1ebc0, 0x1ebc8,
1471 		0x1ec08, 0x1ec0c,
1472 		0x1ec40, 0x1ec44,
1473 		0x1ec4c, 0x1ec4c,
1474 		0x1ee84, 0x1ee90,
1475 		0x1eec0, 0x1eec0,
1476 		0x1eee0, 0x1eee0,
1477 		0x1ef00, 0x1ef84,
1478 		0x1efc0, 0x1efc8,
1479 		0x1f008, 0x1f00c,
1480 		0x1f040, 0x1f044,
1481 		0x1f04c, 0x1f04c,
1482 		0x1f284, 0x1f290,
1483 		0x1f2c0, 0x1f2c0,
1484 		0x1f2e0, 0x1f2e0,
1485 		0x1f300, 0x1f384,
1486 		0x1f3c0, 0x1f3c8,
1487 		0x1f408, 0x1f40c,
1488 		0x1f440, 0x1f444,
1489 		0x1f44c, 0x1f44c,
1490 		0x1f684, 0x1f690,
1491 		0x1f6c0, 0x1f6c0,
1492 		0x1f6e0, 0x1f6e0,
1493 		0x1f700, 0x1f784,
1494 		0x1f7c0, 0x1f7c8,
1495 		0x1f808, 0x1f80c,
1496 		0x1f840, 0x1f844,
1497 		0x1f84c, 0x1f84c,
1498 		0x1fa84, 0x1fa90,
1499 		0x1fac0, 0x1fac0,
1500 		0x1fae0, 0x1fae0,
1501 		0x1fb00, 0x1fb84,
1502 		0x1fbc0, 0x1fbc8,
1503 		0x1fc08, 0x1fc0c,
1504 		0x1fc40, 0x1fc44,
1505 		0x1fc4c, 0x1fc4c,
1506 		0x1fe84, 0x1fe90,
1507 		0x1fec0, 0x1fec0,
1508 		0x1fee0, 0x1fee0,
1509 		0x1ff00, 0x1ff84,
1510 		0x1ffc0, 0x1ffc8,
1511 		0x30000, 0x30030,
1512 		0x30100, 0x30144,
1513 		0x30190, 0x301a0,
1514 		0x301a8, 0x301b8,
1515 		0x301c4, 0x301c8,
1516 		0x301d0, 0x301d0,
1517 		0x30200, 0x30318,
1518 		0x30400, 0x304b4,
1519 		0x304c0, 0x3052c,
1520 		0x30540, 0x3061c,
1521 		0x30800, 0x30828,
1522 		0x30834, 0x30834,
1523 		0x308c0, 0x30908,
1524 		0x30910, 0x309ac,
1525 		0x30a00, 0x30a14,
1526 		0x30a1c, 0x30a2c,
1527 		0x30a44, 0x30a50,
1528 		0x30a74, 0x30a74,
1529 		0x30a7c, 0x30afc,
1530 		0x30b08, 0x30c24,
1531 		0x30d00, 0x30d00,
1532 		0x30d08, 0x30d14,
1533 		0x30d1c, 0x30d20,
1534 		0x30d3c, 0x30d3c,
1535 		0x30d48, 0x30d50,
1536 		0x31200, 0x3120c,
1537 		0x31220, 0x31220,
1538 		0x31240, 0x31240,
1539 		0x31600, 0x3160c,
1540 		0x31a00, 0x31a1c,
1541 		0x31e00, 0x31e20,
1542 		0x31e38, 0x31e3c,
1543 		0x31e80, 0x31e80,
1544 		0x31e88, 0x31ea8,
1545 		0x31eb0, 0x31eb4,
1546 		0x31ec8, 0x31ed4,
1547 		0x31fb8, 0x32004,
1548 		0x32200, 0x32200,
1549 		0x32208, 0x32240,
1550 		0x32248, 0x32280,
1551 		0x32288, 0x322c0,
1552 		0x322c8, 0x322fc,
1553 		0x32600, 0x32630,
1554 		0x32a00, 0x32abc,
1555 		0x32b00, 0x32b10,
1556 		0x32b20, 0x32b30,
1557 		0x32b40, 0x32b50,
1558 		0x32b60, 0x32b70,
1559 		0x33000, 0x33028,
1560 		0x33030, 0x33048,
1561 		0x33060, 0x33068,
1562 		0x33070, 0x3309c,
1563 		0x330f0, 0x33128,
1564 		0x33130, 0x33148,
1565 		0x33160, 0x33168,
1566 		0x33170, 0x3319c,
1567 		0x331f0, 0x33238,
1568 		0x33240, 0x33240,
1569 		0x33248, 0x33250,
1570 		0x3325c, 0x33264,
1571 		0x33270, 0x332b8,
1572 		0x332c0, 0x332e4,
1573 		0x332f8, 0x33338,
1574 		0x33340, 0x33340,
1575 		0x33348, 0x33350,
1576 		0x3335c, 0x33364,
1577 		0x33370, 0x333b8,
1578 		0x333c0, 0x333e4,
1579 		0x333f8, 0x33428,
1580 		0x33430, 0x33448,
1581 		0x33460, 0x33468,
1582 		0x33470, 0x3349c,
1583 		0x334f0, 0x33528,
1584 		0x33530, 0x33548,
1585 		0x33560, 0x33568,
1586 		0x33570, 0x3359c,
1587 		0x335f0, 0x33638,
1588 		0x33640, 0x33640,
1589 		0x33648, 0x33650,
1590 		0x3365c, 0x33664,
1591 		0x33670, 0x336b8,
1592 		0x336c0, 0x336e4,
1593 		0x336f8, 0x33738,
1594 		0x33740, 0x33740,
1595 		0x33748, 0x33750,
1596 		0x3375c, 0x33764,
1597 		0x33770, 0x337b8,
1598 		0x337c0, 0x337e4,
1599 		0x337f8, 0x337fc,
1600 		0x33814, 0x33814,
1601 		0x3382c, 0x3382c,
1602 		0x33880, 0x3388c,
1603 		0x338e8, 0x338ec,
1604 		0x33900, 0x33928,
1605 		0x33930, 0x33948,
1606 		0x33960, 0x33968,
1607 		0x33970, 0x3399c,
1608 		0x339f0, 0x33a38,
1609 		0x33a40, 0x33a40,
1610 		0x33a48, 0x33a50,
1611 		0x33a5c, 0x33a64,
1612 		0x33a70, 0x33ab8,
1613 		0x33ac0, 0x33ae4,
1614 		0x33af8, 0x33b10,
1615 		0x33b28, 0x33b28,
1616 		0x33b3c, 0x33b50,
1617 		0x33bf0, 0x33c10,
1618 		0x33c28, 0x33c28,
1619 		0x33c3c, 0x33c50,
1620 		0x33cf0, 0x33cfc,
1621 		0x34000, 0x34030,
1622 		0x34100, 0x34144,
1623 		0x34190, 0x341a0,
1624 		0x341a8, 0x341b8,
1625 		0x341c4, 0x341c8,
1626 		0x341d0, 0x341d0,
1627 		0x34200, 0x34318,
1628 		0x34400, 0x344b4,
1629 		0x344c0, 0x3452c,
1630 		0x34540, 0x3461c,
1631 		0x34800, 0x34828,
1632 		0x34834, 0x34834,
1633 		0x348c0, 0x34908,
1634 		0x34910, 0x349ac,
1635 		0x34a00, 0x34a14,
1636 		0x34a1c, 0x34a2c,
1637 		0x34a44, 0x34a50,
1638 		0x34a74, 0x34a74,
1639 		0x34a7c, 0x34afc,
1640 		0x34b08, 0x34c24,
1641 		0x34d00, 0x34d00,
1642 		0x34d08, 0x34d14,
1643 		0x34d1c, 0x34d20,
1644 		0x34d3c, 0x34d3c,
1645 		0x34d48, 0x34d50,
1646 		0x35200, 0x3520c,
1647 		0x35220, 0x35220,
1648 		0x35240, 0x35240,
1649 		0x35600, 0x3560c,
1650 		0x35a00, 0x35a1c,
1651 		0x35e00, 0x35e20,
1652 		0x35e38, 0x35e3c,
1653 		0x35e80, 0x35e80,
1654 		0x35e88, 0x35ea8,
1655 		0x35eb0, 0x35eb4,
1656 		0x35ec8, 0x35ed4,
1657 		0x35fb8, 0x36004,
1658 		0x36200, 0x36200,
1659 		0x36208, 0x36240,
1660 		0x36248, 0x36280,
1661 		0x36288, 0x362c0,
1662 		0x362c8, 0x362fc,
1663 		0x36600, 0x36630,
1664 		0x36a00, 0x36abc,
1665 		0x36b00, 0x36b10,
1666 		0x36b20, 0x36b30,
1667 		0x36b40, 0x36b50,
1668 		0x36b60, 0x36b70,
1669 		0x37000, 0x37028,
1670 		0x37030, 0x37048,
1671 		0x37060, 0x37068,
1672 		0x37070, 0x3709c,
1673 		0x370f0, 0x37128,
1674 		0x37130, 0x37148,
1675 		0x37160, 0x37168,
1676 		0x37170, 0x3719c,
1677 		0x371f0, 0x37238,
1678 		0x37240, 0x37240,
1679 		0x37248, 0x37250,
1680 		0x3725c, 0x37264,
1681 		0x37270, 0x372b8,
1682 		0x372c0, 0x372e4,
1683 		0x372f8, 0x37338,
1684 		0x37340, 0x37340,
1685 		0x37348, 0x37350,
1686 		0x3735c, 0x37364,
1687 		0x37370, 0x373b8,
1688 		0x373c0, 0x373e4,
1689 		0x373f8, 0x37428,
1690 		0x37430, 0x37448,
1691 		0x37460, 0x37468,
1692 		0x37470, 0x3749c,
1693 		0x374f0, 0x37528,
1694 		0x37530, 0x37548,
1695 		0x37560, 0x37568,
1696 		0x37570, 0x3759c,
1697 		0x375f0, 0x37638,
1698 		0x37640, 0x37640,
1699 		0x37648, 0x37650,
1700 		0x3765c, 0x37664,
1701 		0x37670, 0x376b8,
1702 		0x376c0, 0x376e4,
1703 		0x376f8, 0x37738,
1704 		0x37740, 0x37740,
1705 		0x37748, 0x37750,
1706 		0x3775c, 0x37764,
1707 		0x37770, 0x377b8,
1708 		0x377c0, 0x377e4,
1709 		0x377f8, 0x377fc,
1710 		0x37814, 0x37814,
1711 		0x3782c, 0x3782c,
1712 		0x37880, 0x3788c,
1713 		0x378e8, 0x378ec,
1714 		0x37900, 0x37928,
1715 		0x37930, 0x37948,
1716 		0x37960, 0x37968,
1717 		0x37970, 0x3799c,
1718 		0x379f0, 0x37a38,
1719 		0x37a40, 0x37a40,
1720 		0x37a48, 0x37a50,
1721 		0x37a5c, 0x37a64,
1722 		0x37a70, 0x37ab8,
1723 		0x37ac0, 0x37ae4,
1724 		0x37af8, 0x37b10,
1725 		0x37b28, 0x37b28,
1726 		0x37b3c, 0x37b50,
1727 		0x37bf0, 0x37c10,
1728 		0x37c28, 0x37c28,
1729 		0x37c3c, 0x37c50,
1730 		0x37cf0, 0x37cfc,
1731 		0x38000, 0x38030,
1732 		0x38100, 0x38144,
1733 		0x38190, 0x381a0,
1734 		0x381a8, 0x381b8,
1735 		0x381c4, 0x381c8,
1736 		0x381d0, 0x381d0,
1737 		0x38200, 0x38318,
1738 		0x38400, 0x384b4,
1739 		0x384c0, 0x3852c,
1740 		0x38540, 0x3861c,
1741 		0x38800, 0x38828,
1742 		0x38834, 0x38834,
1743 		0x388c0, 0x38908,
1744 		0x38910, 0x389ac,
1745 		0x38a00, 0x38a14,
1746 		0x38a1c, 0x38a2c,
1747 		0x38a44, 0x38a50,
1748 		0x38a74, 0x38a74,
1749 		0x38a7c, 0x38afc,
1750 		0x38b08, 0x38c24,
1751 		0x38d00, 0x38d00,
1752 		0x38d08, 0x38d14,
1753 		0x38d1c, 0x38d20,
1754 		0x38d3c, 0x38d3c,
1755 		0x38d48, 0x38d50,
1756 		0x39200, 0x3920c,
1757 		0x39220, 0x39220,
1758 		0x39240, 0x39240,
1759 		0x39600, 0x3960c,
1760 		0x39a00, 0x39a1c,
1761 		0x39e00, 0x39e20,
1762 		0x39e38, 0x39e3c,
1763 		0x39e80, 0x39e80,
1764 		0x39e88, 0x39ea8,
1765 		0x39eb0, 0x39eb4,
1766 		0x39ec8, 0x39ed4,
1767 		0x39fb8, 0x3a004,
1768 		0x3a200, 0x3a200,
1769 		0x3a208, 0x3a240,
1770 		0x3a248, 0x3a280,
1771 		0x3a288, 0x3a2c0,
1772 		0x3a2c8, 0x3a2fc,
1773 		0x3a600, 0x3a630,
1774 		0x3aa00, 0x3aabc,
1775 		0x3ab00, 0x3ab10,
1776 		0x3ab20, 0x3ab30,
1777 		0x3ab40, 0x3ab50,
1778 		0x3ab60, 0x3ab70,
1779 		0x3b000, 0x3b028,
1780 		0x3b030, 0x3b048,
1781 		0x3b060, 0x3b068,
1782 		0x3b070, 0x3b09c,
1783 		0x3b0f0, 0x3b128,
1784 		0x3b130, 0x3b148,
1785 		0x3b160, 0x3b168,
1786 		0x3b170, 0x3b19c,
1787 		0x3b1f0, 0x3b238,
1788 		0x3b240, 0x3b240,
1789 		0x3b248, 0x3b250,
1790 		0x3b25c, 0x3b264,
1791 		0x3b270, 0x3b2b8,
1792 		0x3b2c0, 0x3b2e4,
1793 		0x3b2f8, 0x3b338,
1794 		0x3b340, 0x3b340,
1795 		0x3b348, 0x3b350,
1796 		0x3b35c, 0x3b364,
1797 		0x3b370, 0x3b3b8,
1798 		0x3b3c0, 0x3b3e4,
1799 		0x3b3f8, 0x3b428,
1800 		0x3b430, 0x3b448,
1801 		0x3b460, 0x3b468,
1802 		0x3b470, 0x3b49c,
1803 		0x3b4f0, 0x3b528,
1804 		0x3b530, 0x3b548,
1805 		0x3b560, 0x3b568,
1806 		0x3b570, 0x3b59c,
1807 		0x3b5f0, 0x3b638,
1808 		0x3b640, 0x3b640,
1809 		0x3b648, 0x3b650,
1810 		0x3b65c, 0x3b664,
1811 		0x3b670, 0x3b6b8,
1812 		0x3b6c0, 0x3b6e4,
1813 		0x3b6f8, 0x3b738,
1814 		0x3b740, 0x3b740,
1815 		0x3b748, 0x3b750,
1816 		0x3b75c, 0x3b764,
1817 		0x3b770, 0x3b7b8,
1818 		0x3b7c0, 0x3b7e4,
1819 		0x3b7f8, 0x3b7fc,
1820 		0x3b814, 0x3b814,
1821 		0x3b82c, 0x3b82c,
1822 		0x3b880, 0x3b88c,
1823 		0x3b8e8, 0x3b8ec,
1824 		0x3b900, 0x3b928,
1825 		0x3b930, 0x3b948,
1826 		0x3b960, 0x3b968,
1827 		0x3b970, 0x3b99c,
1828 		0x3b9f0, 0x3ba38,
1829 		0x3ba40, 0x3ba40,
1830 		0x3ba48, 0x3ba50,
1831 		0x3ba5c, 0x3ba64,
1832 		0x3ba70, 0x3bab8,
1833 		0x3bac0, 0x3bae4,
1834 		0x3baf8, 0x3bb10,
1835 		0x3bb28, 0x3bb28,
1836 		0x3bb3c, 0x3bb50,
1837 		0x3bbf0, 0x3bc10,
1838 		0x3bc28, 0x3bc28,
1839 		0x3bc3c, 0x3bc50,
1840 		0x3bcf0, 0x3bcfc,
1841 		0x3c000, 0x3c030,
1842 		0x3c100, 0x3c144,
1843 		0x3c190, 0x3c1a0,
1844 		0x3c1a8, 0x3c1b8,
1845 		0x3c1c4, 0x3c1c8,
1846 		0x3c1d0, 0x3c1d0,
1847 		0x3c200, 0x3c318,
1848 		0x3c400, 0x3c4b4,
1849 		0x3c4c0, 0x3c52c,
1850 		0x3c540, 0x3c61c,
1851 		0x3c800, 0x3c828,
1852 		0x3c834, 0x3c834,
1853 		0x3c8c0, 0x3c908,
1854 		0x3c910, 0x3c9ac,
1855 		0x3ca00, 0x3ca14,
1856 		0x3ca1c, 0x3ca2c,
1857 		0x3ca44, 0x3ca50,
1858 		0x3ca74, 0x3ca74,
1859 		0x3ca7c, 0x3cafc,
1860 		0x3cb08, 0x3cc24,
1861 		0x3cd00, 0x3cd00,
1862 		0x3cd08, 0x3cd14,
1863 		0x3cd1c, 0x3cd20,
1864 		0x3cd3c, 0x3cd3c,
1865 		0x3cd48, 0x3cd50,
1866 		0x3d200, 0x3d20c,
1867 		0x3d220, 0x3d220,
1868 		0x3d240, 0x3d240,
1869 		0x3d600, 0x3d60c,
1870 		0x3da00, 0x3da1c,
1871 		0x3de00, 0x3de20,
1872 		0x3de38, 0x3de3c,
1873 		0x3de80, 0x3de80,
1874 		0x3de88, 0x3dea8,
1875 		0x3deb0, 0x3deb4,
1876 		0x3dec8, 0x3ded4,
1877 		0x3dfb8, 0x3e004,
1878 		0x3e200, 0x3e200,
1879 		0x3e208, 0x3e240,
1880 		0x3e248, 0x3e280,
1881 		0x3e288, 0x3e2c0,
1882 		0x3e2c8, 0x3e2fc,
1883 		0x3e600, 0x3e630,
1884 		0x3ea00, 0x3eabc,
1885 		0x3eb00, 0x3eb10,
1886 		0x3eb20, 0x3eb30,
1887 		0x3eb40, 0x3eb50,
1888 		0x3eb60, 0x3eb70,
1889 		0x3f000, 0x3f028,
1890 		0x3f030, 0x3f048,
1891 		0x3f060, 0x3f068,
1892 		0x3f070, 0x3f09c,
1893 		0x3f0f0, 0x3f128,
1894 		0x3f130, 0x3f148,
1895 		0x3f160, 0x3f168,
1896 		0x3f170, 0x3f19c,
1897 		0x3f1f0, 0x3f238,
1898 		0x3f240, 0x3f240,
1899 		0x3f248, 0x3f250,
1900 		0x3f25c, 0x3f264,
1901 		0x3f270, 0x3f2b8,
1902 		0x3f2c0, 0x3f2e4,
1903 		0x3f2f8, 0x3f338,
1904 		0x3f340, 0x3f340,
1905 		0x3f348, 0x3f350,
1906 		0x3f35c, 0x3f364,
1907 		0x3f370, 0x3f3b8,
1908 		0x3f3c0, 0x3f3e4,
1909 		0x3f3f8, 0x3f428,
1910 		0x3f430, 0x3f448,
1911 		0x3f460, 0x3f468,
1912 		0x3f470, 0x3f49c,
1913 		0x3f4f0, 0x3f528,
1914 		0x3f530, 0x3f548,
1915 		0x3f560, 0x3f568,
1916 		0x3f570, 0x3f59c,
1917 		0x3f5f0, 0x3f638,
1918 		0x3f640, 0x3f640,
1919 		0x3f648, 0x3f650,
1920 		0x3f65c, 0x3f664,
1921 		0x3f670, 0x3f6b8,
1922 		0x3f6c0, 0x3f6e4,
1923 		0x3f6f8, 0x3f738,
1924 		0x3f740, 0x3f740,
1925 		0x3f748, 0x3f750,
1926 		0x3f75c, 0x3f764,
1927 		0x3f770, 0x3f7b8,
1928 		0x3f7c0, 0x3f7e4,
1929 		0x3f7f8, 0x3f7fc,
1930 		0x3f814, 0x3f814,
1931 		0x3f82c, 0x3f82c,
1932 		0x3f880, 0x3f88c,
1933 		0x3f8e8, 0x3f8ec,
1934 		0x3f900, 0x3f928,
1935 		0x3f930, 0x3f948,
1936 		0x3f960, 0x3f968,
1937 		0x3f970, 0x3f99c,
1938 		0x3f9f0, 0x3fa38,
1939 		0x3fa40, 0x3fa40,
1940 		0x3fa48, 0x3fa50,
1941 		0x3fa5c, 0x3fa64,
1942 		0x3fa70, 0x3fab8,
1943 		0x3fac0, 0x3fae4,
1944 		0x3faf8, 0x3fb10,
1945 		0x3fb28, 0x3fb28,
1946 		0x3fb3c, 0x3fb50,
1947 		0x3fbf0, 0x3fc10,
1948 		0x3fc28, 0x3fc28,
1949 		0x3fc3c, 0x3fc50,
1950 		0x3fcf0, 0x3fcfc,
1951 		0x40000, 0x4000c,
1952 		0x40040, 0x40050,
1953 		0x40060, 0x40068,
1954 		0x4007c, 0x4008c,
1955 		0x40094, 0x400b0,
1956 		0x400c0, 0x40144,
1957 		0x40180, 0x4018c,
1958 		0x40200, 0x40254,
1959 		0x40260, 0x40264,
1960 		0x40270, 0x40288,
1961 		0x40290, 0x40298,
1962 		0x402ac, 0x402c8,
1963 		0x402d0, 0x402e0,
1964 		0x402f0, 0x402f0,
1965 		0x40300, 0x4033c,
1966 		0x403f8, 0x403fc,
1967 		0x41304, 0x413c4,
1968 		0x41400, 0x4140c,
1969 		0x41414, 0x4141c,
1970 		0x41480, 0x414d0,
1971 		0x44000, 0x44054,
1972 		0x4405c, 0x44078,
1973 		0x440c0, 0x44174,
1974 		0x44180, 0x441ac,
1975 		0x441b4, 0x441b8,
1976 		0x441c0, 0x44254,
1977 		0x4425c, 0x44278,
1978 		0x442c0, 0x44374,
1979 		0x44380, 0x443ac,
1980 		0x443b4, 0x443b8,
1981 		0x443c0, 0x44454,
1982 		0x4445c, 0x44478,
1983 		0x444c0, 0x44574,
1984 		0x44580, 0x445ac,
1985 		0x445b4, 0x445b8,
1986 		0x445c0, 0x44654,
1987 		0x4465c, 0x44678,
1988 		0x446c0, 0x44774,
1989 		0x44780, 0x447ac,
1990 		0x447b4, 0x447b8,
1991 		0x447c0, 0x44854,
1992 		0x4485c, 0x44878,
1993 		0x448c0, 0x44974,
1994 		0x44980, 0x449ac,
1995 		0x449b4, 0x449b8,
1996 		0x449c0, 0x449fc,
1997 		0x45000, 0x45004,
1998 		0x45010, 0x45030,
1999 		0x45040, 0x45060,
2000 		0x45068, 0x45068,
2001 		0x45080, 0x45084,
2002 		0x450a0, 0x450b0,
2003 		0x45200, 0x45204,
2004 		0x45210, 0x45230,
2005 		0x45240, 0x45260,
2006 		0x45268, 0x45268,
2007 		0x45280, 0x45284,
2008 		0x452a0, 0x452b0,
2009 		0x460c0, 0x460e4,
2010 		0x47000, 0x4703c,
2011 		0x47044, 0x4708c,
2012 		0x47200, 0x47250,
2013 		0x47400, 0x47408,
2014 		0x47414, 0x47420,
2015 		0x47600, 0x47618,
2016 		0x47800, 0x47814,
2017 		0x48000, 0x4800c,
2018 		0x48040, 0x48050,
2019 		0x48060, 0x48068,
2020 		0x4807c, 0x4808c,
2021 		0x48094, 0x480b0,
2022 		0x480c0, 0x48144,
2023 		0x48180, 0x4818c,
2024 		0x48200, 0x48254,
2025 		0x48260, 0x48264,
2026 		0x48270, 0x48288,
2027 		0x48290, 0x48298,
2028 		0x482ac, 0x482c8,
2029 		0x482d0, 0x482e0,
2030 		0x482f0, 0x482f0,
2031 		0x48300, 0x4833c,
2032 		0x483f8, 0x483fc,
2033 		0x49304, 0x493c4,
2034 		0x49400, 0x4940c,
2035 		0x49414, 0x4941c,
2036 		0x49480, 0x494d0,
2037 		0x4c000, 0x4c054,
2038 		0x4c05c, 0x4c078,
2039 		0x4c0c0, 0x4c174,
2040 		0x4c180, 0x4c1ac,
2041 		0x4c1b4, 0x4c1b8,
2042 		0x4c1c0, 0x4c254,
2043 		0x4c25c, 0x4c278,
2044 		0x4c2c0, 0x4c374,
2045 		0x4c380, 0x4c3ac,
2046 		0x4c3b4, 0x4c3b8,
2047 		0x4c3c0, 0x4c454,
2048 		0x4c45c, 0x4c478,
2049 		0x4c4c0, 0x4c574,
2050 		0x4c580, 0x4c5ac,
2051 		0x4c5b4, 0x4c5b8,
2052 		0x4c5c0, 0x4c654,
2053 		0x4c65c, 0x4c678,
2054 		0x4c6c0, 0x4c774,
2055 		0x4c780, 0x4c7ac,
2056 		0x4c7b4, 0x4c7b8,
2057 		0x4c7c0, 0x4c854,
2058 		0x4c85c, 0x4c878,
2059 		0x4c8c0, 0x4c974,
2060 		0x4c980, 0x4c9ac,
2061 		0x4c9b4, 0x4c9b8,
2062 		0x4c9c0, 0x4c9fc,
2063 		0x4d000, 0x4d004,
2064 		0x4d010, 0x4d030,
2065 		0x4d040, 0x4d060,
2066 		0x4d068, 0x4d068,
2067 		0x4d080, 0x4d084,
2068 		0x4d0a0, 0x4d0b0,
2069 		0x4d200, 0x4d204,
2070 		0x4d210, 0x4d230,
2071 		0x4d240, 0x4d260,
2072 		0x4d268, 0x4d268,
2073 		0x4d280, 0x4d284,
2074 		0x4d2a0, 0x4d2b0,
2075 		0x4e0c0, 0x4e0e4,
2076 		0x4f000, 0x4f03c,
2077 		0x4f044, 0x4f08c,
2078 		0x4f200, 0x4f250,
2079 		0x4f400, 0x4f408,
2080 		0x4f414, 0x4f420,
2081 		0x4f600, 0x4f618,
2082 		0x4f800, 0x4f814,
2083 		0x50000, 0x50084,
2084 		0x50090, 0x500cc,
2085 		0x50400, 0x50400,
2086 		0x50800, 0x50884,
2087 		0x50890, 0x508cc,
2088 		0x50c00, 0x50c00,
2089 		0x51000, 0x5101c,
2090 		0x51300, 0x51308,
2091 	};
2092 
2093 	static const unsigned int t5vf_reg_ranges[] = {
2094 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2095 		VF_MPS_REG(A_MPS_VF_CTL),
2096 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2097 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2098 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2099 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2100 		FW_T4VF_MBDATA_BASE_ADDR,
2101 		FW_T4VF_MBDATA_BASE_ADDR +
2102 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2103 	};
2104 
2105 	static const unsigned int t6_reg_ranges[] = {
2106 		0x1008, 0x101c,
2107 		0x1024, 0x10a8,
2108 		0x10b4, 0x10f8,
2109 		0x1100, 0x1114,
2110 		0x111c, 0x112c,
2111 		0x1138, 0x113c,
2112 		0x1144, 0x114c,
2113 		0x1180, 0x1184,
2114 		0x1190, 0x1194,
2115 		0x11a0, 0x11a4,
2116 		0x11b0, 0x11c4,
2117 		0x11fc, 0x123c,
2118 		0x1254, 0x1274,
2119 		0x1280, 0x133c,
2120 		0x1800, 0x18fc,
2121 		0x3000, 0x302c,
2122 		0x3060, 0x30b0,
2123 		0x30b8, 0x30d8,
2124 		0x30e0, 0x30fc,
2125 		0x3140, 0x357c,
2126 		0x35a8, 0x35cc,
2127 		0x35ec, 0x35ec,
2128 		0x3600, 0x5624,
2129 		0x56cc, 0x56ec,
2130 		0x56f4, 0x5720,
2131 		0x5728, 0x575c,
2132 		0x580c, 0x5814,
2133 		0x5890, 0x589c,
2134 		0x58a4, 0x58ac,
2135 		0x58b8, 0x58bc,
2136 		0x5940, 0x595c,
2137 		0x5980, 0x598c,
2138 		0x59b0, 0x59c8,
2139 		0x59d0, 0x59dc,
2140 		0x59fc, 0x5a18,
2141 		0x5a60, 0x5a6c,
2142 		0x5a80, 0x5a8c,
2143 		0x5a94, 0x5a9c,
2144 		0x5b94, 0x5bfc,
2145 		0x5c10, 0x5e48,
2146 		0x5e50, 0x5e94,
2147 		0x5ea0, 0x5eb0,
2148 		0x5ec0, 0x5ec0,
2149 		0x5ec8, 0x5ed0,
2150 		0x5ee0, 0x5ee0,
2151 		0x5ef0, 0x5ef0,
2152 		0x5f00, 0x5f00,
2153 		0x6000, 0x6020,
2154 		0x6028, 0x6040,
2155 		0x6058, 0x609c,
2156 		0x60a8, 0x619c,
2157 		0x7700, 0x7798,
2158 		0x77c0, 0x7880,
2159 		0x78cc, 0x78fc,
2160 		0x7b00, 0x7b58,
2161 		0x7b60, 0x7b84,
2162 		0x7b8c, 0x7c54,
2163 		0x7d00, 0x7d38,
2164 		0x7d40, 0x7d84,
2165 		0x7d8c, 0x7ddc,
2166 		0x7de4, 0x7e04,
2167 		0x7e10, 0x7e1c,
2168 		0x7e24, 0x7e38,
2169 		0x7e40, 0x7e44,
2170 		0x7e4c, 0x7e78,
2171 		0x7e80, 0x7edc,
2172 		0x7ee8, 0x7efc,
2173 		0x8dc0, 0x8de0,
2174 		0x8df8, 0x8e04,
2175 		0x8e10, 0x8e84,
2176 		0x8ea0, 0x8f88,
2177 		0x8fb8, 0x9058,
2178 		0x9060, 0x9060,
2179 		0x9068, 0x90f8,
2180 		0x9100, 0x9124,
2181 		0x9400, 0x9470,
2182 		0x9600, 0x9600,
2183 		0x9608, 0x9638,
2184 		0x9640, 0x9704,
2185 		0x9710, 0x971c,
2186 		0x9800, 0x9808,
2187 		0x9810, 0x9864,
2188 		0x9c00, 0x9c6c,
2189 		0x9c80, 0x9cec,
2190 		0x9d00, 0x9d6c,
2191 		0x9d80, 0x9dec,
2192 		0x9e00, 0x9e6c,
2193 		0x9e80, 0x9eec,
2194 		0x9f00, 0x9f6c,
2195 		0x9f80, 0xa020,
2196 		0xd000, 0xd03c,
2197 		0xd100, 0xd118,
2198 		0xd200, 0xd214,
2199 		0xd220, 0xd234,
2200 		0xd240, 0xd254,
2201 		0xd260, 0xd274,
2202 		0xd280, 0xd294,
2203 		0xd2a0, 0xd2b4,
2204 		0xd2c0, 0xd2d4,
2205 		0xd2e0, 0xd2f4,
2206 		0xd300, 0xd31c,
2207 		0xdfc0, 0xdfe0,
2208 		0xe000, 0xf008,
2209 		0xf010, 0xf018,
2210 		0xf020, 0xf028,
2211 		0x11000, 0x11014,
2212 		0x11048, 0x1106c,
2213 		0x11074, 0x11088,
2214 		0x11098, 0x11120,
2215 		0x1112c, 0x1117c,
2216 		0x11190, 0x112e0,
2217 		0x11300, 0x1130c,
2218 		0x12000, 0x1206c,
2219 		0x19040, 0x1906c,
2220 		0x19078, 0x19080,
2221 		0x1908c, 0x190e8,
2222 		0x190f0, 0x190f8,
2223 		0x19100, 0x19110,
2224 		0x19120, 0x19124,
2225 		0x19150, 0x19194,
2226 		0x1919c, 0x191b0,
2227 		0x191d0, 0x191e8,
2228 		0x19238, 0x19290,
2229 		0x192a4, 0x192b0,
2230 		0x19348, 0x1934c,
2231 		0x193f8, 0x19418,
2232 		0x19420, 0x19428,
2233 		0x19430, 0x19444,
2234 		0x1944c, 0x1946c,
2235 		0x19474, 0x19474,
2236 		0x19490, 0x194cc,
2237 		0x194f0, 0x194f8,
2238 		0x19c00, 0x19c48,
2239 		0x19c50, 0x19c80,
2240 		0x19c94, 0x19c98,
2241 		0x19ca0, 0x19cbc,
2242 		0x19ce4, 0x19ce4,
2243 		0x19cf0, 0x19cf8,
2244 		0x19d00, 0x19d28,
2245 		0x19d50, 0x19d78,
2246 		0x19d94, 0x19d98,
2247 		0x19da0, 0x19de0,
2248 		0x19df0, 0x19e10,
2249 		0x19e50, 0x19e6c,
2250 		0x19ea0, 0x19ebc,
2251 		0x19ec4, 0x19ef4,
2252 		0x19f04, 0x19f2c,
2253 		0x19f34, 0x19f34,
2254 		0x19f40, 0x19f50,
2255 		0x19f90, 0x19fac,
2256 		0x19fc4, 0x19fc8,
2257 		0x19fd0, 0x19fe4,
2258 		0x1a000, 0x1a004,
2259 		0x1a010, 0x1a06c,
2260 		0x1a0b0, 0x1a0e4,
2261 		0x1a0ec, 0x1a0f8,
2262 		0x1a100, 0x1a108,
2263 		0x1a114, 0x1a130,
2264 		0x1a138, 0x1a1c4,
2265 		0x1a1fc, 0x1a1fc,
2266 		0x1e008, 0x1e00c,
2267 		0x1e040, 0x1e044,
2268 		0x1e04c, 0x1e04c,
2269 		0x1e284, 0x1e290,
2270 		0x1e2c0, 0x1e2c0,
2271 		0x1e2e0, 0x1e2e0,
2272 		0x1e300, 0x1e384,
2273 		0x1e3c0, 0x1e3c8,
2274 		0x1e408, 0x1e40c,
2275 		0x1e440, 0x1e444,
2276 		0x1e44c, 0x1e44c,
2277 		0x1e684, 0x1e690,
2278 		0x1e6c0, 0x1e6c0,
2279 		0x1e6e0, 0x1e6e0,
2280 		0x1e700, 0x1e784,
2281 		0x1e7c0, 0x1e7c8,
2282 		0x1e808, 0x1e80c,
2283 		0x1e840, 0x1e844,
2284 		0x1e84c, 0x1e84c,
2285 		0x1ea84, 0x1ea90,
2286 		0x1eac0, 0x1eac0,
2287 		0x1eae0, 0x1eae0,
2288 		0x1eb00, 0x1eb84,
2289 		0x1ebc0, 0x1ebc8,
2290 		0x1ec08, 0x1ec0c,
2291 		0x1ec40, 0x1ec44,
2292 		0x1ec4c, 0x1ec4c,
2293 		0x1ee84, 0x1ee90,
2294 		0x1eec0, 0x1eec0,
2295 		0x1eee0, 0x1eee0,
2296 		0x1ef00, 0x1ef84,
2297 		0x1efc0, 0x1efc8,
2298 		0x1f008, 0x1f00c,
2299 		0x1f040, 0x1f044,
2300 		0x1f04c, 0x1f04c,
2301 		0x1f284, 0x1f290,
2302 		0x1f2c0, 0x1f2c0,
2303 		0x1f2e0, 0x1f2e0,
2304 		0x1f300, 0x1f384,
2305 		0x1f3c0, 0x1f3c8,
2306 		0x1f408, 0x1f40c,
2307 		0x1f440, 0x1f444,
2308 		0x1f44c, 0x1f44c,
2309 		0x1f684, 0x1f690,
2310 		0x1f6c0, 0x1f6c0,
2311 		0x1f6e0, 0x1f6e0,
2312 		0x1f700, 0x1f784,
2313 		0x1f7c0, 0x1f7c8,
2314 		0x1f808, 0x1f80c,
2315 		0x1f840, 0x1f844,
2316 		0x1f84c, 0x1f84c,
2317 		0x1fa84, 0x1fa90,
2318 		0x1fac0, 0x1fac0,
2319 		0x1fae0, 0x1fae0,
2320 		0x1fb00, 0x1fb84,
2321 		0x1fbc0, 0x1fbc8,
2322 		0x1fc08, 0x1fc0c,
2323 		0x1fc40, 0x1fc44,
2324 		0x1fc4c, 0x1fc4c,
2325 		0x1fe84, 0x1fe90,
2326 		0x1fec0, 0x1fec0,
2327 		0x1fee0, 0x1fee0,
2328 		0x1ff00, 0x1ff84,
2329 		0x1ffc0, 0x1ffc8,
2330 		0x30000, 0x30030,
2331 		0x30100, 0x30168,
2332 		0x30190, 0x301a0,
2333 		0x301a8, 0x301b8,
2334 		0x301c4, 0x301c8,
2335 		0x301d0, 0x301d0,
2336 		0x30200, 0x30320,
2337 		0x30400, 0x304b4,
2338 		0x304c0, 0x3052c,
2339 		0x30540, 0x3061c,
2340 		0x30800, 0x308a0,
2341 		0x308c0, 0x30908,
2342 		0x30910, 0x309b8,
2343 		0x30a00, 0x30a04,
2344 		0x30a0c, 0x30a14,
2345 		0x30a1c, 0x30a2c,
2346 		0x30a44, 0x30a50,
2347 		0x30a74, 0x30a74,
2348 		0x30a7c, 0x30afc,
2349 		0x30b08, 0x30c24,
2350 		0x30d00, 0x30d14,
2351 		0x30d1c, 0x30d3c,
2352 		0x30d44, 0x30d4c,
2353 		0x30d54, 0x30d74,
2354 		0x30d7c, 0x30d7c,
2355 		0x30de0, 0x30de0,
2356 		0x30e00, 0x30ed4,
2357 		0x30f00, 0x30fa4,
2358 		0x30fc0, 0x30fc4,
2359 		0x31000, 0x31004,
2360 		0x31080, 0x310fc,
2361 		0x31208, 0x31220,
2362 		0x3123c, 0x31254,
2363 		0x31300, 0x31300,
2364 		0x31308, 0x3131c,
2365 		0x31338, 0x3133c,
2366 		0x31380, 0x31380,
2367 		0x31388, 0x313a8,
2368 		0x313b4, 0x313b4,
2369 		0x31400, 0x31420,
2370 		0x31438, 0x3143c,
2371 		0x31480, 0x31480,
2372 		0x314a8, 0x314a8,
2373 		0x314b0, 0x314b4,
2374 		0x314c8, 0x314d4,
2375 		0x31a40, 0x31a4c,
2376 		0x31af0, 0x31b20,
2377 		0x31b38, 0x31b3c,
2378 		0x31b80, 0x31b80,
2379 		0x31ba8, 0x31ba8,
2380 		0x31bb0, 0x31bb4,
2381 		0x31bc8, 0x31bd4,
2382 		0x32140, 0x3218c,
2383 		0x321f0, 0x321f4,
2384 		0x32200, 0x32200,
2385 		0x32218, 0x32218,
2386 		0x32400, 0x32400,
2387 		0x32408, 0x3241c,
2388 		0x32618, 0x32620,
2389 		0x32664, 0x32664,
2390 		0x326a8, 0x326a8,
2391 		0x326ec, 0x326ec,
2392 		0x32a00, 0x32abc,
2393 		0x32b00, 0x32b18,
2394 		0x32b20, 0x32b38,
2395 		0x32b40, 0x32b58,
2396 		0x32b60, 0x32b78,
2397 		0x32c00, 0x32c00,
2398 		0x32c08, 0x32c3c,
2399 		0x33000, 0x3302c,
2400 		0x33034, 0x33050,
2401 		0x33058, 0x33058,
2402 		0x33060, 0x3308c,
2403 		0x3309c, 0x330ac,
2404 		0x330c0, 0x330c0,
2405 		0x330c8, 0x330d0,
2406 		0x330d8, 0x330e0,
2407 		0x330ec, 0x3312c,
2408 		0x33134, 0x33150,
2409 		0x33158, 0x33158,
2410 		0x33160, 0x3318c,
2411 		0x3319c, 0x331ac,
2412 		0x331c0, 0x331c0,
2413 		0x331c8, 0x331d0,
2414 		0x331d8, 0x331e0,
2415 		0x331ec, 0x33290,
2416 		0x33298, 0x332c4,
2417 		0x332e4, 0x33390,
2418 		0x33398, 0x333c4,
2419 		0x333e4, 0x3342c,
2420 		0x33434, 0x33450,
2421 		0x33458, 0x33458,
2422 		0x33460, 0x3348c,
2423 		0x3349c, 0x334ac,
2424 		0x334c0, 0x334c0,
2425 		0x334c8, 0x334d0,
2426 		0x334d8, 0x334e0,
2427 		0x334ec, 0x3352c,
2428 		0x33534, 0x33550,
2429 		0x33558, 0x33558,
2430 		0x33560, 0x3358c,
2431 		0x3359c, 0x335ac,
2432 		0x335c0, 0x335c0,
2433 		0x335c8, 0x335d0,
2434 		0x335d8, 0x335e0,
2435 		0x335ec, 0x33690,
2436 		0x33698, 0x336c4,
2437 		0x336e4, 0x33790,
2438 		0x33798, 0x337c4,
2439 		0x337e4, 0x337fc,
2440 		0x33814, 0x33814,
2441 		0x33854, 0x33868,
2442 		0x33880, 0x3388c,
2443 		0x338c0, 0x338d0,
2444 		0x338e8, 0x338ec,
2445 		0x33900, 0x3392c,
2446 		0x33934, 0x33950,
2447 		0x33958, 0x33958,
2448 		0x33960, 0x3398c,
2449 		0x3399c, 0x339ac,
2450 		0x339c0, 0x339c0,
2451 		0x339c8, 0x339d0,
2452 		0x339d8, 0x339e0,
2453 		0x339ec, 0x33a90,
2454 		0x33a98, 0x33ac4,
2455 		0x33ae4, 0x33b10,
2456 		0x33b24, 0x33b28,
2457 		0x33b38, 0x33b50,
2458 		0x33bf0, 0x33c10,
2459 		0x33c24, 0x33c28,
2460 		0x33c38, 0x33c50,
2461 		0x33cf0, 0x33cfc,
2462 		0x34000, 0x34030,
2463 		0x34100, 0x34168,
2464 		0x34190, 0x341a0,
2465 		0x341a8, 0x341b8,
2466 		0x341c4, 0x341c8,
2467 		0x341d0, 0x341d0,
2468 		0x34200, 0x34320,
2469 		0x34400, 0x344b4,
2470 		0x344c0, 0x3452c,
2471 		0x34540, 0x3461c,
2472 		0x34800, 0x348a0,
2473 		0x348c0, 0x34908,
2474 		0x34910, 0x349b8,
2475 		0x34a00, 0x34a04,
2476 		0x34a0c, 0x34a14,
2477 		0x34a1c, 0x34a2c,
2478 		0x34a44, 0x34a50,
2479 		0x34a74, 0x34a74,
2480 		0x34a7c, 0x34afc,
2481 		0x34b08, 0x34c24,
2482 		0x34d00, 0x34d14,
2483 		0x34d1c, 0x34d3c,
2484 		0x34d44, 0x34d4c,
2485 		0x34d54, 0x34d74,
2486 		0x34d7c, 0x34d7c,
2487 		0x34de0, 0x34de0,
2488 		0x34e00, 0x34ed4,
2489 		0x34f00, 0x34fa4,
2490 		0x34fc0, 0x34fc4,
2491 		0x35000, 0x35004,
2492 		0x35080, 0x350fc,
2493 		0x35208, 0x35220,
2494 		0x3523c, 0x35254,
2495 		0x35300, 0x35300,
2496 		0x35308, 0x3531c,
2497 		0x35338, 0x3533c,
2498 		0x35380, 0x35380,
2499 		0x35388, 0x353a8,
2500 		0x353b4, 0x353b4,
2501 		0x35400, 0x35420,
2502 		0x35438, 0x3543c,
2503 		0x35480, 0x35480,
2504 		0x354a8, 0x354a8,
2505 		0x354b0, 0x354b4,
2506 		0x354c8, 0x354d4,
2507 		0x35a40, 0x35a4c,
2508 		0x35af0, 0x35b20,
2509 		0x35b38, 0x35b3c,
2510 		0x35b80, 0x35b80,
2511 		0x35ba8, 0x35ba8,
2512 		0x35bb0, 0x35bb4,
2513 		0x35bc8, 0x35bd4,
2514 		0x36140, 0x3618c,
2515 		0x361f0, 0x361f4,
2516 		0x36200, 0x36200,
2517 		0x36218, 0x36218,
2518 		0x36400, 0x36400,
2519 		0x36408, 0x3641c,
2520 		0x36618, 0x36620,
2521 		0x36664, 0x36664,
2522 		0x366a8, 0x366a8,
2523 		0x366ec, 0x366ec,
2524 		0x36a00, 0x36abc,
2525 		0x36b00, 0x36b18,
2526 		0x36b20, 0x36b38,
2527 		0x36b40, 0x36b58,
2528 		0x36b60, 0x36b78,
2529 		0x36c00, 0x36c00,
2530 		0x36c08, 0x36c3c,
2531 		0x37000, 0x3702c,
2532 		0x37034, 0x37050,
2533 		0x37058, 0x37058,
2534 		0x37060, 0x3708c,
2535 		0x3709c, 0x370ac,
2536 		0x370c0, 0x370c0,
2537 		0x370c8, 0x370d0,
2538 		0x370d8, 0x370e0,
2539 		0x370ec, 0x3712c,
2540 		0x37134, 0x37150,
2541 		0x37158, 0x37158,
2542 		0x37160, 0x3718c,
2543 		0x3719c, 0x371ac,
2544 		0x371c0, 0x371c0,
2545 		0x371c8, 0x371d0,
2546 		0x371d8, 0x371e0,
2547 		0x371ec, 0x37290,
2548 		0x37298, 0x372c4,
2549 		0x372e4, 0x37390,
2550 		0x37398, 0x373c4,
2551 		0x373e4, 0x3742c,
2552 		0x37434, 0x37450,
2553 		0x37458, 0x37458,
2554 		0x37460, 0x3748c,
2555 		0x3749c, 0x374ac,
2556 		0x374c0, 0x374c0,
2557 		0x374c8, 0x374d0,
2558 		0x374d8, 0x374e0,
2559 		0x374ec, 0x3752c,
2560 		0x37534, 0x37550,
2561 		0x37558, 0x37558,
2562 		0x37560, 0x3758c,
2563 		0x3759c, 0x375ac,
2564 		0x375c0, 0x375c0,
2565 		0x375c8, 0x375d0,
2566 		0x375d8, 0x375e0,
2567 		0x375ec, 0x37690,
2568 		0x37698, 0x376c4,
2569 		0x376e4, 0x37790,
2570 		0x37798, 0x377c4,
2571 		0x377e4, 0x377fc,
2572 		0x37814, 0x37814,
2573 		0x37854, 0x37868,
2574 		0x37880, 0x3788c,
2575 		0x378c0, 0x378d0,
2576 		0x378e8, 0x378ec,
2577 		0x37900, 0x3792c,
2578 		0x37934, 0x37950,
2579 		0x37958, 0x37958,
2580 		0x37960, 0x3798c,
2581 		0x3799c, 0x379ac,
2582 		0x379c0, 0x379c0,
2583 		0x379c8, 0x379d0,
2584 		0x379d8, 0x379e0,
2585 		0x379ec, 0x37a90,
2586 		0x37a98, 0x37ac4,
2587 		0x37ae4, 0x37b10,
2588 		0x37b24, 0x37b28,
2589 		0x37b38, 0x37b50,
2590 		0x37bf0, 0x37c10,
2591 		0x37c24, 0x37c28,
2592 		0x37c38, 0x37c50,
2593 		0x37cf0, 0x37cfc,
2594 		0x40040, 0x40040,
2595 		0x40080, 0x40084,
2596 		0x40100, 0x40100,
2597 		0x40140, 0x401bc,
2598 		0x40200, 0x40214,
2599 		0x40228, 0x40228,
2600 		0x40240, 0x40258,
2601 		0x40280, 0x40280,
2602 		0x40304, 0x40304,
2603 		0x40330, 0x4033c,
2604 		0x41304, 0x413c8,
2605 		0x413d0, 0x413dc,
2606 		0x413f0, 0x413f0,
2607 		0x41400, 0x4140c,
2608 		0x41414, 0x4141c,
2609 		0x41480, 0x414d0,
2610 		0x44000, 0x4407c,
2611 		0x440c0, 0x441ac,
2612 		0x441b4, 0x4427c,
2613 		0x442c0, 0x443ac,
2614 		0x443b4, 0x4447c,
2615 		0x444c0, 0x445ac,
2616 		0x445b4, 0x4467c,
2617 		0x446c0, 0x447ac,
2618 		0x447b4, 0x4487c,
2619 		0x448c0, 0x449ac,
2620 		0x449b4, 0x44a7c,
2621 		0x44ac0, 0x44bac,
2622 		0x44bb4, 0x44c7c,
2623 		0x44cc0, 0x44dac,
2624 		0x44db4, 0x44e7c,
2625 		0x44ec0, 0x44fac,
2626 		0x44fb4, 0x4507c,
2627 		0x450c0, 0x451ac,
2628 		0x451b4, 0x451fc,
2629 		0x45800, 0x45804,
2630 		0x45810, 0x45830,
2631 		0x45840, 0x45860,
2632 		0x45868, 0x45868,
2633 		0x45880, 0x45884,
2634 		0x458a0, 0x458b0,
2635 		0x45a00, 0x45a04,
2636 		0x45a10, 0x45a30,
2637 		0x45a40, 0x45a60,
2638 		0x45a68, 0x45a68,
2639 		0x45a80, 0x45a84,
2640 		0x45aa0, 0x45ab0,
2641 		0x460c0, 0x460e4,
2642 		0x47000, 0x4703c,
2643 		0x47044, 0x4708c,
2644 		0x47200, 0x47250,
2645 		0x47400, 0x47408,
2646 		0x47414, 0x47420,
2647 		0x47600, 0x47618,
2648 		0x47800, 0x47814,
2649 		0x47820, 0x4782c,
2650 		0x50000, 0x50084,
2651 		0x50090, 0x500cc,
2652 		0x50300, 0x50384,
2653 		0x50400, 0x50400,
2654 		0x50800, 0x50884,
2655 		0x50890, 0x508cc,
2656 		0x50b00, 0x50b84,
2657 		0x50c00, 0x50c00,
2658 		0x51000, 0x51020,
2659 		0x51028, 0x510b0,
2660 		0x51300, 0x51324,
2661 	};
2662 
2663 	static const unsigned int t6vf_reg_ranges[] = {
2664 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2665 		VF_MPS_REG(A_MPS_VF_CTL),
2666 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2667 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2668 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2669 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2670 		FW_T6VF_MBDATA_BASE_ADDR,
2671 		FW_T6VF_MBDATA_BASE_ADDR +
2672 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2673 	};
2674 
2675 	static const unsigned int t7_reg_ranges[] = {
2676 		0x1008, 0x101c,
2677 		0x1024, 0x10a8,
2678 		0x10b4, 0x10f8,
2679 		0x1100, 0x1114,
2680 		0x111c, 0x112c,
2681 		0x1138, 0x113c,
2682 		0x1144, 0x115c,
2683 		0x1180, 0x1184,
2684 		0x1190, 0x1194,
2685 		0x11a0, 0x11a4,
2686 		0x11b0, 0x11d0,
2687 		0x11fc, 0x1278,
2688 		0x1280, 0x1368,
2689 		0x1700, 0x172c,
2690 		0x173c, 0x1760,
2691 		0x1800, 0x18fc,
2692 		0x3000, 0x3044,
2693 		0x30a4, 0x30b0,
2694 		0x30b8, 0x30d8,
2695 		0x30e0, 0x30e8,
2696 		0x3140, 0x357c,
2697 		0x35a8, 0x35cc,
2698 		0x35e0, 0x35ec,
2699 		0x3600, 0x37fc,
2700 		0x3804, 0x3818,
2701 		0x3880, 0x388c,
2702 		0x3900, 0x3904,
2703 		0x3910, 0x3978,
2704 		0x3980, 0x399c,
2705 		0x4700, 0x4720,
2706 		0x4728, 0x475c,
2707 		0x480c, 0x4814,
2708 		0x4890, 0x489c,
2709 		0x48a4, 0x48ac,
2710 		0x48b8, 0x48bc,
2711 		0x4900, 0x4924,
2712 		0x4ffc, 0x4ffc,
2713 		0x5500, 0x5624,
2714 		0x56c4, 0x56ec,
2715 		0x56f4, 0x5720,
2716 		0x5728, 0x575c,
2717 		0x580c, 0x5814,
2718 		0x5890, 0x589c,
2719 		0x58a4, 0x58ac,
2720 		0x58b8, 0x58bc,
2721 		0x5940, 0x598c,
2722 		0x59b0, 0x59c8,
2723 		0x59d0, 0x59dc,
2724 		0x59fc, 0x5a18,
2725 		0x5a60, 0x5a6c,
2726 		0x5a80, 0x5a8c,
2727 		0x5a94, 0x5a9c,
2728 		0x5b94, 0x5bec,
2729 		0x5bf8, 0x5bfc,
2730 		0x5c10, 0x5c40,
2731 		0x5c4c, 0x5e48,
2732 		0x5e50, 0x5e94,
2733 		0x5ea0, 0x5eb0,
2734 		0x5ec0, 0x5ec0,
2735 		0x5ec8, 0x5ed0,
2736 		0x5ee0, 0x5ee0,
2737 		0x5ef0, 0x5ef0,
2738 		0x5f00, 0x5f04,
2739 		0x5f0c, 0x5f10,
2740 		0x5f20, 0x5f78,
2741 		0x5f84, 0x5f88,
2742 		0x5f90, 0x5fd8,
2743 		0x6000, 0x6020,
2744 		0x6028, 0x6030,
2745 		0x6044, 0x609c,
2746 		0x60a8, 0x60ac,
2747 		0x60b8, 0x60ec,
2748 		0x6100, 0x6104,
2749 		0x6118, 0x611c,
2750 		0x6150, 0x6150,
2751 		0x6180, 0x61b8,
2752 		0x7700, 0x77a8,
2753 		0x77b0, 0x7888,
2754 		0x78cc, 0x7970,
2755 		0x7b00, 0x7b00,
2756 		0x7b08, 0x7b0c,
2757 		0x7b24, 0x7b84,
2758 		0x7b8c, 0x7c2c,
2759 		0x7c34, 0x7c40,
2760 		0x7c48, 0x7c68,
2761 		0x7c70, 0x7c7c,
2762 		0x7d00, 0x7ddc,
2763 		0x7de4, 0x7e38,
2764 		0x7e40, 0x7e44,
2765 		0x7e4c, 0x7e74,
2766 		0x7e80, 0x7ee0,
2767 		0x7ee8, 0x7f0c,
2768 		0x7f20, 0x7f5c,
2769 		0x8dc0, 0x8de8,
2770 		0x8df8, 0x8e04,
2771 		0x8e10, 0x8e30,
2772 		0x8e7c, 0x8ee8,
2773 		0x8f88, 0x8f88,
2774 		0x8f90, 0x8fb0,
2775 		0x8fb8, 0x9058,
2776 		0x9074, 0x90f8,
2777 		0x9100, 0x912c,
2778 		0x9138, 0x9188,
2779 		0x9400, 0x9414,
2780 		0x9430, 0x9440,
2781 		0x9454, 0x9454,
2782 		0x945c, 0x947c,
2783 		0x9498, 0x94b8,
2784 		0x9600, 0x9600,
2785 		0x9608, 0x9638,
2786 		0x9640, 0x9704,
2787 		0x9710, 0x971c,
2788 		0x9800, 0x9804,
2789 		0x9854, 0x9854,
2790 		0x9c00, 0x9c6c,
2791 		0x9c80, 0x9cec,
2792 		0x9d00, 0x9d6c,
2793 		0x9d80, 0x9dec,
2794 		0x9e00, 0x9e6c,
2795 		0x9e80, 0x9eec,
2796 		0x9f00, 0x9f6c,
2797 		0x9f80, 0x9fec,
2798 		0xa000, 0xa06c,
2799 		0xa080, 0xa0ec,
2800 		0xa100, 0xa16c,
2801 		0xa180, 0xa1ec,
2802 		0xa200, 0xa26c,
2803 		0xa280, 0xa2ec,
2804 		0xa300, 0xa36c,
2805 		0xa380, 0xa458,
2806 		0xa460, 0xa4f8,
2807 		0xd000, 0xd03c,
2808 		0xd100, 0xd134,
2809 		0xd200, 0xd214,
2810 		0xd220, 0xd234,
2811 		0xd240, 0xd254,
2812 		0xd260, 0xd274,
2813 		0xd280, 0xd294,
2814 		0xd2a0, 0xd2b4,
2815 		0xd2c0, 0xd2d4,
2816 		0xd2e0, 0xd2f4,
2817 		0xd300, 0xd31c,
2818 		0xdfc0, 0xdfe0,
2819 		0xe000, 0xe00c,
2820 		0xf000, 0xf008,
2821 		0xf010, 0xf06c,
2822 		0x11000, 0x11014,
2823 		0x11048, 0x11120,
2824 		0x11130, 0x11144,
2825 		0x11174, 0x11178,
2826 		0x11190, 0x111a0,
2827 		0x111e4, 0x112f0,
2828 		0x11300, 0x1133c,
2829 		0x11408, 0x1146c,
2830 		0x12000, 0x12004,
2831 		0x12060, 0x122c4,
2832 		0x19040, 0x1906c,
2833 		0x19078, 0x19080,
2834 		0x1908c, 0x190e8,
2835 		0x190f0, 0x190f8,
2836 		0x19100, 0x19110,
2837 		0x19120, 0x19124,
2838 		0x19150, 0x19194,
2839 		0x1919c, 0x191a0,
2840 		0x191ac, 0x191c8,
2841 		0x191d0, 0x191e4,
2842 		0x19250, 0x19250,
2843 		0x19258, 0x19268,
2844 		0x19278, 0x19278,
2845 		0x19280, 0x192b0,
2846 		0x192bc, 0x192f0,
2847 		0x19300, 0x19308,
2848 		0x19310, 0x19318,
2849 		0x19320, 0x19328,
2850 		0x19330, 0x19330,
2851 		0x19348, 0x1934c,
2852 		0x193f8, 0x19428,
2853 		0x19430, 0x19444,
2854 		0x1944c, 0x1946c,
2855 		0x19474, 0x1947c,
2856 		0x19488, 0x194cc,
2857 		0x194f0, 0x194f8,
2858 		0x19c00, 0x19c48,
2859 		0x19c50, 0x19c80,
2860 		0x19c94, 0x19c98,
2861 		0x19ca0, 0x19cdc,
2862 		0x19ce4, 0x19cf8,
2863 		0x19d00, 0x19d30,
2864 		0x19d50, 0x19d80,
2865 		0x19d94, 0x19d98,
2866 		0x19da0, 0x19de0,
2867 		0x19df0, 0x19e10,
2868 		0x19e50, 0x19e6c,
2869 		0x19ea0, 0x19ebc,
2870 		0x19ec4, 0x19ef4,
2871 		0x19f04, 0x19f2c,
2872 		0x19f34, 0x19f34,
2873 		0x19f40, 0x19f50,
2874 		0x19f90, 0x19fb4,
2875 		0x19fbc, 0x19fbc,
2876 		0x19fc4, 0x19fc8,
2877 		0x19fd0, 0x19fe4,
2878 		0x1a000, 0x1a004,
2879 		0x1a010, 0x1a06c,
2880 		0x1a0b0, 0x1a0e4,
2881 		0x1a0ec, 0x1a108,
2882 		0x1a114, 0x1a130,
2883 		0x1a138, 0x1a1c4,
2884 		0x1a1fc, 0x1a29c,
2885 		0x1a2a8, 0x1a2b8,
2886 		0x1a2c0, 0x1a388,
2887 		0x1a398, 0x1a3ac,
2888 		0x1e008, 0x1e00c,
2889 		0x1e040, 0x1e044,
2890 		0x1e04c, 0x1e04c,
2891 		0x1e284, 0x1e290,
2892 		0x1e2c0, 0x1e2c0,
2893 		0x1e2e0, 0x1e2e4,
2894 		0x1e300, 0x1e384,
2895 		0x1e3c0, 0x1e3c8,
2896 		0x1e408, 0x1e40c,
2897 		0x1e440, 0x1e444,
2898 		0x1e44c, 0x1e44c,
2899 		0x1e684, 0x1e690,
2900 		0x1e6c0, 0x1e6c0,
2901 		0x1e6e0, 0x1e6e4,
2902 		0x1e700, 0x1e784,
2903 		0x1e7c0, 0x1e7c8,
2904 		0x1e808, 0x1e80c,
2905 		0x1e840, 0x1e844,
2906 		0x1e84c, 0x1e84c,
2907 		0x1ea84, 0x1ea90,
2908 		0x1eac0, 0x1eac0,
2909 		0x1eae0, 0x1eae4,
2910 		0x1eb00, 0x1eb84,
2911 		0x1ebc0, 0x1ebc8,
2912 		0x1ec08, 0x1ec0c,
2913 		0x1ec40, 0x1ec44,
2914 		0x1ec4c, 0x1ec4c,
2915 		0x1ee84, 0x1ee90,
2916 		0x1eec0, 0x1eec0,
2917 		0x1eee0, 0x1eee4,
2918 		0x1ef00, 0x1ef84,
2919 		0x1efc0, 0x1efc8,
2920 		0x1f008, 0x1f00c,
2921 		0x1f040, 0x1f044,
2922 		0x1f04c, 0x1f04c,
2923 		0x1f284, 0x1f290,
2924 		0x1f2c0, 0x1f2c0,
2925 		0x1f2e0, 0x1f2e4,
2926 		0x1f300, 0x1f384,
2927 		0x1f3c0, 0x1f3c8,
2928 		0x1f408, 0x1f40c,
2929 		0x1f440, 0x1f444,
2930 		0x1f44c, 0x1f44c,
2931 		0x1f684, 0x1f690,
2932 		0x1f6c0, 0x1f6c0,
2933 		0x1f6e0, 0x1f6e4,
2934 		0x1f700, 0x1f784,
2935 		0x1f7c0, 0x1f7c8,
2936 		0x1f808, 0x1f80c,
2937 		0x1f840, 0x1f844,
2938 		0x1f84c, 0x1f84c,
2939 		0x1fa84, 0x1fa90,
2940 		0x1fac0, 0x1fac0,
2941 		0x1fae0, 0x1fae4,
2942 		0x1fb00, 0x1fb84,
2943 		0x1fbc0, 0x1fbc8,
2944 		0x1fc08, 0x1fc0c,
2945 		0x1fc40, 0x1fc44,
2946 		0x1fc4c, 0x1fc4c,
2947 		0x1fe84, 0x1fe90,
2948 		0x1fec0, 0x1fec0,
2949 		0x1fee0, 0x1fee4,
2950 		0x1ff00, 0x1ff84,
2951 		0x1ffc0, 0x1ffc8,
2952 		0x30000, 0x30038,
2953 		0x30100, 0x3017c,
2954 		0x30190, 0x301a0,
2955 		0x301a8, 0x301b8,
2956 		0x301c4, 0x301c8,
2957 		0x301d0, 0x301e0,
2958 		0x30200, 0x30344,
2959 		0x30400, 0x304b4,
2960 		0x304c0, 0x3052c,
2961 		0x30540, 0x3065c,
2962 		0x30800, 0x30848,
2963 		0x30850, 0x308a8,
2964 		0x308b8, 0x308c0,
2965 		0x308cc, 0x308dc,
2966 		0x30900, 0x30904,
2967 		0x3090c, 0x30914,
2968 		0x3091c, 0x30928,
2969 		0x30930, 0x3093c,
2970 		0x30944, 0x30948,
2971 		0x30954, 0x30974,
2972 		0x3097c, 0x30980,
2973 		0x30a00, 0x30a20,
2974 		0x30a38, 0x30a3c,
2975 		0x30a50, 0x30a50,
2976 		0x30a80, 0x30a80,
2977 		0x30a88, 0x30aa8,
2978 		0x30ab0, 0x30ab4,
2979 		0x30ac8, 0x30ad4,
2980 		0x30b28, 0x30b84,
2981 		0x30b98, 0x30bb8,
2982 		0x30c98, 0x30d14,
2983 		0x31000, 0x31020,
2984 		0x31038, 0x3103c,
2985 		0x31050, 0x31050,
2986 		0x31080, 0x31080,
2987 		0x31088, 0x310a8,
2988 		0x310b0, 0x310b4,
2989 		0x310c8, 0x310d4,
2990 		0x31128, 0x31184,
2991 		0x31198, 0x311b8,
2992 		0x32000, 0x32038,
2993 		0x32100, 0x3217c,
2994 		0x32190, 0x321a0,
2995 		0x321a8, 0x321b8,
2996 		0x321c4, 0x321c8,
2997 		0x321d0, 0x321e0,
2998 		0x32200, 0x32344,
2999 		0x32400, 0x324b4,
3000 		0x324c0, 0x3252c,
3001 		0x32540, 0x3265c,
3002 		0x32800, 0x32848,
3003 		0x32850, 0x328a8,
3004 		0x328b8, 0x328c0,
3005 		0x328cc, 0x328dc,
3006 		0x32900, 0x32904,
3007 		0x3290c, 0x32914,
3008 		0x3291c, 0x32928,
3009 		0x32930, 0x3293c,
3010 		0x32944, 0x32948,
3011 		0x32954, 0x32974,
3012 		0x3297c, 0x32980,
3013 		0x32a00, 0x32a20,
3014 		0x32a38, 0x32a3c,
3015 		0x32a50, 0x32a50,
3016 		0x32a80, 0x32a80,
3017 		0x32a88, 0x32aa8,
3018 		0x32ab0, 0x32ab4,
3019 		0x32ac8, 0x32ad4,
3020 		0x32b28, 0x32b84,
3021 		0x32b98, 0x32bb8,
3022 		0x32c98, 0x32d14,
3023 		0x33000, 0x33020,
3024 		0x33038, 0x3303c,
3025 		0x33050, 0x33050,
3026 		0x33080, 0x33080,
3027 		0x33088, 0x330a8,
3028 		0x330b0, 0x330b4,
3029 		0x330c8, 0x330d4,
3030 		0x33128, 0x33184,
3031 		0x33198, 0x331b8,
3032 		0x34000, 0x34038,
3033 		0x34100, 0x3417c,
3034 		0x34190, 0x341a0,
3035 		0x341a8, 0x341b8,
3036 		0x341c4, 0x341c8,
3037 		0x341d0, 0x341e0,
3038 		0x34200, 0x34344,
3039 		0x34400, 0x344b4,
3040 		0x344c0, 0x3452c,
3041 		0x34540, 0x3465c,
3042 		0x34800, 0x34848,
3043 		0x34850, 0x348a8,
3044 		0x348b8, 0x348c0,
3045 		0x348cc, 0x348dc,
3046 		0x34900, 0x34904,
3047 		0x3490c, 0x34914,
3048 		0x3491c, 0x34928,
3049 		0x34930, 0x3493c,
3050 		0x34944, 0x34948,
3051 		0x34954, 0x34974,
3052 		0x3497c, 0x34980,
3053 		0x34a00, 0x34a20,
3054 		0x34a38, 0x34a3c,
3055 		0x34a50, 0x34a50,
3056 		0x34a80, 0x34a80,
3057 		0x34a88, 0x34aa8,
3058 		0x34ab0, 0x34ab4,
3059 		0x34ac8, 0x34ad4,
3060 		0x34b28, 0x34b84,
3061 		0x34b98, 0x34bb8,
3062 		0x34c98, 0x34d14,
3063 		0x35000, 0x35020,
3064 		0x35038, 0x3503c,
3065 		0x35050, 0x35050,
3066 		0x35080, 0x35080,
3067 		0x35088, 0x350a8,
3068 		0x350b0, 0x350b4,
3069 		0x350c8, 0x350d4,
3070 		0x35128, 0x35184,
3071 		0x35198, 0x351b8,
3072 		0x36000, 0x36038,
3073 		0x36100, 0x3617c,
3074 		0x36190, 0x361a0,
3075 		0x361a8, 0x361b8,
3076 		0x361c4, 0x361c8,
3077 		0x361d0, 0x361e0,
3078 		0x36200, 0x36344,
3079 		0x36400, 0x364b4,
3080 		0x364c0, 0x3652c,
3081 		0x36540, 0x3665c,
3082 		0x36800, 0x36848,
3083 		0x36850, 0x368a8,
3084 		0x368b8, 0x368c0,
3085 		0x368cc, 0x368dc,
3086 		0x36900, 0x36904,
3087 		0x3690c, 0x36914,
3088 		0x3691c, 0x36928,
3089 		0x36930, 0x3693c,
3090 		0x36944, 0x36948,
3091 		0x36954, 0x36974,
3092 		0x3697c, 0x36980,
3093 		0x36a00, 0x36a20,
3094 		0x36a38, 0x36a3c,
3095 		0x36a50, 0x36a50,
3096 		0x36a80, 0x36a80,
3097 		0x36a88, 0x36aa8,
3098 		0x36ab0, 0x36ab4,
3099 		0x36ac8, 0x36ad4,
3100 		0x36b28, 0x36b84,
3101 		0x36b98, 0x36bb8,
3102 		0x36c98, 0x36d14,
3103 		0x37000, 0x37020,
3104 		0x37038, 0x3703c,
3105 		0x37050, 0x37050,
3106 		0x37080, 0x37080,
3107 		0x37088, 0x370a8,
3108 		0x370b0, 0x370b4,
3109 		0x370c8, 0x370d4,
3110 		0x37128, 0x37184,
3111 		0x37198, 0x371b8,
3112 		0x38000, 0x380b0,
3113 		0x380b8, 0x38130,
3114 		0x38140, 0x38140,
3115 		0x38150, 0x38154,
3116 		0x38160, 0x381c4,
3117 		0x381d0, 0x38204,
3118 		0x3820c, 0x38214,
3119 		0x3821c, 0x3822c,
3120 		0x38244, 0x38244,
3121 		0x38254, 0x38274,
3122 		0x3827c, 0x38280,
3123 		0x38300, 0x38304,
3124 		0x3830c, 0x38314,
3125 		0x3831c, 0x3832c,
3126 		0x38344, 0x38344,
3127 		0x38354, 0x38374,
3128 		0x3837c, 0x38380,
3129 		0x38400, 0x38424,
3130 		0x38438, 0x3843c,
3131 		0x38480, 0x38480,
3132 		0x384a8, 0x384a8,
3133 		0x384b0, 0x384b4,
3134 		0x384c8, 0x38514,
3135 		0x38600, 0x3860c,
3136 		0x3861c, 0x38624,
3137 		0x38900, 0x38924,
3138 		0x38938, 0x3893c,
3139 		0x38980, 0x38980,
3140 		0x389a8, 0x389a8,
3141 		0x389b0, 0x389b4,
3142 		0x389c8, 0x38a14,
3143 		0x38b00, 0x38b0c,
3144 		0x38b1c, 0x38b24,
3145 		0x38e00, 0x38e00,
3146 		0x38e18, 0x38e20,
3147 		0x38e38, 0x38e40,
3148 		0x38e58, 0x38e60,
3149 		0x38e78, 0x38e80,
3150 		0x38e98, 0x38ea0,
3151 		0x38eb8, 0x38ec0,
3152 		0x38ed8, 0x38ee0,
3153 		0x38ef8, 0x38f08,
3154 		0x38f10, 0x38f2c,
3155 		0x38f80, 0x38ffc,
3156 		0x39080, 0x39080,
3157 		0x39088, 0x39090,
3158 		0x39100, 0x39108,
3159 		0x39120, 0x39128,
3160 		0x39140, 0x39148,
3161 		0x39160, 0x39168,
3162 		0x39180, 0x39188,
3163 		0x391a0, 0x391a8,
3164 		0x391c0, 0x391c8,
3165 		0x391e0, 0x391e8,
3166 		0x39200, 0x39200,
3167 		0x39208, 0x39240,
3168 		0x39300, 0x39300,
3169 		0x39308, 0x39340,
3170 		0x39400, 0x39400,
3171 		0x39408, 0x39440,
3172 		0x39500, 0x39500,
3173 		0x39508, 0x39540,
3174 		0x39600, 0x39600,
3175 		0x39608, 0x39640,
3176 		0x39700, 0x39700,
3177 		0x39708, 0x39740,
3178 		0x39800, 0x39800,
3179 		0x39808, 0x39840,
3180 		0x39900, 0x39900,
3181 		0x39908, 0x39940,
3182 		0x39a00, 0x39a04,
3183 		0x39a10, 0x39a14,
3184 		0x39a1c, 0x39aa8,
3185 		0x39b00, 0x39ecc,
3186 		0x3a000, 0x3a004,
3187 		0x3a050, 0x3a084,
3188 		0x3a090, 0x3a09c,
3189 		0x3a93c, 0x3a93c,
3190 		0x3b93c, 0x3b93c,
3191 		0x3c93c, 0x3c93c,
3192 		0x3d93c, 0x3d93c,
3193 		0x3e000, 0x3e020,
3194 		0x3e03c, 0x3e05c,
3195 		0x3e100, 0x3e120,
3196 		0x3e13c, 0x3e15c,
3197 		0x3e200, 0x3e220,
3198 		0x3e23c, 0x3e25c,
3199 		0x3e300, 0x3e320,
3200 		0x3e33c, 0x3e35c,
3201 		0x3f000, 0x3f034,
3202 		0x3f100, 0x3f130,
3203 		0x3f200, 0x3f218,
3204 		0x44000, 0x44014,
3205 		0x44020, 0x44028,
3206 		0x44030, 0x44030,
3207 		0x44100, 0x44114,
3208 		0x44120, 0x44128,
3209 		0x44130, 0x44130,
3210 		0x44200, 0x44214,
3211 		0x44220, 0x44228,
3212 		0x44230, 0x44230,
3213 		0x44300, 0x44314,
3214 		0x44320, 0x44328,
3215 		0x44330, 0x44330,
3216 		0x44400, 0x44414,
3217 		0x44420, 0x44428,
3218 		0x44430, 0x44430,
3219 		0x44500, 0x44514,
3220 		0x44520, 0x44528,
3221 		0x44530, 0x44530,
3222 		0x44714, 0x44718,
3223 		0x44730, 0x44730,
3224 		0x447c0, 0x447c0,
3225 		0x447f0, 0x447f0,
3226 		0x447f8, 0x447fc,
3227 		0x45000, 0x45014,
3228 		0x45020, 0x45028,
3229 		0x45030, 0x45030,
3230 		0x45100, 0x45114,
3231 		0x45120, 0x45128,
3232 		0x45130, 0x45130,
3233 		0x45200, 0x45214,
3234 		0x45220, 0x45228,
3235 		0x45230, 0x45230,
3236 		0x45300, 0x45314,
3237 		0x45320, 0x45328,
3238 		0x45330, 0x45330,
3239 		0x45400, 0x45414,
3240 		0x45420, 0x45428,
3241 		0x45430, 0x45430,
3242 		0x45500, 0x45514,
3243 		0x45520, 0x45528,
3244 		0x45530, 0x45530,
3245 		0x45714, 0x45718,
3246 		0x45730, 0x45730,
3247 		0x457c0, 0x457c0,
3248 		0x457f0, 0x457f0,
3249 		0x457f8, 0x457fc,
3250 		0x46000, 0x46010,
3251 		0x46020, 0x46034,
3252 		0x46040, 0x46050,
3253 		0x46060, 0x46088,
3254 		0x47000, 0x4709c,
3255 		0x470c0, 0x470d4,
3256 		0x47100, 0x471a8,
3257 		0x471b0, 0x471e8,
3258 		0x47200, 0x47210,
3259 		0x4721c, 0x47230,
3260 		0x47238, 0x47238,
3261 		0x47240, 0x472ac,
3262 		0x472d0, 0x472f4,
3263 		0x47300, 0x47310,
3264 		0x47318, 0x47348,
3265 		0x47350, 0x47354,
3266 		0x47380, 0x47388,
3267 		0x47390, 0x47394,
3268 		0x47400, 0x47448,
3269 		0x47450, 0x47458,
3270 		0x47500, 0x4751c,
3271 		0x47530, 0x4754c,
3272 		0x47560, 0x4757c,
3273 		0x47590, 0x475ac,
3274 		0x47600, 0x47630,
3275 		0x47640, 0x47644,
3276 		0x47660, 0x4769c,
3277 		0x47700, 0x47710,
3278 		0x47740, 0x47750,
3279 		0x4775c, 0x4779c,
3280 		0x477b0, 0x477bc,
3281 		0x477c4, 0x477c8,
3282 		0x477d4, 0x477fc,
3283 		0x48000, 0x48004,
3284 		0x48018, 0x4801c,
3285 		0x49304, 0x493f0,
3286 		0x49400, 0x49410,
3287 		0x49460, 0x494f4,
3288 		0x50000, 0x50084,
3289 		0x50090, 0x500cc,
3290 		0x50300, 0x50384,
3291 		0x50400, 0x50404,
3292 		0x50800, 0x50884,
3293 		0x50890, 0x508cc,
3294 		0x50b00, 0x50b84,
3295 		0x50c00, 0x50c04,
3296 		0x51000, 0x51020,
3297 		0x51028, 0x510c4,
3298 		0x51104, 0x51108,
3299 		0x51200, 0x51274,
3300 		0x51300, 0x51324,
3301 		0x51400, 0x51548,
3302 		0x51550, 0x51554,
3303 		0x5155c, 0x51584,
3304 		0x5158c, 0x515c8,
3305 		0x515f0, 0x515f4,
3306 		0x58000, 0x58004,
3307 		0x58018, 0x5801c,
3308 		0x59304, 0x593f0,
3309 		0x59400, 0x59410,
3310 		0x59460, 0x594f4,
3311 	};
3312 
3313 	u32 *buf_end = (u32 *)(buf + buf_size);
3314 	const unsigned int *reg_ranges;
3315 	int reg_ranges_size, range;
3316 	unsigned int chip_version = chip_id(adap);
3317 
3318 	/*
3319 	 * Select the right set of register ranges to dump depending on the
3320 	 * adapter chip type.
3321 	 */
3322 	switch (chip_version) {
3323 	case CHELSIO_T4:
3324 		if (adap->flags & IS_VF) {
3325 			reg_ranges = t4vf_reg_ranges;
3326 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
3327 		} else {
3328 			reg_ranges = t4_reg_ranges;
3329 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
3330 		}
3331 		break;
3332 
3333 	case CHELSIO_T5:
3334 		if (adap->flags & IS_VF) {
3335 			reg_ranges = t5vf_reg_ranges;
3336 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
3337 		} else {
3338 			reg_ranges = t5_reg_ranges;
3339 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
3340 		}
3341 		break;
3342 
3343 	case CHELSIO_T6:
3344 		if (adap->flags & IS_VF) {
3345 			reg_ranges = t6vf_reg_ranges;
3346 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
3347 		} else {
3348 			reg_ranges = t6_reg_ranges;
3349 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
3350 		}
3351 		break;
3352 
3353 	case CHELSIO_T7:
3354 		if (adap->flags & IS_VF) {
3355 			reg_ranges = t6vf_reg_ranges;
3356 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
3357 		} else {
3358 			reg_ranges = t7_reg_ranges;
3359 			reg_ranges_size = ARRAY_SIZE(t7_reg_ranges);
3360 		}
3361 		break;
3362 
3363 	default:
3364 		CH_ERR(adap,
3365 			"Unsupported chip version %d\n", chip_version);
3366 		return;
3367 	}
3368 
3369 	/*
3370 	 * Clear the register buffer and insert the appropriate register
3371 	 * values selected by the above register ranges.
3372 	 */
3373 	memset(buf, 0, buf_size);
3374 	for (range = 0; range < reg_ranges_size; range += 2) {
3375 		unsigned int reg = reg_ranges[range];
3376 		unsigned int last_reg = reg_ranges[range + 1];
3377 		u32 *bufp = (u32 *)(buf + reg);
3378 
3379 		/*
3380 		 * Iterate across the register range filling in the register
3381 		 * buffer but don't write past the end of the register buffer.
3382 		 */
3383 		while (reg <= last_reg && bufp < buf_end) {
3384 			*bufp++ = t4_read_reg(adap, reg);
3385 			reg += sizeof(u32);
3386 		}
3387 	}
3388 }
3389 
3390 /*
3391  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
3392  * header followed by one or more VPD-R sections, each with its own header.
3393  */
3394 struct t4_vpd_hdr {
3395 	u8  id_tag;
3396 	u8  id_len[2];
3397 	u8  id_data[ID_LEN];
3398 };
3399 
3400 struct t4_vpdr_hdr {
3401 	u8  vpdr_tag;
3402 	u8  vpdr_len[2];
3403 };
3404 
3405 /*
3406  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
3407  */
3408 #define EEPROM_DELAY		10		/* 10us per poll spin */
3409 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
3410 
3411 #define EEPROM_STAT_ADDR	0x7bfc
3412 #define VPD_SIZE		0x800
3413 #define VPD_BASE		0x400
3414 #define VPD_BASE_OLD		0
3415 #define VPD_LEN			1024
3416 #define VPD_INFO_FLD_HDR_SIZE	3
3417 #define CHELSIO_VPD_UNIQUE_ID	0x82
3418 
3419 /*
3420  * Small utility function to wait till any outstanding VPD Access is complete.
3421  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
3422  * VPD Access in flight.  This allows us to handle the problem of having a
3423  * previous VPD Access time out and prevent an attempt to inject a new VPD
3424  * Request before any in-flight VPD reguest has completed.
3425  */
t4_seeprom_wait(struct adapter * adapter)3426 static int t4_seeprom_wait(struct adapter *adapter)
3427 {
3428 	unsigned int base = adapter->params.pci.vpd_cap_addr;
3429 	int max_poll;
3430 
3431 	/*
3432 	 * If no VPD Access is in flight, we can just return success right
3433 	 * away.
3434 	 */
3435 	if (!adapter->vpd_busy)
3436 		return 0;
3437 
3438 	/*
3439 	 * Poll the VPD Capability Address/Flag register waiting for it
3440 	 * to indicate that the operation is complete.
3441 	 */
3442 	max_poll = EEPROM_MAX_POLL;
3443 	do {
3444 		u16 val;
3445 
3446 		udelay(EEPROM_DELAY);
3447 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
3448 
3449 		/*
3450 		 * If the operation is complete, mark the VPD as no longer
3451 		 * busy and return success.
3452 		 */
3453 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
3454 			adapter->vpd_busy = 0;
3455 			return 0;
3456 		}
3457 	} while (--max_poll);
3458 
3459 	/*
3460 	 * Failure!  Note that we leave the VPD Busy status set in order to
3461 	 * avoid pushing a new VPD Access request into the VPD Capability till
3462 	 * the current operation eventually succeeds.  It's a bug to issue a
3463 	 * new request when an existing request is in flight and will result
3464 	 * in corrupt hardware state.
3465 	 */
3466 	return -ETIMEDOUT;
3467 }
3468 
3469 /**
3470  *	t4_seeprom_read - read a serial EEPROM location
3471  *	@adapter: adapter to read
3472  *	@addr: EEPROM virtual address
3473  *	@data: where to store the read data
3474  *
3475  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
3476  *	VPD capability.  Note that this function must be called with a virtual
3477  *	address.
3478  */
t4_seeprom_read(struct adapter * adapter,u32 addr,u32 * data)3479 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
3480 {
3481 	unsigned int base = adapter->params.pci.vpd_cap_addr;
3482 	int ret;
3483 
3484 	/*
3485 	 * VPD Accesses must alway be 4-byte aligned!
3486 	 */
3487 	if (addr >= EEPROMVSIZE || (addr & 3))
3488 		return -EINVAL;
3489 
3490 	/*
3491 	 * Wait for any previous operation which may still be in flight to
3492 	 * complete.
3493 	 */
3494 	ret = t4_seeprom_wait(adapter);
3495 	if (ret) {
3496 		CH_ERR(adapter, "VPD still busy from previous operation\n");
3497 		return ret;
3498 	}
3499 
3500 	/*
3501 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
3502 	 * for our request to complete.  If it doesn't complete, note the
3503 	 * error and return it to our caller.  Note that we do not reset the
3504 	 * VPD Busy status!
3505 	 */
3506 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
3507 	adapter->vpd_busy = 1;
3508 	adapter->vpd_flag = PCI_VPD_ADDR_F;
3509 	ret = t4_seeprom_wait(adapter);
3510 	if (ret) {
3511 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
3512 		return ret;
3513 	}
3514 
3515 	/*
3516 	 * Grab the returned data, swizzle it into our endianness and
3517 	 * return success.
3518 	 */
3519 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
3520 	*data = le32_to_cpu(*data);
3521 	return 0;
3522 }
3523 
3524 /**
3525  *	t4_seeprom_write - write a serial EEPROM location
3526  *	@adapter: adapter to write
3527  *	@addr: virtual EEPROM address
3528  *	@data: value to write
3529  *
3530  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
3531  *	VPD capability.  Note that this function must be called with a virtual
3532  *	address.
3533  */
t4_seeprom_write(struct adapter * adapter,u32 addr,u32 data)3534 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
3535 {
3536 	unsigned int base = adapter->params.pci.vpd_cap_addr;
3537 	int ret;
3538 	u32 stats_reg;
3539 	int max_poll;
3540 
3541 	/*
3542 	 * VPD Accesses must alway be 4-byte aligned!
3543 	 */
3544 	if (addr >= EEPROMVSIZE || (addr & 3))
3545 		return -EINVAL;
3546 
3547 	/*
3548 	 * Wait for any previous operation which may still be in flight to
3549 	 * complete.
3550 	 */
3551 	ret = t4_seeprom_wait(adapter);
3552 	if (ret) {
3553 		CH_ERR(adapter, "VPD still busy from previous operation\n");
3554 		return ret;
3555 	}
3556 
3557 	/*
3558 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
3559 	 * for our request to complete.  If it doesn't complete, note the
3560 	 * error and return it to our caller.  Note that we do not reset the
3561 	 * VPD Busy status!
3562 	 */
3563 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
3564 				 cpu_to_le32(data));
3565 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
3566 				 (u16)addr | PCI_VPD_ADDR_F);
3567 	adapter->vpd_busy = 1;
3568 	adapter->vpd_flag = 0;
3569 	ret = t4_seeprom_wait(adapter);
3570 	if (ret) {
3571 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
3572 		return ret;
3573 	}
3574 
3575 	/*
3576 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
3577 	 * request to complete. If it doesn't complete, return error.
3578 	 */
3579 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
3580 	max_poll = EEPROM_MAX_POLL;
3581 	do {
3582 		udelay(EEPROM_DELAY);
3583 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
3584 	} while ((stats_reg & 0x1) && --max_poll);
3585 	if (!max_poll)
3586 		return -ETIMEDOUT;
3587 
3588 	/* Return success! */
3589 	return 0;
3590 }
3591 
3592 /**
3593  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
3594  *	@phys_addr: the physical EEPROM address
3595  *	@fn: the PCI function number
3596  *	@sz: size of function-specific area
3597  *
3598  *	Translate a physical EEPROM address to virtual.  The first 1K is
3599  *	accessed through virtual addresses starting at 31K, the rest is
3600  *	accessed through virtual addresses starting at 0.
3601  *
3602  *	The mapping is as follows:
3603  *	[0..1K) -> [31K..32K)
3604  *	[1K..1K+A) -> [ES-A..ES)
3605  *	[1K+A..ES) -> [0..ES-A-1K)
3606  *
3607  *	where A = @fn * @sz, and ES = EEPROM size.
3608  */
t4_eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)3609 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
3610 {
3611 	fn *= sz;
3612 	if (phys_addr < 1024)
3613 		return phys_addr + (31 << 10);
3614 	if (phys_addr < 1024 + fn)
3615 		return EEPROMSIZE - fn + phys_addr - 1024;
3616 	if (phys_addr < EEPROMSIZE)
3617 		return phys_addr - 1024 - fn;
3618 	return -EINVAL;
3619 }
3620 
3621 /**
3622  *	t4_seeprom_wp - enable/disable EEPROM write protection
3623  *	@adapter: the adapter
3624  *	@enable: whether to enable or disable write protection
3625  *
3626  *	Enables or disables write protection on the serial EEPROM.
3627  */
t4_seeprom_wp(struct adapter * adapter,int enable)3628 int t4_seeprom_wp(struct adapter *adapter, int enable)
3629 {
3630 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
3631 }
3632 
3633 /**
3634  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
3635  *	@vpd: Pointer to buffered vpd data structure
3636  *	@kw: The keyword to search for
3637  *	@region: VPD region to search (starting from 0)
3638  *
3639  *	Returns the value of the information field keyword or
3640  *	-ENOENT otherwise.
3641  */
get_vpd_keyword_val(const u8 * vpd,const char * kw,int region)3642 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
3643 {
3644 	int i, tag;
3645 	unsigned int offset, len;
3646 	const struct t4_vpdr_hdr *vpdr;
3647 
3648 	offset = sizeof(struct t4_vpd_hdr);
3649 	vpdr = (const void *)(vpd + offset);
3650 	tag = vpdr->vpdr_tag;
3651 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
3652 	while (region--) {
3653 		offset += sizeof(struct t4_vpdr_hdr) + len;
3654 		vpdr = (const void *)(vpd + offset);
3655 		if (++tag != vpdr->vpdr_tag)
3656 			return -ENOENT;
3657 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
3658 	}
3659 	offset += sizeof(struct t4_vpdr_hdr);
3660 
3661 	if (offset + len > VPD_LEN) {
3662 		return -ENOENT;
3663 	}
3664 
3665 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
3666 		if (memcmp(vpd + i , kw , 2) == 0){
3667 			i += VPD_INFO_FLD_HDR_SIZE;
3668 			return i;
3669 		}
3670 
3671 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
3672 	}
3673 
3674 	return -ENOENT;
3675 }
3676 
3677 
3678 /**
3679  *	get_vpd_params - read VPD parameters from VPD EEPROM
3680  *	@adapter: adapter to read
3681  *	@p: where to store the parameters
3682  *	@vpd: caller provided temporary space to read the VPD into
3683  *
3684  *	Reads card parameters stored in VPD EEPROM.
3685  */
get_vpd_params(struct adapter * adapter,struct vpd_params * p,uint16_t device_id,u32 * buf)3686 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3687     uint16_t device_id, u32 *buf)
3688 {
3689 	int i, ret, addr;
3690 	int ec, sn, pn, na, md;
3691 	u8 csum;
3692 	const u8 *vpd = (const u8 *)buf;
3693 
3694 	/*
3695 	 * Card information normally starts at VPD_BASE but early cards had
3696 	 * it at 0.
3697 	 */
3698 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3699 	if (ret)
3700 		return (ret);
3701 
3702 	/*
3703 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3704 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3705 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3706 	 * is expected to automatically put this entry at the
3707 	 * beginning of the VPD.
3708 	 */
3709 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3710 
3711 	for (i = 0; i < VPD_LEN; i += 4) {
3712 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3713 		if (ret)
3714 			return ret;
3715 	}
3716 
3717 #define FIND_VPD_KW(var,name) do { \
3718 	var = get_vpd_keyword_val(vpd, name, 0); \
3719 	if (var < 0) { \
3720 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3721 		return -EINVAL; \
3722 	} \
3723 } while (0)
3724 
3725 	FIND_VPD_KW(i, "RV");
3726 	for (csum = 0; i >= 0; i--)
3727 		csum += vpd[i];
3728 
3729 	if (csum) {
3730 		CH_ERR(adapter,
3731 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3732 		return -EINVAL;
3733 	}
3734 
3735 	FIND_VPD_KW(ec, "EC");
3736 	FIND_VPD_KW(sn, "SN");
3737 	FIND_VPD_KW(pn, "PN");
3738 	FIND_VPD_KW(na, "NA");
3739 #undef FIND_VPD_KW
3740 
3741 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3742 	strstrip(p->id);
3743 	memcpy(p->ec, vpd + ec, EC_LEN);
3744 	strstrip(p->ec);
3745 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3746 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3747 	strstrip(p->sn);
3748 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3749 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3750 	strstrip((char *)p->pn);
3751 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3752 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3753 	strstrip((char *)p->na);
3754 
3755 	if (device_id & 0x80)
3756 		return 0;	/* Custom card */
3757 
3758 	md = get_vpd_keyword_val(vpd, "VF", 1);
3759 	if (md < 0) {
3760 		snprintf(p->md, sizeof(p->md), "unknown");
3761 	} else {
3762 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3763 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3764 		strstrip((char *)p->md);
3765 	}
3766 
3767 	return 0;
3768 }
3769 
3770 /* Flash Layout {start sector, # of sectors} for T4/T5/T6 adapters */
3771 static const struct t4_flash_loc_entry t4_flash_loc_arr[] = {
3772 	[FLASH_LOC_EXP_ROM] = { 0, 6 },
3773 	[FLASH_LOC_IBFT] = { 6, 1 },
3774 	[FLASH_LOC_BOOTCFG] = { 7, 1 },
3775 	[FLASH_LOC_FW] = { 8, 16 },
3776 	[FLASH_LOC_FWBOOTSTRAP] = { 27, 1 },
3777 	[FLASH_LOC_ISCSI_CRASH] = { 29, 1 },
3778 	[FLASH_LOC_FCOE_CRASH] = { 30, 1 },
3779 	[FLASH_LOC_CFG] = { 31, 1 },
3780 	[FLASH_LOC_CUDBG] = { 32, 32 },
3781 	[FLASH_LOC_BOOT_AREA] = { 0, 8 }, /* Spans complete Boot Area */
3782 	[FLASH_LOC_END] = { 64, 0 },
3783 };
3784 
3785 /* Flash Layout {start sector, # of sectors} for T7 adapters */
3786 static const struct t4_flash_loc_entry t7_flash_loc_arr[] = {
3787 	[FLASH_LOC_VPD] = { 0, 1 },
3788 	[FLASH_LOC_FWBOOTSTRAP] = { 1, 1 },
3789 	[FLASH_LOC_FW] = { 2, 29 },
3790 	[FLASH_LOC_CFG] = { 31, 1 },
3791 	[FLASH_LOC_EXP_ROM] = { 32, 15 },
3792 	[FLASH_LOC_IBFT] = { 47, 1 },
3793 	[FLASH_LOC_BOOTCFG] = { 48, 1 },
3794 	[FLASH_LOC_DPU_BOOT] = { 49, 13 },
3795 	[FLASH_LOC_ISCSI_CRASH] = { 62, 1 },
3796 	[FLASH_LOC_FCOE_CRASH] = { 63, 1 },
3797 	[FLASH_LOC_VPD_BACKUP] = { 64, 1 },
3798 	[FLASH_LOC_FWBOOTSTRAP_BACKUP] = { 65, 1 },
3799 	[FLASH_LOC_FW_BACKUP] = { 66, 29 },
3800 	[FLASH_LOC_CFG_BACK] = { 95, 1 },
3801 	[FLASH_LOC_CUDBG] = { 96, 48 },
3802 	[FLASH_LOC_CHIP_DUMP] = { 144, 48 },
3803 	[FLASH_LOC_DPU_AREA] = { 192, 64 },
3804 	[FLASH_LOC_BOOT_AREA] = { 32, 17 }, /* Spans complete UEFI/PXE Boot Area */
3805 	[FLASH_LOC_END] = { 256, 0 },
3806 };
3807 
3808 int
t4_flash_loc_start(struct adapter * adap,enum t4_flash_loc loc,unsigned int * lenp)3809 t4_flash_loc_start(struct adapter *adap, enum t4_flash_loc loc,
3810     unsigned int *lenp)
3811 {
3812 	const struct t4_flash_loc_entry *l = chip_id(adap) >= CHELSIO_T7 ?
3813 	    &t7_flash_loc_arr[loc] : &t4_flash_loc_arr[loc];
3814 
3815 	if (lenp != NULL)
3816 		*lenp = FLASH_MAX_SIZE(l->nsecs);
3817 	return (FLASH_START(l->start_sec));
3818 }
3819 
3820 /* serial flash and firmware constants and flash config file constants */
3821 enum {
3822 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3823 
3824 	/* flash command opcodes */
3825 	SF_PROG_PAGE    = 2,	/* program 256B page */
3826 	SF_WR_DISABLE   = 4,	/* disable writes */
3827 	SF_RD_STATUS    = 5,	/* read status register */
3828 	SF_WR_ENABLE    = 6,	/* enable writes */
3829 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3830 	SF_RD_ID	= 0x9f,	/* read ID */
3831 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3832 };
3833 
3834 /**
3835  *	sf1_read - read data from the serial flash
3836  *	@adapter: the adapter
3837  *	@byte_cnt: number of bytes to read
3838  *	@cont: whether another operation will be chained
3839  *	@lock: whether to lock SF for PL access only
3840  *	@valp: where to store the read data
3841  *
3842  *	Reads up to 4 bytes of data from the serial flash.  The location of
3843  *	the read needs to be specified prior to calling this by issuing the
3844  *	appropriate commands to the serial flash.
3845  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)3846 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3847 		    int lock, u32 *valp)
3848 {
3849 	int ret;
3850 	uint32_t op;
3851 
3852 	if (!byte_cnt || byte_cnt > 4)
3853 		return -EINVAL;
3854 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3855 		return -EBUSY;
3856 	op = V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1);
3857 	if (chip_id(adapter) >= CHELSIO_T7)
3858 		op |= F_QUADREADDISABLE;
3859 	t4_write_reg(adapter, A_SF_OP, op);
3860 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3861 	if (!ret)
3862 		*valp = t4_read_reg(adapter, A_SF_DATA);
3863 	return ret;
3864 }
3865 
3866 /**
3867  *	sf1_write - write data to the serial flash
3868  *	@adapter: the adapter
3869  *	@byte_cnt: number of bytes to write
3870  *	@cont: whether another operation will be chained
3871  *	@lock: whether to lock SF for PL access only
3872  *	@val: value to write
3873  *
3874  *	Writes up to 4 bytes of data to the serial flash.  The location of
3875  *	the write needs to be specified prior to calling this by issuing the
3876  *	appropriate commands to the serial flash.
3877  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)3878 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3879 		     int lock, u32 val)
3880 {
3881 	if (!byte_cnt || byte_cnt > 4)
3882 		return -EINVAL;
3883 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3884 		return -EBUSY;
3885 	t4_write_reg(adapter, A_SF_DATA, val);
3886 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3887 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3888 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3889 }
3890 
3891 /**
3892  *	flash_wait_op - wait for a flash operation to complete
3893  *	@adapter: the adapter
3894  *	@attempts: max number of polls of the status register
3895  *	@delay: delay between polls in ms
3896  *
3897  *	Wait for a flash operation to complete by polling the status register.
3898  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)3899 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3900 {
3901 	int ret;
3902 	u32 status;
3903 
3904 	while (1) {
3905 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3906 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3907 			return ret;
3908 		if (!(status & 1))
3909 			return 0;
3910 		if (--attempts == 0)
3911 			return -EAGAIN;
3912 		if (delay)
3913 			msleep(delay);
3914 	}
3915 }
3916 
3917 /**
3918  *	t4_read_flash - read words from serial flash
3919  *	@adapter: the adapter
3920  *	@addr: the start address for the read
3921  *	@nwords: how many 32-bit words to read
3922  *	@data: where to store the read data
3923  *	@byte_oriented: whether to store data as bytes or as words
3924  *
3925  *	Read the specified number of 32-bit words from the serial flash.
3926  *	If @byte_oriented is set the read data is stored as a byte array
3927  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3928  *	natural endianness.
3929  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)3930 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3931 		  unsigned int nwords, u32 *data, int byte_oriented)
3932 {
3933 	int ret;
3934 
3935 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3936 		return -EINVAL;
3937 
3938 	addr = swab32(addr) | SF_RD_DATA_FAST;
3939 
3940 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3941 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3942 		return ret;
3943 
3944 	for ( ; nwords; nwords--, data++) {
3945 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3946 		if (nwords == 1)
3947 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3948 		if (ret)
3949 			return ret;
3950 		if (byte_oriented)
3951 			*data = (__force __u32)(cpu_to_be32(*data));
3952 	}
3953 	return 0;
3954 }
3955 
3956 /**
3957  *	t4_write_flash - write up to a page of data to the serial flash
3958  *	@adapter: the adapter
3959  *	@addr: the start address to write
3960  *	@n: length of data to write in bytes
3961  *	@data: the data to write
3962  *	@byte_oriented: whether to store data as bytes or as words
3963  *
3964  *	Writes up to a page of data (256 bytes) to the serial flash starting
3965  *	at the given address.  All the data must be written to the same page.
3966  *	If @byte_oriented is set the write data is stored as byte stream
3967  *	(i.e. matches what on disk), otherwise in big-endian.
3968  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data,int byte_oriented)3969 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3970 			  unsigned int n, const u8 *data, int byte_oriented)
3971 {
3972 	int ret;
3973 	u32 buf[SF_PAGE_SIZE / 4];
3974 	unsigned int i, c, left, val, offset = addr & 0xff;
3975 
3976 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3977 		return -EINVAL;
3978 
3979 	val = swab32(addr) | SF_PROG_PAGE;
3980 
3981 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3982 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3983 		goto unlock;
3984 
3985 	for (left = n; left; left -= c) {
3986 		c = min(left, 4U);
3987 		for (val = 0, i = 0; i < c; ++i)
3988 			val = (val << 8) + *data++;
3989 
3990 		if (!byte_oriented)
3991 			val = cpu_to_be32(val);
3992 
3993 		ret = sf1_write(adapter, c, c != left, 1, val);
3994 		if (ret)
3995 			goto unlock;
3996 	}
3997 	ret = flash_wait_op(adapter, 8, 1);
3998 	if (ret)
3999 		goto unlock;
4000 
4001 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
4002 
4003 	/* Read the page to verify the write succeeded */
4004 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
4005 			    byte_oriented);
4006 	if (ret)
4007 		return ret;
4008 
4009 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
4010 		CH_ERR(adapter,
4011 			"failed to correctly write the flash page at %#x\n",
4012 			addr);
4013 		return -EIO;
4014 	}
4015 	return 0;
4016 
4017 unlock:
4018 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
4019 	return ret;
4020 }
4021 
4022 /**
4023  *	t4_get_fw_version - read the firmware version
4024  *	@adapter: the adapter
4025  *	@vers: where to place the version
4026  *
4027  *	Reads the FW version from flash.
4028  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)4029 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
4030 {
4031 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FW, NULL);
4032 
4033 	return t4_read_flash(adapter, start + offsetof(struct fw_hdr, fw_ver),
4034 	    1, vers, 0);
4035 }
4036 
4037 /**
4038  *	t4_get_fw_hdr - read the firmware header
4039  *	@adapter: the adapter
4040  *	@hdr: where to place the version
4041  *
4042  *	Reads the FW header from flash into caller provided buffer.
4043  */
t4_get_fw_hdr(struct adapter * adapter,struct fw_hdr * hdr)4044 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
4045 {
4046 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FW, NULL);
4047 
4048 	return t4_read_flash(adapter, start, sizeof (*hdr) / sizeof (uint32_t),
4049 	    (uint32_t *)hdr, 1);
4050 }
4051 
4052 /**
4053  *	t4_get_bs_version - read the firmware bootstrap version
4054  *	@adapter: the adapter
4055  *	@vers: where to place the version
4056  *
4057  *	Reads the FW Bootstrap version from flash.
4058  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)4059 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
4060 {
4061 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FWBOOTSTRAP,
4062 	    NULL);
4063 
4064 	return t4_read_flash(adapter, start + offsetof(struct fw_hdr, fw_ver),
4065 	    1, vers, 0);
4066 }
4067 
4068 /**
4069  *	t4_get_tp_version - read the TP microcode version
4070  *	@adapter: the adapter
4071  *	@vers: where to place the version
4072  *
4073  *	Reads the TP microcode version from flash.
4074  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)4075 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
4076 {
4077 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_FW, NULL);
4078 
4079 	return t4_read_flash(adapter, start +
4080 	    offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0);
4081 }
4082 
4083 /**
4084  *	t4_get_exprom_version - return the Expansion ROM version (if any)
4085  *	@adapter: the adapter
4086  *	@vers: where to place the version
4087  *
4088  *	Reads the Expansion ROM header from FLASH and returns the version
4089  *	number (if present) through the @vers return value pointer.  We return
4090  *	this in the Firmware Version Format since it's convenient.  Return
4091  *	0 on success, -ENOENT if no Expansion ROM is present.
4092  */
t4_get_exprom_version(struct adapter * adapter,u32 * vers)4093 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
4094 {
4095 	struct exprom_header {
4096 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
4097 		unsigned char hdr_ver[4];	/* Expansion ROM version */
4098 	} *hdr;
4099 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
4100 					   sizeof(u32))];
4101 	int ret;
4102 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_EXP_ROM, NULL);
4103 
4104 	ret = t4_read_flash(adapter, start, ARRAY_SIZE(exprom_header_buf),
4105 	    exprom_header_buf, 0);
4106 	if (ret)
4107 		return ret;
4108 
4109 	hdr = (struct exprom_header *)exprom_header_buf;
4110 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
4111 		return -ENOENT;
4112 
4113 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
4114 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
4115 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
4116 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
4117 	return 0;
4118 }
4119 
4120 /**
4121  *	t4_get_scfg_version - return the Serial Configuration version
4122  *	@adapter: the adapter
4123  *	@vers: where to place the version
4124  *
4125  *	Reads the Serial Configuration Version via the Firmware interface
4126  *	(thus this can only be called once we're ready to issue Firmware
4127  *	commands).  The format of the Serial Configuration version is
4128  *	adapter specific.  Returns 0 on success, an error on failure.
4129  *
4130  *	Note that early versions of the Firmware didn't include the ability
4131  *	to retrieve the Serial Configuration version, so we zero-out the
4132  *	return-value parameter in that case to avoid leaving it with
4133  *	garbage in it.
4134  *
4135  *	Also note that the Firmware will return its cached copy of the Serial
4136  *	Initialization Revision ID, not the actual Revision ID as written in
4137  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
4138  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
4139  *	it's best to defer calling this routine till after a FW_RESET_CMD has
4140  *	been issued if the Host Driver will be performing a full adapter
4141  *	initialization.
4142  */
t4_get_scfg_version(struct adapter * adapter,u32 * vers)4143 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
4144 {
4145 	u32 scfgrev_param;
4146 	int ret;
4147 
4148 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4149 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
4150 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4151 			      1, &scfgrev_param, vers);
4152 	if (ret)
4153 		*vers = 0;
4154 	return ret;
4155 }
4156 
4157 /**
4158  *	t4_get_vpd_version - return the VPD version
4159  *	@adapter: the adapter
4160  *	@vers: where to place the version
4161  *
4162  *	Reads the VPD via the Firmware interface (thus this can only be called
4163  *	once we're ready to issue Firmware commands).  The format of the
4164  *	VPD version is adapter specific.  Returns 0 on success, an error on
4165  *	failure.
4166  *
4167  *	Note that early versions of the Firmware didn't include the ability
4168  *	to retrieve the VPD version, so we zero-out the return-value parameter
4169  *	in that case to avoid leaving it with garbage in it.
4170  *
4171  *	Also note that the Firmware will return its cached copy of the VPD
4172  *	Revision ID, not the actual Revision ID as written in the Serial
4173  *	EEPROM.  This is only an issue if a new VPD has been written and the
4174  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
4175  *	to defer calling this routine till after a FW_RESET_CMD has been issued
4176  *	if the Host Driver will be performing a full adapter initialization.
4177  */
t4_get_vpd_version(struct adapter * adapter,u32 * vers)4178 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
4179 {
4180 	u32 vpdrev_param;
4181 	int ret;
4182 
4183 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4184 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
4185 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4186 			      1, &vpdrev_param, vers);
4187 	if (ret)
4188 		*vers = 0;
4189 	return ret;
4190 }
4191 
4192 /**
4193  *	t4_get_version_info - extract various chip/firmware version information
4194  *	@adapter: the adapter
4195  *
4196  *	Reads various chip/firmware version numbers and stores them into the
4197  *	adapter Adapter Parameters structure.  If any of the efforts fails
4198  *	the first failure will be returned, but all of the version numbers
4199  *	will be read.
4200  */
t4_get_version_info(struct adapter * adapter)4201 int t4_get_version_info(struct adapter *adapter)
4202 {
4203 	int ret = 0;
4204 
4205 	#define FIRST_RET(__getvinfo) \
4206 	do { \
4207 		int __ret = __getvinfo; \
4208 		if (__ret && !ret) \
4209 			ret = __ret; \
4210 	} while (0)
4211 
4212 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
4213 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
4214 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
4215 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
4216 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
4217 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
4218 
4219 	#undef FIRST_RET
4220 
4221 	return ret;
4222 }
4223 
4224 /**
4225  *	t4_flash_erase_sectors - erase a range of flash sectors
4226  *	@adapter: the adapter
4227  *	@start: the first sector to erase
4228  *	@end: the last sector to erase
4229  *
4230  *	Erases the sectors in the given inclusive range.
4231  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)4232 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
4233 {
4234 	int ret = 0;
4235 
4236 	if (end >= adapter->params.sf_nsec)
4237 		return -EINVAL;
4238 
4239 	while (start <= end) {
4240 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
4241 		    (ret = sf1_write(adapter, 4, 0, 1,
4242 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
4243 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
4244 			CH_ERR(adapter,
4245 				"erase of flash sector %d failed, error %d\n",
4246 				start, ret);
4247 			break;
4248 		}
4249 		start++;
4250 	}
4251 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
4252 	return ret;
4253 }
4254 
4255 /**
4256  *	t4_flash_cfg_addr - return the address of the flash configuration file
4257  *	@adapter: the adapter
4258  *
4259  *	Return the address within the flash where the Firmware Configuration
4260  *	File is stored, or an error if the device FLASH is too small to contain
4261  *	a Firmware Configuration File.
4262  */
t4_flash_cfg_addr(struct adapter * adapter,unsigned int * lenp)4263 int t4_flash_cfg_addr(struct adapter *adapter, unsigned int *lenp)
4264 {
4265 	unsigned int len = 0;
4266 	const int cfg_start = t4_flash_loc_start(adapter, FLASH_LOC_CFG, &len);
4267 
4268 	/*
4269 	 * If the device FLASH isn't large enough to hold a Firmware
4270 	 * Configuration File, return an error.
4271 	 */
4272 	if (adapter->params.sf_size < cfg_start + len)
4273 		return -ENOSPC;
4274 	if (lenp != NULL)
4275 		*lenp = len;
4276 	return (cfg_start);
4277 }
4278 
4279 /*
4280  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
4281  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
4282  * and emit an error message for mismatched firmware to save our caller the
4283  * effort ...
4284  */
t4_fw_matches_chip(struct adapter * adap,const struct fw_hdr * hdr)4285 static int t4_fw_matches_chip(struct adapter *adap,
4286 			      const struct fw_hdr *hdr)
4287 {
4288 	/*
4289 	 * The expression below will return FALSE for any unsupported adapter
4290 	 * which will keep us "honest" in the future ...
4291 	 */
4292 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
4293 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
4294 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6) ||
4295 	    (is_t7(adap) && hdr->chip == FW_HDR_CHIP_T7))
4296 		return 1;
4297 
4298 	CH_ERR(adap,
4299 		"FW image (%d) is not suitable for this adapter (%d)\n",
4300 		hdr->chip, chip_id(adap));
4301 	return 0;
4302 }
4303 
4304 /**
4305  *	t4_load_fw - download firmware
4306  *	@adap: the adapter
4307  *	@fw_data: the firmware image to write
4308  *	@size: image size
4309  *
4310  *	Write the supplied firmware image to the card's serial flash.
4311  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)4312 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
4313 {
4314 	u32 csum;
4315 	int ret, addr;
4316 	unsigned int i;
4317 	u8 first_page[SF_PAGE_SIZE];
4318 	const u32 *p = (const u32 *)fw_data;
4319 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
4320 	unsigned int fw_start_sec;
4321 	unsigned int fw_start;
4322 	unsigned int fw_size;
4323 	enum t4_flash_loc loc;
4324 
4325 	loc = ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP ?
4326 	    FLASH_LOC_FWBOOTSTRAP : FLASH_LOC_FW;
4327 	fw_start = t4_flash_loc_start(adap, loc, &fw_size);
4328 	fw_start_sec = fw_start / SF_SEC_SIZE;
4329 
4330 	if (!size) {
4331 		CH_ERR(adap, "FW image has no data\n");
4332 		return -EINVAL;
4333 	}
4334 	if (size & 511) {
4335 		CH_ERR(adap,
4336 			"FW image size not multiple of 512 bytes\n");
4337 		return -EINVAL;
4338 	}
4339 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
4340 		CH_ERR(adap,
4341 			"FW image size differs from size in FW header\n");
4342 		return -EINVAL;
4343 	}
4344 	if (size > fw_size) {
4345 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
4346 			fw_size);
4347 		return -EFBIG;
4348 	}
4349 	if (!t4_fw_matches_chip(adap, hdr))
4350 		return -EINVAL;
4351 
4352 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
4353 		csum += be32_to_cpu(p[i]);
4354 
4355 	if (csum != 0xffffffff) {
4356 		CH_ERR(adap,
4357 			"corrupted firmware image, checksum %#x\n", csum);
4358 		return -EINVAL;
4359 	}
4360 
4361 	i = DIV_ROUND_UP(size, SF_SEC_SIZE);	/* # of sectors spanned */
4362 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
4363 	if (ret)
4364 		goto out;
4365 
4366 	/*
4367 	 * We write the correct version at the end so the driver can see a bad
4368 	 * version if the FW write fails.  Start by writing a copy of the
4369 	 * first page with a bad version.
4370 	 */
4371 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
4372 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
4373 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
4374 	if (ret)
4375 		goto out;
4376 
4377 	addr = fw_start;
4378 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
4379 		addr += SF_PAGE_SIZE;
4380 		fw_data += SF_PAGE_SIZE;
4381 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
4382 		if (ret)
4383 			goto out;
4384 	}
4385 
4386 	ret = t4_write_flash(adap,
4387 			     fw_start + offsetof(struct fw_hdr, fw_ver),
4388 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
4389 out:
4390 	if (ret)
4391 		CH_ERR(adap, "firmware download failed, error %d\n",
4392 			ret);
4393 	return ret;
4394 }
4395 
4396 /**
4397  *	t4_fwcache - firmware cache operation
4398  *	@adap: the adapter
4399  *	@op  : the operation (flush or flush and invalidate)
4400  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)4401 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
4402 {
4403 	struct fw_params_cmd c;
4404 
4405 	memset(&c, 0, sizeof(c));
4406 	c.op_to_vfn =
4407 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
4408 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4409 				V_FW_PARAMS_CMD_PFN(adap->pf) |
4410 				V_FW_PARAMS_CMD_VFN(0));
4411 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4412 	c.param[0].mnem =
4413 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4414 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
4415 	c.param[0].val = cpu_to_be32(op);
4416 
4417 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
4418 }
4419 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)4420 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
4421 			unsigned int *pif_req_wrptr,
4422 			unsigned int *pif_rsp_wrptr)
4423 {
4424 	int i, j;
4425 	u32 cfg, val, req, rsp;
4426 
4427 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
4428 	if (cfg & F_LADBGEN)
4429 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
4430 
4431 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
4432 	req = G_POLADBGWRPTR(val);
4433 	rsp = G_PILADBGWRPTR(val);
4434 	if (pif_req_wrptr)
4435 		*pif_req_wrptr = req;
4436 	if (pif_rsp_wrptr)
4437 		*pif_rsp_wrptr = rsp;
4438 
4439 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
4440 		for (j = 0; j < 6; j++) {
4441 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
4442 				     V_PILADBGRDPTR(rsp));
4443 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
4444 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
4445 			req++;
4446 			rsp++;
4447 		}
4448 		req = (req + 2) & M_POLADBGRDPTR;
4449 		rsp = (rsp + 2) & M_PILADBGRDPTR;
4450 	}
4451 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
4452 }
4453 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)4454 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
4455 {
4456 	u32 cfg;
4457 	int i, j, idx;
4458 
4459 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
4460 	if (cfg & F_LADBGEN)
4461 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
4462 
4463 	for (i = 0; i < CIM_MALA_SIZE; i++) {
4464 		for (j = 0; j < 5; j++) {
4465 			idx = 8 * i + j;
4466 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
4467 				     V_PILADBGRDPTR(idx));
4468 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
4469 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
4470 		}
4471 	}
4472 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
4473 }
4474 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)4475 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
4476 {
4477 	unsigned int i, j;
4478 
4479 	for (i = 0; i < 8; i++) {
4480 		u32 *p = la_buf + i;
4481 
4482 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
4483 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
4484 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
4485 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
4486 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
4487 	}
4488 }
4489 
4490 /**
4491  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
4492  *	@caps16: a 16-bit Port Capabilities value
4493  *
4494  *	Returns the equivalent 32-bit Port Capabilities value.
4495  */
fwcaps16_to_caps32(uint16_t caps16)4496 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
4497 {
4498 	uint32_t caps32 = 0;
4499 
4500 	#define CAP16_TO_CAP32(__cap) \
4501 		do { \
4502 			if (caps16 & FW_PORT_CAP_##__cap) \
4503 				caps32 |= FW_PORT_CAP32_##__cap; \
4504 		} while (0)
4505 
4506 	CAP16_TO_CAP32(SPEED_100M);
4507 	CAP16_TO_CAP32(SPEED_1G);
4508 	CAP16_TO_CAP32(SPEED_25G);
4509 	CAP16_TO_CAP32(SPEED_10G);
4510 	CAP16_TO_CAP32(SPEED_40G);
4511 	CAP16_TO_CAP32(SPEED_100G);
4512 	CAP16_TO_CAP32(FC_RX);
4513 	CAP16_TO_CAP32(FC_TX);
4514 	CAP16_TO_CAP32(ANEG);
4515 	CAP16_TO_CAP32(FORCE_PAUSE);
4516 	CAP16_TO_CAP32(MDIAUTO);
4517 	CAP16_TO_CAP32(MDISTRAIGHT);
4518 	CAP16_TO_CAP32(FEC_RS);
4519 	CAP16_TO_CAP32(FEC_BASER_RS);
4520 	CAP16_TO_CAP32(802_3_PAUSE);
4521 	CAP16_TO_CAP32(802_3_ASM_DIR);
4522 
4523 	#undef CAP16_TO_CAP32
4524 
4525 	return caps32;
4526 }
4527 
4528 /**
4529  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
4530  *	@caps32: a 32-bit Port Capabilities value
4531  *
4532  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
4533  *	not all 32-bit Port Capabilities can be represented in the 16-bit
4534  *	Port Capabilities and some fields/values may not make it.
4535  */
fwcaps32_to_caps16(uint32_t caps32)4536 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
4537 {
4538 	uint16_t caps16 = 0;
4539 
4540 	#define CAP32_TO_CAP16(__cap) \
4541 		do { \
4542 			if (caps32 & FW_PORT_CAP32_##__cap) \
4543 				caps16 |= FW_PORT_CAP_##__cap; \
4544 		} while (0)
4545 
4546 	CAP32_TO_CAP16(SPEED_100M);
4547 	CAP32_TO_CAP16(SPEED_1G);
4548 	CAP32_TO_CAP16(SPEED_10G);
4549 	CAP32_TO_CAP16(SPEED_25G);
4550 	CAP32_TO_CAP16(SPEED_40G);
4551 	CAP32_TO_CAP16(SPEED_100G);
4552 	CAP32_TO_CAP16(FC_RX);
4553 	CAP32_TO_CAP16(FC_TX);
4554 	CAP32_TO_CAP16(802_3_PAUSE);
4555 	CAP32_TO_CAP16(802_3_ASM_DIR);
4556 	CAP32_TO_CAP16(ANEG);
4557 	CAP32_TO_CAP16(FORCE_PAUSE);
4558 	CAP32_TO_CAP16(MDIAUTO);
4559 	CAP32_TO_CAP16(MDISTRAIGHT);
4560 	CAP32_TO_CAP16(FEC_RS);
4561 	CAP32_TO_CAP16(FEC_BASER_RS);
4562 
4563 	#undef CAP32_TO_CAP16
4564 
4565 	return caps16;
4566 }
4567 
fwcap_to_fec(uint32_t caps,bool unset_means_none)4568 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
4569 {
4570 	int8_t fec = 0;
4571 
4572 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
4573 		return (unset_means_none ? FEC_NONE : 0);
4574 
4575 	if (caps & FW_PORT_CAP32_FEC_RS)
4576 		fec |= FEC_RS;
4577 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
4578 		fec |= FEC_BASER_RS;
4579 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
4580 		fec |= FEC_NONE;
4581 
4582 	return (fec);
4583 }
4584 
4585 /*
4586  * Note that 0 is not translated to NO_FEC.
4587  */
fec_to_fwcap(int8_t fec)4588 static uint32_t fec_to_fwcap(int8_t fec)
4589 {
4590 	uint32_t caps = 0;
4591 
4592 	/* Only real FECs allowed. */
4593 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
4594 
4595 	if (fec & FEC_RS)
4596 		caps |= FW_PORT_CAP32_FEC_RS;
4597 	if (fec & FEC_BASER_RS)
4598 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
4599 	if (fec & FEC_NONE)
4600 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
4601 
4602 	return (caps);
4603 }
4604 
4605 /**
4606  *	t4_link_l1cfg - apply link configuration to MAC/PHY
4607  *	@phy: the PHY to setup
4608  *	@mac: the MAC to setup
4609  *	@lc: the requested link configuration
4610  *
4611  *	Set up a port's MAC and PHY according to a desired link configuration.
4612  *	- If the PHY can auto-negotiate first decide what to advertise, then
4613  *	  enable/disable auto-negotiation as desired, and reset.
4614  *	- If the PHY does not auto-negotiate just reset it.
4615  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4616  *	  otherwise do it later based on the outcome of auto-negotiation.
4617  */
t4_link_l1cfg(struct adapter * adap,unsigned int mbox,unsigned int port,struct link_config * lc)4618 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
4619 		  struct link_config *lc)
4620 {
4621 	struct fw_port_cmd c;
4622 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
4623 	unsigned int aneg, fc, fec, speed, rcap;
4624 
4625 	fc = 0;
4626 	if (lc->requested_fc & PAUSE_RX)
4627 		fc |= FW_PORT_CAP32_FC_RX;
4628 	if (lc->requested_fc & PAUSE_TX)
4629 		fc |= FW_PORT_CAP32_FC_TX;
4630 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4631 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
4632 
4633 	if (lc->requested_aneg == AUTONEG_DISABLE)
4634 		aneg = 0;
4635 	else if (lc->requested_aneg == AUTONEG_ENABLE)
4636 		aneg = FW_PORT_CAP32_ANEG;
4637 	else
4638 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
4639 
4640 	if (aneg) {
4641 		speed = lc->pcaps &
4642 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
4643 	} else if (lc->requested_speed != 0)
4644 		speed = speed_to_fwcap(lc->requested_speed);
4645 	else
4646 		speed = fwcap_top_speed(lc->pcaps);
4647 
4648 	fec = 0;
4649 	if (fec_supported(speed)) {
4650 		int force_fec;
4651 
4652 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
4653 			force_fec = lc->force_fec;
4654 		else
4655 			force_fec = 0;
4656 
4657 		if (lc->requested_fec == FEC_AUTO) {
4658 			if (force_fec > 0) {
4659 				/*
4660 				 * Must use FORCE_FEC even though requested FEC
4661 				 * is AUTO. Set all the FEC bits valid for the
4662 				 * speed and let the firmware pick one.
4663 				 */
4664 				fec |= FW_PORT_CAP32_FORCE_FEC;
4665 				if (speed & FW_PORT_CAP32_SPEED_25G) {
4666 					fec |= FW_PORT_CAP32_FEC_RS;
4667 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
4668 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
4669 				} else {
4670 					fec |= FW_PORT_CAP32_FEC_RS;
4671 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
4672 				}
4673 			} else {
4674 				/*
4675 				 * Set only 1b. Old firmwares can't deal with
4676 				 * multiple bits and new firmwares are free to
4677 				 * ignore this and try whatever FECs they want
4678 				 * because we aren't setting FORCE_FEC here.
4679 				 */
4680 				fec |= fec_to_fwcap(lc->fec_hint);
4681 				MPASS(powerof2(fec));
4682 
4683 				/*
4684 				 * Override the hint if the FEC is not valid for
4685 				 * the potential top speed.  Request the best
4686 				 * FEC at that speed instead.
4687 				 */
4688 				if ((speed & FW_PORT_CAP32_SPEED_25G) == 0 &&
4689 				    fec == FW_PORT_CAP32_FEC_BASER_RS) {
4690 					fec = FW_PORT_CAP32_FEC_RS;
4691 				}
4692 			}
4693 		} else {
4694 			/*
4695 			 * User has explicitly requested some FEC(s). Set
4696 			 * FORCE_FEC unless prohibited from using it.
4697 			 */
4698 			if (force_fec != 0)
4699 				fec |= FW_PORT_CAP32_FORCE_FEC;
4700 			fec |= fec_to_fwcap(lc->requested_fec &
4701 			    M_FW_PORT_CAP32_FEC);
4702 			if (lc->requested_fec & FEC_MODULE)
4703 				fec |= fec_to_fwcap(lc->fec_hint);
4704 		}
4705 
4706 		/*
4707 		 * This is for compatibility with old firmwares. The original
4708 		 * way to request NO_FEC was to not set any of the FEC bits. New
4709 		 * firmwares understand this too.
4710 		 */
4711 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
4712 			fec = 0;
4713 	}
4714 
4715 	/* Force AN on for BT cards. */
4716 	if (isset(&adap->bt_map, port))
4717 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
4718 
4719 	rcap = aneg | speed | fc | fec;
4720 	if ((rcap | lc->pcaps) != lc->pcaps) {
4721 #ifdef INVARIANTS
4722 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
4723 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
4724 #endif
4725 		rcap &= lc->pcaps;
4726 	}
4727 	rcap |= mdi;
4728 
4729 	memset(&c, 0, sizeof(c));
4730 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4731 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4732 				     V_FW_PORT_CMD_PORTID(port));
4733 	if (adap->params.port_caps32) {
4734 		c.action_to_len16 =
4735 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4736 			FW_LEN16(c));
4737 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4738 	} else {
4739 		c.action_to_len16 =
4740 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4741 			    FW_LEN16(c));
4742 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4743 	}
4744 
4745 	lc->requested_caps = rcap;
4746 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4747 }
4748 
4749 /**
4750  *	t4_restart_aneg - restart autonegotiation
4751  *	@adap: the adapter
4752  *	@mbox: mbox to use for the FW command
4753  *	@port: the port id
4754  *
4755  *	Restarts autonegotiation for the selected port.
4756  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)4757 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4758 {
4759 	struct fw_port_cmd c;
4760 
4761 	memset(&c, 0, sizeof(c));
4762 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4763 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4764 				     V_FW_PORT_CMD_PORTID(port));
4765 	c.action_to_len16 =
4766 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4767 			    FW_LEN16(c));
4768 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4769 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4770 }
4771 
4772 struct intr_details {
4773 	u32 mask;
4774 	const char *msg;
4775 };
4776 
4777 struct intr_action {
4778 	u32 mask;
4779 	int arg;
4780 	bool (*action)(struct adapter *, int, int);
4781 };
4782 
4783 struct intr_info {
4784 	const char *name;	/* name of the INT_CAUSE register */
4785 	int cause_reg;		/* INT_CAUSE register */
4786 	int enable_reg;		/* INT_ENABLE register */
4787 	u32 fatal;		/* bits that are fatal */
4788 	int flags;		/* hints */
4789 	const struct intr_details *details;
4790 	const struct intr_action *actions;
4791 };
4792 
4793 static inline char
intr_alert_char(u32 cause,u32 enable,u32 fatal)4794 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4795 {
4796 
4797 	if (cause & fatal)
4798 		return ('!');
4799 	if (cause & enable)
4800 		return ('*');
4801 	return ('-');
4802 }
4803 
4804 static void
show_intr_info(struct adapter * sc,const struct intr_info * ii,uint32_t cause,uint32_t ucause,uint32_t enabled,uint32_t fatal,int flags)4805 show_intr_info(struct adapter *sc, const struct intr_info *ii, uint32_t cause,
4806     uint32_t ucause, uint32_t enabled, uint32_t fatal, int flags)
4807 {
4808 	uint32_t leftover, msgbits;
4809 	const struct intr_details *details;
4810 	char alert;
4811 	const bool verbose = flags & IHF_VERBOSE;
4812 
4813 	if (verbose || ucause != 0 || flags & IHF_RUN_ALL_ACTIONS) {
4814 		alert = intr_alert_char(cause, enabled, fatal);
4815 		CH_ALERT(sc, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", alert,
4816 		    ii->name, ii->cause_reg, cause, enabled, fatal);
4817 	}
4818 
4819 	leftover = verbose ? cause : ucause;
4820 	for (details = ii->details; details && details->mask != 0; details++) {
4821 		msgbits = details->mask & leftover;
4822 		if (msgbits == 0)
4823 			continue;
4824 		alert = intr_alert_char(msgbits, enabled, fatal);
4825 		CH_ALERT(sc, "  %c [0x%08x] %s\n", alert, msgbits, details->msg);
4826 		leftover &= ~msgbits;
4827 	}
4828 	if (leftover != 0 && leftover != (verbose ? cause : ucause))
4829 		CH_ALERT(sc, "  ? [0x%08x]\n", leftover);
4830 }
4831 
4832 /*
4833  * Returns true for fatal error.
4834  */
4835 static bool
t4_handle_intr(struct adapter * sc,const struct intr_info * ii,uint32_t acause,int flags)4836 t4_handle_intr(struct adapter *sc, const struct intr_info *ii, uint32_t acause,
4837     int flags)
4838 {
4839 	uint32_t cause, ucause, enabled, fatal;
4840 	bool rc;
4841 	const struct intr_action *action;
4842 
4843 	cause = t4_read_reg(sc, ii->cause_reg);
4844 	enabled = t4_read_reg(sc, ii->enable_reg);
4845 	flags |= ii->flags;
4846 	fatal = ii->fatal & cause;
4847 	if (flags & IHF_FATAL_IFF_ENABLED)
4848 		fatal &= enabled;
4849 	ucause = cause;
4850 	if (flags & IHF_IGNORE_IF_DISABLED)
4851 		ucause &= enabled;
4852 	if (!(flags & IHF_NO_SHOW))
4853 		show_intr_info(sc, ii, cause, ucause, enabled, fatal, flags);
4854 
4855 	rc = fatal != 0;
4856 	for (action = ii->actions; action && action->mask != 0; action++) {
4857 		if (action->action == NULL)
4858 			continue;
4859 		if (action->mask & (ucause | acause) ||
4860 		    flags & IHF_RUN_ALL_ACTIONS) {
4861 			bool rc1 = (action->action)(sc, action->arg, flags);
4862 			if (action->mask & ucause)
4863 				rc |= rc1;
4864 		}
4865 	}
4866 
4867 	/* clear */
4868 	if (cause != 0) {
4869 		if (flags & IHF_CLR_ALL_SET) {
4870 			t4_write_reg(sc, ii->cause_reg, cause);
4871 			(void)t4_read_reg(sc, ii->cause_reg);
4872 		} else if (ucause != 0 && flags & IHF_CLR_ALL_UNIGNORED) {
4873 			t4_write_reg(sc, ii->cause_reg, ucause);
4874 			(void)t4_read_reg(sc, ii->cause_reg);
4875 		}
4876 	}
4877 
4878 	return (rc);
4879 }
4880 
4881 /*
4882  * Interrupt handler for the PCIE module.
4883  */
pcie_intr_handler(struct adapter * adap,int arg,int flags)4884 static bool pcie_intr_handler(struct adapter *adap, int arg, int flags)
4885 {
4886 	static const struct intr_details sysbus_intr_details[] = {
4887 		{ F_RNPP, "RXNP array parity error" },
4888 		{ F_RPCP, "RXPC array parity error" },
4889 		{ F_RCIP, "RXCIF array parity error" },
4890 		{ F_RCCP, "Rx completions control array parity error" },
4891 		{ F_RFTP, "RXFT array parity error" },
4892 		{ 0 }
4893 	};
4894 	static const struct intr_info sysbus_intr_info = {
4895 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4896 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4897 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4898 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4899 		.flags = 0,
4900 		.details = sysbus_intr_details,
4901 		.actions = NULL,
4902 	};
4903 	static const struct intr_details pcie_port_intr_details[] = {
4904 		{ F_TPCP, "TXPC array parity error" },
4905 		{ F_TNPP, "TXNP array parity error" },
4906 		{ F_TFTP, "TXFT array parity error" },
4907 		{ F_TCAP, "TXCA array parity error" },
4908 		{ F_TCIP, "TXCIF array parity error" },
4909 		{ F_RCAP, "RXCA array parity error" },
4910 		{ F_OTDD, "outbound request TLP discarded" },
4911 		{ F_RDPE, "Rx data parity error" },
4912 		{ F_TDUE, "Tx uncorrectable data error" },
4913 		{ 0 }
4914 	};
4915 	static const struct intr_info pcie_port_intr_info = {
4916 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4917 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4918 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4919 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4920 		    F_OTDD | F_RDPE | F_TDUE,
4921 		.flags = 0,
4922 		.details = pcie_port_intr_details,
4923 		.actions = NULL,
4924 	};
4925 	static const struct intr_details pcie_intr_details[] = {
4926 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4927 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4928 		{ F_MSIDATAPERR, "MSI data parity error" },
4929 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4930 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4931 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4932 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4933 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4934 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4935 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4936 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4937 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4938 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4939 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4940 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4941 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4942 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4943 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4944 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4945 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4946 		{ F_FIDPERR, "PCIe FID parity error" },
4947 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4948 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4949 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4950 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4951 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4952 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4953 		{ F_PCIESINT, "PCIe core secondary fault" },
4954 		{ F_PCIEPINT, "PCIe core primary fault" },
4955 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4956 		{ 0 }
4957 	};
4958 	static const struct intr_details t5_pcie_intr_details[] = {
4959 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4960 		{ F_NONFATALERR, "PCIe non-fatal error" },
4961 		{ F_READRSPERR, "Outbound read error" },
4962 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4963 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4964 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4965 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4966 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4967 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4968 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4969 		{ F_VFIDPERR, "VFID SRAM parity error" },
4970 		{ F_FIDPERR, "FID SRAM parity error" },
4971 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4972 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4973 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4974 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4975 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4976 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4977 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4978 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4979 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4980 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4981 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4982 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4983 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4984 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4985 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4986 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4987 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4988 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4989 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4990 		{ 0 }
4991 	};
4992 	struct intr_info pcie_intr_info = {
4993 		.name = "PCIE_INT_CAUSE",
4994 		.cause_reg = A_PCIE_INT_CAUSE,
4995 		.enable_reg = A_PCIE_INT_ENABLE,
4996 		.fatal = 0xffffffff,
4997 		.flags = IHF_FATAL_IFF_ENABLED,
4998 		.details = NULL,
4999 		.actions = NULL,
5000 	};
5001 	struct intr_info pcie_int_cause_ext = {
5002 		.name = "PCIE_INT_CAUSE_EXT",
5003 		.cause_reg = A_PCIE_INT_CAUSE_EXT,
5004 		.enable_reg = A_PCIE_INT_ENABLE_EXT,
5005 		.fatal = 0,
5006 		.flags = 0,
5007 		.details = NULL,
5008 		.actions = NULL,
5009 	};
5010 	struct intr_info pcie_int_cause_x8 = {
5011 		.name = "PCIE_INT_CAUSE_X8",
5012 		.cause_reg = A_PCIE_INT_CAUSE_X8,
5013 		.enable_reg = A_PCIE_INT_ENABLE_X8,
5014 		.fatal = 0,
5015 		.flags = 0,
5016 		.details = NULL,
5017 		.actions = NULL,
5018 	};
5019 	bool fatal = false;
5020 
5021 	if (is_t4(adap)) {
5022 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, flags);
5023 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, flags);
5024 
5025 		pcie_intr_info.details = pcie_intr_details;
5026 	} else {
5027 		pcie_intr_info.details = t5_pcie_intr_details;
5028 	}
5029 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, flags);
5030 	if (chip_id(adap) > CHELSIO_T6) {
5031 		fatal |= t4_handle_intr(adap, &pcie_int_cause_ext, 0, flags);
5032 		fatal |= t4_handle_intr(adap, &pcie_int_cause_x8, 0, flags);
5033 	}
5034 
5035 	return (fatal);
5036 }
5037 
5038 /*
5039  * TP interrupt handler.
5040  */
tp_intr_handler(struct adapter * adap,int arg,int flags)5041 static bool tp_intr_handler(struct adapter *adap, int arg, int flags)
5042 {
5043 	static const struct intr_details tp_intr_details[] = {
5044 		{ 0x3fffffff, "TP parity error" },
5045 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
5046 		{ 0 }
5047 	};
5048 	static const struct intr_info tp_intr_info = {
5049 		.name = "TP_INT_CAUSE",
5050 		.cause_reg = A_TP_INT_CAUSE,
5051 		.enable_reg = A_TP_INT_ENABLE,
5052 		.fatal = 0x7fffffff,
5053 		.flags = IHF_FATAL_IFF_ENABLED,
5054 		.details = tp_intr_details,
5055 		.actions = NULL,
5056 	};
5057 	static const struct intr_info tp_inic_perr_cause = {
5058 		.name = "TP_INIC_PERR_CAUSE",
5059 		.cause_reg = A_TP_INIC_PERR_CAUSE,
5060 		.enable_reg = A_TP_INIC_PERR_ENABLE,
5061 		.fatal = 0xffffffff,
5062 		.flags = IHF_FATAL_IFF_ENABLED,
5063 		.details = NULL,
5064 		.actions = NULL,
5065 	};
5066 	static const struct intr_info tp_c_perr_cause = {
5067 		.name = "TP_C_PERR_CAUSE",
5068 		.cause_reg = A_TP_C_PERR_CAUSE,
5069 		.enable_reg = A_TP_C_PERR_ENABLE,
5070 		.fatal = 0xffffffff,
5071 		.flags = IHF_FATAL_IFF_ENABLED,
5072 		.details = NULL,
5073 		.actions = NULL,
5074 	};
5075 	static const struct intr_info tp_e_eg_perr_cause = {
5076 		.name = "TP_E_EG_PERR_CAUSE",
5077 		.cause_reg = A_TP_E_EG_PERR_CAUSE,
5078 		.enable_reg = A_TP_E_EG_PERR_ENABLE,
5079 		.fatal = 0xffffffff,
5080 		.flags = IHF_FATAL_IFF_ENABLED,
5081 		.details = NULL,
5082 		.actions = NULL,
5083 	};
5084 	static const struct intr_info tp_e_in0_perr_cause = {
5085 		.name = "TP_E_IN0_PERR_CAUSE",
5086 		.cause_reg = A_TP_E_IN0_PERR_CAUSE,
5087 		.enable_reg = A_TP_E_IN0_PERR_ENABLE,
5088 		.fatal = 0xffffffff,
5089 		.flags = IHF_FATAL_IFF_ENABLED,
5090 		.details = NULL,
5091 		.actions = NULL,
5092 	};
5093 	static const struct intr_info tp_e_in1_perr_cause = {
5094 		.name = "TP_E_IN1_PERR_CAUSE",
5095 		.cause_reg = A_TP_E_IN1_PERR_CAUSE,
5096 		.enable_reg = A_TP_E_IN1_PERR_ENABLE,
5097 		.fatal = 0xffffffff,
5098 		.flags = IHF_FATAL_IFF_ENABLED,
5099 		.details = NULL,
5100 		.actions = NULL,
5101 	};
5102 	static const struct intr_info tp_o_perr_cause = {
5103 		.name = "TP_O_PERR_CAUSE",
5104 		.cause_reg = A_TP_O_PERR_CAUSE,
5105 		.enable_reg = A_TP_O_PERR_ENABLE,
5106 		.fatal = 0xffffffff,
5107 		.flags = IHF_FATAL_IFF_ENABLED,
5108 		.details = NULL,
5109 		.actions = NULL,
5110 	};
5111 	bool fatal;
5112 
5113 	fatal = t4_handle_intr(adap, &tp_intr_info, 0, flags);
5114 	if (chip_id(adap) > CHELSIO_T6) {
5115 		fatal |= t4_handle_intr(adap, &tp_inic_perr_cause, 0, flags);
5116 		fatal |= t4_handle_intr(adap, &tp_c_perr_cause, 0, flags);
5117 		fatal |= t4_handle_intr(adap, &tp_e_eg_perr_cause, 0, flags);
5118 		fatal |= t4_handle_intr(adap, &tp_e_in0_perr_cause, 0, flags);
5119 		fatal |= t4_handle_intr(adap, &tp_e_in1_perr_cause, 0, flags);
5120 		fatal |= t4_handle_intr(adap, &tp_o_perr_cause, 0, flags);
5121 	}
5122 
5123 	return (fatal);
5124 }
5125 
5126 /*
5127  * SGE interrupt handler.
5128  */
sge_intr_handler(struct adapter * adap,int arg,int flags)5129 static bool sge_intr_handler(struct adapter *adap, int arg, int flags)
5130 {
5131 	static const struct intr_info sge_int1_info = {
5132 		.name = "SGE_INT_CAUSE1",
5133 		.cause_reg = A_SGE_INT_CAUSE1,
5134 		.enable_reg = A_SGE_INT_ENABLE1,
5135 		.fatal = 0xffffffff,
5136 		.flags = IHF_FATAL_IFF_ENABLED,
5137 		.details = NULL,
5138 		.actions = NULL,
5139 	};
5140 	static const struct intr_info sge_int2_info = {
5141 		.name = "SGE_INT_CAUSE2",
5142 		.cause_reg = A_SGE_INT_CAUSE2,
5143 		.enable_reg = A_SGE_INT_ENABLE2,
5144 		.fatal = 0xffffffff,
5145 		.flags = IHF_FATAL_IFF_ENABLED,
5146 		.details = NULL,
5147 		.actions = NULL,
5148 	};
5149 	static const struct intr_details sge_int3_details[] = {
5150 		{ F_ERR_FLM_DBP,
5151 			"DBP pointer delivery for invalid context or QID" },
5152 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
5153 			"Invalid QID or header request by IDMA" },
5154 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
5155 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
5156 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
5157 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
5158 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
5159 		{ F_ERR_TIMER_ABOVE_MAX_QID,
5160 			"SGE GTS with timer 0-5 for IQID > 1023" },
5161 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
5162 			"SGE received CPL exceeding IQE size" },
5163 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
5164 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
5165 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
5166 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
5167 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
5168 		  "SGE IQID > 1023 received CPL for FL" },
5169 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5170 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
5171 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
5172 		{ F_ERR_ING_CTXT_PRIO,
5173 			"Ingress context manager priority user error" },
5174 		{ F_ERR_EGR_CTXT_PRIO,
5175 			"Egress context manager priority user error" },
5176 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
5177 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
5178 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
5179 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
5180 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
5181 		{ 0x0000000f, "SGE context access for invalid queue" },
5182 		{ 0 }
5183 	};
5184 	static const struct intr_details t6_sge_int3_details[] = {
5185 		{ F_ERR_FLM_DBP,
5186 			"DBP pointer delivery for invalid context or QID" },
5187 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
5188 			"Invalid QID or header request by IDMA" },
5189 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
5190 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
5191 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
5192 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
5193 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
5194 		{ F_ERR_TIMER_ABOVE_MAX_QID,
5195 			"SGE GTS with timer 0-5 for IQID > 1023" },
5196 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
5197 			"SGE received CPL exceeding IQE size" },
5198 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
5199 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
5200 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
5201 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
5202 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
5203 			"SGE IQID > 1023 received CPL for FL" },
5204 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5205 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
5206 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
5207 		{ F_ERR_ING_CTXT_PRIO,
5208 			"Ingress context manager priority user error" },
5209 		{ F_ERR_EGR_CTXT_PRIO,
5210 			"Egress context manager priority user error" },
5211 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
5212 		{ F_FATAL_WRE_LEN,
5213 			"SGE WRE packet less than advertized length" },
5214 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
5215 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
5216 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
5217 		{ 0x0000000f, "SGE context access for invalid queue" },
5218 		{ 0 }
5219 	};
5220 	struct intr_info sge_int3_info = {
5221 		.name = "SGE_INT_CAUSE3",
5222 		.cause_reg = A_SGE_INT_CAUSE3,
5223 		.enable_reg = A_SGE_INT_ENABLE3,
5224 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
5225 		.flags = 0,
5226 		.details = NULL,
5227 		.actions = NULL,
5228 	};
5229 	static const struct intr_info sge_int4_info = {
5230 		.name = "SGE_INT_CAUSE4",
5231 		.cause_reg = A_SGE_INT_CAUSE4,
5232 		.enable_reg = A_SGE_INT_ENABLE4,
5233 		.fatal = 0,
5234 		.flags = 0,
5235 		.details = NULL,
5236 		.actions = NULL,
5237 	};
5238 	static const struct intr_info sge_int5_info = {
5239 		.name = "SGE_INT_CAUSE5",
5240 		.cause_reg = A_SGE_INT_CAUSE5,
5241 		.enable_reg = A_SGE_INT_ENABLE5,
5242 		.fatal = 0xffffffff,
5243 		.flags = IHF_FATAL_IFF_ENABLED,
5244 		.details = NULL,
5245 		.actions = NULL,
5246 	};
5247 	static const struct intr_info sge_int6_info = {
5248 		.name = "SGE_INT_CAUSE6",
5249 		.cause_reg = A_SGE_INT_CAUSE6,
5250 		.enable_reg = A_SGE_INT_ENABLE6,
5251 		.fatal = 0,
5252 		.flags = 0,
5253 		.details = NULL,
5254 		.actions = NULL,
5255 	};
5256 	static const struct intr_info sge_int7_info = {
5257 		.name = "SGE_INT_CAUSE7",
5258 		.cause_reg = A_SGE_INT_CAUSE7,
5259 		.enable_reg = A_SGE_INT_ENABLE7,
5260 		.fatal = 0,
5261 		.flags = 0,
5262 		.details = NULL,
5263 		.actions = NULL,
5264 	};
5265 	static const struct intr_info sge_int8_info = {
5266 		.name = "SGE_INT_CAUSE8",
5267 		.cause_reg = A_SGE_INT_CAUSE8,
5268 		.enable_reg = A_SGE_INT_ENABLE8,
5269 		.fatal = 0,
5270 		.flags = 0,
5271 		.details = NULL,
5272 		.actions = NULL,
5273 	};
5274 	bool fatal;
5275 	u32 v;
5276 
5277 	if (chip_id(adap) <= CHELSIO_T5) {
5278 		sge_int3_info.details = sge_int3_details;
5279 	} else {
5280 		sge_int3_info.details = t6_sge_int3_details;
5281 	}
5282 
5283 	fatal = false;
5284 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, flags);
5285 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, flags);
5286 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, flags);
5287 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, flags);
5288 	if (chip_id(adap) >= CHELSIO_T5)
5289 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, flags);
5290 	if (chip_id(adap) >= CHELSIO_T6)
5291 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, flags);
5292 	if (chip_id(adap) >= CHELSIO_T7) {
5293 		fatal |= t4_handle_intr(adap, &sge_int7_info, 0, flags);
5294 		fatal |= t4_handle_intr(adap, &sge_int8_info, 0, flags);
5295 	}
5296 
5297 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
5298 	if (v & F_ERROR_QID_VALID) {
5299 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
5300 		if (v & F_UNCAPTURED_ERROR)
5301 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
5302 		t4_write_reg(adap, A_SGE_ERROR_STATS,
5303 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
5304 	}
5305 
5306 	return (fatal);
5307 }
5308 
5309 /*
5310  * CIM interrupt handler.
5311  */
cim_intr_handler(struct adapter * adap,int arg,int flags)5312 static bool cim_intr_handler(struct adapter *adap, int arg, int flags)
5313 {
5314 	static const struct intr_details cim_host_intr_details[] = {
5315 		/* T6+ */
5316 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
5317 
5318 		/* T5+ */
5319 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
5320 		{ F_PLCIM_MSTRSPDATAPARERR,
5321 			"PL2CIM master response data parity error" },
5322 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
5323 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
5324 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
5325 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
5326 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
5327 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
5328 
5329 		/* T4+ */
5330 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
5331 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
5332 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
5333 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
5334 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
5335 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
5336 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
5337 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
5338 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
5339 			"CIM IBQ PCIe/SGE_HI parity error" },
5340 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
5341 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
5342 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
5343 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
5344 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
5345 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
5346 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
5347 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
5348 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
5349 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
5350 		{ 0}
5351 	};
5352 	static const struct intr_info cim_host_intr_info = {
5353 		.name = "CIM_HOST_INT_CAUSE",
5354 		.cause_reg = A_CIM_HOST_INT_CAUSE,
5355 		.enable_reg = A_CIM_HOST_INT_ENABLE,
5356 		.fatal = 0x007fffe6,
5357 		.flags = IHF_FATAL_IFF_ENABLED,
5358 		.details = cim_host_intr_details,
5359 		.actions = NULL,
5360 	};
5361 	static const struct intr_details cim_host_upacc_intr_details[] = {
5362 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
5363 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
5364 		{ F_TIMEOUTINT, "CIM PIF timeout" },
5365 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
5366 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
5367 		{ F_BLKWRPLINT, "CIM block write to PL space" },
5368 		{ F_BLKRDPLINT, "CIM block read from PL space" },
5369 		{ F_SGLWRPLINT,
5370 			"CIM single write to PL space with illegal BEs" },
5371 		{ F_SGLRDPLINT,
5372 			"CIM single read from PL space with illegal BEs" },
5373 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
5374 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
5375 		{ F_SGLWRCTLINT,
5376 			"CIM single write to CTL space with illegal BEs" },
5377 		{ F_SGLRDCTLINT,
5378 			"CIM single read from CTL space with illegal BEs" },
5379 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
5380 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
5381 		{ F_SGLWREEPROMINT,
5382 			"CIM single write to EEPROM space with illegal BEs" },
5383 		{ F_SGLRDEEPROMINT,
5384 			"CIM single read from EEPROM space with illegal BEs" },
5385 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
5386 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
5387 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
5388 		{ F_SGLRDFLASHINT,
5389 			"CIM single read from flash space with illegal BEs" },
5390 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
5391 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
5392 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
5393 		{ F_SGLRDBOOTINT,
5394 			"CIM single read from boot space with illegal BEs" },
5395 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
5396 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
5397 		{ F_ILLRDINT, "CIM illegal read" },
5398 		{ F_ILLWRINT, "CIM illegal write" },
5399 		{ F_ILLTRANSINT, "CIM illegal transaction" },
5400 		{ F_RSVDSPACEINT, "CIM reserved space access" },
5401 		{0}
5402 	};
5403 	static const struct intr_info cim_host_upacc_intr_info = {
5404 		.name = "CIM_HOST_UPACC_INT_CAUSE",
5405 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
5406 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
5407 		.fatal = 0x3fffeeff,
5408 		.flags = IHF_FATAL_IFF_ENABLED,
5409 		.details = cim_host_upacc_intr_details,
5410 		.actions = NULL,
5411 	};
5412 	static const struct intr_info cim_pf_host_intr_info = {
5413 		.name = "CIM_PF_HOST_INT_CAUSE",
5414 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5415 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
5416 		.fatal = 0,
5417 		.flags = 0,
5418 		.details = NULL,
5419 		.actions = NULL,
5420 	};
5421 	static const struct intr_info cim_perr_cause = {
5422 		.name = "CIM_PERR_CAUSE",
5423 		.cause_reg = A_CIM_PERR_CAUSE,
5424 		.enable_reg = A_CIM_PERR_ENABLE,
5425 		.fatal = 0xffffffff,
5426 		.flags = IHF_FATAL_IFF_ENABLED,
5427 		.details = NULL,
5428 		.actions = NULL,
5429 	};
5430 	u32 val, fw_err;
5431 	bool fatal;
5432 
5433 	/*
5434 	 * When the Firmware detects an internal error which normally wouldn't
5435 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
5436 	 * to make sure the Host sees the Firmware Crash.  So if we have a
5437 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
5438 	 * interrupt.
5439 	 */
5440 	fw_err = t4_read_reg(adap, A_PCIE_FW);
5441 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
5442 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
5443 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
5444 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
5445 	}
5446 
5447 	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
5448 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, flags);
5449 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, flags);
5450 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, flags);
5451 	if (chip_id(adap) > CHELSIO_T6)
5452 		fatal |= t4_handle_intr(adap, &cim_perr_cause, 0, flags);
5453 	if (fatal)
5454 		t4_os_cim_err(adap);
5455 
5456 	return (fatal);
5457 }
5458 
5459 /*
5460  * ULP RX interrupt handler.
5461  */
ulprx_intr_handler(struct adapter * adap,int arg,int flags)5462 static bool ulprx_intr_handler(struct adapter *adap, int arg, int flags)
5463 {
5464 	static const struct intr_details ulprx_intr_details[] = {
5465 		/* T5+ */
5466 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
5467 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
5468 
5469 		/* T4+ */
5470 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
5471 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
5472 		{ 0x007fffff, "ULPRX parity error" },
5473 		{ 0 }
5474 	};
5475 	static const struct intr_info ulprx_intr_info = {
5476 		.name = "ULP_RX_INT_CAUSE",
5477 		.cause_reg = A_ULP_RX_INT_CAUSE,
5478 		.enable_reg = A_ULP_RX_INT_ENABLE,
5479 		.fatal = 0x07ffffff,
5480 		.flags = IHF_FATAL_IFF_ENABLED,
5481 		.details = ulprx_intr_details,
5482 		.actions = NULL,
5483 	};
5484 	static const struct intr_info ulprx_intr2_info = {
5485 		.name = "ULP_RX_INT_CAUSE_2",
5486 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
5487 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
5488 		.fatal = 0,
5489 		.flags = 0,
5490 		.details = NULL,
5491 		.actions = NULL,
5492 	};
5493 	static const struct intr_info ulprx_int_cause_pcmd = {
5494 		.name = "ULP_RX_INT_CAUSE_PCMD",
5495 		.cause_reg = A_ULP_RX_INT_CAUSE_PCMD,
5496 		.enable_reg = A_ULP_RX_INT_ENABLE_PCMD,
5497 		.fatal = 0,
5498 		.flags = 0,
5499 		.details = NULL,
5500 		.actions = NULL,
5501 	};
5502 	static const struct intr_info ulprx_int_cause_data = {
5503 		.name = "ULP_RX_INT_CAUSE_DATA",
5504 		.cause_reg = A_ULP_RX_INT_CAUSE_DATA,
5505 		.enable_reg = A_ULP_RX_INT_ENABLE_DATA,
5506 		.fatal = 0,
5507 		.flags = 0,
5508 		.details = NULL,
5509 		.actions = NULL,
5510 	};
5511 	static const struct intr_info ulprx_int_cause_arb = {
5512 		.name = "ULP_RX_INT_CAUSE_ARB",
5513 		.cause_reg = A_ULP_RX_INT_CAUSE_ARB,
5514 		.enable_reg = A_ULP_RX_INT_ENABLE_ARB,
5515 		.fatal = 0,
5516 		.flags = 0,
5517 		.details = NULL,
5518 		.actions = NULL,
5519 	};
5520 	static const struct intr_info ulprx_int_cause_intf = {
5521 		.name = "ULP_RX_INT_CAUSE_INTERFACE",
5522 		.cause_reg = A_ULP_RX_INT_CAUSE_INTERFACE,
5523 		.enable_reg = A_ULP_RX_INT_ENABLE_INTERFACE,
5524 		.fatal = 0,
5525 		.flags = 0,
5526 		.details = NULL,
5527 		.actions = NULL,
5528 	};
5529 	bool fatal = false;
5530 
5531 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, flags);
5532 	if (chip_id(adap) < CHELSIO_T7)
5533 		fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, flags);
5534 	else {
5535 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_pcmd, 0, flags);
5536 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_data, 0, flags);
5537 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_arb, 0, flags);
5538 		fatal |= t4_handle_intr(adap, &ulprx_int_cause_intf, 0, flags);
5539 	}
5540 
5541 	return (fatal);
5542 }
5543 
5544 /*
5545  * ULP TX interrupt handler.
5546  */
ulptx_intr_handler(struct adapter * adap,int arg,int flags)5547 static bool ulptx_intr_handler(struct adapter *adap, int arg, int flags)
5548 {
5549 	static const struct intr_details ulptx_intr_details[] = {
5550 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
5551 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
5552 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
5553 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
5554 		{ 0x0fffffff, "ULPTX parity error" },
5555 		{ 0 }
5556 	};
5557 	static const struct intr_info ulptx_intr_info = {
5558 		.name = "ULP_TX_INT_CAUSE",
5559 		.cause_reg = A_ULP_TX_INT_CAUSE,
5560 		.enable_reg = A_ULP_TX_INT_ENABLE,
5561 		.fatal = 0x0fffffff,
5562 		.flags = IHF_FATAL_IFF_ENABLED,
5563 		.details = ulptx_intr_details,
5564 		.actions = NULL,
5565 	};
5566 	static const struct intr_info ulptx_intr_info2 = {
5567 		.name = "ULP_TX_INT_CAUSE_2",
5568 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
5569 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
5570 		.fatal = 0xffffffff,
5571 		.flags = IHF_FATAL_IFF_ENABLED,
5572 		.details = NULL,
5573 		.actions = NULL,
5574 	};
5575 	static const struct intr_info ulptx_intr_info3 = {
5576 		.name = "ULP_TX_INT_CAUSE_3",
5577 		.cause_reg = A_ULP_TX_INT_CAUSE_3,
5578 		.enable_reg = A_ULP_TX_INT_ENABLE_3,
5579 		.fatal = 0xffffffff,
5580 		.flags = IHF_FATAL_IFF_ENABLED,
5581 		.details = NULL,
5582 		.actions = NULL,
5583 	};
5584 	static const struct intr_info ulptx_intr_info4 = {
5585 		.name = "ULP_TX_INT_CAUSE_4",
5586 		.cause_reg = A_ULP_TX_INT_CAUSE_4,
5587 		.enable_reg = A_ULP_TX_INT_ENABLE_4,
5588 		.fatal = 0xffffffff,
5589 		.flags = IHF_FATAL_IFF_ENABLED,
5590 		.details = NULL,
5591 		.actions = NULL,
5592 	};
5593 	static const struct intr_info ulptx_intr_info5 = {
5594 		.name = "ULP_TX_INT_CAUSE_5",
5595 		.cause_reg = A_ULP_TX_INT_CAUSE_5,
5596 		.enable_reg = A_ULP_TX_INT_ENABLE_5,
5597 		.fatal = 0xffffffff,
5598 		.flags = IHF_FATAL_IFF_ENABLED,
5599 		.details = NULL,
5600 		.actions = NULL,
5601 	};
5602 	static const struct intr_info ulptx_intr_info6 = {
5603 		.name = "ULP_TX_INT_CAUSE_6",
5604 		.cause_reg = A_ULP_TX_INT_CAUSE_6,
5605 		.enable_reg = A_ULP_TX_INT_ENABLE_6,
5606 		.fatal = 0xffffffff,
5607 		.flags = IHF_FATAL_IFF_ENABLED,
5608 		.details = NULL,
5609 		.actions = NULL,
5610 	};
5611 	static const struct intr_info ulptx_intr_info7 = {
5612 		.name = "ULP_TX_INT_CAUSE_7",
5613 		.cause_reg = A_ULP_TX_INT_CAUSE_7,
5614 		.enable_reg = A_ULP_TX_INT_ENABLE_7,
5615 		.fatal = 0,
5616 		.flags = 0,
5617 		.details = NULL,
5618 		.actions = NULL,
5619 	};
5620 	static const struct intr_info ulptx_intr_info8 = {
5621 		.name = "ULP_TX_INT_CAUSE_8",
5622 		.cause_reg = A_ULP_TX_INT_CAUSE_8,
5623 		.enable_reg = A_ULP_TX_INT_ENABLE_8,
5624 		.fatal = 0,
5625 		.flags = 0,
5626 		.details = NULL,
5627 		.actions = NULL,
5628 	};
5629 	bool fatal = false;
5630 
5631 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, flags);
5632 	if (chip_id(adap) > CHELSIO_T4)
5633 		fatal |= t4_handle_intr(adap, &ulptx_intr_info2, 0, flags);
5634 	if (chip_id(adap) > CHELSIO_T6) {
5635 		fatal |= t4_handle_intr(adap, &ulptx_intr_info3, 0, flags);
5636 		fatal |= t4_handle_intr(adap, &ulptx_intr_info4, 0, flags);
5637 		fatal |= t4_handle_intr(adap, &ulptx_intr_info5, 0, flags);
5638 		fatal |= t4_handle_intr(adap, &ulptx_intr_info6, 0, flags);
5639 		fatal |= t4_handle_intr(adap, &ulptx_intr_info7, 0, flags);
5640 		fatal |= t4_handle_intr(adap, &ulptx_intr_info8, 0, flags);
5641 	}
5642 
5643 	return (fatal);
5644 }
5645 
pmtx_dump_dbg_stats(struct adapter * adap,int arg,int flags)5646 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, int flags)
5647 {
5648 	int i;
5649 	u32 data[17];
5650 
5651 	if (flags & IHF_NO_SHOW)
5652 		return (false);
5653 
5654 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
5655 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
5656 	for (i = 0; i < ARRAY_SIZE(data); i++) {
5657 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
5658 		    A_PM_TX_DBG_STAT0 + i, data[i]);
5659 	}
5660 
5661 	return (false);
5662 }
5663 
5664 /*
5665  * PM TX interrupt handler.
5666  */
pmtx_intr_handler(struct adapter * adap,int arg,int flags)5667 static bool pmtx_intr_handler(struct adapter *adap, int arg, int flags)
5668 {
5669 	static const struct intr_details pmtx_int_cause_fields[] = {
5670 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
5671 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
5672 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
5673 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
5674 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
5675 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
5676 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
5677 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
5678 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
5679 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
5680 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
5681 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
5682 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
5683 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
5684 		{ 0 }
5685 	};
5686 	static const struct intr_action pmtx_int_cause_actions[] = {
5687 		{ 0xffffffff, -1, pmtx_dump_dbg_stats },
5688 		{ 0 },
5689 	};
5690 	static const struct intr_info pmtx_int_cause = {
5691 		.name = "PM_TX_INT_CAUSE",
5692 		.cause_reg = A_PM_TX_INT_CAUSE,
5693 		.enable_reg = A_PM_TX_INT_ENABLE,
5694 		.fatal = 0xffffffff,
5695 		.flags = 0,
5696 		.details = pmtx_int_cause_fields,
5697 		.actions = pmtx_int_cause_actions,
5698 	};
5699 
5700 	return (t4_handle_intr(adap, &pmtx_int_cause, 0, flags));
5701 }
5702 
5703 /*
5704  * PM RX interrupt handler.
5705  */
pmrx_intr_handler(struct adapter * adap,int arg,int flags)5706 static bool pmrx_intr_handler(struct adapter *adap, int arg, int flags)
5707 {
5708 	static const struct intr_details pmrx_int_cause_fields[] = {
5709 		/* T6+ */
5710 		{ 0x18000000, "PMRX ospi overflow" },
5711 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
5712 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
5713 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
5714 		{ F_SDC_ERR, "PMRX SDC error" },
5715 
5716 		/* T4+ */
5717 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
5718 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
5719 		{ 0x0003c000, "PMRX iespi Rx framing error" },
5720 		{ 0x00003c00, "PMRX iespi Tx framing error" },
5721 		{ 0x00000300, "PMRX ocspi Rx framing error" },
5722 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
5723 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
5724 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
5725 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
5726 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
5727 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
5728 		{ 0 }
5729 	};
5730 	static const struct intr_info pmrx_int_cause = {
5731 		.name = "PM_RX_INT_CAUSE",
5732 		.cause_reg = A_PM_RX_INT_CAUSE,
5733 		.enable_reg = A_PM_RX_INT_ENABLE,
5734 		.fatal = 0x1fffffff,
5735 		.flags = IHF_FATAL_IFF_ENABLED,
5736 		.details = pmrx_int_cause_fields,
5737 		.actions = NULL,
5738 	};
5739 
5740 	return (t4_handle_intr(adap, &pmrx_int_cause, 0, flags));
5741 }
5742 
5743 /*
5744  * CPL switch interrupt handler.
5745  */
cplsw_intr_handler(struct adapter * adap,int arg,int flags)5746 static bool cplsw_intr_handler(struct adapter *adap, int arg, int flags)
5747 {
5748 	static const struct intr_details cplsw_int_cause_fields[] = {
5749 		/* T5+ */
5750 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
5751 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
5752 
5753 		/* T4+ */
5754 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
5755 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
5756 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
5757 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
5758 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
5759 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
5760 		{ 0 }
5761 	};
5762 	static const struct intr_info cplsw_int_cause = {
5763 		.name = "CPL_INTR_CAUSE",
5764 		.cause_reg = A_CPL_INTR_CAUSE,
5765 		.enable_reg = A_CPL_INTR_ENABLE,
5766 		.fatal = 0xffffffff,
5767 		.flags = IHF_FATAL_IFF_ENABLED,
5768 		.details = cplsw_int_cause_fields,
5769 		.actions = NULL,
5770 	};
5771 
5772 	return (t4_handle_intr(adap, &cplsw_int_cause, 0, flags));
5773 }
5774 
5775 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
5776 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
5777 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
5778     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
5779     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
5780     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
5781 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
5782     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
5783     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
5784 #define T7_LE_FATAL_MASK (T6_LE_FATAL_MASK | F_CACHESRAMPERR | F_CACHEINTPERR)
5785 
5786 /*
5787  * LE interrupt handler.
5788  */
le_intr_handler(struct adapter * adap,int arg,int flags)5789 static bool le_intr_handler(struct adapter *adap, int arg, int flags)
5790 {
5791 	static const struct intr_details le_intr_details[] = {
5792 		{ F_REQQPARERR, "LE request queue parity error" },
5793 		{ F_UNKNOWNCMD, "LE unknown command" },
5794 		{ F_ACTRGNFULL, "LE active region full" },
5795 		{ F_PARITYERR, "LE parity error" },
5796 		{ F_LIPMISS, "LE LIP miss" },
5797 		{ F_LIP0, "LE 0 LIP error" },
5798 		{ 0 }
5799 	};
5800 	static const struct intr_details t6_le_intr_details[] = {
5801 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
5802 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
5803 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
5804 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
5805 		{ F_TOTCNTERR, "LE total active < TCAM count" },
5806 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
5807 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
5808 		{ F_T6_ACTRGNFULL, "LE active region full" },
5809 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
5810 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
5811 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
5812 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
5813 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
5814 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
5815 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
5816 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
5817 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
5818 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
5819 		{ 0 }
5820 	};
5821 	struct intr_info le_intr_info = {
5822 		.name = "LE_DB_INT_CAUSE",
5823 		.cause_reg = A_LE_DB_INT_CAUSE,
5824 		.enable_reg = A_LE_DB_INT_ENABLE,
5825 		.fatal = 0,
5826 		.flags = IHF_FATAL_IFF_ENABLED,
5827 		.details = NULL,
5828 		.actions = NULL,
5829 	};
5830 
5831 	if (chip_id(adap) <= CHELSIO_T5) {
5832 		le_intr_info.details = le_intr_details;
5833 		le_intr_info.fatal = T5_LE_FATAL_MASK;
5834 	} else {
5835 		le_intr_info.details = t6_le_intr_details;
5836 		if (chip_id(adap) < CHELSIO_T7)
5837 			le_intr_info.fatal = T6_LE_FATAL_MASK;
5838 		else
5839 			le_intr_info.fatal = T7_LE_FATAL_MASK;
5840 	}
5841 
5842 	return (t4_handle_intr(adap, &le_intr_info, 0, flags));
5843 }
5844 
5845 /*
5846  * MPS interrupt handler.
5847  */
mps_intr_handler(struct adapter * adap,int arg,int flags)5848 static bool mps_intr_handler(struct adapter *adap, int arg, int flags)
5849 {
5850 	static const struct intr_details mps_rx_perr_intr_details[] = {
5851 		{ 0xffffffff, "MPS Rx parity error" },
5852 		{ 0 }
5853 	};
5854 	static const struct intr_info mps_rx_perr_intr_info = {
5855 		.name = "MPS_RX_PERR_INT_CAUSE",
5856 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
5857 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
5858 		.fatal = 0xffffffff,
5859 		.flags = IHF_FATAL_IFF_ENABLED,
5860 		.details = mps_rx_perr_intr_details,
5861 		.actions = NULL,
5862 	};
5863 	static const struct intr_info mps_rx_perr_intr_info2 = {
5864 		.name = "MPS_RX_PERR_INT_CAUSE2",
5865 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE2,
5866 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE2,
5867 		.fatal = 0xffffffff,
5868 		.flags = IHF_FATAL_IFF_ENABLED,
5869 		.details = NULL,
5870 		.actions = NULL,
5871 	};
5872 	static const struct intr_info mps_rx_perr_intr_info3 = {
5873 		.name = "MPS_RX_PERR_INT_CAUSE3",
5874 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE3,
5875 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE3,
5876 		.fatal = 0xffffffff,
5877 		.flags = IHF_FATAL_IFF_ENABLED,
5878 		.details = NULL,
5879 		.actions = NULL,
5880 	};
5881 	static const struct intr_info mps_rx_perr_intr_info4 = {
5882 		.name = "MPS_RX_PERR_INT_CAUSE4",
5883 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE4,
5884 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE4,
5885 		.fatal = 0xffffffff,
5886 		.flags = IHF_FATAL_IFF_ENABLED,
5887 		.details = NULL,
5888 		.actions = NULL,
5889 	};
5890 	static const struct intr_info mps_rx_perr_intr_info5 = {
5891 		.name = "MPS_RX_PERR_INT_CAUSE5",
5892 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE5,
5893 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE5,
5894 		.fatal = 0xffffffff,
5895 		.flags = IHF_FATAL_IFF_ENABLED,
5896 		.details = NULL,
5897 		.actions = NULL,
5898 	};
5899 	static const struct intr_info mps_rx_perr_intr_info6 = {
5900 		.name = "MPS_RX_PERR_INT_CAUSE6",
5901 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE6,
5902 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE6,
5903 		.fatal = 0xffffffff,
5904 		.flags = IHF_FATAL_IFF_ENABLED,
5905 		.details = NULL,
5906 		.actions = NULL,
5907 	};
5908 	static const struct intr_details mps_tx_intr_details[] = {
5909 		{ F_PORTERR, "MPS Tx destination port is disabled" },
5910 		{ F_FRMERR, "MPS Tx framing error" },
5911 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
5912 		{ F_BUBBLE, "MPS Tx underflow" },
5913 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
5914 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
5915 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
5916 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
5917 		{ 0 }
5918 	};
5919 	static const struct intr_info mps_tx_intr_info = {
5920 		.name = "MPS_TX_INT_CAUSE",
5921 		.cause_reg = A_MPS_TX_INT_CAUSE,
5922 		.enable_reg = A_MPS_TX_INT_ENABLE,
5923 		.fatal = 0x1ffff,
5924 		.flags = IHF_FATAL_IFF_ENABLED,
5925 		.details = mps_tx_intr_details,
5926 		.actions = NULL,
5927 	};
5928 	static const struct intr_info mps_tx_intr_info2 = {
5929 		.name = "MPS_TX_INT2_CAUSE",
5930 		.cause_reg = A_MPS_TX_INT2_CAUSE,
5931 		.enable_reg = A_MPS_TX_INT2_ENABLE,
5932 		.fatal = 0xffffffff,
5933 		.flags = IHF_FATAL_IFF_ENABLED,
5934 		.details = NULL,
5935 		.actions = NULL,
5936 	};
5937 	static const struct intr_info mps_tx_intr_info3 = {
5938 		.name = "MPS_TX_INT3_CAUSE",
5939 		.cause_reg = A_MPS_TX_INT3_CAUSE,
5940 		.enable_reg = A_MPS_TX_INT3_ENABLE,
5941 		.fatal = 0xffffffff,
5942 		.flags = IHF_FATAL_IFF_ENABLED,
5943 		.details = NULL,
5944 		.actions = NULL,
5945 	};
5946 	static const struct intr_info mps_tx_intr_info4 = {
5947 		.name = "MPS_TX_INT4_CAUSE",
5948 		.cause_reg = A_MPS_TX_INT4_CAUSE,
5949 		.enable_reg = A_MPS_TX_INT4_ENABLE,
5950 		.fatal = 0xffffffff,
5951 		.flags = IHF_FATAL_IFF_ENABLED,
5952 		.details = NULL,
5953 		.actions = NULL,
5954 	};
5955 	static const struct intr_details mps_trc_intr_details[] = {
5956 		{ F_MISCPERR, "MPS TRC misc parity error" },
5957 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
5958 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
5959 		{ 0 }
5960 	};
5961 	static const struct intr_info mps_trc_intr_info = {
5962 		.name = "MPS_TRC_INT_CAUSE",
5963 		.cause_reg = A_MPS_TRC_INT_CAUSE,
5964 		.enable_reg = A_MPS_TRC_INT_ENABLE,
5965 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
5966 		.flags = 0,
5967 		.details = mps_trc_intr_details,
5968 		.actions = NULL,
5969 	};
5970 	static const struct intr_info t7_mps_trc_intr_info = {
5971 		.name = "MPS_TRC_INT_CAUSE",
5972 		.cause_reg = A_T7_MPS_TRC_INT_CAUSE,
5973 		.enable_reg = A_T7_MPS_TRC_INT_ENABLE,
5974 		.fatal = 0xffffffff,
5975 		.flags = IHF_FATAL_IFF_ENABLED,
5976 		.details = mps_trc_intr_details,
5977 		.actions = NULL,
5978 	};
5979 	static const struct intr_info t7_mps_trc_intr_info2 = {
5980 		.name = "MPS_TRC_INT_CAUSE2",
5981 		.cause_reg = A_MPS_TRC_INT_CAUSE2,
5982 		.enable_reg = A_MPS_TRC_INT_ENABLE2,
5983 		.fatal = 0xffffffff,
5984 		.flags = IHF_FATAL_IFF_ENABLED,
5985 		.details = NULL,
5986 		.actions = NULL,
5987 	};
5988 	static const struct intr_details mps_stat_sram_intr_details[] = {
5989 		{ 0xffffffff, "MPS statistics SRAM parity error" },
5990 		{ 0 }
5991 	};
5992 	static const struct intr_info mps_stat_sram_intr_info = {
5993 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
5994 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5995 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
5996 		.fatal = 0x1fffffff,
5997 		.flags = IHF_FATAL_IFF_ENABLED,
5998 		.details = mps_stat_sram_intr_details,
5999 		.actions = NULL,
6000 	};
6001 	static const struct intr_details mps_stat_tx_intr_details[] = {
6002 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
6003 		{ 0 }
6004 	};
6005 	static const struct intr_info mps_stat_tx_intr_info = {
6006 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
6007 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
6008 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
6009 		.fatal =  0xffffff,
6010 		.flags = IHF_FATAL_IFF_ENABLED,
6011 		.details = mps_stat_tx_intr_details,
6012 		.actions = NULL,
6013 	};
6014 	static const struct intr_details mps_stat_rx_intr_details[] = {
6015 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
6016 		{ 0 }
6017 	};
6018 	static const struct intr_info mps_stat_rx_intr_info = {
6019 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
6020 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
6021 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
6022 		.fatal =  0xffffff,
6023 		.flags = 0,
6024 		.details = mps_stat_rx_intr_details,
6025 		.actions = NULL,
6026 	};
6027 	static const struct intr_details mps_cls_intr_details[] = {
6028 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
6029 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
6030 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
6031 		{ 0 }
6032 	};
6033 	static const struct intr_info mps_cls_intr_info = {
6034 		.name = "MPS_CLS_INT_CAUSE",
6035 		.cause_reg = A_MPS_CLS_INT_CAUSE,
6036 		.enable_reg = A_MPS_CLS_INT_ENABLE,
6037 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
6038 		.flags = 0,
6039 		.details = mps_cls_intr_details,
6040 		.actions = NULL,
6041 	};
6042 	static const struct intr_details mps_stat_sram1_intr_details[] = {
6043 		{ 0xff, "MPS statistics SRAM1 parity error" },
6044 		{ 0 }
6045 	};
6046 	static const struct intr_info mps_stat_sram1_intr_info = {
6047 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
6048 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
6049 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
6050 		.fatal = 0xff,
6051 		.flags = 0,
6052 		.details = mps_stat_sram1_intr_details,
6053 		.actions = NULL,
6054 	};
6055 	bool fatal = false;
6056 
6057 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, flags);
6058 	if (chip_id(adap) > CHELSIO_T6) {
6059 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info2, 0, flags);
6060 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info3, 0, flags);
6061 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info4, 0, flags);
6062 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info5, 0, flags);
6063 		fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info6, 0, flags);
6064 	}
6065 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, flags);
6066 	if (chip_id(adap) > CHELSIO_T6) {
6067 		fatal |= t4_handle_intr(adap, &mps_tx_intr_info2, 0, flags);
6068 		fatal |= t4_handle_intr(adap, &mps_tx_intr_info3, 0, flags);
6069 		fatal |= t4_handle_intr(adap, &mps_tx_intr_info4, 0, flags);
6070 		fatal |= t4_handle_intr(adap, &t7_mps_trc_intr_info, 0, flags);
6071 		fatal |= t4_handle_intr(adap, &t7_mps_trc_intr_info2, 0, flags);
6072 	} else
6073 		fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, flags);
6074 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, flags);
6075 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, flags);
6076 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, flags);
6077 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, flags);
6078 	if (chip_id(adap) > CHELSIO_T4)
6079 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, flags);
6080 
6081 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
6082 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
6083 
6084 	return (fatal);
6085 
6086 }
6087 
6088 /*
6089  * EDC/MC interrupt handler.
6090  */
mem_intr_handler(struct adapter * adap,int idx,int flags)6091 static bool mem_intr_handler(struct adapter *adap, int idx, int flags)
6092 {
6093 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
6094 	unsigned int count_reg, v;
6095 	static const struct intr_details mem_intr_details[] = {
6096 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
6097 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
6098 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
6099 		{ 0 }
6100 	};
6101 	char rname[32];
6102 	struct intr_info ii = {
6103 		.name = &rname[0],
6104 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
6105 		.details = mem_intr_details,
6106 		.flags = 0,
6107 		.actions = NULL,
6108 	};
6109 	bool fatal = false;
6110 	int i = 0;
6111 
6112 	switch (idx) {
6113 	case MEM_EDC1: i = 1;
6114 		       /* fall through */
6115 	case MEM_EDC0:
6116 		snprintf(rname, sizeof(rname), "EDC%u_INT_CAUSE", i);
6117 		if (is_t4(adap)) {
6118 			ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, i);
6119 			ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, i);
6120 			count_reg = EDC_REG(A_EDC_ECC_STATUS, i);
6121 		} else {
6122 			ii.cause_reg = EDC_T5_REG(A_EDC_H_INT_CAUSE, i);
6123 			ii.enable_reg = EDC_T5_REG(A_EDC_H_INT_ENABLE, i);
6124 			count_reg = EDC_T5_REG(A_EDC_H_ECC_STATUS, i);
6125 		}
6126 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6127 		if (chip_id(adap) > CHELSIO_T6) {
6128 			snprintf(rname, sizeof(rname), "EDC%u_PAR_CAUSE", i);
6129 			ii.cause_reg = EDC_T5_REG(A_EDC_H_PAR_CAUSE, i);
6130 			ii.enable_reg = EDC_T5_REG(A_EDC_H_PAR_ENABLE, i);
6131 			ii.fatal = 0xffffffff;
6132 			ii.details = NULL;
6133 			ii.flags = IHF_FATAL_IFF_ENABLED;
6134 			fatal |= t4_handle_intr(adap, &ii, 0, flags);
6135 		}
6136 		break;
6137 	case MEM_MC1:
6138 		if (is_t4(adap) || is_t6(adap))
6139 			return (false);
6140 		i = 1;
6141 	       /* fall through */
6142 	case MEM_MC0:
6143 		snprintf(rname, sizeof(rname), "MC%u_INT_CAUSE", i);
6144 		if (is_t4(adap)) {
6145 			ii.cause_reg = A_MC_INT_CAUSE;
6146 			ii.enable_reg = A_MC_INT_ENABLE;
6147 			count_reg = A_MC_ECC_STATUS;
6148 		} else if (chip_id(adap) < CHELSIO_T7) {
6149 			ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, i);
6150 			ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, i);
6151 			count_reg = MC_REG(A_MC_P_ECC_STATUS, i);
6152 		} else {
6153 			ii.cause_reg = MC_T7_REG(A_T7_MC_P_INT_CAUSE, i);
6154 			ii.enable_reg = MC_T7_REG(A_T7_MC_P_INT_ENABLE, i);
6155 			count_reg = MC_T7_REG(A_T7_MC_P_ECC_STATUS, i);
6156 		}
6157 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6158 
6159 		snprintf(rname, sizeof(rname), "MC%u_PAR_CAUSE", i);
6160 		if (is_t4(adap)) {
6161 			ii.cause_reg = A_MC_PAR_CAUSE;
6162 			ii.enable_reg = A_MC_PAR_ENABLE;
6163 		} else if (chip_id(adap) < CHELSIO_T7) {
6164 			ii.cause_reg = MC_REG(A_MC_P_PAR_CAUSE, i);
6165 			ii.enable_reg = MC_REG(A_MC_P_PAR_ENABLE, i);
6166 		} else {
6167 			ii.cause_reg = MC_T7_REG(A_T7_MC_P_PAR_CAUSE, i);
6168 			ii.enable_reg = MC_T7_REG(A_T7_MC_P_PAR_ENABLE, i);
6169 		}
6170 		ii.fatal = 0xffffffff;
6171 		ii.details = NULL;
6172 		ii.flags = IHF_FATAL_IFF_ENABLED;
6173 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6174 
6175 		if (chip_id(adap) > CHELSIO_T6) {
6176 			snprintf(rname, sizeof(rname), "MC%u_DDRCTL_INT_CAUSE", i);
6177 			ii.cause_reg = MC_T7_REG(A_MC_P_DDRCTL_INT_CAUSE, i);
6178 			ii.enable_reg = MC_T7_REG(A_MC_P_DDRCTL_INT_ENABLE, i);
6179 			fatal |= t4_handle_intr(adap, &ii, 0, flags);
6180 
6181 			snprintf(rname, sizeof(rname), "MC%u_ECC_UE_INT_CAUSE", i);
6182 			ii.cause_reg = MC_T7_REG(A_MC_P_ECC_UE_INT_CAUSE, i);
6183 			ii.enable_reg = MC_T7_REG(A_MC_P_ECC_UE_INT_ENABLE, i);
6184 			fatal |= t4_handle_intr(adap, &ii, 0, flags);
6185 		}
6186 		break;
6187 	}
6188 
6189 	v = t4_read_reg(adap, count_reg);
6190 	if (v != 0) {
6191 		if (G_ECC_UECNT(v) != 0 && !(flags & IHF_NO_SHOW)) {
6192 			CH_ALERT(adap,
6193 			    "  %s: %u uncorrectable ECC data error(s)\n",
6194 			    name[idx], G_ECC_UECNT(v));
6195 		}
6196 		if (G_ECC_CECNT(v) != 0 && !(flags & IHF_NO_SHOW)) {
6197 			if (idx <= MEM_EDC1)
6198 				t4_edc_err_read(adap, idx);
6199 			CH_WARN_RATELIMIT(adap,
6200 			    "  %s: %u correctable ECC data error(s)\n",
6201 			    name[idx], G_ECC_CECNT(v));
6202 		}
6203 		t4_write_reg(adap, count_reg, 0xffffffff);
6204 	}
6205 
6206 	return (fatal);
6207 }
6208 
ma_wrap_status(struct adapter * adap,int arg,int flags)6209 static bool ma_wrap_status(struct adapter *adap, int arg, int flags)
6210 {
6211 	u32 v;
6212 
6213 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
6214 	if (!(flags & IHF_NO_SHOW)) {
6215 		CH_ALERT(adap,
6216 		    "  MA address wrap-around by client %u to address %#x\n",
6217 		    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
6218 	}
6219 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
6220 
6221 	return (false);
6222 }
6223 
6224 
6225 /*
6226  * MA interrupt handler.
6227  */
ma_intr_handler(struct adapter * adap,int arg,int flags)6228 static bool ma_intr_handler(struct adapter *adap, int arg, int flags)
6229 {
6230 	static const struct intr_action ma_intr_actions[] = {
6231 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
6232 		{ 0 },
6233 	};
6234 	static const struct intr_info ma_intr_info = {
6235 		.name = "MA_INT_CAUSE",
6236 		.cause_reg = A_MA_INT_CAUSE,
6237 		.enable_reg = A_MA_INT_ENABLE,
6238 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
6239 		.flags = IHF_FATAL_IFF_ENABLED,
6240 		.details = NULL,
6241 		.actions = ma_intr_actions,
6242 	};
6243 	static const struct intr_info ma_perr_status1 = {
6244 		.name = "MA_PARITY_ERROR_STATUS1",
6245 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
6246 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
6247 		.fatal = 0xffffffff,
6248 		.flags = 0,
6249 		.details = NULL,
6250 		.actions = NULL,
6251 	};
6252 	static const struct intr_info ma_perr_status2 = {
6253 		.name = "MA_PARITY_ERROR_STATUS2",
6254 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
6255 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
6256 		.fatal = 0xffffffff,
6257 		.flags = 0,
6258 		.details = NULL,
6259 		.actions = NULL,
6260 	};
6261 	bool fatal;
6262 
6263 	fatal = false;
6264 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, flags);
6265 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, flags);
6266 	if (chip_id(adap) > CHELSIO_T4)
6267 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, flags);
6268 
6269 	return (fatal);
6270 }
6271 
6272 /*
6273  * SMB interrupt handler.
6274  */
smb_intr_handler(struct adapter * adap,int arg,int flags)6275 static bool smb_intr_handler(struct adapter *adap, int arg, int flags)
6276 {
6277 	static const struct intr_details smb_int_cause_fields[] = {
6278 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
6279 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
6280 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
6281 		{ 0 }
6282 	};
6283 	static const struct intr_info smb_int_cause = {
6284 		.name = "SMB_INT_CAUSE",
6285 		.cause_reg = A_SMB_INT_CAUSE,
6286 		.enable_reg = A_SMB_INT_ENABLE,
6287 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
6288 		.flags = 0,
6289 		.details = smb_int_cause_fields,
6290 		.actions = NULL,
6291 	};
6292 	return (t4_handle_intr(adap, &smb_int_cause, 0, flags));
6293 }
6294 
6295 /*
6296  * NC-SI interrupt handler.
6297  */
ncsi_intr_handler(struct adapter * adap,int arg,int flags)6298 static bool ncsi_intr_handler(struct adapter *adap, int arg, int flags)
6299 {
6300 	static const struct intr_details ncsi_int_cause_fields[] = {
6301 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
6302 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
6303 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
6304 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
6305 		{ 0 }
6306 	};
6307 	static const struct intr_info ncsi_int_cause = {
6308 		.name = "NCSI_INT_CAUSE",
6309 		.cause_reg = A_NCSI_INT_CAUSE,
6310 		.enable_reg = A_NCSI_INT_ENABLE,
6311 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
6312 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
6313 		.flags = 0,
6314 		.details = ncsi_int_cause_fields,
6315 		.actions = NULL,
6316 	};
6317 	static const struct intr_info ncsi_xgmac0_int_cause = {
6318 		.name = "NCSI_XGMAC0_INT_CAUSE",
6319 		.cause_reg = A_NCSI_XGMAC0_INT_CAUSE,
6320 		.enable_reg = A_NCSI_XGMAC0_INT_ENABLE,
6321 		.fatal = 0,
6322 		.flags = 0,
6323 		.details = NULL,
6324 		.actions = NULL,
6325 	};
6326 	bool fatal = false;
6327 
6328 	fatal |= t4_handle_intr(adap, &ncsi_int_cause, 0, flags);
6329 	if (chip_id(adap) > CHELSIO_T6)
6330 		fatal |= t4_handle_intr(adap, &ncsi_xgmac0_int_cause, 0, flags);
6331 	return (fatal);
6332 }
6333 
6334 /*
6335  * MAC interrupt handler.
6336  */
mac_intr_handler(struct adapter * adap,int port,int flags)6337 static bool mac_intr_handler(struct adapter *adap, int port, int flags)
6338 {
6339 	static const struct intr_info mac_int_cause_cmn = {
6340 		.name = "MAC_INT_CAUSE_CMN",
6341 		.cause_reg = A_MAC_INT_CAUSE_CMN,
6342 		.enable_reg = A_MAC_INT_EN_CMN,
6343 		.fatal = 0,
6344 		.flags = 0,
6345 		.details = NULL,
6346 		.actions = NULL,
6347 	};
6348 	static const struct intr_info mac_perr_cause_mtip = {
6349 		.name = "MAC_PERR_INT_CAUSE_MTIP",
6350 		.cause_reg = A_MAC_PERR_INT_CAUSE_MTIP,
6351 		.enable_reg = A_MAC_PERR_INT_EN_MTIP,
6352 		.fatal = 0xffffffff,
6353 		.flags = IHF_FATAL_IFF_ENABLED | IHF_IGNORE_IF_DISABLED,
6354 		.details = NULL,
6355 		.actions = NULL,
6356 	};
6357 	static const struct intr_info mac_cerr_cause_mtip = {
6358 		.name = "MAC_CERR_INT_CAUSE_MTIP",
6359 		.cause_reg = A_MAC_CERR_INT_CAUSE_MTIP,
6360 		.enable_reg = A_MAC_CERR_INT_EN_MTIP,
6361 		.fatal = 0,
6362 		.flags = 0,
6363 		.details = NULL,
6364 		.actions = NULL,
6365 	};
6366 	static const struct intr_info mac_ios_int_cause_quad0 = {
6367 		.name = "MAC_IOS_INTR_CAUSE_QUAD0",
6368 		.cause_reg = A_MAC_IOS_INTR_CAUSE_QUAD0,
6369 		.enable_reg = A_MAC_IOS_INTR_EN_QUAD0,
6370 		.fatal = 0,
6371 		.flags = 0,
6372 		.details = NULL,
6373 		.actions = NULL,
6374 	};
6375 	static const struct intr_info mac_ios_int_cause_quad1 = {
6376 		.name = "MAC_IOS_INTR_CAUSE_QUAD1",
6377 		.cause_reg = A_MAC_IOS_INTR_CAUSE_QUAD1,
6378 		.enable_reg = A_MAC_IOS_INTR_EN_QUAD1,
6379 		.fatal = 0,
6380 		.flags = 0,
6381 		.details = NULL,
6382 		.actions = NULL,
6383 	};
6384 	static const struct intr_details mac_intr_details[] = {
6385 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
6386 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
6387 		{ 0 }
6388 	};
6389 	char name[32];
6390 	struct intr_info ii;
6391 	bool fatal = false;
6392 
6393 	if (port > 1 && is_t6(adap))
6394 		return (false);
6395 
6396 	if (is_t4(adap)) {
6397 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
6398 		ii.name = &name[0];
6399 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
6400 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
6401 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
6402 		ii.flags = 0;
6403 		ii.details = mac_intr_details;
6404 		ii.actions = NULL;
6405 	} else if (chip_id(adap) < CHELSIO_T7) {
6406 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
6407 		ii.name = &name[0];
6408 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
6409 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
6410 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
6411 		ii.flags = 0;
6412 		ii.details = mac_intr_details;
6413 		ii.actions = NULL;
6414 	} else {
6415 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
6416 		ii.name = &name[0];
6417 		ii.cause_reg = T7_PORT_REG(port, A_T7_MAC_PORT_INT_CAUSE);
6418 		ii.enable_reg = T7_PORT_REG(port, A_T7_MAC_PORT_INT_EN);
6419 		ii.fatal = 0xffffffff;
6420 		ii.flags = IHF_FATAL_IFF_ENABLED;
6421 		ii.details = NULL;
6422 		ii.actions = NULL;
6423 	}
6424 	fatal |= t4_handle_intr(adap, &ii, 0, flags);
6425 	if (is_t4(adap))
6426 		return (fatal);
6427 
6428 	MPASS(chip_id(adap) >= CHELSIO_T5);
6429 	snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
6430 	if (chip_id(adap) > CHELSIO_T6) {
6431 		ii.name = &name[0];
6432 		ii.cause_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_CAUSE);
6433 		ii.enable_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_EN);
6434 		ii.fatal = 0xffffffff;
6435 		ii.flags = IHF_FATAL_IFF_ENABLED;
6436 		ii.details = NULL;
6437 		ii.actions = NULL;
6438 	} else {
6439 		ii.name = &name[0];
6440 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
6441 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
6442 		ii.fatal = 0xffffffff;
6443 		ii.flags = IHF_FATAL_IFF_ENABLED;
6444 		ii.details = NULL;
6445 		ii.actions = NULL;
6446 	}
6447 	fatal |= t4_handle_intr(adap, &ii, 0, flags);
6448 	if (is_t5(adap))
6449 		return (fatal);
6450 
6451 	MPASS(chip_id(adap) >= CHELSIO_T6);
6452 	snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
6453 	if (chip_id(adap) > CHELSIO_T6) {
6454 		ii.name = &name[0];
6455 		ii.cause_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_CAUSE_100G);
6456 		ii.enable_reg = T7_PORT_REG(port, A_T7_MAC_PORT_PERR_INT_EN_100G);
6457 		ii.fatal = 0xffffffff;
6458 		ii.flags = IHF_FATAL_IFF_ENABLED;
6459 		ii.details = NULL;
6460 		ii.actions = NULL;
6461 	} else {
6462 		ii.name = &name[0];
6463 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
6464 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
6465 		ii.fatal = 0xffffffff;
6466 		ii.flags = IHF_FATAL_IFF_ENABLED;
6467 		ii.details = NULL;
6468 		ii.actions = NULL;
6469 	}
6470 	fatal |= t4_handle_intr(adap, &ii, 0, flags);
6471 	if (is_t6(adap))
6472 		return (fatal);
6473 
6474 	MPASS(chip_id(adap) >= CHELSIO_T7);
6475 	fatal |= t4_handle_intr(adap, &mac_int_cause_cmn, 0, flags);
6476 	fatal |= t4_handle_intr(adap, &mac_perr_cause_mtip, 0, flags);
6477 	fatal |= t4_handle_intr(adap, &mac_cerr_cause_mtip, 0, flags);
6478 	fatal |= t4_handle_intr(adap, &mac_ios_int_cause_quad0, 0, flags);
6479 	fatal |= t4_handle_intr(adap, &mac_ios_int_cause_quad1, 0, flags);
6480 
6481 	return (fatal);
6482 }
6483 
pl_timeout_status(struct adapter * adap,int arg,int flags)6484 static bool pl_timeout_status(struct adapter *adap, int arg, int flags)
6485 {
6486 	if (flags & IHF_NO_SHOW)
6487 		return (false);
6488 
6489 	CH_ALERT(adap, "    PL_TIMEOUT_STATUS 0x%08x 0x%08x\n",
6490 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS0),
6491 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS1));
6492 
6493 	return (false);
6494 }
6495 
plpl_intr_handler(struct adapter * adap,int arg,int flags)6496 static bool plpl_intr_handler(struct adapter *adap, int arg, int flags)
6497 {
6498 	static const struct intr_details plpl_int_cause_fields[] = {
6499 		{ F_PL_BUSPERR, "Bus parity error" },
6500 		{ F_FATALPERR, "Fatal parity error" },
6501 		{ F_INVALIDACCESS, "Global reserved memory access" },
6502 		{ F_TIMEOUT,  "Bus timeout" },
6503 		{ F_PLERR, "Module reserved access" },
6504 		{ F_PERRVFID, "VFID_MAP parity error" },
6505 		{ 0 }
6506 	};
6507 	static const struct intr_action plpl_int_cause_actions[] = {
6508 		{ F_TIMEOUT, -1, pl_timeout_status },
6509 		{ 0 },
6510 	};
6511 	static const struct intr_info plpl_int_cause = {
6512 		.name = "PL_PL_INT_CAUSE",
6513 		.cause_reg = A_PL_PL_INT_CAUSE,
6514 		.enable_reg = A_PL_PL_INT_ENABLE,
6515 		.fatal = F_FATALPERR | F_PERRVFID,
6516 		.flags = IHF_FATAL_IFF_ENABLED | IHF_IGNORE_IF_DISABLED,
6517 		.details = plpl_int_cause_fields,
6518 		.actions = plpl_int_cause_actions,
6519 	};
6520 
6521 	return (t4_handle_intr(adap, &plpl_int_cause, 0, flags));
6522 }
6523 
6524 /* similar to t4_port_reg */
6525 static inline u32
t7_tlstx_reg(u8 instance,u8 channel,u32 reg)6526 t7_tlstx_reg(u8 instance, u8 channel, u32 reg)
6527 {
6528 	MPASS(instance <= 1);
6529 	MPASS(channel < NUM_TLS_TX_CH_INSTANCES);
6530 	return (instance * (CRYPTO_1_BASE_ADDR - CRYPTO_0_BASE_ADDR) +
6531 	    TLS_TX_CH_REG(reg, channel));
6532 }
6533 
6534 /*
6535  * CRYPTO (aka TLS_TX) interrupt handler.
6536  */
tlstx_intr_handler(struct adapter * adap,int idx,int flags)6537 static bool tlstx_intr_handler(struct adapter *adap, int idx, int flags)
6538 {
6539 	static const struct intr_details tlstx_int_cause_fields[] = {
6540 		{ F_KEX_CERR, "KEX SRAM Correctable error" },
6541 		{ F_KEYLENERR, "IPsec Key length error" },
6542 		{ F_INTF1_PERR, "Input Interface1 parity error" },
6543 		{ F_INTF0_PERR, "Input Interface0 parity error" },
6544 		{ F_KEX_PERR, "KEX SRAM Parity error" },
6545 		{ 0 }
6546 	};
6547 	struct intr_info ii = {
6548 		.fatal = F_KEX_PERR | F_INTF0_PERR | F_INTF1_PERR,
6549 		.flags = IHF_FATAL_IFF_ENABLED,
6550 		.details = tlstx_int_cause_fields,
6551 		.actions = NULL,
6552 	};
6553 	char name[32];
6554 	int ch;
6555 	bool fatal = false;
6556 
6557 	for (ch = 0; ch < NUM_TLS_TX_CH_INSTANCES; ch++) {
6558 		snprintf(name, sizeof(name), "TLSTX%u_CH%u_INT_CAUSE", idx, ch);
6559 		ii.name = &name[0];
6560 		ii.cause_reg = t7_tlstx_reg(idx, ch, A_TLS_TX_CH_INT_CAUSE);
6561 		ii.enable_reg = t7_tlstx_reg(idx, ch, A_TLS_TX_CH_INT_ENABLE);
6562 		fatal |= t4_handle_intr(adap, &ii, 0, flags);
6563 	}
6564 
6565 	return (fatal);
6566 }
6567 
6568 /*
6569  * HMA interrupt handler.
6570  */
hma_intr_handler(struct adapter * adap,int idx,int flags)6571 static bool hma_intr_handler(struct adapter *adap, int idx, int flags)
6572 {
6573 	static const struct intr_details hma_int_cause_fields[] = {
6574 		{ F_GK_UF_INT_CAUSE, "Gatekeeper underflow" },
6575 		{ F_IDTF_INT_CAUSE, "Invalid descriptor fault" },
6576 		{ F_OTF_INT_CAUSE, "Offset translation fault" },
6577 		{ F_RTF_INT_CAUSE, "Region translation fault" },
6578 		{ F_PCIEMST_INT_CAUSE, "PCIe master access error" },
6579 		{ F_MAMST_INT_CAUSE, "MA master access error" },
6580 		{ 1, "FIFO parity error" },
6581 		{ 0 }
6582 	};
6583 	static const struct intr_info hma_int_cause = {
6584 		.name = "HMA_INT_CAUSE",
6585 		.cause_reg = A_HMA_INT_CAUSE,
6586 		.enable_reg = A_HMA_INT_ENABLE,
6587 		.fatal = 7,
6588 		.flags = 0,
6589 		.details = hma_int_cause_fields,
6590 		.actions = NULL,
6591 	};
6592 
6593 	return (t4_handle_intr(adap, &hma_int_cause, 0, flags));
6594 }
6595 
6596 /*
6597  * CRYPTO_KEY interrupt handler.
6598  */
cryptokey_intr_handler(struct adapter * adap,int idx,int flags)6599 static bool cryptokey_intr_handler(struct adapter *adap, int idx, int flags)
6600 {
6601 	static const struct intr_details cryptokey_int_cause_fields[] = {
6602 		{ F_MA_FIFO_PERR, "MA arbiter FIFO parity error" },
6603 		{ F_MA_RSP_PERR, "MA response IF parity error" },
6604 		{ F_ING_CACHE_DATA_PERR, "Ingress key cache data parity error" },
6605 		{ F_ING_CACHE_TAG_PERR, "Ingress key cache tag parity error" },
6606 		{ F_LKP_KEY_REQ_PERR, "Ingress key req parity error" },
6607 		{ F_LKP_CLIP_TCAM_PERR, "Ingress LKP CLIP TCAM parity error" },
6608 		{ F_LKP_MAIN_TCAM_PERR, "Ingress LKP main TCAM parity error" },
6609 		{ F_EGR_KEY_REQ_PERR, "Egress key req or FIFO3 parity error" },
6610 		{ F_EGR_CACHE_DATA_PERR, "Egress key cache data parity error" },
6611 		{ F_EGR_CACHE_TAG_PERR, "Egress key cache tag parity error" },
6612 		{ F_CIM_PERR, "CIM interface parity error" },
6613 		{ F_MA_INV_RSP_TAG, "MA invalid response tag" },
6614 		{ F_ING_KEY_RANGE_ERR, "Ingress key range error" },
6615 		{ F_ING_MFIFO_OVFL, "Ingress MFIFO overflow" },
6616 		{ F_LKP_REQ_OVFL, "Ingress lookup FIFO overflow" },
6617 		{ F_EOK_WAIT_ERR, "EOK wait error" },
6618 		{ F_EGR_KEY_RANGE_ERR, "Egress key range error" },
6619 		{ F_EGR_MFIFO_OVFL, "Egress MFIFO overflow" },
6620 		{ F_SEQ_WRAP_HP_OVFL, "Sequence wrap (hi-pri)" },
6621 		{ F_SEQ_WRAP_LP_OVFL, "Sequence wrap (lo-pri)" },
6622 		{ F_EGR_SEQ_WRAP_HP, "Egress sequence wrap (hi-pri)" },
6623 		{ F_EGR_SEQ_WRAP_LP, "Egress sequence wrap (lo-pri)" },
6624 		{ 0 }
6625 	};
6626 	static const struct intr_info cryptokey_int_cause = {
6627 		.name = "CRYPTO_KEY_INT_CAUSE",
6628 		.cause_reg = A_CRYPTO_KEY_INT_CAUSE,
6629 		.enable_reg = A_CRYPTO_KEY_INT_ENABLE,
6630 		.fatal = 0xffffffff,
6631 		.flags = IHF_FATAL_IFF_ENABLED,
6632 		.details = cryptokey_int_cause_fields,
6633 		.actions = NULL,
6634 	};
6635 
6636 	return (t4_handle_intr(adap, &cryptokey_int_cause, 0, flags));
6637 }
6638 
6639 /*
6640  * GCACHE interrupt handler.
6641  */
gcache_intr_handler(struct adapter * adap,int idx,int flags)6642 static bool gcache_intr_handler(struct adapter *adap, int idx, int flags)
6643 {
6644 	static const struct intr_details gcache_int_cause_fields[] = {
6645 		{ F_GC1_SRAM_RSP_DATAQ_PERR_INT_CAUSE, "GC1 SRAM rsp dataq perr" },
6646 		{ F_GC0_SRAM_RSP_DATAQ_PERR_INT_CAUSE, "GC0 SRAM rsp dataq perr" },
6647 		{ F_GC1_WQDATA_FIFO_PERR_INT_CAUSE, "GC1 wqdata FIFO perr" },
6648 		{ F_GC0_WQDATA_FIFO_PERR_INT_CAUSE, "GC0 wqdata FIFO perr" },
6649 		{ F_GC1_RDTAG_QUEUE_PERR_INT_CAUSE, "GC1 rdtag queue perr" },
6650 		{ F_GC0_RDTAG_QUEUE_PERR_INT_CAUSE, "GC0 rdtag queue perr" },
6651 		{ F_GC1_SRAM_RDTAG_QUEUE_PERR_INT_CAUSE, "GC1 SRAM rdtag queue perr" },
6652 		{ F_GC0_SRAM_RDTAG_QUEUE_PERR_INT_CAUSE, "GC0 SRAM rdtag queue perr" },
6653 		{ F_GC1_RSP_PERR_INT_CAUSE, "GC1 rsp perr" },
6654 		{ F_GC0_RSP_PERR_INT_CAUSE, "GC0 rsp perr" },
6655 		{ F_GC1_LRU_UERR_INT_CAUSE, "GC1 lru uerr" },
6656 		{ F_GC0_LRU_UERR_INT_CAUSE, "GC0 lru uerr" },
6657 		{ F_GC1_TAG_UERR_INT_CAUSE, "GC1 tag uerr" },
6658 		{ F_GC0_TAG_UERR_INT_CAUSE, "GC0 tag uerr" },
6659 		{ F_GC1_LRU_CERR_INT_CAUSE, "GC1 lru cerr" },
6660 		{ F_GC0_LRU_CERR_INT_CAUSE, "GC0 lru cerr" },
6661 		{ F_GC1_TAG_CERR_INT_CAUSE, "GC1 tag cerr" },
6662 		{ F_GC0_TAG_CERR_INT_CAUSE, "GC0 tag cerr" },
6663 		{ F_GC1_CE_INT_CAUSE, "GC1 correctable error" },
6664 		{ F_GC0_CE_INT_CAUSE, "GC0 correctable error" },
6665 		{ F_GC1_UE_INT_CAUSE, "GC1 uncorrectable error" },
6666 		{ F_GC0_UE_INT_CAUSE, "GC0 uncorrectable error" },
6667 		{ F_GC1_CMD_PAR_INT_CAUSE, "GC1 cmd perr" },
6668 		{ F_GC1_DATA_PAR_INT_CAUSE, "GC1 data perr" },
6669 		{ F_GC0_CMD_PAR_INT_CAUSE, "GC0 cmd perr" },
6670 		{ F_GC0_DATA_PAR_INT_CAUSE, "GC0 data perr" },
6671 		{ F_ILLADDRACCESS1_INT_CAUSE, "GC1 illegal address access" },
6672 		{ F_ILLADDRACCESS0_INT_CAUSE, "GC0 illegal address access" },
6673 		{ 0 }
6674 	};
6675 	static const struct intr_info gcache_perr_cause = {
6676 		.name = "GCACHE_PAR_CAUSE",
6677 		.cause_reg = A_GCACHE_PAR_CAUSE,
6678 		.enable_reg = A_GCACHE_PAR_ENABLE,
6679 		.fatal = 0xffffffff,
6680 		.flags = IHF_FATAL_IFF_ENABLED,
6681 		.details = NULL,
6682 		.actions = NULL,
6683 	};
6684 	static const struct intr_info gcache_int_cause = {
6685 		.name = "GCACHE_INT_CAUSE",
6686 		.cause_reg = A_GCACHE_INT_CAUSE,
6687 		.enable_reg = A_GCACHE_INT_ENABLE,
6688 		.fatal = 0,
6689 		.flags = 0,
6690 		.details = gcache_int_cause_fields,
6691 		.actions = NULL,
6692 	};
6693 	bool fatal = false;
6694 
6695 	fatal |= t4_handle_intr(adap, &gcache_int_cause, 0, flags);
6696 	fatal |= t4_handle_intr(adap, &gcache_perr_cause, 0, flags);
6697 
6698 	return (fatal);
6699 }
6700 
6701 /*
6702  * ARM interrupt handler.
6703  */
arm_intr_handler(struct adapter * adap,int idx,int flags)6704 static bool arm_intr_handler(struct adapter *adap, int idx, int flags)
6705 {
6706 	static const struct intr_info arm_perr_cause0 = {
6707 		.name = "ARM_PERR_INT_CAUSE0",
6708 		.cause_reg = A_ARM_PERR_INT_CAUSE0,
6709 		.enable_reg = A_ARM_PERR_INT_ENB0,
6710 		.fatal = 0xffffffff,
6711 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6712 		.details = NULL,
6713 		.actions = NULL,
6714 	};
6715 	static const struct intr_info arm_perr_cause1 = {
6716 		.name = "ARM_PERR_INT_CAUSE1",
6717 		.cause_reg = A_ARM_PERR_INT_CAUSE1,
6718 		.enable_reg = A_ARM_PERR_INT_ENB1,
6719 		.fatal = 0xffffffff,
6720 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6721 		.details = NULL,
6722 		.actions = NULL,
6723 	};
6724 	static const struct intr_info arm_perr_cause2 = {
6725 		.name = "ARM_PERR_INT_CAUSE2",
6726 		.cause_reg = A_ARM_PERR_INT_CAUSE2,
6727 		.enable_reg = A_ARM_PERR_INT_ENB2,
6728 		.fatal = 0xffffffff,
6729 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6730 		.details = NULL,
6731 		.actions = NULL,
6732 	};
6733 	static const struct intr_info arm_cerr_cause0 = {
6734 		.name = "ARM_CERR_INT_CAUSE",
6735 		.cause_reg = A_ARM_CERR_INT_CAUSE0,
6736 		.enable_reg = A_ARM_CERR_INT_ENB0,
6737 		.fatal = 0,
6738 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6739 		.details = NULL,
6740 		.actions = NULL,
6741 	};
6742 	static const struct intr_info arm_err_cause0 = {
6743 		.name = "ARM_ERR_INT_CAUSE",
6744 		.cause_reg = A_ARM_ERR_INT_CAUSE0,
6745 		.enable_reg = A_ARM_ERR_INT_ENB0,
6746 		.fatal = 0,
6747 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6748 		.details = NULL,
6749 		.actions = NULL,
6750 	};
6751 	static const struct intr_info arm_periph_cause = {
6752 		.name = "ARM_PERIPHERAL_INT_CAUSE",
6753 		.cause_reg = A_ARM_PERIPHERAL_INT_CAUSE,
6754 		.enable_reg = A_ARM_PERIPHERAL_INT_ENB,
6755 		.fatal = 0,
6756 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6757 		.details = NULL,
6758 		.actions = NULL,
6759 	};
6760 	static const struct intr_info arm_nvme_db_emu_cause = {
6761 		.name = "ARM_NVME_DB_EMU_INT_CAUSE",
6762 		.cause_reg = A_ARM_NVME_DB_EMU_INT_CAUSE,
6763 		.enable_reg = A_ARM_NVME_DB_EMU_INT_ENABLE,
6764 		.fatal = 0,
6765 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6766 		.details = NULL,
6767 		.actions = NULL,
6768 	};
6769 	bool fatal = false;
6770 
6771 	fatal |= t4_handle_intr(adap, &arm_perr_cause0, 0, flags);
6772 	fatal |= t4_handle_intr(adap, &arm_perr_cause1, 0, flags);
6773 	fatal |= t4_handle_intr(adap, &arm_perr_cause2, 0, flags);
6774 	fatal |= t4_handle_intr(adap, &arm_cerr_cause0, 0, flags);
6775 	fatal |= t4_handle_intr(adap, &arm_err_cause0, 0, flags);
6776 	fatal |= t4_handle_intr(adap, &arm_periph_cause, 0, flags);
6777 	fatal |= t4_handle_intr(adap, &arm_nvme_db_emu_cause, 0, flags);
6778 
6779 	return (fatal);
6780 }
6781 
6782 static inline uint32_t
get_perr_ucause(struct adapter * sc,const struct intr_info * ii)6783 get_perr_ucause(struct adapter *sc, const struct intr_info *ii)
6784 {
6785 	uint32_t cause;
6786 
6787 	cause = t4_read_reg(sc, ii->cause_reg);
6788 	if (ii->flags & IHF_IGNORE_IF_DISABLED)
6789 		cause &= t4_read_reg(sc, ii->enable_reg);
6790 	return (cause);
6791 }
6792 
6793 static uint32_t
t4_perr_to_ic(struct adapter * adap,uint32_t perr)6794 t4_perr_to_ic(struct adapter *adap, uint32_t perr)
6795 {
6796 	uint32_t mask;
6797 
6798 	if (adap->chip_params->nchan > 2)
6799 		mask = F_MAC0 | F_MAC1 | F_MAC2 | F_MAC3;
6800 	else
6801 		mask = F_MAC0 | F_MAC1;
6802 	return (perr & mask ? perr | mask : perr);
6803 }
6804 
6805 static uint32_t
t7_perr_to_ic1(uint32_t perr)6806 t7_perr_to_ic1(uint32_t perr)
6807 {
6808 	uint32_t cause = 0;
6809 
6810 	if (perr & F_T7_PL_PERR_ULP_TX)
6811 		cause |= F_T7_ULP_TX;
6812 	if (perr & F_T7_PL_PERR_SGE)
6813 		cause |= F_T7_SGE;
6814 	if (perr & F_T7_PL_PERR_HMA)
6815 		cause |= F_T7_HMA;
6816 	if (perr & F_T7_PL_PERR_CPL_SWITCH)
6817 		cause |= F_T7_CPL_SWITCH;
6818 	if (perr & F_T7_PL_PERR_ULP_RX)
6819 		cause |= F_T7_ULP_RX;
6820 	if (perr & F_T7_PL_PERR_PM_RX)
6821 		cause |= F_T7_PM_RX;
6822 	if (perr & F_T7_PL_PERR_PM_TX)
6823 		cause |= F_T7_PM_TX;
6824 	if (perr & F_T7_PL_PERR_MA)
6825 		cause |= F_T7_MA;
6826 	if (perr & F_T7_PL_PERR_TP)
6827 		cause |= F_T7_TP;
6828 	if (perr & F_T7_PL_PERR_LE)
6829 		cause |= F_T7_LE;
6830 	if (perr & F_T7_PL_PERR_EDC1)
6831 		cause |= F_T7_EDC1;
6832 	if (perr & F_T7_PL_PERR_EDC0)
6833 		cause |= F_T7_EDC0;
6834 	if (perr & F_T7_PL_PERR_MC1)
6835 		cause |= F_T7_MC1;
6836 	if (perr & F_T7_PL_PERR_MC0)
6837 		cause |= F_T7_MC0;
6838 	if (perr & F_T7_PL_PERR_PCIE)
6839 		cause |= F_T7_PCIE;
6840 	if (perr & F_T7_PL_PERR_UART)
6841 		cause |= F_T7_UART;
6842 	if (perr & F_T7_PL_PERR_PMU)
6843 		cause |= F_PMU;
6844 	if (perr & F_T7_PL_PERR_MAC)
6845 		cause |= F_MAC0 | F_MAC1 | F_MAC2 | F_MAC3;
6846 	if (perr & F_T7_PL_PERR_SMB)
6847 		cause |= F_SMB;
6848 	if (perr & F_T7_PL_PERR_SF)
6849 		cause |= F_SF;
6850 	if (perr & F_T7_PL_PERR_PL)
6851 		cause |= F_PL;
6852 	if (perr & F_T7_PL_PERR_NCSI)
6853 		cause |= F_NCSI;
6854 	if (perr & F_T7_PL_PERR_MPS)
6855 		cause |= F_MPS;
6856 	if (perr & F_T7_PL_PERR_MI)
6857 		cause |= F_MI;
6858 	if (perr & F_T7_PL_PERR_DBG)
6859 		cause |= F_DBG;
6860 	if (perr & F_T7_PL_PERR_I2CM)
6861 		cause |= F_I2CM;
6862 	if (perr & F_T7_PL_PERR_CIM)
6863 		cause |= F_CIM;
6864 
6865 	return (cause);
6866 }
6867 
6868 static uint32_t
t7_perr_to_ic2(uint32_t perr)6869 t7_perr_to_ic2(uint32_t perr)
6870 {
6871 	uint32_t cause = 0;
6872 
6873 	if (perr & F_T7_PL_PERR_CRYPTO_KEY)
6874 		cause |= F_CRYPTO_KEY;
6875 	if (perr & F_T7_PL_PERR_CRYPTO1)
6876 		cause |= F_CRYPTO1;
6877 	if (perr & F_T7_PL_PERR_CRYPTO0)
6878 		cause |= F_CRYPTO0;
6879 	if (perr & F_T7_PL_PERR_GCACHE)
6880 		cause |= F_GCACHE;
6881 	if (perr & F_T7_PL_PERR_ARM)
6882 		cause |= F_ARM;
6883 
6884 	return (cause);
6885 }
6886 
6887 /**
6888  *	t4_slow_intr_handler - control path interrupt handler
6889  *	@adap: the adapter
6890  *
6891  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
6892  *	The designation 'slow' is because it involves register reads, while
6893  *	data interrupts typically don't involve any MMIOs.
6894  */
t4_slow_intr_handler(struct adapter * adap,int flags)6895 bool t4_slow_intr_handler(struct adapter *adap, int flags)
6896 {
6897 	static const struct intr_details pl_int_cause_fields[] = {
6898 		{ F_MC1, "MC1" },
6899 		{ F_UART, "UART" },
6900 		{ F_ULP_TX, "ULP TX" },
6901 		{ F_SGE, "SGE" },
6902 		{ F_HMA, "HMA" },
6903 		{ F_CPL_SWITCH, "CPL Switch" },
6904 		{ F_ULP_RX, "ULP RX" },
6905 		{ F_PM_RX, "PM RX" },
6906 		{ F_PM_TX, "PM TX" },
6907 		{ F_MA, "MA" },
6908 		{ F_TP, "TP" },
6909 		{ F_LE, "LE" },
6910 		{ F_EDC1, "EDC1" },
6911 		{ F_EDC0, "EDC0" },
6912 		{ F_MC, "MC0" },
6913 		{ F_PCIE, "PCIE" },
6914 		{ F_PMU, "PMU" },
6915 		{ F_MAC3, "MAC3" },
6916 		{ F_MAC2, "MAC2" },
6917 		{ F_MAC1, "MAC1" },
6918 		{ F_MAC0, "MAC0" },
6919 		{ F_SMB, "SMB" },
6920 		{ F_SF, "SF" },
6921 		{ F_PL, "PL" },
6922 		{ F_NCSI, "NC-SI" },
6923 		{ F_MPS, "MPS" },
6924 		{ F_MI, "MI" },
6925 		{ F_DBG, "DBG" },
6926 		{ F_I2CM, "I2CM" },
6927 		{ F_CIM, "CIM" },
6928 		{ 0 }
6929 	};
6930 	static const struct intr_action pl_int_cause_actions[] = {
6931 		{ F_ULP_TX, -1, ulptx_intr_handler },
6932 		{ F_SGE, -1, sge_intr_handler },
6933 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
6934 		{ F_ULP_RX, -1, ulprx_intr_handler },
6935 		{ F_PM_RX, -1, pmtx_intr_handler },
6936 		{ F_PM_TX, -1, pmtx_intr_handler },
6937 		{ F_MA, -1, ma_intr_handler },
6938 		{ F_TP, -1, tp_intr_handler },
6939 		{ F_LE, -1, le_intr_handler },
6940 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
6941 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
6942 		{ F_MC0, MEM_MC0, mem_intr_handler },
6943 		{ F_MC1, MEM_MC1, mem_intr_handler },
6944 		{ F_PCIE, -1, pcie_intr_handler },
6945 		{ F_MAC0, 0, mac_intr_handler },
6946 		{ F_MAC1, 1, mac_intr_handler },
6947 		{ F_MAC2, 2, mac_intr_handler },
6948 		{ F_MAC3, 3, mac_intr_handler },
6949 		{ F_SMB, -1, smb_intr_handler },
6950 		{ F_PL, -1, plpl_intr_handler },
6951 		{ F_NCSI, -1, ncsi_intr_handler },
6952 		{ F_MPS, -1, mps_intr_handler },
6953 		{ F_CIM, -1, cim_intr_handler },
6954 		{ 0 }
6955 	};
6956 	static const struct intr_info pl_int_cause = {
6957 		.name = "PL_INT_CAUSE",
6958 		.cause_reg = A_PL_INT_CAUSE,
6959 		.enable_reg = A_PL_INT_ENABLE,
6960 		.fatal = 0,
6961 		.flags = IHF_IGNORE_IF_DISABLED,
6962 		.details = pl_int_cause_fields,
6963 		.actions = pl_int_cause_actions,
6964 	};
6965 	static const struct intr_info pl_perr_cause = {
6966 		.name = "PL_PERR_CAUSE",
6967 		.cause_reg = A_PL_PERR_CAUSE,
6968 		.enable_reg = A_PL_PERR_ENABLE,
6969 		.fatal = 0xffffffff,
6970 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
6971 		.details = pl_int_cause_fields,
6972 		.actions = NULL,
6973 	};
6974 	static const struct intr_details t7_pl_int_cause_fields[] = {
6975 		{ F_T7_FLR, "FLR" },
6976 		{ F_T7_SW_CIM, "SW CIM" },
6977 		{ F_T7_ULP_TX, "ULP TX" },
6978 		{ F_T7_SGE, "SGE" },
6979 		{ F_T7_HMA, "HMA" },
6980 		{ F_T7_CPL_SWITCH, "CPL Switch" },
6981 		{ F_T7_ULP_RX, "ULP RX" },
6982 		{ F_T7_PM_RX, "PM RX" },
6983 		{ F_T7_PM_TX, "PM TX" },
6984 		{ F_T7_MA, "MA" },
6985 		{ F_T7_TP, "TP" },
6986 		{ F_T7_LE, "LE" },
6987 		{ F_T7_EDC1, "EDC1" },
6988 		{ F_T7_EDC0, "EDC0" },
6989 		{ F_T7_MC1, "MC1" },
6990 		{ F_T7_MC0, "MC0" },
6991 		{ F_T7_PCIE, "PCIE" },
6992 		{ F_T7_UART, "UART" },
6993 		{ F_PMU, "PMU" },
6994 		{ F_MAC3, "MAC3" },
6995 		{ F_MAC2, "MAC2" },
6996 		{ F_MAC1, "MAC1" },
6997 		{ F_MAC0, "MAC0" },
6998 		{ F_SMB, "SMB" },
6999 		{ F_SF, "SF" },
7000 		{ F_PL, "PL" },
7001 		{ F_NCSI, "NC-SI" },
7002 		{ F_MPS, "MPS" },
7003 		{ F_MI, "MI" },
7004 		{ F_DBG, "DBG" },
7005 		{ F_I2CM, "I2CM" },
7006 		{ F_CIM, "CIM" },
7007 		{ 0 }
7008 	};
7009 	static const struct intr_action t7_pl_int_cause_actions[] = {
7010 		{ F_T7_ULP_TX, -1, ulptx_intr_handler },
7011 		{ F_T7_SGE, -1, sge_intr_handler },
7012 		{ F_T7_HMA, -1, hma_intr_handler },
7013 		{ F_T7_CPL_SWITCH, -1, cplsw_intr_handler },
7014 		{ F_T7_ULP_RX, -1, ulprx_intr_handler },
7015 		{ F_T7_PM_RX, -1, pmrx_intr_handler },
7016 		{ F_T7_PM_TX, -1, pmtx_intr_handler },
7017 		{ F_T7_MA, -1, ma_intr_handler },
7018 		{ F_T7_TP, -1, tp_intr_handler },
7019 		{ F_T7_LE, -1, le_intr_handler },
7020 		{ F_T7_EDC0, MEM_EDC0, mem_intr_handler },
7021 		{ F_T7_EDC1, MEM_EDC1, mem_intr_handler },
7022 		{ F_T7_MC0, MEM_MC0, mem_intr_handler },
7023 		{ F_T7_MC1, MEM_MC1, mem_intr_handler },
7024 		{ F_T7_PCIE, -1, pcie_intr_handler },
7025 		{ F_MAC0, 0, mac_intr_handler },
7026 		{ F_MAC1, 1, mac_intr_handler },
7027 		{ F_MAC2, 2, mac_intr_handler },
7028 		{ F_MAC3, 3, mac_intr_handler },
7029 		{ F_SMB, -1, smb_intr_handler },
7030 		{ F_PL, -1, plpl_intr_handler },
7031 		{ F_NCSI, -1, ncsi_intr_handler },
7032 		{ F_MPS, -1, mps_intr_handler },
7033 		{ F_CIM, -1, cim_intr_handler },
7034 		{ 0 }
7035 	};
7036 	static const struct intr_info t7_pl_int_cause = {
7037 		.name = "PL_INT_CAUSE",
7038 		.cause_reg = A_PL_INT_CAUSE,
7039 		.enable_reg = A_PL_INT_ENABLE,
7040 		.fatal = 0,
7041 		.flags = IHF_IGNORE_IF_DISABLED,
7042 		.details = t7_pl_int_cause_fields,
7043 		.actions = t7_pl_int_cause_actions,
7044 	};
7045 	static const struct intr_details t7_pl_int_cause2_fields[] = {
7046 		{ F_CRYPTO_KEY, "CRYPTO KEY" },
7047 		{ F_CRYPTO1, "CRYPTO1" },
7048 		{ F_CRYPTO0, "CRYPTO0" },
7049 		{ F_GCACHE, "GCACHE" },
7050 		{ F_ARM, "ARM" },
7051 		{ 0 }
7052 	};
7053 	static const struct intr_action t7_pl_int_cause2_actions[] = {
7054 		{ F_CRYPTO_KEY, -1, cryptokey_intr_handler },
7055 		{ F_CRYPTO1, 1, tlstx_intr_handler },
7056 		{ F_CRYPTO0, 0, tlstx_intr_handler },
7057 		{ F_GCACHE, -1, gcache_intr_handler },
7058 		{ F_ARM, -1, arm_intr_handler },
7059 		{ 0 }
7060 	};
7061 	static const struct intr_info t7_pl_int_cause2 = {
7062 		.name = "PL_INT_CAUSE2",
7063 		.cause_reg = A_PL_INT_CAUSE2,
7064 		.enable_reg = A_PL_INT_ENABLE2,
7065 		.fatal = 0,
7066 		.flags = IHF_IGNORE_IF_DISABLED,
7067 		.details = t7_pl_int_cause2_fields,
7068 		.actions = t7_pl_int_cause2_actions,
7069 	};
7070 	static const struct intr_details t7_pl_perr_cause_fields[] = {
7071 		{ F_T7_PL_PERR_CRYPTO_KEY, "CRYPTO KEY" },
7072 		{ F_T7_PL_PERR_CRYPTO1, "CRYPTO1" },
7073 		{ F_T7_PL_PERR_CRYPTO0, "CRYPTO0" },
7074 		{ F_T7_PL_PERR_GCACHE, "GCACHE" },
7075 		{ F_T7_PL_PERR_ARM, "ARM" },
7076 		{ F_T7_PL_PERR_ULP_TX, "ULP TX" },
7077 		{ F_T7_PL_PERR_SGE, "SGE" },
7078 		{ F_T7_PL_PERR_HMA, "HMA" },
7079 		{ F_T7_PL_PERR_CPL_SWITCH, "CPL Switch" },
7080 		{ F_T7_PL_PERR_ULP_RX, "ULP RX" },
7081 		{ F_T7_PL_PERR_PM_RX, "PM RX" },
7082 		{ F_T7_PL_PERR_PM_TX, "PM TX" },
7083 		{ F_T7_PL_PERR_MA, "MA" },
7084 		{ F_T7_PL_PERR_TP, "TP" },
7085 		{ F_T7_PL_PERR_LE, "LE" },
7086 		{ F_T7_PL_PERR_EDC1, "EDC1" },
7087 		{ F_T7_PL_PERR_EDC0, "EDC0" },
7088 		{ F_T7_PL_PERR_MC1, "MC1" },
7089 		{ F_T7_PL_PERR_MC0, "MC0" },
7090 		{ F_T7_PL_PERR_PCIE, "PCIE" },
7091 		{ F_T7_PL_PERR_UART, "UART" },
7092 		{ F_T7_PL_PERR_PMU, "PMU" },
7093 		{ F_T7_PL_PERR_MAC, "MAC" },
7094 		{ F_T7_PL_PERR_SMB, "SMB" },
7095 		{ F_T7_PL_PERR_SF, "SF" },
7096 		{ F_T7_PL_PERR_PL, "PL" },
7097 		{ F_T7_PL_PERR_NCSI, "NC-SI" },
7098 		{ F_T7_PL_PERR_MPS, "MPS" },
7099 		{ F_T7_PL_PERR_MI, "MI" },
7100 		{ F_T7_PL_PERR_DBG, "DBG" },
7101 		{ F_T7_PL_PERR_I2CM, "I2CM" },
7102 		{ F_T7_PL_PERR_CIM, "CIM" },
7103 		{ 0 }
7104 	};
7105 	static const struct intr_info t7_pl_perr_cause = {
7106 		.name = "PL_PERR_CAUSE",
7107 		.cause_reg = A_PL_PERR_CAUSE,
7108 		.enable_reg = A_PL_PERR_ENABLE,
7109 		.fatal = 0xffffffff,
7110 		.flags = IHF_IGNORE_IF_DISABLED | IHF_FATAL_IFF_ENABLED,
7111 		.details = t7_pl_perr_cause_fields,
7112 		.actions = NULL,
7113 	};
7114 	bool fatal = false;
7115 	uint32_t perr;
7116 
7117 	if (chip_id(adap) < CHELSIO_T7) {
7118 		perr = get_perr_ucause(adap, &pl_perr_cause);
7119 		fatal |= t4_handle_intr(adap, &pl_perr_cause, 0,
7120 		    flags & ~(IHF_CLR_ALL_SET | IHF_CLR_ALL_UNIGNORED));
7121 		fatal |= t4_handle_intr(adap, &pl_int_cause,
7122 		    t4_perr_to_ic(adap, perr), flags);
7123 		t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
7124 		(void)t4_read_reg(adap, pl_perr_cause.cause_reg);
7125 	} else {
7126 		perr = get_perr_ucause(adap, &t7_pl_perr_cause);
7127 		fatal |= t4_handle_intr(adap, &t7_pl_perr_cause, 0,
7128 		    flags & ~(IHF_CLR_ALL_SET | IHF_CLR_ALL_UNIGNORED));
7129 		fatal |= t4_handle_intr(adap, &t7_pl_int_cause,
7130 		    t7_perr_to_ic1(perr), flags);
7131 		fatal |= t4_handle_intr(adap, &t7_pl_int_cause2,
7132 		    t7_perr_to_ic2(perr), flags);
7133 		t4_write_reg(adap, t7_pl_perr_cause.cause_reg, perr);
7134 		(void)t4_read_reg(adap, t7_pl_perr_cause.cause_reg);
7135 	}
7136 	return (fatal);
7137 }
7138 
t4_intr_clear(struct adapter * adap)7139 void t4_intr_clear(struct adapter *adap)
7140 {
7141 #if 1
7142 	if (chip_id(adap) >= CHELSIO_T7)
7143 		t4_write_reg(adap, A_SGE_INT_CAUSE8, 0xffffffff);
7144 #endif
7145 	(void)t4_slow_intr_handler(adap,
7146 	    IHF_NO_SHOW | IHF_RUN_ALL_ACTIONS | IHF_CLR_ALL_SET);
7147 }
7148 
7149 /**
7150  *	t4_intr_enable - enable interrupts
7151  *	@adapter: the adapter whose interrupts should be enabled
7152  *
7153  *	Enable PF-specific interrupts for the calling function and the top-level
7154  *	interrupt concentrator for global interrupts.  Interrupts are already
7155  *	enabled at each module,	here we just enable the roots of the interrupt
7156  *	hierarchies.
7157  *
7158  *	Note: this function should be called only when the driver manages
7159  *	non PF-specific interrupts from the various HW modules.  Only one PCI
7160  *	function at a time should be doing this.
7161  */
t4_intr_enable(struct adapter * adap)7162 void t4_intr_enable(struct adapter *adap)
7163 {
7164 	u32 mask, val;
7165 
7166 	if (adap->intr_flags & IHF_INTR_CLEAR_ON_INIT)
7167 		t4_intr_clear(adap);
7168 	if (chip_id(adap) <= CHELSIO_T5)
7169 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT |
7170 		    F_DBFIFO_LP_INT;
7171 	else
7172 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
7173 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
7174 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
7175 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
7176 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
7177 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_EGRESS_SIZE_ERR;
7178 	mask = val;
7179 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, mask, val);
7180 	if (chip_id(adap) >= CHELSIO_T7)
7181 		t4_write_reg(adap, A_SGE_INT_ENABLE4, 0xffffffff);
7182 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), F_PFSW | F_PFCIM);
7183 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
7184 #if 1
7185 	if (chip_id(adap) >= CHELSIO_T7)
7186 		t4_set_reg_field(adap, A_PL_INT_ENABLE, F_MAC0 | F_MAC1 | F_MAC2 | F_MAC3, 0);
7187 #endif
7188 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
7189 }
7190 
7191 /**
7192  *	t4_intr_disable - disable interrupts
7193  *	@adap: the adapter whose interrupts should be disabled
7194  *
7195  *	Disable interrupts.  We only disable the top-level interrupt
7196  *	concentrators.  The caller must be a PCI function managing global
7197  *	interrupts.
7198  */
t4_intr_disable(struct adapter * adap)7199 void t4_intr_disable(struct adapter *adap)
7200 {
7201 
7202 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
7203 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
7204 }
7205 
7206 /**
7207  *	hash_mac_addr - return the hash value of a MAC address
7208  *	@addr: the 48-bit Ethernet MAC address
7209  *
7210  *	Hashes a MAC address according to the hash function used by HW inexact
7211  *	(hash) address matching.
7212  */
hash_mac_addr(const u8 * addr)7213 static int hash_mac_addr(const u8 *addr)
7214 {
7215 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
7216 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
7217 	a ^= b;
7218 	a ^= (a >> 12);
7219 	a ^= (a >> 6);
7220 	return a & 0x3f;
7221 }
7222 
7223 /**
7224  *	t4_config_rss_range - configure a portion of the RSS mapping table
7225  *	@adapter: the adapter
7226  *	@mbox: mbox to use for the FW command
7227  *	@viid: virtual interface whose RSS subtable is to be written
7228  *	@start: start entry in the table to write
7229  *	@n: how many table entries to write
7230  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
7231  *	@nrspq: number of values in @rspq
7232  *
7233  *	Programs the selected part of the VI's RSS mapping table with the
7234  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
7235  *	until the full table range is populated.
7236  *
7237  *	The caller must ensure the values in @rspq are in the range allowed for
7238  *	@viid.
7239  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)7240 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
7241 			int start, int n, const u16 *rspq, unsigned int nrspq)
7242 {
7243 	int ret;
7244 	const u16 *rsp = rspq;
7245 	const u16 *rsp_end = rspq + nrspq;
7246 	struct fw_rss_ind_tbl_cmd cmd;
7247 
7248 	memset(&cmd, 0, sizeof(cmd));
7249 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
7250 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7251 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
7252 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
7253 
7254 	/*
7255 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
7256 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
7257 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
7258 	 * reserved.
7259 	 */
7260 	while (n > 0) {
7261 		int nq = min(n, 32);
7262 		int nq_packed = 0;
7263 		__be32 *qp = &cmd.iq0_to_iq2;
7264 
7265 		/*
7266 		 * Set up the firmware RSS command header to send the next
7267 		 * "nq" Ingress Queue IDs to the firmware.
7268 		 */
7269 		cmd.niqid = cpu_to_be16(nq);
7270 		cmd.startidx = cpu_to_be16(start);
7271 
7272 		/*
7273 		 * "nq" more done for the start of the next loop.
7274 		 */
7275 		start += nq;
7276 		n -= nq;
7277 
7278 		/*
7279 		 * While there are still Ingress Queue IDs to stuff into the
7280 		 * current firmware RSS command, retrieve them from the
7281 		 * Ingress Queue ID array and insert them into the command.
7282 		 */
7283 		while (nq > 0) {
7284 			/*
7285 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
7286 			 * around the Ingress Queue ID array if necessary) and
7287 			 * insert them into the firmware RSS command at the
7288 			 * current 3-tuple position within the commad.
7289 			 */
7290 			u16 qbuf[3];
7291 			u16 *qbp = qbuf;
7292 			int nqbuf = min(3, nq);
7293 
7294 			nq -= nqbuf;
7295 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
7296 			while (nqbuf && nq_packed < 32) {
7297 				nqbuf--;
7298 				nq_packed++;
7299 				*qbp++ = *rsp++;
7300 				if (rsp >= rsp_end)
7301 					rsp = rspq;
7302 			}
7303 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
7304 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
7305 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
7306 		}
7307 
7308 		/*
7309 		 * Send this portion of the RRS table update to the firmware;
7310 		 * bail out on any errors.
7311 		 */
7312 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
7313 		if (ret)
7314 			return ret;
7315 	}
7316 	return 0;
7317 }
7318 
7319 /**
7320  *	t4_config_glbl_rss - configure the global RSS mode
7321  *	@adapter: the adapter
7322  *	@mbox: mbox to use for the FW command
7323  *	@mode: global RSS mode
7324  *	@flags: mode-specific flags
7325  *
7326  *	Sets the global RSS mode.
7327  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)7328 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
7329 		       unsigned int flags)
7330 {
7331 	struct fw_rss_glb_config_cmd c;
7332 
7333 	memset(&c, 0, sizeof(c));
7334 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
7335 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
7336 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7337 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
7338 		c.u.manual.mode_pkd =
7339 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
7340 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
7341 		c.u.basicvirtual.mode_keymode =
7342 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
7343 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
7344 	} else
7345 		return -EINVAL;
7346 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
7347 }
7348 
7349 /**
7350  *	t4_config_vi_rss - configure per VI RSS settings
7351  *	@adapter: the adapter
7352  *	@mbox: mbox to use for the FW command
7353  *	@viid: the VI id
7354  *	@flags: RSS flags
7355  *	@defq: id of the default RSS queue for the VI.
7356  *	@skeyidx: RSS secret key table index for non-global mode
7357  *	@skey: RSS vf_scramble key for VI.
7358  *
7359  *	Configures VI-specific RSS properties.
7360  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq,unsigned int skeyidx,unsigned int skey)7361 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
7362 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
7363 		     unsigned int skey)
7364 {
7365 	struct fw_rss_vi_config_cmd c;
7366 
7367 	memset(&c, 0, sizeof(c));
7368 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
7369 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7370 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
7371 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7372 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
7373 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
7374 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
7375 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
7376 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
7377 
7378 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
7379 }
7380 
7381 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)7382 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
7383 {
7384 	if (chip_id(adap) < CHELSIO_T7) {
7385 		t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
7386 		return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE,
7387 					   F_LKPTBLROWVLD, 1, 5, 0, val);
7388 	} else {
7389 		t4_write_reg(adap, A_TP_RSS_CONFIG_SRAM, 0xB0000 | row);
7390 		return t7_wait_sram_done(adap, A_TP_RSS_CONFIG_SRAM,
7391 					 A_TP_RSS_LKP_TABLE, 5, 0, val);
7392 	}
7393 }
7394 
7395 /**
7396  *	t4_read_rss - read the contents of the RSS mapping table
7397  *	@adapter: the adapter
7398  *	@map: holds the contents of the RSS mapping table
7399  *
7400  *	Reads the contents of the RSS hash->queue mapping table.
7401  */
t4_read_rss(struct adapter * adapter,u16 * map)7402 int t4_read_rss(struct adapter *adapter, u16 *map)
7403 {
7404 	u32 val;
7405 	int i, ret;
7406 	int rss_nentries = adapter->chip_params->rss_nentries;
7407 
7408 	for (i = 0; i < rss_nentries / 2; ++i) {
7409 		ret = rd_rss_row(adapter, i, &val);
7410 		if (ret)
7411 			return ret;
7412 		*map++ = G_LKPTBLQUEUE0(val);
7413 		*map++ = G_LKPTBLQUEUE1(val);
7414 	}
7415 	return 0;
7416 }
7417 
7418 /**
7419  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
7420  * @adap: the adapter
7421  * @cmd: TP fw ldst address space type
7422  * @vals: where the indirect register values are stored/written
7423  * @nregs: how many indirect registers to read/write
7424  * @start_idx: index of first indirect register to read/write
7425  * @rw: Read (1) or Write (0)
7426  * @sleep_ok: if true we may sleep while awaiting command completion
7427  *
7428  * Access TP indirect registers through LDST
7429  **/
t4_tp_fw_ldst_rw(struct adapter * adap,int cmd,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw,bool sleep_ok)7430 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
7431 			    unsigned int nregs, unsigned int start_index,
7432 			    unsigned int rw, bool sleep_ok)
7433 {
7434 	int ret = 0;
7435 	unsigned int i;
7436 	struct fw_ldst_cmd c;
7437 
7438 	for (i = 0; i < nregs; i++) {
7439 		memset(&c, 0, sizeof(c));
7440 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7441 						F_FW_CMD_REQUEST |
7442 						(rw ? F_FW_CMD_READ :
7443 						      F_FW_CMD_WRITE) |
7444 						V_FW_LDST_CMD_ADDRSPACE(cmd));
7445 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7446 
7447 		c.u.addrval.addr = cpu_to_be32(start_index + i);
7448 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
7449 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
7450 				      sleep_ok);
7451 		if (ret)
7452 			return ret;
7453 
7454 		if (rw)
7455 			vals[i] = be32_to_cpu(c.u.addrval.val);
7456 	}
7457 	return 0;
7458 }
7459 
7460 /**
7461  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
7462  * @adap: the adapter
7463  * @reg_addr: Address Register
7464  * @reg_data: Data register
7465  * @buff: where the indirect register values are stored/written
7466  * @nregs: how many indirect registers to read/write
7467  * @start_index: index of first indirect register to read/write
7468  * @rw: READ(1) or WRITE(0)
7469  * @sleep_ok: if true we may sleep while awaiting command completion
7470  *
7471  * Read/Write TP indirect registers through LDST if possible.
7472  * Else, use backdoor access
7473  **/
t4_tp_indirect_rw(struct adapter * adap,u32 reg_addr,u32 reg_data,u32 * buff,u32 nregs,u32 start_index,int rw,bool sleep_ok)7474 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
7475 			      u32 *buff, u32 nregs, u32 start_index, int rw,
7476 			      bool sleep_ok)
7477 {
7478 	int rc = -EINVAL;
7479 	int cmd;
7480 
7481 	switch (reg_addr) {
7482 	case A_TP_PIO_ADDR:
7483 		cmd = FW_LDST_ADDRSPC_TP_PIO;
7484 		break;
7485 	case A_TP_TM_PIO_ADDR:
7486 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
7487 		break;
7488 	case A_TP_MIB_INDEX:
7489 		cmd = FW_LDST_ADDRSPC_TP_MIB;
7490 		break;
7491 	default:
7492 		goto indirect_access;
7493 	}
7494 
7495 	if (t4_use_ldst(adap))
7496 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
7497 				      sleep_ok);
7498 
7499 indirect_access:
7500 
7501 	if (rc) {
7502 		if (rw)
7503 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
7504 					 start_index);
7505 		else
7506 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
7507 					  start_index);
7508 	}
7509 }
7510 
7511 /**
7512  * t4_tp_pio_read - Read TP PIO registers
7513  * @adap: the adapter
7514  * @buff: where the indirect register values are written
7515  * @nregs: how many indirect registers to read
7516  * @start_index: index of first indirect register to read
7517  * @sleep_ok: if true we may sleep while awaiting command completion
7518  *
7519  * Read TP PIO Registers
7520  **/
t4_tp_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7521 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
7522 		    u32 start_index, bool sleep_ok)
7523 {
7524 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
7525 			  start_index, 1, sleep_ok);
7526 }
7527 
7528 /**
7529  * t4_tp_pio_write - Write TP PIO registers
7530  * @adap: the adapter
7531  * @buff: where the indirect register values are stored
7532  * @nregs: how many indirect registers to write
7533  * @start_index: index of first indirect register to write
7534  * @sleep_ok: if true we may sleep while awaiting command completion
7535  *
7536  * Write TP PIO Registers
7537  **/
t4_tp_pio_write(struct adapter * adap,const u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7538 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
7539 		     u32 start_index, bool sleep_ok)
7540 {
7541 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7542 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
7543 }
7544 
7545 /**
7546  * t4_tp_tm_pio_read - Read TP TM PIO registers
7547  * @adap: the adapter
7548  * @buff: where the indirect register values are written
7549  * @nregs: how many indirect registers to read
7550  * @start_index: index of first indirect register to read
7551  * @sleep_ok: if true we may sleep while awaiting command completion
7552  *
7553  * Read TP TM PIO Registers
7554  **/
t4_tp_tm_pio_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7555 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
7556 		       u32 start_index, bool sleep_ok)
7557 {
7558 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
7559 			  nregs, start_index, 1, sleep_ok);
7560 }
7561 
7562 /**
7563  * t4_tp_mib_read - Read TP MIB registers
7564  * @adap: the adapter
7565  * @buff: where the indirect register values are written
7566  * @nregs: how many indirect registers to read
7567  * @start_index: index of first indirect register to read
7568  * @sleep_ok: if true we may sleep while awaiting command completion
7569  *
7570  * Read TP MIB Registers
7571  **/
t4_tp_mib_read(struct adapter * adap,u32 * buff,u32 nregs,u32 start_index,bool sleep_ok)7572 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
7573 		    bool sleep_ok)
7574 {
7575 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
7576 			  start_index, 1, sleep_ok);
7577 }
7578 
7579 /**
7580  *	t4_read_rss_key - read the global RSS key
7581  *	@adap: the adapter
7582  *	@key: 10-entry array holding the 320-bit RSS key
7583  * 	@sleep_ok: if true we may sleep while awaiting command completion
7584  *
7585  *	Reads the global 320-bit RSS key.
7586  */
t4_read_rss_key(struct adapter * adap,u32 * key,bool sleep_ok)7587 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
7588 {
7589 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
7590 }
7591 
7592 /**
7593  *	t4_write_rss_key - program one of the RSS keys
7594  *	@adap: the adapter
7595  *	@key: 10-entry array holding the 320-bit RSS key
7596  *	@idx: which RSS key to write
7597  * 	@sleep_ok: if true we may sleep while awaiting command completion
7598  *
7599  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
7600  *	0..15 the corresponding entry in the RSS key table is written,
7601  *	otherwise the global RSS key is written.
7602  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx,bool sleep_ok)7603 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
7604 		      bool sleep_ok)
7605 {
7606 	u8 rss_key_addr_cnt = 16;
7607 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
7608 
7609 	/*
7610 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
7611 	 * allows access to key addresses 16-63 by using KeyWrAddrX
7612 	 * as index[5:4](upper 2) into key table
7613 	 */
7614 	if ((chip_id(adap) > CHELSIO_T5) &&
7615 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
7616 		rss_key_addr_cnt = 32;
7617 
7618 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
7619 
7620 	if (idx >= 0 && idx < rss_key_addr_cnt) {
7621 		if (rss_key_addr_cnt > 16)
7622 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
7623 				     vrt | V_KEYWRADDRX(idx >> 4) |
7624 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
7625 		else
7626 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
7627 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
7628 	}
7629 }
7630 
7631 /**
7632  *	t4_read_rss_pf_config - read PF RSS Configuration Table
7633  *	@adapter: the adapter
7634  *	@index: the entry in the PF RSS table to read
7635  *	@valp: where to store the returned value
7636  * 	@sleep_ok: if true we may sleep while awaiting command completion
7637  *
7638  *	Reads the PF RSS Configuration Table at the specified index and returns
7639  *	the value found there.
7640  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp,bool sleep_ok)7641 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
7642 			   u32 *valp, bool sleep_ok)
7643 {
7644 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
7645 }
7646 
7647 /**
7648  *	t4_write_rss_pf_config - write PF RSS Configuration Table
7649  *	@adapter: the adapter
7650  *	@index: the entry in the VF RSS table to read
7651  *	@val: the value to store
7652  * 	@sleep_ok: if true we may sleep while awaiting command completion
7653  *
7654  *	Writes the PF RSS Configuration Table at the specified index with the
7655  *	specified value.
7656  */
t4_write_rss_pf_config(struct adapter * adapter,unsigned int index,u32 val,bool sleep_ok)7657 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
7658 			    u32 val, bool sleep_ok)
7659 {
7660 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
7661 			sleep_ok);
7662 }
7663 
7664 /**
7665  *	t4_read_rss_vf_config - read VF RSS Configuration Table
7666  *	@adapter: the adapter
7667  *	@index: the entry in the VF RSS table to read
7668  *	@vfl: where to store the returned VFL
7669  *	@vfh: where to store the returned VFH
7670  * 	@sleep_ok: if true we may sleep while awaiting command completion
7671  *
7672  *	Reads the VF RSS Configuration Table at the specified index and returns
7673  *	the (VFL, VFH) values found there.
7674  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh,bool sleep_ok)7675 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
7676 			   u32 *vfl, u32 *vfh, bool sleep_ok)
7677 {
7678 	u32 vrt, mask, data;
7679 
7680 	if (chip_id(adapter) <= CHELSIO_T5) {
7681 		mask = V_VFWRADDR(M_VFWRADDR);
7682 		data = V_VFWRADDR(index);
7683 	} else {
7684 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
7685 		 data = V_T6_VFWRADDR(index);
7686 	}
7687 	/*
7688 	 * Request that the index'th VF Table values be read into VFL/VFH.
7689 	 */
7690 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
7691 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
7692 	vrt |= data | F_VFRDEN;
7693 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
7694 
7695 	/*
7696 	 * Grab the VFL/VFH values ...
7697 	 */
7698 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
7699 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
7700 }
7701 
7702 /**
7703  *	t4_write_rss_vf_config - write VF RSS Configuration Table
7704  *
7705  *	@adapter: the adapter
7706  *	@index: the entry in the VF RSS table to write
7707  *	@vfl: the VFL to store
7708  *	@vfh: the VFH to store
7709  *
7710  *	Writes the VF RSS Configuration Table at the specified index with the
7711  *	specified (VFL, VFH) values.
7712  */
t4_write_rss_vf_config(struct adapter * adapter,unsigned int index,u32 vfl,u32 vfh,bool sleep_ok)7713 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
7714 			    u32 vfl, u32 vfh, bool sleep_ok)
7715 {
7716 	u32 vrt, mask, data;
7717 
7718 	if (chip_id(adapter) <= CHELSIO_T5) {
7719 		mask = V_VFWRADDR(M_VFWRADDR);
7720 		data = V_VFWRADDR(index);
7721 	} else {
7722 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
7723 		data = V_T6_VFWRADDR(index);
7724 	}
7725 
7726 	/*
7727 	 * Load up VFL/VFH with the values to be written ...
7728 	 */
7729 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
7730 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
7731 
7732 	/*
7733 	 * Write the VFL/VFH into the VF Table at index'th location.
7734 	 */
7735 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
7736 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
7737 	vrt |= data | F_VFRDEN;
7738 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
7739 }
7740 
7741 /**
7742  *	t4_read_rss_pf_map - read PF RSS Map
7743  *	@adapter: the adapter
7744  * 	@sleep_ok: if true we may sleep while awaiting command completion
7745  *
7746  *	Reads the PF RSS Map register and returns its value.
7747  */
t4_read_rss_pf_map(struct adapter * adapter,bool sleep_ok)7748 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
7749 {
7750 	u32 pfmap;
7751 
7752 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
7753 
7754 	return pfmap;
7755 }
7756 
7757 /**
7758  *	t4_write_rss_pf_map - write PF RSS Map
7759  *	@adapter: the adapter
7760  *	@pfmap: PF RSS Map value
7761  *
7762  *	Writes the specified value to the PF RSS Map register.
7763  */
t4_write_rss_pf_map(struct adapter * adapter,u32 pfmap,bool sleep_ok)7764 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
7765 {
7766 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
7767 }
7768 
7769 /**
7770  *	t4_read_rss_pf_mask - read PF RSS Mask
7771  *	@adapter: the adapter
7772  * 	@sleep_ok: if true we may sleep while awaiting command completion
7773  *
7774  *	Reads the PF RSS Mask register and returns its value.
7775  */
t4_read_rss_pf_mask(struct adapter * adapter,bool sleep_ok)7776 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
7777 {
7778 	u32 pfmask;
7779 
7780 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
7781 
7782 	return pfmask;
7783 }
7784 
7785 /**
7786  *	t4_write_rss_pf_mask - write PF RSS Mask
7787  *	@adapter: the adapter
7788  *	@pfmask: PF RSS Mask value
7789  *
7790  *	Writes the specified value to the PF RSS Mask register.
7791  */
t4_write_rss_pf_mask(struct adapter * adapter,u32 pfmask,bool sleep_ok)7792 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
7793 {
7794 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
7795 }
7796 
7797 /**
7798  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
7799  *	@adap: the adapter
7800  *	@v4: holds the TCP/IP counter values
7801  *	@v6: holds the TCP/IPv6 counter values
7802  * 	@sleep_ok: if true we may sleep while awaiting command completion
7803  *
7804  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
7805  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
7806  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6,bool sleep_ok)7807 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
7808 			 struct tp_tcp_stats *v6, bool sleep_ok)
7809 {
7810 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
7811 
7812 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
7813 #define STAT(x)     val[STAT_IDX(x)]
7814 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
7815 
7816 	if (v4) {
7817 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
7818 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
7819 		v4->tcp_out_rsts = STAT(OUT_RST);
7820 		v4->tcp_in_segs  = STAT64(IN_SEG);
7821 		v4->tcp_out_segs = STAT64(OUT_SEG);
7822 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
7823 	}
7824 	if (v6) {
7825 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
7826 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
7827 		v6->tcp_out_rsts = STAT(OUT_RST);
7828 		v6->tcp_in_segs  = STAT64(IN_SEG);
7829 		v6->tcp_out_segs = STAT64(OUT_SEG);
7830 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
7831 	}
7832 #undef STAT64
7833 #undef STAT
7834 #undef STAT_IDX
7835 }
7836 
7837 /**
7838  *	t4_tp_get_err_stats - read TP's error MIB counters
7839  *	@adap: the adapter
7840  *	@st: holds the counter values
7841  * 	@sleep_ok: if true we may sleep while awaiting command completion
7842  *
7843  *	Returns the values of TP's error counters.
7844  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st,bool sleep_ok)7845 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
7846 			 bool sleep_ok)
7847 {
7848 	int nchan = adap->chip_params->nchan;
7849 
7850 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
7851 		       sleep_ok);
7852 
7853 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
7854 		       sleep_ok);
7855 
7856 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
7857 		       sleep_ok);
7858 
7859 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
7860 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
7861 
7862 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
7863 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
7864 
7865 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
7866 		       sleep_ok);
7867 
7868 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
7869 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
7870 
7871 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
7872 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
7873 
7874 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
7875 		       sleep_ok);
7876 }
7877 
7878 /**
7879  *	t4_tp_get_err_stats - read TP's error MIB counters
7880  *	@adap: the adapter
7881  *	@st: holds the counter values
7882  * 	@sleep_ok: if true we may sleep while awaiting command completion
7883  *
7884  *	Returns the values of TP's error counters.
7885  */
t4_tp_get_tnl_stats(struct adapter * adap,struct tp_tnl_stats * st,bool sleep_ok)7886 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
7887 			 bool sleep_ok)
7888 {
7889 	int nchan = adap->chip_params->nchan;
7890 
7891 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
7892 		       sleep_ok);
7893 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
7894 		       sleep_ok);
7895 }
7896 
7897 /**
7898  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
7899  *	@adap: the adapter
7900  *	@st: holds the counter values
7901  *
7902  *	Returns the values of TP's proxy counters.
7903  */
t4_tp_get_proxy_stats(struct adapter * adap,struct tp_proxy_stats * st,bool sleep_ok)7904 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
7905     bool sleep_ok)
7906 {
7907 	int nchan = adap->chip_params->nchan;
7908 
7909 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
7910 }
7911 
7912 /**
7913  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
7914  *	@adap: the adapter
7915  *	@st: holds the counter values
7916  * 	@sleep_ok: if true we may sleep while awaiting command completion
7917  *
7918  *	Returns the values of TP's CPL counters.
7919  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st,bool sleep_ok)7920 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
7921 			 bool sleep_ok)
7922 {
7923 	int nchan = adap->chip_params->nchan;
7924 
7925 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
7926 
7927 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
7928 }
7929 
7930 /**
7931  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
7932  *	@adap: the adapter
7933  *	@st: holds the counter values
7934  *
7935  *	Returns the values of TP's RDMA counters.
7936  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st,bool sleep_ok)7937 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
7938 			  bool sleep_ok)
7939 {
7940 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
7941 		       sleep_ok);
7942 
7943 	if (chip_id(adap) >= CHELSIO_T7)
7944 		/* read RDMA stats IN and OUT for all ports at once */
7945 		t4_tp_mib_read(adap, &st->pkts_in[0], 28, A_TP_MIB_RDMA_IN_PKT_0,
7946 			       sleep_ok);
7947 }
7948 
7949 /**
7950  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
7951  *	@adap: the adapter
7952  *	@idx: the port index
7953  *	@st: holds the counter values
7954  * 	@sleep_ok: if true we may sleep while awaiting command completion
7955  *
7956  *	Returns the values of TP's FCoE counters for the selected port.
7957  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st,bool sleep_ok)7958 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
7959 		       struct tp_fcoe_stats *st, bool sleep_ok)
7960 {
7961 	u32 val[2];
7962 
7963 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
7964 		       sleep_ok);
7965 
7966 	t4_tp_mib_read(adap, &st->frames_drop, 1,
7967 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
7968 
7969 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
7970 		       sleep_ok);
7971 
7972 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
7973 }
7974 
7975 /**
7976  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
7977  *	@adap: the adapter
7978  *	@st: holds the counter values
7979  * 	@sleep_ok: if true we may sleep while awaiting command completion
7980  *
7981  *	Returns the values of TP's counters for non-TCP directly-placed packets.
7982  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st,bool sleep_ok)7983 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
7984 		      bool sleep_ok)
7985 {
7986 	u32 val[4];
7987 
7988 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
7989 
7990 	st->frames = val[0];
7991 	st->drops = val[1];
7992 	st->octets = ((u64)val[2] << 32) | val[3];
7993 }
7994 
7995 /**
7996  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
7997  *	@adap: the adapter
7998  *	@st: holds the counter values
7999  * 	@sleep_ok: if true we may sleep while awaiting command completion
8000  *
8001  *	Returns the values of TP's counters for tids.
8002  */
t4_tp_get_tid_stats(struct adapter * adap,struct tp_tid_stats * st,bool sleep_ok)8003 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
8004 		      bool sleep_ok)
8005 {
8006 
8007 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
8008 }
8009 
8010 /**
8011  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
8012  *	@adap: the adapter
8013  *	@mtus: where to store the MTU values
8014  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
8015  *
8016  *	Reads the HW path MTU table.
8017  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)8018 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
8019 {
8020 	u32 v;
8021 	int i;
8022 
8023 	for (i = 0; i < NMTUS; ++i) {
8024 		t4_write_reg(adap, A_TP_MTU_TABLE,
8025 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
8026 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
8027 		mtus[i] = G_MTUVALUE(v);
8028 		if (mtu_log)
8029 			mtu_log[i] = G_MTUWIDTH(v);
8030 	}
8031 }
8032 
8033 /**
8034  *	t4_read_cong_tbl - reads the congestion control table
8035  *	@adap: the adapter
8036  *	@incr: where to store the alpha values
8037  *
8038  *	Reads the additive increments programmed into the HW congestion
8039  *	control table.
8040  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])8041 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
8042 {
8043 	unsigned int mtu, w;
8044 
8045 	for (mtu = 0; mtu < NMTUS; ++mtu)
8046 		for (w = 0; w < NCCTRL_WIN; ++w) {
8047 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
8048 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
8049 			incr[mtu][w] = (u16)t4_read_reg(adap,
8050 						A_TP_CCTRL_TABLE) & 0x1fff;
8051 		}
8052 }
8053 
8054 /**
8055  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
8056  *	@adap: the adapter
8057  *	@addr: the indirect TP register address
8058  *	@mask: specifies the field within the register to modify
8059  *	@val: new value for the field
8060  *
8061  *	Sets a field of an indirect TP register to the given value.
8062  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)8063 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
8064 			    unsigned int mask, unsigned int val)
8065 {
8066 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
8067 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
8068 	t4_write_reg(adap, A_TP_PIO_DATA, val);
8069 }
8070 
8071 /**
8072  *	init_cong_ctrl - initialize congestion control parameters
8073  *	@a: the alpha values for congestion control
8074  *	@b: the beta values for congestion control
8075  *
8076  *	Initialize the congestion control parameters.
8077  */
init_cong_ctrl(unsigned short * a,unsigned short * b)8078 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
8079 {
8080 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
8081 	a[9] = 2;
8082 	a[10] = 3;
8083 	a[11] = 4;
8084 	a[12] = 5;
8085 	a[13] = 6;
8086 	a[14] = 7;
8087 	a[15] = 8;
8088 	a[16] = 9;
8089 	a[17] = 10;
8090 	a[18] = 14;
8091 	a[19] = 17;
8092 	a[20] = 21;
8093 	a[21] = 25;
8094 	a[22] = 30;
8095 	a[23] = 35;
8096 	a[24] = 45;
8097 	a[25] = 60;
8098 	a[26] = 80;
8099 	a[27] = 100;
8100 	a[28] = 200;
8101 	a[29] = 300;
8102 	a[30] = 400;
8103 	a[31] = 500;
8104 
8105 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
8106 	b[9] = b[10] = 1;
8107 	b[11] = b[12] = 2;
8108 	b[13] = b[14] = b[15] = b[16] = 3;
8109 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
8110 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
8111 	b[28] = b[29] = 6;
8112 	b[30] = b[31] = 7;
8113 }
8114 
8115 /* The minimum additive increment value for the congestion control table */
8116 #define CC_MIN_INCR 2U
8117 
8118 /**
8119  *	t4_load_mtus - write the MTU and congestion control HW tables
8120  *	@adap: the adapter
8121  *	@mtus: the values for the MTU table
8122  *	@alpha: the values for the congestion control alpha parameter
8123  *	@beta: the values for the congestion control beta parameter
8124  *
8125  *	Write the HW MTU table with the supplied MTUs and the high-speed
8126  *	congestion control table with the supplied alpha, beta, and MTUs.
8127  *	We write the two tables together because the additive increments
8128  *	depend on the MTUs.
8129  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)8130 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
8131 		  const unsigned short *alpha, const unsigned short *beta)
8132 {
8133 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
8134 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
8135 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
8136 		28672, 40960, 57344, 81920, 114688, 163840, 229376
8137 	};
8138 
8139 	unsigned int i, w;
8140 
8141 	for (i = 0; i < NMTUS; ++i) {
8142 		unsigned int mtu = mtus[i];
8143 		unsigned int log2 = fls(mtu);
8144 
8145 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
8146 			log2--;
8147 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
8148 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
8149 
8150 		for (w = 0; w < NCCTRL_WIN; ++w) {
8151 			unsigned int inc;
8152 
8153 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
8154 				  CC_MIN_INCR);
8155 
8156 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
8157 				     (w << 16) | (beta[w] << 13) | inc);
8158 		}
8159 	}
8160 }
8161 
8162 /**
8163  *	t4_set_pace_tbl - set the pace table
8164  *	@adap: the adapter
8165  *	@pace_vals: the pace values in microseconds
8166  *	@start: index of the first entry in the HW pace table to set
8167  *	@n: how many entries to set
8168  *
8169  *	Sets (a subset of the) HW pace table.
8170  */
t4_set_pace_tbl(struct adapter * adap,const unsigned int * pace_vals,unsigned int start,unsigned int n)8171 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
8172 		     unsigned int start, unsigned int n)
8173 {
8174 	unsigned int vals[NTX_SCHED], i;
8175 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
8176 
8177 	if (n > NTX_SCHED)
8178 	    return -ERANGE;
8179 
8180 	/* convert values from us to dack ticks, rounding to closest value */
8181 	for (i = 0; i < n; i++, pace_vals++) {
8182 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
8183 		if (vals[i] > 0x7ff)
8184 			return -ERANGE;
8185 		if (*pace_vals && vals[i] == 0)
8186 			return -ERANGE;
8187 	}
8188 	for (i = 0; i < n; i++, start++)
8189 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
8190 	return 0;
8191 }
8192 
8193 /**
8194  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
8195  *	@adap: the adapter
8196  *	@kbps: target rate in Kbps
8197  *	@sched: the scheduler index
8198  *
8199  *	Configure a Tx HW scheduler for the target rate.
8200  */
t4_set_sched_bps(struct adapter * adap,int sched,unsigned int kbps)8201 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
8202 {
8203 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
8204 	unsigned int clk = adap->params.vpd.cclk * 1000;
8205 	unsigned int selected_cpt = 0, selected_bpt = 0;
8206 
8207 	if (kbps > 0) {
8208 		kbps *= 125;     /* -> bytes */
8209 		for (cpt = 1; cpt <= 255; cpt++) {
8210 			tps = clk / cpt;
8211 			bpt = (kbps + tps / 2) / tps;
8212 			if (bpt > 0 && bpt <= 255) {
8213 				v = bpt * tps;
8214 				delta = v >= kbps ? v - kbps : kbps - v;
8215 				if (delta < mindelta) {
8216 					mindelta = delta;
8217 					selected_cpt = cpt;
8218 					selected_bpt = bpt;
8219 				}
8220 			} else if (selected_cpt)
8221 				break;
8222 		}
8223 		if (!selected_cpt)
8224 			return -EINVAL;
8225 	}
8226 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
8227 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
8228 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8229 	if (sched & 1)
8230 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
8231 	else
8232 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
8233 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
8234 	return 0;
8235 }
8236 
8237 /**
8238  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
8239  *	@adap: the adapter
8240  *	@sched: the scheduler index
8241  *	@ipg: the interpacket delay in tenths of nanoseconds
8242  *
8243  *	Set the interpacket delay for a HW packet rate scheduler.
8244  */
t4_set_sched_ipg(struct adapter * adap,int sched,unsigned int ipg)8245 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
8246 {
8247 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8248 
8249 	/* convert ipg to nearest number of core clocks */
8250 	ipg *= core_ticks_per_usec(adap);
8251 	ipg = (ipg + 5000) / 10000;
8252 	if (ipg > M_TXTIMERSEPQ0)
8253 		return -EINVAL;
8254 
8255 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8256 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8257 	if (sched & 1)
8258 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
8259 	else
8260 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
8261 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
8262 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
8263 	return 0;
8264 }
8265 
8266 /*
8267  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
8268  * clocks.  The formula is
8269  *
8270  * bytes/s = bytes256 * 256 * ClkFreq / 4096
8271  *
8272  * which is equivalent to
8273  *
8274  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
8275  */
chan_rate(struct adapter * adap,unsigned int bytes256)8276 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
8277 {
8278 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
8279 
8280 	return v * 62 + v / 2;
8281 }
8282 
8283 /**
8284  *	t4_get_chan_txrate - get the current per channel Tx rates
8285  *	@adap: the adapter
8286  *	@nic_rate: rates for NIC traffic
8287  *	@ofld_rate: rates for offloaded traffic
8288  *
8289  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
8290  *	for each channel.
8291  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)8292 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
8293 {
8294 	u32 v;
8295 
8296 	v = t4_read_reg(adap, A_TP_TX_TRATE);
8297 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
8298 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
8299 	if (adap->chip_params->nchan > 2) {
8300 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
8301 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
8302 	}
8303 
8304 	v = t4_read_reg(adap, A_TP_TX_ORATE);
8305 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
8306 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
8307 	if (adap->chip_params->nchan > 2) {
8308 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
8309 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
8310 	}
8311 }
8312 
8313 /**
8314  *	t4_set_trace_filter - configure one of the tracing filters
8315  *	@adap: the adapter
8316  *	@tp: the desired trace filter parameters
8317  *	@idx: which filter to configure
8318  *	@enable: whether to enable or disable the filter
8319  *
8320  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
8321  *	it indicates that the filter is already written in the register and it
8322  *	just needs to be enabled or disabled.
8323  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)8324 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
8325     int idx, int enable)
8326 {
8327 	int i, ofst;
8328 	u32 match_ctl_a, match_ctl_b;
8329 	u32 data_reg, mask_reg, cfg;
8330 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
8331 
8332 	if (idx < 0 || idx >= NTRACE)
8333 		return -EINVAL;
8334 
8335 	if (chip_id(adap) >= CHELSIO_T7) {
8336 		match_ctl_a = T7_MPS_TRC_FILTER_MATCH_CTL_A(idx);
8337 		match_ctl_b = T7_MPS_TRC_FILTER_MATCH_CTL_B(idx);
8338 	} else {
8339 		match_ctl_a = MPS_TRC_FILTER_MATCH_CTL_A(idx);
8340 		match_ctl_b = MPS_TRC_FILTER_MATCH_CTL_B(idx);
8341 	}
8342 
8343 	if (tp == NULL || !enable) {
8344 		t4_set_reg_field(adap, match_ctl_a, en, enable ? en : 0);
8345 		return 0;
8346 	}
8347 
8348 	/*
8349 	 * TODO - After T4 data book is updated, specify the exact
8350 	 * section below.
8351 	 *
8352 	 * See T4 data book - MPS section for a complete description
8353 	 * of the below if..else handling of A_MPS_TRC_CFG register
8354 	 * value.
8355 	 */
8356 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
8357 	if (cfg & F_TRCMULTIFILTER) {
8358 		/*
8359 		 * If multiple tracers are enabled, then maximum
8360 		 * capture size is 2.5KB (FIFO size of a single channel)
8361 		 * minus 2 flits for CPL_TRACE_PKT header.
8362 		 */
8363 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
8364 			return -EINVAL;
8365 	} else {
8366 		/*
8367 		 * If multiple tracers are disabled, to avoid deadlocks
8368 		 * maximum packet capture size of 9600 bytes is recommended.
8369 		 * Also in this mode, only trace0 can be enabled and running.
8370 		 */
8371 		if (tp->snap_len > 9600 || idx)
8372 			return -EINVAL;
8373 	}
8374 
8375 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
8376 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
8377 	    tp->min_len > M_TFMINPKTSIZE)
8378 		return -EINVAL;
8379 
8380 	/* stop the tracer we'll be changing */
8381 	t4_set_reg_field(adap, match_ctl_a, en, 0);
8382 
8383 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
8384 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
8385 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
8386 
8387 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
8388 		t4_write_reg(adap, data_reg, tp->data[i]);
8389 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
8390 	}
8391 	t4_write_reg(adap, match_ctl_b, V_TFCAPTUREMAX(tp->snap_len) |
8392 		     V_TFMINPKTSIZE(tp->min_len));
8393 	t4_write_reg(adap, match_ctl_a, V_TFOFFSET(tp->skip_ofst) |
8394 		     V_TFLENGTH(tp->skip_len) | en | (is_t4(adap) ?
8395 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
8396 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
8397 
8398 	return 0;
8399 }
8400 
8401 /**
8402  *	t4_get_trace_filter - query one of the tracing filters
8403  *	@adap: the adapter
8404  *	@tp: the current trace filter parameters
8405  *	@idx: which trace filter to query
8406  *	@enabled: non-zero if the filter is enabled
8407  *
8408  *	Returns the current settings of one of the HW tracing filters.
8409  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)8410 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
8411 			 int *enabled)
8412 {
8413 	u32 ctla, ctlb;
8414 	int i, ofst;
8415 	u32 data_reg, mask_reg;
8416 
8417 	if (chip_id(adap) >= CHELSIO_T7) {
8418 		ctla = t4_read_reg(adap, T7_MPS_TRC_FILTER_MATCH_CTL_A(idx));
8419 		ctlb = t4_read_reg(adap, T7_MPS_TRC_FILTER_MATCH_CTL_B(idx));
8420 	} else {
8421 		ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A(idx));
8422 		ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B(idx));
8423 	}
8424 
8425 	if (is_t4(adap)) {
8426 		*enabled = !!(ctla & F_TFEN);
8427 		tp->port =  G_TFPORT(ctla);
8428 		tp->invert = !!(ctla & F_TFINVERTMATCH);
8429 	} else {
8430 		*enabled = !!(ctla & F_T5_TFEN);
8431 		tp->port = G_T5_TFPORT(ctla);
8432 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
8433 	}
8434 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
8435 	tp->min_len = G_TFMINPKTSIZE(ctlb);
8436 	tp->skip_ofst = G_TFOFFSET(ctla);
8437 	tp->skip_len = G_TFLENGTH(ctla);
8438 
8439 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
8440 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
8441 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
8442 
8443 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
8444 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
8445 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
8446 	}
8447 }
8448 
8449 /**
8450  *	t4_set_trace_rss_control - configure the trace rss control register
8451  *	@adap: the adapter
8452  *	@chan: the channel number for RSS control
8453  *	@qid: queue number
8454  *
8455  *	Configures the MPS tracing RSS control parameter for specified
8456  *	@chan channel and @qid queue number.
8457  */
t4_set_trace_rss_control(struct adapter * adap,u8 chan,u16 qid)8458 void t4_set_trace_rss_control(struct adapter *adap, u8 chan, u16 qid)
8459 {
8460 	u32 mps_trc_rss_control;
8461 
8462 	switch (chip_id(adap)) {
8463 	case CHELSIO_T4:
8464 		mps_trc_rss_control = A_MPS_TRC_RSS_CONTROL;
8465 		break;
8466 	case CHELSIO_T5:
8467 	case CHELSIO_T6:
8468 		mps_trc_rss_control = A_MPS_T5_TRC_RSS_CONTROL;
8469 		break;
8470 	case CHELSIO_T7:
8471 	default:
8472 		mps_trc_rss_control = A_T7_MPS_T5_TRC_RSS_CONTROL;
8473 		break;
8474 	}
8475 
8476 	t4_write_reg(adap, mps_trc_rss_control,
8477 		     V_RSSCONTROL(chan) | V_QUEUENUMBER(qid));
8478 }
8479 
8480 /**
8481  *	t4_pmtx_get_stats - returns the HW stats from PMTX
8482  *	@adap: the adapter
8483  *	@cnt: where to store the count statistics
8484  *	@cycles: where to store the cycle statistics
8485  *
8486  *	Returns performance statistics from PMTX.
8487  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])8488 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
8489 {
8490 	int i;
8491 	u32 data[2];
8492 
8493 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
8494 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
8495 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
8496 		if (is_t4(adap))
8497 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
8498 		else {
8499 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
8500 					 A_PM_TX_DBG_DATA, data, 2,
8501 					 chip_id(adap) >= CHELSIO_T7 ?
8502 					 A_T7_PM_TX_DBG_STAT_MSB :
8503 					 A_PM_TX_DBG_STAT_MSB);
8504 			cycles[i] = (((u64)data[0] << 32) | data[1]);
8505 		}
8506 	}
8507 }
8508 
8509 /**
8510  *	t4_pmrx_get_stats - returns the HW stats from PMRX
8511  *	@adap: the adapter
8512  *	@cnt: where to store the count statistics
8513  *	@cycles: where to store the cycle statistics
8514  *
8515  *	Returns performance statistics from PMRX.
8516  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])8517 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
8518 {
8519 	int i;
8520 	u32 data[2];
8521 
8522 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
8523 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
8524 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
8525 		if (is_t4(adap)) {
8526 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
8527 		} else {
8528 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
8529 					 A_PM_RX_DBG_DATA, data, 2,
8530 					 A_PM_RX_DBG_STAT_MSB);
8531 			cycles[i] = (((u64)data[0] << 32) | data[1]);
8532 		}
8533 	}
8534 }
8535 
8536 /**
8537  * t4_pmrx_cache_get_stats - returns the HW PMRX cache stats
8538  * @adap: the adapter
8539  * @stats: where to store the statistics
8540  *
8541  * Returns performance statistics of PMRX cache.
8542  */
t4_pmrx_cache_get_stats(struct adapter * adap,u32 stats[])8543 void t4_pmrx_cache_get_stats(struct adapter *adap, u32 stats[])
8544 {
8545 	u8 i, j;
8546 
8547 	for (i = 0, j = 0; i < T7_PM_RX_CACHE_NSTATS / 3; i++, j += 3) {
8548 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, 0x100 + i);
8549 		stats[j] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
8550 		t4_read_indirect(adap, A_PM_RX_DBG_CTRL, A_PM_RX_DBG_DATA,
8551 				 &stats[j + 1], 2, A_PM_RX_DBG_STAT_MSB);
8552 	}
8553 }
8554 
8555 /**
8556  *	t4_get_mps_bg_map - return the buffer groups associated with a port
8557  *	@adap: the adapter
8558  *	@idx: the port index
8559  *
8560  *	Returns a bitmap indicating which MPS buffer groups are associated
8561  *	with the given port.  Bit i is set if buffer group i is used by the
8562  *	port.
8563  */
t4_get_mps_bg_map(struct adapter * adap,int idx)8564 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
8565 {
8566 	u32 n;
8567 
8568 	if (adap->params.mps_bg_map != UINT32_MAX)
8569 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
8570 
8571 	n = adap->params.nports;
8572 	MPASS(n > 0 && n <= MAX_NPORTS);
8573 	if (n == 1)
8574 		return idx == 0 ? 0xf : 0;
8575 	if (n == 2 && chip_id(adap) <= CHELSIO_T5)
8576 		return idx < 2 ? (3 << (2 * idx)) : 0;
8577 	return 1 << idx;
8578 }
8579 
8580 /*
8581  * TP RX e-channels associated with the port.
8582  */
t4_get_rx_e_chan_map(struct adapter * adap,int idx)8583 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
8584 {
8585 	const u32 n = adap->params.nports;
8586 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
8587 
8588 	switch (adap->params.tp.lb_mode) {
8589 	case 0:
8590 		if (n == 1)
8591 			return (all_chan);
8592 		if (n == 2 && chip_id(adap) <= CHELSIO_T5)
8593 			return (3 << (2 * idx));
8594 		return (1 << idx);
8595 	case 1:
8596 		MPASS(n == 1);
8597 		return (all_chan);
8598 	case 2:
8599 		MPASS(n <= 2);
8600 		return (3 << (2 * idx));
8601 	default:
8602 		CH_ERR(adap, "Unsupported LB mode %d\n",
8603 		    adap->params.tp.lb_mode);
8604 		return (0);
8605 	}
8606 }
8607 
8608 /*
8609  * TP RX c-channel associated with the port.
8610  */
t4_get_rx_c_chan(struct adapter * adap,int idx)8611 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
8612 {
8613 	if (adap->params.tp_ch_map != UINT32_MAX)
8614 		return (adap->params.tp_ch_map >> (8 * idx)) & 0xff;
8615         return 0;
8616 }
8617 
8618 /*
8619  * TP TX c-channel associated with the port.
8620  */
t4_get_tx_c_chan(struct adapter * adap,int idx)8621 static unsigned int t4_get_tx_c_chan(struct adapter *adap, int idx)
8622 {
8623 	if (adap->params.tx_tp_ch_map != UINT32_MAX)
8624 		return (adap->params.tx_tp_ch_map >> (8 * idx)) & 0xff;
8625 	return idx;
8626 }
8627 
8628 /**
8629  *      t4_get_port_type_description - return Port Type string description
8630  *      @port_type: firmware Port Type enumeration
8631  */
t4_get_port_type_description(enum fw_port_type port_type)8632 const char *t4_get_port_type_description(enum fw_port_type port_type)
8633 {
8634 	static const char *const port_type_description[] = {
8635 		"Fiber_XFI",
8636 		"Fiber_XAUI",
8637 		"BT_SGMII",
8638 		"BT_XFI",
8639 		"BT_XAUI",
8640 		"KX4",
8641 		"CX4",
8642 		"KX",
8643 		"KR",
8644 		"SFP",
8645 		"BP_AP",
8646 		"BP4_AP",
8647 		"QSFP_10G",
8648 		"QSA",
8649 		"QSFP",
8650 		"BP40_BA",
8651 		"KR4_100G",
8652 		"CR4_QSFP",
8653 		"CR_QSFP",
8654 		"CR2_QSFP",
8655 		"SFP28",
8656 		"KR_SFP28",
8657 		"KR_XLAUI",
8658 	};
8659 
8660 	if (port_type < ARRAY_SIZE(port_type_description))
8661 		return port_type_description[port_type];
8662 	return "UNKNOWN";
8663 }
8664 
8665 /**
8666  *      t4_get_port_stats_offset - collect port stats relative to a previous
8667  *				   snapshot
8668  *      @adap: The adapter
8669  *      @idx: The port
8670  *      @stats: Current stats to fill
8671  *      @offset: Previous stats snapshot
8672  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)8673 void t4_get_port_stats_offset(struct adapter *adap, int idx,
8674 		struct port_stats *stats,
8675 		struct port_stats *offset)
8676 {
8677 	u64 *s, *o;
8678 	int i;
8679 
8680 	t4_get_port_stats(adap, idx, stats);
8681 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
8682 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
8683 			i++, s++, o++)
8684 		*s -= *o;
8685 }
8686 
8687 /**
8688  *	t4_get_port_stats - collect port statistics
8689  *	@adap: the adapter
8690  *	@idx: the port index
8691  *	@p: the stats structure to fill
8692  *
8693  *	Collect statistics related to the given port from HW.
8694  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)8695 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
8696 {
8697 	struct port_info *pi;
8698 	int port_id, tx_chan;
8699 	u32 bgmap, stat_ctl;
8700 
8701 	port_id  = adap->port_map[idx];
8702 	MPASS(port_id >= 0 && port_id <= adap->params.nports);
8703 	pi = adap->port[port_id];
8704 
8705 #define GET_STAT(name) \
8706 	t4_read_reg64(adap, \
8707 	    t4_port_reg(adap, tx_chan, A_MPS_PORT_STAT_##name##_L));
8708 	memset(p, 0, sizeof(*p));
8709 	for (tx_chan = pi->tx_chan;
8710 	    tx_chan < pi->tx_chan + adap->params.tp.lb_nchan; tx_chan++) {
8711 		p->tx_pause		+= GET_STAT(TX_PORT_PAUSE);
8712 		p->tx_octets		+= GET_STAT(TX_PORT_BYTES);
8713 		p->tx_frames		+= GET_STAT(TX_PORT_FRAMES);
8714 		p->tx_bcast_frames	+= GET_STAT(TX_PORT_BCAST);
8715 		p->tx_mcast_frames	+= GET_STAT(TX_PORT_MCAST);
8716 		p->tx_ucast_frames	+= GET_STAT(TX_PORT_UCAST);
8717 		p->tx_error_frames	+= GET_STAT(TX_PORT_ERROR);
8718 		p->tx_frames_64		+= GET_STAT(TX_PORT_64B);
8719 		p->tx_frames_65_127	+= GET_STAT(TX_PORT_65B_127B);
8720 		p->tx_frames_128_255	+= GET_STAT(TX_PORT_128B_255B);
8721 		p->tx_frames_256_511	+= GET_STAT(TX_PORT_256B_511B);
8722 		p->tx_frames_512_1023	+= GET_STAT(TX_PORT_512B_1023B);
8723 		p->tx_frames_1024_1518	+= GET_STAT(TX_PORT_1024B_1518B);
8724 		p->tx_frames_1519_max	+= GET_STAT(TX_PORT_1519B_MAX);
8725 		p->tx_drop		+= GET_STAT(TX_PORT_DROP);
8726 		p->tx_ppp0		+= GET_STAT(TX_PORT_PPP0);
8727 		p->tx_ppp1		+= GET_STAT(TX_PORT_PPP1);
8728 		p->tx_ppp2		+= GET_STAT(TX_PORT_PPP2);
8729 		p->tx_ppp3		+= GET_STAT(TX_PORT_PPP3);
8730 		p->tx_ppp4		+= GET_STAT(TX_PORT_PPP4);
8731 		p->tx_ppp5		+= GET_STAT(TX_PORT_PPP5);
8732 		p->tx_ppp6		+= GET_STAT(TX_PORT_PPP6);
8733 		p->tx_ppp7		+= GET_STAT(TX_PORT_PPP7);
8734 
8735 		p->rx_pause		+= GET_STAT(RX_PORT_PAUSE);
8736 		p->rx_octets		+= GET_STAT(RX_PORT_BYTES);
8737 		p->rx_frames		+= GET_STAT(RX_PORT_FRAMES);
8738 		p->rx_bcast_frames	+= GET_STAT(RX_PORT_BCAST);
8739 		p->rx_mcast_frames	+= GET_STAT(RX_PORT_MCAST);
8740 		p->rx_ucast_frames	+= GET_STAT(RX_PORT_UCAST);
8741 		p->rx_too_long		+= GET_STAT(RX_PORT_MTU_ERROR);
8742 		p->rx_jabber		+= GET_STAT(RX_PORT_MTU_CRC_ERROR);
8743 		p->rx_len_err		+= GET_STAT(RX_PORT_LEN_ERROR);
8744 		p->rx_symbol_err	+= GET_STAT(RX_PORT_SYM_ERROR);
8745 		p->rx_runt		+= GET_STAT(RX_PORT_LESS_64B);
8746 		p->rx_frames_64		+= GET_STAT(RX_PORT_64B);
8747 		p->rx_frames_65_127	+= GET_STAT(RX_PORT_65B_127B);
8748 		p->rx_frames_128_255	+= GET_STAT(RX_PORT_128B_255B);
8749 		p->rx_frames_256_511	+= GET_STAT(RX_PORT_256B_511B);
8750 		p->rx_frames_512_1023	+= GET_STAT(RX_PORT_512B_1023B);
8751 		p->rx_frames_1024_1518	+= GET_STAT(RX_PORT_1024B_1518B);
8752 		p->rx_frames_1519_max	+= GET_STAT(RX_PORT_1519B_MAX);
8753 		p->rx_ppp0		+= GET_STAT(RX_PORT_PPP0);
8754 		p->rx_ppp1		+= GET_STAT(RX_PORT_PPP1);
8755 		p->rx_ppp2		+= GET_STAT(RX_PORT_PPP2);
8756 		p->rx_ppp3		+= GET_STAT(RX_PORT_PPP3);
8757 		p->rx_ppp4		+= GET_STAT(RX_PORT_PPP4);
8758 		p->rx_ppp5		+= GET_STAT(RX_PORT_PPP5);
8759 		p->rx_ppp6		+= GET_STAT(RX_PORT_PPP6);
8760 		p->rx_ppp7		+= GET_STAT(RX_PORT_PPP7);
8761 		if (!is_t6(adap)) {
8762 			MPASS(pi->fcs_reg == A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
8763 			p->rx_fcs_err	+= GET_STAT(RX_PORT_CRC_ERROR);
8764 		}
8765 	}
8766 #undef GET_STAT
8767 
8768 	if (is_t6(adap) && pi->fcs_reg != -1)
8769 		p->rx_fcs_err = t4_read_reg64(adap,
8770 		    t4_port_reg(adap, pi->tx_chan, pi->fcs_reg)) - pi->fcs_base;
8771 
8772 	if (chip_id(adap) >= CHELSIO_T5) {
8773 		stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
8774 		if (stat_ctl & F_COUNTPAUSESTATTX) {
8775 			p->tx_frames -= p->tx_pause;
8776 			p->tx_octets -= p->tx_pause * 64;
8777 		}
8778 		if (stat_ctl & F_COUNTPAUSEMCTX)
8779 			p->tx_mcast_frames -= p->tx_pause;
8780 		if (stat_ctl & F_COUNTPAUSESTATRX) {
8781 			p->rx_frames -= p->rx_pause;
8782 			p->rx_octets -= p->rx_pause * 64;
8783 		}
8784 		if (stat_ctl & F_COUNTPAUSEMCRX)
8785 			p->rx_mcast_frames -= p->rx_pause;
8786 	}
8787 
8788 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
8789 	bgmap = pi->mps_bg_map;
8790 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
8791 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
8792 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
8793 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
8794 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
8795 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
8796 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
8797 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
8798 #undef GET_STAT_COM
8799 }
8800 
8801 /**
8802  *	t4_get_lb_stats - collect loopback port statistics
8803  *	@adap: the adapter
8804  *	@idx: the loopback port index
8805  *	@p: the stats structure to fill
8806  *
8807  *	Return HW statistics for the given loopback port.
8808  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)8809 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
8810 {
8811 
8812 #define GET_STAT(name) \
8813 	t4_read_reg64(adap, \
8814 	    t4_port_reg(adap, idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))
8815 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
8816 
8817 	p->octets	= GET_STAT(BYTES);
8818 	p->frames	= GET_STAT(FRAMES);
8819 	p->bcast_frames	= GET_STAT(BCAST);
8820 	p->mcast_frames	= GET_STAT(MCAST);
8821 	p->ucast_frames	= GET_STAT(UCAST);
8822 	p->error_frames	= GET_STAT(ERROR);
8823 
8824 	p->frames_64		= GET_STAT(64B);
8825 	p->frames_65_127	= GET_STAT(65B_127B);
8826 	p->frames_128_255	= GET_STAT(128B_255B);
8827 	p->frames_256_511	= GET_STAT(256B_511B);
8828 	p->frames_512_1023	= GET_STAT(512B_1023B);
8829 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
8830 	p->frames_1519_max	= GET_STAT(1519B_MAX);
8831 	p->drop			= GET_STAT(DROP_FRAMES);
8832 
8833 	if (idx < adap->params.nports) {
8834 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
8835 
8836 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
8837 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
8838 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
8839 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
8840 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
8841 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
8842 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
8843 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
8844 	}
8845 
8846 #undef GET_STAT
8847 #undef GET_STAT_COM
8848 }
8849 
8850 /**
8851  *	t4_wol_magic_enable - enable/disable magic packet WoL
8852  *	@adap: the adapter
8853  *	@port: the physical port index
8854  *	@addr: MAC address expected in magic packets, %NULL to disable
8855  *
8856  *	Enables/disables magic packet wake-on-LAN for the selected port.
8857  */
t4_wol_magic_enable(struct adapter * adap,unsigned int port,const u8 * addr)8858 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
8859 			 const u8 *addr)
8860 {
8861 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
8862 
8863 	if (is_t4(adap)) {
8864 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
8865 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
8866 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
8867 	} else if (chip_id(adap) < CHELSIO_T7) {
8868 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
8869 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
8870 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
8871 	} else {
8872 		mag_id_reg_l = T7_PORT_REG(port, A_T7_MAC_PORT_MAGIC_MACID_LO);
8873 		mag_id_reg_h = T7_PORT_REG(port, A_T7_MAC_PORT_MAGIC_MACID_HI);
8874 		port_cfg_reg = T7_PORT_REG(port, A_MAC_PORT_CFG2);
8875 	}
8876 
8877 	if (addr) {
8878 		t4_write_reg(adap, mag_id_reg_l,
8879 			     (addr[2] << 24) | (addr[3] << 16) |
8880 			     (addr[4] << 8) | addr[5]);
8881 		t4_write_reg(adap, mag_id_reg_h,
8882 			     (addr[0] << 8) | addr[1]);
8883 	}
8884 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
8885 			 V_MAGICEN(addr != NULL));
8886 }
8887 
8888 /**
8889  *	t4_wol_pat_enable - enable/disable pattern-based WoL
8890  *	@adap: the adapter
8891  *	@port: the physical port index
8892  *	@map: bitmap of which HW pattern filters to set
8893  *	@mask0: byte mask for bytes 0-63 of a packet
8894  *	@mask1: byte mask for bytes 64-127 of a packet
8895  *	@crc: Ethernet CRC for selected bytes
8896  *	@enable: enable/disable switch
8897  *
8898  *	Sets the pattern filters indicated in @map to mask out the bytes
8899  *	specified in @mask0/@mask1 in received packets and compare the CRC of
8900  *	the resulting packet against @crc.  If @enable is %true pattern-based
8901  *	WoL is enabled, otherwise disabled.
8902  */
t4_wol_pat_enable(struct adapter * adap,unsigned int port,unsigned int map,u64 mask0,u64 mask1,unsigned int crc,bool enable)8903 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
8904 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
8905 {
8906 	int i;
8907 	u32 port_cfg_reg;
8908 
8909 	if (is_t4(adap))
8910 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
8911 	else if (chip_id(adap) < CHELSIO_T7)
8912 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
8913 	else
8914 		port_cfg_reg = T7_PORT_REG(port, A_MAC_PORT_CFG2);
8915 
8916 	if (!enable) {
8917 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
8918 		return 0;
8919 	}
8920 	if (map > 0xff)
8921 		return -EINVAL;
8922 
8923 #define EPIO_REG(name) \
8924 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
8925 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
8926 
8927 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
8928 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
8929 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
8930 
8931 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
8932 		if (!(map & 1))
8933 			continue;
8934 
8935 		/* write byte masks */
8936 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
8937 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
8938 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
8939 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
8940 			return -ETIMEDOUT;
8941 
8942 		/* write CRC */
8943 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
8944 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
8945 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
8946 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
8947 			return -ETIMEDOUT;
8948 	}
8949 #undef EPIO_REG
8950 
8951 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
8952 	return 0;
8953 }
8954 
8955 /*     t4_mk_filtdelwr - create a delete filter WR
8956  *     @ftid: the filter ID
8957  *     @wr: the filter work request to populate
8958  *     @qid: ingress queue to receive the delete notification
8959  *
8960  *     Creates a filter work request to delete the supplied filter.  If @qid is
8961  *     negative the delete notification is suppressed.
8962  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)8963 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
8964 {
8965 	memset(wr, 0, sizeof(*wr));
8966 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
8967 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
8968 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
8969 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
8970 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
8971 	if (qid >= 0)
8972 		wr->rx_chan_rx_rpl_iq =
8973 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
8974 }
8975 
8976 #define INIT_CMD(var, cmd, rd_wr) do { \
8977 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
8978 					F_FW_CMD_REQUEST | \
8979 					F_FW_CMD_##rd_wr); \
8980 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
8981 } while (0)
8982 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)8983 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
8984 			  u32 addr, u32 val)
8985 {
8986 	u32 ldst_addrspace;
8987 	struct fw_ldst_cmd c;
8988 
8989 	memset(&c, 0, sizeof(c));
8990 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
8991 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
8992 					F_FW_CMD_REQUEST |
8993 					F_FW_CMD_WRITE |
8994 					ldst_addrspace);
8995 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
8996 	c.u.addrval.addr = cpu_to_be32(addr);
8997 	c.u.addrval.val = cpu_to_be32(val);
8998 
8999 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9000 }
9001 
9002 /**
9003  *	t4_mdio_rd - read a PHY register through MDIO
9004  *	@adap: the adapter
9005  *	@mbox: mailbox to use for the FW command
9006  *	@phy_addr: the PHY address
9007  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
9008  *	@reg: the register to read
9009  *	@valp: where to store the value
9010  *
9011  *	Issues a FW command through the given mailbox to read a PHY register.
9012  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,unsigned int * valp)9013 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
9014 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
9015 {
9016 	int ret;
9017 	u32 ldst_addrspace;
9018 	struct fw_ldst_cmd c;
9019 
9020 	memset(&c, 0, sizeof(c));
9021 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
9022 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9023 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9024 					ldst_addrspace);
9025 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9026 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
9027 					 V_FW_LDST_CMD_MMD(mmd));
9028 	c.u.mdio.raddr = cpu_to_be16(reg);
9029 
9030 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9031 	if (ret == 0)
9032 		*valp = be16_to_cpu(c.u.mdio.rval);
9033 	return ret;
9034 }
9035 
9036 /**
9037  *	t4_mdio_wr - write a PHY register through MDIO
9038  *	@adap: the adapter
9039  *	@mbox: mailbox to use for the FW command
9040  *	@phy_addr: the PHY address
9041  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
9042  *	@reg: the register to write
9043  *	@valp: value to write
9044  *
9045  *	Issues a FW command through the given mailbox to write a PHY register.
9046  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,unsigned int val)9047 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
9048 	       unsigned int mmd, unsigned int reg, unsigned int val)
9049 {
9050 	u32 ldst_addrspace;
9051 	struct fw_ldst_cmd c;
9052 
9053 	memset(&c, 0, sizeof(c));
9054 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
9055 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9056 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9057 					ldst_addrspace);
9058 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9059 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
9060 					 V_FW_LDST_CMD_MMD(mmd));
9061 	c.u.mdio.raddr = cpu_to_be16(reg);
9062 	c.u.mdio.rval = cpu_to_be16(val);
9063 
9064 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9065 }
9066 
9067 /**
9068  *
9069  *	t4_sge_decode_idma_state - decode the idma state
9070  *	@adap: the adapter
9071  *	@state: the state idma is stuck in
9072  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)9073 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
9074 {
9075 	static const char * const t4_decode[] = {
9076 		"IDMA_IDLE",
9077 		"IDMA_PUSH_MORE_CPL_FIFO",
9078 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
9079 		"Not used",
9080 		"IDMA_PHYSADDR_SEND_PCIEHDR",
9081 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
9082 		"IDMA_PHYSADDR_SEND_PAYLOAD",
9083 		"IDMA_SEND_FIFO_TO_IMSG",
9084 		"IDMA_FL_REQ_DATA_FL_PREP",
9085 		"IDMA_FL_REQ_DATA_FL",
9086 		"IDMA_FL_DROP",
9087 		"IDMA_FL_H_REQ_HEADER_FL",
9088 		"IDMA_FL_H_SEND_PCIEHDR",
9089 		"IDMA_FL_H_PUSH_CPL_FIFO",
9090 		"IDMA_FL_H_SEND_CPL",
9091 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
9092 		"IDMA_FL_H_SEND_IP_HDR",
9093 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
9094 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
9095 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
9096 		"IDMA_FL_D_SEND_PCIEHDR",
9097 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
9098 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
9099 		"IDMA_FL_SEND_PCIEHDR",
9100 		"IDMA_FL_PUSH_CPL_FIFO",
9101 		"IDMA_FL_SEND_CPL",
9102 		"IDMA_FL_SEND_PAYLOAD_FIRST",
9103 		"IDMA_FL_SEND_PAYLOAD",
9104 		"IDMA_FL_REQ_NEXT_DATA_FL",
9105 		"IDMA_FL_SEND_NEXT_PCIEHDR",
9106 		"IDMA_FL_SEND_PADDING",
9107 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
9108 		"IDMA_FL_SEND_FIFO_TO_IMSG",
9109 		"IDMA_FL_REQ_DATAFL_DONE",
9110 		"IDMA_FL_REQ_HEADERFL_DONE",
9111 	};
9112 	static const char * const t5_decode[] = {
9113 		"IDMA_IDLE",
9114 		"IDMA_ALMOST_IDLE",
9115 		"IDMA_PUSH_MORE_CPL_FIFO",
9116 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
9117 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
9118 		"IDMA_PHYSADDR_SEND_PCIEHDR",
9119 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
9120 		"IDMA_PHYSADDR_SEND_PAYLOAD",
9121 		"IDMA_SEND_FIFO_TO_IMSG",
9122 		"IDMA_FL_REQ_DATA_FL",
9123 		"IDMA_FL_DROP",
9124 		"IDMA_FL_DROP_SEND_INC",
9125 		"IDMA_FL_H_REQ_HEADER_FL",
9126 		"IDMA_FL_H_SEND_PCIEHDR",
9127 		"IDMA_FL_H_PUSH_CPL_FIFO",
9128 		"IDMA_FL_H_SEND_CPL",
9129 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
9130 		"IDMA_FL_H_SEND_IP_HDR",
9131 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
9132 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
9133 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
9134 		"IDMA_FL_D_SEND_PCIEHDR",
9135 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
9136 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
9137 		"IDMA_FL_SEND_PCIEHDR",
9138 		"IDMA_FL_PUSH_CPL_FIFO",
9139 		"IDMA_FL_SEND_CPL",
9140 		"IDMA_FL_SEND_PAYLOAD_FIRST",
9141 		"IDMA_FL_SEND_PAYLOAD",
9142 		"IDMA_FL_REQ_NEXT_DATA_FL",
9143 		"IDMA_FL_SEND_NEXT_PCIEHDR",
9144 		"IDMA_FL_SEND_PADDING",
9145 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
9146 	};
9147 	static const char * const t6_decode[] = {
9148 		"IDMA_IDLE",
9149 		"IDMA_PUSH_MORE_CPL_FIFO",
9150 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
9151 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
9152 		"IDMA_PHYSADDR_SEND_PCIEHDR",
9153 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
9154 		"IDMA_PHYSADDR_SEND_PAYLOAD",
9155 		"IDMA_FL_REQ_DATA_FL",
9156 		"IDMA_FL_DROP",
9157 		"IDMA_FL_DROP_SEND_INC",
9158 		"IDMA_FL_H_REQ_HEADER_FL",
9159 		"IDMA_FL_H_SEND_PCIEHDR",
9160 		"IDMA_FL_H_PUSH_CPL_FIFO",
9161 		"IDMA_FL_H_SEND_CPL",
9162 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
9163 		"IDMA_FL_H_SEND_IP_HDR",
9164 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
9165 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
9166 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
9167 		"IDMA_FL_D_SEND_PCIEHDR",
9168 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
9169 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
9170 		"IDMA_FL_SEND_PCIEHDR",
9171 		"IDMA_FL_PUSH_CPL_FIFO",
9172 		"IDMA_FL_SEND_CPL",
9173 		"IDMA_FL_SEND_PAYLOAD_FIRST",
9174 		"IDMA_FL_SEND_PAYLOAD",
9175 		"IDMA_FL_REQ_NEXT_DATA_FL",
9176 		"IDMA_FL_SEND_NEXT_PCIEHDR",
9177 		"IDMA_FL_SEND_PADDING",
9178 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
9179 	};
9180 	static const u32 sge_regs[] = {
9181 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
9182 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
9183 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
9184 	};
9185 	const char * const *sge_idma_decode;
9186 	int sge_idma_decode_nstates;
9187 	int i;
9188 	unsigned int chip_version = chip_id(adapter);
9189 
9190 	/* Select the right set of decode strings to dump depending on the
9191 	 * adapter chip type.
9192 	 */
9193 	switch (chip_version) {
9194 	case CHELSIO_T4:
9195 		sge_idma_decode = (const char * const *)t4_decode;
9196 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
9197 		break;
9198 
9199 	case CHELSIO_T5:
9200 		sge_idma_decode = (const char * const *)t5_decode;
9201 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
9202 		break;
9203 
9204 	case CHELSIO_T6:
9205 	case CHELSIO_T7:
9206 		sge_idma_decode = (const char * const *)t6_decode;
9207 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
9208 		break;
9209 
9210 	default:
9211 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
9212 		return;
9213 	}
9214 
9215 	if (state < sge_idma_decode_nstates)
9216 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
9217 	else
9218 		CH_WARN(adapter, "idma state %d unknown\n", state);
9219 
9220 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
9221 		CH_WARN(adapter, "SGE register %#x value %#x\n",
9222 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
9223 }
9224 
9225 /**
9226  *      t4_sge_ctxt_flush - flush the SGE context cache
9227  *      @adap: the adapter
9228  *      @mbox: mailbox to use for the FW command
9229  *
9230  *      Issues a FW command through the given mailbox to flush the
9231  *      SGE context cache.
9232  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox,int ctxt_type)9233 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
9234 {
9235 	int ret;
9236 	u32 ldst_addrspace;
9237 	struct fw_ldst_cmd c;
9238 
9239 	memset(&c, 0, sizeof(c));
9240 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
9241 						 FW_LDST_ADDRSPC_SGE_EGRC :
9242 						 FW_LDST_ADDRSPC_SGE_INGC);
9243 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9244 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9245 					ldst_addrspace);
9246 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9247 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
9248 
9249 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9250 	return ret;
9251 }
9252 
9253 /**
9254  *      t4_fw_hello - establish communication with FW
9255  *      @adap: the adapter
9256  *      @mbox: mailbox to use for the FW command
9257  *      @evt_mbox: mailbox to receive async FW events
9258  *      @master: specifies the caller's willingness to be the device master
9259  *	@state: returns the current device state (if non-NULL)
9260  *
9261  *	Issues a command to establish communication with FW.  Returns either
9262  *	an error (negative integer) or the mailbox of the Master PF.
9263  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)9264 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
9265 		enum dev_master master, enum dev_state *state)
9266 {
9267 	int ret;
9268 	struct fw_hello_cmd c;
9269 	u32 v;
9270 	unsigned int master_mbox;
9271 	int retries = FW_CMD_HELLO_RETRIES;
9272 
9273 retry:
9274 	memset(&c, 0, sizeof(c));
9275 	INIT_CMD(c, HELLO, WRITE);
9276 	c.err_to_clearinit = cpu_to_be32(
9277 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
9278 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
9279 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
9280 					mbox : M_FW_HELLO_CMD_MBMASTER) |
9281 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
9282 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
9283 		F_FW_HELLO_CMD_CLEARINIT);
9284 
9285 	/*
9286 	 * Issue the HELLO command to the firmware.  If it's not successful
9287 	 * but indicates that we got a "busy" or "timeout" condition, retry
9288 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
9289 	 * retry limit, check to see if the firmware left us any error
9290 	 * information and report that if so ...
9291 	 */
9292 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9293 	if (ret != FW_SUCCESS) {
9294 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
9295 			goto retry;
9296 		return ret;
9297 	}
9298 
9299 	v = be32_to_cpu(c.err_to_clearinit);
9300 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
9301 	if (state) {
9302 		if (v & F_FW_HELLO_CMD_ERR)
9303 			*state = DEV_STATE_ERR;
9304 		else if (v & F_FW_HELLO_CMD_INIT)
9305 			*state = DEV_STATE_INIT;
9306 		else
9307 			*state = DEV_STATE_UNINIT;
9308 	}
9309 
9310 	/*
9311 	 * If we're not the Master PF then we need to wait around for the
9312 	 * Master PF Driver to finish setting up the adapter.
9313 	 *
9314 	 * Note that we also do this wait if we're a non-Master-capable PF and
9315 	 * there is no current Master PF; a Master PF may show up momentarily
9316 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
9317 	 * OS loads lots of different drivers rapidly at the same time).  In
9318 	 * this case, the Master PF returned by the firmware will be
9319 	 * M_PCIE_FW_MASTER so the test below will work ...
9320 	 */
9321 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
9322 	    master_mbox != mbox) {
9323 		int waiting = FW_CMD_HELLO_TIMEOUT;
9324 
9325 		/*
9326 		 * Wait for the firmware to either indicate an error or
9327 		 * initialized state.  If we see either of these we bail out
9328 		 * and report the issue to the caller.  If we exhaust the
9329 		 * "hello timeout" and we haven't exhausted our retries, try
9330 		 * again.  Otherwise bail with a timeout error.
9331 		 */
9332 		for (;;) {
9333 			u32 pcie_fw;
9334 
9335 			msleep(50);
9336 			waiting -= 50;
9337 
9338 			/*
9339 			 * If neither Error nor Initialialized are indicated
9340 			 * by the firmware keep waiting till we exhaust our
9341 			 * timeout ... and then retry if we haven't exhausted
9342 			 * our retries ...
9343 			 */
9344 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
9345 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
9346 				if (waiting <= 0) {
9347 					if (retries-- > 0)
9348 						goto retry;
9349 
9350 					return -ETIMEDOUT;
9351 				}
9352 				continue;
9353 			}
9354 
9355 			/*
9356 			 * We either have an Error or Initialized condition
9357 			 * report errors preferentially.
9358 			 */
9359 			if (state) {
9360 				if (pcie_fw & F_PCIE_FW_ERR)
9361 					*state = DEV_STATE_ERR;
9362 				else if (pcie_fw & F_PCIE_FW_INIT)
9363 					*state = DEV_STATE_INIT;
9364 			}
9365 
9366 			/*
9367 			 * If we arrived before a Master PF was selected and
9368 			 * there's not a valid Master PF, grab its identity
9369 			 * for our caller.
9370 			 */
9371 			if (master_mbox == M_PCIE_FW_MASTER &&
9372 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
9373 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
9374 			break;
9375 		}
9376 	}
9377 
9378 	return master_mbox;
9379 }
9380 
9381 /**
9382  *	t4_fw_bye - end communication with FW
9383  *	@adap: the adapter
9384  *	@mbox: mailbox to use for the FW command
9385  *
9386  *	Issues a command to terminate communication with FW.
9387  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)9388 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
9389 {
9390 	struct fw_bye_cmd c;
9391 
9392 	memset(&c, 0, sizeof(c));
9393 	INIT_CMD(c, BYE, WRITE);
9394 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9395 }
9396 
9397 /**
9398  *	t4_fw_reset - issue a reset to FW
9399  *	@adap: the adapter
9400  *	@mbox: mailbox to use for the FW command
9401  *	@reset: specifies the type of reset to perform
9402  *
9403  *	Issues a reset command of the specified type to FW.
9404  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)9405 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
9406 {
9407 	struct fw_reset_cmd c;
9408 
9409 	memset(&c, 0, sizeof(c));
9410 	INIT_CMD(c, RESET, WRITE);
9411 	c.val = cpu_to_be32(reset);
9412 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9413 }
9414 
9415 /**
9416  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
9417  *	@adap: the adapter
9418  *	@mbox: mailbox to use for the FW RESET command (if desired)
9419  *	@force: force uP into RESET even if FW RESET command fails
9420  *
9421  *	Issues a RESET command to firmware (if desired) with a HALT indication
9422  *	and then puts the microprocessor into RESET state.  The RESET command
9423  *	will only be issued if a legitimate mailbox is provided (mbox <=
9424  *	M_PCIE_FW_MASTER).
9425  *
9426  *	This is generally used in order for the host to safely manipulate the
9427  *	adapter without fear of conflicting with whatever the firmware might
9428  *	be doing.  The only way out of this state is to RESTART the firmware
9429  *	...
9430  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)9431 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
9432 {
9433 	int ret = 0;
9434 
9435 	/*
9436 	 * If a legitimate mailbox is provided, issue a RESET command
9437 	 * with a HALT indication.
9438 	 */
9439 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
9440 		struct fw_reset_cmd c;
9441 
9442 		memset(&c, 0, sizeof(c));
9443 		INIT_CMD(c, RESET, WRITE);
9444 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
9445 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
9446 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9447 	}
9448 
9449 	/*
9450 	 * Normally we won't complete the operation if the firmware RESET
9451 	 * command fails but if our caller insists we'll go ahead and put the
9452 	 * uP into RESET.  This can be useful if the firmware is hung or even
9453 	 * missing ...  We'll have to take the risk of putting the uP into
9454 	 * RESET without the cooperation of firmware in that case.
9455 	 *
9456 	 * We also force the firmware's HALT flag to be on in case we bypassed
9457 	 * the firmware RESET command above or we're dealing with old firmware
9458 	 * which doesn't have the HALT capability.  This will serve as a flag
9459 	 * for the incoming firmware to know that it's coming out of a HALT
9460 	 * rather than a RESET ... if it's new enough to understand that ...
9461 	 */
9462 	if (ret == 0 || force) {
9463 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
9464 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
9465 				 F_PCIE_FW_HALT);
9466 	}
9467 
9468 	/*
9469 	 * And we always return the result of the firmware RESET command
9470 	 * even when we force the uP into RESET ...
9471 	 */
9472 	return ret;
9473 }
9474 
9475 /**
9476  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
9477  *	@adap: the adapter
9478  *
9479  *	Restart firmware previously halted by t4_fw_halt().  On successful
9480  *	return the previous PF Master remains as the new PF Master and there
9481  *	is no need to issue a new HELLO command, etc.
9482  */
t4_fw_restart(struct adapter * adap,unsigned int mbox)9483 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
9484 {
9485 	int ms;
9486 
9487 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
9488 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
9489 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
9490 			return FW_SUCCESS;
9491 		msleep(100);
9492 		ms += 100;
9493 	}
9494 
9495 	return -ETIMEDOUT;
9496 }
9497 
9498 /**
9499  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
9500  *	@adap: the adapter
9501  *	@mbox: mailbox to use for the FW RESET command (if desired)
9502  *	@fw_data: the firmware image to write
9503  *	@size: image size
9504  *	@force: force upgrade even if firmware doesn't cooperate
9505  *
9506  *	Perform all of the steps necessary for upgrading an adapter's
9507  *	firmware image.  Normally this requires the cooperation of the
9508  *	existing firmware in order to halt all existing activities
9509  *	but if an invalid mailbox token is passed in we skip that step
9510  *	(though we'll still put the adapter microprocessor into RESET in
9511  *	that case).
9512  *
9513  *	On successful return the new firmware will have been loaded and
9514  *	the adapter will have been fully RESET losing all previous setup
9515  *	state.  On unsuccessful return the adapter may be completely hosed ...
9516  *	positive errno indicates that the adapter is ~probably~ intact, a
9517  *	negative errno indicates that things are looking bad ...
9518  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)9519 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
9520 		  const u8 *fw_data, unsigned int size, int force)
9521 {
9522 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
9523 	unsigned int bootstrap =
9524 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
9525 	int ret;
9526 
9527 	if (!t4_fw_matches_chip(adap, fw_hdr))
9528 		return -EINVAL;
9529 
9530 	if (!bootstrap) {
9531 		ret = t4_fw_halt(adap, mbox, force);
9532 		if (ret < 0 && !force)
9533 			return ret;
9534 	}
9535 
9536 	ret = t4_load_fw(adap, fw_data, size);
9537 	if (ret < 0 || bootstrap)
9538 		return ret;
9539 
9540 	return t4_fw_restart(adap, mbox);
9541 }
9542 
9543 /**
9544  *	t4_fw_initialize - ask FW to initialize the device
9545  *	@adap: the adapter
9546  *	@mbox: mailbox to use for the FW command
9547  *
9548  *	Issues a command to FW to partially initialize the device.  This
9549  *	performs initialization that generally doesn't depend on user input.
9550  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)9551 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
9552 {
9553 	struct fw_initialize_cmd c;
9554 
9555 	memset(&c, 0, sizeof(c));
9556 	INIT_CMD(c, INITIALIZE, WRITE);
9557 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9558 }
9559 
9560 /**
9561  *	t4_query_params_rw - query FW or device parameters
9562  *	@adap: the adapter
9563  *	@mbox: mailbox to use for the FW command
9564  *	@pf: the PF
9565  *	@vf: the VF
9566  *	@nparams: the number of parameters
9567  *	@params: the parameter names
9568  *	@val: the parameter values
9569  *	@rw: Write and read flag
9570  *
9571  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
9572  *	queried at once.
9573  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw)9574 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
9575 		       unsigned int vf, unsigned int nparams, const u32 *params,
9576 		       u32 *val, int rw)
9577 {
9578 	int i, ret;
9579 	struct fw_params_cmd c;
9580 	__be32 *p = &c.param[0].mnem;
9581 
9582 	if (nparams > 7)
9583 		return -EINVAL;
9584 
9585 	memset(&c, 0, sizeof(c));
9586 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
9587 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
9588 				  V_FW_PARAMS_CMD_PFN(pf) |
9589 				  V_FW_PARAMS_CMD_VFN(vf));
9590 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9591 
9592 	for (i = 0; i < nparams; i++) {
9593 		*p++ = cpu_to_be32(*params++);
9594 		if (rw)
9595 			*p = cpu_to_be32(*(val + i));
9596 		p++;
9597 	}
9598 
9599 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9600 
9601 	/*
9602 	 * We always copy back the results, even if there's an error.  We'll
9603 	 * get an error if any of the parameters was unknown to the Firmware,
9604 	 * but there will be results for the others ...  (Older Firmware
9605 	 * stopped at the first unknown parameter; newer Firmware processes
9606 	 * them all and flags the unknown parameters with a return value of
9607 	 * ~0UL.)
9608 	 */
9609 	for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
9610 		*val++ = be32_to_cpu(*p);
9611 
9612 	return ret;
9613 }
9614 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)9615 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
9616 		    unsigned int vf, unsigned int nparams, const u32 *params,
9617 		    u32 *val)
9618 {
9619 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
9620 }
9621 
9622 /**
9623  *      t4_set_params_timeout - sets FW or device parameters
9624  *      @adap: the adapter
9625  *      @mbox: mailbox to use for the FW command
9626  *      @pf: the PF
9627  *      @vf: the VF
9628  *      @nparams: the number of parameters
9629  *      @params: the parameter names
9630  *      @val: the parameter values
9631  *      @timeout: the timeout time
9632  *
9633  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
9634  *      specified at once.
9635  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)9636 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
9637 			  unsigned int pf, unsigned int vf,
9638 			  unsigned int nparams, const u32 *params,
9639 			  const u32 *val, int timeout)
9640 {
9641 	struct fw_params_cmd c;
9642 	__be32 *p = &c.param[0].mnem;
9643 
9644 	if (nparams > 7)
9645 		return -EINVAL;
9646 
9647 	memset(&c, 0, sizeof(c));
9648 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
9649 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9650 				  V_FW_PARAMS_CMD_PFN(pf) |
9651 				  V_FW_PARAMS_CMD_VFN(vf));
9652 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9653 
9654 	while (nparams--) {
9655 		*p++ = cpu_to_be32(*params++);
9656 		*p++ = cpu_to_be32(*val++);
9657 	}
9658 
9659 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
9660 }
9661 
9662 /**
9663  *	t4_set_params - sets FW or device parameters
9664  *	@adap: the adapter
9665  *	@mbox: mailbox to use for the FW command
9666  *	@pf: the PF
9667  *	@vf: the VF
9668  *	@nparams: the number of parameters
9669  *	@params: the parameter names
9670  *	@val: the parameter values
9671  *
9672  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
9673  *	specified at once.
9674  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)9675 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
9676 		  unsigned int vf, unsigned int nparams, const u32 *params,
9677 		  const u32 *val)
9678 {
9679 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
9680 				     FW_CMD_MAX_TIMEOUT);
9681 }
9682 
9683 /**
9684  *	t4_cfg_pfvf - configure PF/VF resource limits
9685  *	@adap: the adapter
9686  *	@mbox: mailbox to use for the FW command
9687  *	@pf: the PF being configured
9688  *	@vf: the VF being configured
9689  *	@txq: the max number of egress queues
9690  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
9691  *	@rxqi: the max number of interrupt-capable ingress queues
9692  *	@rxq: the max number of interruptless ingress queues
9693  *	@tc: the PCI traffic class
9694  *	@vi: the max number of virtual interfaces
9695  *	@cmask: the channel access rights mask for the PF/VF
9696  *	@pmask: the port access rights mask for the PF/VF
9697  *	@nexact: the maximum number of exact MPS filters
9698  *	@rcaps: read capabilities
9699  *	@wxcaps: write/execute capabilities
9700  *
9701  *	Configures resource limits and capabilities for a physical or virtual
9702  *	function.
9703  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)9704 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
9705 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
9706 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
9707 		unsigned int vi, unsigned int cmask, unsigned int pmask,
9708 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
9709 {
9710 	struct fw_pfvf_cmd c;
9711 
9712 	memset(&c, 0, sizeof(c));
9713 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
9714 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
9715 				  V_FW_PFVF_CMD_VFN(vf));
9716 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9717 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
9718 				     V_FW_PFVF_CMD_NIQ(rxq));
9719 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
9720 				    V_FW_PFVF_CMD_PMASK(pmask) |
9721 				    V_FW_PFVF_CMD_NEQ(txq));
9722 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
9723 				      V_FW_PFVF_CMD_NVI(vi) |
9724 				      V_FW_PFVF_CMD_NEXACTF(nexact));
9725 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
9726 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
9727 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
9728 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
9729 }
9730 
9731 /**
9732  *	t4_alloc_vi_func - allocate a virtual interface
9733  *	@adap: the adapter
9734  *	@mbox: mailbox to use for the FW command
9735  *	@port: physical port associated with the VI
9736  *	@pf: the PF owning the VI
9737  *	@vf: the VF owning the VI
9738  *	@nmac: number of MAC addresses needed (1 to 5)
9739  *	@mac: the MAC addresses of the VI
9740  *	@rss_size: size of RSS table slice associated with this VI
9741  *	@portfunc: which Port Application Function MAC Address is desired
9742  *	@idstype: Intrusion Detection Type
9743  *
9744  *	Allocates a virtual interface for the given physical port.  If @mac is
9745  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
9746  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
9747  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
9748  *	stored consecutively so the space needed is @nmac * 6 bytes.
9749  *	Returns a negative error number or the non-negative VI id.
9750  */
t4_alloc_vi_func(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,u16 * rss_size,uint8_t * vfvld,uint16_t * vin,unsigned int portfunc,unsigned int idstype)9751 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
9752 		     unsigned int port, unsigned int pf, unsigned int vf,
9753 		     unsigned int nmac, u8 *mac, u16 *rss_size,
9754 		     uint8_t *vfvld, uint16_t *vin,
9755 		     unsigned int portfunc, unsigned int idstype)
9756 {
9757 	int ret;
9758 	struct fw_vi_cmd c;
9759 
9760 	memset(&c, 0, sizeof(c));
9761 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
9762 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
9763 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
9764 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
9765 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
9766 				     V_FW_VI_CMD_FUNC(portfunc));
9767 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
9768 	c.nmac = nmac - 1;
9769 	if(!rss_size)
9770 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
9771 
9772 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9773 	if (ret)
9774 		return ret;
9775 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
9776 
9777 	if (mac) {
9778 		memcpy(mac, c.mac, sizeof(c.mac));
9779 		switch (nmac) {
9780 		case 5:
9781 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
9782 		case 4:
9783 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
9784 		case 3:
9785 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
9786 		case 2:
9787 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
9788 		}
9789 	}
9790 	if (rss_size)
9791 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
9792 	if (vfvld) {
9793 		*vfvld = adap->params.viid_smt_extn_support ?
9794 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
9795 		    G_FW_VIID_VIVLD(ret);
9796 	}
9797 	if (vin) {
9798 		*vin = adap->params.viid_smt_extn_support ?
9799 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
9800 		    G_FW_VIID_VIN(ret);
9801 	}
9802 
9803 	return ret;
9804 }
9805 
9806 /**
9807  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
9808  *      @adap: the adapter
9809  *      @mbox: mailbox to use for the FW command
9810  *      @port: physical port associated with the VI
9811  *      @pf: the PF owning the VI
9812  *      @vf: the VF owning the VI
9813  *      @nmac: number of MAC addresses needed (1 to 5)
9814  *      @mac: the MAC addresses of the VI
9815  *      @rss_size: size of RSS table slice associated with this VI
9816  *
9817  *	backwards compatible and convieniance routine to allocate a Virtual
9818  *	Interface with a Ethernet Port Application Function and Intrustion
9819  *	Detection System disabled.
9820  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,u16 * rss_size,uint8_t * vfvld,uint16_t * vin)9821 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
9822 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
9823 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
9824 {
9825 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
9826 				vfvld, vin, FW_VI_FUNC_ETH, 0);
9827 }
9828 
9829 /**
9830  * 	t4_free_vi - free a virtual interface
9831  * 	@adap: the adapter
9832  * 	@mbox: mailbox to use for the FW command
9833  * 	@pf: the PF owning the VI
9834  * 	@vf: the VF owning the VI
9835  * 	@viid: virtual interface identifiler
9836  *
9837  * 	Free a previously allocated virtual interface.
9838  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)9839 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
9840 	       unsigned int vf, unsigned int viid)
9841 {
9842 	struct fw_vi_cmd c;
9843 
9844 	memset(&c, 0, sizeof(c));
9845 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
9846 				  F_FW_CMD_REQUEST |
9847 				  F_FW_CMD_EXEC |
9848 				  V_FW_VI_CMD_PFN(pf) |
9849 				  V_FW_VI_CMD_VFN(vf));
9850 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
9851 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
9852 
9853 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9854 }
9855 
9856 /**
9857  *	t4_set_rxmode - set Rx properties of a virtual interface
9858  *	@adap: the adapter
9859  *	@mbox: mailbox to use for the FW command
9860  *	@viid: the VI id
9861  *	@mtu: the new MTU or -1
9862  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
9863  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
9864  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
9865  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
9866  *	@sleep_ok: if true we may sleep while awaiting command completion
9867  *
9868  *	Sets Rx properties of a virtual interface.
9869  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)9870 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
9871 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
9872 		  bool sleep_ok)
9873 {
9874 	struct fw_vi_rxmode_cmd c;
9875 
9876 	/* convert to FW values */
9877 	if (mtu < 0)
9878 		mtu = M_FW_VI_RXMODE_CMD_MTU;
9879 	if (promisc < 0)
9880 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
9881 	if (all_multi < 0)
9882 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
9883 	if (bcast < 0)
9884 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
9885 	if (vlanex < 0)
9886 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
9887 
9888 	memset(&c, 0, sizeof(c));
9889 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
9890 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9891 				   V_FW_VI_RXMODE_CMD_VIID(viid));
9892 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
9893 	c.mtu_to_vlanexen =
9894 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
9895 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
9896 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
9897 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
9898 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
9899 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
9900 }
9901 
9902 /**
9903  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
9904  *	@adap: the adapter
9905  *	@viid: the VI id
9906  *	@mac: the MAC address
9907  *	@mask: the mask
9908  *	@vni: the VNI id for the tunnel protocol
9909  *	@vni_mask: mask for the VNI id
9910  *	@dip_hit: to enable DIP match for the MPS entry
9911  *	@lookup_type: MAC address for inner (1) or outer (0) header
9912  *	@sleep_ok: call is allowed to sleep
9913  *
9914  *	Allocates an MPS entry with specified MAC address and VNI value.
9915  *
9916  *	Returns a negative error number or the allocated index for this mac.
9917  */
t4_alloc_encap_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int vni,unsigned int vni_mask,u8 dip_hit,u8 lookup_type,bool sleep_ok)9918 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
9919 			    const u8 *addr, const u8 *mask, unsigned int vni,
9920 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
9921 			    bool sleep_ok)
9922 {
9923 	struct fw_vi_mac_cmd c;
9924 	struct fw_vi_mac_vni *p = c.u.exact_vni;
9925 	int ret = 0;
9926 	u32 val;
9927 
9928 	memset(&c, 0, sizeof(c));
9929 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
9930 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9931 				   V_FW_VI_MAC_CMD_VIID(viid));
9932 	val = V_FW_CMD_LEN16(1) |
9933 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
9934 	c.freemacs_to_len16 = cpu_to_be32(val);
9935 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
9936 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
9937 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
9938 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
9939 
9940 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
9941 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
9942 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
9943 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
9944 
9945 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
9946 	if (ret == 0)
9947 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
9948 	return ret;
9949 }
9950 
9951 /**
9952  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
9953  *	@adap: the adapter
9954  *	@viid: the VI id
9955  *	@mac: the MAC address
9956  *	@mask: the mask
9957  *	@idx: index at which to add this entry
9958  *	@port_id: the port index
9959  *	@lookup_type: MAC address for inner (1) or outer (0) header
9960  *	@sleep_ok: call is allowed to sleep
9961  *
9962  *	Adds the mac entry at the specified index using raw mac interface.
9963  *
9964  *	Returns a negative error number or the allocated index for this mac.
9965  */
t4_alloc_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)9966 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
9967 			  const u8 *addr, const u8 *mask, unsigned int idx,
9968 			  u8 lookup_type, u8 port_id, bool sleep_ok)
9969 {
9970 	int ret = 0;
9971 	struct fw_vi_mac_cmd c;
9972 	struct fw_vi_mac_raw *p = &c.u.raw;
9973 	u32 val;
9974 
9975 	memset(&c, 0, sizeof(c));
9976 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
9977 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
9978 				   V_FW_VI_MAC_CMD_VIID(viid));
9979 	val = V_FW_CMD_LEN16(1) |
9980 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
9981 	c.freemacs_to_len16 = cpu_to_be32(val);
9982 
9983 	/* Specify that this is an inner mac address */
9984 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
9985 
9986 	/* Lookup Type. Outer header: 0, Inner header: 1 */
9987 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
9988 				   V_DATAPORTNUM(port_id));
9989 	/* Lookup mask and port mask */
9990 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
9991 				    V_DATAPORTNUM(M_DATAPORTNUM));
9992 
9993 	/* Copy the address and the mask */
9994 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
9995 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
9996 
9997 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
9998 	if (ret == 0) {
9999 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
10000 		if (ret != idx)
10001 			ret = -ENOMEM;
10002 	}
10003 
10004 	return ret;
10005 }
10006 
10007 /**
10008  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
10009  *	@adap: the adapter
10010  *	@mbox: mailbox to use for the FW command
10011  *	@viid: the VI id
10012  *	@free: if true any existing filters for this VI id are first removed
10013  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
10014  *	@addr: the MAC address(es)
10015  *	@idx: where to store the index of each allocated filter
10016  *	@hash: pointer to hash address filter bitmap
10017  *	@sleep_ok: call is allowed to sleep
10018  *
10019  *	Allocates an exact-match filter for each of the supplied addresses and
10020  *	sets it to the corresponding address.  If @idx is not %NULL it should
10021  *	have at least @naddr entries, each of which will be set to the index of
10022  *	the filter allocated for the corresponding MAC address.  If a filter
10023  *	could not be allocated for an address its index is set to 0xffff.
10024  *	If @hash is not %NULL addresses that fail to allocate an exact filter
10025  *	are hashed and update the hash filter bitmap pointed at by @hash.
10026  *
10027  *	Returns a negative error number or the number of filters allocated.
10028  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)10029 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
10030 		      unsigned int viid, bool free, unsigned int naddr,
10031 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
10032 {
10033 	int offset, ret = 0;
10034 	struct fw_vi_mac_cmd c;
10035 	unsigned int nfilters = 0;
10036 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
10037 	unsigned int rem = naddr;
10038 
10039 	if (naddr > max_naddr)
10040 		return -EINVAL;
10041 
10042 	for (offset = 0; offset < naddr ; /**/) {
10043 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
10044 					 ? rem
10045 					 : ARRAY_SIZE(c.u.exact));
10046 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
10047 						     u.exact[fw_naddr]), 16);
10048 		struct fw_vi_mac_exact *p;
10049 		int i;
10050 
10051 		memset(&c, 0, sizeof(c));
10052 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10053 					   F_FW_CMD_REQUEST |
10054 					   F_FW_CMD_WRITE |
10055 					   V_FW_CMD_EXEC(free) |
10056 					   V_FW_VI_MAC_CMD_VIID(viid));
10057 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
10058 						  V_FW_CMD_LEN16(len16));
10059 
10060 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
10061 			p->valid_to_idx =
10062 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
10063 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
10064 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
10065 		}
10066 
10067 		/*
10068 		 * It's okay if we run out of space in our MAC address arena.
10069 		 * Some of the addresses we submit may get stored so we need
10070 		 * to run through the reply to see what the results were ...
10071 		 */
10072 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
10073 		if (ret && ret != -FW_ENOMEM)
10074 			break;
10075 
10076 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
10077 			u16 index = G_FW_VI_MAC_CMD_IDX(
10078 						be16_to_cpu(p->valid_to_idx));
10079 
10080 			if (idx)
10081 				idx[offset+i] = (index >=  max_naddr
10082 						 ? 0xffff
10083 						 : index);
10084 			if (index < max_naddr)
10085 				nfilters++;
10086 			else if (hash)
10087 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
10088 		}
10089 
10090 		free = false;
10091 		offset += fw_naddr;
10092 		rem -= fw_naddr;
10093 	}
10094 
10095 	if (ret == 0 || ret == -FW_ENOMEM)
10096 		ret = nfilters;
10097 	return ret;
10098 }
10099 
10100 /**
10101  *	t4_free_encap_mac_filt - frees MPS entry at given index
10102  *	@adap: the adapter
10103  *	@viid: the VI id
10104  *	@idx: index of MPS entry to be freed
10105  *	@sleep_ok: call is allowed to sleep
10106  *
10107  *	Frees the MPS entry at supplied index
10108  *
10109  *	Returns a negative error number or zero on success
10110  */
t4_free_encap_mac_filt(struct adapter * adap,unsigned int viid,int idx,bool sleep_ok)10111 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
10112 			   int idx, bool sleep_ok)
10113 {
10114 	struct fw_vi_mac_exact *p;
10115 	struct fw_vi_mac_cmd c;
10116 	u8 addr[] = {0,0,0,0,0,0};
10117 	int ret = 0;
10118 	u32 exact;
10119 
10120 	memset(&c, 0, sizeof(c));
10121 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10122 				   F_FW_CMD_REQUEST |
10123 				   F_FW_CMD_WRITE |
10124 				   V_FW_CMD_EXEC(0) |
10125 				   V_FW_VI_MAC_CMD_VIID(viid));
10126 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
10127 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
10128 					  exact |
10129 					  V_FW_CMD_LEN16(1));
10130 	p = c.u.exact;
10131 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
10132 				      V_FW_VI_MAC_CMD_IDX(idx));
10133 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
10134 
10135 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
10136 	return ret;
10137 }
10138 
10139 /**
10140  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
10141  *	@adap: the adapter
10142  *	@viid: the VI id
10143  *	@addr: the MAC address
10144  *	@mask: the mask
10145  *	@idx: index of the entry in mps tcam
10146  *	@lookup_type: MAC address for inner (1) or outer (0) header
10147  *	@port_id: the port index
10148  *	@sleep_ok: call is allowed to sleep
10149  *
10150  *	Removes the mac entry at the specified index using raw mac interface.
10151  *
10152  *	Returns a negative error number on failure.
10153  */
t4_free_raw_mac_filt(struct adapter * adap,unsigned int viid,const u8 * addr,const u8 * mask,unsigned int idx,u8 lookup_type,u8 port_id,bool sleep_ok)10154 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
10155 			 const u8 *addr, const u8 *mask, unsigned int idx,
10156 			 u8 lookup_type, u8 port_id, bool sleep_ok)
10157 {
10158 	struct fw_vi_mac_cmd c;
10159 	struct fw_vi_mac_raw *p = &c.u.raw;
10160 	u32 raw;
10161 
10162 	memset(&c, 0, sizeof(c));
10163 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10164 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
10165 				   V_FW_CMD_EXEC(0) |
10166 				   V_FW_VI_MAC_CMD_VIID(viid));
10167 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
10168 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
10169 					  raw |
10170 					  V_FW_CMD_LEN16(1));
10171 
10172 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
10173 				     FW_VI_MAC_ID_BASED_FREE);
10174 
10175 	/* Lookup Type. Outer header: 0, Inner header: 1 */
10176 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
10177 				   V_DATAPORTNUM(port_id));
10178 	/* Lookup mask and port mask */
10179 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
10180 				    V_DATAPORTNUM(M_DATAPORTNUM));
10181 
10182 	/* Copy the address and the mask */
10183 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
10184 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
10185 
10186 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
10187 }
10188 
10189 /**
10190  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
10191  *	@adap: the adapter
10192  *	@mbox: mailbox to use for the FW command
10193  *	@viid: the VI id
10194  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
10195  *	@addr: the MAC address(es)
10196  *	@sleep_ok: call is allowed to sleep
10197  *
10198  *	Frees the exact-match filter for each of the supplied addresses
10199  *
10200  *	Returns a negative error number or the number of filters freed.
10201  */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)10202 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
10203 		      unsigned int viid, unsigned int naddr,
10204 		      const u8 **addr, bool sleep_ok)
10205 {
10206 	int offset, ret = 0;
10207 	struct fw_vi_mac_cmd c;
10208 	unsigned int nfilters = 0;
10209 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
10210 	unsigned int rem = naddr;
10211 
10212 	if (naddr > max_naddr)
10213 		return -EINVAL;
10214 
10215 	for (offset = 0; offset < (int)naddr ; /**/) {
10216 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
10217 					 ? rem
10218 					 : ARRAY_SIZE(c.u.exact));
10219 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
10220 						     u.exact[fw_naddr]), 16);
10221 		struct fw_vi_mac_exact *p;
10222 		int i;
10223 
10224 		memset(&c, 0, sizeof(c));
10225 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10226 				     F_FW_CMD_REQUEST |
10227 				     F_FW_CMD_WRITE |
10228 				     V_FW_CMD_EXEC(0) |
10229 				     V_FW_VI_MAC_CMD_VIID(viid));
10230 		c.freemacs_to_len16 =
10231 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
10232 					    V_FW_CMD_LEN16(len16));
10233 
10234 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
10235 			p->valid_to_idx = cpu_to_be16(
10236 				F_FW_VI_MAC_CMD_VALID |
10237 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
10238 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
10239 		}
10240 
10241 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
10242 		if (ret)
10243 			break;
10244 
10245 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
10246 			u16 index = G_FW_VI_MAC_CMD_IDX(
10247 						be16_to_cpu(p->valid_to_idx));
10248 
10249 			if (index < max_naddr)
10250 				nfilters++;
10251 		}
10252 
10253 		offset += fw_naddr;
10254 		rem -= fw_naddr;
10255 	}
10256 
10257 	if (ret == 0)
10258 		ret = nfilters;
10259 	return ret;
10260 }
10261 
10262 /**
10263  *	t4_change_mac - modifies the exact-match filter for a MAC address
10264  *	@adap: the adapter
10265  *	@mbox: mailbox to use for the FW command
10266  *	@viid: the VI id
10267  *	@idx: index of existing filter for old value of MAC address, or -1
10268  *	@addr: the new MAC address value
10269  *	@persist: whether a new MAC allocation should be persistent
10270  *	@smt_idx: add MAC to SMT and return its index, or NULL
10271  *
10272  *	Modifies an exact-match filter and sets it to the new MAC address if
10273  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
10274  *	latter case the address is added persistently if @persist is %true.
10275  *
10276  *	Note that in general it is not possible to modify the value of a given
10277  *	filter so the generic way to modify an address filter is to free the one
10278  *	being used by the old address value and allocate a new filter for the
10279  *	new address value.
10280  *
10281  *	Returns a negative error number or the index of the filter with the new
10282  *	MAC value.  Note that this index may differ from @idx.
10283  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,uint16_t * smt_idx)10284 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
10285 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
10286 {
10287 	int ret, mode;
10288 	struct fw_vi_mac_cmd c;
10289 	struct fw_vi_mac_exact *p = c.u.exact;
10290 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
10291 
10292 	if (idx < 0)		/* new allocation */
10293 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
10294 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
10295 
10296 	memset(&c, 0, sizeof(c));
10297 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10298 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
10299 				   V_FW_VI_MAC_CMD_VIID(viid));
10300 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
10301 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
10302 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
10303 				      V_FW_VI_MAC_CMD_IDX(idx));
10304 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
10305 
10306 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10307 	if (ret == 0) {
10308 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
10309 		if (ret >= max_mac_addr)
10310 			ret = -ENOMEM;
10311 		if (smt_idx) {
10312 			if (adap->params.viid_smt_extn_support)
10313 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
10314 			else {
10315 				if (chip_id(adap) <= CHELSIO_T5)
10316 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
10317 				else
10318 					*smt_idx = viid & M_FW_VIID_VIN;
10319 			}
10320 		}
10321 	}
10322 	return ret;
10323 }
10324 
10325 /**
10326  *	t4_set_addr_hash - program the MAC inexact-match hash filter
10327  *	@adap: the adapter
10328  *	@mbox: mailbox to use for the FW command
10329  *	@viid: the VI id
10330  *	@ucast: whether the hash filter should also match unicast addresses
10331  *	@vec: the value to be written to the hash filter
10332  *	@sleep_ok: call is allowed to sleep
10333  *
10334  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
10335  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)10336 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
10337 		     bool ucast, u64 vec, bool sleep_ok)
10338 {
10339 	struct fw_vi_mac_cmd c;
10340 	u32 val;
10341 
10342 	memset(&c, 0, sizeof(c));
10343 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
10344 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
10345 				   V_FW_VI_ENABLE_CMD_VIID(viid));
10346 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
10347 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
10348 	c.freemacs_to_len16 = cpu_to_be32(val);
10349 	c.u.hash.hashvec = cpu_to_be64(vec);
10350 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
10351 }
10352 
10353 /**
10354  *      t4_enable_vi_params - enable/disable a virtual interface
10355  *      @adap: the adapter
10356  *      @mbox: mailbox to use for the FW command
10357  *      @viid: the VI id
10358  *      @rx_en: 1=enable Rx, 0=disable Rx
10359  *      @tx_en: 1=enable Tx, 0=disable Tx
10360  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
10361  *
10362  *      Enables/disables a virtual interface.  Note that setting DCB Enable
10363  *      only makes sense when enabling a Virtual Interface ...
10364  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)10365 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
10366 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
10367 {
10368 	struct fw_vi_enable_cmd c;
10369 
10370 	memset(&c, 0, sizeof(c));
10371 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
10372 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10373 				   V_FW_VI_ENABLE_CMD_VIID(viid));
10374 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
10375 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
10376 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
10377 				     FW_LEN16(c));
10378 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
10379 }
10380 
10381 /**
10382  *	t4_enable_vi - enable/disable a virtual interface
10383  *	@adap: the adapter
10384  *	@mbox: mailbox to use for the FW command
10385  *	@viid: the VI id
10386  *	@rx_en: 1=enable Rx, 0=disable Rx
10387  *	@tx_en: 1=enable Tx, 0=disable Tx
10388  *
10389  *	Enables/disables a virtual interface.  Note that setting DCB Enable
10390  *	only makes sense when enabling a Virtual Interface ...
10391  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)10392 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
10393 		 bool rx_en, bool tx_en)
10394 {
10395 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
10396 }
10397 
10398 /**
10399  *	t4_identify_port - identify a VI's port by blinking its LED
10400  *	@adap: the adapter
10401  *	@mbox: mailbox to use for the FW command
10402  *	@viid: the VI id
10403  *	@nblinks: how many times to blink LED at 2.5 Hz
10404  *
10405  *	Identifies a VI's port by blinking its LED.
10406  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)10407 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
10408 		     unsigned int nblinks)
10409 {
10410 	struct fw_vi_enable_cmd c;
10411 
10412 	memset(&c, 0, sizeof(c));
10413 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
10414 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10415 				   V_FW_VI_ENABLE_CMD_VIID(viid));
10416 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
10417 	c.blinkdur = cpu_to_be16(nblinks);
10418 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10419 }
10420 
10421 /**
10422  *	t4_iq_stop - stop an ingress queue and its FLs
10423  *	@adap: the adapter
10424  *	@mbox: mailbox to use for the FW command
10425  *	@pf: the PF owning the queues
10426  *	@vf: the VF owning the queues
10427  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
10428  *	@iqid: ingress queue id
10429  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
10430  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
10431  *
10432  *	Stops an ingress queue and its associated FLs, if any.  This causes
10433  *	any current or future data/messages destined for these queues to be
10434  *	tossed.
10435  */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)10436 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
10437 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
10438 	       unsigned int fl0id, unsigned int fl1id)
10439 {
10440 	struct fw_iq_cmd c;
10441 
10442 	memset(&c, 0, sizeof(c));
10443 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
10444 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
10445 				  V_FW_IQ_CMD_VFN(vf));
10446 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
10447 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
10448 	c.iqid = cpu_to_be16(iqid);
10449 	c.fl0id = cpu_to_be16(fl0id);
10450 	c.fl1id = cpu_to_be16(fl1id);
10451 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10452 }
10453 
10454 /**
10455  *	t4_iq_free - free an ingress queue and its FLs
10456  *	@adap: the adapter
10457  *	@mbox: mailbox to use for the FW command
10458  *	@pf: the PF owning the queues
10459  *	@vf: the VF owning the queues
10460  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
10461  *	@iqid: ingress queue id
10462  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
10463  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
10464  *
10465  *	Frees an ingress queue and its associated FLs, if any.
10466  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)10467 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10468 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
10469 	       unsigned int fl0id, unsigned int fl1id)
10470 {
10471 	struct fw_iq_cmd c;
10472 
10473 	memset(&c, 0, sizeof(c));
10474 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
10475 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
10476 				  V_FW_IQ_CMD_VFN(vf));
10477 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
10478 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
10479 	c.iqid = cpu_to_be16(iqid);
10480 	c.fl0id = cpu_to_be16(fl0id);
10481 	c.fl1id = cpu_to_be16(fl1id);
10482 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10483 }
10484 
10485 /**
10486  *	t4_eth_eq_stop - stop an Ethernet egress queue
10487  *	@adap: the adapter
10488  *	@mbox: mailbox to use for the FW command
10489  *	@pf: the PF owning the queues
10490  *	@vf: the VF owning the queues
10491  *	@eqid: egress queue id
10492  *
10493  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
10494  *	freed but is not otherwise functional after this call.
10495  */
t4_eth_eq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10496 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
10497                    unsigned int vf, unsigned int eqid)
10498 {
10499 	struct fw_eq_eth_cmd c;
10500 
10501 	memset(&c, 0, sizeof(c));
10502 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
10503 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10504 				  V_FW_EQ_ETH_CMD_PFN(pf) |
10505 				  V_FW_EQ_ETH_CMD_VFN(vf));
10506 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
10507 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
10508 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10509 }
10510 
10511 /**
10512  *	t4_eth_eq_free - free an Ethernet egress queue
10513  *	@adap: the adapter
10514  *	@mbox: mailbox to use for the FW command
10515  *	@pf: the PF owning the queue
10516  *	@vf: the VF owning the queue
10517  *	@eqid: egress queue id
10518  *
10519  *	Frees an Ethernet egress queue.
10520  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10521 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10522 		   unsigned int vf, unsigned int eqid)
10523 {
10524 	struct fw_eq_eth_cmd c;
10525 
10526 	memset(&c, 0, sizeof(c));
10527 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
10528 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10529 				  V_FW_EQ_ETH_CMD_PFN(pf) |
10530 				  V_FW_EQ_ETH_CMD_VFN(vf));
10531 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
10532 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
10533 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10534 }
10535 
10536 /**
10537  *	t4_ctrl_eq_free - free a control egress queue
10538  *	@adap: the adapter
10539  *	@mbox: mailbox to use for the FW command
10540  *	@pf: the PF owning the queue
10541  *	@vf: the VF owning the queue
10542  *	@eqid: egress queue id
10543  *
10544  *	Frees a control egress queue.
10545  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10546 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10547 		    unsigned int vf, unsigned int eqid)
10548 {
10549 	struct fw_eq_ctrl_cmd c;
10550 
10551 	memset(&c, 0, sizeof(c));
10552 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
10553 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10554 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
10555 				  V_FW_EQ_CTRL_CMD_VFN(vf));
10556 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
10557 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
10558 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10559 }
10560 
10561 /**
10562  *	t4_ofld_eq_free - free an offload egress queue
10563  *	@adap: the adapter
10564  *	@mbox: mailbox to use for the FW command
10565  *	@pf: the PF owning the queue
10566  *	@vf: the VF owning the queue
10567  *	@eqid: egress queue id
10568  *
10569  *	Frees a control egress queue.
10570  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)10571 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
10572 		    unsigned int vf, unsigned int eqid)
10573 {
10574 	struct fw_eq_ofld_cmd c;
10575 
10576 	memset(&c, 0, sizeof(c));
10577 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
10578 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
10579 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
10580 				  V_FW_EQ_OFLD_CMD_VFN(vf));
10581 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
10582 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
10583 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
10584 }
10585 
10586 /**
10587  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
10588  *	@link_down_rc: Link Down Reason Code
10589  *
10590  *	Returns a string representation of the Link Down Reason Code.
10591  */
t4_link_down_rc_str(unsigned char link_down_rc)10592 const char *t4_link_down_rc_str(unsigned char link_down_rc)
10593 {
10594 	static const char *reason[] = {
10595 		"Link Down",
10596 		"Remote Fault",
10597 		"Auto-negotiation Failure",
10598 		"Reserved3",
10599 		"Insufficient Airflow",
10600 		"Unable To Determine Reason",
10601 		"No RX Signal Detected",
10602 		"Reserved7",
10603 	};
10604 
10605 	if (link_down_rc >= ARRAY_SIZE(reason))
10606 		return "Bad Reason Code";
10607 
10608 	return reason[link_down_rc];
10609 }
10610 
10611 /*
10612  * Return the highest speed set in the port capabilities, in Mb/s.
10613  */
fwcap_to_speed(uint32_t caps)10614 unsigned int fwcap_to_speed(uint32_t caps)
10615 {
10616 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
10617 		do { \
10618 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
10619 				return __speed; \
10620 		} while (0)
10621 
10622 	TEST_SPEED_RETURN(400G, 400000);
10623 	TEST_SPEED_RETURN(200G, 200000);
10624 	TEST_SPEED_RETURN(100G, 100000);
10625 	TEST_SPEED_RETURN(50G,   50000);
10626 	TEST_SPEED_RETURN(40G,   40000);
10627 	TEST_SPEED_RETURN(25G,   25000);
10628 	TEST_SPEED_RETURN(10G,   10000);
10629 	TEST_SPEED_RETURN(1G,     1000);
10630 	TEST_SPEED_RETURN(100M,    100);
10631 
10632 	#undef TEST_SPEED_RETURN
10633 
10634 	return 0;
10635 }
10636 
10637 /*
10638  * Return the port capabilities bit for the given speed, which is in Mb/s.
10639  */
speed_to_fwcap(unsigned int speed)10640 uint32_t speed_to_fwcap(unsigned int speed)
10641 {
10642 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
10643 		do { \
10644 			if (speed == __speed) \
10645 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
10646 		} while (0)
10647 
10648 	TEST_SPEED_RETURN(400G, 400000);
10649 	TEST_SPEED_RETURN(200G, 200000);
10650 	TEST_SPEED_RETURN(100G, 100000);
10651 	TEST_SPEED_RETURN(50G,   50000);
10652 	TEST_SPEED_RETURN(40G,   40000);
10653 	TEST_SPEED_RETURN(25G,   25000);
10654 	TEST_SPEED_RETURN(10G,   10000);
10655 	TEST_SPEED_RETURN(1G,     1000);
10656 	TEST_SPEED_RETURN(100M,    100);
10657 
10658 	#undef TEST_SPEED_RETURN
10659 
10660 	return 0;
10661 }
10662 
10663 /*
10664  * Return the port capabilities bit for the highest speed in the capabilities.
10665  */
fwcap_top_speed(uint32_t caps)10666 uint32_t fwcap_top_speed(uint32_t caps)
10667 {
10668 	#define TEST_SPEED_RETURN(__caps_speed) \
10669 		do { \
10670 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
10671 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
10672 		} while (0)
10673 
10674 	TEST_SPEED_RETURN(400G);
10675 	TEST_SPEED_RETURN(200G);
10676 	TEST_SPEED_RETURN(100G);
10677 	TEST_SPEED_RETURN(50G);
10678 	TEST_SPEED_RETURN(40G);
10679 	TEST_SPEED_RETURN(25G);
10680 	TEST_SPEED_RETURN(10G);
10681 	TEST_SPEED_RETURN(1G);
10682 	TEST_SPEED_RETURN(100M);
10683 
10684 	#undef TEST_SPEED_RETURN
10685 
10686 	return 0;
10687 }
10688 
10689 /**
10690  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
10691  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
10692  *
10693  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
10694  *	32-bit Port Capabilities value.
10695  */
lstatus_to_fwcap(u32 lstatus)10696 static uint32_t lstatus_to_fwcap(u32 lstatus)
10697 {
10698 	uint32_t linkattr = 0;
10699 
10700 	/*
10701 	 * Unfortunately the format of the Link Status in the old
10702 	 * 16-bit Port Information message isn't the same as the
10703 	 * 16-bit Port Capabilities bitfield used everywhere else ...
10704 	 */
10705 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
10706 		linkattr |= FW_PORT_CAP32_FC_RX;
10707 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
10708 		linkattr |= FW_PORT_CAP32_FC_TX;
10709 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
10710 		linkattr |= FW_PORT_CAP32_SPEED_100M;
10711 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
10712 		linkattr |= FW_PORT_CAP32_SPEED_1G;
10713 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
10714 		linkattr |= FW_PORT_CAP32_SPEED_10G;
10715 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
10716 		linkattr |= FW_PORT_CAP32_SPEED_25G;
10717 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
10718 		linkattr |= FW_PORT_CAP32_SPEED_40G;
10719 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
10720 		linkattr |= FW_PORT_CAP32_SPEED_100G;
10721 
10722 	return linkattr;
10723 }
10724 
10725 /*
10726  * Updates all fields owned by the common code in port_info and link_config
10727  * based on information provided by the firmware.  Does not touch any
10728  * requested_* field.
10729  */
handle_port_info(struct port_info * pi,const struct fw_port_cmd * p,enum fw_port_action action,bool * mod_changed,bool * link_changed)10730 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
10731     enum fw_port_action action, bool *mod_changed, bool *link_changed)
10732 {
10733 	struct link_config old_lc, *lc = &pi->link_cfg;
10734 	unsigned char fc;
10735 	u32 stat, linkattr;
10736 	int old_ptype, old_mtype;
10737 
10738 	old_ptype = pi->port_type;
10739 	old_mtype = pi->mod_type;
10740 	old_lc = *lc;
10741 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
10742 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
10743 
10744 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
10745 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
10746 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
10747 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
10748 
10749 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
10750 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
10751 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
10752 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
10753 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
10754 
10755 		linkattr = lstatus_to_fwcap(stat);
10756 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
10757 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
10758 
10759 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
10760 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
10761 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
10762 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
10763 
10764 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
10765 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
10766 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
10767 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
10768 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
10769 
10770 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
10771 	} else {
10772 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
10773 		return;
10774 	}
10775 
10776 	lc->speed = fwcap_to_speed(linkattr);
10777 	lc->fec = fwcap_to_fec(linkattr, true);
10778 
10779 	fc = 0;
10780 	if (linkattr & FW_PORT_CAP32_FC_RX)
10781 		fc |= PAUSE_RX;
10782 	if (linkattr & FW_PORT_CAP32_FC_TX)
10783 		fc |= PAUSE_TX;
10784 	lc->fc = fc;
10785 
10786 	if (mod_changed != NULL)
10787 		*mod_changed = false;
10788 	if (link_changed != NULL)
10789 		*link_changed = false;
10790 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
10791 	    old_lc.pcaps != lc->pcaps) {
10792 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
10793 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
10794 		if (mod_changed != NULL)
10795 			*mod_changed = true;
10796 	}
10797 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
10798 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
10799 		if (link_changed != NULL)
10800 			*link_changed = true;
10801 	}
10802 }
10803 
10804 /**
10805  *	t4_update_port_info - retrieve and update port information if changed
10806  *	@pi: the port_info
10807  *
10808  *	We issue a Get Port Information Command to the Firmware and, if
10809  *	successful, we check to see if anything is different from what we
10810  *	last recorded and update things accordingly.
10811  */
t4_update_port_info(struct port_info * pi)10812  int t4_update_port_info(struct port_info *pi)
10813  {
10814 	struct adapter *sc = pi->adapter;
10815 	struct fw_port_cmd cmd;
10816 	enum fw_port_action action;
10817 	int ret;
10818 
10819 	memset(&cmd, 0, sizeof(cmd));
10820 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
10821 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
10822 	    V_FW_PORT_CMD_PORTID(pi->hw_port));
10823 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
10824 	    FW_PORT_ACTION_GET_PORT_INFO;
10825 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
10826 	    FW_LEN16(cmd));
10827 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
10828 	if (ret)
10829 		return ret;
10830 
10831 	handle_port_info(pi, &cmd, action, NULL, NULL);
10832 	return 0;
10833 }
10834 
10835 /**
10836  *	t4_handle_fw_rpl - process a FW reply message
10837  *	@adap: the adapter
10838  *	@rpl: start of the FW message
10839  *
10840  *	Processes a FW message, such as link state change messages.
10841  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)10842 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
10843 {
10844 	u8 opcode = *(const u8 *)rpl;
10845 	const struct fw_port_cmd *p = (const void *)rpl;
10846 	enum fw_port_action action =
10847 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
10848 	bool mod_changed, link_changed;
10849 
10850 	if (opcode == FW_PORT_CMD &&
10851 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
10852 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
10853 		/* link/module state change message */
10854 		int hw_port = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
10855 		int port_id = adap->port_map[hw_port];
10856 		struct port_info *pi;
10857 
10858 		MPASS(port_id >= 0 && port_id < adap->params.nports);
10859 		pi = adap->port[port_id];
10860 		PORT_LOCK(pi);
10861 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
10862 		PORT_UNLOCK(pi);
10863 		if (mod_changed)
10864 			t4_os_portmod_changed(pi);
10865 		if (link_changed) {
10866 			PORT_LOCK(pi);
10867 			t4_os_link_changed(pi);
10868 			PORT_UNLOCK(pi);
10869 		}
10870 	} else {
10871 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
10872 		return -EINVAL;
10873 	}
10874 	return 0;
10875 }
10876 
10877 /**
10878  *	get_pci_mode - determine a card's PCI mode
10879  *	@adapter: the adapter
10880  *	@p: where to store the PCI settings
10881  *
10882  *	Determines a card's PCI mode and associated parameters, such as speed
10883  *	and width.
10884  */
get_pci_mode(struct adapter * adapter,struct pci_params * p)10885 static void get_pci_mode(struct adapter *adapter,
10886 				   struct pci_params *p)
10887 {
10888 	u16 val;
10889 	u32 pcie_cap;
10890 
10891 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
10892 	if (pcie_cap) {
10893 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
10894 		p->speed = val & PCI_EXP_LNKSTA_CLS;
10895 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
10896 	}
10897 }
10898 
10899 struct flash_desc {
10900 	u32 vendor_and_model_id;
10901 	u32 size_mb;
10902 };
10903 
t4_get_flash_params(struct adapter * adapter)10904 int t4_get_flash_params(struct adapter *adapter)
10905 {
10906 	/*
10907 	 * Table for non-standard supported Flash parts.  Note, all Flash
10908 	 * parts must have 64KB sectors.
10909 	 */
10910 	static struct flash_desc supported_flash[] = {
10911 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
10912 	};
10913 
10914 	int ret;
10915 	u32 flashid = 0;
10916 	unsigned int part, manufacturer;
10917 	unsigned int density, size = 0;
10918 
10919 
10920 	/*
10921 	 * Issue a Read ID Command to the Flash part.  We decode supported
10922 	 * Flash parts and their sizes from this.  There's a newer Query
10923 	 * Command which can retrieve detailed geometry information but many
10924 	 * Flash parts don't support it.
10925 	 */
10926 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
10927 	if (!ret)
10928 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
10929 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
10930 	if (ret < 0)
10931 		return ret;
10932 
10933 	/*
10934 	 * Check to see if it's one of our non-standard supported Flash parts.
10935 	 */
10936 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
10937 		if (supported_flash[part].vendor_and_model_id == flashid) {
10938 			adapter->params.sf_size =
10939 				supported_flash[part].size_mb;
10940 			adapter->params.sf_nsec =
10941 				adapter->params.sf_size / SF_SEC_SIZE;
10942 			goto found;
10943 		}
10944 
10945 	/*
10946 	 * Decode Flash part size.  The code below looks repetative with
10947 	 * common encodings, but that's not guaranteed in the JEDEC
10948 	 * specification for the Read JADEC ID command.  The only thing that
10949 	 * we're guaranteed by the JADEC specification is where the
10950 	 * Manufacturer ID is in the returned result.  After that each
10951 	 * Manufacturer ~could~ encode things completely differently.
10952 	 * Note, all Flash parts must have 64KB sectors.
10953 	 */
10954 	manufacturer = flashid & 0xff;
10955 	switch (manufacturer) {
10956 	case 0x20: /* Micron/Numonix */
10957 		/*
10958 		 * This Density -> Size decoding table is taken from Micron
10959 		 * Data Sheets.
10960 		 */
10961 		density = (flashid >> 16) & 0xff;
10962 		switch (density) {
10963 		case 0x14: size = 1 << 20; break; /*   1MB */
10964 		case 0x15: size = 1 << 21; break; /*   2MB */
10965 		case 0x16: size = 1 << 22; break; /*   4MB */
10966 		case 0x17: size = 1 << 23; break; /*   8MB */
10967 		case 0x18: size = 1 << 24; break; /*  16MB */
10968 		case 0x19: size = 1 << 25; break; /*  32MB */
10969 		case 0x20: size = 1 << 26; break; /*  64MB */
10970 		case 0x21: size = 1 << 27; break; /* 128MB */
10971 		case 0x22: size = 1 << 28; break; /* 256MB */
10972 		}
10973 		break;
10974 
10975 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
10976 		/*
10977 		 * This Density -> Size decoding table is taken from ISSI
10978 		 * Data Sheets.
10979 		 */
10980 		density = (flashid >> 16) & 0xff;
10981 		switch (density) {
10982 		case 0x16: size = 1 << 25; break; /*  32MB */
10983 		case 0x17: size = 1 << 26; break; /*  64MB */
10984 		}
10985 		break;
10986 
10987 	case 0xc2: /* Macronix */
10988 		/*
10989 		 * This Density -> Size decoding table is taken from Macronix
10990 		 * Data Sheets.
10991 		 */
10992 		density = (flashid >> 16) & 0xff;
10993 		switch (density) {
10994 		case 0x17: size = 1 << 23; break; /*   8MB */
10995 		case 0x18: size = 1 << 24; break; /*  16MB */
10996 		}
10997 		break;
10998 
10999 	case 0xef: /* Winbond */
11000 		/*
11001 		 * This Density -> Size decoding table is taken from Winbond
11002 		 * Data Sheets.
11003 		 */
11004 		density = (flashid >> 16) & 0xff;
11005 		switch (density) {
11006 		case 0x17: size = 1 << 23; break; /*   8MB */
11007 		case 0x18: size = 1 << 24; break; /*  16MB */
11008 		}
11009 		break;
11010 	}
11011 
11012 	/* If we didn't recognize the FLASH part, that's no real issue: the
11013 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_ use a
11014 	 * FLASH part which has 64KB sectors and is at least 4MB or 16MB in
11015 	 * size, depending on the board.
11016 	 */
11017 	if (size == 0) {
11018 		size = chip_id(adapter) >= CHELSIO_T7 ? 16 : 4;
11019 		CH_WARN(adapter, "Unknown Flash Part %#x, assuming %uMB\n",
11020 		    flashid, size);
11021 		size <<= 20;
11022 	}
11023 
11024 	/*
11025 	 * Store decoded Flash size and fall through into vetting code.
11026 	 */
11027 	adapter->params.sf_size = size;
11028 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
11029 
11030  found:
11031 	/*
11032 	 * We should ~probably~ reject adapters with FLASHes which are too
11033 	 * small but we have some legacy FPGAs with small FLASHes that we'd
11034 	 * still like to use.  So instead we emit a scary message ...
11035 	 */
11036 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
11037 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
11038 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
11039 
11040 	return 0;
11041 }
11042 
set_pcie_completion_timeout(struct adapter * adapter,u8 range)11043 static void set_pcie_completion_timeout(struct adapter *adapter,
11044 						  u8 range)
11045 {
11046 	u16 val;
11047 	u32 pcie_cap;
11048 
11049 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
11050 	if (pcie_cap) {
11051 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
11052 		val &= 0xfff0;
11053 		val |= range ;
11054 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
11055 	}
11056 }
11057 
t4_get_chip_params(int chipid)11058 const struct chip_params *t4_get_chip_params(int chipid)
11059 {
11060 	static const struct chip_params chip_params[] = {
11061 		{
11062 			/* T4 */
11063 			.nchan = NCHAN,
11064 			.pm_stats_cnt = PM_NSTATS,
11065 			.cng_ch_bits_log = 2,
11066 			.nsched_cls = 15,
11067 			.cim_num_ibq = CIM_NUM_IBQ,
11068 			.cim_num_obq = CIM_NUM_OBQ,
11069 			.filter_opt_len = FILTER_OPT_LEN,
11070 			.filter_num_opt = S_FT_LAST + 1,
11071 			.mps_rplc_size = 128,
11072 			.vfcount = 128,
11073 			.sge_fl_db = F_DBPRIO,
11074 			.sge_ctxt_size = SGE_CTXT_SIZE,
11075 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
11076 			.rss_nentries = RSS_NENTRIES,
11077 			.cim_la_size = CIMLA_SIZE,
11078 		},
11079 		{
11080 			/* T5 */
11081 			.nchan = NCHAN,
11082 			.pm_stats_cnt = PM_NSTATS,
11083 			.cng_ch_bits_log = 2,
11084 			.nsched_cls = 16,
11085 			.cim_num_ibq = CIM_NUM_IBQ,
11086 			.cim_num_obq = CIM_NUM_OBQ_T5,
11087 			.filter_opt_len = T5_FILTER_OPT_LEN,
11088 			.filter_num_opt = S_FT_LAST + 1,
11089 			.mps_rplc_size = 128,
11090 			.vfcount = 128,
11091 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
11092 			.sge_ctxt_size = SGE_CTXT_SIZE,
11093 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
11094 			.rss_nentries = RSS_NENTRIES,
11095 			.cim_la_size = CIMLA_SIZE,
11096 		},
11097 		{
11098 			/* T6 */
11099 			.nchan = T6_NCHAN,
11100 			.pm_stats_cnt = T6_PM_NSTATS,
11101 			.cng_ch_bits_log = 3,
11102 			.nsched_cls = 16,
11103 			.cim_num_ibq = CIM_NUM_IBQ,
11104 			.cim_num_obq = CIM_NUM_OBQ_T5,
11105 			.filter_opt_len = T5_FILTER_OPT_LEN,
11106 			.filter_num_opt = S_FT_LAST + 1,
11107 			.mps_rplc_size = 256,
11108 			.vfcount = 256,
11109 			.sge_fl_db = 0,
11110 			.sge_ctxt_size = SGE_CTXT_SIZE,
11111 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
11112 			.rss_nentries = T6_RSS_NENTRIES,
11113 			.cim_la_size = CIMLA_SIZE_T6,
11114 		},
11115 		{
11116 			/* T7 */
11117 			.nchan = NCHAN,
11118 			.pm_stats_cnt = T6_PM_NSTATS,
11119 			.cng_ch_bits_log = 2,
11120 			.nsched_cls = 16,
11121 			.cim_num_ibq = CIM_NUM_IBQ_T7,
11122 			.cim_num_obq = CIM_NUM_OBQ_T7,
11123 			.filter_opt_len = T7_FILTER_OPT_LEN,
11124 			.filter_num_opt = S_T7_FT_LAST + 1,
11125 			.mps_rplc_size = 256,
11126 			.vfcount = 256,
11127 			.sge_fl_db = 0,
11128 			.sge_ctxt_size = SGE_CTXT_SIZE_T7,
11129 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES * 3,
11130 			.rss_nentries = T7_RSS_NENTRIES,
11131 			.cim_la_size = CIMLA_SIZE_T6,
11132 		},
11133 	};
11134 
11135 	chipid -= CHELSIO_T4;
11136 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
11137 		return NULL;
11138 
11139 	return &chip_params[chipid];
11140 }
11141 
11142 /**
11143  *	t4_prep_adapter - prepare SW and HW for operation
11144  *	@adapter: the adapter
11145  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
11146  *
11147  *	Initialize adapter SW state for the various HW modules, set initial
11148  *	values for some adapter tunables, take PHYs out of reset, and
11149  *	initialize the MDIO interface.
11150  */
t4_prep_adapter(struct adapter * adapter,u32 * buf)11151 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
11152 {
11153 	int ret;
11154 	uint16_t device_id;
11155 	uint32_t pl_rev;
11156 
11157 	get_pci_mode(adapter, &adapter->params.pci);
11158 
11159 	pl_rev = t4_read_reg(adapter, A_PL_REV);
11160 	adapter->params.chipid = G_CHIPID(pl_rev);
11161 	adapter->params.rev = G_REV(pl_rev);
11162 	if (adapter->params.chipid == 0) {
11163 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
11164 		adapter->params.chipid = CHELSIO_T4;
11165 
11166 		/* T4A1 chip is not supported */
11167 		if (adapter->params.rev == 1) {
11168 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
11169 			return -EINVAL;
11170 		}
11171 	}
11172 
11173 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
11174 	if (adapter->chip_params == NULL)
11175 		return -EINVAL;
11176 
11177 	adapter->params.pci.vpd_cap_addr =
11178 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
11179 
11180 	ret = t4_get_flash_params(adapter);
11181 	if (ret < 0)
11182 		return ret;
11183 
11184 	/* Cards with real ASICs have the chipid in the PCIe device id */
11185 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
11186 	if (device_id >> 12 == chip_id(adapter))
11187 		adapter->params.cim_la_size = adapter->chip_params->cim_la_size;
11188 	else {
11189 		/* FPGA */
11190 		adapter->params.fpga = 1;
11191 		adapter->params.cim_la_size = 2 * adapter->chip_params->cim_la_size;
11192 	}
11193 
11194 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
11195 	if (ret < 0)
11196 		return ret;
11197 
11198 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
11199 
11200 	/*
11201 	 * Default port and clock for debugging in case we can't reach FW.
11202 	 */
11203 	adapter->params.nports = 1;
11204 	adapter->params.portvec = 1;
11205 	adapter->params.vpd.cclk = 50000;
11206 
11207 	/* Set pci completion timeout value to 4 seconds. */
11208 	set_pcie_completion_timeout(adapter, 0xd);
11209 	return 0;
11210 }
11211 
11212 /**
11213  *	t4_shutdown_adapter - shut down adapter, host & wire
11214  *	@adapter: the adapter
11215  *
11216  *	Perform an emergency shutdown of the adapter and stop it from
11217  *	continuing any further communication on the ports or DMA to the
11218  *	host.  This is typically used when the adapter and/or firmware
11219  *	have crashed and we want to prevent any further accidental
11220  *	communication with the rest of the world.  This will also force
11221  *	the port Link Status to go down -- if register writes work --
11222  *	which should help our peers figure out that we're down.
11223  */
t4_shutdown_adapter(struct adapter * adapter)11224 int t4_shutdown_adapter(struct adapter *adapter)
11225 {
11226 	int port;
11227 	const bool bt = adapter->bt_map != 0;
11228 
11229 	t4_intr_disable(adapter);
11230 	if (bt)
11231 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
11232 	for_each_port(adapter, port) {
11233 		u32 a_port_cfg = is_t4(adapter) ?
11234 		    t4_port_reg(adapter, port, A_XGMAC_PORT_CFG) :
11235 		    t4_port_reg(adapter, port, A_MAC_PORT_CFG);
11236 
11237 		t4_write_reg(adapter, a_port_cfg,
11238 			     t4_read_reg(adapter, a_port_cfg)
11239 			     & ~V_SIGNAL_DET(1));
11240 		if (!bt) {
11241 			u32 hss_cfg0 = is_t4(adapter) ?
11242 			    t4_port_reg(adapter, port, A_XGMAC_PORT_HSS_CFG0) :
11243 			    t4_port_reg(adapter, port, A_MAC_PORT_HSS_CFG0);
11244 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
11245 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
11246 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
11247 			    F_HSSPLLBYPA);
11248 		}
11249 	}
11250 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
11251 
11252 	return 0;
11253 }
11254 
11255 /**
11256  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
11257  *	@adapter: the adapter
11258  *	@qid: the Queue ID
11259  *	@qtype: the Ingress or Egress type for @qid
11260  *	@user: true if this request is for a user mode queue
11261  *	@pbar2_qoffset: BAR2 Queue Offset
11262  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
11263  *
11264  *	Returns the BAR2 SGE Queue Registers information associated with the
11265  *	indicated Absolute Queue ID.  These are passed back in return value
11266  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
11267  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
11268  *
11269  *	This may return an error which indicates that BAR2 SGE Queue
11270  *	registers aren't available.  If an error is not returned, then the
11271  *	following values are returned:
11272  *
11273  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
11274  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
11275  *
11276  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
11277  *	require the "Inferred Queue ID" ability may be used.  E.g. the
11278  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
11279  *	then these "Inferred Queue ID" register may not be used.
11280  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)11281 int t4_bar2_sge_qregs(struct adapter *adapter,
11282 		      unsigned int qid,
11283 		      enum t4_bar2_qtype qtype,
11284 		      int user,
11285 		      u64 *pbar2_qoffset,
11286 		      unsigned int *pbar2_qid)
11287 {
11288 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
11289 	u64 bar2_page_offset, bar2_qoffset;
11290 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
11291 
11292 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
11293 	 * mode queues.
11294 	 */
11295 	if (!user && is_t4(adapter))
11296 		return -EINVAL;
11297 
11298 	/* Get our SGE Page Size parameters.
11299 	 */
11300 	page_shift = adapter->params.sge.page_shift;
11301 	page_size = 1 << page_shift;
11302 
11303 	/* Get the right Queues per Page parameters for our Queue.
11304 	 */
11305 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
11306 		     ? adapter->params.sge.eq_s_qpp
11307 		     : adapter->params.sge.iq_s_qpp);
11308 	qpp_mask = (1 << qpp_shift) - 1;
11309 
11310 	/* Calculate the basics of the BAR2 SGE Queue register area:
11311 	 *  o The BAR2 page the Queue registers will be in.
11312 	 *  o The BAR2 Queue ID.
11313 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
11314 	 */
11315 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
11316 	bar2_qid = qid & qpp_mask;
11317 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
11318 
11319 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
11320 	 * hardware will infer the Absolute Queue ID simply from the writes to
11321 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
11322 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
11323 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
11324 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
11325 	 * from the BAR2 Page and BAR2 Queue ID.
11326 	 *
11327 	 * One important censequence of this is that some BAR2 SGE registers
11328 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
11329 	 * there.  But other registers synthesize the SGE Queue ID purely
11330 	 * from the writes to the registers -- the Write Combined Doorbell
11331 	 * Buffer is a good example.  These BAR2 SGE Registers are only
11332 	 * available for those BAR2 SGE Register areas where the SGE Absolute
11333 	 * Queue ID can be inferred from simple writes.
11334 	 */
11335 	bar2_qoffset = bar2_page_offset;
11336 	bar2_qinferred = (bar2_qid_offset < page_size);
11337 	if (bar2_qinferred) {
11338 		bar2_qoffset += bar2_qid_offset;
11339 		bar2_qid = 0;
11340 	}
11341 
11342 	*pbar2_qoffset = bar2_qoffset;
11343 	*pbar2_qid = bar2_qid;
11344 	return 0;
11345 }
11346 
11347 /**
11348  *	t4_init_devlog_ncores_params - initialize adap->params.devlog and ncores
11349  *	@adap: the adapter
11350  *	@fw_attach: whether we can talk to the firmware
11351  */
t4_init_devlog_ncores_params(struct adapter * adap,int fw_attach)11352 int t4_init_devlog_ncores_params(struct adapter *adap, int fw_attach)
11353 {
11354 	struct devlog_params *dparams = &adap->params.devlog;
11355 	u32 pf_dparams;
11356 	unsigned int devlog_meminfo;
11357 	struct fw_devlog_cmd devlog_cmd;
11358 	int ret;
11359 
11360 	/* If we're dealing with newer firmware, the Device Log Paramerters
11361 	 * are stored in a designated register which allows us to access the
11362 	 * Device Log even if we can't talk to the firmware.
11363 	 */
11364 	pf_dparams =
11365 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
11366 	if (pf_dparams && pf_dparams != UINT32_MAX) {
11367 		unsigned int nentries, nentries128, ncore_shift;
11368 
11369 		ncore_shift = (G_PCIE_FW_PF_DEVLOG_COUNT_MSB(pf_dparams) << 1) |
11370 		    G_PCIE_FW_PF_DEVLOG_COUNT_LSB(pf_dparams);
11371 		adap->params.ncores = 1 << ncore_shift;
11372 
11373 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
11374 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
11375 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
11376 		nentries = (nentries128 + 1) * 128;
11377 		dparams->size = nentries * sizeof(struct fw_devlog_e);
11378 
11379 		return 0;
11380 	}
11381 
11382 	/*
11383 	 * For any failing returns ...
11384 	 */
11385 	adap->params.ncores = 1;
11386 	memset(dparams, 0, sizeof *dparams);
11387 
11388 	/*
11389 	 * If we can't talk to the firmware, there's really nothing we can do
11390 	 * at this point.
11391 	 */
11392 	if (!fw_attach)
11393 		return -ENXIO;
11394 
11395 	/* Otherwise, ask the firmware for it's Device Log Parameters.
11396 	 */
11397 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
11398 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11399 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11400 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11401 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
11402 			 &devlog_cmd);
11403 	if (ret)
11404 		return ret;
11405 
11406 	devlog_meminfo =
11407 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
11408 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
11409 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
11410 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
11411 
11412 	return 0;
11413 }
11414 
11415 /**
11416  *	t4_init_sge_params - initialize adap->params.sge
11417  *	@adapter: the adapter
11418  *
11419  *	Initialize various fields of the adapter's SGE Parameters structure.
11420  */
t4_init_sge_params(struct adapter * adapter)11421 int t4_init_sge_params(struct adapter *adapter)
11422 {
11423 	u32 r;
11424 	struct sge_params *sp = &adapter->params.sge;
11425 	unsigned i, tscale = 1;
11426 
11427 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
11428 	sp->counter_val[0] = G_THRESHOLD_0(r);
11429 	sp->counter_val[1] = G_THRESHOLD_1(r);
11430 	sp->counter_val[2] = G_THRESHOLD_2(r);
11431 	sp->counter_val[3] = G_THRESHOLD_3(r);
11432 
11433 	if (chip_id(adapter) >= CHELSIO_T6) {
11434 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
11435 		tscale = G_TSCALE(r);
11436 		if (tscale == 0)
11437 			tscale = 1;
11438 		else
11439 			tscale += 2;
11440 	}
11441 
11442 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
11443 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
11444 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
11445 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
11446 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
11447 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
11448 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
11449 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
11450 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
11451 
11452 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
11453 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
11454 	if (is_t4(adapter))
11455 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
11456 	else if (is_t5(adapter))
11457 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
11458 	else
11459 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
11460 
11461 	/* egress queues: log2 of # of doorbells per BAR2 page */
11462 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
11463 	r >>= S_QUEUESPERPAGEPF0 +
11464 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
11465 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
11466 
11467 	/* ingress queues: log2 of # of doorbells per BAR2 page */
11468 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
11469 	r >>= S_QUEUESPERPAGEPF0 +
11470 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
11471 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
11472 
11473 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
11474 	r >>= S_HOSTPAGESIZEPF0 +
11475 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
11476 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
11477 
11478 	r = t4_read_reg(adapter, A_SGE_CONTROL);
11479 	sp->sge_control = r;
11480 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
11481 	sp->fl_pktshift = G_PKTSHIFT(r);
11482 	if (chip_id(adapter) <= CHELSIO_T5) {
11483 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
11484 		    X_INGPADBOUNDARY_SHIFT);
11485 	} else {
11486 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
11487 		    X_T6_INGPADBOUNDARY_SHIFT);
11488 	}
11489 	if (is_t4(adapter))
11490 		sp->pack_boundary = sp->pad_boundary;
11491 	else {
11492 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
11493 		if (G_INGPACKBOUNDARY(r) == 0)
11494 			sp->pack_boundary = 16;
11495 		else
11496 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
11497 	}
11498 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
11499 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
11500 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
11501 
11502 	return 0;
11503 }
11504 
11505 /* Convert the LE's hardware hash mask to a shorter filter mask. */
11506 static inline uint16_t
hashmask_to_filtermask(struct adapter * adap,uint64_t hashmask,uint16_t filter_mode)11507 hashmask_to_filtermask(struct adapter *adap, uint64_t hashmask, uint16_t filter_mode)
11508 {
11509 	int first, last, i;
11510 	uint16_t filter_mask;
11511 	uint64_t mask;          /* field mask */
11512 
11513 
11514 	if (chip_id(adap) >= CHELSIO_T7) {
11515 		first = S_T7_FT_FIRST;
11516 		last = S_T7_FT_LAST;
11517 	} else {
11518 		first = S_FT_FIRST;
11519 		last = S_FT_LAST;
11520 	}
11521 
11522 	for (filter_mask = 0, i = first; i <= last; i++) {
11523 		if ((filter_mode & (1 << i)) == 0)
11524 			continue;
11525 		mask = (1 << t4_filter_field_width(adap, i)) - 1;
11526 		if ((hashmask & mask) == mask)
11527 			filter_mask |= 1 << i;
11528 		hashmask >>= t4_filter_field_width(adap, i);
11529 	}
11530 
11531 	return (filter_mask);
11532 }
11533 
11534 /*
11535  * Read and cache the adapter's compressed filter mode and ingress config.
11536  */
11537 static void
read_filter_mode_and_ingress_config(struct adapter * adap)11538 read_filter_mode_and_ingress_config(struct adapter *adap)
11539 {
11540 	int rc;
11541 	uint32_t v, param[2], val[2];
11542 	struct tp_params *tpp = &adap->params.tp;
11543 	uint64_t hash_mask;
11544 
11545 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11546 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
11547 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
11548 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11549 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
11550 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
11551 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
11552 	if (rc == 0) {
11553 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
11554 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
11555 		tpp->vnic_mode = val[1];
11556 	} else {
11557 		/*
11558 		 * Old firmware.  Read filter mode/mask and ingress config
11559 		 * straight from the hardware.
11560 		 */
11561 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
11562 		tpp->filter_mode = v & 0xffff;
11563 
11564 		hash_mask = 0;
11565 		if (chip_id(adap) > CHELSIO_T4) {
11566 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
11567 			hash_mask = v;
11568 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
11569 			hash_mask |= (u64)v << 32;
11570 		}
11571 		if (chip_id(adap) >= CHELSIO_T7) {
11572 			/*
11573 			 * This param came before T7 so T7+ firmwares should
11574 			 * always support this query.
11575 			 */
11576 			CH_WARN(adap, "query for filter mode/mask failed: %d\n",
11577 			    rc);
11578 		}
11579 		tpp->filter_mask = hashmask_to_filtermask(adap, hash_mask,
11580 		    tpp->filter_mode);
11581 
11582 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
11583 		if (v & F_VNIC)
11584 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
11585 		else
11586 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
11587 	}
11588 
11589 	/*
11590 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
11591 	 * shift positions of several elements of the Compressed Filter Tuple
11592 	 * for this adapter which we need frequently ...
11593 	 */
11594 	if (chip_id(adap) >= CHELSIO_T7) {
11595 		tpp->ipsecidx_shift = t4_filter_field_shift(adap, F_IPSECIDX);
11596 		tpp->fcoe_shift = t4_filter_field_shift(adap, F_T7_FCOE);
11597 		tpp->port_shift = t4_filter_field_shift(adap, F_T7_PORT);
11598 		tpp->vnic_shift = t4_filter_field_shift(adap, F_T7_VNIC_ID);
11599 		tpp->vlan_shift = t4_filter_field_shift(adap, F_T7_VLAN);
11600 		tpp->tos_shift = t4_filter_field_shift(adap, F_T7_TOS);
11601 		tpp->protocol_shift = t4_filter_field_shift(adap, F_T7_PROTOCOL);
11602 		tpp->ethertype_shift = t4_filter_field_shift(adap, F_T7_ETHERTYPE);
11603 		tpp->macmatch_shift = t4_filter_field_shift(adap, F_T7_MACMATCH);
11604 		tpp->matchtype_shift = t4_filter_field_shift(adap, F_T7_MPSHITTYPE);
11605 		tpp->frag_shift = t4_filter_field_shift(adap, F_T7_FRAGMENTATION);
11606 		tpp->roce_shift = t4_filter_field_shift(adap, F_ROCE);
11607 		tpp->synonly_shift = t4_filter_field_shift(adap, F_SYNONLY);
11608 		tpp->tcpflags_shift = t4_filter_field_shift(adap, F_TCPFLAGS);
11609 	} else {
11610 		tpp->ipsecidx_shift = -1;
11611 		tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
11612 		tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
11613 		tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
11614 		tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
11615 		tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
11616 		tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
11617 		tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
11618 		tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
11619 		tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
11620 		tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
11621 		tpp->roce_shift = -1;
11622 		tpp->synonly_shift = -1;
11623 		tpp->tcpflags_shift = -1;
11624 	}
11625 }
11626 
11627 /**
11628  *      t4_init_tp_params - initialize adap->params.tp
11629  *      @adap: the adapter
11630  *
11631  *      Initialize various fields of the adapter's TP Parameters structure.
11632  */
t4_init_tp_params(struct adapter * adap)11633 int t4_init_tp_params(struct adapter *adap)
11634 {
11635 	u32 tx_len, rx_len, r, v;
11636 	struct tp_params *tpp = &adap->params.tp;
11637 
11638 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
11639 	tpp->tre = G_TIMERRESOLUTION(v);
11640 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
11641 
11642 	read_filter_mode_and_ingress_config(adap);
11643 
11644 	tpp->rx_pkt_encap = false;
11645 	tpp->lb_mode = 0;
11646 	tpp->lb_nchan = 1;
11647 	if (chip_id(adap) > CHELSIO_T5) {
11648 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
11649 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
11650 		if (chip_id(adap) >= CHELSIO_T7) {
11651 			t4_tp_pio_read(adap, &v, 1, A_TP_CHANNEL_MAP, true);
11652 			tpp->lb_mode = G_T7_LB_MODE(v);
11653 			if (tpp->lb_mode == 1)
11654 				tpp->lb_nchan = 4;
11655 			else if (tpp->lb_mode == 2)
11656 				tpp->lb_nchan = 2;
11657 		}
11658 	}
11659 
11660 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
11661 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
11662 
11663 	r = t4_read_reg(adap, A_TP_PARA_REG2);
11664 	rx_len = min(rx_len, G_MAXRXDATA(r));
11665 	tx_len = min(tx_len, G_MAXRXDATA(r));
11666 
11667 	r = t4_read_reg(adap, A_TP_PARA_REG7);
11668 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
11669 	rx_len = min(rx_len, v);
11670 	tx_len = min(tx_len, v);
11671 
11672 	tpp->max_tx_pdu = tx_len;
11673 	tpp->max_rx_pdu = rx_len;
11674 
11675 	return 0;
11676 }
11677 
11678 /**
11679  *      t4_filter_field_width - returns the width of a filter field
11680  *      @adap: the adapter
11681  *      @filter_field: the filter field whose width is being requested
11682  *
11683  *      Return the shift position of a filter field within the Compressed
11684  *      Filter Tuple.  The filter field is specified via its selection bit
11685  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
11686  */
t4_filter_field_width(const struct adapter * adap,int filter_field)11687 int t4_filter_field_width(const struct adapter *adap, int filter_field)
11688 {
11689 	const int nopt = adap->chip_params->filter_num_opt;
11690 	static const uint8_t width_t7[] = {
11691 		W_FT_IPSECIDX,
11692 		W_FT_FCOE,
11693 		W_FT_PORT,
11694 		W_FT_VNIC_ID,
11695 		W_FT_VLAN,
11696 		W_FT_TOS,
11697 		W_FT_PROTOCOL,
11698 		W_FT_ETHERTYPE,
11699 		W_FT_MACMATCH,
11700 		W_FT_MPSHITTYPE,
11701 		W_FT_FRAGMENTATION,
11702 		W_FT_ROCE,
11703 		W_FT_SYNONLY,
11704 		W_FT_TCPFLAGS
11705 	};
11706 	static const uint8_t width_t4[] = {
11707 		W_FT_FCOE,
11708 		W_FT_PORT,
11709 		W_FT_VNIC_ID,
11710 		W_FT_VLAN,
11711 		W_FT_TOS,
11712 		W_FT_PROTOCOL,
11713 		W_FT_ETHERTYPE,
11714 		W_FT_MACMATCH,
11715 		W_FT_MPSHITTYPE,
11716 		W_FT_FRAGMENTATION
11717 	};
11718 	const uint8_t *width = chip_id(adap) >= CHELSIO_T7 ? width_t7 : width_t4;
11719 
11720 	if (filter_field < 0 || filter_field >= nopt)
11721 		return (0);
11722 	return (width[filter_field]);
11723 }
11724 
11725 /**
11726  *      t4_filter_field_shift - calculate filter field shift
11727  *      @adap: the adapter
11728  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
11729  *
11730  *      Return the shift position of a filter field within the Compressed
11731  *      Filter Tuple.  The filter field is specified via its selection bit
11732  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
11733  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)11734 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
11735 {
11736 	const unsigned int filter_mode = adap->params.tp.filter_mode;
11737 	unsigned int sel;
11738 	int field_shift;
11739 
11740 	if ((filter_mode & filter_sel) == 0)
11741 		return -1;
11742 
11743 	if (chip_id(adap) >= CHELSIO_T7) {
11744 		for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
11745 			switch (filter_mode & sel) {
11746 			case F_IPSECIDX:
11747 				field_shift += W_FT_IPSECIDX;
11748 				break;
11749 			case F_T7_FCOE:
11750 				field_shift += W_FT_FCOE;
11751 				break;
11752 			case F_T7_PORT:
11753 				field_shift += W_FT_PORT;
11754 				break;
11755 			case F_T7_VNIC_ID:
11756 				field_shift += W_FT_VNIC_ID;
11757 				break;
11758 			case F_T7_VLAN:
11759 				field_shift += W_FT_VLAN;
11760 				break;
11761 			case F_T7_TOS:
11762 				field_shift += W_FT_TOS;
11763 				break;
11764 			case F_T7_PROTOCOL:
11765 				field_shift += W_FT_PROTOCOL;
11766 				break;
11767 			case F_T7_ETHERTYPE:
11768 				field_shift += W_FT_ETHERTYPE;
11769 				break;
11770 			case F_T7_MACMATCH:
11771 				field_shift += W_FT_MACMATCH;
11772 				break;
11773 			case F_T7_MPSHITTYPE:
11774 				field_shift += W_FT_MPSHITTYPE;
11775 				break;
11776 			case F_T7_FRAGMENTATION:
11777 				field_shift += W_FT_FRAGMENTATION;
11778 				break;
11779 			case F_ROCE:
11780 				field_shift += W_FT_ROCE;
11781 				break;
11782 			case F_SYNONLY:
11783 				field_shift += W_FT_SYNONLY;
11784 				break;
11785 			case F_TCPFLAGS:
11786 				field_shift += W_FT_TCPFLAGS;
11787 				break;
11788 			}
11789 		}
11790 		return field_shift;
11791 	}
11792 
11793 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
11794 		switch (filter_mode & sel) {
11795 		case F_FCOE:
11796 			field_shift += W_FT_FCOE;
11797 			break;
11798 		case F_PORT:
11799 			field_shift += W_FT_PORT;
11800 			break;
11801 		case F_VNIC_ID:
11802 			field_shift += W_FT_VNIC_ID;
11803 			break;
11804 		case F_VLAN:
11805 			field_shift += W_FT_VLAN;
11806 			break;
11807 		case F_TOS:
11808 			field_shift += W_FT_TOS;
11809 			break;
11810 		case F_PROTOCOL:
11811 			field_shift += W_FT_PROTOCOL;
11812 			break;
11813 		case F_ETHERTYPE:
11814 			field_shift += W_FT_ETHERTYPE;
11815 			break;
11816 		case F_MACMATCH:
11817 			field_shift += W_FT_MACMATCH;
11818 			break;
11819 		case F_MPSHITTYPE:
11820 			field_shift += W_FT_MPSHITTYPE;
11821 			break;
11822 		case F_FRAGMENTATION:
11823 			field_shift += W_FT_FRAGMENTATION;
11824 			break;
11825 		}
11826 	}
11827 	return field_shift;
11828 }
11829 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf,int port_id)11830 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
11831 {
11832 	u8 addr[6];
11833 	int ret, i, j;
11834 	struct port_info *p = adap2pinfo(adap, port_id);
11835 	u32 param, val;
11836 	struct vi_info *vi = &p->vi[0];
11837 
11838 	for (i = 0, j = -1; i <= p->port_id; i++) {
11839 		do {
11840 			j++;
11841 		} while ((adap->params.portvec & (1 << j)) == 0);
11842 	}
11843 
11844 	p->hw_port = j;
11845 	p->tx_chan = t4_get_tx_c_chan(adap, j);
11846 	p->rx_chan = t4_get_rx_c_chan(adap, j);
11847 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
11848 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
11849 
11850 	if (!(adap->flags & IS_VF) ||
11851 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
11852  		t4_update_port_info(p);
11853 	}
11854 
11855 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
11856 	    &vi->vfvld, &vi->vin);
11857 	if (ret < 0)
11858 		return ret;
11859 
11860 	vi->viid = ret;
11861 	t4_os_set_hw_addr(p, addr);
11862 
11863 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11864 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
11865 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
11866 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
11867 	if (ret)
11868 		vi->rss_base = 0xffff;
11869 	else {
11870 		/* MPASS((val >> 16) == rss_size); */
11871 		vi->rss_base = val & 0xffff;
11872 	}
11873 
11874 	return 0;
11875 }
11876 
t4_read_cimq_cfg_ibq_core(struct adapter * adap,u8 coreid,u32 qid,u16 * base,u16 * size,u16 * thres)11877 static void t4_read_cimq_cfg_ibq_core(struct adapter *adap, u8 coreid, u32 qid,
11878 				      u16 *base, u16 *size, u16 *thres)
11879 {
11880 	unsigned int v, m;
11881 
11882 	if (chip_id(adap) > CHELSIO_T6) {
11883 		v = F_T7_IBQSELECT | V_T7_QUENUMSELECT(qid) |
11884 		    V_CORESELECT(coreid);
11885 		/* value is in 512-byte units */
11886 		m = 512;
11887 	} else {
11888 		v = F_IBQSELECT | V_QUENUMSELECT(qid);
11889 		/* value is in 256-byte units */
11890 		m = 256;
11891 	}
11892 
11893 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, v);
11894 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
11895 	if (base)
11896 		*base = G_CIMQBASE(v) * m;
11897 	if (size)
11898 		*size = G_CIMQSIZE(v) * m;
11899 	if (thres)
11900 		*thres = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
11901 }
11902 
t4_read_cimq_cfg_obq_core(struct adapter * adap,u8 coreid,u32 qid,u16 * base,u16 * size)11903 static void t4_read_cimq_cfg_obq_core(struct adapter *adap, u8 coreid, u32 qid,
11904 				      u16 *base, u16 *size)
11905 {
11906 	unsigned int v, m;
11907 
11908 	if (chip_id(adap) > CHELSIO_T6) {
11909 		v = F_T7_OBQSELECT | V_T7_QUENUMSELECT(qid) |
11910 		    V_CORESELECT(coreid);
11911 		/* value is in 512-byte units */
11912 		m = 512;
11913 	} else {
11914 		v = F_OBQSELECT | V_QUENUMSELECT(qid);
11915 		/* value is in 256-byte units */
11916 		m = 256;
11917 	}
11918 
11919 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, v);
11920 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
11921 	if (base)
11922 		*base = G_CIMQBASE(v) * m;
11923 	if (size)
11924 		*size = G_CIMQSIZE(v) * m;
11925 }
11926 
11927 /**
11928  *	t4_read_cimq_cfg_core - read CIM queue configuration on specific core
11929  *	@adap: the adapter
11930  *	@coreid: the uP coreid
11931  *	@base: holds the queue base addresses in bytes
11932  *	@size: holds the queue sizes in bytes
11933  *	@thres: holds the queue full thresholds in bytes
11934  *
11935  *	Returns the current configuration of the CIM queues, starting with
11936  *	the IBQs, then the OBQs, on a specific @coreid.
11937  */
t4_read_cimq_cfg_core(struct adapter * adap,u8 coreid,u16 * base,u16 * size,u16 * thres)11938 void t4_read_cimq_cfg_core(struct adapter *adap, u8 coreid, u16 *base,
11939 			   u16 *size, u16 *thres)
11940 {
11941 	unsigned int cim_num_ibq = adap->chip_params->cim_num_ibq;
11942 	unsigned int cim_num_obq = adap->chip_params->cim_num_obq;
11943 	unsigned int i;
11944 
11945 	for (i = 0; i < cim_num_ibq; i++, base++, size++, thres++)
11946 		t4_read_cimq_cfg_ibq_core(adap, coreid, i, base, size, thres);
11947 
11948 	for (i = 0; i < cim_num_obq; i++, base++, size++)
11949 		t4_read_cimq_cfg_obq_core(adap, coreid, i, base, size);
11950 }
11951 
t4_read_cim_ibq_data_core(struct adapter * adap,u8 coreid,u32 addr,u32 * data)11952 static int t4_read_cim_ibq_data_core(struct adapter *adap, u8 coreid, u32 addr,
11953 				     u32 *data)
11954 {
11955 	int ret, attempts;
11956 	unsigned int v;
11957 
11958 	/* It might take 3-10ms before the IBQ debug read access is allowed.
11959 	 * Wait for 1 Sec with a delay of 1 usec.
11960 	 */
11961 	attempts = 1000000;
11962 
11963 	if (chip_id(adap) > CHELSIO_T6)
11964 		v = V_T7_IBQDBGADDR(addr) | V_IBQDBGCORE(coreid);
11965 	else
11966 		v = V_IBQDBGADDR(addr);
11967 
11968 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, v | F_IBQDBGEN);
11969 	ret = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
11970 			      attempts, 1);
11971 	if (ret)
11972 		return ret;
11973 
11974 	*data = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
11975 	return 0;
11976 }
11977 
11978 /**
11979  *	t4_read_cim_ibq_core - read the contents of a CIM inbound queue on
11980  *	specific core
11981  *	@adap: the adapter
11982  *	@coreid: the uP coreid
11983  *	@qid: the queue index
11984  *	@data: where to store the queue contents
11985  *	@n: capacity of @data in 32-bit words
11986  *
11987  *	Reads the contents of the selected CIM queue starting at address 0 up
11988  *	to the capacity of @data on a specific @coreid.  @n must be a multiple
11989  *	of 4.  Returns < 0 on error and the number of 32-bit words actually
11990  *	read on success.
11991  */
t4_read_cim_ibq_core(struct adapter * adap,u8 coreid,u32 qid,u32 * data,size_t n)11992 int t4_read_cim_ibq_core(struct adapter *adap, u8 coreid, u32 qid, u32 *data,
11993 			 size_t n)
11994 {
11995 	unsigned int cim_num_ibq = adap->chip_params->cim_num_ibq;
11996 	u16 i, addr, nwords;
11997 	int ret;
11998 
11999 	if (qid > (cim_num_ibq - 1) || (n & 3))
12000 		return -EINVAL;
12001 
12002 	t4_read_cimq_cfg_ibq_core(adap, coreid, qid, &addr, &nwords, NULL);
12003 	addr >>= sizeof(u16);
12004 	nwords >>= sizeof(u16);
12005 	if (n > nwords)
12006 		n = nwords;
12007 
12008 	for (i = 0; i < n; i++, addr++, data++) {
12009 		ret = t4_read_cim_ibq_data_core(adap, coreid, addr, data);
12010 		if (ret < 0)
12011 			return ret;
12012 	}
12013 
12014 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
12015 	return i;
12016 }
12017 
t4_read_cim_obq_data_core(struct adapter * adap,u8 coreid,u32 addr,u32 * data)12018 static int t4_read_cim_obq_data_core(struct adapter *adap, u8 coreid, u32 addr,
12019 				     u32 *data)
12020 {
12021 	unsigned int v;
12022 	int ret;
12023 
12024 	if (chip_id(adap) > CHELSIO_T6)
12025 		v = V_T7_OBQDBGADDR(addr) | V_OBQDBGCORE(coreid);
12026 	else
12027 		v = V_OBQDBGADDR(addr);
12028 
12029 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, v | F_OBQDBGEN);
12030 	ret = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 2, 1);
12031 	if (ret)
12032 		return ret;
12033 
12034 	*data = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
12035 	return 0;
12036 }
12037 
12038 /**
12039  *	t4_read_cim_obq_core - read the contents of a CIM outbound queue on
12040  *	specific core
12041  *	@adap: the adapter
12042  *	@coreid: the uP coreid
12043  *	@qid: the queue index
12044  *	@data: where to store the queue contents
12045  *	@n: capacity of @data in 32-bit words
12046  *
12047  *	Reads the contents of the selected CIM queue starting at address 0 up
12048  *	to the capacity of @data on specific @coreid.  @n must be a multiple
12049  *	of 4.  Returns < 0 on error and the number of 32-bit words actually
12050  *	read on success.
12051  */
t4_read_cim_obq_core(struct adapter * adap,u8 coreid,u32 qid,u32 * data,size_t n)12052 int t4_read_cim_obq_core(struct adapter *adap, u8 coreid, u32 qid, u32 *data,
12053 			 size_t n)
12054 {
12055 	unsigned int cim_num_obq = adap->chip_params->cim_num_obq;
12056 	u16 i, addr, nwords;
12057 	int ret;
12058 
12059 	if ((qid > (cim_num_obq - 1)) || (n & 3))
12060 		return -EINVAL;
12061 
12062 	t4_read_cimq_cfg_obq_core(adap, coreid, qid, &addr, &nwords);
12063 	addr >>= sizeof(u16);
12064 	nwords >>= sizeof(u16);
12065 	if (n > nwords)
12066 		n = nwords;
12067 
12068 	for (i = 0; i < n; i++, addr++, data++) {
12069 		ret = t4_read_cim_obq_data_core(adap, coreid, addr, data);
12070 		if (ret < 0)
12071 			return ret;
12072 	}
12073 
12074 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
12075  	return i;
12076 }
12077 
12078 /**
12079  *	t4_cim_read_core - read a block from CIM internal address space
12080  *	of a control register group on specific core.
12081  *	@adap: the adapter
12082  *	@group: the control register group to select for read
12083  *	@coreid: the uP coreid
12084  *	@addr: the start address within the CIM address space
12085  *	@n: number of words to read
12086  *	@valp: where to store the result
12087  *
12088  *	Reads a block of 4-byte words from the CIM intenal address space
12089  *	of a control register @group on a specific @coreid.
12090  */
t4_cim_read_core(struct adapter * adap,u8 group,u8 coreid,unsigned int addr,unsigned int n,unsigned int * valp)12091 int t4_cim_read_core(struct adapter *adap, u8 group, u8 coreid,
12092 		     unsigned int addr, unsigned int n,
12093 		     unsigned int *valp)
12094 {
12095 	unsigned int hostbusy, v = 0;
12096 	int ret = 0;
12097 
12098 	if (chip_id(adap) > CHELSIO_T6) {
12099 		hostbusy = F_T7_HOSTBUSY;
12100 		v = V_HOSTGRPSEL(group) | V_HOSTCORESEL(coreid);
12101 	} else {
12102 		hostbusy = F_HOSTBUSY;
12103 	}
12104 
12105 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & hostbusy)
12106 		return -EBUSY;
12107 
12108 	for ( ; !ret && n--; addr += 4) {
12109 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | v);
12110 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, hostbusy,
12111 				      0, 5, 2);
12112 		if (!ret)
12113 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
12114 	}
12115 
12116 	return ret;
12117 }
12118 
12119 /**
12120  *	t4_cim_write_core - write a block into CIM internal address space
12121  *	of a control register group on specific core.
12122  *	@adap: the adapter
12123  *	@group: the control register group to select for write
12124  *	@coreid: the uP coreid
12125  *	@addr: the start address within the CIM address space
12126  *	@n: number of words to write
12127  *	@valp: set of values to write
12128  *
12129  *	Writes a block of 4-byte words into the CIM intenal address space
12130  *	of a control register @group on a specific @coreid.
12131  */
t4_cim_write_core(struct adapter * adap,u8 group,u8 coreid,unsigned int addr,unsigned int n,const unsigned int * valp)12132 int t4_cim_write_core(struct adapter *adap, u8 group, u8 coreid,
12133 		      unsigned int addr, unsigned int n,
12134 		      const unsigned int *valp)
12135 {
12136 	unsigned int hostbusy, v;
12137 	int ret = 0;
12138 
12139 	if (chip_id(adap) > CHELSIO_T6) {
12140 		hostbusy = F_T7_HOSTBUSY;
12141 		v = F_T7_HOSTWRITE | V_HOSTGRPSEL(group) |
12142 		    V_HOSTCORESEL(coreid);
12143 	} else {
12144 		hostbusy = F_HOSTBUSY;
12145 		v = F_HOSTWRITE;
12146 	}
12147 
12148 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & hostbusy)
12149 		return -EBUSY;
12150 
12151 	for ( ; !ret && n--; addr += 4) {
12152 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
12153 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | v);
12154 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, hostbusy,
12155 				      0, 5, 2);
12156 	}
12157 
12158 	return ret;
12159 }
12160 
12161 /**
12162  *	t4_cim_read_la_core - read CIM LA capture buffer on specific core
12163  *	@adap: the adapter
12164  *	@coreid: uP coreid
12165  *	@la_buf: where to store the LA data
12166  *	@wrptr: the HW write pointer within the capture buffer
12167  *
12168  *	Reads the contents of the CIM LA buffer on a specific @coreid
12169  *	with the most recent entry at the end of the returned data
12170  *	and with the entry at @wrptr first. We try to leave the LA
12171  *	in the running state we find it in.
12172  */
t4_cim_read_la_core(struct adapter * adap,u8 coreid,u32 * la_buf,u32 * wrptr)12173 int t4_cim_read_la_core(struct adapter *adap, u8 coreid, u32 *la_buf,
12174 			u32 *wrptr)
12175 {
12176 	unsigned int cfg, val, idx;
12177 	int i, ret;
12178 
12179 	ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, &cfg);
12180 	if (ret)
12181 		return ret;
12182 
12183 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
12184 		val = 0;
12185 		ret = t4_cim_write_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12186 					&val);
12187 		if (ret)
12188 			return ret;
12189 	}
12190 
12191 	ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, &val);
12192 	if (ret)
12193 		goto restart;
12194 
12195 	idx = G_UPDBGLAWRPTR(val);
12196 	if (wrptr)
12197 		*wrptr = idx;
12198 
12199 	for (i = 0; i < adap->params.cim_la_size; i++) {
12200 		val = V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN;
12201 		ret = t4_cim_write_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12202 					&val);
12203 		if (ret)
12204 			break;
12205 		ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12206 				       &val);
12207 		if (ret)
12208 			break;
12209 		if (val & F_UPDBGLARDEN) {
12210 			ret = -ETIMEDOUT;
12211 			break;
12212 		}
12213 		ret = t4_cim_read_core(adap, 1, coreid, A_UP_UP_DBG_LA_DATA, 1,
12214 				       &la_buf[i]);
12215 		if (ret)
12216 			break;
12217 
12218 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
12219 		 * identify the 32-bit portion of the full 312-bit data
12220 		 */
12221 		if ((chip_id(adap) > CHELSIO_T5) && (idx & 0xf) >= 9)
12222 			idx = (idx & 0xff0) + 0x10;
12223 		else
12224 			idx++;
12225 		/* address can't exceed 0xfff */
12226 		idx &= M_UPDBGLARDPTR;
12227 	}
12228 restart:
12229 	if (cfg & F_UPDBGLAEN) {
12230 		int r;
12231 
12232 		val = cfg & ~F_UPDBGLARDEN;
12233 		r = t4_cim_write_core(adap, 1, coreid, A_UP_UP_DBG_LA_CFG, 1,
12234 				      &val);
12235 		if (!ret)
12236 			ret = r;
12237 	}
12238 
12239 	return ret;
12240 }
12241 
12242 /**
12243  *	t4_tp_read_la - read TP LA capture buffer
12244  *	@adap: the adapter
12245  *	@la_buf: where to store the LA data
12246  *	@wrptr: the HW write pointer within the capture buffer
12247  *
12248  *	Reads the contents of the TP LA buffer with the most recent entry at
12249  *	the end	of the returned data and with the entry at @wrptr first.
12250  *	We leave the LA in the running state we find it in.
12251  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)12252 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
12253 {
12254 	bool last_incomplete;
12255 	unsigned int i, cfg, val, idx;
12256 
12257 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
12258 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
12259 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
12260 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
12261 
12262 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
12263 	idx = G_DBGLAWPTR(val);
12264 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
12265 	if (last_incomplete)
12266 		idx = (idx + 1) & M_DBGLARPTR;
12267 	if (wrptr)
12268 		*wrptr = idx;
12269 
12270 	val &= 0xffff;
12271 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
12272 	val |= adap->params.tp.la_mask;
12273 
12274 	for (i = 0; i < TPLA_SIZE; i++) {
12275 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
12276 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
12277 		idx = (idx + 1) & M_DBGLARPTR;
12278 	}
12279 
12280 	/* Wipe out last entry if it isn't valid */
12281 	if (last_incomplete)
12282 		la_buf[TPLA_SIZE - 1] = ~0ULL;
12283 
12284 	if (cfg & F_DBGLAENABLE)		/* restore running state */
12285 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
12286 			     cfg | adap->params.tp.la_mask);
12287 }
12288 
12289 /*
12290  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
12291  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
12292  * state for more than the Warning Threshold then we'll issue a warning about
12293  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
12294  * appears to be hung every Warning Repeat second till the situation clears.
12295  * If the situation clears, we'll note that as well.
12296  */
12297 #define SGE_IDMA_WARN_THRESH 1
12298 #define SGE_IDMA_WARN_REPEAT 300
12299 
12300 /**
12301  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
12302  *	@adapter: the adapter
12303  *	@idma: the adapter IDMA Monitor state
12304  *
12305  *	Initialize the state of an SGE Ingress DMA Monitor.
12306  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)12307 void t4_idma_monitor_init(struct adapter *adapter,
12308 			  struct sge_idma_monitor_state *idma)
12309 {
12310 	/* Initialize the state variables for detecting an SGE Ingress DMA
12311 	 * hang.  The SGE has internal counters which count up on each clock
12312 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
12313 	 * same state they were on the previous clock tick.  The clock used is
12314 	 * the Core Clock so we have a limit on the maximum "time" they can
12315 	 * record; typically a very small number of seconds.  For instance,
12316 	 * with a 600MHz Core Clock, we can only count up to a bit more than
12317 	 * 7s.  So we'll synthesize a larger counter in order to not run the
12318 	 * risk of having the "timers" overflow and give us the flexibility to
12319 	 * maintain a Hung SGE State Machine of our own which operates across
12320 	 * a longer time frame.
12321 	 */
12322 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
12323 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
12324 }
12325 
12326 /**
12327  *	t4_idma_monitor - monitor SGE Ingress DMA state
12328  *	@adapter: the adapter
12329  *	@idma: the adapter IDMA Monitor state
12330  *	@hz: number of ticks/second
12331  *	@ticks: number of ticks since the last IDMA Monitor call
12332  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)12333 void t4_idma_monitor(struct adapter *adapter,
12334 		     struct sge_idma_monitor_state *idma,
12335 		     int hz, int ticks)
12336 {
12337 	int i, idma_same_state_cnt[2];
12338 
12339 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
12340 	  * are counters inside the SGE which count up on each clock when the
12341 	  * SGE finds its Ingress DMA State Engines in the same states they
12342 	  * were in the previous clock.  The counters will peg out at
12343 	  * 0xffffffff without wrapping around so once they pass the 1s
12344 	  * threshold they'll stay above that till the IDMA state changes.
12345 	  */
12346 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
12347 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
12348 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
12349 
12350 	for (i = 0; i < 2; i++) {
12351 		u32 debug0, debug11;
12352 
12353 		/* If the Ingress DMA Same State Counter ("timer") is less
12354 		 * than 1s, then we can reset our synthesized Stall Timer and
12355 		 * continue.  If we have previously emitted warnings about a
12356 		 * potential stalled Ingress Queue, issue a note indicating
12357 		 * that the Ingress Queue has resumed forward progress.
12358 		 */
12359 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
12360 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
12361 				CH_WARN(adapter, "SGE idma%d, queue %u, "
12362 					"resumed after %d seconds\n",
12363 					i, idma->idma_qid[i],
12364 					idma->idma_stalled[i]/hz);
12365 			idma->idma_stalled[i] = 0;
12366 			continue;
12367 		}
12368 
12369 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
12370 		 * domain.  The first time we get here it'll be because we
12371 		 * passed the 1s Threshold; each additional time it'll be
12372 		 * because the RX Timer Callback is being fired on its regular
12373 		 * schedule.
12374 		 *
12375 		 * If the stall is below our Potential Hung Ingress Queue
12376 		 * Warning Threshold, continue.
12377 		 */
12378 		if (idma->idma_stalled[i] == 0) {
12379 			idma->idma_stalled[i] = hz;
12380 			idma->idma_warn[i] = 0;
12381 		} else {
12382 			idma->idma_stalled[i] += ticks;
12383 			idma->idma_warn[i] -= ticks;
12384 		}
12385 
12386 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
12387 			continue;
12388 
12389 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
12390 		 */
12391 		if (idma->idma_warn[i] > 0)
12392 			continue;
12393 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
12394 
12395 		/* Read and save the SGE IDMA State and Queue ID information.
12396 		 * We do this every time in case it changes across time ...
12397 		 * can't be too careful ...
12398 		 */
12399 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
12400 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
12401 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
12402 
12403 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
12404 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
12405 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
12406 
12407 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
12408 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
12409 			i, idma->idma_qid[i], idma->idma_state[i],
12410 			idma->idma_stalled[i]/hz,
12411 			debug0, debug11);
12412 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
12413 	}
12414 }
12415 
12416 /**
12417  *     t4_set_vf_mac - Set MAC address for the specified VF
12418  *     @adapter: The adapter
12419  *     @pf: the PF used to instantiate the VFs
12420  *     @vf: one of the VFs instantiated by the specified PF
12421  *     @naddr: the number of MAC addresses
12422  *     @addr: the MAC address(es) to be set to the specified VF
12423  */
t4_set_vf_mac(struct adapter * adapter,unsigned int pf,unsigned int vf,unsigned int naddr,u8 * addr)12424 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
12425 		  unsigned int naddr, u8 *addr)
12426 {
12427 	struct fw_acl_mac_cmd cmd;
12428 
12429 	memset(&cmd, 0, sizeof(cmd));
12430 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
12431 				    F_FW_CMD_REQUEST |
12432 				    F_FW_CMD_WRITE |
12433 				    V_FW_ACL_MAC_CMD_PFN(pf) |
12434 				    V_FW_ACL_MAC_CMD_VFN(vf));
12435 
12436 	/* Note: Do not enable the ACL */
12437 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
12438 	cmd.nmac = naddr;
12439 
12440 	switch (pf) {
12441 	case 3:
12442 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
12443 		break;
12444 	case 2:
12445 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
12446 		break;
12447 	case 1:
12448 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
12449 		break;
12450 	case 0:
12451 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
12452 		break;
12453 	}
12454 
12455 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
12456 }
12457 
12458 /**
12459  *	t4_read_pace_tbl - read the pace table
12460  *	@adap: the adapter
12461  *	@pace_vals: holds the returned values
12462  *
12463  *	Returns the values of TP's pace table in microseconds.
12464  */
t4_read_pace_tbl(struct adapter * adap,unsigned int pace_vals[NTX_SCHED])12465 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
12466 {
12467 	unsigned int i, v;
12468 
12469 	for (i = 0; i < NTX_SCHED; i++) {
12470 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
12471 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
12472 		pace_vals[i] = dack_ticks_to_usec(adap, v);
12473 	}
12474 }
12475 
12476 /**
12477  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
12478  *	@adap: the adapter
12479  *	@sched: the scheduler index
12480  *	@kbps: the byte rate in Kbps
12481  *	@ipg: the interpacket delay in tenths of nanoseconds
12482  *
12483  *	Return the current configuration of a HW Tx scheduler.
12484  */
t4_get_tx_sched(struct adapter * adap,unsigned int sched,unsigned int * kbps,unsigned int * ipg,bool sleep_ok)12485 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
12486 		     unsigned int *ipg, bool sleep_ok)
12487 {
12488 	unsigned int v, addr, bpt, cpt;
12489 
12490 	if (kbps) {
12491 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
12492 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
12493 		if (sched & 1)
12494 			v >>= 16;
12495 		bpt = (v >> 8) & 0xff;
12496 		cpt = v & 0xff;
12497 		if (!cpt)
12498 			*kbps = 0;	/* scheduler disabled */
12499 		else {
12500 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
12501 			*kbps = (v * bpt) / 125;
12502 		}
12503 	}
12504 	if (ipg) {
12505 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
12506 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
12507 		if (sched & 1)
12508 			v >>= 16;
12509 		v &= 0xffff;
12510 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
12511 	}
12512 }
12513 
12514 /**
12515  *	t4_load_cfg - download config file
12516  *	@adap: the adapter
12517  *	@cfg_data: the cfg text file to write
12518  *	@size: text file size
12519  *
12520  *	Write the supplied config text file to the card's serial flash.
12521  */
t4_load_cfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)12522 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
12523 {
12524 	int ret, i, n, cfg_addr;
12525 	unsigned int addr, len;
12526 	unsigned int flash_cfg_start_sec;
12527 
12528 	cfg_addr = t4_flash_cfg_addr(adap, &len);
12529 	if (cfg_addr < 0)
12530 		return cfg_addr;
12531 
12532 	if (size > len) {
12533 		CH_ERR(adap, "cfg file too large, max is %u bytes\n", len);
12534 		return -EFBIG;
12535 	}
12536 
12537 	flash_cfg_start_sec = cfg_addr / SF_SEC_SIZE;
12538 	i = DIV_ROUND_UP(len, SF_SEC_SIZE);
12539 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
12540 				     flash_cfg_start_sec + i - 1);
12541 	/*
12542 	 * If size == 0 then we're simply erasing the FLASH sectors associated
12543 	 * with the on-adapter Firmware Configuration File.
12544 	 */
12545 	if (ret || size == 0)
12546 		goto out;
12547 
12548 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
12549 	addr = cfg_addr;
12550 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
12551 		n = min(size - i, SF_PAGE_SIZE);
12552 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
12553 		if (ret)
12554 			goto out;
12555 		addr += SF_PAGE_SIZE;
12556 		cfg_data += SF_PAGE_SIZE;
12557 	}
12558 
12559 out:
12560 	if (ret)
12561 		CH_ERR(adap, "config file %s failed %d\n",
12562 		       (size == 0 ? "clear" : "download"), ret);
12563 	return ret;
12564 }
12565 
12566 /**
12567  *	t5_fw_init_extern_mem - initialize the external memory
12568  *	@adap: the adapter
12569  *
12570  *	Initializes the external memory on T5.
12571  */
t5_fw_init_extern_mem(struct adapter * adap)12572 int t5_fw_init_extern_mem(struct adapter *adap)
12573 {
12574 	u32 params[1], val[1];
12575 	int ret;
12576 
12577 	if (!is_t5(adap))
12578 		return 0;
12579 
12580 	val[0] = 0xff; /* Initialize all MCs */
12581 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
12582 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
12583 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
12584 			FW_CMD_MAX_TIMEOUT);
12585 
12586 	return ret;
12587 }
12588 
12589 /* BIOS boot headers */
12590 typedef struct pci_expansion_rom_header {
12591 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
12592 	u8	reserved[22]; /* Reserved per processor Architecture data */
12593 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
12594 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
12595 
12596 /* Legacy PCI Expansion ROM Header */
12597 typedef struct legacy_pci_expansion_rom_header {
12598 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
12599 	u8	size512; /* Current Image Size in units of 512 bytes */
12600 	u8	initentry_point[4];
12601 	u8	cksum; /* Checksum computed on the entire Image */
12602 	u8	reserved[16]; /* Reserved */
12603 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
12604 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
12605 
12606 /* EFI PCI Expansion ROM Header */
12607 typedef struct efi_pci_expansion_rom_header {
12608 	u8	signature[2]; // ROM signature. The value 0xaa55
12609 	u8	initialization_size[2]; /* Units 512. Includes this header */
12610 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
12611 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
12612 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
12613 	u8	compression_type[2]; /* Compression type. */
12614 		/*
12615 		 * Compression type definition
12616 		 * 0x0: uncompressed
12617 		 * 0x1: Compressed
12618 		 * 0x2-0xFFFF: Reserved
12619 		 */
12620 	u8	reserved[8]; /* Reserved */
12621 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
12622 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
12623 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
12624 
12625 /* PCI Data Structure Format */
12626 typedef struct pcir_data_structure { /* PCI Data Structure */
12627 	u8	signature[4]; /* Signature. The string "PCIR" */
12628 	u8	vendor_id[2]; /* Vendor Identification */
12629 	u8	device_id[2]; /* Device Identification */
12630 	u8	vital_product[2]; /* Pointer to Vital Product Data */
12631 	u8	length[2]; /* PCIR Data Structure Length */
12632 	u8	revision; /* PCIR Data Structure Revision */
12633 	u8	class_code[3]; /* Class Code */
12634 	u8	image_length[2]; /* Image Length. Multiple of 512B */
12635 	u8	code_revision[2]; /* Revision Level of Code/Data */
12636 	u8	code_type; /* Code Type. */
12637 		/*
12638 		 * PCI Expansion ROM Code Types
12639 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
12640 		 * 0x01: Open Firmware standard for PCI. FCODE
12641 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
12642 		 * 0x03: EFI Image. EFI
12643 		 * 0x04-0xFF: Reserved.
12644 		 */
12645 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
12646 	u8	reserved[2]; /* Reserved */
12647 } pcir_data_t; /* PCI__DATA_STRUCTURE */
12648 
12649 /* BOOT constants */
12650 enum {
12651 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
12652 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
12653 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
12654 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
12655 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
12656 	VENDOR_ID = 0x1425, /* Vendor ID */
12657 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
12658 };
12659 
12660 /*
12661  *	modify_device_id - Modifies the device ID of the Boot BIOS image
12662  *	@adatper: the device ID to write.
12663  *	@boot_data: the boot image to modify.
12664  *
12665  *	Write the supplied device ID to the boot BIOS image.
12666  */
modify_device_id(int device_id,u8 * boot_data)12667 static void modify_device_id(int device_id, u8 *boot_data)
12668 {
12669 	legacy_pci_exp_rom_header_t *header;
12670 	pcir_data_t *pcir_header;
12671 	u32 cur_header = 0;
12672 
12673 	/*
12674 	 * Loop through all chained images and change the device ID's
12675 	 */
12676 	while (1) {
12677 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
12678 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
12679 			      le16_to_cpu(*(u16*)header->pcir_offset)];
12680 
12681 		/*
12682 		 * Only modify the Device ID if code type is Legacy or HP.
12683 		 * 0x00: Okay to modify
12684 		 * 0x01: FCODE. Do not be modify
12685 		 * 0x03: Okay to modify
12686 		 * 0x04-0xFF: Do not modify
12687 		 */
12688 		if (pcir_header->code_type == 0x00) {
12689 			u8 csum = 0;
12690 			int i;
12691 
12692 			/*
12693 			 * Modify Device ID to match current adatper
12694 			 */
12695 			*(u16*) pcir_header->device_id = device_id;
12696 
12697 			/*
12698 			 * Set checksum temporarily to 0.
12699 			 * We will recalculate it later.
12700 			 */
12701 			header->cksum = 0x0;
12702 
12703 			/*
12704 			 * Calculate and update checksum
12705 			 */
12706 			for (i = 0; i < (header->size512 * 512); i++)
12707 				csum += (u8)boot_data[cur_header + i];
12708 
12709 			/*
12710 			 * Invert summed value to create the checksum
12711 			 * Writing new checksum value directly to the boot data
12712 			 */
12713 			boot_data[cur_header + 7] = -csum;
12714 
12715 		} else if (pcir_header->code_type == 0x03) {
12716 
12717 			/*
12718 			 * Modify Device ID to match current adatper
12719 			 */
12720 			*(u16*) pcir_header->device_id = device_id;
12721 
12722 		}
12723 
12724 
12725 		/*
12726 		 * Check indicator element to identify if this is the last
12727 		 * image in the ROM.
12728 		 */
12729 		if (pcir_header->indicator & 0x80)
12730 			break;
12731 
12732 		/*
12733 		 * Move header pointer up to the next image in the ROM.
12734 		 */
12735 		cur_header += header->size512 * 512;
12736 	}
12737 }
12738 
12739 /*
12740  *	t4_load_boot - download boot flash
12741  *	@adapter: the adapter
12742  *	@boot_data: the boot image to write
12743  *	@boot_addr: offset in flash to write boot_data
12744  *	@size: image size
12745  *
12746  *	Write the supplied boot image to the card's serial flash.
12747  *	The boot image has the following sections: a 28-byte header and the
12748  *	boot image.
12749  */
t4_load_boot(struct adapter * adap,u8 * boot_data,unsigned int boot_addr,unsigned int size)12750 int t4_load_boot(struct adapter *adap, u8 *boot_data,
12751 		 unsigned int boot_addr, unsigned int size)
12752 {
12753 	pci_exp_rom_header_t *header;
12754 	int pcir_offset ;
12755 	pcir_data_t *pcir_header;
12756 	int ret, addr;
12757 	uint16_t device_id;
12758 	unsigned int i, start, len;
12759 	unsigned int boot_sector = boot_addr * 1024;
12760 
12761 	/*
12762 	 * Make sure the boot image does not exceed its available space.
12763 	 */
12764 	len = 0;
12765 	start = t4_flash_loc_start(adap, FLASH_LOC_BOOT_AREA, &len);
12766 	if (boot_sector + size > start + len) {
12767 		CH_ERR(adap, "boot data is larger than available BOOT area\n");
12768 		return -EFBIG;
12769 	}
12770 
12771 	/*
12772 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
12773 	 * and Boot configuration data sections. These 3 boot sections span
12774 	 * the entire FLASH_LOC_BOOT_AREA.
12775 	 */
12776 	i = DIV_ROUND_UP(size ? size : len, SF_SEC_SIZE);
12777 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
12778 				     (boot_sector >> 16) + i - 1);
12779 
12780 	/*
12781 	 * If size == 0 then we're simply erasing the FLASH sectors associated
12782 	 * with the on-adapter option ROM file
12783 	 */
12784 	if (ret || (size == 0))
12785 		goto out;
12786 
12787 	/* Get boot header */
12788 	header = (pci_exp_rom_header_t *)boot_data;
12789 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
12790 	/* PCIR Data Structure */
12791 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
12792 
12793 	/*
12794 	 * Perform some primitive sanity testing to avoid accidentally
12795 	 * writing garbage over the boot sectors.  We ought to check for
12796 	 * more but it's not worth it for now ...
12797 	 */
12798 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
12799 		CH_ERR(adap, "boot image too small/large\n");
12800 		return -EFBIG;
12801 	}
12802 
12803 #ifndef CHELSIO_T4_DIAGS
12804 	/*
12805 	 * Check BOOT ROM header signature
12806 	 */
12807 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
12808 		CH_ERR(adap, "Boot image missing signature\n");
12809 		return -EINVAL;
12810 	}
12811 
12812 	/*
12813 	 * Check PCI header signature
12814 	 */
12815 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
12816 		CH_ERR(adap, "PCI header missing signature\n");
12817 		return -EINVAL;
12818 	}
12819 
12820 	/*
12821 	 * Check Vendor ID matches Chelsio ID
12822 	 */
12823 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
12824 		CH_ERR(adap, "Vendor ID missing signature\n");
12825 		return -EINVAL;
12826 	}
12827 #endif
12828 
12829 	/*
12830 	 * Retrieve adapter's device ID
12831 	 */
12832 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
12833 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
12834 	device_id = device_id & 0xf0ff;
12835 
12836 	/*
12837 	 * Check PCIE Device ID
12838 	 */
12839 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
12840 		/*
12841 		 * Change the device ID in the Boot BIOS image to match
12842 		 * the Device ID of the current adapter.
12843 		 */
12844 		modify_device_id(device_id, boot_data);
12845 	}
12846 
12847 	/*
12848 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
12849 	 * we finish copying the rest of the boot image. This will ensure
12850 	 * that the BIOS boot header will only be written if the boot image
12851 	 * was written in full.
12852 	 */
12853 	addr = boot_sector;
12854 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
12855 		addr += SF_PAGE_SIZE;
12856 		boot_data += SF_PAGE_SIZE;
12857 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
12858 		if (ret)
12859 			goto out;
12860 	}
12861 
12862 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
12863 			     (const u8 *)header, 0);
12864 
12865 out:
12866 	if (ret)
12867 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
12868 	return ret;
12869 }
12870 
12871 /*
12872  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
12873  *	@adapter: the adapter
12874  *
12875  *	Return the address within the flash where the OptionROM Configuration
12876  *	is stored, or an error if the device FLASH is too small to contain
12877  *	a OptionROM Configuration.
12878  */
t4_flash_bootcfg_addr(struct adapter * adapter,unsigned int * lenp)12879 static int t4_flash_bootcfg_addr(struct adapter *adapter, unsigned int *lenp)
12880 {
12881 	unsigned int len = 0;
12882 	const int start = t4_flash_loc_start(adapter, FLASH_LOC_BOOTCFG, &len);
12883 
12884 	/*
12885 	 * If the device FLASH isn't large enough to hold a Firmware
12886 	 * Configuration File, return an error.
12887 	 */
12888 	if (adapter->params.sf_size < start + len)
12889 		return -ENOSPC;
12890 	if (lenp != NULL)
12891 		*lenp = len;
12892 	return (start);
12893 }
12894 
t4_load_bootcfg(struct adapter * adap,const u8 * cfg_data,unsigned int size)12895 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
12896 {
12897 	int ret, i, n, cfg_addr;
12898 	unsigned int addr, len;
12899 	unsigned int flash_cfg_start_sec;
12900 
12901 	cfg_addr = t4_flash_bootcfg_addr(adap, &len);
12902 	if (cfg_addr < 0)
12903 		return cfg_addr;
12904 
12905 	if (size > len) {
12906 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", len);
12907 		return -EFBIG;
12908 	}
12909 
12910 	flash_cfg_start_sec = cfg_addr / SF_SEC_SIZE;
12911 	i = DIV_ROUND_UP(len, SF_SEC_SIZE);
12912 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
12913 					flash_cfg_start_sec + i - 1);
12914 
12915 	/*
12916 	 * If size == 0 then we're simply erasing the FLASH sectors associated
12917 	 * with the on-adapter OptionROM Configuration File.
12918 	 */
12919 	if (ret || size == 0)
12920 		goto out;
12921 
12922 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
12923 	addr = cfg_addr;
12924 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
12925 		n = min(size - i, SF_PAGE_SIZE);
12926 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
12927 		if (ret)
12928 			goto out;
12929 		addr += SF_PAGE_SIZE;
12930 		cfg_data += SF_PAGE_SIZE;
12931 	}
12932 
12933 out:
12934 	if (ret)
12935 		CH_ERR(adap, "boot config data %s failed %d\n",
12936 				(size == 0 ? "clear" : "download"), ret);
12937 	return ret;
12938 }
12939 
12940 /**
12941  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
12942  *	@adap: the adapter
12943  *	@mode: a bitmap selecting which optional filter components to enable
12944  *	@mask: a bitmap selecting which components to enable in filter mask
12945  *	@vnic_mode: the ingress config/vnic mode setting
12946  *
12947  *	Sets the filter mode and mask by selecting the optional components to
12948  *	enable in filter tuples.  Returns 0 on success and a negative error if
12949  *	the requested mode needs more bits than are available for optional
12950  *	components.  The filter mask must be a subset of the filter mode.
12951  */
t4_set_filter_cfg(struct adapter * adap,int mode,int mask,int vnic_mode)12952 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
12953 {
12954 	int i, nbits, rc;
12955 	uint32_t param, val;
12956 	uint16_t fmode, fmask;
12957 	const int maxbits = adap->chip_params->filter_opt_len;
12958 	const int nopt = adap->chip_params->filter_num_opt;
12959 	int width;
12960 
12961 	if (mode != -1 || mask != -1) {
12962 		if (mode != -1) {
12963 			fmode = mode;
12964 			nbits = 0;
12965 			for (i = 0; i < nopt; i++) {
12966 				if (fmode & (1 << i))
12967 					nbits += t4_filter_field_width(adap, i);
12968 			}
12969 			if (nbits > maxbits) {
12970 				CH_ERR(adap, "optional fields in the filter "
12971 				    "mode (0x%x) add up to %d bits "
12972 				    "(must be <= %db).  Remove some fields and "
12973 				    "try again.\n", fmode, nbits, maxbits);
12974 				return -E2BIG;
12975 			}
12976 
12977 			/*
12978 			 * Hardware < T7 wants the bits to be maxed out.  Keep
12979 			 * setting them until there's no room for more.
12980 			 */
12981 			if (chip_id(adap) < CHELSIO_T7) {
12982 				for (i = 0; i < nopt; i++) {
12983 					if (fmode & (1 << i))
12984 						continue;
12985 					width = t4_filter_field_width(adap, i);
12986 					if (nbits + width <= maxbits) {
12987 						fmode |= 1 << i;
12988 						nbits += width;
12989 						if (nbits == maxbits)
12990 							break;
12991 					}
12992 				}
12993 			}
12994 
12995 			fmask = fmode & adap->params.tp.filter_mask;
12996 			if (fmask != adap->params.tp.filter_mask) {
12997 				CH_WARN(adap,
12998 				    "filter mask will be changed from 0x%x to "
12999 				    "0x%x to comply with the filter mode (0x%x).\n",
13000 				    adap->params.tp.filter_mask, fmask, fmode);
13001 			}
13002 		} else {
13003 			fmode = adap->params.tp.filter_mode;
13004 			fmask = mask;
13005 			if ((fmode | fmask) != fmode) {
13006 				CH_ERR(adap,
13007 				    "filter mask (0x%x) must be a subset of "
13008 				    "the filter mode (0x%x).\n", fmask, fmode);
13009 				return -EINVAL;
13010 			}
13011 		}
13012 
13013 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13014 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
13015 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
13016 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
13017 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
13018 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
13019 		    &val);
13020 		if (rc < 0)
13021 			return rc;
13022 	}
13023 
13024 	if (vnic_mode != -1) {
13025 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13026 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
13027 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
13028 		val = vnic_mode;
13029 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
13030 		    &val);
13031 		if (rc < 0)
13032 			return rc;
13033 	}
13034 
13035 	/* Refresh. */
13036 	read_filter_mode_and_ingress_config(adap);
13037 
13038 	return 0;
13039 }
13040 
13041 /**
13042  *	t4_clr_port_stats - clear port statistics
13043  *	@adap: the adapter
13044  *	@idx: the port index
13045  *
13046  *	Clear HW statistics for the given port.
13047  */
t4_clr_port_stats(struct adapter * adap,int idx)13048 void t4_clr_port_stats(struct adapter *adap, int idx)
13049 {
13050 	struct port_info *pi;
13051 	int i, port_id, tx_chan;
13052 	u32 bgmap, port_base_addr;
13053 
13054 	port_id  = adap->port_map[idx];
13055 	MPASS(port_id >= 0 && port_id <= adap->params.nports);
13056 	pi = adap->port[port_id];
13057 
13058 	for (tx_chan = pi->tx_chan;
13059 	    tx_chan < pi->tx_chan + adap->params.tp.lb_nchan; tx_chan++) {
13060 		port_base_addr = t4_port_reg(adap, tx_chan, 0);
13061 
13062 		for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
13063 				i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
13064 			t4_write_reg(adap, port_base_addr + i, 0);
13065 		for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
13066 				i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
13067 			t4_write_reg(adap, port_base_addr + i, 0);
13068 	}
13069 	bgmap = pi->mps_bg_map;
13070 	for (i = 0; i < 4; i++)
13071 		if (bgmap & (1 << i)) {
13072 			t4_write_reg(adap,
13073 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
13074 			t4_write_reg(adap,
13075 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
13076 		}
13077 }
13078 
13079 /**
13080  *	t4_i2c_io - read/write I2C data from adapter
13081  *	@adap: the adapter
13082  *	@port: Port number if per-port device; <0 if not
13083  *	@devid: per-port device ID or absolute device ID
13084  *	@offset: byte offset into device I2C space
13085  *	@len: byte length of I2C space data
13086  *	@buf: buffer in which to return I2C data for read
13087  *	      buffer which holds the I2C data for write
13088  *	@write: if true, do a write; else do a read
13089  *	Reads/Writes the I2C data from/to the indicated device and location.
13090  */
t4_i2c_io(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf,bool write)13091 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
13092 	      int port, unsigned int devid,
13093 	      unsigned int offset, unsigned int len,
13094 	      u8 *buf, bool write)
13095 {
13096 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
13097 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
13098 	int ret = 0;
13099 
13100 	if (len > I2C_PAGE_SIZE)
13101 		return -EINVAL;
13102 
13103 	/* Dont allow reads that spans multiple pages */
13104 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
13105 		return -EINVAL;
13106 
13107 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
13108 	ldst_cmd.op_to_addrspace =
13109 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
13110 			    F_FW_CMD_REQUEST |
13111 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
13112 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
13113 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
13114 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
13115 	ldst_cmd.u.i2c.did = devid;
13116 
13117 	while (len > 0) {
13118 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
13119 
13120 		ldst_cmd.u.i2c.boffset = offset;
13121 		ldst_cmd.u.i2c.blen = i2c_len;
13122 
13123 		if (write)
13124 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
13125 
13126 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
13127 				 write ? NULL : &ldst_rpl);
13128 		if (ret)
13129 			break;
13130 
13131 		if (!write)
13132 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
13133 		offset += i2c_len;
13134 		buf += i2c_len;
13135 		len -= i2c_len;
13136 	}
13137 
13138 	return ret;
13139 }
13140 
t4_i2c_rd(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)13141 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
13142 	      int port, unsigned int devid,
13143 	      unsigned int offset, unsigned int len,
13144 	      u8 *buf)
13145 {
13146 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
13147 }
13148 
t4_i2c_wr(struct adapter * adap,unsigned int mbox,int port,unsigned int devid,unsigned int offset,unsigned int len,u8 * buf)13149 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
13150 	      int port, unsigned int devid,
13151 	      unsigned int offset, unsigned int len,
13152 	      u8 *buf)
13153 {
13154 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
13155 }
13156 
13157 /**
13158  * 	t4_sge_ctxt_rd - read an SGE context through FW
13159  * 	@adap: the adapter
13160  * 	@mbox: mailbox to use for the FW command
13161  * 	@cid: the context id
13162  * 	@ctype: the context type
13163  * 	@data: where to store the context data
13164  *
13165  * 	Issues a FW command through the given mailbox to read an SGE context.
13166  */
t4_sge_ctxt_rd(struct adapter * adap,unsigned int mbox,unsigned int cid,enum ctxt_type ctype,u32 * data)13167 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
13168 		   enum ctxt_type ctype, u32 *data)
13169 {
13170 	int ret;
13171 	struct fw_ldst_cmd c;
13172 
13173 	if (ctype == CTXT_EGRESS)
13174 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
13175 	else if (ctype == CTXT_INGRESS)
13176 		ret = FW_LDST_ADDRSPC_SGE_INGC;
13177 	else if (ctype == CTXT_FLM)
13178 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
13179 	else
13180 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
13181 
13182 	memset(&c, 0, sizeof(c));
13183 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
13184 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
13185 					V_FW_LDST_CMD_ADDRSPACE(ret));
13186 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
13187 	c.u.idctxt.physid = cpu_to_be32(cid);
13188 
13189 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
13190 	if (ret == 0) {
13191 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
13192 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
13193 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
13194 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
13195 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
13196 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
13197 		if (chip_id(adap) > CHELSIO_T6)
13198 			data[6] = be32_to_cpu(c.u.idctxt.ctxt_data6);
13199 	}
13200 	return ret;
13201 }
13202 
13203 /**
13204  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
13205  * 	@adap: the adapter
13206  * 	@cid: the context id
13207  * 	@ctype: the context type
13208  * 	@data: where to store the context data
13209  *
13210  * 	Reads an SGE context directly, bypassing FW.  This is only for
13211  * 	debugging when FW is unavailable.
13212  */
t4_sge_ctxt_rd_bd(struct adapter * adap,unsigned int cid,enum ctxt_type ctype,u32 * data)13213 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
13214 		      u32 *data)
13215 {
13216 	int i, ret;
13217 
13218 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
13219 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
13220 	if (!ret) {
13221 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
13222 			*data++ = t4_read_reg(adap, i);
13223 		if (chip_id(adap) > CHELSIO_T6)
13224 			*data++ = t4_read_reg(adap, i);
13225 	}
13226 	return ret;
13227 }
13228 
t4_sched_config(struct adapter * adapter,int type,int minmaxen,int sleep_ok)13229 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
13230     int sleep_ok)
13231 {
13232 	struct fw_sched_cmd cmd;
13233 
13234 	memset(&cmd, 0, sizeof(cmd));
13235 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13236 				      F_FW_CMD_REQUEST |
13237 				      F_FW_CMD_WRITE);
13238 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13239 
13240 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
13241 	cmd.u.config.type = type;
13242 	cmd.u.config.minmaxen = minmaxen;
13243 
13244 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13245 			       NULL, sleep_ok);
13246 }
13247 
t4_sched_params(struct adapter * adapter,int type,int level,int mode,int rateunit,int ratemode,int channel,int cl,int minrate,int maxrate,int weight,int pktsize,int burstsize,int sleep_ok)13248 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
13249 		    int rateunit, int ratemode, int channel, int cl,
13250 		    int minrate, int maxrate, int weight, int pktsize,
13251 		    int burstsize, int sleep_ok)
13252 {
13253 	struct fw_sched_cmd cmd;
13254 
13255 	memset(&cmd, 0, sizeof(cmd));
13256 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13257 				      F_FW_CMD_REQUEST |
13258 				      F_FW_CMD_WRITE);
13259 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13260 
13261 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13262 	cmd.u.params.type = type;
13263 	cmd.u.params.level = level;
13264 	cmd.u.params.mode = mode;
13265 	cmd.u.params.ch = channel;
13266 	cmd.u.params.cl = cl;
13267 	cmd.u.params.unit = rateunit;
13268 	cmd.u.params.rate = ratemode;
13269 	cmd.u.params.min = cpu_to_be32(minrate);
13270 	cmd.u.params.max = cpu_to_be32(maxrate);
13271 	cmd.u.params.weight = cpu_to_be16(weight);
13272 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
13273 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
13274 
13275 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13276 			       NULL, sleep_ok);
13277 }
13278 
t4_sched_params_ch_rl(struct adapter * adapter,int channel,int ratemode,unsigned int maxrate,int sleep_ok)13279 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
13280     unsigned int maxrate, int sleep_ok)
13281 {
13282 	struct fw_sched_cmd cmd;
13283 
13284 	memset(&cmd, 0, sizeof(cmd));
13285 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13286 				      F_FW_CMD_REQUEST |
13287 				      F_FW_CMD_WRITE);
13288 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13289 
13290 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13291 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
13292 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
13293 	cmd.u.params.ch = channel;
13294 	cmd.u.params.rate = ratemode;		/* REL or ABS */
13295 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
13296 
13297 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13298 			       NULL, sleep_ok);
13299 }
13300 
t4_sched_params_cl_wrr(struct adapter * adapter,int channel,int cl,int weight,int sleep_ok)13301 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
13302     int weight, int sleep_ok)
13303 {
13304 	struct fw_sched_cmd cmd;
13305 
13306 	if (weight < 0 || weight > 100)
13307 		return -EINVAL;
13308 
13309 	memset(&cmd, 0, sizeof(cmd));
13310 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13311 				      F_FW_CMD_REQUEST |
13312 				      F_FW_CMD_WRITE);
13313 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13314 
13315 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13316 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
13317 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
13318 	cmd.u.params.ch = channel;
13319 	cmd.u.params.cl = cl;
13320 	cmd.u.params.weight = cpu_to_be16(weight);
13321 
13322 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13323 			       NULL, sleep_ok);
13324 }
13325 
t4_sched_params_cl_rl_kbps(struct adapter * adapter,int channel,int cl,int mode,unsigned int maxrate,int pktsize,int sleep_ok)13326 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
13327     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
13328 {
13329 	struct fw_sched_cmd cmd;
13330 
13331 	memset(&cmd, 0, sizeof(cmd));
13332 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
13333 				      F_FW_CMD_REQUEST |
13334 				      F_FW_CMD_WRITE);
13335 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
13336 
13337 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
13338 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
13339 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
13340 	cmd.u.params.mode = mode;
13341 	cmd.u.params.ch = channel;
13342 	cmd.u.params.cl = cl;
13343 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
13344 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
13345 	cmd.u.params.max = cpu_to_be32(maxrate);
13346 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
13347 
13348 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
13349 			       NULL, sleep_ok);
13350 }
13351 
13352 /*
13353  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
13354  *	@adapter: the adapter
13355  * 	@mbox: mailbox to use for the FW command
13356  * 	@pf: the PF owning the queue
13357  * 	@vf: the VF owning the queue
13358  *	@timeout: watchdog timeout in ms
13359  *	@action: watchdog timer / action
13360  *
13361  *	There are separate watchdog timers for each possible watchdog
13362  *	action.  Configure one of the watchdog timers by setting a non-zero
13363  *	timeout.  Disable a watchdog timer by using a timeout of zero.
13364  */
t4_config_watchdog(struct adapter * adapter,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int timeout,unsigned int action)13365 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
13366 		       unsigned int pf, unsigned int vf,
13367 		       unsigned int timeout, unsigned int action)
13368 {
13369 	struct fw_watchdog_cmd wdog;
13370 	unsigned int ticks;
13371 
13372 	/*
13373 	 * The watchdog command expects a timeout in units of 10ms so we need
13374 	 * to convert it here (via rounding) and force a minimum of one 10ms
13375 	 * "tick" if the timeout is non-zero but the conversion results in 0
13376 	 * ticks.
13377 	 */
13378 	ticks = (timeout + 5)/10;
13379 	if (timeout && !ticks)
13380 		ticks = 1;
13381 
13382 	memset(&wdog, 0, sizeof wdog);
13383 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
13384 				     F_FW_CMD_REQUEST |
13385 				     F_FW_CMD_WRITE |
13386 				     V_FW_PARAMS_CMD_PFN(pf) |
13387 				     V_FW_PARAMS_CMD_VFN(vf));
13388 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
13389 	wdog.timeout = cpu_to_be32(ticks);
13390 	wdog.action = cpu_to_be32(action);
13391 
13392 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
13393 }
13394 
t4_get_devlog_level(struct adapter * adapter,unsigned int * level)13395 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
13396 {
13397 	struct fw_devlog_cmd devlog_cmd;
13398 	int ret;
13399 
13400 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
13401 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
13402 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
13403 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
13404 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
13405 			 sizeof(devlog_cmd), &devlog_cmd);
13406 	if (ret)
13407 		return ret;
13408 
13409 	*level = devlog_cmd.level;
13410 	return 0;
13411 }
13412 
t4_set_devlog_level(struct adapter * adapter,unsigned int level)13413 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
13414 {
13415 	struct fw_devlog_cmd devlog_cmd;
13416 
13417 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
13418 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
13419 					     F_FW_CMD_REQUEST |
13420 					     F_FW_CMD_WRITE);
13421 	devlog_cmd.level = level;
13422 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
13423 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
13424 			  sizeof(devlog_cmd), &devlog_cmd);
13425 }
13426 
t4_configure_add_smac(struct adapter * adap)13427 int t4_configure_add_smac(struct adapter *adap)
13428 {
13429 	unsigned int param, val;
13430 	int ret = 0;
13431 
13432 	adap->params.smac_add_support = 0;
13433 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13434 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
13435 	/* Query FW to check if FW supports adding source mac address
13436 	 * to TCAM feature or not.
13437 	 * If FW returns 1, driver can use this feature and driver need to send
13438 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
13439 	 * enable adding smac to TCAM.
13440 	 */
13441 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
13442 	if (ret)
13443 		return ret;
13444 
13445 	if (val == 1) {
13446 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
13447 				    &param, &val);
13448 		if (!ret)
13449 			/* Firmware allows adding explicit TCAM entries.
13450 			 * Save this internally.
13451 			 */
13452 			adap->params.smac_add_support = 1;
13453 	}
13454 
13455 	return ret;
13456 }
13457 
t4_configure_ringbb(struct adapter * adap)13458 int t4_configure_ringbb(struct adapter *adap)
13459 {
13460 	unsigned int param, val;
13461 	int ret = 0;
13462 
13463 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
13464 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
13465 	/* Query FW to check if FW supports ring switch feature or not.
13466 	 * If FW returns 1, driver can use this feature and driver need to send
13467 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
13468 	 * enable the ring backbone configuration.
13469 	 */
13470 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
13471 	if (ret < 0) {
13472 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
13473 			ret);
13474 		goto out;
13475 	}
13476 
13477 	if (val != 1) {
13478 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
13479 		goto out;
13480 	}
13481 
13482 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
13483 	if (ret < 0) {
13484 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
13485 			ret);
13486 		goto out;
13487 	}
13488 
13489 out:
13490 	return ret;
13491 }
13492 
13493 /*
13494  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
13495  *	@adapter: the adapter
13496  *	@mbox: mailbox to use for the FW command
13497  *	@vf: one of the VFs instantiated by the specified PF
13498  *	@vlan: The vlanid to be set
13499  *
13500  */
t4_set_vlan_acl(struct adapter * adap,unsigned int pf,unsigned int vf,u16 vlan)13501 int t4_set_vlan_acl(struct adapter *adap, unsigned int pf, unsigned int vf,
13502 		    u16 vlan)
13503 {
13504 	struct fw_acl_vlan_cmd vlan_cmd;
13505 	unsigned int enable;
13506 
13507 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
13508 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
13509 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
13510 					 F_FW_CMD_REQUEST |
13511 					 F_FW_CMD_WRITE |
13512 					 F_FW_CMD_EXEC |
13513 					 V_FW_ACL_VLAN_CMD_PFN(pf) |
13514 					 V_FW_ACL_VLAN_CMD_VFN(vf));
13515 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd) |
13516 					   V_FW_ACL_VLAN_CMD_PMASK(1 << pf));
13517 	/* Drop all packets that donot match vlan id */
13518 	vlan_cmd.dropnovlan_fm = (enable
13519 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
13520 				     F_FW_ACL_VLAN_CMD_FM)
13521 				  : 0);
13522 	if (enable != 0) {
13523 		vlan_cmd.nvlan = 1;
13524 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
13525 	}
13526 
13527 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
13528 }
13529 
13530 /**
13531  *	t4_del_mac - Removes the exact-match filter for a MAC address
13532  *	@adap: the adapter
13533  *	@mbox: mailbox to use for the FW command
13534  *	@viid: the VI id
13535  *	@addr: the MAC address value
13536  *	@smac: if true, delete from only the smac region of MPS
13537  *
13538  *	Modifies an exact-match filter and sets it to the new MAC address if
13539  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
13540  *	latter case the address is added persistently if @persist is %true.
13541  *
13542  *	Returns a negative error number or the index of the filter with the new
13543  *	MAC value.  Note that this index may differ from @idx.
13544  */
t4_del_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,const u8 * addr,bool smac)13545 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
13546 	       const u8 *addr, bool smac)
13547 {
13548 	int ret;
13549 	struct fw_vi_mac_cmd c;
13550 	struct fw_vi_mac_exact *p = c.u.exact;
13551 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
13552 
13553 	memset(&c, 0, sizeof(c));
13554 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
13555 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
13556 				   V_FW_VI_MAC_CMD_VIID(viid));
13557 	c.freemacs_to_len16 = cpu_to_be32(
13558 					V_FW_CMD_LEN16(1) |
13559 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
13560 
13561 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
13562 	p->valid_to_idx = cpu_to_be16(
13563 				F_FW_VI_MAC_CMD_VALID |
13564 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
13565 
13566 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
13567 	if (ret == 0) {
13568 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
13569 		if (ret < max_mac_addr)
13570 			return -ENOMEM;
13571 	}
13572 
13573 	return ret;
13574 }
13575 
13576 /**
13577  *	t4_add_mac - Adds an exact-match filter for a MAC address
13578  *	@adap: the adapter
13579  *	@mbox: mailbox to use for the FW command
13580  *	@viid: the VI id
13581  *	@idx: index of existing filter for old value of MAC address, or -1
13582  *	@addr: the new MAC address value
13583  *	@persist: whether a new MAC allocation should be persistent
13584  *	@add_smt: if true also add the address to the HW SMT
13585  *	@smac: if true, update only the smac region of MPS
13586  *
13587  *	Modifies an exact-match filter and sets it to the new MAC address if
13588  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
13589  *	latter case the address is added persistently if @persist is %true.
13590  *
13591  *	Returns a negative error number or the index of the filter with the new
13592  *	MAC value.  Note that this index may differ from @idx.
13593  */
t4_add_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,u8 * smt_idx,bool smac)13594 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
13595 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
13596 {
13597 	int ret, mode;
13598 	struct fw_vi_mac_cmd c;
13599 	struct fw_vi_mac_exact *p = c.u.exact;
13600 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
13601 
13602 	if (idx < 0)		/* new allocation */
13603 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
13604 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
13605 
13606 	memset(&c, 0, sizeof(c));
13607 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
13608 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
13609 				   V_FW_VI_MAC_CMD_VIID(viid));
13610 	c.freemacs_to_len16 = cpu_to_be32(
13611 				V_FW_CMD_LEN16(1) |
13612 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
13613 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
13614 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
13615 				      V_FW_VI_MAC_CMD_IDX(idx));
13616 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
13617 
13618 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
13619 	if (ret == 0) {
13620 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
13621 		if (ret >= max_mac_addr)
13622 			return -ENOMEM;
13623 		if (smt_idx) {
13624 			/* Does fw supports returning smt_idx? */
13625 			if (adap->params.viid_smt_extn_support)
13626 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
13627 			else {
13628 				/* In T4/T5, SMT contains 256 SMAC entries
13629 				 * organized in 128 rows of 2 entries each.
13630 				 * In T6, SMT contains 256 SMAC entries in
13631 				 * 256 rows.
13632 				 */
13633 				if (chip_id(adap) <= CHELSIO_T5)
13634 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
13635 				else
13636 					*smt_idx = (viid & M_FW_VIID_VIN);
13637 			}
13638 		}
13639 	}
13640 
13641 	return ret;
13642 }
13643