1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9
10 #include "compress.h"
11 #include "dso.h"
12 #include "map.h"
13 #include "maps.h"
14 #include "symbol.h"
15 #include "symsrc.h"
16 #include "machine.h"
17 #include "vdso.h"
18 #include "debug.h"
19 #include "util/copyfile.h"
20 #include <linux/ctype.h>
21 #include <linux/kernel.h>
22 #include <linux/zalloc.h>
23 #include <linux/string.h>
24 #include <symbol/kallsyms.h>
25 #include <internal/lib.h>
26
27 #ifdef HAVE_LIBBFD_SUPPORT
28 #define PACKAGE 'perf'
29 #include <bfd.h>
30 #endif
31
32 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT)
33 #ifndef DMGL_PARAMS
34 #define DMGL_PARAMS (1 << 0) /* Include function args */
35 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
36 #endif
37 #endif
38
39 #ifndef EM_AARCH64
40 #define EM_AARCH64 183 /* ARM 64 bit */
41 #endif
42
43 #ifndef EM_LOONGARCH
44 #define EM_LOONGARCH 258
45 #endif
46
47 #ifndef ELF32_ST_VISIBILITY
48 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
49 #endif
50
51 /* For ELF64 the definitions are the same. */
52 #ifndef ELF64_ST_VISIBILITY
53 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
54 #endif
55
56 /* How to extract information held in the st_other field. */
57 #ifndef GELF_ST_VISIBILITY
58 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
59 #endif
60
61 typedef Elf64_Nhdr GElf_Nhdr;
62
63
64 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
elf_getphdrnum(Elf * elf,size_t * dst)65 static int elf_getphdrnum(Elf *elf, size_t *dst)
66 {
67 GElf_Ehdr gehdr;
68 GElf_Ehdr *ehdr;
69
70 ehdr = gelf_getehdr(elf, &gehdr);
71 if (!ehdr)
72 return -1;
73
74 *dst = ehdr->e_phnum;
75
76 return 0;
77 }
78 #endif
79
80 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
elf_getshdrstrndx(Elf * elf __maybe_unused,size_t * dst __maybe_unused)81 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
82 {
83 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
84 return -1;
85 }
86 #endif
87
88 #ifndef NT_GNU_BUILD_ID
89 #define NT_GNU_BUILD_ID 3
90 #endif
91
92 /**
93 * elf_symtab__for_each_symbol - iterate thru all the symbols
94 *
95 * @syms: struct elf_symtab instance to iterate
96 * @idx: uint32_t idx
97 * @sym: GElf_Sym iterator
98 */
99 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
100 for (idx = 0, gelf_getsym(syms, idx, &sym);\
101 idx < nr_syms; \
102 idx++, gelf_getsym(syms, idx, &sym))
103
elf_sym__type(const GElf_Sym * sym)104 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
105 {
106 return GELF_ST_TYPE(sym->st_info);
107 }
108
elf_sym__visibility(const GElf_Sym * sym)109 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
110 {
111 return GELF_ST_VISIBILITY(sym->st_other);
112 }
113
114 #ifndef STT_GNU_IFUNC
115 #define STT_GNU_IFUNC 10
116 #endif
117
elf_sym__is_function(const GElf_Sym * sym)118 static inline int elf_sym__is_function(const GElf_Sym *sym)
119 {
120 return (elf_sym__type(sym) == STT_FUNC ||
121 elf_sym__type(sym) == STT_GNU_IFUNC) &&
122 sym->st_name != 0 &&
123 sym->st_shndx != SHN_UNDEF;
124 }
125
elf_sym__is_object(const GElf_Sym * sym)126 static inline bool elf_sym__is_object(const GElf_Sym *sym)
127 {
128 return elf_sym__type(sym) == STT_OBJECT &&
129 sym->st_name != 0 &&
130 sym->st_shndx != SHN_UNDEF;
131 }
132
elf_sym__is_label(const GElf_Sym * sym)133 static inline int elf_sym__is_label(const GElf_Sym *sym)
134 {
135 return elf_sym__type(sym) == STT_NOTYPE &&
136 sym->st_name != 0 &&
137 sym->st_shndx != SHN_UNDEF &&
138 sym->st_shndx != SHN_ABS &&
139 elf_sym__visibility(sym) != STV_HIDDEN &&
140 elf_sym__visibility(sym) != STV_INTERNAL;
141 }
142
elf_sym__filter(GElf_Sym * sym)143 static bool elf_sym__filter(GElf_Sym *sym)
144 {
145 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
146 }
147
elf_sym__name(const GElf_Sym * sym,const Elf_Data * symstrs)148 static inline const char *elf_sym__name(const GElf_Sym *sym,
149 const Elf_Data *symstrs)
150 {
151 return symstrs->d_buf + sym->st_name;
152 }
153
elf_sec__name(const GElf_Shdr * shdr,const Elf_Data * secstrs)154 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
155 const Elf_Data *secstrs)
156 {
157 return secstrs->d_buf + shdr->sh_name;
158 }
159
elf_sec__is_text(const GElf_Shdr * shdr,const Elf_Data * secstrs)160 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
161 const Elf_Data *secstrs)
162 {
163 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
164 }
165
elf_sec__is_data(const GElf_Shdr * shdr,const Elf_Data * secstrs)166 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
167 const Elf_Data *secstrs)
168 {
169 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
170 }
171
elf_sec__filter(GElf_Shdr * shdr,Elf_Data * secstrs)172 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
173 {
174 return elf_sec__is_text(shdr, secstrs) ||
175 elf_sec__is_data(shdr, secstrs);
176 }
177
elf_addr_to_index(Elf * elf,GElf_Addr addr)178 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
179 {
180 Elf_Scn *sec = NULL;
181 GElf_Shdr shdr;
182 size_t cnt = 1;
183
184 while ((sec = elf_nextscn(elf, sec)) != NULL) {
185 gelf_getshdr(sec, &shdr);
186
187 if ((addr >= shdr.sh_addr) &&
188 (addr < (shdr.sh_addr + shdr.sh_size)))
189 return cnt;
190
191 ++cnt;
192 }
193
194 return -1;
195 }
196
elf_section_by_name(Elf * elf,GElf_Ehdr * ep,GElf_Shdr * shp,const char * name,size_t * idx)197 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
198 GElf_Shdr *shp, const char *name, size_t *idx)
199 {
200 Elf_Scn *sec = NULL;
201 size_t cnt = 1;
202
203 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
204 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
205 return NULL;
206
207 while ((sec = elf_nextscn(elf, sec)) != NULL) {
208 char *str;
209
210 gelf_getshdr(sec, shp);
211 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
212 if (str && !strcmp(name, str)) {
213 if (idx)
214 *idx = cnt;
215 return sec;
216 }
217 ++cnt;
218 }
219
220 return NULL;
221 }
222
filename__has_section(const char * filename,const char * sec)223 bool filename__has_section(const char *filename, const char *sec)
224 {
225 int fd;
226 Elf *elf;
227 GElf_Ehdr ehdr;
228 GElf_Shdr shdr;
229 bool found = false;
230
231 fd = open(filename, O_RDONLY);
232 if (fd < 0)
233 return false;
234
235 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
236 if (elf == NULL)
237 goto out;
238
239 if (gelf_getehdr(elf, &ehdr) == NULL)
240 goto elf_out;
241
242 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
243
244 elf_out:
245 elf_end(elf);
246 out:
247 close(fd);
248 return found;
249 }
250
elf_read_program_header(Elf * elf,u64 vaddr,GElf_Phdr * phdr)251 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
252 {
253 size_t i, phdrnum;
254 u64 sz;
255
256 if (elf_getphdrnum(elf, &phdrnum))
257 return -1;
258
259 for (i = 0; i < phdrnum; i++) {
260 if (gelf_getphdr(elf, i, phdr) == NULL)
261 return -1;
262
263 if (phdr->p_type != PT_LOAD)
264 continue;
265
266 sz = max(phdr->p_memsz, phdr->p_filesz);
267 if (!sz)
268 continue;
269
270 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
271 return 0;
272 }
273
274 /* Not found any valid program header */
275 return -1;
276 }
277
278 struct rel_info {
279 u32 nr_entries;
280 u32 *sorted;
281 bool is_rela;
282 Elf_Data *reldata;
283 GElf_Rela rela;
284 GElf_Rel rel;
285 };
286
get_rel_symidx(struct rel_info * ri,u32 idx)287 static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
288 {
289 idx = ri->sorted ? ri->sorted[idx] : idx;
290 if (ri->is_rela) {
291 gelf_getrela(ri->reldata, idx, &ri->rela);
292 return GELF_R_SYM(ri->rela.r_info);
293 }
294 gelf_getrel(ri->reldata, idx, &ri->rel);
295 return GELF_R_SYM(ri->rel.r_info);
296 }
297
get_rel_offset(struct rel_info * ri,u32 x)298 static u64 get_rel_offset(struct rel_info *ri, u32 x)
299 {
300 if (ri->is_rela) {
301 GElf_Rela rela;
302
303 gelf_getrela(ri->reldata, x, &rela);
304 return rela.r_offset;
305 } else {
306 GElf_Rel rel;
307
308 gelf_getrel(ri->reldata, x, &rel);
309 return rel.r_offset;
310 }
311 }
312
rel_cmp(const void * a,const void * b,void * r)313 static int rel_cmp(const void *a, const void *b, void *r)
314 {
315 struct rel_info *ri = r;
316 u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
317 u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
318
319 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
320 }
321
sort_rel(struct rel_info * ri)322 static int sort_rel(struct rel_info *ri)
323 {
324 size_t sz = sizeof(ri->sorted[0]);
325 u32 i;
326
327 ri->sorted = calloc(ri->nr_entries, sz);
328 if (!ri->sorted)
329 return -1;
330 for (i = 0; i < ri->nr_entries; i++)
331 ri->sorted[i] = i;
332 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
333 return 0;
334 }
335
336 /*
337 * For x86_64, the GNU linker is putting IFUNC information in the relocation
338 * addend.
339 */
addend_may_be_ifunc(GElf_Ehdr * ehdr,struct rel_info * ri)340 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
341 {
342 return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
343 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
344 }
345
get_ifunc_name(Elf * elf,struct dso * dso,GElf_Ehdr * ehdr,struct rel_info * ri,char * buf,size_t buf_sz)346 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
347 struct rel_info *ri, char *buf, size_t buf_sz)
348 {
349 u64 addr = ri->rela.r_addend;
350 struct symbol *sym;
351 GElf_Phdr phdr;
352
353 if (!addend_may_be_ifunc(ehdr, ri))
354 return false;
355
356 if (elf_read_program_header(elf, addr, &phdr))
357 return false;
358
359 addr -= phdr.p_vaddr - phdr.p_offset;
360
361 sym = dso__find_symbol_nocache(dso, addr);
362
363 /* Expecting the address to be an IFUNC or IFUNC alias */
364 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
365 return false;
366
367 snprintf(buf, buf_sz, "%s@plt", sym->name);
368
369 return true;
370 }
371
exit_rel(struct rel_info * ri)372 static void exit_rel(struct rel_info *ri)
373 {
374 zfree(&ri->sorted);
375 }
376
get_plt_sizes(struct dso * dso,GElf_Ehdr * ehdr,GElf_Shdr * shdr_plt,u64 * plt_header_size,u64 * plt_entry_size)377 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
378 u64 *plt_header_size, u64 *plt_entry_size)
379 {
380 switch (ehdr->e_machine) {
381 case EM_ARM:
382 *plt_header_size = 20;
383 *plt_entry_size = 12;
384 return true;
385 case EM_AARCH64:
386 *plt_header_size = 32;
387 *plt_entry_size = 16;
388 return true;
389 case EM_LOONGARCH:
390 *plt_header_size = 32;
391 *plt_entry_size = 16;
392 return true;
393 case EM_SPARC:
394 *plt_header_size = 48;
395 *plt_entry_size = 12;
396 return true;
397 case EM_SPARCV9:
398 *plt_header_size = 128;
399 *plt_entry_size = 32;
400 return true;
401 case EM_386:
402 case EM_X86_64:
403 *plt_entry_size = shdr_plt->sh_entsize;
404 /* Size is 8 or 16, if not, assume alignment indicates size */
405 if (*plt_entry_size != 8 && *plt_entry_size != 16)
406 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
407 *plt_header_size = *plt_entry_size;
408 break;
409 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
410 *plt_header_size = shdr_plt->sh_entsize;
411 *plt_entry_size = shdr_plt->sh_entsize;
412 break;
413 }
414 if (*plt_entry_size)
415 return true;
416 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso));
417 return false;
418 }
419
machine_is_x86(GElf_Half e_machine)420 static bool machine_is_x86(GElf_Half e_machine)
421 {
422 return e_machine == EM_386 || e_machine == EM_X86_64;
423 }
424
425 struct rela_dyn {
426 GElf_Addr offset;
427 u32 sym_idx;
428 };
429
430 struct rela_dyn_info {
431 struct dso *dso;
432 Elf_Data *plt_got_data;
433 u32 nr_entries;
434 struct rela_dyn *sorted;
435 Elf_Data *dynsym_data;
436 Elf_Data *dynstr_data;
437 Elf_Data *rela_dyn_data;
438 };
439
exit_rela_dyn(struct rela_dyn_info * di)440 static void exit_rela_dyn(struct rela_dyn_info *di)
441 {
442 zfree(&di->sorted);
443 }
444
cmp_offset(const void * a,const void * b)445 static int cmp_offset(const void *a, const void *b)
446 {
447 const struct rela_dyn *va = a;
448 const struct rela_dyn *vb = b;
449
450 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
451 }
452
sort_rela_dyn(struct rela_dyn_info * di)453 static int sort_rela_dyn(struct rela_dyn_info *di)
454 {
455 u32 i, n;
456
457 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
458 if (!di->sorted)
459 return -1;
460
461 /* Get data for sorting: the offset and symbol index */
462 for (i = 0, n = 0; i < di->nr_entries; i++) {
463 GElf_Rela rela;
464 u32 sym_idx;
465
466 gelf_getrela(di->rela_dyn_data, i, &rela);
467 sym_idx = GELF_R_SYM(rela.r_info);
468 if (sym_idx) {
469 di->sorted[n].sym_idx = sym_idx;
470 di->sorted[n].offset = rela.r_offset;
471 n += 1;
472 }
473 }
474
475 /* Sort by offset */
476 di->nr_entries = n;
477 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
478
479 return 0;
480 }
481
get_rela_dyn_info(Elf * elf,GElf_Ehdr * ehdr,struct rela_dyn_info * di,Elf_Scn * scn)482 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
483 {
484 GElf_Shdr rela_dyn_shdr;
485 GElf_Shdr shdr;
486
487 di->plt_got_data = elf_getdata(scn, NULL);
488
489 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
490 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
491 return;
492
493 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
494 di->rela_dyn_data = elf_getdata(scn, NULL);
495
496 scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
497 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
498 return;
499
500 di->dynsym_data = elf_getdata(scn, NULL);
501 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
502
503 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
504 return;
505
506 /* Sort into offset order */
507 sort_rela_dyn(di);
508 }
509
510 /* Get instruction displacement from a plt entry for x86_64 */
get_x86_64_plt_disp(const u8 * p)511 static u32 get_x86_64_plt_disp(const u8 *p)
512 {
513 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
514 int n = 0;
515
516 /* Skip endbr64 */
517 if (!memcmp(p, endbr64, sizeof(endbr64)))
518 n += sizeof(endbr64);
519 /* Skip bnd prefix */
520 if (p[n] == 0xf2)
521 n += 1;
522 /* jmp with 4-byte displacement */
523 if (p[n] == 0xff && p[n + 1] == 0x25) {
524 u32 disp;
525
526 n += 2;
527 /* Also add offset from start of entry to end of instruction */
528 memcpy(&disp, p + n, sizeof(disp));
529 return n + 4 + le32toh(disp);
530 }
531 return 0;
532 }
533
get_plt_got_name(GElf_Shdr * shdr,size_t i,struct rela_dyn_info * di,char * buf,size_t buf_sz)534 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
535 struct rela_dyn_info *di,
536 char *buf, size_t buf_sz)
537 {
538 struct rela_dyn vi, *vr;
539 const char *sym_name;
540 char *demangled;
541 GElf_Sym sym;
542 bool result;
543 u32 disp;
544
545 if (!di->sorted)
546 return false;
547
548 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
549 if (!disp)
550 return false;
551
552 /* Compute target offset of the .plt.got entry */
553 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
554
555 /* Find that offset in .rela.dyn (sorted by offset) */
556 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
557 if (!vr)
558 return false;
559
560 /* Get the associated symbol */
561 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
562 sym_name = elf_sym__name(&sym, di->dynstr_data);
563 demangled = dso__demangle_sym(di->dso, /*kmodule=*/0, sym_name);
564 if (demangled != NULL)
565 sym_name = demangled;
566
567 snprintf(buf, buf_sz, "%s@plt", sym_name);
568
569 result = *sym_name;
570
571 free(demangled);
572
573 return result;
574 }
575
dso__synthesize_plt_got_symbols(struct dso * dso,Elf * elf,GElf_Ehdr * ehdr,char * buf,size_t buf_sz)576 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
577 GElf_Ehdr *ehdr,
578 char *buf, size_t buf_sz)
579 {
580 struct rela_dyn_info di = { .dso = dso };
581 struct symbol *sym;
582 GElf_Shdr shdr;
583 Elf_Scn *scn;
584 int err = -1;
585 size_t i;
586
587 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
588 if (!scn || !shdr.sh_entsize)
589 return 0;
590
591 if (ehdr->e_machine == EM_X86_64)
592 get_rela_dyn_info(elf, ehdr, &di, scn);
593
594 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
595 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
596 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
597 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
598 if (!sym)
599 goto out;
600 symbols__insert(dso__symbols(dso), sym);
601 }
602 err = 0;
603 out:
604 exit_rela_dyn(&di);
605 return err;
606 }
607
608 /*
609 * We need to check if we have a .dynsym, so that we can handle the
610 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
611 * .dynsym or .symtab).
612 * And always look at the original dso, not at debuginfo packages, that
613 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
614 */
dso__synthesize_plt_symbols(struct dso * dso,struct symsrc * ss)615 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
616 {
617 uint32_t idx;
618 GElf_Sym sym;
619 u64 plt_offset, plt_header_size, plt_entry_size;
620 GElf_Shdr shdr_plt, plt_sec_shdr;
621 struct symbol *f, *plt_sym;
622 GElf_Shdr shdr_rel_plt, shdr_dynsym;
623 Elf_Data *syms, *symstrs;
624 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
625 GElf_Ehdr ehdr;
626 char sympltname[1024];
627 Elf *elf;
628 int nr = 0, err = -1;
629 struct rel_info ri = { .is_rela = false };
630 bool lazy_plt;
631
632 elf = ss->elf;
633 ehdr = ss->ehdr;
634
635 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
636 return 0;
637
638 /*
639 * A symbol from a previous section (e.g. .init) can have been expanded
640 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
641 * a symbol for .plt header.
642 */
643 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
644 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
645 f->end = shdr_plt.sh_offset;
646
647 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
648 return 0;
649
650 /* Add a symbol for .plt header */
651 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
652 if (!plt_sym)
653 goto out_elf_end;
654 symbols__insert(dso__symbols(dso), plt_sym);
655
656 /* Only x86 has .plt.got */
657 if (machine_is_x86(ehdr.e_machine) &&
658 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
659 goto out_elf_end;
660
661 /* Only x86 has .plt.sec */
662 if (machine_is_x86(ehdr.e_machine) &&
663 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
664 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
665 return 0;
666 /* Extend .plt symbol to entire .plt */
667 plt_sym->end = plt_sym->start + shdr_plt.sh_size;
668 /* Use .plt.sec offset */
669 plt_offset = plt_sec_shdr.sh_offset;
670 lazy_plt = false;
671 } else {
672 plt_offset = shdr_plt.sh_offset;
673 lazy_plt = true;
674 }
675
676 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
677 ".rela.plt", NULL);
678 if (scn_plt_rel == NULL) {
679 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
680 ".rel.plt", NULL);
681 if (scn_plt_rel == NULL)
682 return 0;
683 }
684
685 if (shdr_rel_plt.sh_type != SHT_RELA &&
686 shdr_rel_plt.sh_type != SHT_REL)
687 return 0;
688
689 if (!shdr_rel_plt.sh_link)
690 return 0;
691
692 if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
693 scn_dynsym = ss->dynsym;
694 shdr_dynsym = ss->dynshdr;
695 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
696 /*
697 * A static executable can have a .plt due to IFUNCs, in which
698 * case .symtab is used not .dynsym.
699 */
700 scn_dynsym = ss->symtab;
701 shdr_dynsym = ss->symshdr;
702 } else {
703 goto out_elf_end;
704 }
705
706 if (!scn_dynsym)
707 return 0;
708
709 /*
710 * Fetch the relocation section to find the idxes to the GOT
711 * and the symbols in the .dynsym they refer to.
712 */
713 ri.reldata = elf_getdata(scn_plt_rel, NULL);
714 if (!ri.reldata)
715 goto out_elf_end;
716
717 syms = elf_getdata(scn_dynsym, NULL);
718 if (syms == NULL)
719 goto out_elf_end;
720
721 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
722 if (scn_symstrs == NULL)
723 goto out_elf_end;
724
725 symstrs = elf_getdata(scn_symstrs, NULL);
726 if (symstrs == NULL)
727 goto out_elf_end;
728
729 if (symstrs->d_size == 0)
730 goto out_elf_end;
731
732 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
733
734 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
735
736 if (lazy_plt) {
737 /*
738 * Assume a .plt with the same number of entries as the number
739 * of relocation entries is not lazy and does not have a header.
740 */
741 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
742 dso__delete_symbol(dso, plt_sym);
743 else
744 plt_offset += plt_header_size;
745 }
746
747 /*
748 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
749 * back in order.
750 */
751 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
752 goto out_elf_end;
753
754 for (idx = 0; idx < ri.nr_entries; idx++) {
755 const char *elf_name = NULL;
756 char *demangled = NULL;
757
758 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
759
760 elf_name = elf_sym__name(&sym, symstrs);
761 demangled = dso__demangle_sym(dso, /*kmodule=*/0, elf_name);
762 if (demangled)
763 elf_name = demangled;
764 if (*elf_name)
765 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
766 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
767 snprintf(sympltname, sizeof(sympltname),
768 "offset_%#" PRIx64 "@plt", plt_offset);
769 free(demangled);
770
771 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
772 if (!f)
773 goto out_elf_end;
774
775 plt_offset += plt_entry_size;
776 symbols__insert(dso__symbols(dso), f);
777 ++nr;
778 }
779
780 err = 0;
781 out_elf_end:
782 exit_rel(&ri);
783 if (err == 0)
784 return nr;
785 pr_debug("%s: problems reading %s PLT info.\n",
786 __func__, dso__long_name(dso));
787 return 0;
788 }
789
790 /*
791 * Align offset to 4 bytes as needed for note name and descriptor data.
792 */
793 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
794
elf_read_build_id(Elf * elf,void * bf,size_t size)795 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
796 {
797 int err = -1;
798 GElf_Ehdr ehdr;
799 GElf_Shdr shdr;
800 Elf_Data *data;
801 Elf_Scn *sec;
802 Elf_Kind ek;
803 void *ptr;
804
805 if (size < BUILD_ID_SIZE)
806 goto out;
807
808 ek = elf_kind(elf);
809 if (ek != ELF_K_ELF)
810 goto out;
811
812 if (gelf_getehdr(elf, &ehdr) == NULL) {
813 pr_err("%s: cannot get elf header.\n", __func__);
814 goto out;
815 }
816
817 /*
818 * Check following sections for notes:
819 * '.note.gnu.build-id'
820 * '.notes'
821 * '.note' (VDSO specific)
822 */
823 do {
824 sec = elf_section_by_name(elf, &ehdr, &shdr,
825 ".note.gnu.build-id", NULL);
826 if (sec)
827 break;
828
829 sec = elf_section_by_name(elf, &ehdr, &shdr,
830 ".notes", NULL);
831 if (sec)
832 break;
833
834 sec = elf_section_by_name(elf, &ehdr, &shdr,
835 ".note", NULL);
836 if (sec)
837 break;
838
839 return err;
840
841 } while (0);
842
843 data = elf_getdata(sec, NULL);
844 if (data == NULL)
845 goto out;
846
847 ptr = data->d_buf;
848 while (ptr < (data->d_buf + data->d_size)) {
849 GElf_Nhdr *nhdr = ptr;
850 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
851 descsz = NOTE_ALIGN(nhdr->n_descsz);
852 const char *name;
853
854 ptr += sizeof(*nhdr);
855 name = ptr;
856 ptr += namesz;
857 if (nhdr->n_type == NT_GNU_BUILD_ID &&
858 nhdr->n_namesz == sizeof("GNU")) {
859 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
860 size_t sz = min(size, descsz);
861 memcpy(bf, ptr, sz);
862 memset(bf + sz, 0, size - sz);
863 err = sz;
864 break;
865 }
866 }
867 ptr += descsz;
868 }
869
870 out:
871 return err;
872 }
873
874 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
875
read_build_id(const char * filename,struct build_id * bid,bool block)876 static int read_build_id(const char *filename, struct build_id *bid, bool block)
877 {
878 size_t size = sizeof(bid->data);
879 int err = -1, fd;
880 bfd *abfd;
881
882 fd = open(filename, block ? O_RDONLY : (O_RDONLY | O_NONBLOCK));
883 if (fd < 0)
884 return -1;
885
886 abfd = bfd_fdopenr(filename, /*target=*/NULL, fd);
887 if (!abfd)
888 return -1;
889
890 if (!bfd_check_format(abfd, bfd_object)) {
891 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
892 goto out_close;
893 }
894
895 if (!abfd->build_id || abfd->build_id->size > size)
896 goto out_close;
897
898 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
899 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
900 err = bid->size = abfd->build_id->size;
901
902 out_close:
903 bfd_close(abfd);
904 return err;
905 }
906
907 #else // HAVE_LIBBFD_BUILDID_SUPPORT
908
read_build_id(const char * filename,struct build_id * bid,bool block)909 static int read_build_id(const char *filename, struct build_id *bid, bool block)
910 {
911 size_t size = sizeof(bid->data);
912 int fd, err = -1;
913 Elf *elf;
914
915 if (size < BUILD_ID_SIZE)
916 goto out;
917
918 fd = open(filename, block ? O_RDONLY : (O_RDONLY | O_NONBLOCK));
919 if (fd < 0)
920 goto out;
921
922 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
923 if (elf == NULL) {
924 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
925 goto out_close;
926 }
927
928 err = elf_read_build_id(elf, bid->data, size);
929 if (err > 0)
930 bid->size = err;
931
932 elf_end(elf);
933 out_close:
934 close(fd);
935 out:
936 return err;
937 }
938
939 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
940
filename__read_build_id(const char * filename,struct build_id * bid,bool block)941 int filename__read_build_id(const char *filename, struct build_id *bid, bool block)
942 {
943 struct kmod_path m = { .name = NULL, };
944 char path[PATH_MAX];
945 int err;
946
947 if (!filename)
948 return -EFAULT;
949
950 err = kmod_path__parse(&m, filename);
951 if (err)
952 return -1;
953
954 if (m.comp) {
955 int error = 0, fd;
956
957 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
958 if (fd < 0) {
959 pr_debug("Failed to decompress (error %d) %s\n",
960 error, filename);
961 return -1;
962 }
963 close(fd);
964 filename = path;
965 block = true;
966 }
967
968 err = read_build_id(filename, bid, block);
969
970 if (m.comp)
971 unlink(filename);
972 return err;
973 }
974
sysfs__read_build_id(const char * filename,struct build_id * bid)975 int sysfs__read_build_id(const char *filename, struct build_id *bid)
976 {
977 size_t size = sizeof(bid->data);
978 int fd, err = -1;
979
980 fd = open(filename, O_RDONLY);
981 if (fd < 0)
982 goto out;
983
984 while (1) {
985 char bf[BUFSIZ];
986 GElf_Nhdr nhdr;
987 size_t namesz, descsz;
988
989 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
990 break;
991
992 namesz = NOTE_ALIGN(nhdr.n_namesz);
993 descsz = NOTE_ALIGN(nhdr.n_descsz);
994 if (nhdr.n_type == NT_GNU_BUILD_ID &&
995 nhdr.n_namesz == sizeof("GNU")) {
996 if (read(fd, bf, namesz) != (ssize_t)namesz)
997 break;
998 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
999 size_t sz = min(descsz, size);
1000 if (read(fd, bid->data, sz) == (ssize_t)sz) {
1001 memset(bid->data + sz, 0, size - sz);
1002 bid->size = sz;
1003 err = 0;
1004 break;
1005 }
1006 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
1007 break;
1008 } else {
1009 int n = namesz + descsz;
1010
1011 if (n > (int)sizeof(bf)) {
1012 n = sizeof(bf);
1013 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
1014 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
1015 }
1016 if (read(fd, bf, n) != n)
1017 break;
1018 }
1019 }
1020 close(fd);
1021 out:
1022 return err;
1023 }
1024
1025 #ifdef HAVE_LIBBFD_SUPPORT
1026
filename__read_debuglink(const char * filename,char * debuglink,size_t size)1027 int filename__read_debuglink(const char *filename, char *debuglink,
1028 size_t size)
1029 {
1030 int err = -1;
1031 asection *section;
1032 bfd *abfd;
1033
1034 abfd = bfd_openr(filename, NULL);
1035 if (!abfd)
1036 return -1;
1037
1038 if (!bfd_check_format(abfd, bfd_object)) {
1039 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
1040 goto out_close;
1041 }
1042
1043 section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
1044 if (!section)
1045 goto out_close;
1046
1047 if (section->size > size)
1048 goto out_close;
1049
1050 if (!bfd_get_section_contents(abfd, section, debuglink, 0,
1051 section->size))
1052 goto out_close;
1053
1054 err = 0;
1055
1056 out_close:
1057 bfd_close(abfd);
1058 return err;
1059 }
1060
1061 #else
1062
filename__read_debuglink(const char * filename,char * debuglink,size_t size)1063 int filename__read_debuglink(const char *filename, char *debuglink,
1064 size_t size)
1065 {
1066 int fd, err = -1;
1067 Elf *elf;
1068 GElf_Ehdr ehdr;
1069 GElf_Shdr shdr;
1070 Elf_Data *data;
1071 Elf_Scn *sec;
1072 Elf_Kind ek;
1073
1074 fd = open(filename, O_RDONLY);
1075 if (fd < 0)
1076 goto out;
1077
1078 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1079 if (elf == NULL) {
1080 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1081 goto out_close;
1082 }
1083
1084 ek = elf_kind(elf);
1085 if (ek != ELF_K_ELF)
1086 goto out_elf_end;
1087
1088 if (gelf_getehdr(elf, &ehdr) == NULL) {
1089 pr_err("%s: cannot get elf header.\n", __func__);
1090 goto out_elf_end;
1091 }
1092
1093 sec = elf_section_by_name(elf, &ehdr, &shdr,
1094 ".gnu_debuglink", NULL);
1095 if (sec == NULL)
1096 goto out_elf_end;
1097
1098 data = elf_getdata(sec, NULL);
1099 if (data == NULL)
1100 goto out_elf_end;
1101
1102 /* the start of this section is a zero-terminated string */
1103 strncpy(debuglink, data->d_buf, size);
1104
1105 err = 0;
1106
1107 out_elf_end:
1108 elf_end(elf);
1109 out_close:
1110 close(fd);
1111 out:
1112 return err;
1113 }
1114
1115 #endif
1116
symsrc__possibly_runtime(struct symsrc * ss)1117 bool symsrc__possibly_runtime(struct symsrc *ss)
1118 {
1119 return ss->dynsym || ss->opdsec;
1120 }
1121
symsrc__has_symtab(struct symsrc * ss)1122 bool symsrc__has_symtab(struct symsrc *ss)
1123 {
1124 return ss->symtab != NULL;
1125 }
1126
symsrc__destroy(struct symsrc * ss)1127 void symsrc__destroy(struct symsrc *ss)
1128 {
1129 zfree(&ss->name);
1130 elf_end(ss->elf);
1131 close(ss->fd);
1132 }
1133
elf__needs_adjust_symbols(GElf_Ehdr ehdr)1134 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1135 {
1136 /*
1137 * Usually vmlinux is an ELF file with type ET_EXEC for most
1138 * architectures; except Arm64 kernel is linked with option
1139 * '-share', so need to check type ET_DYN.
1140 */
1141 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1142 ehdr.e_type == ET_DYN;
1143 }
1144
read_gnu_debugdata(struct dso * dso,Elf * elf,const char * name,int * fd_ret)1145 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret)
1146 {
1147 Elf *elf_embedded;
1148 GElf_Ehdr ehdr;
1149 GElf_Shdr shdr;
1150 Elf_Scn *scn;
1151 Elf_Data *scn_data;
1152 FILE *wrapped;
1153 size_t shndx;
1154 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX";
1155 int ret, temp_fd;
1156
1157 if (gelf_getehdr(elf, &ehdr) == NULL) {
1158 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1159 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1160 return NULL;
1161 }
1162
1163 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx);
1164 if (!scn) {
1165 *dso__load_errno(dso) = -ENOENT;
1166 return NULL;
1167 }
1168
1169 if (shdr.sh_type == SHT_NOBITS) {
1170 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name);
1171 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1172 return NULL;
1173 }
1174
1175 scn_data = elf_rawdata(scn, NULL);
1176 if (!scn_data) {
1177 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1178 name, elf_errmsg(-1));
1179 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1180 return NULL;
1181 }
1182
1183 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r");
1184 if (!wrapped) {
1185 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno));
1186 *dso__load_errno(dso) = -errno;
1187 return NULL;
1188 }
1189
1190 temp_fd = mkstemp(temp_filename);
1191 if (temp_fd < 0) {
1192 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno));
1193 *dso__load_errno(dso) = -errno;
1194 fclose(wrapped);
1195 return NULL;
1196 }
1197 unlink(temp_filename);
1198
1199 ret = lzma_decompress_stream_to_file(wrapped, temp_fd);
1200 fclose(wrapped);
1201 if (ret < 0) {
1202 *dso__load_errno(dso) = -errno;
1203 close(temp_fd);
1204 return NULL;
1205 }
1206
1207 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL);
1208 if (!elf_embedded) {
1209 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1210 name, elf_errmsg(-1));
1211 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1212 close(temp_fd);
1213 return NULL;
1214 }
1215 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name);
1216 *fd_ret = temp_fd;
1217 return elf_embedded;
1218 }
1219
symsrc__init(struct symsrc * ss,struct dso * dso,const char * name,enum dso_binary_type type)1220 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1221 enum dso_binary_type type)
1222 {
1223 GElf_Ehdr ehdr;
1224 Elf *elf;
1225 int fd;
1226
1227 if (dso__needs_decompress(dso)) {
1228 fd = dso__decompress_kmodule_fd(dso, name);
1229 if (fd < 0)
1230 return -1;
1231
1232 type = dso__symtab_type(dso);
1233 } else {
1234 fd = open(name, O_RDONLY);
1235 if (fd < 0) {
1236 *dso__load_errno(dso) = errno;
1237 return -1;
1238 }
1239 }
1240
1241 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1242 if (elf == NULL) {
1243 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1244 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1245 goto out_close;
1246 }
1247
1248 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) {
1249 int new_fd;
1250 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd);
1251
1252 if (!embedded)
1253 goto out_close;
1254
1255 elf_end(elf);
1256 close(fd);
1257 fd = new_fd;
1258 elf = embedded;
1259 }
1260
1261 if (gelf_getehdr(elf, &ehdr) == NULL) {
1262 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1263 pr_debug("%s: cannot get elf header.\n", __func__);
1264 goto out_elf_end;
1265 }
1266
1267 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1268 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1269 goto out_elf_end;
1270 }
1271
1272 /* Always reject images with a mismatched build-id: */
1273 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) {
1274 u8 build_id[BUILD_ID_SIZE];
1275 struct build_id bid;
1276 int size;
1277
1278 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1279 if (size <= 0) {
1280 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1281 goto out_elf_end;
1282 }
1283
1284 build_id__init(&bid, build_id, size);
1285 if (!dso__build_id_equal(dso, &bid)) {
1286 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1287 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1288 goto out_elf_end;
1289 }
1290 }
1291
1292 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1293
1294 ss->symtab_idx = 0;
1295 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1296 &ss->symtab_idx);
1297 if (ss->symshdr.sh_type != SHT_SYMTAB)
1298 ss->symtab = NULL;
1299
1300 ss->dynsym_idx = 0;
1301 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1302 &ss->dynsym_idx);
1303 if (ss->dynshdr.sh_type != SHT_DYNSYM)
1304 ss->dynsym = NULL;
1305
1306 ss->opdidx = 0;
1307 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1308 &ss->opdidx);
1309 if (ss->opdshdr.sh_type != SHT_PROGBITS)
1310 ss->opdsec = NULL;
1311
1312 if (dso__kernel(dso) == DSO_SPACE__USER)
1313 ss->adjust_symbols = true;
1314 else
1315 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1316
1317 ss->name = strdup(name);
1318 if (!ss->name) {
1319 *dso__load_errno(dso) = errno;
1320 goto out_elf_end;
1321 }
1322
1323 ss->elf = elf;
1324 ss->fd = fd;
1325 ss->ehdr = ehdr;
1326 ss->type = type;
1327
1328 return 0;
1329
1330 out_elf_end:
1331 elf_end(elf);
1332 out_close:
1333 close(fd);
1334 return -1;
1335 }
1336
is_exe_text(int flags)1337 static bool is_exe_text(int flags)
1338 {
1339 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR);
1340 }
1341
1342 /*
1343 * Some executable module sections like .noinstr.text might be laid out with
1344 * .text so they can use the same mapping (memory address to file offset).
1345 * Check if that is the case. Refer to kernel layout_sections(). Return the
1346 * maximum offset.
1347 */
max_text_section(Elf * elf,GElf_Ehdr * ehdr)1348 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr)
1349 {
1350 Elf_Scn *sec = NULL;
1351 GElf_Shdr shdr;
1352 u64 offs = 0;
1353
1354 /* Doesn't work for some arch */
1355 if (ehdr->e_machine == EM_PARISC ||
1356 ehdr->e_machine == EM_ALPHA)
1357 return 0;
1358
1359 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1360 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL))
1361 return 0;
1362
1363 while ((sec = elf_nextscn(elf, sec)) != NULL) {
1364 char *sec_name;
1365
1366 if (!gelf_getshdr(sec, &shdr))
1367 break;
1368
1369 if (!is_exe_text(shdr.sh_flags))
1370 continue;
1371
1372 /* .init and .exit sections are not placed with .text */
1373 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name);
1374 if (!sec_name ||
1375 strstarts(sec_name, ".init") ||
1376 strstarts(sec_name, ".exit"))
1377 break;
1378
1379 /* Must be next to previous, assumes .text is first */
1380 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset)
1381 break;
1382
1383 offs = shdr.sh_offset + shdr.sh_size;
1384 }
1385
1386 return offs;
1387 }
1388
1389 /**
1390 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1391 * @kmap: kernel maps and relocation reference symbol
1392 *
1393 * This function returns %true if we are dealing with the kernel maps and the
1394 * relocation reference symbol has not yet been found. Otherwise %false is
1395 * returned.
1396 */
ref_reloc_sym_not_found(struct kmap * kmap)1397 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1398 {
1399 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1400 !kmap->ref_reloc_sym->unrelocated_addr;
1401 }
1402
1403 /**
1404 * ref_reloc - kernel relocation offset.
1405 * @kmap: kernel maps and relocation reference symbol
1406 *
1407 * This function returns the offset of kernel addresses as determined by using
1408 * the relocation reference symbol i.e. if the kernel has not been relocated
1409 * then the return value is zero.
1410 */
ref_reloc(struct kmap * kmap)1411 static u64 ref_reloc(struct kmap *kmap)
1412 {
1413 if (kmap && kmap->ref_reloc_sym &&
1414 kmap->ref_reloc_sym->unrelocated_addr)
1415 return kmap->ref_reloc_sym->addr -
1416 kmap->ref_reloc_sym->unrelocated_addr;
1417 return 0;
1418 }
1419
arch__sym_update(struct symbol * s __maybe_unused,GElf_Sym * sym __maybe_unused)1420 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1421 GElf_Sym *sym __maybe_unused) { }
1422
dso__process_kernel_symbol(struct dso * dso,struct map * map,GElf_Sym * sym,GElf_Shdr * shdr,struct maps * kmaps,struct kmap * kmap,struct dso ** curr_dsop,const char * section_name,bool adjust_kernel_syms,bool kmodule,bool * remap_kernel,u64 max_text_sh_offset)1423 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1424 GElf_Sym *sym, GElf_Shdr *shdr,
1425 struct maps *kmaps, struct kmap *kmap,
1426 struct dso **curr_dsop,
1427 const char *section_name,
1428 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel,
1429 u64 max_text_sh_offset)
1430 {
1431 struct dso *curr_dso = *curr_dsop;
1432 struct map *curr_map;
1433 char dso_name[PATH_MAX];
1434
1435 /* Adjust symbol to map to file offset */
1436 if (adjust_kernel_syms)
1437 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1438
1439 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0)
1440 return 0;
1441
1442 if (strcmp(section_name, ".text") == 0) {
1443 /*
1444 * The initial kernel mapping is based on
1445 * kallsyms and identity maps. Overwrite it to
1446 * map to the kernel dso.
1447 */
1448 if (*remap_kernel && dso__kernel(dso) && !kmodule) {
1449 *remap_kernel = false;
1450 map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1451 map__set_end(map, map__start(map) + shdr->sh_size);
1452 map__set_pgoff(map, shdr->sh_offset);
1453 map__set_mapping_type(map, MAPPING_TYPE__DSO);
1454 /* Ensure maps are correctly ordered */
1455 if (kmaps) {
1456 int err;
1457 struct map *tmp = map__get(map);
1458
1459 maps__remove(kmaps, map);
1460 err = maps__insert(kmaps, map);
1461 map__put(tmp);
1462 if (err)
1463 return err;
1464 }
1465 }
1466
1467 /*
1468 * The initial module mapping is based on
1469 * /proc/modules mapped to offset zero.
1470 * Overwrite it to map to the module dso.
1471 */
1472 if (*remap_kernel && kmodule) {
1473 *remap_kernel = false;
1474 map__set_pgoff(map, shdr->sh_offset);
1475 }
1476
1477 dso__put(*curr_dsop);
1478 *curr_dsop = dso__get(dso);
1479 return 0;
1480 }
1481
1482 if (!kmap)
1483 return 0;
1484
1485 /*
1486 * perf does not record module section addresses except for .text, but
1487 * some sections can use the same mapping as .text.
1488 */
1489 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) &&
1490 shdr->sh_offset <= max_text_sh_offset) {
1491 dso__put(*curr_dsop);
1492 *curr_dsop = dso__get(dso);
1493 return 0;
1494 }
1495
1496 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name);
1497
1498 curr_map = maps__find_by_name(kmaps, dso_name);
1499 if (curr_map == NULL) {
1500 u64 start = sym->st_value;
1501
1502 if (kmodule)
1503 start += map__start(map) + shdr->sh_offset;
1504
1505 curr_dso = dso__new(dso_name);
1506 if (curr_dso == NULL)
1507 return -1;
1508 dso__set_kernel(curr_dso, dso__kernel(dso));
1509 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso);
1510 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso);
1511 dso__set_binary_type(curr_dso, dso__binary_type(dso));
1512 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso));
1513 curr_map = map__new2(start, curr_dso);
1514 if (curr_map == NULL) {
1515 dso__put(curr_dso);
1516 return -1;
1517 }
1518 if (dso__kernel(curr_dso))
1519 map__kmap(curr_map)->kmaps = kmaps;
1520
1521 if (adjust_kernel_syms) {
1522 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1523 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1524 map__set_pgoff(curr_map, shdr->sh_offset);
1525 } else {
1526 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1527 }
1528 dso__set_symtab_type(curr_dso, dso__symtab_type(dso));
1529 if (maps__insert(kmaps, curr_map))
1530 return -1;
1531 dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1532 dso__set_loaded(curr_dso);
1533 dso__put(*curr_dsop);
1534 *curr_dsop = curr_dso;
1535 } else {
1536 dso__put(*curr_dsop);
1537 *curr_dsop = dso__get(map__dso(curr_map));
1538 }
1539 map__put(curr_map);
1540
1541 return 0;
1542 }
1543
1544 static int
dso__load_sym_internal(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule,int dynsym)1545 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1546 struct symsrc *runtime_ss, int kmodule, int dynsym)
1547 {
1548 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL;
1549 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1550 struct dso *curr_dso = NULL;
1551 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1552 uint32_t nr_syms;
1553 uint32_t idx;
1554 GElf_Ehdr ehdr;
1555 GElf_Shdr shdr;
1556 GElf_Shdr tshdr;
1557 Elf_Data *syms, *opddata = NULL;
1558 GElf_Sym sym;
1559 Elf_Scn *sec, *sec_strndx;
1560 Elf *elf;
1561 int nr = 0;
1562 bool remap_kernel = false, adjust_kernel_syms = false;
1563 u64 max_text_sh_offset = 0;
1564
1565 if (kmap && !kmaps)
1566 return -1;
1567
1568 elf = syms_ss->elf;
1569 ehdr = syms_ss->ehdr;
1570 if (dynsym) {
1571 sec = syms_ss->dynsym;
1572 shdr = syms_ss->dynshdr;
1573 } else {
1574 sec = syms_ss->symtab;
1575 shdr = syms_ss->symshdr;
1576 }
1577
1578 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1579 ".text", NULL)) {
1580 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset);
1581 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size);
1582 }
1583
1584 if (runtime_ss->opdsec)
1585 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1586
1587 syms = elf_getdata(sec, NULL);
1588 if (syms == NULL)
1589 goto out_elf_end;
1590
1591 sec = elf_getscn(elf, shdr.sh_link);
1592 if (sec == NULL)
1593 goto out_elf_end;
1594
1595 symstrs = elf_getdata(sec, NULL);
1596 if (symstrs == NULL)
1597 goto out_elf_end;
1598
1599 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1600 if (sec_strndx == NULL)
1601 goto out_elf_end;
1602
1603 secstrs_run = elf_getdata(sec_strndx, NULL);
1604 if (secstrs_run == NULL)
1605 goto out_elf_end;
1606
1607 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1608 if (sec_strndx == NULL)
1609 goto out_elf_end;
1610
1611 secstrs_sym = elf_getdata(sec_strndx, NULL);
1612 if (secstrs_sym == NULL)
1613 goto out_elf_end;
1614
1615 nr_syms = shdr.sh_size / shdr.sh_entsize;
1616
1617 memset(&sym, 0, sizeof(sym));
1618
1619 /*
1620 * The kernel relocation symbol is needed in advance in order to adjust
1621 * kernel maps correctly.
1622 */
1623 if (ref_reloc_sym_not_found(kmap)) {
1624 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1625 const char *elf_name = elf_sym__name(&sym, symstrs);
1626
1627 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1628 continue;
1629 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1630 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1631 break;
1632 }
1633 }
1634
1635 /*
1636 * Handle any relocation of vdso necessary because older kernels
1637 * attempted to prelink vdso to its virtual address.
1638 */
1639 if (dso__is_vdso(dso))
1640 map__set_reloc(map, map__start(map) - dso__text_offset(dso));
1641
1642 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap));
1643 /*
1644 * Initial kernel and module mappings do not map to the dso.
1645 * Flag the fixups.
1646 */
1647 if (dso__kernel(dso)) {
1648 remap_kernel = true;
1649 adjust_kernel_syms = dso__adjust_symbols(dso);
1650 }
1651
1652 if (kmodule && adjust_kernel_syms)
1653 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr);
1654
1655 curr_dso = dso__get(dso);
1656 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1657 struct symbol *f;
1658 const char *elf_name = elf_sym__name(&sym, symstrs);
1659 char *demangled = NULL;
1660 int is_label = elf_sym__is_label(&sym);
1661 const char *section_name;
1662 bool used_opd = false;
1663
1664 if (!is_label && !elf_sym__filter(&sym))
1665 continue;
1666
1667 /* Reject ARM ELF "mapping symbols": these aren't unique and
1668 * don't identify functions, so will confuse the profile
1669 * output: */
1670 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1671 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1672 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1673 continue;
1674 }
1675
1676 /* Reject RISCV ELF "mapping symbols" */
1677 if (ehdr.e_machine == EM_RISCV) {
1678 if (elf_name[0] == '$' && strchr("dx", elf_name[1]))
1679 continue;
1680 }
1681
1682 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1683 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1684 u64 *opd = opddata->d_buf + offset;
1685 sym.st_value = DSO__SWAP(dso, u64, *opd);
1686 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1687 sym.st_value);
1688 used_opd = true;
1689 }
1690
1691 /*
1692 * When loading symbols in a data mapping, ABS symbols (which
1693 * has a value of SHN_ABS in its st_shndx) failed at
1694 * elf_getscn(). And it marks the loading as a failure so
1695 * already loaded symbols cannot be fixed up.
1696 *
1697 * I'm not sure what should be done. Just ignore them for now.
1698 * - Namhyung Kim
1699 */
1700 if (sym.st_shndx == SHN_ABS)
1701 continue;
1702
1703 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1704 if (!sec)
1705 goto out_elf_end;
1706
1707 gelf_getshdr(sec, &shdr);
1708
1709 /*
1710 * If the attribute bit SHF_ALLOC is not set, the section
1711 * doesn't occupy memory during process execution.
1712 * E.g. ".gnu.warning.*" section is used by linker to generate
1713 * warnings when calling deprecated functions, the symbols in
1714 * the section aren't loaded to memory during process execution,
1715 * so skip them.
1716 */
1717 if (!(shdr.sh_flags & SHF_ALLOC))
1718 continue;
1719
1720 secstrs = secstrs_sym;
1721
1722 /*
1723 * We have to fallback to runtime when syms' section header has
1724 * NOBITS set. NOBITS results in file offset (sh_offset) not
1725 * being incremented. So sh_offset used below has different
1726 * values for syms (invalid) and runtime (valid).
1727 */
1728 if (shdr.sh_type == SHT_NOBITS) {
1729 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1730 if (!sec)
1731 goto out_elf_end;
1732
1733 gelf_getshdr(sec, &shdr);
1734 secstrs = secstrs_run;
1735 }
1736
1737 if (is_label && !elf_sec__filter(&shdr, secstrs))
1738 continue;
1739
1740 section_name = elf_sec__name(&shdr, secstrs);
1741
1742 /* On ARM, symbols for thumb functions have 1 added to
1743 * the symbol address as a flag - remove it */
1744 if ((ehdr.e_machine == EM_ARM) &&
1745 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1746 (sym.st_value & 1))
1747 --sym.st_value;
1748
1749 if (dso__kernel(dso)) {
1750 if (dso__process_kernel_symbol(dso, map, &sym, &shdr,
1751 kmaps, kmap, &curr_dso,
1752 section_name,
1753 adjust_kernel_syms,
1754 kmodule,
1755 &remap_kernel,
1756 max_text_sh_offset))
1757 goto out_elf_end;
1758 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1759 (!used_opd && syms_ss->adjust_symbols)) {
1760 GElf_Phdr phdr;
1761
1762 if (elf_read_program_header(runtime_ss->elf,
1763 (u64)sym.st_value, &phdr)) {
1764 pr_debug4("%s: failed to find program header for "
1765 "symbol: %s st_value: %#" PRIx64 "\n",
1766 __func__, elf_name, (u64)sym.st_value);
1767 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1768 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1769 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1770 (u64)shdr.sh_offset);
1771 /*
1772 * Fail to find program header, let's rollback
1773 * to use shdr.sh_addr and shdr.sh_offset to
1774 * calibrate symbol's file address, though this
1775 * is not necessary for normal C ELF file, we
1776 * still need to handle java JIT symbols in this
1777 * case.
1778 */
1779 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1780 } else {
1781 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1782 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1783 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1784 (u64)phdr.p_offset);
1785 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1786 }
1787 }
1788
1789 demangled = dso__demangle_sym(dso, kmodule, elf_name);
1790 if (demangled != NULL)
1791 elf_name = demangled;
1792
1793 f = symbol__new(sym.st_value, sym.st_size,
1794 GELF_ST_BIND(sym.st_info),
1795 GELF_ST_TYPE(sym.st_info), elf_name);
1796 free(demangled);
1797 if (!f)
1798 goto out_elf_end;
1799
1800 arch__sym_update(f, &sym);
1801
1802 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso));
1803 nr++;
1804 }
1805 dso__put(curr_dso);
1806
1807 /*
1808 * For misannotated, zeroed, ASM function sizes.
1809 */
1810 if (nr > 0) {
1811 symbols__fixup_end(dso__symbols(dso), false);
1812 symbols__fixup_duplicate(dso__symbols(dso));
1813 if (kmap) {
1814 /*
1815 * We need to fixup this here too because we create new
1816 * maps here, for things like vsyscall sections.
1817 */
1818 maps__fixup_end(kmaps);
1819 }
1820 }
1821 return nr;
1822 out_elf_end:
1823 dso__put(curr_dso);
1824 return -1;
1825 }
1826
dso__load_sym(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule)1827 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1828 struct symsrc *runtime_ss, int kmodule)
1829 {
1830 int nr = 0;
1831 int err = -1;
1832
1833 dso__set_symtab_type(dso, syms_ss->type);
1834 dso__set_is_64_bit(dso, syms_ss->is_64_bit);
1835 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL);
1836
1837 /*
1838 * Modules may already have symbols from kallsyms, but those symbols
1839 * have the wrong values for the dso maps, so remove them.
1840 */
1841 if (kmodule && syms_ss->symtab)
1842 symbols__delete(dso__symbols(dso));
1843
1844 if (!syms_ss->symtab) {
1845 /*
1846 * If the vmlinux is stripped, fail so we will fall back
1847 * to using kallsyms. The vmlinux runtime symbols aren't
1848 * of much use.
1849 */
1850 if (dso__kernel(dso))
1851 return err;
1852 } else {
1853 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1854 kmodule, 0);
1855 if (err < 0)
1856 return err;
1857 nr = err;
1858 }
1859
1860 if (syms_ss->dynsym) {
1861 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1862 kmodule, 1);
1863 if (err < 0)
1864 return err;
1865 nr += err;
1866 }
1867
1868 /*
1869 * The .gnu_debugdata is a special situation: it contains a symbol
1870 * table, but the runtime file may also contain dynsym entries which are
1871 * not present there. We need to load both.
1872 */
1873 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) {
1874 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss,
1875 kmodule, 1);
1876 if (err < 0)
1877 return err;
1878 nr += err;
1879 }
1880
1881 return nr;
1882 }
1883
elf_read_maps(Elf * elf,bool exe,mapfn_t mapfn,void * data)1884 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1885 {
1886 GElf_Phdr phdr;
1887 size_t i, phdrnum;
1888 int err;
1889 u64 sz;
1890
1891 if (elf_getphdrnum(elf, &phdrnum))
1892 return -1;
1893
1894 for (i = 0; i < phdrnum; i++) {
1895 if (gelf_getphdr(elf, i, &phdr) == NULL)
1896 return -1;
1897 if (phdr.p_type != PT_LOAD)
1898 continue;
1899 if (exe) {
1900 if (!(phdr.p_flags & PF_X))
1901 continue;
1902 } else {
1903 if (!(phdr.p_flags & PF_R))
1904 continue;
1905 }
1906 sz = min(phdr.p_memsz, phdr.p_filesz);
1907 if (!sz)
1908 continue;
1909 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1910 if (err)
1911 return err;
1912 }
1913 return 0;
1914 }
1915
file__read_maps(int fd,bool exe,mapfn_t mapfn,void * data,bool * is_64_bit)1916 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1917 bool *is_64_bit)
1918 {
1919 int err;
1920 Elf *elf;
1921
1922 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1923 if (elf == NULL)
1924 return -1;
1925
1926 if (is_64_bit)
1927 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1928
1929 err = elf_read_maps(elf, exe, mapfn, data);
1930
1931 elf_end(elf);
1932 return err;
1933 }
1934
dso__type_fd(int fd)1935 enum dso_type dso__type_fd(int fd)
1936 {
1937 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1938 GElf_Ehdr ehdr;
1939 Elf_Kind ek;
1940 Elf *elf;
1941
1942 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1943 if (elf == NULL)
1944 goto out;
1945
1946 ek = elf_kind(elf);
1947 if (ek != ELF_K_ELF)
1948 goto out_end;
1949
1950 if (gelf_getclass(elf) == ELFCLASS64) {
1951 dso_type = DSO__TYPE_64BIT;
1952 goto out_end;
1953 }
1954
1955 if (gelf_getehdr(elf, &ehdr) == NULL)
1956 goto out_end;
1957
1958 if (ehdr.e_machine == EM_X86_64)
1959 dso_type = DSO__TYPE_X32BIT;
1960 else
1961 dso_type = DSO__TYPE_32BIT;
1962 out_end:
1963 elf_end(elf);
1964 out:
1965 return dso_type;
1966 }
1967
copy_bytes(int from,off_t from_offs,int to,off_t to_offs,u64 len)1968 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1969 {
1970 ssize_t r;
1971 size_t n;
1972 int err = -1;
1973 char *buf = malloc(page_size);
1974
1975 if (buf == NULL)
1976 return -1;
1977
1978 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1979 goto out;
1980
1981 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1982 goto out;
1983
1984 while (len) {
1985 n = page_size;
1986 if (len < n)
1987 n = len;
1988 /* Use read because mmap won't work on proc files */
1989 r = read(from, buf, n);
1990 if (r < 0)
1991 goto out;
1992 if (!r)
1993 break;
1994 n = r;
1995 r = write(to, buf, n);
1996 if (r < 0)
1997 goto out;
1998 if ((size_t)r != n)
1999 goto out;
2000 len -= n;
2001 }
2002
2003 err = 0;
2004 out:
2005 free(buf);
2006 return err;
2007 }
2008
2009 struct kcore {
2010 int fd;
2011 int elfclass;
2012 Elf *elf;
2013 GElf_Ehdr ehdr;
2014 };
2015
kcore__open(struct kcore * kcore,const char * filename)2016 static int kcore__open(struct kcore *kcore, const char *filename)
2017 {
2018 GElf_Ehdr *ehdr;
2019
2020 kcore->fd = open(filename, O_RDONLY);
2021 if (kcore->fd == -1)
2022 return -1;
2023
2024 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
2025 if (!kcore->elf)
2026 goto out_close;
2027
2028 kcore->elfclass = gelf_getclass(kcore->elf);
2029 if (kcore->elfclass == ELFCLASSNONE)
2030 goto out_end;
2031
2032 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
2033 if (!ehdr)
2034 goto out_end;
2035
2036 return 0;
2037
2038 out_end:
2039 elf_end(kcore->elf);
2040 out_close:
2041 close(kcore->fd);
2042 return -1;
2043 }
2044
kcore__init(struct kcore * kcore,char * filename,int elfclass,bool temp)2045 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
2046 bool temp)
2047 {
2048 kcore->elfclass = elfclass;
2049
2050 if (temp)
2051 kcore->fd = mkstemp(filename);
2052 else
2053 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
2054 if (kcore->fd == -1)
2055 return -1;
2056
2057 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
2058 if (!kcore->elf)
2059 goto out_close;
2060
2061 if (!gelf_newehdr(kcore->elf, elfclass))
2062 goto out_end;
2063
2064 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
2065
2066 return 0;
2067
2068 out_end:
2069 elf_end(kcore->elf);
2070 out_close:
2071 close(kcore->fd);
2072 unlink(filename);
2073 return -1;
2074 }
2075
kcore__close(struct kcore * kcore)2076 static void kcore__close(struct kcore *kcore)
2077 {
2078 elf_end(kcore->elf);
2079 close(kcore->fd);
2080 }
2081
kcore__copy_hdr(struct kcore * from,struct kcore * to,size_t count)2082 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
2083 {
2084 GElf_Ehdr *ehdr = &to->ehdr;
2085 GElf_Ehdr *kehdr = &from->ehdr;
2086
2087 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
2088 ehdr->e_type = kehdr->e_type;
2089 ehdr->e_machine = kehdr->e_machine;
2090 ehdr->e_version = kehdr->e_version;
2091 ehdr->e_entry = 0;
2092 ehdr->e_shoff = 0;
2093 ehdr->e_flags = kehdr->e_flags;
2094 ehdr->e_phnum = count;
2095 ehdr->e_shentsize = 0;
2096 ehdr->e_shnum = 0;
2097 ehdr->e_shstrndx = 0;
2098
2099 if (from->elfclass == ELFCLASS32) {
2100 ehdr->e_phoff = sizeof(Elf32_Ehdr);
2101 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
2102 ehdr->e_phentsize = sizeof(Elf32_Phdr);
2103 } else {
2104 ehdr->e_phoff = sizeof(Elf64_Ehdr);
2105 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
2106 ehdr->e_phentsize = sizeof(Elf64_Phdr);
2107 }
2108
2109 if (!gelf_update_ehdr(to->elf, ehdr))
2110 return -1;
2111
2112 if (!gelf_newphdr(to->elf, count))
2113 return -1;
2114
2115 return 0;
2116 }
2117
kcore__add_phdr(struct kcore * kcore,int idx,off_t offset,u64 addr,u64 len)2118 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2119 u64 addr, u64 len)
2120 {
2121 GElf_Phdr phdr = {
2122 .p_type = PT_LOAD,
2123 .p_flags = PF_R | PF_W | PF_X,
2124 .p_offset = offset,
2125 .p_vaddr = addr,
2126 .p_paddr = 0,
2127 .p_filesz = len,
2128 .p_memsz = len,
2129 .p_align = page_size,
2130 };
2131
2132 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2133 return -1;
2134
2135 return 0;
2136 }
2137
kcore__write(struct kcore * kcore)2138 static off_t kcore__write(struct kcore *kcore)
2139 {
2140 return elf_update(kcore->elf, ELF_C_WRITE);
2141 }
2142
2143 struct phdr_data {
2144 off_t offset;
2145 off_t rel;
2146 u64 addr;
2147 u64 len;
2148 struct list_head node;
2149 struct phdr_data *remaps;
2150 };
2151
2152 struct sym_data {
2153 u64 addr;
2154 struct list_head node;
2155 };
2156
2157 struct kcore_copy_info {
2158 u64 stext;
2159 u64 etext;
2160 u64 first_symbol;
2161 u64 last_symbol;
2162 u64 first_module;
2163 u64 first_module_symbol;
2164 u64 last_module_symbol;
2165 size_t phnum;
2166 struct list_head phdrs;
2167 struct list_head syms;
2168 };
2169
2170 #define kcore_copy__for_each_phdr(k, p) \
2171 list_for_each_entry((p), &(k)->phdrs, node)
2172
phdr_data__new(u64 addr,u64 len,off_t offset)2173 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2174 {
2175 struct phdr_data *p = zalloc(sizeof(*p));
2176
2177 if (p) {
2178 p->addr = addr;
2179 p->len = len;
2180 p->offset = offset;
2181 }
2182
2183 return p;
2184 }
2185
kcore_copy_info__addnew(struct kcore_copy_info * kci,u64 addr,u64 len,off_t offset)2186 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2187 u64 addr, u64 len,
2188 off_t offset)
2189 {
2190 struct phdr_data *p = phdr_data__new(addr, len, offset);
2191
2192 if (p)
2193 list_add_tail(&p->node, &kci->phdrs);
2194
2195 return p;
2196 }
2197
kcore_copy__free_phdrs(struct kcore_copy_info * kci)2198 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2199 {
2200 struct phdr_data *p, *tmp;
2201
2202 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2203 list_del_init(&p->node);
2204 free(p);
2205 }
2206 }
2207
kcore_copy__new_sym(struct kcore_copy_info * kci,u64 addr)2208 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2209 u64 addr)
2210 {
2211 struct sym_data *s = zalloc(sizeof(*s));
2212
2213 if (s) {
2214 s->addr = addr;
2215 list_add_tail(&s->node, &kci->syms);
2216 }
2217
2218 return s;
2219 }
2220
kcore_copy__free_syms(struct kcore_copy_info * kci)2221 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2222 {
2223 struct sym_data *s, *tmp;
2224
2225 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2226 list_del_init(&s->node);
2227 free(s);
2228 }
2229 }
2230
kcore_copy__process_kallsyms(void * arg,const char * name,char type,u64 start)2231 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2232 u64 start)
2233 {
2234 struct kcore_copy_info *kci = arg;
2235
2236 if (!kallsyms__is_function(type))
2237 return 0;
2238
2239 if (strchr(name, '[')) {
2240 if (!kci->first_module_symbol || start < kci->first_module_symbol)
2241 kci->first_module_symbol = start;
2242 if (start > kci->last_module_symbol)
2243 kci->last_module_symbol = start;
2244 return 0;
2245 }
2246
2247 if (!kci->first_symbol || start < kci->first_symbol)
2248 kci->first_symbol = start;
2249
2250 if (!kci->last_symbol || start > kci->last_symbol)
2251 kci->last_symbol = start;
2252
2253 if (!strcmp(name, "_stext")) {
2254 kci->stext = start;
2255 return 0;
2256 }
2257
2258 if (!strcmp(name, "_etext")) {
2259 kci->etext = start;
2260 return 0;
2261 }
2262
2263 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2264 return -1;
2265
2266 return 0;
2267 }
2268
kcore_copy__parse_kallsyms(struct kcore_copy_info * kci,const char * dir)2269 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2270 const char *dir)
2271 {
2272 char kallsyms_filename[PATH_MAX];
2273
2274 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2275
2276 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2277 return -1;
2278
2279 if (kallsyms__parse(kallsyms_filename, kci,
2280 kcore_copy__process_kallsyms) < 0)
2281 return -1;
2282
2283 return 0;
2284 }
2285
kcore_copy__process_modules(void * arg,const char * name __maybe_unused,u64 start,u64 size __maybe_unused)2286 static int kcore_copy__process_modules(void *arg,
2287 const char *name __maybe_unused,
2288 u64 start, u64 size __maybe_unused)
2289 {
2290 struct kcore_copy_info *kci = arg;
2291
2292 if (!kci->first_module || start < kci->first_module)
2293 kci->first_module = start;
2294
2295 return 0;
2296 }
2297
kcore_copy__parse_modules(struct kcore_copy_info * kci,const char * dir)2298 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2299 const char *dir)
2300 {
2301 char modules_filename[PATH_MAX];
2302
2303 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2304
2305 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2306 return -1;
2307
2308 if (modules__parse(modules_filename, kci,
2309 kcore_copy__process_modules) < 0)
2310 return -1;
2311
2312 return 0;
2313 }
2314
kcore_copy__map(struct kcore_copy_info * kci,u64 start,u64 end,u64 pgoff,u64 s,u64 e)2315 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2316 u64 pgoff, u64 s, u64 e)
2317 {
2318 u64 len, offset;
2319
2320 if (s < start || s >= end)
2321 return 0;
2322
2323 offset = (s - start) + pgoff;
2324 len = e < end ? e - s : end - s;
2325
2326 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2327 }
2328
kcore_copy__read_map(u64 start,u64 len,u64 pgoff,void * data)2329 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2330 {
2331 struct kcore_copy_info *kci = data;
2332 u64 end = start + len;
2333 struct sym_data *sdat;
2334
2335 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2336 return -1;
2337
2338 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2339 kci->last_module_symbol))
2340 return -1;
2341
2342 list_for_each_entry(sdat, &kci->syms, node) {
2343 u64 s = round_down(sdat->addr, page_size);
2344
2345 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2346 return -1;
2347 }
2348
2349 return 0;
2350 }
2351
kcore_copy__read_maps(struct kcore_copy_info * kci,Elf * elf)2352 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2353 {
2354 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2355 return -1;
2356
2357 return 0;
2358 }
2359
kcore_copy__find_remaps(struct kcore_copy_info * kci)2360 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2361 {
2362 struct phdr_data *p, *k = NULL;
2363 u64 kend;
2364
2365 if (!kci->stext)
2366 return;
2367
2368 /* Find phdr that corresponds to the kernel map (contains stext) */
2369 kcore_copy__for_each_phdr(kci, p) {
2370 u64 pend = p->addr + p->len - 1;
2371
2372 if (p->addr <= kci->stext && pend >= kci->stext) {
2373 k = p;
2374 break;
2375 }
2376 }
2377
2378 if (!k)
2379 return;
2380
2381 kend = k->offset + k->len;
2382
2383 /* Find phdrs that remap the kernel */
2384 kcore_copy__for_each_phdr(kci, p) {
2385 u64 pend = p->offset + p->len;
2386
2387 if (p == k)
2388 continue;
2389
2390 if (p->offset >= k->offset && pend <= kend)
2391 p->remaps = k;
2392 }
2393 }
2394
kcore_copy__layout(struct kcore_copy_info * kci)2395 static void kcore_copy__layout(struct kcore_copy_info *kci)
2396 {
2397 struct phdr_data *p;
2398 off_t rel = 0;
2399
2400 kcore_copy__find_remaps(kci);
2401
2402 kcore_copy__for_each_phdr(kci, p) {
2403 if (!p->remaps) {
2404 p->rel = rel;
2405 rel += p->len;
2406 }
2407 kci->phnum += 1;
2408 }
2409
2410 kcore_copy__for_each_phdr(kci, p) {
2411 struct phdr_data *k = p->remaps;
2412
2413 if (k)
2414 p->rel = p->offset - k->offset + k->rel;
2415 }
2416 }
2417
kcore_copy__calc_maps(struct kcore_copy_info * kci,const char * dir,Elf * elf)2418 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2419 Elf *elf)
2420 {
2421 if (kcore_copy__parse_kallsyms(kci, dir))
2422 return -1;
2423
2424 if (kcore_copy__parse_modules(kci, dir))
2425 return -1;
2426
2427 if (kci->stext)
2428 kci->stext = round_down(kci->stext, page_size);
2429 else
2430 kci->stext = round_down(kci->first_symbol, page_size);
2431
2432 if (kci->etext) {
2433 kci->etext = round_up(kci->etext, page_size);
2434 } else if (kci->last_symbol) {
2435 kci->etext = round_up(kci->last_symbol, page_size);
2436 kci->etext += page_size;
2437 }
2438
2439 if (kci->first_module_symbol &&
2440 (!kci->first_module || kci->first_module_symbol < kci->first_module))
2441 kci->first_module = kci->first_module_symbol;
2442
2443 kci->first_module = round_down(kci->first_module, page_size);
2444
2445 if (kci->last_module_symbol) {
2446 kci->last_module_symbol = round_up(kci->last_module_symbol,
2447 page_size);
2448 kci->last_module_symbol += page_size;
2449 }
2450
2451 if (!kci->stext || !kci->etext)
2452 return -1;
2453
2454 if (kci->first_module && !kci->last_module_symbol)
2455 return -1;
2456
2457 if (kcore_copy__read_maps(kci, elf))
2458 return -1;
2459
2460 kcore_copy__layout(kci);
2461
2462 return 0;
2463 }
2464
kcore_copy__copy_file(const char * from_dir,const char * to_dir,const char * name)2465 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2466 const char *name)
2467 {
2468 char from_filename[PATH_MAX];
2469 char to_filename[PATH_MAX];
2470
2471 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2472 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2473
2474 return copyfile_mode(from_filename, to_filename, 0400);
2475 }
2476
kcore_copy__unlink(const char * dir,const char * name)2477 static int kcore_copy__unlink(const char *dir, const char *name)
2478 {
2479 char filename[PATH_MAX];
2480
2481 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2482
2483 return unlink(filename);
2484 }
2485
kcore_copy__compare_fds(int from,int to)2486 static int kcore_copy__compare_fds(int from, int to)
2487 {
2488 char *buf_from;
2489 char *buf_to;
2490 ssize_t ret;
2491 size_t len;
2492 int err = -1;
2493
2494 buf_from = malloc(page_size);
2495 buf_to = malloc(page_size);
2496 if (!buf_from || !buf_to)
2497 goto out;
2498
2499 while (1) {
2500 /* Use read because mmap won't work on proc files */
2501 ret = read(from, buf_from, page_size);
2502 if (ret < 0)
2503 goto out;
2504
2505 if (!ret)
2506 break;
2507
2508 len = ret;
2509
2510 if (readn(to, buf_to, len) != (int)len)
2511 goto out;
2512
2513 if (memcmp(buf_from, buf_to, len))
2514 goto out;
2515 }
2516
2517 err = 0;
2518 out:
2519 free(buf_to);
2520 free(buf_from);
2521 return err;
2522 }
2523
kcore_copy__compare_files(const char * from_filename,const char * to_filename)2524 static int kcore_copy__compare_files(const char *from_filename,
2525 const char *to_filename)
2526 {
2527 int from, to, err = -1;
2528
2529 from = open(from_filename, O_RDONLY);
2530 if (from < 0)
2531 return -1;
2532
2533 to = open(to_filename, O_RDONLY);
2534 if (to < 0)
2535 goto out_close_from;
2536
2537 err = kcore_copy__compare_fds(from, to);
2538
2539 close(to);
2540 out_close_from:
2541 close(from);
2542 return err;
2543 }
2544
kcore_copy__compare_file(const char * from_dir,const char * to_dir,const char * name)2545 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2546 const char *name)
2547 {
2548 char from_filename[PATH_MAX];
2549 char to_filename[PATH_MAX];
2550
2551 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2552 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2553
2554 return kcore_copy__compare_files(from_filename, to_filename);
2555 }
2556
2557 /**
2558 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2559 * @from_dir: from directory
2560 * @to_dir: to directory
2561 *
2562 * This function copies kallsyms, modules and kcore files from one directory to
2563 * another. kallsyms and modules are copied entirely. Only code segments are
2564 * copied from kcore. It is assumed that two segments suffice: one for the
2565 * kernel proper and one for all the modules. The code segments are determined
2566 * from kallsyms and modules files. The kernel map starts at _stext or the
2567 * lowest function symbol, and ends at _etext or the highest function symbol.
2568 * The module map starts at the lowest module address and ends at the highest
2569 * module symbol. Start addresses are rounded down to the nearest page. End
2570 * addresses are rounded up to the nearest page. An extra page is added to the
2571 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2572 * symbol too. Because it contains only code sections, the resulting kcore is
2573 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2574 * is not the same for the kernel map and the modules map. That happens because
2575 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2576 * kallsyms file is compared with its copy to check that modules have not been
2577 * loaded or unloaded while the copies were taking place.
2578 *
2579 * Return: %0 on success, %-1 on failure.
2580 */
kcore_copy(const char * from_dir,const char * to_dir)2581 int kcore_copy(const char *from_dir, const char *to_dir)
2582 {
2583 struct kcore kcore;
2584 struct kcore extract;
2585 int idx = 0, err = -1;
2586 off_t offset, sz;
2587 struct kcore_copy_info kci = { .stext = 0, };
2588 char kcore_filename[PATH_MAX];
2589 char extract_filename[PATH_MAX];
2590 struct phdr_data *p;
2591
2592 INIT_LIST_HEAD(&kci.phdrs);
2593 INIT_LIST_HEAD(&kci.syms);
2594
2595 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2596 return -1;
2597
2598 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2599 goto out_unlink_kallsyms;
2600
2601 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2602 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2603
2604 if (kcore__open(&kcore, kcore_filename))
2605 goto out_unlink_modules;
2606
2607 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2608 goto out_kcore_close;
2609
2610 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2611 goto out_kcore_close;
2612
2613 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2614 goto out_extract_close;
2615
2616 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2617 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2618 offset = round_up(offset, page_size);
2619
2620 kcore_copy__for_each_phdr(&kci, p) {
2621 off_t offs = p->rel + offset;
2622
2623 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2624 goto out_extract_close;
2625 }
2626
2627 sz = kcore__write(&extract);
2628 if (sz < 0 || sz > offset)
2629 goto out_extract_close;
2630
2631 kcore_copy__for_each_phdr(&kci, p) {
2632 off_t offs = p->rel + offset;
2633
2634 if (p->remaps)
2635 continue;
2636 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2637 goto out_extract_close;
2638 }
2639
2640 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2641 goto out_extract_close;
2642
2643 err = 0;
2644
2645 out_extract_close:
2646 kcore__close(&extract);
2647 if (err)
2648 unlink(extract_filename);
2649 out_kcore_close:
2650 kcore__close(&kcore);
2651 out_unlink_modules:
2652 if (err)
2653 kcore_copy__unlink(to_dir, "modules");
2654 out_unlink_kallsyms:
2655 if (err)
2656 kcore_copy__unlink(to_dir, "kallsyms");
2657
2658 kcore_copy__free_phdrs(&kci);
2659 kcore_copy__free_syms(&kci);
2660
2661 return err;
2662 }
2663
kcore_extract__create(struct kcore_extract * kce)2664 int kcore_extract__create(struct kcore_extract *kce)
2665 {
2666 struct kcore kcore;
2667 struct kcore extract;
2668 size_t count = 1;
2669 int idx = 0, err = -1;
2670 off_t offset = page_size, sz;
2671
2672 if (kcore__open(&kcore, kce->kcore_filename))
2673 return -1;
2674
2675 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2676 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2677 goto out_kcore_close;
2678
2679 if (kcore__copy_hdr(&kcore, &extract, count))
2680 goto out_extract_close;
2681
2682 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2683 goto out_extract_close;
2684
2685 sz = kcore__write(&extract);
2686 if (sz < 0 || sz > offset)
2687 goto out_extract_close;
2688
2689 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2690 goto out_extract_close;
2691
2692 err = 0;
2693
2694 out_extract_close:
2695 kcore__close(&extract);
2696 if (err)
2697 unlink(kce->extract_filename);
2698 out_kcore_close:
2699 kcore__close(&kcore);
2700
2701 return err;
2702 }
2703
kcore_extract__delete(struct kcore_extract * kce)2704 void kcore_extract__delete(struct kcore_extract *kce)
2705 {
2706 unlink(kce->extract_filename);
2707 }
2708
2709 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2710
sdt_adjust_loc(struct sdt_note * tmp,GElf_Addr base_off)2711 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2712 {
2713 if (!base_off)
2714 return;
2715
2716 if (tmp->bit32)
2717 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2718 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2719 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2720 else
2721 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2722 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2723 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2724 }
2725
sdt_adjust_refctr(struct sdt_note * tmp,GElf_Addr base_addr,GElf_Addr base_off)2726 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2727 GElf_Addr base_off)
2728 {
2729 if (!base_off)
2730 return;
2731
2732 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2733 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2734 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2735 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2736 }
2737
2738 /**
2739 * populate_sdt_note : Parse raw data and identify SDT note
2740 * @elf: elf of the opened file
2741 * @data: raw data of a section with description offset applied
2742 * @len: note description size
2743 * @type: type of the note
2744 * @sdt_notes: List to add the SDT note
2745 *
2746 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2747 * if its an SDT note, it appends to @sdt_notes list.
2748 */
populate_sdt_note(Elf ** elf,const char * data,size_t len,struct list_head * sdt_notes)2749 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2750 struct list_head *sdt_notes)
2751 {
2752 const char *provider, *name, *args;
2753 struct sdt_note *tmp = NULL;
2754 GElf_Ehdr ehdr;
2755 GElf_Shdr shdr;
2756 int ret = -EINVAL;
2757
2758 union {
2759 Elf64_Addr a64[NR_ADDR];
2760 Elf32_Addr a32[NR_ADDR];
2761 } buf;
2762
2763 Elf_Data dst = {
2764 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2765 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2766 .d_off = 0, .d_align = 0
2767 };
2768 Elf_Data src = {
2769 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2770 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2771 .d_align = 0
2772 };
2773
2774 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2775 if (!tmp) {
2776 ret = -ENOMEM;
2777 goto out_err;
2778 }
2779
2780 INIT_LIST_HEAD(&tmp->note_list);
2781
2782 if (len < dst.d_size + 3)
2783 goto out_free_note;
2784
2785 /* Translation from file representation to memory representation */
2786 if (gelf_xlatetom(*elf, &dst, &src,
2787 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2788 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2789 goto out_free_note;
2790 }
2791
2792 /* Populate the fields of sdt_note */
2793 provider = data + dst.d_size;
2794
2795 name = (const char *)memchr(provider, '\0', data + len - provider);
2796 if (name++ == NULL)
2797 goto out_free_note;
2798
2799 tmp->provider = strdup(provider);
2800 if (!tmp->provider) {
2801 ret = -ENOMEM;
2802 goto out_free_note;
2803 }
2804 tmp->name = strdup(name);
2805 if (!tmp->name) {
2806 ret = -ENOMEM;
2807 goto out_free_prov;
2808 }
2809
2810 args = memchr(name, '\0', data + len - name);
2811
2812 /*
2813 * There is no argument if:
2814 * - We reached the end of the note;
2815 * - There is not enough room to hold a potential string;
2816 * - The argument string is empty or just contains ':'.
2817 */
2818 if (args == NULL || data + len - args < 2 ||
2819 args[1] == ':' || args[1] == '\0')
2820 tmp->args = NULL;
2821 else {
2822 tmp->args = strdup(++args);
2823 if (!tmp->args) {
2824 ret = -ENOMEM;
2825 goto out_free_name;
2826 }
2827 }
2828
2829 if (gelf_getclass(*elf) == ELFCLASS32) {
2830 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2831 tmp->bit32 = true;
2832 } else {
2833 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2834 tmp->bit32 = false;
2835 }
2836
2837 if (!gelf_getehdr(*elf, &ehdr)) {
2838 pr_debug("%s : cannot get elf header.\n", __func__);
2839 ret = -EBADF;
2840 goto out_free_args;
2841 }
2842
2843 /* Adjust the prelink effect :
2844 * Find out the .stapsdt.base section.
2845 * This scn will help us to handle prelinking (if present).
2846 * Compare the retrieved file offset of the base section with the
2847 * base address in the description of the SDT note. If its different,
2848 * then accordingly, adjust the note location.
2849 */
2850 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2851 sdt_adjust_loc(tmp, shdr.sh_offset);
2852
2853 /* Adjust reference counter offset */
2854 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2855 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2856
2857 list_add_tail(&tmp->note_list, sdt_notes);
2858 return 0;
2859
2860 out_free_args:
2861 zfree(&tmp->args);
2862 out_free_name:
2863 zfree(&tmp->name);
2864 out_free_prov:
2865 zfree(&tmp->provider);
2866 out_free_note:
2867 free(tmp);
2868 out_err:
2869 return ret;
2870 }
2871
2872 /**
2873 * construct_sdt_notes_list : constructs a list of SDT notes
2874 * @elf : elf to look into
2875 * @sdt_notes : empty list_head
2876 *
2877 * Scans the sections in 'elf' for the section
2878 * .note.stapsdt. It, then calls populate_sdt_note to find
2879 * out the SDT events and populates the 'sdt_notes'.
2880 */
construct_sdt_notes_list(Elf * elf,struct list_head * sdt_notes)2881 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2882 {
2883 GElf_Ehdr ehdr;
2884 Elf_Scn *scn = NULL;
2885 Elf_Data *data;
2886 GElf_Shdr shdr;
2887 size_t shstrndx, next;
2888 GElf_Nhdr nhdr;
2889 size_t name_off, desc_off, offset;
2890 int ret = 0;
2891
2892 if (gelf_getehdr(elf, &ehdr) == NULL) {
2893 ret = -EBADF;
2894 goto out_ret;
2895 }
2896 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2897 ret = -EBADF;
2898 goto out_ret;
2899 }
2900
2901 /* Look for the required section */
2902 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2903 if (!scn) {
2904 ret = -ENOENT;
2905 goto out_ret;
2906 }
2907
2908 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2909 ret = -ENOENT;
2910 goto out_ret;
2911 }
2912
2913 data = elf_getdata(scn, NULL);
2914
2915 /* Get the SDT notes */
2916 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2917 &desc_off)) > 0; offset = next) {
2918 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2919 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2920 sizeof(SDT_NOTE_NAME))) {
2921 /* Check the type of the note */
2922 if (nhdr.n_type != SDT_NOTE_TYPE)
2923 goto out_ret;
2924
2925 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2926 nhdr.n_descsz, sdt_notes);
2927 if (ret < 0)
2928 goto out_ret;
2929 }
2930 }
2931 if (list_empty(sdt_notes))
2932 ret = -ENOENT;
2933
2934 out_ret:
2935 return ret;
2936 }
2937
2938 /**
2939 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2940 * @head : empty list_head
2941 * @target : file to find SDT notes from
2942 *
2943 * This opens the file, initializes
2944 * the ELF and then calls construct_sdt_notes_list.
2945 */
get_sdt_note_list(struct list_head * head,const char * target)2946 int get_sdt_note_list(struct list_head *head, const char *target)
2947 {
2948 Elf *elf;
2949 int fd, ret;
2950
2951 fd = open(target, O_RDONLY);
2952 if (fd < 0)
2953 return -EBADF;
2954
2955 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2956 if (!elf) {
2957 ret = -EBADF;
2958 goto out_close;
2959 }
2960 ret = construct_sdt_notes_list(elf, head);
2961 elf_end(elf);
2962 out_close:
2963 close(fd);
2964 return ret;
2965 }
2966
2967 /**
2968 * cleanup_sdt_note_list : free the sdt notes' list
2969 * @sdt_notes: sdt notes' list
2970 *
2971 * Free up the SDT notes in @sdt_notes.
2972 * Returns the number of SDT notes free'd.
2973 */
cleanup_sdt_note_list(struct list_head * sdt_notes)2974 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2975 {
2976 struct sdt_note *tmp, *pos;
2977 int nr_free = 0;
2978
2979 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2980 list_del_init(&pos->note_list);
2981 zfree(&pos->args);
2982 zfree(&pos->name);
2983 zfree(&pos->provider);
2984 free(pos);
2985 nr_free++;
2986 }
2987 return nr_free;
2988 }
2989
2990 /**
2991 * sdt_notes__get_count: Counts the number of sdt events
2992 * @start: list_head to sdt_notes list
2993 *
2994 * Returns the number of SDT notes in a list
2995 */
sdt_notes__get_count(struct list_head * start)2996 int sdt_notes__get_count(struct list_head *start)
2997 {
2998 struct sdt_note *sdt_ptr;
2999 int count = 0;
3000
3001 list_for_each_entry(sdt_ptr, start, note_list)
3002 count++;
3003 return count;
3004 }
3005 #endif
3006
symbol__elf_init(void)3007 void symbol__elf_init(void)
3008 {
3009 elf_version(EV_CURRENT);
3010 }
3011