1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137 };
138
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 /*
164 * Not strictly necessary to lock, as no other task will be using a
165 * block_group on the deleted_bgs list during a transaction abort.
166 */
167 spin_lock(&transaction->fs_info->unused_bgs_lock);
168 list_del_init(&cache->bg_list);
169 spin_unlock(&transaction->fs_info->unused_bgs_lock);
170 btrfs_unfreeze_block_group(cache);
171 btrfs_put_block_group(cache);
172 }
173 WARN_ON(!list_empty(&transaction->dev_update_list));
174 kfree(transaction);
175 }
176 }
177
switch_commit_roots(struct btrfs_trans_handle * trans)178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 struct btrfs_transaction *cur_trans = trans->transaction;
181 struct btrfs_fs_info *fs_info = trans->fs_info;
182 struct btrfs_root *root, *tmp;
183
184 /*
185 * At this point no one can be using this transaction to modify any tree
186 * and no one can start another transaction to modify any tree either.
187 */
188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
190 down_write(&fs_info->commit_root_sem);
191
192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 fs_info->last_reloc_trans = trans->transid;
194
195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 dirty_list) {
197 list_del_init(&root->dirty_list);
198 free_extent_buffer(root->commit_root);
199 root->commit_root = btrfs_root_node(root);
200 btrfs_extent_io_tree_release(&root->dirty_log_pages);
201 btrfs_qgroup_clean_swapped_blocks(root);
202 }
203
204 /* We can free old roots now. */
205 spin_lock(&cur_trans->dropped_roots_lock);
206 while (!list_empty(&cur_trans->dropped_roots)) {
207 root = list_first_entry(&cur_trans->dropped_roots,
208 struct btrfs_root, root_list);
209 list_del_init(&root->root_list);
210 spin_unlock(&cur_trans->dropped_roots_lock);
211 btrfs_free_log(trans, root);
212 btrfs_drop_and_free_fs_root(fs_info, root);
213 spin_lock(&cur_trans->dropped_roots_lock);
214 }
215 spin_unlock(&cur_trans->dropped_roots_lock);
216
217 up_write(&fs_info->commit_root_sem);
218 }
219
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 unsigned int type)
222 {
223 if (type & TRANS_EXTWRITERS)
224 atomic_inc(&trans->num_extwriters);
225 }
226
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 unsigned int type)
229 {
230 if (type & TRANS_EXTWRITERS)
231 atomic_dec(&trans->num_extwriters);
232 }
233
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 unsigned int type)
236 {
237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239
extwriter_counter_read(struct btrfs_transaction * trans)240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 return atomic_read(&trans->num_extwriters);
243 }
244
245 /*
246 * To be called after doing the chunk btree updates right after allocating a new
247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248 * chunk after all chunk btree updates and after finishing the second phase of
249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250 * group had its chunk item insertion delayed to the second phase.
251 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 struct btrfs_fs_info *fs_info = trans->fs_info;
255
256 if (!trans->chunk_bytes_reserved)
257 return;
258
259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 trans->chunk_bytes_reserved, NULL);
261 trans->chunk_bytes_reserved = 0;
262 }
263
264 /*
265 * either allocate a new transaction or hop into the existing one
266 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 unsigned int type)
269 {
270 struct btrfs_transaction *cur_trans;
271
272 spin_lock(&fs_info->trans_lock);
273 loop:
274 /* The file system has been taken offline. No new transactions. */
275 if (BTRFS_FS_ERROR(fs_info)) {
276 spin_unlock(&fs_info->trans_lock);
277 return -EROFS;
278 }
279
280 cur_trans = fs_info->running_transaction;
281 if (cur_trans) {
282 if (TRANS_ABORTED(cur_trans)) {
283 const int abort_error = cur_trans->aborted;
284
285 spin_unlock(&fs_info->trans_lock);
286 return abort_error;
287 }
288 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
289 spin_unlock(&fs_info->trans_lock);
290 return -EBUSY;
291 }
292 refcount_inc(&cur_trans->use_count);
293 atomic_inc(&cur_trans->num_writers);
294 extwriter_counter_inc(cur_trans, type);
295 spin_unlock(&fs_info->trans_lock);
296 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
297 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
298 return 0;
299 }
300 spin_unlock(&fs_info->trans_lock);
301
302 /*
303 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
304 * current transaction, and commit it. If there is no transaction, just
305 * return ENOENT.
306 */
307 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
308 return -ENOENT;
309
310 /*
311 * JOIN_NOLOCK only happens during the transaction commit, so
312 * it is impossible that ->running_transaction is NULL
313 */
314 BUG_ON(type == TRANS_JOIN_NOLOCK);
315
316 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
317 if (!cur_trans)
318 return -ENOMEM;
319
320 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
321 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
322
323 spin_lock(&fs_info->trans_lock);
324 if (fs_info->running_transaction) {
325 /*
326 * someone started a transaction after we unlocked. Make sure
327 * to redo the checks above
328 */
329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 kfree(cur_trans);
332 goto loop;
333 } else if (BTRFS_FS_ERROR(fs_info)) {
334 spin_unlock(&fs_info->trans_lock);
335 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
336 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
337 kfree(cur_trans);
338 return -EROFS;
339 }
340
341 cur_trans->fs_info = fs_info;
342 atomic_set(&cur_trans->pending_ordered, 0);
343 init_waitqueue_head(&cur_trans->pending_wait);
344 atomic_set(&cur_trans->num_writers, 1);
345 extwriter_counter_init(cur_trans, type);
346 init_waitqueue_head(&cur_trans->writer_wait);
347 init_waitqueue_head(&cur_trans->commit_wait);
348 cur_trans->state = TRANS_STATE_RUNNING;
349 /*
350 * One for this trans handle, one so it will live on until we
351 * commit the transaction.
352 */
353 refcount_set(&cur_trans->use_count, 2);
354 cur_trans->flags = 0;
355 cur_trans->start_time = ktime_get_seconds();
356
357 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
358
359 xa_init(&cur_trans->delayed_refs.head_refs);
360 xa_init(&cur_trans->delayed_refs.dirty_extents);
361
362 /*
363 * although the tree mod log is per file system and not per transaction,
364 * the log must never go across transaction boundaries.
365 */
366 smp_mb();
367 if (!list_empty(&fs_info->tree_mod_seq_list))
368 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
369 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
370 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
371 atomic64_set(&fs_info->tree_mod_seq, 0);
372
373 spin_lock_init(&cur_trans->delayed_refs.lock);
374
375 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
376 INIT_LIST_HEAD(&cur_trans->dev_update_list);
377 INIT_LIST_HEAD(&cur_trans->switch_commits);
378 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
379 INIT_LIST_HEAD(&cur_trans->io_bgs);
380 INIT_LIST_HEAD(&cur_trans->dropped_roots);
381 mutex_init(&cur_trans->cache_write_mutex);
382 spin_lock_init(&cur_trans->dirty_bgs_lock);
383 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
384 spin_lock_init(&cur_trans->dropped_roots_lock);
385 list_add_tail(&cur_trans->list, &fs_info->trans_list);
386 btrfs_extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
387 IO_TREE_TRANS_DIRTY_PAGES);
388 btrfs_extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
389 IO_TREE_FS_PINNED_EXTENTS);
390 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
391 cur_trans->transid = fs_info->generation;
392 fs_info->running_transaction = cur_trans;
393 cur_trans->aborted = 0;
394 spin_unlock(&fs_info->trans_lock);
395
396 return 0;
397 }
398
399 /*
400 * This does all the record keeping required to make sure that a shareable root
401 * is properly recorded in a given transaction. This is required to make sure
402 * the old root from before we joined the transaction is deleted when the
403 * transaction commits.
404 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)405 static int record_root_in_trans(struct btrfs_trans_handle *trans,
406 struct btrfs_root *root,
407 int force)
408 {
409 struct btrfs_fs_info *fs_info = root->fs_info;
410 int ret = 0;
411
412 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
413 btrfs_get_root_last_trans(root) < trans->transid) || force) {
414 WARN_ON(!force && root->commit_root != root->node);
415
416 /*
417 * see below for IN_TRANS_SETUP usage rules
418 * we have the reloc mutex held now, so there
419 * is only one writer in this function
420 */
421 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
422
423 /* make sure readers find IN_TRANS_SETUP before
424 * they find our root->last_trans update
425 */
426 smp_wmb();
427
428 spin_lock(&fs_info->fs_roots_radix_lock);
429 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 return 0;
432 }
433 radix_tree_tag_set(&fs_info->fs_roots_radix,
434 (unsigned long)btrfs_root_id(root),
435 BTRFS_ROOT_TRANS_TAG);
436 spin_unlock(&fs_info->fs_roots_radix_lock);
437 btrfs_set_root_last_trans(root, trans->transid);
438
439 /* this is pretty tricky. We don't want to
440 * take the relocation lock in btrfs_record_root_in_trans
441 * unless we're really doing the first setup for this root in
442 * this transaction.
443 *
444 * Normally we'd use root->last_trans as a flag to decide
445 * if we want to take the expensive mutex.
446 *
447 * But, we have to set root->last_trans before we
448 * init the relocation root, otherwise, we trip over warnings
449 * in ctree.c. The solution used here is to flag ourselves
450 * with root IN_TRANS_SETUP. When this is 1, we're still
451 * fixing up the reloc trees and everyone must wait.
452 *
453 * When this is zero, they can trust root->last_trans and fly
454 * through btrfs_record_root_in_trans without having to take the
455 * lock. smp_wmb() makes sure that all the writes above are
456 * done before we pop in the zero below
457 */
458 ret = btrfs_init_reloc_root(trans, root);
459 smp_mb__before_atomic();
460 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
461 }
462 return ret;
463 }
464
465
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)466 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
467 struct btrfs_root *root)
468 {
469 struct btrfs_fs_info *fs_info = root->fs_info;
470 struct btrfs_transaction *cur_trans = trans->transaction;
471
472 /* Add ourselves to the transaction dropped list */
473 spin_lock(&cur_trans->dropped_roots_lock);
474 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
475 spin_unlock(&cur_trans->dropped_roots_lock);
476
477 /* Make sure we don't try to update the root at commit time */
478 spin_lock(&fs_info->fs_roots_radix_lock);
479 radix_tree_tag_clear(&fs_info->fs_roots_radix,
480 (unsigned long)btrfs_root_id(root),
481 BTRFS_ROOT_TRANS_TAG);
482 spin_unlock(&fs_info->fs_roots_radix_lock);
483 }
484
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)485 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
486 struct btrfs_root *root)
487 {
488 struct btrfs_fs_info *fs_info = root->fs_info;
489 int ret;
490
491 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
492 return 0;
493
494 /*
495 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
496 * and barriers
497 */
498 smp_rmb();
499 if (btrfs_get_root_last_trans(root) == trans->transid &&
500 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
501 return 0;
502
503 mutex_lock(&fs_info->reloc_mutex);
504 ret = record_root_in_trans(trans, root, 0);
505 mutex_unlock(&fs_info->reloc_mutex);
506
507 return ret;
508 }
509
is_transaction_blocked(struct btrfs_transaction * trans)510 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
511 {
512 return (trans->state >= TRANS_STATE_COMMIT_START &&
513 trans->state < TRANS_STATE_UNBLOCKED &&
514 !TRANS_ABORTED(trans));
515 }
516
517 /* wait for commit against the current transaction to become unblocked
518 * when this is done, it is safe to start a new transaction, but the current
519 * transaction might not be fully on disk.
520 */
wait_current_trans(struct btrfs_fs_info * fs_info)521 static void wait_current_trans(struct btrfs_fs_info *fs_info)
522 {
523 struct btrfs_transaction *cur_trans;
524
525 spin_lock(&fs_info->trans_lock);
526 cur_trans = fs_info->running_transaction;
527 if (cur_trans && is_transaction_blocked(cur_trans)) {
528 refcount_inc(&cur_trans->use_count);
529 spin_unlock(&fs_info->trans_lock);
530
531 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
532 wait_event(fs_info->transaction_wait,
533 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
534 TRANS_ABORTED(cur_trans));
535 btrfs_put_transaction(cur_trans);
536 } else {
537 spin_unlock(&fs_info->trans_lock);
538 }
539 }
540
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)541 static bool may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
542 {
543 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
544 return false;
545
546 if (type == TRANS_START)
547 return true;
548
549 return false;
550 }
551
need_reserve_reloc_root(struct btrfs_root * root)552 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
553 {
554 struct btrfs_fs_info *fs_info = root->fs_info;
555
556 if (!fs_info->reloc_ctl ||
557 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
558 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
559 root->reloc_root)
560 return false;
561
562 return true;
563 }
564
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)565 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
566 enum btrfs_reserve_flush_enum flush,
567 u64 num_bytes,
568 u64 *delayed_refs_bytes)
569 {
570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 u64 bytes = num_bytes + *delayed_refs_bytes;
572 int ret;
573
574 /*
575 * We want to reserve all the bytes we may need all at once, so we only
576 * do 1 enospc flushing cycle per transaction start.
577 */
578 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
579
580 /*
581 * If we are an emergency flush, which can steal from the global block
582 * reserve, then attempt to not reserve space for the delayed refs, as
583 * we will consume space for them from the global block reserve.
584 */
585 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
586 bytes -= *delayed_refs_bytes;
587 *delayed_refs_bytes = 0;
588 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
589 }
590
591 return ret;
592 }
593
594 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)595 start_transaction(struct btrfs_root *root, unsigned int num_items,
596 unsigned int type, enum btrfs_reserve_flush_enum flush,
597 bool enforce_qgroups)
598 {
599 struct btrfs_fs_info *fs_info = root->fs_info;
600 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
601 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
602 struct btrfs_trans_handle *h;
603 struct btrfs_transaction *cur_trans;
604 u64 num_bytes = 0;
605 u64 qgroup_reserved = 0;
606 u64 delayed_refs_bytes = 0;
607 bool reloc_reserved = false;
608 bool do_chunk_alloc = false;
609 int ret;
610
611 if (BTRFS_FS_ERROR(fs_info))
612 return ERR_PTR(-EROFS);
613
614 if (current->journal_info) {
615 WARN_ON(type & TRANS_EXTWRITERS);
616 h = current->journal_info;
617 refcount_inc(&h->use_count);
618 WARN_ON(refcount_read(&h->use_count) > 2);
619 h->orig_rsv = h->block_rsv;
620 h->block_rsv = NULL;
621 goto got_it;
622 }
623
624 /*
625 * Do the reservation before we join the transaction so we can do all
626 * the appropriate flushing if need be.
627 */
628 if (num_items && root != fs_info->chunk_root) {
629 qgroup_reserved = num_items * fs_info->nodesize;
630 /*
631 * Use prealloc for now, as there might be a currently running
632 * transaction that could free this reserved space prematurely
633 * by committing.
634 */
635 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
636 enforce_qgroups, false);
637 if (ret)
638 return ERR_PTR(ret);
639
640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
641 /*
642 * If we plan to insert/update/delete "num_items" from a btree,
643 * we will also generate delayed refs for extent buffers in the
644 * respective btree paths, so reserve space for the delayed refs
645 * that will be generated by the caller as it modifies btrees.
646 * Try to reserve them to avoid excessive use of the global
647 * block reserve.
648 */
649 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
650
651 /*
652 * Do the reservation for the relocation root creation
653 */
654 if (need_reserve_reloc_root(root)) {
655 num_bytes += fs_info->nodesize;
656 reloc_reserved = true;
657 }
658
659 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
660 &delayed_refs_bytes);
661 if (ret)
662 goto reserve_fail;
663
664 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
665
666 if (trans_rsv->space_info->force_alloc)
667 do_chunk_alloc = true;
668 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
669 !btrfs_block_rsv_full(delayed_refs_rsv)) {
670 /*
671 * Some people call with btrfs_start_transaction(root, 0)
672 * because they can be throttled, but have some other mechanism
673 * for reserving space. We still want these guys to refill the
674 * delayed block_rsv so just add 1 items worth of reservation
675 * here.
676 */
677 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
678 if (ret)
679 goto reserve_fail;
680 }
681 again:
682 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
683 if (!h) {
684 ret = -ENOMEM;
685 goto alloc_fail;
686 }
687
688 /*
689 * If we are JOIN_NOLOCK we're already committing a transaction and
690 * waiting on this guy, so we don't need to do the sb_start_intwrite
691 * because we're already holding a ref. We need this because we could
692 * have raced in and did an fsync() on a file which can kick a commit
693 * and then we deadlock with somebody doing a freeze.
694 *
695 * If we are ATTACH, it means we just want to catch the current
696 * transaction and commit it, so we needn't do sb_start_intwrite().
697 */
698 if (type & __TRANS_FREEZABLE)
699 sb_start_intwrite(fs_info->sb);
700
701 if (may_wait_transaction(fs_info, type))
702 wait_current_trans(fs_info);
703
704 do {
705 ret = join_transaction(fs_info, type);
706 if (ret == -EBUSY) {
707 wait_current_trans(fs_info);
708 if (unlikely(type == TRANS_ATTACH ||
709 type == TRANS_JOIN_NOSTART))
710 ret = -ENOENT;
711 }
712 } while (ret == -EBUSY);
713
714 if (ret < 0)
715 goto join_fail;
716
717 cur_trans = fs_info->running_transaction;
718
719 h->transid = cur_trans->transid;
720 h->transaction = cur_trans;
721 refcount_set(&h->use_count, 1);
722 h->fs_info = root->fs_info;
723
724 h->type = type;
725 INIT_LIST_HEAD(&h->new_bgs);
726 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
727
728 smp_mb();
729 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
730 may_wait_transaction(fs_info, type)) {
731 current->journal_info = h;
732 btrfs_commit_transaction(h);
733 goto again;
734 }
735
736 if (num_bytes) {
737 trace_btrfs_space_reservation(fs_info, "transaction",
738 h->transid, num_bytes, 1);
739 h->block_rsv = trans_rsv;
740 h->bytes_reserved = num_bytes;
741 if (delayed_refs_bytes > 0) {
742 trace_btrfs_space_reservation(fs_info,
743 "local_delayed_refs_rsv",
744 h->transid,
745 delayed_refs_bytes, 1);
746 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
747 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
748 delayed_refs_bytes = 0;
749 }
750 h->reloc_reserved = reloc_reserved;
751 }
752
753 got_it:
754 if (!current->journal_info)
755 current->journal_info = h;
756
757 /*
758 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
759 * ALLOC_FORCE the first run through, and then we won't allocate for
760 * anybody else who races in later. We don't care about the return
761 * value here.
762 */
763 if (do_chunk_alloc && num_bytes) {
764 struct btrfs_space_info *space_info = h->block_rsv->space_info;
765 u64 flags = space_info->flags;
766
767 btrfs_chunk_alloc(h, space_info, btrfs_get_alloc_profile(fs_info, flags),
768 CHUNK_ALLOC_NO_FORCE);
769 }
770
771 /*
772 * btrfs_record_root_in_trans() needs to alloc new extents, and may
773 * call btrfs_join_transaction() while we're also starting a
774 * transaction.
775 *
776 * Thus it need to be called after current->journal_info initialized,
777 * or we can deadlock.
778 */
779 ret = btrfs_record_root_in_trans(h, root);
780 if (ret) {
781 /*
782 * The transaction handle is fully initialized and linked with
783 * other structures so it needs to be ended in case of errors,
784 * not just freed.
785 */
786 btrfs_end_transaction(h);
787 goto reserve_fail;
788 }
789 /*
790 * Now that we have found a transaction to be a part of, convert the
791 * qgroup reservation from prealloc to pertrans. A different transaction
792 * can't race in and free our pertrans out from under us.
793 */
794 if (qgroup_reserved)
795 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
796
797 return h;
798
799 join_fail:
800 if (type & __TRANS_FREEZABLE)
801 sb_end_intwrite(fs_info->sb);
802 kmem_cache_free(btrfs_trans_handle_cachep, h);
803 alloc_fail:
804 if (num_bytes)
805 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
806 if (delayed_refs_bytes)
807 btrfs_space_info_free_bytes_may_use(trans_rsv->space_info, delayed_refs_bytes);
808 reserve_fail:
809 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
810 return ERR_PTR(ret);
811 }
812
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)813 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
814 unsigned int num_items)
815 {
816 return start_transaction(root, num_items, TRANS_START,
817 BTRFS_RESERVE_FLUSH_ALL, true);
818 }
819
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)820 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
821 struct btrfs_root *root,
822 unsigned int num_items)
823 {
824 return start_transaction(root, num_items, TRANS_START,
825 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
826 }
827
btrfs_join_transaction(struct btrfs_root * root)828 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
829 {
830 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
831 true);
832 }
833
btrfs_join_transaction_spacecache(struct btrfs_root * root)834 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
835 {
836 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
837 BTRFS_RESERVE_NO_FLUSH, true);
838 }
839
840 /*
841 * Similar to regular join but it never starts a transaction when none is
842 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
843 * This is similar to btrfs_attach_transaction() but it allows the join to
844 * happen if the transaction commit already started but it's not yet in the
845 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
846 */
btrfs_join_transaction_nostart(struct btrfs_root * root)847 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
848 {
849 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
850 BTRFS_RESERVE_NO_FLUSH, true);
851 }
852
853 /*
854 * Catch the running transaction.
855 *
856 * It is used when we want to commit the current the transaction, but
857 * don't want to start a new one.
858 *
859 * Note: If this function return -ENOENT, it just means there is no
860 * running transaction. But it is possible that the inactive transaction
861 * is still in the memory, not fully on disk. If you hope there is no
862 * inactive transaction in the fs when -ENOENT is returned, you should
863 * invoke
864 * btrfs_attach_transaction_barrier()
865 */
btrfs_attach_transaction(struct btrfs_root * root)866 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
867 {
868 return start_transaction(root, 0, TRANS_ATTACH,
869 BTRFS_RESERVE_NO_FLUSH, true);
870 }
871
872 /*
873 * Catch the running transaction.
874 *
875 * It is similar to the above function, the difference is this one
876 * will wait for all the inactive transactions until they fully
877 * complete.
878 */
879 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)880 btrfs_attach_transaction_barrier(struct btrfs_root *root)
881 {
882 struct btrfs_trans_handle *trans;
883
884 trans = start_transaction(root, 0, TRANS_ATTACH,
885 BTRFS_RESERVE_NO_FLUSH, true);
886 if (trans == ERR_PTR(-ENOENT)) {
887 int ret;
888
889 ret = btrfs_wait_for_commit(root->fs_info, 0);
890 if (ret)
891 return ERR_PTR(ret);
892 }
893
894 return trans;
895 }
896
897 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)898 static noinline void wait_for_commit(struct btrfs_transaction *commit,
899 const enum btrfs_trans_state min_state)
900 {
901 struct btrfs_fs_info *fs_info = commit->fs_info;
902 u64 transid = commit->transid;
903 bool put = false;
904
905 /*
906 * At the moment this function is called with min_state either being
907 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
908 */
909 if (min_state == TRANS_STATE_COMPLETED)
910 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
911 else
912 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
913
914 while (1) {
915 wait_event(commit->commit_wait, commit->state >= min_state);
916 if (put)
917 btrfs_put_transaction(commit);
918
919 if (min_state < TRANS_STATE_COMPLETED)
920 break;
921
922 /*
923 * A transaction isn't really completed until all of the
924 * previous transactions are completed, but with fsync we can
925 * end up with SUPER_COMMITTED transactions before a COMPLETED
926 * transaction. Wait for those.
927 */
928
929 spin_lock(&fs_info->trans_lock);
930 commit = list_first_entry_or_null(&fs_info->trans_list,
931 struct btrfs_transaction,
932 list);
933 if (!commit || commit->transid > transid) {
934 spin_unlock(&fs_info->trans_lock);
935 break;
936 }
937 refcount_inc(&commit->use_count);
938 put = true;
939 spin_unlock(&fs_info->trans_lock);
940 }
941 }
942
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)943 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
944 {
945 struct btrfs_transaction *cur_trans = NULL, *t;
946 int ret = 0;
947
948 if (transid) {
949 if (transid <= btrfs_get_last_trans_committed(fs_info))
950 goto out;
951
952 /* find specified transaction */
953 spin_lock(&fs_info->trans_lock);
954 list_for_each_entry(t, &fs_info->trans_list, list) {
955 if (t->transid == transid) {
956 cur_trans = t;
957 refcount_inc(&cur_trans->use_count);
958 ret = 0;
959 break;
960 }
961 if (t->transid > transid) {
962 ret = 0;
963 break;
964 }
965 }
966 spin_unlock(&fs_info->trans_lock);
967
968 /*
969 * The specified transaction doesn't exist, or we
970 * raced with btrfs_commit_transaction
971 */
972 if (!cur_trans) {
973 if (transid > btrfs_get_last_trans_committed(fs_info))
974 ret = -EINVAL;
975 goto out;
976 }
977 } else {
978 /* find newest transaction that is committing | committed */
979 spin_lock(&fs_info->trans_lock);
980 list_for_each_entry_reverse(t, &fs_info->trans_list,
981 list) {
982 if (t->state >= TRANS_STATE_COMMIT_START) {
983 if (t->state == TRANS_STATE_COMPLETED)
984 break;
985 cur_trans = t;
986 refcount_inc(&cur_trans->use_count);
987 break;
988 }
989 }
990 spin_unlock(&fs_info->trans_lock);
991 if (!cur_trans)
992 goto out; /* nothing committing|committed */
993 }
994
995 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
996 ret = cur_trans->aborted;
997 btrfs_put_transaction(cur_trans);
998 out:
999 return ret;
1000 }
1001
btrfs_throttle(struct btrfs_fs_info * fs_info)1002 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1003 {
1004 wait_current_trans(fs_info);
1005 }
1006
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1007 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1008 {
1009 struct btrfs_transaction *cur_trans = trans->transaction;
1010
1011 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1012 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1013 return true;
1014
1015 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1016 return true;
1017
1018 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1019 }
1020
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1021 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1022
1023 {
1024 struct btrfs_fs_info *fs_info = trans->fs_info;
1025
1026 if (!trans->block_rsv) {
1027 ASSERT(!trans->bytes_reserved);
1028 ASSERT(!trans->delayed_refs_bytes_reserved);
1029 return;
1030 }
1031
1032 if (!trans->bytes_reserved) {
1033 ASSERT(!trans->delayed_refs_bytes_reserved);
1034 return;
1035 }
1036
1037 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1038 trace_btrfs_space_reservation(fs_info, "transaction",
1039 trans->transid, trans->bytes_reserved, 0);
1040 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1041 trans->bytes_reserved, NULL);
1042 trans->bytes_reserved = 0;
1043
1044 if (!trans->delayed_refs_bytes_reserved)
1045 return;
1046
1047 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1048 trans->transid,
1049 trans->delayed_refs_bytes_reserved, 0);
1050 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1051 trans->delayed_refs_bytes_reserved, NULL);
1052 trans->delayed_refs_bytes_reserved = 0;
1053 }
1054
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1055 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1056 int throttle)
1057 {
1058 struct btrfs_fs_info *info = trans->fs_info;
1059 struct btrfs_transaction *cur_trans = trans->transaction;
1060 int ret = 0;
1061
1062 if (refcount_read(&trans->use_count) > 1) {
1063 refcount_dec(&trans->use_count);
1064 trans->block_rsv = trans->orig_rsv;
1065 return 0;
1066 }
1067
1068 btrfs_trans_release_metadata(trans);
1069 trans->block_rsv = NULL;
1070
1071 btrfs_create_pending_block_groups(trans);
1072
1073 btrfs_trans_release_chunk_metadata(trans);
1074
1075 if (trans->type & __TRANS_FREEZABLE)
1076 sb_end_intwrite(info->sb);
1077
1078 WARN_ON(cur_trans != info->running_transaction);
1079 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1080 atomic_dec(&cur_trans->num_writers);
1081 extwriter_counter_dec(cur_trans, trans->type);
1082
1083 cond_wake_up(&cur_trans->writer_wait);
1084
1085 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1086 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1087
1088 btrfs_put_transaction(cur_trans);
1089
1090 if (current->journal_info == trans)
1091 current->journal_info = NULL;
1092
1093 if (throttle)
1094 btrfs_run_delayed_iputs(info);
1095
1096 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1097 wake_up_process(info->transaction_kthread);
1098 if (TRANS_ABORTED(trans))
1099 ret = trans->aborted;
1100 else
1101 ret = -EROFS;
1102 }
1103
1104 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1105 return ret;
1106 }
1107
btrfs_end_transaction(struct btrfs_trans_handle * trans)1108 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1109 {
1110 return __btrfs_end_transaction(trans, 0);
1111 }
1112
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1113 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1114 {
1115 return __btrfs_end_transaction(trans, 1);
1116 }
1117
1118 /*
1119 * when btree blocks are allocated, they have some corresponding bits set for
1120 * them in one of two extent_io trees. This is used to make sure all of
1121 * those extents are sent to disk but does not wait on them
1122 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1123 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1124 struct extent_io_tree *dirty_pages, int mark)
1125 {
1126 int ret = 0;
1127 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1128 struct extent_state *cached_state = NULL;
1129 u64 start = 0;
1130 u64 end;
1131
1132 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
1133 mark, &cached_state)) {
1134 bool wait_writeback = false;
1135
1136 ret = btrfs_convert_extent_bit(dirty_pages, start, end,
1137 EXTENT_NEED_WAIT,
1138 mark, &cached_state);
1139 /*
1140 * convert_extent_bit can return -ENOMEM, which is most of the
1141 * time a temporary error. So when it happens, ignore the error
1142 * and wait for writeback of this range to finish - because we
1143 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1144 * to __btrfs_wait_marked_extents() would not know that
1145 * writeback for this range started and therefore wouldn't
1146 * wait for it to finish - we don't want to commit a
1147 * superblock that points to btree nodes/leafs for which
1148 * writeback hasn't finished yet (and without errors).
1149 * We cleanup any entries left in the io tree when committing
1150 * the transaction (through extent_io_tree_release()).
1151 */
1152 if (ret == -ENOMEM) {
1153 ret = 0;
1154 wait_writeback = true;
1155 }
1156 if (!ret)
1157 ret = filemap_fdatawrite_range(mapping, start, end);
1158 if (!ret && wait_writeback)
1159 btrfs_btree_wait_writeback_range(fs_info, start, end);
1160 btrfs_free_extent_state(cached_state);
1161 if (ret)
1162 break;
1163 cached_state = NULL;
1164 cond_resched();
1165 start = end + 1;
1166 }
1167 return ret;
1168 }
1169
1170 /*
1171 * when btree blocks are allocated, they have some corresponding bits set for
1172 * them in one of two extent_io trees. This is used to make sure all of
1173 * those extents are on disk for transaction or log commit. We wait
1174 * on all the pages and clear them from the dirty pages state tree
1175 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1176 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1177 struct extent_io_tree *dirty_pages)
1178 {
1179 struct extent_state *cached_state = NULL;
1180 u64 start = 0;
1181 u64 end;
1182 int ret = 0;
1183
1184 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
1185 EXTENT_NEED_WAIT, &cached_state)) {
1186 /*
1187 * Ignore -ENOMEM errors returned by clear_extent_bit().
1188 * When committing the transaction, we'll remove any entries
1189 * left in the io tree. For a log commit, we don't remove them
1190 * after committing the log because the tree can be accessed
1191 * concurrently - we do it only at transaction commit time when
1192 * it's safe to do it (through extent_io_tree_release()).
1193 */
1194 ret = btrfs_clear_extent_bit(dirty_pages, start, end,
1195 EXTENT_NEED_WAIT, &cached_state);
1196 if (ret == -ENOMEM)
1197 ret = 0;
1198 if (!ret)
1199 btrfs_btree_wait_writeback_range(fs_info, start, end);
1200 btrfs_free_extent_state(cached_state);
1201 if (ret)
1202 break;
1203 cached_state = NULL;
1204 cond_resched();
1205 start = end + 1;
1206 }
1207 return ret;
1208 }
1209
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1210 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1211 struct extent_io_tree *dirty_pages)
1212 {
1213 bool errors = false;
1214 int ret;
1215
1216 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1217 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1218 errors = true;
1219
1220 if (errors && !ret)
1221 ret = -EIO;
1222 return ret;
1223 }
1224
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1225 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1226 {
1227 struct btrfs_fs_info *fs_info = log_root->fs_info;
1228 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1229 bool errors = false;
1230 int ret;
1231
1232 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1233
1234 ret = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1235 if ((mark & EXTENT_DIRTY_LOG1) &&
1236 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1237 errors = true;
1238
1239 if ((mark & EXTENT_DIRTY_LOG2) &&
1240 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1241 errors = true;
1242
1243 if (errors && !ret)
1244 ret = -EIO;
1245 return ret;
1246 }
1247
1248 /*
1249 * When btree blocks are allocated the corresponding extents are marked dirty.
1250 * This function ensures such extents are persisted on disk for transaction or
1251 * log commit.
1252 *
1253 * @trans: transaction whose dirty pages we'd like to write
1254 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1255 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1256 {
1257 int ret;
1258 int ret2;
1259 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1260 struct btrfs_fs_info *fs_info = trans->fs_info;
1261 struct blk_plug plug;
1262
1263 blk_start_plug(&plug);
1264 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1265 blk_finish_plug(&plug);
1266 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1267
1268 btrfs_extent_io_tree_release(&trans->transaction->dirty_pages);
1269
1270 if (ret)
1271 return ret;
1272 else if (ret2)
1273 return ret2;
1274 else
1275 return 0;
1276 }
1277
1278 /*
1279 * this is used to update the root pointer in the tree of tree roots.
1280 *
1281 * But, in the case of the extent allocation tree, updating the root
1282 * pointer may allocate blocks which may change the root of the extent
1283 * allocation tree.
1284 *
1285 * So, this loops and repeats and makes sure the cowonly root didn't
1286 * change while the root pointer was being updated in the metadata.
1287 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1288 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1289 struct btrfs_root *root)
1290 {
1291 int ret;
1292 u64 old_root_bytenr;
1293 u64 old_root_used;
1294 struct btrfs_fs_info *fs_info = root->fs_info;
1295 struct btrfs_root *tree_root = fs_info->tree_root;
1296
1297 old_root_used = btrfs_root_used(&root->root_item);
1298
1299 while (1) {
1300 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1301 if (old_root_bytenr == root->node->start &&
1302 old_root_used == btrfs_root_used(&root->root_item))
1303 break;
1304
1305 btrfs_set_root_node(&root->root_item, root->node);
1306 ret = btrfs_update_root(trans, tree_root,
1307 &root->root_key,
1308 &root->root_item);
1309 if (ret)
1310 return ret;
1311
1312 old_root_used = btrfs_root_used(&root->root_item);
1313 }
1314
1315 return 0;
1316 }
1317
1318 /*
1319 * update all the cowonly tree roots on disk
1320 *
1321 * The error handling in this function may not be obvious. Any of the
1322 * failures will cause the file system to go offline. We still need
1323 * to clean up the delayed refs.
1324 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1325 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1326 {
1327 struct btrfs_fs_info *fs_info = trans->fs_info;
1328 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1329 struct list_head *io_bgs = &trans->transaction->io_bgs;
1330 struct extent_buffer *eb;
1331 int ret;
1332
1333 /*
1334 * At this point no one can be using this transaction to modify any tree
1335 * and no one can start another transaction to modify any tree either.
1336 */
1337 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1338
1339 eb = btrfs_lock_root_node(fs_info->tree_root);
1340 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1341 0, &eb, BTRFS_NESTING_COW);
1342 btrfs_tree_unlock(eb);
1343 free_extent_buffer(eb);
1344
1345 if (ret)
1346 return ret;
1347
1348 ret = btrfs_run_dev_stats(trans);
1349 if (ret)
1350 return ret;
1351 ret = btrfs_run_dev_replace(trans);
1352 if (ret)
1353 return ret;
1354 ret = btrfs_run_qgroups(trans);
1355 if (ret)
1356 return ret;
1357
1358 ret = btrfs_setup_space_cache(trans);
1359 if (ret)
1360 return ret;
1361
1362 again:
1363 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1364 struct btrfs_root *root;
1365
1366 root = list_first_entry(&fs_info->dirty_cowonly_roots,
1367 struct btrfs_root, dirty_list);
1368 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1369 list_move_tail(&root->dirty_list,
1370 &trans->transaction->switch_commits);
1371
1372 ret = update_cowonly_root(trans, root);
1373 if (ret)
1374 return ret;
1375 }
1376
1377 /* Now flush any delayed refs generated by updating all of the roots */
1378 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1379 if (ret)
1380 return ret;
1381
1382 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1383 ret = btrfs_write_dirty_block_groups(trans);
1384 if (ret)
1385 return ret;
1386
1387 /*
1388 * We're writing the dirty block groups, which could generate
1389 * delayed refs, which could generate more dirty block groups,
1390 * so we want to keep this flushing in this loop to make sure
1391 * everything gets run.
1392 */
1393 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1394 if (ret)
1395 return ret;
1396 }
1397
1398 if (!list_empty(&fs_info->dirty_cowonly_roots))
1399 goto again;
1400
1401 /* Update dev-replace pointer once everything is committed */
1402 fs_info->dev_replace.committed_cursor_left =
1403 fs_info->dev_replace.cursor_left_last_write_of_item;
1404
1405 return 0;
1406 }
1407
1408 /*
1409 * If we had a pending drop we need to see if there are any others left in our
1410 * dead roots list, and if not clear our bit and wake any waiters.
1411 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1412 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1413 {
1414 /*
1415 * We put the drop in progress roots at the front of the list, so if the
1416 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1417 * up.
1418 */
1419 spin_lock(&fs_info->trans_lock);
1420 if (!list_empty(&fs_info->dead_roots)) {
1421 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1422 struct btrfs_root,
1423 root_list);
1424 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1425 spin_unlock(&fs_info->trans_lock);
1426 return;
1427 }
1428 }
1429 spin_unlock(&fs_info->trans_lock);
1430
1431 btrfs_wake_unfinished_drop(fs_info);
1432 }
1433
1434 /*
1435 * dead roots are old snapshots that need to be deleted. This allocates
1436 * a dirty root struct and adds it into the list of dead roots that need to
1437 * be deleted
1438 */
btrfs_add_dead_root(struct btrfs_root * root)1439 void btrfs_add_dead_root(struct btrfs_root *root)
1440 {
1441 struct btrfs_fs_info *fs_info = root->fs_info;
1442
1443 spin_lock(&fs_info->trans_lock);
1444 if (list_empty(&root->root_list)) {
1445 btrfs_grab_root(root);
1446
1447 /* We want to process the partially complete drops first. */
1448 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1449 list_add(&root->root_list, &fs_info->dead_roots);
1450 else
1451 list_add_tail(&root->root_list, &fs_info->dead_roots);
1452 }
1453 spin_unlock(&fs_info->trans_lock);
1454 }
1455
1456 /*
1457 * Update each subvolume root and its relocation root, if it exists, in the tree
1458 * of tree roots. Also free log roots if they exist.
1459 */
commit_fs_roots(struct btrfs_trans_handle * trans)1460 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1461 {
1462 struct btrfs_fs_info *fs_info = trans->fs_info;
1463 struct btrfs_root *gang[8];
1464 int i;
1465 int ret;
1466
1467 /*
1468 * At this point no one can be using this transaction to modify any tree
1469 * and no one can start another transaction to modify any tree either.
1470 */
1471 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1472
1473 spin_lock(&fs_info->fs_roots_radix_lock);
1474 while (1) {
1475 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1476 (void **)gang, 0,
1477 ARRAY_SIZE(gang),
1478 BTRFS_ROOT_TRANS_TAG);
1479 if (ret == 0)
1480 break;
1481 for (i = 0; i < ret; i++) {
1482 struct btrfs_root *root = gang[i];
1483 int ret2;
1484
1485 /*
1486 * At this point we can neither have tasks logging inodes
1487 * from a root nor trying to commit a log tree.
1488 */
1489 ASSERT(atomic_read(&root->log_writers) == 0);
1490 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1491 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1492
1493 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1494 (unsigned long)btrfs_root_id(root),
1495 BTRFS_ROOT_TRANS_TAG);
1496 btrfs_qgroup_free_meta_all_pertrans(root);
1497 spin_unlock(&fs_info->fs_roots_radix_lock);
1498
1499 btrfs_free_log(trans, root);
1500 ret2 = btrfs_update_reloc_root(trans, root);
1501 if (ret2)
1502 return ret2;
1503
1504 /* see comments in should_cow_block() */
1505 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1506 smp_mb__after_atomic();
1507
1508 if (root->commit_root != root->node) {
1509 list_add_tail(&root->dirty_list,
1510 &trans->transaction->switch_commits);
1511 btrfs_set_root_node(&root->root_item,
1512 root->node);
1513 }
1514
1515 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1516 &root->root_key,
1517 &root->root_item);
1518 if (ret2)
1519 return ret2;
1520 spin_lock(&fs_info->fs_roots_radix_lock);
1521 }
1522 }
1523 spin_unlock(&fs_info->fs_roots_radix_lock);
1524 return 0;
1525 }
1526
1527 /*
1528 * Do all special snapshot related qgroup dirty hack.
1529 *
1530 * Will do all needed qgroup inherit and dirty hack like switch commit
1531 * roots inside one transaction and write all btree into disk, to make
1532 * qgroup works.
1533 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1534 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1535 struct btrfs_root *src,
1536 struct btrfs_root *parent,
1537 struct btrfs_qgroup_inherit *inherit,
1538 u64 dst_objectid)
1539 {
1540 struct btrfs_fs_info *fs_info = src->fs_info;
1541 int ret;
1542
1543 /*
1544 * Save some performance in the case that qgroups are not enabled. If
1545 * this check races with the ioctl, rescan will kick in anyway.
1546 */
1547 if (!btrfs_qgroup_full_accounting(fs_info))
1548 return 0;
1549
1550 /*
1551 * Ensure dirty @src will be committed. Or, after coming
1552 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1553 * recorded root will never be updated again, causing an outdated root
1554 * item.
1555 */
1556 ret = record_root_in_trans(trans, src, 1);
1557 if (ret)
1558 return ret;
1559
1560 /*
1561 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1562 * src root, so we must run the delayed refs here.
1563 *
1564 * However this isn't particularly fool proof, because there's no
1565 * synchronization keeping us from changing the tree after this point
1566 * before we do the qgroup_inherit, or even from making changes while
1567 * we're doing the qgroup_inherit. But that's a problem for the future,
1568 * for now flush the delayed refs to narrow the race window where the
1569 * qgroup counters could end up wrong.
1570 */
1571 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1572 if (ret) {
1573 btrfs_abort_transaction(trans, ret);
1574 return ret;
1575 }
1576
1577 ret = commit_fs_roots(trans);
1578 if (ret)
1579 goto out;
1580 ret = btrfs_qgroup_account_extents(trans);
1581 if (ret < 0)
1582 goto out;
1583
1584 /* Now qgroup are all updated, we can inherit it to new qgroups */
1585 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1586 btrfs_root_id(parent), inherit);
1587 if (ret < 0)
1588 goto out;
1589
1590 /*
1591 * Now we do a simplified commit transaction, which will:
1592 * 1) commit all subvolume and extent tree
1593 * To ensure all subvolume and extent tree have a valid
1594 * commit_root to accounting later insert_dir_item()
1595 * 2) write all btree blocks onto disk
1596 * This is to make sure later btree modification will be cowed
1597 * Or commit_root can be populated and cause wrong qgroup numbers
1598 * In this simplified commit, we don't really care about other trees
1599 * like chunk and root tree, as they won't affect qgroup.
1600 * And we don't write super to avoid half committed status.
1601 */
1602 ret = commit_cowonly_roots(trans);
1603 if (ret)
1604 goto out;
1605 switch_commit_roots(trans);
1606 ret = btrfs_write_and_wait_transaction(trans);
1607 if (ret)
1608 btrfs_handle_fs_error(fs_info, ret,
1609 "Error while writing out transaction for qgroup");
1610
1611 out:
1612 /*
1613 * Force parent root to be updated, as we recorded it before so its
1614 * last_trans == cur_transid.
1615 * Or it won't be committed again onto disk after later
1616 * insert_dir_item()
1617 */
1618 if (!ret)
1619 ret = record_root_in_trans(trans, parent, 1);
1620 return ret;
1621 }
1622
1623 /*
1624 * new snapshots need to be created at a very specific time in the
1625 * transaction commit. This does the actual creation.
1626 *
1627 * Note:
1628 * If the error which may affect the commitment of the current transaction
1629 * happens, we should return the error number. If the error which just affect
1630 * the creation of the pending snapshots, just return 0.
1631 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1632 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1633 struct btrfs_pending_snapshot *pending)
1634 {
1635
1636 struct btrfs_fs_info *fs_info = trans->fs_info;
1637 struct btrfs_key key;
1638 struct btrfs_root_item *new_root_item;
1639 struct btrfs_root *tree_root = fs_info->tree_root;
1640 struct btrfs_root *root = pending->root;
1641 struct btrfs_root *parent_root;
1642 struct btrfs_block_rsv *rsv;
1643 struct btrfs_inode *parent_inode = pending->dir;
1644 struct btrfs_path *path;
1645 struct btrfs_dir_item *dir_item;
1646 struct extent_buffer *tmp;
1647 struct extent_buffer *old;
1648 struct timespec64 cur_time;
1649 int ret = 0;
1650 u64 to_reserve = 0;
1651 u64 index = 0;
1652 u64 objectid;
1653 u64 root_flags;
1654 unsigned int nofs_flags;
1655 struct fscrypt_name fname;
1656
1657 ASSERT(pending->path);
1658 path = pending->path;
1659
1660 ASSERT(pending->root_item);
1661 new_root_item = pending->root_item;
1662
1663 /*
1664 * We're inside a transaction and must make sure that any potential
1665 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1666 * filesystem.
1667 */
1668 nofs_flags = memalloc_nofs_save();
1669 pending->error = fscrypt_setup_filename(&parent_inode->vfs_inode,
1670 &pending->dentry->d_name, 0,
1671 &fname);
1672 memalloc_nofs_restore(nofs_flags);
1673 if (pending->error)
1674 goto free_pending;
1675
1676 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1677 if (pending->error)
1678 goto free_fname;
1679
1680 /*
1681 * Make qgroup to skip current new snapshot's qgroupid, as it is
1682 * accounted by later btrfs_qgroup_inherit().
1683 */
1684 btrfs_set_skip_qgroup(trans, objectid);
1685
1686 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1687
1688 if (to_reserve > 0) {
1689 pending->error = btrfs_block_rsv_add(fs_info,
1690 &pending->block_rsv,
1691 to_reserve,
1692 BTRFS_RESERVE_NO_FLUSH);
1693 if (pending->error)
1694 goto clear_skip_qgroup;
1695 }
1696
1697 key.objectid = objectid;
1698 key.type = BTRFS_ROOT_ITEM_KEY;
1699 key.offset = (u64)-1;
1700
1701 rsv = trans->block_rsv;
1702 trans->block_rsv = &pending->block_rsv;
1703 trans->bytes_reserved = trans->block_rsv->reserved;
1704 trace_btrfs_space_reservation(fs_info, "transaction",
1705 trans->transid,
1706 trans->bytes_reserved, 1);
1707 parent_root = parent_inode->root;
1708 ret = record_root_in_trans(trans, parent_root, 0);
1709 if (ret)
1710 goto fail;
1711 cur_time = current_time(&parent_inode->vfs_inode);
1712
1713 /*
1714 * insert the directory item
1715 */
1716 ret = btrfs_set_inode_index(parent_inode, &index);
1717 if (ret) {
1718 btrfs_abort_transaction(trans, ret);
1719 goto fail;
1720 }
1721
1722 /* check if there is a file/dir which has the same name. */
1723 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1724 btrfs_ino(parent_inode),
1725 &fname.disk_name, 0);
1726 if (dir_item != NULL && !IS_ERR(dir_item)) {
1727 pending->error = -EEXIST;
1728 goto dir_item_existed;
1729 } else if (IS_ERR(dir_item)) {
1730 ret = PTR_ERR(dir_item);
1731 btrfs_abort_transaction(trans, ret);
1732 goto fail;
1733 }
1734 btrfs_release_path(path);
1735
1736 ret = btrfs_create_qgroup(trans, objectid);
1737 if (ret && ret != -EEXIST) {
1738 if (ret != -ENOTCONN || btrfs_qgroup_enabled(fs_info)) {
1739 btrfs_abort_transaction(trans, ret);
1740 goto fail;
1741 }
1742 }
1743
1744 /*
1745 * pull in the delayed directory update
1746 * and the delayed inode item
1747 * otherwise we corrupt the FS during
1748 * snapshot
1749 */
1750 ret = btrfs_run_delayed_items(trans);
1751 if (ret) { /* Transaction aborted */
1752 btrfs_abort_transaction(trans, ret);
1753 goto fail;
1754 }
1755
1756 ret = record_root_in_trans(trans, root, 0);
1757 if (ret) {
1758 btrfs_abort_transaction(trans, ret);
1759 goto fail;
1760 }
1761 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1762 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1763 btrfs_check_and_init_root_item(new_root_item);
1764
1765 root_flags = btrfs_root_flags(new_root_item);
1766 if (pending->readonly)
1767 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1768 else
1769 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1770 btrfs_set_root_flags(new_root_item, root_flags);
1771
1772 btrfs_set_root_generation_v2(new_root_item,
1773 trans->transid);
1774 generate_random_guid(new_root_item->uuid);
1775 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1776 BTRFS_UUID_SIZE);
1777 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1778 memset(new_root_item->received_uuid, 0,
1779 sizeof(new_root_item->received_uuid));
1780 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1781 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1782 btrfs_set_root_stransid(new_root_item, 0);
1783 btrfs_set_root_rtransid(new_root_item, 0);
1784 }
1785 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1786 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1787 btrfs_set_root_otransid(new_root_item, trans->transid);
1788
1789 old = btrfs_lock_root_node(root);
1790 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1791 BTRFS_NESTING_COW);
1792 if (ret) {
1793 btrfs_tree_unlock(old);
1794 free_extent_buffer(old);
1795 btrfs_abort_transaction(trans, ret);
1796 goto fail;
1797 }
1798
1799 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1800 /* clean up in any case */
1801 btrfs_tree_unlock(old);
1802 free_extent_buffer(old);
1803 if (ret) {
1804 btrfs_abort_transaction(trans, ret);
1805 goto fail;
1806 }
1807 /* see comments in should_cow_block() */
1808 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1809 smp_wmb();
1810
1811 btrfs_set_root_node(new_root_item, tmp);
1812 /* record when the snapshot was created in key.offset */
1813 key.offset = trans->transid;
1814 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1815 btrfs_tree_unlock(tmp);
1816 free_extent_buffer(tmp);
1817 if (ret) {
1818 btrfs_abort_transaction(trans, ret);
1819 goto fail;
1820 }
1821
1822 /*
1823 * insert root back/forward references
1824 */
1825 ret = btrfs_add_root_ref(trans, objectid,
1826 btrfs_root_id(parent_root),
1827 btrfs_ino(parent_inode), index,
1828 &fname.disk_name);
1829 if (ret) {
1830 btrfs_abort_transaction(trans, ret);
1831 goto fail;
1832 }
1833
1834 key.offset = (u64)-1;
1835 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1836 if (IS_ERR(pending->snap)) {
1837 ret = PTR_ERR(pending->snap);
1838 pending->snap = NULL;
1839 btrfs_abort_transaction(trans, ret);
1840 goto fail;
1841 }
1842
1843 ret = btrfs_reloc_post_snapshot(trans, pending);
1844 if (ret) {
1845 btrfs_abort_transaction(trans, ret);
1846 goto fail;
1847 }
1848
1849 /*
1850 * Do special qgroup accounting for snapshot, as we do some qgroup
1851 * snapshot hack to do fast snapshot.
1852 * To co-operate with that hack, we do hack again.
1853 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1854 */
1855 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1856 ret = qgroup_account_snapshot(trans, root, parent_root,
1857 pending->inherit, objectid);
1858 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1859 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1860 btrfs_root_id(parent_root), pending->inherit);
1861 if (ret < 0)
1862 goto fail;
1863
1864 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1865 parent_inode, &key, BTRFS_FT_DIR,
1866 index);
1867 if (ret) {
1868 btrfs_abort_transaction(trans, ret);
1869 goto fail;
1870 }
1871
1872 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
1873 fname.disk_name.len * 2);
1874 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
1875 inode_set_ctime_current(&parent_inode->vfs_inode));
1876 ret = btrfs_update_inode_fallback(trans, parent_inode);
1877 if (ret) {
1878 btrfs_abort_transaction(trans, ret);
1879 goto fail;
1880 }
1881 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1882 BTRFS_UUID_KEY_SUBVOL,
1883 objectid);
1884 if (ret) {
1885 btrfs_abort_transaction(trans, ret);
1886 goto fail;
1887 }
1888 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1889 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1890 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1891 objectid);
1892 if (ret && ret != -EEXIST) {
1893 btrfs_abort_transaction(trans, ret);
1894 goto fail;
1895 }
1896 }
1897
1898 fail:
1899 pending->error = ret;
1900 dir_item_existed:
1901 trans->block_rsv = rsv;
1902 trans->bytes_reserved = 0;
1903 clear_skip_qgroup:
1904 btrfs_clear_skip_qgroup(trans);
1905 free_fname:
1906 fscrypt_free_filename(&fname);
1907 free_pending:
1908 kfree(new_root_item);
1909 pending->root_item = NULL;
1910 btrfs_free_path(path);
1911 pending->path = NULL;
1912
1913 return ret;
1914 }
1915
1916 /*
1917 * create all the snapshots we've scheduled for creation
1918 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1919 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1920 {
1921 struct btrfs_pending_snapshot *pending, *next;
1922 struct list_head *head = &trans->transaction->pending_snapshots;
1923 int ret = 0;
1924
1925 list_for_each_entry_safe(pending, next, head, list) {
1926 list_del(&pending->list);
1927 ret = create_pending_snapshot(trans, pending);
1928 if (ret)
1929 break;
1930 }
1931 return ret;
1932 }
1933
update_super_roots(struct btrfs_fs_info * fs_info)1934 static void update_super_roots(struct btrfs_fs_info *fs_info)
1935 {
1936 struct btrfs_root_item *root_item;
1937 struct btrfs_super_block *super;
1938
1939 super = fs_info->super_copy;
1940
1941 root_item = &fs_info->chunk_root->root_item;
1942 super->chunk_root = root_item->bytenr;
1943 super->chunk_root_generation = root_item->generation;
1944 super->chunk_root_level = root_item->level;
1945
1946 root_item = &fs_info->tree_root->root_item;
1947 super->root = root_item->bytenr;
1948 super->generation = root_item->generation;
1949 super->root_level = root_item->level;
1950 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1951 super->cache_generation = root_item->generation;
1952 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1953 super->cache_generation = 0;
1954 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1955 super->uuid_tree_generation = root_item->generation;
1956 }
1957
btrfs_transaction_blocked(struct btrfs_fs_info * info)1958 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1959 {
1960 struct btrfs_transaction *trans;
1961 int ret = 0;
1962
1963 spin_lock(&info->trans_lock);
1964 trans = info->running_transaction;
1965 if (trans)
1966 ret = is_transaction_blocked(trans);
1967 spin_unlock(&info->trans_lock);
1968 return ret;
1969 }
1970
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1971 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1972 {
1973 struct btrfs_fs_info *fs_info = trans->fs_info;
1974 struct btrfs_transaction *cur_trans;
1975
1976 /* Kick the transaction kthread. */
1977 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1978 wake_up_process(fs_info->transaction_kthread);
1979
1980 /* take transaction reference */
1981 cur_trans = trans->transaction;
1982 refcount_inc(&cur_trans->use_count);
1983
1984 btrfs_end_transaction(trans);
1985
1986 /*
1987 * Wait for the current transaction commit to start and block
1988 * subsequent transaction joins
1989 */
1990 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1991 wait_event(fs_info->transaction_blocked_wait,
1992 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1993 TRANS_ABORTED(cur_trans));
1994 btrfs_put_transaction(cur_trans);
1995 }
1996
1997 /*
1998 * If there is a running transaction commit it or if it's already committing,
1999 * wait for its commit to complete. Does not start and commit a new transaction
2000 * if there isn't any running.
2001 */
btrfs_commit_current_transaction(struct btrfs_root * root)2002 int btrfs_commit_current_transaction(struct btrfs_root *root)
2003 {
2004 struct btrfs_trans_handle *trans;
2005
2006 trans = btrfs_attach_transaction_barrier(root);
2007 if (IS_ERR(trans)) {
2008 int ret = PTR_ERR(trans);
2009
2010 return (ret == -ENOENT) ? 0 : ret;
2011 }
2012
2013 return btrfs_commit_transaction(trans);
2014 }
2015
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2016 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2017 {
2018 struct btrfs_fs_info *fs_info = trans->fs_info;
2019 struct btrfs_transaction *cur_trans = trans->transaction;
2020
2021 WARN_ON(refcount_read(&trans->use_count) > 1);
2022
2023 btrfs_abort_transaction(trans, err);
2024
2025 spin_lock(&fs_info->trans_lock);
2026
2027 /*
2028 * If the transaction is removed from the list, it means this
2029 * transaction has been committed successfully, so it is impossible
2030 * to call the cleanup function.
2031 */
2032 BUG_ON(list_empty(&cur_trans->list));
2033
2034 if (cur_trans == fs_info->running_transaction) {
2035 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2036 spin_unlock(&fs_info->trans_lock);
2037
2038 /*
2039 * The thread has already released the lockdep map as reader
2040 * already in btrfs_commit_transaction().
2041 */
2042 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2043 wait_event(cur_trans->writer_wait,
2044 atomic_read(&cur_trans->num_writers) == 1);
2045
2046 spin_lock(&fs_info->trans_lock);
2047 }
2048
2049 /*
2050 * Now that we know no one else is still using the transaction we can
2051 * remove the transaction from the list of transactions. This avoids
2052 * the transaction kthread from cleaning up the transaction while some
2053 * other task is still using it, which could result in a use-after-free
2054 * on things like log trees, as it forces the transaction kthread to
2055 * wait for this transaction to be cleaned up by us.
2056 */
2057 list_del_init(&cur_trans->list);
2058
2059 spin_unlock(&fs_info->trans_lock);
2060
2061 btrfs_cleanup_one_transaction(trans->transaction);
2062
2063 spin_lock(&fs_info->trans_lock);
2064 if (cur_trans == fs_info->running_transaction)
2065 fs_info->running_transaction = NULL;
2066 spin_unlock(&fs_info->trans_lock);
2067
2068 if (trans->type & __TRANS_FREEZABLE)
2069 sb_end_intwrite(fs_info->sb);
2070 btrfs_put_transaction(cur_trans);
2071 btrfs_put_transaction(cur_trans);
2072
2073 trace_btrfs_transaction_commit(fs_info);
2074
2075 if (current->journal_info == trans)
2076 current->journal_info = NULL;
2077
2078 /*
2079 * If relocation is running, we can't cancel scrub because that will
2080 * result in a deadlock. Before relocating a block group, relocation
2081 * pauses scrub, then starts and commits a transaction before unpausing
2082 * scrub. If the transaction commit is being done by the relocation
2083 * task or triggered by another task and the relocation task is waiting
2084 * for the commit, and we end up here due to an error in the commit
2085 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2086 * asking for scrub to stop while having it asked to be paused higher
2087 * above in relocation code.
2088 */
2089 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2090 btrfs_scrub_cancel(fs_info);
2091
2092 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2093 }
2094
2095 /*
2096 * Release reserved delayed ref space of all pending block groups of the
2097 * transaction and remove them from the list
2098 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2099 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2100 {
2101 struct btrfs_fs_info *fs_info = trans->fs_info;
2102 struct btrfs_block_group *block_group, *tmp;
2103
2104 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2105 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2106 /*
2107 * Not strictly necessary to lock, as no other task will be using a
2108 * block_group on the new_bgs list during a transaction abort.
2109 */
2110 spin_lock(&fs_info->unused_bgs_lock);
2111 list_del_init(&block_group->bg_list);
2112 btrfs_put_block_group(block_group);
2113 spin_unlock(&fs_info->unused_bgs_lock);
2114 }
2115 }
2116
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2117 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2118 {
2119 /*
2120 * We use try_to_writeback_inodes_sb() here because if we used
2121 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2122 * Currently are holding the fs freeze lock, if we do an async flush
2123 * we'll do btrfs_join_transaction() and deadlock because we need to
2124 * wait for the fs freeze lock. Using the direct flushing we benefit
2125 * from already being in a transaction and our join_transaction doesn't
2126 * have to re-take the fs freeze lock.
2127 *
2128 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2129 * if it can read lock sb->s_umount. It will always be able to lock it,
2130 * except when the filesystem is being unmounted or being frozen, but in
2131 * those cases sync_filesystem() is called, which results in calling
2132 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2133 * Note that we don't call writeback_inodes_sb() directly, because it
2134 * will emit a warning if sb->s_umount is not locked.
2135 */
2136 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2137 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2138 return 0;
2139 }
2140
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2141 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2142 {
2143 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2144 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2145 }
2146
2147 /*
2148 * Add a pending snapshot associated with the given transaction handle to the
2149 * respective handle. This must be called after the transaction commit started
2150 * and while holding fs_info->trans_lock.
2151 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2152 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2153 * returns an error.
2154 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2155 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2156 {
2157 struct btrfs_transaction *cur_trans = trans->transaction;
2158
2159 if (!trans->pending_snapshot)
2160 return;
2161
2162 lockdep_assert_held(&trans->fs_info->trans_lock);
2163 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2164
2165 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2166 }
2167
update_commit_stats(struct btrfs_fs_info * fs_info)2168 static void update_commit_stats(struct btrfs_fs_info *fs_info)
2169 {
2170 ktime_t now = ktime_get_ns();
2171 ktime_t interval = now - fs_info->commit_stats.critical_section_start_time;
2172
2173 ASSERT(fs_info->commit_stats.critical_section_start_time);
2174
2175 fs_info->commit_stats.commit_count++;
2176 fs_info->commit_stats.last_commit_dur = interval;
2177 fs_info->commit_stats.max_commit_dur =
2178 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2179 fs_info->commit_stats.total_commit_dur += interval;
2180 fs_info->commit_stats.critical_section_start_time = 0;
2181 }
2182
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2183 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2184 {
2185 struct btrfs_fs_info *fs_info = trans->fs_info;
2186 struct btrfs_transaction *cur_trans = trans->transaction;
2187 struct btrfs_transaction *prev_trans = NULL;
2188 int ret;
2189
2190 ASSERT(refcount_read(&trans->use_count) == 1);
2191 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2192
2193 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2194
2195 /* Stop the commit early if ->aborted is set */
2196 if (TRANS_ABORTED(cur_trans)) {
2197 ret = cur_trans->aborted;
2198 goto lockdep_trans_commit_start_release;
2199 }
2200
2201 btrfs_trans_release_metadata(trans);
2202 trans->block_rsv = NULL;
2203
2204 /*
2205 * We only want one transaction commit doing the flushing so we do not
2206 * waste a bunch of time on lock contention on the extent root node.
2207 */
2208 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2209 &cur_trans->delayed_refs.flags)) {
2210 /*
2211 * Make a pass through all the delayed refs we have so far.
2212 * Any running threads may add more while we are here.
2213 */
2214 ret = btrfs_run_delayed_refs(trans, 0);
2215 if (ret)
2216 goto lockdep_trans_commit_start_release;
2217 }
2218
2219 btrfs_create_pending_block_groups(trans);
2220
2221 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2222 int run_it = 0;
2223
2224 /* this mutex is also taken before trying to set
2225 * block groups readonly. We need to make sure
2226 * that nobody has set a block group readonly
2227 * after a extents from that block group have been
2228 * allocated for cache files. btrfs_set_block_group_ro
2229 * will wait for the transaction to commit if it
2230 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2231 *
2232 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2233 * only one process starts all the block group IO. It wouldn't
2234 * hurt to have more than one go through, but there's no
2235 * real advantage to it either.
2236 */
2237 mutex_lock(&fs_info->ro_block_group_mutex);
2238 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2239 &cur_trans->flags))
2240 run_it = 1;
2241 mutex_unlock(&fs_info->ro_block_group_mutex);
2242
2243 if (run_it) {
2244 ret = btrfs_start_dirty_block_groups(trans);
2245 if (ret)
2246 goto lockdep_trans_commit_start_release;
2247 }
2248 }
2249
2250 spin_lock(&fs_info->trans_lock);
2251 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2252 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2253
2254 add_pending_snapshot(trans);
2255
2256 spin_unlock(&fs_info->trans_lock);
2257 refcount_inc(&cur_trans->use_count);
2258
2259 if (trans->in_fsync)
2260 want_state = TRANS_STATE_SUPER_COMMITTED;
2261
2262 btrfs_trans_state_lockdep_release(fs_info,
2263 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2264 ret = btrfs_end_transaction(trans);
2265 wait_for_commit(cur_trans, want_state);
2266
2267 if (TRANS_ABORTED(cur_trans))
2268 ret = cur_trans->aborted;
2269
2270 btrfs_put_transaction(cur_trans);
2271
2272 return ret;
2273 }
2274
2275 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2276 wake_up(&fs_info->transaction_blocked_wait);
2277 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2278
2279 if (!list_is_first(&cur_trans->list, &fs_info->trans_list)) {
2280 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2281
2282 if (trans->in_fsync)
2283 want_state = TRANS_STATE_SUPER_COMMITTED;
2284
2285 prev_trans = list_prev_entry(cur_trans, list);
2286 if (prev_trans->state < want_state) {
2287 refcount_inc(&prev_trans->use_count);
2288 spin_unlock(&fs_info->trans_lock);
2289
2290 wait_for_commit(prev_trans, want_state);
2291
2292 ret = READ_ONCE(prev_trans->aborted);
2293
2294 btrfs_put_transaction(prev_trans);
2295 if (ret)
2296 goto lockdep_release;
2297 spin_lock(&fs_info->trans_lock);
2298 }
2299 } else {
2300 /*
2301 * The previous transaction was aborted and was already removed
2302 * from the list of transactions at fs_info->trans_list. So we
2303 * abort to prevent writing a new superblock that reflects a
2304 * corrupt state (pointing to trees with unwritten nodes/leafs).
2305 */
2306 if (BTRFS_FS_ERROR(fs_info)) {
2307 spin_unlock(&fs_info->trans_lock);
2308 ret = -EROFS;
2309 goto lockdep_release;
2310 }
2311 }
2312
2313 cur_trans->state = TRANS_STATE_COMMIT_START;
2314 wake_up(&fs_info->transaction_blocked_wait);
2315 spin_unlock(&fs_info->trans_lock);
2316
2317 /*
2318 * Get the time spent on the work done by the commit thread and not
2319 * the time spent waiting on a previous commit
2320 */
2321 fs_info->commit_stats.critical_section_start_time = ktime_get_ns();
2322 extwriter_counter_dec(cur_trans, trans->type);
2323
2324 ret = btrfs_start_delalloc_flush(fs_info);
2325 if (ret)
2326 goto lockdep_release;
2327
2328 ret = btrfs_run_delayed_items(trans);
2329 if (ret)
2330 goto lockdep_release;
2331
2332 /*
2333 * The thread has started/joined the transaction thus it holds the
2334 * lockdep map as a reader. It has to release it before acquiring the
2335 * lockdep map as a writer.
2336 */
2337 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2338 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2339 wait_event(cur_trans->writer_wait,
2340 extwriter_counter_read(cur_trans) == 0);
2341
2342 /* some pending stuffs might be added after the previous flush. */
2343 ret = btrfs_run_delayed_items(trans);
2344 if (ret) {
2345 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2346 goto cleanup_transaction;
2347 }
2348
2349 btrfs_wait_delalloc_flush(fs_info);
2350
2351 /*
2352 * Wait for all ordered extents started by a fast fsync that joined this
2353 * transaction. Otherwise if this transaction commits before the ordered
2354 * extents complete we lose logged data after a power failure.
2355 */
2356 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2357 wait_event(cur_trans->pending_wait,
2358 atomic_read(&cur_trans->pending_ordered) == 0);
2359
2360 btrfs_scrub_pause(fs_info);
2361 /*
2362 * Ok now we need to make sure to block out any other joins while we
2363 * commit the transaction. We could have started a join before setting
2364 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2365 */
2366 spin_lock(&fs_info->trans_lock);
2367 add_pending_snapshot(trans);
2368 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2369 spin_unlock(&fs_info->trans_lock);
2370
2371 /*
2372 * The thread has started/joined the transaction thus it holds the
2373 * lockdep map as a reader. It has to release it before acquiring the
2374 * lockdep map as a writer.
2375 */
2376 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2377 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2378 wait_event(cur_trans->writer_wait,
2379 atomic_read(&cur_trans->num_writers) == 1);
2380
2381 /*
2382 * Make lockdep happy by acquiring the state locks after
2383 * btrfs_trans_num_writers is released. If we acquired the state locks
2384 * before releasing the btrfs_trans_num_writers lock then lockdep would
2385 * complain because we did not follow the reverse order unlocking rule.
2386 */
2387 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2388 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2389 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2390
2391 /*
2392 * We've started the commit, clear the flag in case we were triggered to
2393 * do an async commit but somebody else started before the transaction
2394 * kthread could do the work.
2395 */
2396 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2397
2398 if (TRANS_ABORTED(cur_trans)) {
2399 ret = cur_trans->aborted;
2400 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2401 goto scrub_continue;
2402 }
2403 /*
2404 * the reloc mutex makes sure that we stop
2405 * the balancing code from coming in and moving
2406 * extents around in the middle of the commit
2407 */
2408 mutex_lock(&fs_info->reloc_mutex);
2409
2410 /*
2411 * We needn't worry about the delayed items because we will
2412 * deal with them in create_pending_snapshot(), which is the
2413 * core function of the snapshot creation.
2414 */
2415 ret = create_pending_snapshots(trans);
2416 if (ret)
2417 goto unlock_reloc;
2418
2419 /*
2420 * We insert the dir indexes of the snapshots and update the inode
2421 * of the snapshots' parents after the snapshot creation, so there
2422 * are some delayed items which are not dealt with. Now deal with
2423 * them.
2424 *
2425 * We needn't worry that this operation will corrupt the snapshots,
2426 * because all the tree which are snapshoted will be forced to COW
2427 * the nodes and leaves.
2428 */
2429 ret = btrfs_run_delayed_items(trans);
2430 if (ret)
2431 goto unlock_reloc;
2432
2433 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2434 if (ret)
2435 goto unlock_reloc;
2436
2437 /*
2438 * make sure none of the code above managed to slip in a
2439 * delayed item
2440 */
2441 btrfs_assert_delayed_root_empty(fs_info);
2442
2443 WARN_ON(cur_trans != trans->transaction);
2444
2445 ret = commit_fs_roots(trans);
2446 if (ret)
2447 goto unlock_reloc;
2448
2449 /* commit_fs_roots gets rid of all the tree log roots, it is now
2450 * safe to free the root of tree log roots
2451 */
2452 btrfs_free_log_root_tree(trans, fs_info);
2453
2454 /*
2455 * Since fs roots are all committed, we can get a quite accurate
2456 * new_roots. So let's do quota accounting.
2457 */
2458 ret = btrfs_qgroup_account_extents(trans);
2459 if (ret < 0)
2460 goto unlock_reloc;
2461
2462 ret = commit_cowonly_roots(trans);
2463 if (ret)
2464 goto unlock_reloc;
2465
2466 /*
2467 * The tasks which save the space cache and inode cache may also
2468 * update ->aborted, check it.
2469 */
2470 if (TRANS_ABORTED(cur_trans)) {
2471 ret = cur_trans->aborted;
2472 goto unlock_reloc;
2473 }
2474
2475 cur_trans = fs_info->running_transaction;
2476
2477 btrfs_set_root_node(&fs_info->tree_root->root_item,
2478 fs_info->tree_root->node);
2479 list_add_tail(&fs_info->tree_root->dirty_list,
2480 &cur_trans->switch_commits);
2481
2482 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2483 fs_info->chunk_root->node);
2484 list_add_tail(&fs_info->chunk_root->dirty_list,
2485 &cur_trans->switch_commits);
2486
2487 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2488 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2489 fs_info->block_group_root->node);
2490 list_add_tail(&fs_info->block_group_root->dirty_list,
2491 &cur_trans->switch_commits);
2492 }
2493
2494 switch_commit_roots(trans);
2495
2496 ASSERT(list_empty(&cur_trans->dirty_bgs));
2497 ASSERT(list_empty(&cur_trans->io_bgs));
2498 update_super_roots(fs_info);
2499
2500 btrfs_set_super_log_root(fs_info->super_copy, 0);
2501 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2502 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2503 sizeof(*fs_info->super_copy));
2504
2505 btrfs_commit_device_sizes(cur_trans);
2506
2507 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2508 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2509
2510 btrfs_trans_release_chunk_metadata(trans);
2511
2512 /*
2513 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2514 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2515 * make sure that before we commit our superblock, no other task can
2516 * start a new transaction and commit a log tree before we commit our
2517 * superblock. Anyone trying to commit a log tree locks this mutex before
2518 * writing its superblock.
2519 */
2520 mutex_lock(&fs_info->tree_log_mutex);
2521
2522 spin_lock(&fs_info->trans_lock);
2523 cur_trans->state = TRANS_STATE_UNBLOCKED;
2524 fs_info->running_transaction = NULL;
2525 spin_unlock(&fs_info->trans_lock);
2526 mutex_unlock(&fs_info->reloc_mutex);
2527
2528 wake_up(&fs_info->transaction_wait);
2529 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2530
2531 /* If we have features changed, wake up the cleaner to update sysfs. */
2532 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2533 fs_info->cleaner_kthread)
2534 wake_up_process(fs_info->cleaner_kthread);
2535
2536 ret = btrfs_write_and_wait_transaction(trans);
2537 if (ret) {
2538 btrfs_handle_fs_error(fs_info, ret,
2539 "Error while writing out transaction");
2540 mutex_unlock(&fs_info->tree_log_mutex);
2541 goto scrub_continue;
2542 }
2543
2544 ret = write_all_supers(fs_info, 0);
2545 /*
2546 * the super is written, we can safely allow the tree-loggers
2547 * to go about their business
2548 */
2549 mutex_unlock(&fs_info->tree_log_mutex);
2550 if (ret)
2551 goto scrub_continue;
2552
2553 update_commit_stats(fs_info);
2554 /*
2555 * We needn't acquire the lock here because there is no other task
2556 * which can change it.
2557 */
2558 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2559 wake_up(&cur_trans->commit_wait);
2560 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2561
2562 ret = btrfs_finish_extent_commit(trans);
2563 if (ret)
2564 goto scrub_continue;
2565
2566 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2567 btrfs_clear_space_info_full(fs_info);
2568
2569 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2570 /*
2571 * We needn't acquire the lock here because there is no other task
2572 * which can change it.
2573 */
2574 cur_trans->state = TRANS_STATE_COMPLETED;
2575 wake_up(&cur_trans->commit_wait);
2576 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2577
2578 spin_lock(&fs_info->trans_lock);
2579 list_del_init(&cur_trans->list);
2580 spin_unlock(&fs_info->trans_lock);
2581
2582 btrfs_put_transaction(cur_trans);
2583 btrfs_put_transaction(cur_trans);
2584
2585 if (trans->type & __TRANS_FREEZABLE)
2586 sb_end_intwrite(fs_info->sb);
2587
2588 trace_btrfs_transaction_commit(fs_info);
2589
2590 btrfs_scrub_continue(fs_info);
2591
2592 if (current->journal_info == trans)
2593 current->journal_info = NULL;
2594
2595 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2596
2597 return ret;
2598
2599 unlock_reloc:
2600 mutex_unlock(&fs_info->reloc_mutex);
2601 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2602 scrub_continue:
2603 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2604 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2605 btrfs_scrub_continue(fs_info);
2606 cleanup_transaction:
2607 btrfs_trans_release_metadata(trans);
2608 btrfs_cleanup_pending_block_groups(trans);
2609 btrfs_trans_release_chunk_metadata(trans);
2610 trans->block_rsv = NULL;
2611 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2612 if (current->journal_info == trans)
2613 current->journal_info = NULL;
2614 cleanup_transaction(trans, ret);
2615
2616 return ret;
2617
2618 lockdep_release:
2619 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2620 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2621 goto cleanup_transaction;
2622
2623 lockdep_trans_commit_start_release:
2624 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2625 btrfs_end_transaction(trans);
2626 return ret;
2627 }
2628
2629 /*
2630 * return < 0 if error
2631 * 0 if there are no more dead_roots at the time of call
2632 * 1 there are more to be processed, call me again
2633 *
2634 * The return value indicates there are certainly more snapshots to delete, but
2635 * if there comes a new one during processing, it may return 0. We don't mind,
2636 * because btrfs_commit_super will poke cleaner thread and it will process it a
2637 * few seconds later.
2638 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2639 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2640 {
2641 struct btrfs_root *root;
2642 int ret;
2643
2644 spin_lock(&fs_info->trans_lock);
2645 if (list_empty(&fs_info->dead_roots)) {
2646 spin_unlock(&fs_info->trans_lock);
2647 return 0;
2648 }
2649 root = list_first_entry(&fs_info->dead_roots,
2650 struct btrfs_root, root_list);
2651 list_del_init(&root->root_list);
2652 spin_unlock(&fs_info->trans_lock);
2653
2654 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2655
2656 btrfs_kill_all_delayed_nodes(root);
2657
2658 if (btrfs_header_backref_rev(root->node) <
2659 BTRFS_MIXED_BACKREF_REV)
2660 ret = btrfs_drop_snapshot(root, 0, 0);
2661 else
2662 ret = btrfs_drop_snapshot(root, 1, 0);
2663
2664 btrfs_put_root(root);
2665 return (ret < 0) ? 0 : 1;
2666 }
2667
2668 /*
2669 * We only mark the transaction aborted and then set the file system read-only.
2670 * This will prevent new transactions from starting or trying to join this
2671 * one.
2672 *
2673 * This means that error recovery at the call site is limited to freeing
2674 * any local memory allocations and passing the error code up without
2675 * further cleanup. The transaction should complete as it normally would
2676 * in the call path but will return -EIO.
2677 *
2678 * We'll complete the cleanup in btrfs_end_transaction and
2679 * btrfs_commit_transaction.
2680 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2681 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2682 const char *function,
2683 unsigned int line, int error, bool first_hit)
2684 {
2685 struct btrfs_fs_info *fs_info = trans->fs_info;
2686
2687 WRITE_ONCE(trans->aborted, error);
2688 WRITE_ONCE(trans->transaction->aborted, error);
2689 if (first_hit && error == -ENOSPC)
2690 btrfs_dump_space_info_for_trans_abort(fs_info);
2691 /* Wake up anybody who may be waiting on this transaction */
2692 wake_up(&fs_info->transaction_wait);
2693 wake_up(&fs_info->transaction_blocked_wait);
2694 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2695 }
2696
btrfs_transaction_init(void)2697 int __init btrfs_transaction_init(void)
2698 {
2699 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2700 if (!btrfs_trans_handle_cachep)
2701 return -ENOMEM;
2702 return 0;
2703 }
2704
btrfs_transaction_exit(void)2705 void __cold btrfs_transaction_exit(void)
2706 {
2707 kmem_cache_destroy(btrfs_trans_handle_cachep);
2708 }
2709