xref: /linux/tools/lib/bpf/btf.c (revision d0d106a2bd21499901299160744e5fe9f4c83ddb)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 #include "str_error.h"
26 
27 #define BTF_MAX_NR_TYPES 0x7fffffffU
28 #define BTF_MAX_STR_OFFSET 0x7fffffffU
29 
30 static struct btf_type btf_void;
31 
32 struct btf {
33 	/* raw BTF data in native endianness */
34 	void *raw_data;
35 	/* raw BTF data in non-native endianness */
36 	void *raw_data_swapped;
37 	__u32 raw_size;
38 	/* whether target endianness differs from the native one */
39 	bool swapped_endian;
40 
41 	/*
42 	 * When BTF is loaded from an ELF or raw memory it is stored
43 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
44 	 * point inside that memory region to their respective parts of BTF
45 	 * representation:
46 	 *
47 	 * +--------------------------------+
48 	 * |  Header  |  Types  |  Strings  |
49 	 * +--------------------------------+
50 	 * ^          ^         ^
51 	 * |          |         |
52 	 * hdr        |         |
53 	 * types_data-+         |
54 	 * strs_data------------+
55 	 *
56 	 * If BTF data is later modified, e.g., due to types added or
57 	 * removed, BTF deduplication performed, etc, this contiguous
58 	 * representation is broken up into three independently allocated
59 	 * memory regions to be able to modify them independently.
60 	 * raw_data is nulled out at that point, but can be later allocated
61 	 * and cached again if user calls btf__raw_data(), at which point
62 	 * raw_data will contain a contiguous copy of header, types, and
63 	 * strings:
64 	 *
65 	 * +----------+  +---------+  +-----------+
66 	 * |  Header  |  |  Types  |  |  Strings  |
67 	 * +----------+  +---------+  +-----------+
68 	 * ^             ^            ^
69 	 * |             |            |
70 	 * hdr           |            |
71 	 * types_data----+            |
72 	 * strset__data(strs_set)-----+
73 	 *
74 	 *               +----------+---------+-----------+
75 	 *               |  Header  |  Types  |  Strings  |
76 	 * raw_data----->+----------+---------+-----------+
77 	 */
78 	struct btf_header *hdr;
79 
80 	void *types_data;
81 	size_t types_data_cap; /* used size stored in hdr->type_len */
82 
83 	/* type ID to `struct btf_type *` lookup index
84 	 * type_offs[0] corresponds to the first non-VOID type:
85 	 *   - for base BTF it's type [1];
86 	 *   - for split BTF it's the first non-base BTF type.
87 	 */
88 	__u32 *type_offs;
89 	size_t type_offs_cap;
90 	/* number of types in this BTF instance:
91 	 *   - doesn't include special [0] void type;
92 	 *   - for split BTF counts number of types added on top of base BTF.
93 	 */
94 	__u32 nr_types;
95 	/* if not NULL, points to the base BTF on top of which the current
96 	 * split BTF is based
97 	 */
98 	struct btf *base_btf;
99 	/* BTF type ID of the first type in this BTF instance:
100 	 *   - for base BTF it's equal to 1;
101 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
102 	 */
103 	int start_id;
104 	/* logical string offset of this BTF instance:
105 	 *   - for base BTF it's equal to 0;
106 	 *   - for split BTF it's equal to total size of base BTF's string section size.
107 	 */
108 	int start_str_off;
109 
110 	/* only one of strs_data or strs_set can be non-NULL, depending on
111 	 * whether BTF is in a modifiable state (strs_set is used) or not
112 	 * (strs_data points inside raw_data)
113 	 */
114 	void *strs_data;
115 	/* a set of unique strings */
116 	struct strset *strs_set;
117 	/* whether strings are already deduplicated */
118 	bool strs_deduped;
119 
120 	/* whether base_btf should be freed in btf_free for this instance */
121 	bool owns_base;
122 
123 	/* BTF object FD, if loaded into kernel */
124 	int fd;
125 
126 	/* Pointer size (in bytes) for a target architecture of this BTF */
127 	int ptr_sz;
128 };
129 
ptr_to_u64(const void * ptr)130 static inline __u64 ptr_to_u64(const void *ptr)
131 {
132 	return (__u64) (unsigned long) ptr;
133 }
134 
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137  * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
138  * are already used. At most *max_cnt* elements can be ever allocated.
139  * If necessary, memory is reallocated and all existing data is copied over,
140  * new pointer to the memory region is stored at *data, new memory region
141  * capacity (in number of elements) is stored in *cap.
142  * On success, memory pointer to the beginning of unused memory is returned.
143  * On error, NULL is returned.
144  */
libbpf_add_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t cur_cnt,size_t max_cnt,size_t add_cnt)145 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147 {
148 	size_t new_cnt;
149 	void *new_data;
150 
151 	if (cur_cnt + add_cnt <= *cap_cnt)
152 		return *data + cur_cnt * elem_sz;
153 
154 	/* requested more than the set limit */
155 	if (cur_cnt + add_cnt > max_cnt)
156 		return NULL;
157 
158 	new_cnt = *cap_cnt;
159 	new_cnt += new_cnt / 4;		  /* expand by 25% */
160 	if (new_cnt < 16)		  /* but at least 16 elements */
161 		new_cnt = 16;
162 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
163 		new_cnt = max_cnt;
164 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
165 		new_cnt = cur_cnt + add_cnt;
166 
167 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 	if (!new_data)
169 		return NULL;
170 
171 	/* zero out newly allocated portion of memory */
172 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173 
174 	*data = new_data;
175 	*cap_cnt = new_cnt;
176 	return new_data + cur_cnt * elem_sz;
177 }
178 
179 /* Ensure given dynamically allocated memory region has enough allocated space
180  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181  */
libbpf_ensure_mem(void ** data,size_t * cap_cnt,size_t elem_sz,size_t need_cnt)182 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183 {
184 	void *p;
185 
186 	if (need_cnt <= *cap_cnt)
187 		return 0;
188 
189 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 	if (!p)
191 		return -ENOMEM;
192 
193 	return 0;
194 }
195 
btf_add_type_offs_mem(struct btf * btf,size_t add_cnt)196 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
197 {
198 	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
199 			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
200 }
201 
btf_add_type_idx_entry(struct btf * btf,__u32 type_off)202 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
203 {
204 	__u32 *p;
205 
206 	p = btf_add_type_offs_mem(btf, 1);
207 	if (!p)
208 		return -ENOMEM;
209 
210 	*p = type_off;
211 	return 0;
212 }
213 
btf_bswap_hdr(struct btf_header * h)214 static void btf_bswap_hdr(struct btf_header *h)
215 {
216 	h->magic = bswap_16(h->magic);
217 	h->hdr_len = bswap_32(h->hdr_len);
218 	h->type_off = bswap_32(h->type_off);
219 	h->type_len = bswap_32(h->type_len);
220 	h->str_off = bswap_32(h->str_off);
221 	h->str_len = bswap_32(h->str_len);
222 }
223 
btf_parse_hdr(struct btf * btf)224 static int btf_parse_hdr(struct btf *btf)
225 {
226 	struct btf_header *hdr = btf->hdr;
227 	__u32 meta_left;
228 
229 	if (btf->raw_size < sizeof(struct btf_header)) {
230 		pr_debug("BTF header not found\n");
231 		return -EINVAL;
232 	}
233 
234 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
235 		btf->swapped_endian = true;
236 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
237 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
238 				bswap_32(hdr->hdr_len));
239 			return -ENOTSUP;
240 		}
241 		btf_bswap_hdr(hdr);
242 	} else if (hdr->magic != BTF_MAGIC) {
243 		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
244 		return -EINVAL;
245 	}
246 
247 	if (btf->raw_size < hdr->hdr_len) {
248 		pr_debug("BTF header len %u larger than data size %u\n",
249 			 hdr->hdr_len, btf->raw_size);
250 		return -EINVAL;
251 	}
252 
253 	meta_left = btf->raw_size - hdr->hdr_len;
254 	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
255 		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
256 		return -EINVAL;
257 	}
258 
259 	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
260 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
261 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
262 		return -EINVAL;
263 	}
264 
265 	if (hdr->type_off % 4) {
266 		pr_debug("BTF type section is not aligned to 4 bytes\n");
267 		return -EINVAL;
268 	}
269 
270 	return 0;
271 }
272 
btf_parse_str_sec(struct btf * btf)273 static int btf_parse_str_sec(struct btf *btf)
274 {
275 	const struct btf_header *hdr = btf->hdr;
276 	const char *start = btf->strs_data;
277 	const char *end = start + btf->hdr->str_len;
278 
279 	if (btf->base_btf && hdr->str_len == 0)
280 		return 0;
281 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
282 		pr_debug("Invalid BTF string section\n");
283 		return -EINVAL;
284 	}
285 	if (!btf->base_btf && start[0]) {
286 		pr_debug("Malformed BTF string section, did you forget to provide base BTF?\n");
287 		return -EINVAL;
288 	}
289 	return 0;
290 }
291 
btf_type_size(const struct btf_type * t)292 static int btf_type_size(const struct btf_type *t)
293 {
294 	const int base_size = sizeof(struct btf_type);
295 	__u16 vlen = btf_vlen(t);
296 
297 	switch (btf_kind(t)) {
298 	case BTF_KIND_FWD:
299 	case BTF_KIND_CONST:
300 	case BTF_KIND_VOLATILE:
301 	case BTF_KIND_RESTRICT:
302 	case BTF_KIND_PTR:
303 	case BTF_KIND_TYPEDEF:
304 	case BTF_KIND_FUNC:
305 	case BTF_KIND_FLOAT:
306 	case BTF_KIND_TYPE_TAG:
307 		return base_size;
308 	case BTF_KIND_INT:
309 		return base_size + sizeof(__u32);
310 	case BTF_KIND_ENUM:
311 		return base_size + vlen * sizeof(struct btf_enum);
312 	case BTF_KIND_ENUM64:
313 		return base_size + vlen * sizeof(struct btf_enum64);
314 	case BTF_KIND_ARRAY:
315 		return base_size + sizeof(struct btf_array);
316 	case BTF_KIND_STRUCT:
317 	case BTF_KIND_UNION:
318 		return base_size + vlen * sizeof(struct btf_member);
319 	case BTF_KIND_FUNC_PROTO:
320 		return base_size + vlen * sizeof(struct btf_param);
321 	case BTF_KIND_VAR:
322 		return base_size + sizeof(struct btf_var);
323 	case BTF_KIND_DATASEC:
324 		return base_size + vlen * sizeof(struct btf_var_secinfo);
325 	case BTF_KIND_DECL_TAG:
326 		return base_size + sizeof(struct btf_decl_tag);
327 	default:
328 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
329 		return -EINVAL;
330 	}
331 }
332 
btf_bswap_type_base(struct btf_type * t)333 static void btf_bswap_type_base(struct btf_type *t)
334 {
335 	t->name_off = bswap_32(t->name_off);
336 	t->info = bswap_32(t->info);
337 	t->type = bswap_32(t->type);
338 }
339 
btf_bswap_type_rest(struct btf_type * t)340 static int btf_bswap_type_rest(struct btf_type *t)
341 {
342 	struct btf_var_secinfo *v;
343 	struct btf_enum64 *e64;
344 	struct btf_member *m;
345 	struct btf_array *a;
346 	struct btf_param *p;
347 	struct btf_enum *e;
348 	__u16 vlen = btf_vlen(t);
349 	int i;
350 
351 	switch (btf_kind(t)) {
352 	case BTF_KIND_FWD:
353 	case BTF_KIND_CONST:
354 	case BTF_KIND_VOLATILE:
355 	case BTF_KIND_RESTRICT:
356 	case BTF_KIND_PTR:
357 	case BTF_KIND_TYPEDEF:
358 	case BTF_KIND_FUNC:
359 	case BTF_KIND_FLOAT:
360 	case BTF_KIND_TYPE_TAG:
361 		return 0;
362 	case BTF_KIND_INT:
363 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
364 		return 0;
365 	case BTF_KIND_ENUM:
366 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
367 			e->name_off = bswap_32(e->name_off);
368 			e->val = bswap_32(e->val);
369 		}
370 		return 0;
371 	case BTF_KIND_ENUM64:
372 		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
373 			e64->name_off = bswap_32(e64->name_off);
374 			e64->val_lo32 = bswap_32(e64->val_lo32);
375 			e64->val_hi32 = bswap_32(e64->val_hi32);
376 		}
377 		return 0;
378 	case BTF_KIND_ARRAY:
379 		a = btf_array(t);
380 		a->type = bswap_32(a->type);
381 		a->index_type = bswap_32(a->index_type);
382 		a->nelems = bswap_32(a->nelems);
383 		return 0;
384 	case BTF_KIND_STRUCT:
385 	case BTF_KIND_UNION:
386 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
387 			m->name_off = bswap_32(m->name_off);
388 			m->type = bswap_32(m->type);
389 			m->offset = bswap_32(m->offset);
390 		}
391 		return 0;
392 	case BTF_KIND_FUNC_PROTO:
393 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
394 			p->name_off = bswap_32(p->name_off);
395 			p->type = bswap_32(p->type);
396 		}
397 		return 0;
398 	case BTF_KIND_VAR:
399 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
400 		return 0;
401 	case BTF_KIND_DATASEC:
402 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
403 			v->type = bswap_32(v->type);
404 			v->offset = bswap_32(v->offset);
405 			v->size = bswap_32(v->size);
406 		}
407 		return 0;
408 	case BTF_KIND_DECL_TAG:
409 		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
410 		return 0;
411 	default:
412 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
413 		return -EINVAL;
414 	}
415 }
416 
btf_parse_type_sec(struct btf * btf)417 static int btf_parse_type_sec(struct btf *btf)
418 {
419 	struct btf_header *hdr = btf->hdr;
420 	void *next_type = btf->types_data;
421 	void *end_type = next_type + hdr->type_len;
422 	int err, type_size;
423 
424 	while (next_type + sizeof(struct btf_type) <= end_type) {
425 		if (btf->swapped_endian)
426 			btf_bswap_type_base(next_type);
427 
428 		type_size = btf_type_size(next_type);
429 		if (type_size < 0)
430 			return type_size;
431 		if (next_type + type_size > end_type) {
432 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
433 			return -EINVAL;
434 		}
435 
436 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
437 			return -EINVAL;
438 
439 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
440 		if (err)
441 			return err;
442 
443 		next_type += type_size;
444 		btf->nr_types++;
445 	}
446 
447 	if (next_type != end_type) {
448 		pr_warn("BTF types data is malformed\n");
449 		return -EINVAL;
450 	}
451 
452 	return 0;
453 }
454 
btf_validate_str(const struct btf * btf,__u32 str_off,const char * what,__u32 type_id)455 static int btf_validate_str(const struct btf *btf, __u32 str_off, const char *what, __u32 type_id)
456 {
457 	const char *s;
458 
459 	s = btf__str_by_offset(btf, str_off);
460 	if (!s) {
461 		pr_warn("btf: type [%u]: invalid %s (string offset %u)\n", type_id, what, str_off);
462 		return -EINVAL;
463 	}
464 
465 	return 0;
466 }
467 
btf_validate_id(const struct btf * btf,__u32 id,__u32 ctx_id)468 static int btf_validate_id(const struct btf *btf, __u32 id, __u32 ctx_id)
469 {
470 	const struct btf_type *t;
471 
472 	t = btf__type_by_id(btf, id);
473 	if (!t) {
474 		pr_warn("btf: type [%u]: invalid referenced type ID %u\n", ctx_id, id);
475 		return -EINVAL;
476 	}
477 
478 	return 0;
479 }
480 
btf_validate_type(const struct btf * btf,const struct btf_type * t,__u32 id)481 static int btf_validate_type(const struct btf *btf, const struct btf_type *t, __u32 id)
482 {
483 	__u32 kind = btf_kind(t);
484 	int err, i, n;
485 
486 	err = btf_validate_str(btf, t->name_off, "type name", id);
487 	if (err)
488 		return err;
489 
490 	switch (kind) {
491 	case BTF_KIND_UNKN:
492 	case BTF_KIND_INT:
493 	case BTF_KIND_FWD:
494 	case BTF_KIND_FLOAT:
495 		break;
496 	case BTF_KIND_PTR:
497 	case BTF_KIND_TYPEDEF:
498 	case BTF_KIND_VOLATILE:
499 	case BTF_KIND_CONST:
500 	case BTF_KIND_RESTRICT:
501 	case BTF_KIND_VAR:
502 	case BTF_KIND_DECL_TAG:
503 	case BTF_KIND_TYPE_TAG:
504 		err = btf_validate_id(btf, t->type, id);
505 		if (err)
506 			return err;
507 		break;
508 	case BTF_KIND_ARRAY: {
509 		const struct btf_array *a = btf_array(t);
510 
511 		err = btf_validate_id(btf, a->type, id);
512 		err = err ?: btf_validate_id(btf, a->index_type, id);
513 		if (err)
514 			return err;
515 		break;
516 	}
517 	case BTF_KIND_STRUCT:
518 	case BTF_KIND_UNION: {
519 		const struct btf_member *m = btf_members(t);
520 
521 		n = btf_vlen(t);
522 		for (i = 0; i < n; i++, m++) {
523 			err = btf_validate_str(btf, m->name_off, "field name", id);
524 			err = err ?: btf_validate_id(btf, m->type, id);
525 			if (err)
526 				return err;
527 		}
528 		break;
529 	}
530 	case BTF_KIND_ENUM: {
531 		const struct btf_enum *m = btf_enum(t);
532 
533 		n = btf_vlen(t);
534 		for (i = 0; i < n; i++, m++) {
535 			err = btf_validate_str(btf, m->name_off, "enum name", id);
536 			if (err)
537 				return err;
538 		}
539 		break;
540 	}
541 	case BTF_KIND_ENUM64: {
542 		const struct btf_enum64 *m = btf_enum64(t);
543 
544 		n = btf_vlen(t);
545 		for (i = 0; i < n; i++, m++) {
546 			err = btf_validate_str(btf, m->name_off, "enum name", id);
547 			if (err)
548 				return err;
549 		}
550 		break;
551 	}
552 	case BTF_KIND_FUNC: {
553 		const struct btf_type *ft;
554 
555 		err = btf_validate_id(btf, t->type, id);
556 		if (err)
557 			return err;
558 		ft = btf__type_by_id(btf, t->type);
559 		if (btf_kind(ft) != BTF_KIND_FUNC_PROTO) {
560 			pr_warn("btf: type [%u]: referenced type [%u] is not FUNC_PROTO\n", id, t->type);
561 			return -EINVAL;
562 		}
563 		break;
564 	}
565 	case BTF_KIND_FUNC_PROTO: {
566 		const struct btf_param *m = btf_params(t);
567 
568 		n = btf_vlen(t);
569 		for (i = 0; i < n; i++, m++) {
570 			err = btf_validate_str(btf, m->name_off, "param name", id);
571 			err = err ?: btf_validate_id(btf, m->type, id);
572 			if (err)
573 				return err;
574 		}
575 		break;
576 	}
577 	case BTF_KIND_DATASEC: {
578 		const struct btf_var_secinfo *m = btf_var_secinfos(t);
579 
580 		n = btf_vlen(t);
581 		for (i = 0; i < n; i++, m++) {
582 			err = btf_validate_id(btf, m->type, id);
583 			if (err)
584 				return err;
585 		}
586 		break;
587 	}
588 	default:
589 		pr_warn("btf: type [%u]: unrecognized kind %u\n", id, kind);
590 		return -EINVAL;
591 	}
592 	return 0;
593 }
594 
595 /* Validate basic sanity of BTF. It's intentionally less thorough than
596  * kernel's validation and validates only properties of BTF that libbpf relies
597  * on to be correct (e.g., valid type IDs, valid string offsets, etc)
598  */
btf_sanity_check(const struct btf * btf)599 static int btf_sanity_check(const struct btf *btf)
600 {
601 	const struct btf_type *t;
602 	__u32 i, n = btf__type_cnt(btf);
603 	int err;
604 
605 	for (i = btf->start_id; i < n; i++) {
606 		t = btf_type_by_id(btf, i);
607 		err = btf_validate_type(btf, t, i);
608 		if (err)
609 			return err;
610 	}
611 	return 0;
612 }
613 
btf__type_cnt(const struct btf * btf)614 __u32 btf__type_cnt(const struct btf *btf)
615 {
616 	return btf->start_id + btf->nr_types;
617 }
618 
btf__base_btf(const struct btf * btf)619 const struct btf *btf__base_btf(const struct btf *btf)
620 {
621 	return btf->base_btf;
622 }
623 
624 /* internal helper returning non-const pointer to a type */
btf_type_by_id(const struct btf * btf,__u32 type_id)625 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
626 {
627 	if (type_id == 0)
628 		return &btf_void;
629 	if (type_id < btf->start_id)
630 		return btf_type_by_id(btf->base_btf, type_id);
631 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
632 }
633 
btf__type_by_id(const struct btf * btf,__u32 type_id)634 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
635 {
636 	if (type_id >= btf->start_id + btf->nr_types)
637 		return errno = EINVAL, NULL;
638 	return btf_type_by_id((struct btf *)btf, type_id);
639 }
640 
determine_ptr_size(const struct btf * btf)641 static int determine_ptr_size(const struct btf *btf)
642 {
643 	static const char * const long_aliases[] = {
644 		"long",
645 		"long int",
646 		"int long",
647 		"unsigned long",
648 		"long unsigned",
649 		"unsigned long int",
650 		"unsigned int long",
651 		"long unsigned int",
652 		"long int unsigned",
653 		"int unsigned long",
654 		"int long unsigned",
655 	};
656 	const struct btf_type *t;
657 	const char *name;
658 	int i, j, n;
659 
660 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
661 		return btf->base_btf->ptr_sz;
662 
663 	n = btf__type_cnt(btf);
664 	for (i = 1; i < n; i++) {
665 		t = btf__type_by_id(btf, i);
666 		if (!btf_is_int(t))
667 			continue;
668 
669 		if (t->size != 4 && t->size != 8)
670 			continue;
671 
672 		name = btf__name_by_offset(btf, t->name_off);
673 		if (!name)
674 			continue;
675 
676 		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
677 			if (strcmp(name, long_aliases[j]) == 0)
678 				return t->size;
679 		}
680 	}
681 
682 	return -1;
683 }
684 
btf_ptr_sz(const struct btf * btf)685 static size_t btf_ptr_sz(const struct btf *btf)
686 {
687 	if (!btf->ptr_sz)
688 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
689 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
690 }
691 
692 /* Return pointer size this BTF instance assumes. The size is heuristically
693  * determined by looking for 'long' or 'unsigned long' integer type and
694  * recording its size in bytes. If BTF type information doesn't have any such
695  * type, this function returns 0. In the latter case, native architecture's
696  * pointer size is assumed, so will be either 4 or 8, depending on
697  * architecture that libbpf was compiled for. It's possible to override
698  * guessed value by using btf__set_pointer_size() API.
699  */
btf__pointer_size(const struct btf * btf)700 size_t btf__pointer_size(const struct btf *btf)
701 {
702 	if (!btf->ptr_sz)
703 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
704 
705 	if (btf->ptr_sz < 0)
706 		/* not enough BTF type info to guess */
707 		return 0;
708 
709 	return btf->ptr_sz;
710 }
711 
712 /* Override or set pointer size in bytes. Only values of 4 and 8 are
713  * supported.
714  */
btf__set_pointer_size(struct btf * btf,size_t ptr_sz)715 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
716 {
717 	if (ptr_sz != 4 && ptr_sz != 8)
718 		return libbpf_err(-EINVAL);
719 	btf->ptr_sz = ptr_sz;
720 	return 0;
721 }
722 
is_host_big_endian(void)723 static bool is_host_big_endian(void)
724 {
725 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
726 	return false;
727 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
728 	return true;
729 #else
730 # error "Unrecognized __BYTE_ORDER__"
731 #endif
732 }
733 
btf__endianness(const struct btf * btf)734 enum btf_endianness btf__endianness(const struct btf *btf)
735 {
736 	if (is_host_big_endian())
737 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
738 	else
739 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
740 }
741 
btf__set_endianness(struct btf * btf,enum btf_endianness endian)742 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
743 {
744 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
745 		return libbpf_err(-EINVAL);
746 
747 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
748 	if (!btf->swapped_endian) {
749 		free(btf->raw_data_swapped);
750 		btf->raw_data_swapped = NULL;
751 	}
752 	return 0;
753 }
754 
btf_type_is_void(const struct btf_type * t)755 static bool btf_type_is_void(const struct btf_type *t)
756 {
757 	return t == &btf_void || btf_is_fwd(t);
758 }
759 
btf_type_is_void_or_null(const struct btf_type * t)760 static bool btf_type_is_void_or_null(const struct btf_type *t)
761 {
762 	return !t || btf_type_is_void(t);
763 }
764 
765 #define MAX_RESOLVE_DEPTH 32
766 
btf__resolve_size(const struct btf * btf,__u32 type_id)767 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
768 {
769 	const struct btf_array *array;
770 	const struct btf_type *t;
771 	__u32 nelems = 1;
772 	__s64 size = -1;
773 	int i;
774 
775 	t = btf__type_by_id(btf, type_id);
776 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
777 		switch (btf_kind(t)) {
778 		case BTF_KIND_INT:
779 		case BTF_KIND_STRUCT:
780 		case BTF_KIND_UNION:
781 		case BTF_KIND_ENUM:
782 		case BTF_KIND_ENUM64:
783 		case BTF_KIND_DATASEC:
784 		case BTF_KIND_FLOAT:
785 			size = t->size;
786 			goto done;
787 		case BTF_KIND_PTR:
788 			size = btf_ptr_sz(btf);
789 			goto done;
790 		case BTF_KIND_TYPEDEF:
791 		case BTF_KIND_VOLATILE:
792 		case BTF_KIND_CONST:
793 		case BTF_KIND_RESTRICT:
794 		case BTF_KIND_VAR:
795 		case BTF_KIND_DECL_TAG:
796 		case BTF_KIND_TYPE_TAG:
797 			type_id = t->type;
798 			break;
799 		case BTF_KIND_ARRAY:
800 			array = btf_array(t);
801 			if (nelems && array->nelems > UINT32_MAX / nelems)
802 				return libbpf_err(-E2BIG);
803 			nelems *= array->nelems;
804 			type_id = array->type;
805 			break;
806 		default:
807 			return libbpf_err(-EINVAL);
808 		}
809 
810 		t = btf__type_by_id(btf, type_id);
811 	}
812 
813 done:
814 	if (size < 0)
815 		return libbpf_err(-EINVAL);
816 	if (nelems && size > UINT32_MAX / nelems)
817 		return libbpf_err(-E2BIG);
818 
819 	return nelems * size;
820 }
821 
btf__align_of(const struct btf * btf,__u32 id)822 int btf__align_of(const struct btf *btf, __u32 id)
823 {
824 	const struct btf_type *t = btf__type_by_id(btf, id);
825 	__u16 kind = btf_kind(t);
826 
827 	switch (kind) {
828 	case BTF_KIND_INT:
829 	case BTF_KIND_ENUM:
830 	case BTF_KIND_ENUM64:
831 	case BTF_KIND_FLOAT:
832 		return min(btf_ptr_sz(btf), (size_t)t->size);
833 	case BTF_KIND_PTR:
834 		return btf_ptr_sz(btf);
835 	case BTF_KIND_TYPEDEF:
836 	case BTF_KIND_VOLATILE:
837 	case BTF_KIND_CONST:
838 	case BTF_KIND_RESTRICT:
839 	case BTF_KIND_TYPE_TAG:
840 		return btf__align_of(btf, t->type);
841 	case BTF_KIND_ARRAY:
842 		return btf__align_of(btf, btf_array(t)->type);
843 	case BTF_KIND_STRUCT:
844 	case BTF_KIND_UNION: {
845 		const struct btf_member *m = btf_members(t);
846 		__u16 vlen = btf_vlen(t);
847 		int i, max_align = 1, align;
848 
849 		for (i = 0; i < vlen; i++, m++) {
850 			align = btf__align_of(btf, m->type);
851 			if (align <= 0)
852 				return libbpf_err(align);
853 			max_align = max(max_align, align);
854 
855 			/* if field offset isn't aligned according to field
856 			 * type's alignment, then struct must be packed
857 			 */
858 			if (btf_member_bitfield_size(t, i) == 0 &&
859 			    (m->offset % (8 * align)) != 0)
860 				return 1;
861 		}
862 
863 		/* if struct/union size isn't a multiple of its alignment,
864 		 * then struct must be packed
865 		 */
866 		if ((t->size % max_align) != 0)
867 			return 1;
868 
869 		return max_align;
870 	}
871 	default:
872 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
873 		return errno = EINVAL, 0;
874 	}
875 }
876 
btf__resolve_type(const struct btf * btf,__u32 type_id)877 int btf__resolve_type(const struct btf *btf, __u32 type_id)
878 {
879 	const struct btf_type *t;
880 	int depth = 0;
881 
882 	t = btf__type_by_id(btf, type_id);
883 	while (depth < MAX_RESOLVE_DEPTH &&
884 	       !btf_type_is_void_or_null(t) &&
885 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
886 		type_id = t->type;
887 		t = btf__type_by_id(btf, type_id);
888 		depth++;
889 	}
890 
891 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
892 		return libbpf_err(-EINVAL);
893 
894 	return type_id;
895 }
896 
btf__find_by_name(const struct btf * btf,const char * type_name)897 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
898 {
899 	__u32 i, nr_types = btf__type_cnt(btf);
900 
901 	if (!strcmp(type_name, "void"))
902 		return 0;
903 
904 	for (i = 1; i < nr_types; i++) {
905 		const struct btf_type *t = btf__type_by_id(btf, i);
906 		const char *name = btf__name_by_offset(btf, t->name_off);
907 
908 		if (name && !strcmp(type_name, name))
909 			return i;
910 	}
911 
912 	return libbpf_err(-ENOENT);
913 }
914 
btf_find_by_name_kind(const struct btf * btf,int start_id,const char * type_name,__u32 kind)915 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
916 				   const char *type_name, __u32 kind)
917 {
918 	__u32 i, nr_types = btf__type_cnt(btf);
919 
920 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
921 		return 0;
922 
923 	for (i = start_id; i < nr_types; i++) {
924 		const struct btf_type *t = btf__type_by_id(btf, i);
925 		const char *name;
926 
927 		if (btf_kind(t) != kind)
928 			continue;
929 		name = btf__name_by_offset(btf, t->name_off);
930 		if (name && !strcmp(type_name, name))
931 			return i;
932 	}
933 
934 	return libbpf_err(-ENOENT);
935 }
936 
btf__find_by_name_kind_own(const struct btf * btf,const char * type_name,__u32 kind)937 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
938 				 __u32 kind)
939 {
940 	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
941 }
942 
btf__find_by_name_kind(const struct btf * btf,const char * type_name,__u32 kind)943 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
944 			     __u32 kind)
945 {
946 	return btf_find_by_name_kind(btf, 1, type_name, kind);
947 }
948 
btf_is_modifiable(const struct btf * btf)949 static bool btf_is_modifiable(const struct btf *btf)
950 {
951 	return (void *)btf->hdr != btf->raw_data;
952 }
953 
btf__free(struct btf * btf)954 void btf__free(struct btf *btf)
955 {
956 	if (IS_ERR_OR_NULL(btf))
957 		return;
958 
959 	if (btf->fd >= 0)
960 		close(btf->fd);
961 
962 	if (btf_is_modifiable(btf)) {
963 		/* if BTF was modified after loading, it will have a split
964 		 * in-memory representation for header, types, and strings
965 		 * sections, so we need to free all of them individually. It
966 		 * might still have a cached contiguous raw data present,
967 		 * which will be unconditionally freed below.
968 		 */
969 		free(btf->hdr);
970 		free(btf->types_data);
971 		strset__free(btf->strs_set);
972 	}
973 	free(btf->raw_data);
974 	free(btf->raw_data_swapped);
975 	free(btf->type_offs);
976 	if (btf->owns_base)
977 		btf__free(btf->base_btf);
978 	free(btf);
979 }
980 
btf_new_empty(struct btf * base_btf)981 static struct btf *btf_new_empty(struct btf *base_btf)
982 {
983 	struct btf *btf;
984 
985 	btf = calloc(1, sizeof(*btf));
986 	if (!btf)
987 		return ERR_PTR(-ENOMEM);
988 
989 	btf->nr_types = 0;
990 	btf->start_id = 1;
991 	btf->start_str_off = 0;
992 	btf->fd = -1;
993 	btf->ptr_sz = sizeof(void *);
994 	btf->swapped_endian = false;
995 
996 	if (base_btf) {
997 		btf->base_btf = base_btf;
998 		btf->start_id = btf__type_cnt(base_btf);
999 		btf->start_str_off = base_btf->hdr->str_len;
1000 		btf->swapped_endian = base_btf->swapped_endian;
1001 	}
1002 
1003 	/* +1 for empty string at offset 0 */
1004 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
1005 	btf->raw_data = calloc(1, btf->raw_size);
1006 	if (!btf->raw_data) {
1007 		free(btf);
1008 		return ERR_PTR(-ENOMEM);
1009 	}
1010 
1011 	btf->hdr = btf->raw_data;
1012 	btf->hdr->hdr_len = sizeof(struct btf_header);
1013 	btf->hdr->magic = BTF_MAGIC;
1014 	btf->hdr->version = BTF_VERSION;
1015 
1016 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
1017 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
1018 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
1019 
1020 	return btf;
1021 }
1022 
btf__new_empty(void)1023 struct btf *btf__new_empty(void)
1024 {
1025 	return libbpf_ptr(btf_new_empty(NULL));
1026 }
1027 
btf__new_empty_split(struct btf * base_btf)1028 struct btf *btf__new_empty_split(struct btf *base_btf)
1029 {
1030 	return libbpf_ptr(btf_new_empty(base_btf));
1031 }
1032 
btf_new(const void * data,__u32 size,struct btf * base_btf)1033 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
1034 {
1035 	struct btf *btf;
1036 	int err;
1037 
1038 	btf = calloc(1, sizeof(struct btf));
1039 	if (!btf)
1040 		return ERR_PTR(-ENOMEM);
1041 
1042 	btf->nr_types = 0;
1043 	btf->start_id = 1;
1044 	btf->start_str_off = 0;
1045 	btf->fd = -1;
1046 
1047 	if (base_btf) {
1048 		btf->base_btf = base_btf;
1049 		btf->start_id = btf__type_cnt(base_btf);
1050 		btf->start_str_off = base_btf->hdr->str_len;
1051 	}
1052 
1053 	btf->raw_data = malloc(size);
1054 	if (!btf->raw_data) {
1055 		err = -ENOMEM;
1056 		goto done;
1057 	}
1058 	memcpy(btf->raw_data, data, size);
1059 	btf->raw_size = size;
1060 
1061 	btf->hdr = btf->raw_data;
1062 	err = btf_parse_hdr(btf);
1063 	if (err)
1064 		goto done;
1065 
1066 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
1067 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
1068 
1069 	err = btf_parse_str_sec(btf);
1070 	err = err ?: btf_parse_type_sec(btf);
1071 	err = err ?: btf_sanity_check(btf);
1072 	if (err)
1073 		goto done;
1074 
1075 done:
1076 	if (err) {
1077 		btf__free(btf);
1078 		return ERR_PTR(err);
1079 	}
1080 
1081 	return btf;
1082 }
1083 
btf__new(const void * data,__u32 size)1084 struct btf *btf__new(const void *data, __u32 size)
1085 {
1086 	return libbpf_ptr(btf_new(data, size, NULL));
1087 }
1088 
btf__new_split(const void * data,__u32 size,struct btf * base_btf)1089 struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf)
1090 {
1091 	return libbpf_ptr(btf_new(data, size, base_btf));
1092 }
1093 
1094 struct btf_elf_secs {
1095 	Elf_Data *btf_data;
1096 	Elf_Data *btf_ext_data;
1097 	Elf_Data *btf_base_data;
1098 };
1099 
btf_find_elf_sections(Elf * elf,const char * path,struct btf_elf_secs * secs)1100 static int btf_find_elf_sections(Elf *elf, const char *path, struct btf_elf_secs *secs)
1101 {
1102 	Elf_Scn *scn = NULL;
1103 	Elf_Data *data;
1104 	GElf_Ehdr ehdr;
1105 	size_t shstrndx;
1106 	int idx = 0;
1107 
1108 	if (!gelf_getehdr(elf, &ehdr)) {
1109 		pr_warn("failed to get EHDR from %s\n", path);
1110 		goto err;
1111 	}
1112 
1113 	if (elf_getshdrstrndx(elf, &shstrndx)) {
1114 		pr_warn("failed to get section names section index for %s\n",
1115 			path);
1116 		goto err;
1117 	}
1118 
1119 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
1120 		pr_warn("failed to get e_shstrndx from %s\n", path);
1121 		goto err;
1122 	}
1123 
1124 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1125 		Elf_Data **field;
1126 		GElf_Shdr sh;
1127 		char *name;
1128 
1129 		idx++;
1130 		if (gelf_getshdr(scn, &sh) != &sh) {
1131 			pr_warn("failed to get section(%d) header from %s\n",
1132 				idx, path);
1133 			goto err;
1134 		}
1135 		name = elf_strptr(elf, shstrndx, sh.sh_name);
1136 		if (!name) {
1137 			pr_warn("failed to get section(%d) name from %s\n",
1138 				idx, path);
1139 			goto err;
1140 		}
1141 
1142 		if (strcmp(name, BTF_ELF_SEC) == 0)
1143 			field = &secs->btf_data;
1144 		else if (strcmp(name, BTF_EXT_ELF_SEC) == 0)
1145 			field = &secs->btf_ext_data;
1146 		else if (strcmp(name, BTF_BASE_ELF_SEC) == 0)
1147 			field = &secs->btf_base_data;
1148 		else
1149 			continue;
1150 
1151 		data = elf_getdata(scn, 0);
1152 		if (!data) {
1153 			pr_warn("failed to get section(%d, %s) data from %s\n",
1154 				idx, name, path);
1155 			goto err;
1156 		}
1157 		*field = data;
1158 	}
1159 
1160 	return 0;
1161 
1162 err:
1163 	return -LIBBPF_ERRNO__FORMAT;
1164 }
1165 
btf_parse_elf(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1166 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
1167 				 struct btf_ext **btf_ext)
1168 {
1169 	struct btf_elf_secs secs = {};
1170 	struct btf *dist_base_btf = NULL;
1171 	struct btf *btf = NULL;
1172 	int err = 0, fd = -1;
1173 	Elf *elf = NULL;
1174 
1175 	if (elf_version(EV_CURRENT) == EV_NONE) {
1176 		pr_warn("failed to init libelf for %s\n", path);
1177 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
1178 	}
1179 
1180 	fd = open(path, O_RDONLY | O_CLOEXEC);
1181 	if (fd < 0) {
1182 		err = -errno;
1183 		pr_warn("failed to open %s: %s\n", path, errstr(err));
1184 		return ERR_PTR(err);
1185 	}
1186 
1187 	elf = elf_begin(fd, ELF_C_READ, NULL);
1188 	if (!elf) {
1189 		err = -LIBBPF_ERRNO__FORMAT;
1190 		pr_warn("failed to open %s as ELF file\n", path);
1191 		goto done;
1192 	}
1193 
1194 	err = btf_find_elf_sections(elf, path, &secs);
1195 	if (err)
1196 		goto done;
1197 
1198 	if (!secs.btf_data) {
1199 		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1200 		err = -ENODATA;
1201 		goto done;
1202 	}
1203 
1204 	if (secs.btf_base_data) {
1205 		dist_base_btf = btf_new(secs.btf_base_data->d_buf, secs.btf_base_data->d_size,
1206 					NULL);
1207 		if (IS_ERR(dist_base_btf)) {
1208 			err = PTR_ERR(dist_base_btf);
1209 			dist_base_btf = NULL;
1210 			goto done;
1211 		}
1212 	}
1213 
1214 	btf = btf_new(secs.btf_data->d_buf, secs.btf_data->d_size,
1215 		      dist_base_btf ?: base_btf);
1216 	if (IS_ERR(btf)) {
1217 		err = PTR_ERR(btf);
1218 		goto done;
1219 	}
1220 	if (dist_base_btf && base_btf) {
1221 		err = btf__relocate(btf, base_btf);
1222 		if (err)
1223 			goto done;
1224 		btf__free(dist_base_btf);
1225 		dist_base_btf = NULL;
1226 	}
1227 
1228 	if (dist_base_btf)
1229 		btf->owns_base = true;
1230 
1231 	switch (gelf_getclass(elf)) {
1232 	case ELFCLASS32:
1233 		btf__set_pointer_size(btf, 4);
1234 		break;
1235 	case ELFCLASS64:
1236 		btf__set_pointer_size(btf, 8);
1237 		break;
1238 	default:
1239 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1240 		break;
1241 	}
1242 
1243 	if (btf_ext && secs.btf_ext_data) {
1244 		*btf_ext = btf_ext__new(secs.btf_ext_data->d_buf, secs.btf_ext_data->d_size);
1245 		if (IS_ERR(*btf_ext)) {
1246 			err = PTR_ERR(*btf_ext);
1247 			goto done;
1248 		}
1249 	} else if (btf_ext) {
1250 		*btf_ext = NULL;
1251 	}
1252 done:
1253 	if (elf)
1254 		elf_end(elf);
1255 	close(fd);
1256 
1257 	if (!err)
1258 		return btf;
1259 
1260 	if (btf_ext)
1261 		btf_ext__free(*btf_ext);
1262 	btf__free(dist_base_btf);
1263 	btf__free(btf);
1264 
1265 	return ERR_PTR(err);
1266 }
1267 
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)1268 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1269 {
1270 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1271 }
1272 
btf__parse_elf_split(const char * path,struct btf * base_btf)1273 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1274 {
1275 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1276 }
1277 
btf_parse_raw(const char * path,struct btf * base_btf)1278 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1279 {
1280 	struct btf *btf = NULL;
1281 	void *data = NULL;
1282 	FILE *f = NULL;
1283 	__u16 magic;
1284 	int err = 0;
1285 	long sz;
1286 
1287 	f = fopen(path, "rbe");
1288 	if (!f) {
1289 		err = -errno;
1290 		goto err_out;
1291 	}
1292 
1293 	/* check BTF magic */
1294 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1295 		err = -EIO;
1296 		goto err_out;
1297 	}
1298 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1299 		/* definitely not a raw BTF */
1300 		err = -EPROTO;
1301 		goto err_out;
1302 	}
1303 
1304 	/* get file size */
1305 	if (fseek(f, 0, SEEK_END)) {
1306 		err = -errno;
1307 		goto err_out;
1308 	}
1309 	sz = ftell(f);
1310 	if (sz < 0) {
1311 		err = -errno;
1312 		goto err_out;
1313 	}
1314 	/* rewind to the start */
1315 	if (fseek(f, 0, SEEK_SET)) {
1316 		err = -errno;
1317 		goto err_out;
1318 	}
1319 
1320 	/* pre-alloc memory and read all of BTF data */
1321 	data = malloc(sz);
1322 	if (!data) {
1323 		err = -ENOMEM;
1324 		goto err_out;
1325 	}
1326 	if (fread(data, 1, sz, f) < sz) {
1327 		err = -EIO;
1328 		goto err_out;
1329 	}
1330 
1331 	/* finally parse BTF data */
1332 	btf = btf_new(data, sz, base_btf);
1333 
1334 err_out:
1335 	free(data);
1336 	if (f)
1337 		fclose(f);
1338 	return err ? ERR_PTR(err) : btf;
1339 }
1340 
btf__parse_raw(const char * path)1341 struct btf *btf__parse_raw(const char *path)
1342 {
1343 	return libbpf_ptr(btf_parse_raw(path, NULL));
1344 }
1345 
btf__parse_raw_split(const char * path,struct btf * base_btf)1346 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1347 {
1348 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1349 }
1350 
btf_parse(const char * path,struct btf * base_btf,struct btf_ext ** btf_ext)1351 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1352 {
1353 	struct btf *btf;
1354 	int err;
1355 
1356 	if (btf_ext)
1357 		*btf_ext = NULL;
1358 
1359 	btf = btf_parse_raw(path, base_btf);
1360 	err = libbpf_get_error(btf);
1361 	if (!err)
1362 		return btf;
1363 	if (err != -EPROTO)
1364 		return ERR_PTR(err);
1365 	return btf_parse_elf(path, base_btf, btf_ext);
1366 }
1367 
btf__parse(const char * path,struct btf_ext ** btf_ext)1368 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1369 {
1370 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1371 }
1372 
btf__parse_split(const char * path,struct btf * base_btf)1373 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1374 {
1375 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1376 }
1377 
1378 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1379 
btf_load_into_kernel(struct btf * btf,char * log_buf,size_t log_sz,__u32 log_level,int token_fd)1380 int btf_load_into_kernel(struct btf *btf,
1381 			 char *log_buf, size_t log_sz, __u32 log_level,
1382 			 int token_fd)
1383 {
1384 	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1385 	__u32 buf_sz = 0, raw_size;
1386 	char *buf = NULL, *tmp;
1387 	void *raw_data;
1388 	int err = 0;
1389 
1390 	if (btf->fd >= 0)
1391 		return libbpf_err(-EEXIST);
1392 	if (log_sz && !log_buf)
1393 		return libbpf_err(-EINVAL);
1394 
1395 	/* cache native raw data representation */
1396 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1397 	if (!raw_data) {
1398 		err = -ENOMEM;
1399 		goto done;
1400 	}
1401 	btf->raw_size = raw_size;
1402 	btf->raw_data = raw_data;
1403 
1404 retry_load:
1405 	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1406 	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1407 	 * retry, using either auto-allocated or custom log_buf. This way
1408 	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1409 	 * for successful load and no need for log_buf.
1410 	 */
1411 	if (log_level) {
1412 		/* if caller didn't provide custom log_buf, we'll keep
1413 		 * allocating our own progressively bigger buffers for BTF
1414 		 * verification log
1415 		 */
1416 		if (!log_buf) {
1417 			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1418 			tmp = realloc(buf, buf_sz);
1419 			if (!tmp) {
1420 				err = -ENOMEM;
1421 				goto done;
1422 			}
1423 			buf = tmp;
1424 			buf[0] = '\0';
1425 		}
1426 
1427 		opts.log_buf = log_buf ? log_buf : buf;
1428 		opts.log_size = log_buf ? log_sz : buf_sz;
1429 		opts.log_level = log_level;
1430 	}
1431 
1432 	opts.token_fd = token_fd;
1433 	if (token_fd)
1434 		opts.btf_flags |= BPF_F_TOKEN_FD;
1435 
1436 	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1437 	if (btf->fd < 0) {
1438 		/* time to turn on verbose mode and try again */
1439 		if (log_level == 0) {
1440 			log_level = 1;
1441 			goto retry_load;
1442 		}
1443 		/* only retry if caller didn't provide custom log_buf, but
1444 		 * make sure we can never overflow buf_sz
1445 		 */
1446 		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1447 			goto retry_load;
1448 
1449 		err = -errno;
1450 		pr_warn("BTF loading error: %s\n", errstr(err));
1451 		/* don't print out contents of custom log_buf */
1452 		if (!log_buf && buf[0])
1453 			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1454 	}
1455 
1456 done:
1457 	free(buf);
1458 	return libbpf_err(err);
1459 }
1460 
btf__load_into_kernel(struct btf * btf)1461 int btf__load_into_kernel(struct btf *btf)
1462 {
1463 	return btf_load_into_kernel(btf, NULL, 0, 0, 0);
1464 }
1465 
btf__fd(const struct btf * btf)1466 int btf__fd(const struct btf *btf)
1467 {
1468 	return btf->fd;
1469 }
1470 
btf__set_fd(struct btf * btf,int fd)1471 void btf__set_fd(struct btf *btf, int fd)
1472 {
1473 	btf->fd = fd;
1474 }
1475 
btf_strs_data(const struct btf * btf)1476 static const void *btf_strs_data(const struct btf *btf)
1477 {
1478 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1479 }
1480 
btf_get_raw_data(const struct btf * btf,__u32 * size,bool swap_endian)1481 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1482 {
1483 	struct btf_header *hdr = btf->hdr;
1484 	struct btf_type *t;
1485 	void *data, *p;
1486 	__u32 data_sz;
1487 	int i;
1488 
1489 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1490 	if (data) {
1491 		*size = btf->raw_size;
1492 		return data;
1493 	}
1494 
1495 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1496 	data = calloc(1, data_sz);
1497 	if (!data)
1498 		return NULL;
1499 	p = data;
1500 
1501 	memcpy(p, hdr, hdr->hdr_len);
1502 	if (swap_endian)
1503 		btf_bswap_hdr(p);
1504 	p += hdr->hdr_len;
1505 
1506 	memcpy(p, btf->types_data, hdr->type_len);
1507 	if (swap_endian) {
1508 		for (i = 0; i < btf->nr_types; i++) {
1509 			t = p + btf->type_offs[i];
1510 			/* btf_bswap_type_rest() relies on native t->info, so
1511 			 * we swap base type info after we swapped all the
1512 			 * additional information
1513 			 */
1514 			if (btf_bswap_type_rest(t))
1515 				goto err_out;
1516 			btf_bswap_type_base(t);
1517 		}
1518 	}
1519 	p += hdr->type_len;
1520 
1521 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1522 	p += hdr->str_len;
1523 
1524 	*size = data_sz;
1525 	return data;
1526 err_out:
1527 	free(data);
1528 	return NULL;
1529 }
1530 
btf__raw_data(const struct btf * btf_ro,__u32 * size)1531 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1532 {
1533 	struct btf *btf = (struct btf *)btf_ro;
1534 	__u32 data_sz;
1535 	void *data;
1536 
1537 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1538 	if (!data)
1539 		return errno = ENOMEM, NULL;
1540 
1541 	btf->raw_size = data_sz;
1542 	if (btf->swapped_endian)
1543 		btf->raw_data_swapped = data;
1544 	else
1545 		btf->raw_data = data;
1546 	*size = data_sz;
1547 	return data;
1548 }
1549 
1550 __attribute__((alias("btf__raw_data")))
1551 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1552 
btf__str_by_offset(const struct btf * btf,__u32 offset)1553 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1554 {
1555 	if (offset < btf->start_str_off)
1556 		return btf__str_by_offset(btf->base_btf, offset);
1557 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1558 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1559 	else
1560 		return errno = EINVAL, NULL;
1561 }
1562 
btf__name_by_offset(const struct btf * btf,__u32 offset)1563 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1564 {
1565 	return btf__str_by_offset(btf, offset);
1566 }
1567 
btf_get_from_fd(int btf_fd,struct btf * base_btf)1568 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1569 {
1570 	struct bpf_btf_info btf_info;
1571 	__u32 len = sizeof(btf_info);
1572 	__u32 last_size;
1573 	struct btf *btf;
1574 	void *ptr;
1575 	int err;
1576 
1577 	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1578 	 * let's start with a sane default - 4KiB here - and resize it only if
1579 	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1580 	 */
1581 	last_size = 4096;
1582 	ptr = malloc(last_size);
1583 	if (!ptr)
1584 		return ERR_PTR(-ENOMEM);
1585 
1586 	memset(&btf_info, 0, sizeof(btf_info));
1587 	btf_info.btf = ptr_to_u64(ptr);
1588 	btf_info.btf_size = last_size;
1589 	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1590 
1591 	if (!err && btf_info.btf_size > last_size) {
1592 		void *temp_ptr;
1593 
1594 		last_size = btf_info.btf_size;
1595 		temp_ptr = realloc(ptr, last_size);
1596 		if (!temp_ptr) {
1597 			btf = ERR_PTR(-ENOMEM);
1598 			goto exit_free;
1599 		}
1600 		ptr = temp_ptr;
1601 
1602 		len = sizeof(btf_info);
1603 		memset(&btf_info, 0, sizeof(btf_info));
1604 		btf_info.btf = ptr_to_u64(ptr);
1605 		btf_info.btf_size = last_size;
1606 
1607 		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1608 	}
1609 
1610 	if (err || btf_info.btf_size > last_size) {
1611 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1612 		goto exit_free;
1613 	}
1614 
1615 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1616 
1617 exit_free:
1618 	free(ptr);
1619 	return btf;
1620 }
1621 
btf__load_from_kernel_by_id_split(__u32 id,struct btf * base_btf)1622 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1623 {
1624 	struct btf *btf;
1625 	int btf_fd;
1626 
1627 	btf_fd = bpf_btf_get_fd_by_id(id);
1628 	if (btf_fd < 0)
1629 		return libbpf_err_ptr(-errno);
1630 
1631 	btf = btf_get_from_fd(btf_fd, base_btf);
1632 	close(btf_fd);
1633 
1634 	return libbpf_ptr(btf);
1635 }
1636 
btf__load_from_kernel_by_id(__u32 id)1637 struct btf *btf__load_from_kernel_by_id(__u32 id)
1638 {
1639 	return btf__load_from_kernel_by_id_split(id, NULL);
1640 }
1641 
btf_invalidate_raw_data(struct btf * btf)1642 static void btf_invalidate_raw_data(struct btf *btf)
1643 {
1644 	if (btf->raw_data) {
1645 		free(btf->raw_data);
1646 		btf->raw_data = NULL;
1647 	}
1648 	if (btf->raw_data_swapped) {
1649 		free(btf->raw_data_swapped);
1650 		btf->raw_data_swapped = NULL;
1651 	}
1652 }
1653 
1654 /* Ensure BTF is ready to be modified (by splitting into a three memory
1655  * regions for header, types, and strings). Also invalidate cached
1656  * raw_data, if any.
1657  */
btf_ensure_modifiable(struct btf * btf)1658 static int btf_ensure_modifiable(struct btf *btf)
1659 {
1660 	void *hdr, *types;
1661 	struct strset *set = NULL;
1662 	int err = -ENOMEM;
1663 
1664 	if (btf_is_modifiable(btf)) {
1665 		/* any BTF modification invalidates raw_data */
1666 		btf_invalidate_raw_data(btf);
1667 		return 0;
1668 	}
1669 
1670 	/* split raw data into three memory regions */
1671 	hdr = malloc(btf->hdr->hdr_len);
1672 	types = malloc(btf->hdr->type_len);
1673 	if (!hdr || !types)
1674 		goto err_out;
1675 
1676 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1677 	memcpy(types, btf->types_data, btf->hdr->type_len);
1678 
1679 	/* build lookup index for all strings */
1680 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1681 	if (IS_ERR(set)) {
1682 		err = PTR_ERR(set);
1683 		goto err_out;
1684 	}
1685 
1686 	/* only when everything was successful, update internal state */
1687 	btf->hdr = hdr;
1688 	btf->types_data = types;
1689 	btf->types_data_cap = btf->hdr->type_len;
1690 	btf->strs_data = NULL;
1691 	btf->strs_set = set;
1692 	/* if BTF was created from scratch, all strings are guaranteed to be
1693 	 * unique and deduplicated
1694 	 */
1695 	if (btf->hdr->str_len == 0)
1696 		btf->strs_deduped = true;
1697 	if (!btf->base_btf && btf->hdr->str_len == 1)
1698 		btf->strs_deduped = true;
1699 
1700 	/* invalidate raw_data representation */
1701 	btf_invalidate_raw_data(btf);
1702 
1703 	return 0;
1704 
1705 err_out:
1706 	strset__free(set);
1707 	free(hdr);
1708 	free(types);
1709 	return err;
1710 }
1711 
1712 /* Find an offset in BTF string section that corresponds to a given string *s*.
1713  * Returns:
1714  *   - >0 offset into string section, if string is found;
1715  *   - -ENOENT, if string is not in the string section;
1716  *   - <0, on any other error.
1717  */
btf__find_str(struct btf * btf,const char * s)1718 int btf__find_str(struct btf *btf, const char *s)
1719 {
1720 	int off;
1721 
1722 	if (btf->base_btf) {
1723 		off = btf__find_str(btf->base_btf, s);
1724 		if (off != -ENOENT)
1725 			return off;
1726 	}
1727 
1728 	/* BTF needs to be in a modifiable state to build string lookup index */
1729 	if (btf_ensure_modifiable(btf))
1730 		return libbpf_err(-ENOMEM);
1731 
1732 	off = strset__find_str(btf->strs_set, s);
1733 	if (off < 0)
1734 		return libbpf_err(off);
1735 
1736 	return btf->start_str_off + off;
1737 }
1738 
1739 /* Add a string s to the BTF string section.
1740  * Returns:
1741  *   - > 0 offset into string section, on success;
1742  *   - < 0, on error.
1743  */
btf__add_str(struct btf * btf,const char * s)1744 int btf__add_str(struct btf *btf, const char *s)
1745 {
1746 	int off;
1747 
1748 	if (btf->base_btf) {
1749 		off = btf__find_str(btf->base_btf, s);
1750 		if (off != -ENOENT)
1751 			return off;
1752 	}
1753 
1754 	if (btf_ensure_modifiable(btf))
1755 		return libbpf_err(-ENOMEM);
1756 
1757 	off = strset__add_str(btf->strs_set, s);
1758 	if (off < 0)
1759 		return libbpf_err(off);
1760 
1761 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1762 
1763 	return btf->start_str_off + off;
1764 }
1765 
btf_add_type_mem(struct btf * btf,size_t add_sz)1766 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1767 {
1768 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1769 			      btf->hdr->type_len, UINT_MAX, add_sz);
1770 }
1771 
btf_type_inc_vlen(struct btf_type * t)1772 static void btf_type_inc_vlen(struct btf_type *t)
1773 {
1774 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1775 }
1776 
btf_commit_type(struct btf * btf,int data_sz)1777 static int btf_commit_type(struct btf *btf, int data_sz)
1778 {
1779 	int err;
1780 
1781 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1782 	if (err)
1783 		return libbpf_err(err);
1784 
1785 	btf->hdr->type_len += data_sz;
1786 	btf->hdr->str_off += data_sz;
1787 	btf->nr_types++;
1788 	return btf->start_id + btf->nr_types - 1;
1789 }
1790 
1791 struct btf_pipe {
1792 	const struct btf *src;
1793 	struct btf *dst;
1794 	struct hashmap *str_off_map; /* map string offsets from src to dst */
1795 };
1796 
btf_rewrite_str(struct btf_pipe * p,__u32 * str_off)1797 static int btf_rewrite_str(struct btf_pipe *p, __u32 *str_off)
1798 {
1799 	long mapped_off;
1800 	int off, err;
1801 
1802 	if (!*str_off) /* nothing to do for empty strings */
1803 		return 0;
1804 
1805 	if (p->str_off_map &&
1806 	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1807 		*str_off = mapped_off;
1808 		return 0;
1809 	}
1810 
1811 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1812 	if (off < 0)
1813 		return off;
1814 
1815 	/* Remember string mapping from src to dst.  It avoids
1816 	 * performing expensive string comparisons.
1817 	 */
1818 	if (p->str_off_map) {
1819 		err = hashmap__append(p->str_off_map, *str_off, off);
1820 		if (err)
1821 			return err;
1822 	}
1823 
1824 	*str_off = off;
1825 	return 0;
1826 }
1827 
btf_add_type(struct btf_pipe * p,const struct btf_type * src_type)1828 static int btf_add_type(struct btf_pipe *p, const struct btf_type *src_type)
1829 {
1830 	struct btf_field_iter it;
1831 	struct btf_type *t;
1832 	__u32 *str_off;
1833 	int sz, err;
1834 
1835 	sz = btf_type_size(src_type);
1836 	if (sz < 0)
1837 		return libbpf_err(sz);
1838 
1839 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1840 	if (btf_ensure_modifiable(p->dst))
1841 		return libbpf_err(-ENOMEM);
1842 
1843 	t = btf_add_type_mem(p->dst, sz);
1844 	if (!t)
1845 		return libbpf_err(-ENOMEM);
1846 
1847 	memcpy(t, src_type, sz);
1848 
1849 	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1850 	if (err)
1851 		return libbpf_err(err);
1852 
1853 	while ((str_off = btf_field_iter_next(&it))) {
1854 		err = btf_rewrite_str(p, str_off);
1855 		if (err)
1856 			return libbpf_err(err);
1857 	}
1858 
1859 	return btf_commit_type(p->dst, sz);
1860 }
1861 
btf__add_type(struct btf * btf,const struct btf * src_btf,const struct btf_type * src_type)1862 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1863 {
1864 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1865 
1866 	return btf_add_type(&p, src_type);
1867 }
1868 
1869 static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1870 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1871 
btf__add_btf(struct btf * btf,const struct btf * src_btf)1872 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1873 {
1874 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1875 	int data_sz, sz, cnt, i, err, old_strs_len;
1876 	__u32 *off;
1877 	void *t;
1878 
1879 	/* appending split BTF isn't supported yet */
1880 	if (src_btf->base_btf)
1881 		return libbpf_err(-ENOTSUP);
1882 
1883 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1884 	if (btf_ensure_modifiable(btf))
1885 		return libbpf_err(-ENOMEM);
1886 
1887 	/* remember original strings section size if we have to roll back
1888 	 * partial strings section changes
1889 	 */
1890 	old_strs_len = btf->hdr->str_len;
1891 
1892 	data_sz = src_btf->hdr->type_len;
1893 	cnt = btf__type_cnt(src_btf) - 1;
1894 
1895 	/* pre-allocate enough memory for new types */
1896 	t = btf_add_type_mem(btf, data_sz);
1897 	if (!t)
1898 		return libbpf_err(-ENOMEM);
1899 
1900 	/* pre-allocate enough memory for type offset index for new types */
1901 	off = btf_add_type_offs_mem(btf, cnt);
1902 	if (!off)
1903 		return libbpf_err(-ENOMEM);
1904 
1905 	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1906 	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1907 	if (IS_ERR(p.str_off_map))
1908 		return libbpf_err(-ENOMEM);
1909 
1910 	/* bulk copy types data for all types from src_btf */
1911 	memcpy(t, src_btf->types_data, data_sz);
1912 
1913 	for (i = 0; i < cnt; i++) {
1914 		struct btf_field_iter it;
1915 		__u32 *type_id, *str_off;
1916 
1917 		sz = btf_type_size(t);
1918 		if (sz < 0) {
1919 			/* unlikely, has to be corrupted src_btf */
1920 			err = sz;
1921 			goto err_out;
1922 		}
1923 
1924 		/* fill out type ID to type offset mapping for lookups by type ID */
1925 		*off = t - btf->types_data;
1926 
1927 		/* add, dedup, and remap strings referenced by this BTF type */
1928 		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
1929 		if (err)
1930 			goto err_out;
1931 		while ((str_off = btf_field_iter_next(&it))) {
1932 			err = btf_rewrite_str(&p, str_off);
1933 			if (err)
1934 				goto err_out;
1935 		}
1936 
1937 		/* remap all type IDs referenced from this BTF type */
1938 		err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
1939 		if (err)
1940 			goto err_out;
1941 
1942 		while ((type_id = btf_field_iter_next(&it))) {
1943 			if (!*type_id) /* nothing to do for VOID references */
1944 				continue;
1945 
1946 			/* we haven't updated btf's type count yet, so
1947 			 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1948 			 * add to all newly added BTF types
1949 			 */
1950 			*type_id += btf->start_id + btf->nr_types - 1;
1951 		}
1952 
1953 		/* go to next type data and type offset index entry */
1954 		t += sz;
1955 		off++;
1956 	}
1957 
1958 	/* Up until now any of the copied type data was effectively invisible,
1959 	 * so if we exited early before this point due to error, BTF would be
1960 	 * effectively unmodified. There would be extra internal memory
1961 	 * pre-allocated, but it would not be available for querying.  But now
1962 	 * that we've copied and rewritten all the data successfully, we can
1963 	 * update type count and various internal offsets and sizes to
1964 	 * "commit" the changes and made them visible to the outside world.
1965 	 */
1966 	btf->hdr->type_len += data_sz;
1967 	btf->hdr->str_off += data_sz;
1968 	btf->nr_types += cnt;
1969 
1970 	hashmap__free(p.str_off_map);
1971 
1972 	/* return type ID of the first added BTF type */
1973 	return btf->start_id + btf->nr_types - cnt;
1974 err_out:
1975 	/* zero out preallocated memory as if it was just allocated with
1976 	 * libbpf_add_mem()
1977 	 */
1978 	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1979 	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1980 
1981 	/* and now restore original strings section size; types data size
1982 	 * wasn't modified, so doesn't need restoring, see big comment above
1983 	 */
1984 	btf->hdr->str_len = old_strs_len;
1985 
1986 	hashmap__free(p.str_off_map);
1987 
1988 	return libbpf_err(err);
1989 }
1990 
1991 /*
1992  * Append new BTF_KIND_INT type with:
1993  *   - *name* - non-empty, non-NULL type name;
1994  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1995  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1996  * Returns:
1997  *   - >0, type ID of newly added BTF type;
1998  *   - <0, on error.
1999  */
btf__add_int(struct btf * btf,const char * name,size_t byte_sz,int encoding)2000 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
2001 {
2002 	struct btf_type *t;
2003 	int sz, name_off;
2004 
2005 	/* non-empty name */
2006 	if (!name || !name[0])
2007 		return libbpf_err(-EINVAL);
2008 	/* byte_sz must be power of 2 */
2009 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
2010 		return libbpf_err(-EINVAL);
2011 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
2012 		return libbpf_err(-EINVAL);
2013 
2014 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2015 	if (btf_ensure_modifiable(btf))
2016 		return libbpf_err(-ENOMEM);
2017 
2018 	sz = sizeof(struct btf_type) + sizeof(int);
2019 	t = btf_add_type_mem(btf, sz);
2020 	if (!t)
2021 		return libbpf_err(-ENOMEM);
2022 
2023 	/* if something goes wrong later, we might end up with an extra string,
2024 	 * but that shouldn't be a problem, because BTF can't be constructed
2025 	 * completely anyway and will most probably be just discarded
2026 	 */
2027 	name_off = btf__add_str(btf, name);
2028 	if (name_off < 0)
2029 		return name_off;
2030 
2031 	t->name_off = name_off;
2032 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
2033 	t->size = byte_sz;
2034 	/* set INT info, we don't allow setting legacy bit offset/size */
2035 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
2036 
2037 	return btf_commit_type(btf, sz);
2038 }
2039 
2040 /*
2041  * Append new BTF_KIND_FLOAT type with:
2042  *   - *name* - non-empty, non-NULL type name;
2043  *   - *sz* - size of the type, in bytes;
2044  * Returns:
2045  *   - >0, type ID of newly added BTF type;
2046  *   - <0, on error.
2047  */
btf__add_float(struct btf * btf,const char * name,size_t byte_sz)2048 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
2049 {
2050 	struct btf_type *t;
2051 	int sz, name_off;
2052 
2053 	/* non-empty name */
2054 	if (!name || !name[0])
2055 		return libbpf_err(-EINVAL);
2056 
2057 	/* byte_sz must be one of the explicitly allowed values */
2058 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
2059 	    byte_sz != 16)
2060 		return libbpf_err(-EINVAL);
2061 
2062 	if (btf_ensure_modifiable(btf))
2063 		return libbpf_err(-ENOMEM);
2064 
2065 	sz = sizeof(struct btf_type);
2066 	t = btf_add_type_mem(btf, sz);
2067 	if (!t)
2068 		return libbpf_err(-ENOMEM);
2069 
2070 	name_off = btf__add_str(btf, name);
2071 	if (name_off < 0)
2072 		return name_off;
2073 
2074 	t->name_off = name_off;
2075 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
2076 	t->size = byte_sz;
2077 
2078 	return btf_commit_type(btf, sz);
2079 }
2080 
2081 /* it's completely legal to append BTF types with type IDs pointing forward to
2082  * types that haven't been appended yet, so we only make sure that id looks
2083  * sane, we can't guarantee that ID will always be valid
2084  */
validate_type_id(int id)2085 static int validate_type_id(int id)
2086 {
2087 	if (id < 0 || id > BTF_MAX_NR_TYPES)
2088 		return -EINVAL;
2089 	return 0;
2090 }
2091 
2092 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
btf_add_ref_kind(struct btf * btf,int kind,const char * name,int ref_type_id)2093 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
2094 {
2095 	struct btf_type *t;
2096 	int sz, name_off = 0;
2097 
2098 	if (validate_type_id(ref_type_id))
2099 		return libbpf_err(-EINVAL);
2100 
2101 	if (btf_ensure_modifiable(btf))
2102 		return libbpf_err(-ENOMEM);
2103 
2104 	sz = sizeof(struct btf_type);
2105 	t = btf_add_type_mem(btf, sz);
2106 	if (!t)
2107 		return libbpf_err(-ENOMEM);
2108 
2109 	if (name && name[0]) {
2110 		name_off = btf__add_str(btf, name);
2111 		if (name_off < 0)
2112 			return name_off;
2113 	}
2114 
2115 	t->name_off = name_off;
2116 	t->info = btf_type_info(kind, 0, 0);
2117 	t->type = ref_type_id;
2118 
2119 	return btf_commit_type(btf, sz);
2120 }
2121 
2122 /*
2123  * Append new BTF_KIND_PTR type with:
2124  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2125  * Returns:
2126  *   - >0, type ID of newly added BTF type;
2127  *   - <0, on error.
2128  */
btf__add_ptr(struct btf * btf,int ref_type_id)2129 int btf__add_ptr(struct btf *btf, int ref_type_id)
2130 {
2131 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
2132 }
2133 
2134 /*
2135  * Append new BTF_KIND_ARRAY type with:
2136  *   - *index_type_id* - type ID of the type describing array index;
2137  *   - *elem_type_id* - type ID of the type describing array element;
2138  *   - *nr_elems* - the size of the array;
2139  * Returns:
2140  *   - >0, type ID of newly added BTF type;
2141  *   - <0, on error.
2142  */
btf__add_array(struct btf * btf,int index_type_id,int elem_type_id,__u32 nr_elems)2143 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
2144 {
2145 	struct btf_type *t;
2146 	struct btf_array *a;
2147 	int sz;
2148 
2149 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
2150 		return libbpf_err(-EINVAL);
2151 
2152 	if (btf_ensure_modifiable(btf))
2153 		return libbpf_err(-ENOMEM);
2154 
2155 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
2156 	t = btf_add_type_mem(btf, sz);
2157 	if (!t)
2158 		return libbpf_err(-ENOMEM);
2159 
2160 	t->name_off = 0;
2161 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
2162 	t->size = 0;
2163 
2164 	a = btf_array(t);
2165 	a->type = elem_type_id;
2166 	a->index_type = index_type_id;
2167 	a->nelems = nr_elems;
2168 
2169 	return btf_commit_type(btf, sz);
2170 }
2171 
2172 /* generic STRUCT/UNION append function */
btf_add_composite(struct btf * btf,int kind,const char * name,__u32 bytes_sz)2173 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
2174 {
2175 	struct btf_type *t;
2176 	int sz, name_off = 0;
2177 
2178 	if (btf_ensure_modifiable(btf))
2179 		return libbpf_err(-ENOMEM);
2180 
2181 	sz = sizeof(struct btf_type);
2182 	t = btf_add_type_mem(btf, sz);
2183 	if (!t)
2184 		return libbpf_err(-ENOMEM);
2185 
2186 	if (name && name[0]) {
2187 		name_off = btf__add_str(btf, name);
2188 		if (name_off < 0)
2189 			return name_off;
2190 	}
2191 
2192 	/* start out with vlen=0 and no kflag; this will be adjusted when
2193 	 * adding each member
2194 	 */
2195 	t->name_off = name_off;
2196 	t->info = btf_type_info(kind, 0, 0);
2197 	t->size = bytes_sz;
2198 
2199 	return btf_commit_type(btf, sz);
2200 }
2201 
2202 /*
2203  * Append new BTF_KIND_STRUCT type with:
2204  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2205  *   - *byte_sz* - size of the struct, in bytes;
2206  *
2207  * Struct initially has no fields in it. Fields can be added by
2208  * btf__add_field() right after btf__add_struct() succeeds.
2209  *
2210  * Returns:
2211  *   - >0, type ID of newly added BTF type;
2212  *   - <0, on error.
2213  */
btf__add_struct(struct btf * btf,const char * name,__u32 byte_sz)2214 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2215 {
2216 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2217 }
2218 
2219 /*
2220  * Append new BTF_KIND_UNION type with:
2221  *   - *name* - name of the union, can be NULL or empty for anonymous union;
2222  *   - *byte_sz* - size of the union, in bytes;
2223  *
2224  * Union initially has no fields in it. Fields can be added by
2225  * btf__add_field() right after btf__add_union() succeeds. All fields
2226  * should have *bit_offset* of 0.
2227  *
2228  * Returns:
2229  *   - >0, type ID of newly added BTF type;
2230  *   - <0, on error.
2231  */
btf__add_union(struct btf * btf,const char * name,__u32 byte_sz)2232 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2233 {
2234 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2235 }
2236 
btf_last_type(struct btf * btf)2237 static struct btf_type *btf_last_type(struct btf *btf)
2238 {
2239 	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2240 }
2241 
2242 /*
2243  * Append new field for the current STRUCT/UNION type with:
2244  *   - *name* - name of the field, can be NULL or empty for anonymous field;
2245  *   - *type_id* - type ID for the type describing field type;
2246  *   - *bit_offset* - bit offset of the start of the field within struct/union;
2247  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2248  * Returns:
2249  *   -  0, on success;
2250  *   - <0, on error.
2251  */
btf__add_field(struct btf * btf,const char * name,int type_id,__u32 bit_offset,__u32 bit_size)2252 int btf__add_field(struct btf *btf, const char *name, int type_id,
2253 		   __u32 bit_offset, __u32 bit_size)
2254 {
2255 	struct btf_type *t;
2256 	struct btf_member *m;
2257 	bool is_bitfield;
2258 	int sz, name_off = 0;
2259 
2260 	/* last type should be union/struct */
2261 	if (btf->nr_types == 0)
2262 		return libbpf_err(-EINVAL);
2263 	t = btf_last_type(btf);
2264 	if (!btf_is_composite(t))
2265 		return libbpf_err(-EINVAL);
2266 
2267 	if (validate_type_id(type_id))
2268 		return libbpf_err(-EINVAL);
2269 	/* best-effort bit field offset/size enforcement */
2270 	is_bitfield = bit_size || (bit_offset % 8 != 0);
2271 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2272 		return libbpf_err(-EINVAL);
2273 
2274 	/* only offset 0 is allowed for unions */
2275 	if (btf_is_union(t) && bit_offset)
2276 		return libbpf_err(-EINVAL);
2277 
2278 	/* decompose and invalidate raw data */
2279 	if (btf_ensure_modifiable(btf))
2280 		return libbpf_err(-ENOMEM);
2281 
2282 	sz = sizeof(struct btf_member);
2283 	m = btf_add_type_mem(btf, sz);
2284 	if (!m)
2285 		return libbpf_err(-ENOMEM);
2286 
2287 	if (name && name[0]) {
2288 		name_off = btf__add_str(btf, name);
2289 		if (name_off < 0)
2290 			return name_off;
2291 	}
2292 
2293 	m->name_off = name_off;
2294 	m->type = type_id;
2295 	m->offset = bit_offset | (bit_size << 24);
2296 
2297 	/* btf_add_type_mem can invalidate t pointer */
2298 	t = btf_last_type(btf);
2299 	/* update parent type's vlen and kflag */
2300 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2301 
2302 	btf->hdr->type_len += sz;
2303 	btf->hdr->str_off += sz;
2304 	return 0;
2305 }
2306 
btf_add_enum_common(struct btf * btf,const char * name,__u32 byte_sz,bool is_signed,__u8 kind)2307 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2308 			       bool is_signed, __u8 kind)
2309 {
2310 	struct btf_type *t;
2311 	int sz, name_off = 0;
2312 
2313 	/* byte_sz must be power of 2 */
2314 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2315 		return libbpf_err(-EINVAL);
2316 
2317 	if (btf_ensure_modifiable(btf))
2318 		return libbpf_err(-ENOMEM);
2319 
2320 	sz = sizeof(struct btf_type);
2321 	t = btf_add_type_mem(btf, sz);
2322 	if (!t)
2323 		return libbpf_err(-ENOMEM);
2324 
2325 	if (name && name[0]) {
2326 		name_off = btf__add_str(btf, name);
2327 		if (name_off < 0)
2328 			return name_off;
2329 	}
2330 
2331 	/* start out with vlen=0; it will be adjusted when adding enum values */
2332 	t->name_off = name_off;
2333 	t->info = btf_type_info(kind, 0, is_signed);
2334 	t->size = byte_sz;
2335 
2336 	return btf_commit_type(btf, sz);
2337 }
2338 
2339 /*
2340  * Append new BTF_KIND_ENUM type with:
2341  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2342  *   - *byte_sz* - size of the enum, in bytes.
2343  *
2344  * Enum initially has no enum values in it (and corresponds to enum forward
2345  * declaration). Enumerator values can be added by btf__add_enum_value()
2346  * immediately after btf__add_enum() succeeds.
2347  *
2348  * Returns:
2349  *   - >0, type ID of newly added BTF type;
2350  *   - <0, on error.
2351  */
btf__add_enum(struct btf * btf,const char * name,__u32 byte_sz)2352 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2353 {
2354 	/*
2355 	 * set the signedness to be unsigned, it will change to signed
2356 	 * if any later enumerator is negative.
2357 	 */
2358 	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2359 }
2360 
2361 /*
2362  * Append new enum value for the current ENUM type with:
2363  *   - *name* - name of the enumerator value, can't be NULL or empty;
2364  *   - *value* - integer value corresponding to enum value *name*;
2365  * Returns:
2366  *   -  0, on success;
2367  *   - <0, on error.
2368  */
btf__add_enum_value(struct btf * btf,const char * name,__s64 value)2369 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2370 {
2371 	struct btf_type *t;
2372 	struct btf_enum *v;
2373 	int sz, name_off;
2374 
2375 	/* last type should be BTF_KIND_ENUM */
2376 	if (btf->nr_types == 0)
2377 		return libbpf_err(-EINVAL);
2378 	t = btf_last_type(btf);
2379 	if (!btf_is_enum(t))
2380 		return libbpf_err(-EINVAL);
2381 
2382 	/* non-empty name */
2383 	if (!name || !name[0])
2384 		return libbpf_err(-EINVAL);
2385 	if (value < INT_MIN || value > UINT_MAX)
2386 		return libbpf_err(-E2BIG);
2387 
2388 	/* decompose and invalidate raw data */
2389 	if (btf_ensure_modifiable(btf))
2390 		return libbpf_err(-ENOMEM);
2391 
2392 	sz = sizeof(struct btf_enum);
2393 	v = btf_add_type_mem(btf, sz);
2394 	if (!v)
2395 		return libbpf_err(-ENOMEM);
2396 
2397 	name_off = btf__add_str(btf, name);
2398 	if (name_off < 0)
2399 		return name_off;
2400 
2401 	v->name_off = name_off;
2402 	v->val = value;
2403 
2404 	/* update parent type's vlen */
2405 	t = btf_last_type(btf);
2406 	btf_type_inc_vlen(t);
2407 
2408 	/* if negative value, set signedness to signed */
2409 	if (value < 0)
2410 		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2411 
2412 	btf->hdr->type_len += sz;
2413 	btf->hdr->str_off += sz;
2414 	return 0;
2415 }
2416 
2417 /*
2418  * Append new BTF_KIND_ENUM64 type with:
2419  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2420  *   - *byte_sz* - size of the enum, in bytes.
2421  *   - *is_signed* - whether the enum values are signed or not;
2422  *
2423  * Enum initially has no enum values in it (and corresponds to enum forward
2424  * declaration). Enumerator values can be added by btf__add_enum64_value()
2425  * immediately after btf__add_enum64() succeeds.
2426  *
2427  * Returns:
2428  *   - >0, type ID of newly added BTF type;
2429  *   - <0, on error.
2430  */
btf__add_enum64(struct btf * btf,const char * name,__u32 byte_sz,bool is_signed)2431 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2432 		    bool is_signed)
2433 {
2434 	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2435 				   BTF_KIND_ENUM64);
2436 }
2437 
2438 /*
2439  * Append new enum value for the current ENUM64 type with:
2440  *   - *name* - name of the enumerator value, can't be NULL or empty;
2441  *   - *value* - integer value corresponding to enum value *name*;
2442  * Returns:
2443  *   -  0, on success;
2444  *   - <0, on error.
2445  */
btf__add_enum64_value(struct btf * btf,const char * name,__u64 value)2446 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2447 {
2448 	struct btf_enum64 *v;
2449 	struct btf_type *t;
2450 	int sz, name_off;
2451 
2452 	/* last type should be BTF_KIND_ENUM64 */
2453 	if (btf->nr_types == 0)
2454 		return libbpf_err(-EINVAL);
2455 	t = btf_last_type(btf);
2456 	if (!btf_is_enum64(t))
2457 		return libbpf_err(-EINVAL);
2458 
2459 	/* non-empty name */
2460 	if (!name || !name[0])
2461 		return libbpf_err(-EINVAL);
2462 
2463 	/* decompose and invalidate raw data */
2464 	if (btf_ensure_modifiable(btf))
2465 		return libbpf_err(-ENOMEM);
2466 
2467 	sz = sizeof(struct btf_enum64);
2468 	v = btf_add_type_mem(btf, sz);
2469 	if (!v)
2470 		return libbpf_err(-ENOMEM);
2471 
2472 	name_off = btf__add_str(btf, name);
2473 	if (name_off < 0)
2474 		return name_off;
2475 
2476 	v->name_off = name_off;
2477 	v->val_lo32 = (__u32)value;
2478 	v->val_hi32 = value >> 32;
2479 
2480 	/* update parent type's vlen */
2481 	t = btf_last_type(btf);
2482 	btf_type_inc_vlen(t);
2483 
2484 	btf->hdr->type_len += sz;
2485 	btf->hdr->str_off += sz;
2486 	return 0;
2487 }
2488 
2489 /*
2490  * Append new BTF_KIND_FWD type with:
2491  *   - *name*, non-empty/non-NULL name;
2492  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2493  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2494  * Returns:
2495  *   - >0, type ID of newly added BTF type;
2496  *   - <0, on error.
2497  */
btf__add_fwd(struct btf * btf,const char * name,enum btf_fwd_kind fwd_kind)2498 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2499 {
2500 	if (!name || !name[0])
2501 		return libbpf_err(-EINVAL);
2502 
2503 	switch (fwd_kind) {
2504 	case BTF_FWD_STRUCT:
2505 	case BTF_FWD_UNION: {
2506 		struct btf_type *t;
2507 		int id;
2508 
2509 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2510 		if (id <= 0)
2511 			return id;
2512 		t = btf_type_by_id(btf, id);
2513 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2514 		return id;
2515 	}
2516 	case BTF_FWD_ENUM:
2517 		/* enum forward in BTF currently is just an enum with no enum
2518 		 * values; we also assume a standard 4-byte size for it
2519 		 */
2520 		return btf__add_enum(btf, name, sizeof(int));
2521 	default:
2522 		return libbpf_err(-EINVAL);
2523 	}
2524 }
2525 
2526 /*
2527  * Append new BTF_KING_TYPEDEF type with:
2528  *   - *name*, non-empty/non-NULL name;
2529  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2530  * Returns:
2531  *   - >0, type ID of newly added BTF type;
2532  *   - <0, on error.
2533  */
btf__add_typedef(struct btf * btf,const char * name,int ref_type_id)2534 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2535 {
2536 	if (!name || !name[0])
2537 		return libbpf_err(-EINVAL);
2538 
2539 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2540 }
2541 
2542 /*
2543  * Append new BTF_KIND_VOLATILE type with:
2544  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2545  * Returns:
2546  *   - >0, type ID of newly added BTF type;
2547  *   - <0, on error.
2548  */
btf__add_volatile(struct btf * btf,int ref_type_id)2549 int btf__add_volatile(struct btf *btf, int ref_type_id)
2550 {
2551 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2552 }
2553 
2554 /*
2555  * Append new BTF_KIND_CONST type with:
2556  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2557  * Returns:
2558  *   - >0, type ID of newly added BTF type;
2559  *   - <0, on error.
2560  */
btf__add_const(struct btf * btf,int ref_type_id)2561 int btf__add_const(struct btf *btf, int ref_type_id)
2562 {
2563 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2564 }
2565 
2566 /*
2567  * Append new BTF_KIND_RESTRICT type with:
2568  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2569  * Returns:
2570  *   - >0, type ID of newly added BTF type;
2571  *   - <0, on error.
2572  */
btf__add_restrict(struct btf * btf,int ref_type_id)2573 int btf__add_restrict(struct btf *btf, int ref_type_id)
2574 {
2575 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2576 }
2577 
2578 /*
2579  * Append new BTF_KIND_TYPE_TAG type with:
2580  *   - *value*, non-empty/non-NULL tag value;
2581  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2582  * Returns:
2583  *   - >0, type ID of newly added BTF type;
2584  *   - <0, on error.
2585  */
btf__add_type_tag(struct btf * btf,const char * value,int ref_type_id)2586 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2587 {
2588 	if (!value || !value[0])
2589 		return libbpf_err(-EINVAL);
2590 
2591 	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2592 }
2593 
2594 /*
2595  * Append new BTF_KIND_FUNC type with:
2596  *   - *name*, non-empty/non-NULL name;
2597  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2598  * Returns:
2599  *   - >0, type ID of newly added BTF type;
2600  *   - <0, on error.
2601  */
btf__add_func(struct btf * btf,const char * name,enum btf_func_linkage linkage,int proto_type_id)2602 int btf__add_func(struct btf *btf, const char *name,
2603 		  enum btf_func_linkage linkage, int proto_type_id)
2604 {
2605 	int id;
2606 
2607 	if (!name || !name[0])
2608 		return libbpf_err(-EINVAL);
2609 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2610 	    linkage != BTF_FUNC_EXTERN)
2611 		return libbpf_err(-EINVAL);
2612 
2613 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2614 	if (id > 0) {
2615 		struct btf_type *t = btf_type_by_id(btf, id);
2616 
2617 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2618 	}
2619 	return libbpf_err(id);
2620 }
2621 
2622 /*
2623  * Append new BTF_KIND_FUNC_PROTO with:
2624  *   - *ret_type_id* - type ID for return result of a function.
2625  *
2626  * Function prototype initially has no arguments, but they can be added by
2627  * btf__add_func_param() one by one, immediately after
2628  * btf__add_func_proto() succeeded.
2629  *
2630  * Returns:
2631  *   - >0, type ID of newly added BTF type;
2632  *   - <0, on error.
2633  */
btf__add_func_proto(struct btf * btf,int ret_type_id)2634 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2635 {
2636 	struct btf_type *t;
2637 	int sz;
2638 
2639 	if (validate_type_id(ret_type_id))
2640 		return libbpf_err(-EINVAL);
2641 
2642 	if (btf_ensure_modifiable(btf))
2643 		return libbpf_err(-ENOMEM);
2644 
2645 	sz = sizeof(struct btf_type);
2646 	t = btf_add_type_mem(btf, sz);
2647 	if (!t)
2648 		return libbpf_err(-ENOMEM);
2649 
2650 	/* start out with vlen=0; this will be adjusted when adding enum
2651 	 * values, if necessary
2652 	 */
2653 	t->name_off = 0;
2654 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2655 	t->type = ret_type_id;
2656 
2657 	return btf_commit_type(btf, sz);
2658 }
2659 
2660 /*
2661  * Append new function parameter for current FUNC_PROTO type with:
2662  *   - *name* - parameter name, can be NULL or empty;
2663  *   - *type_id* - type ID describing the type of the parameter.
2664  * Returns:
2665  *   -  0, on success;
2666  *   - <0, on error.
2667  */
btf__add_func_param(struct btf * btf,const char * name,int type_id)2668 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2669 {
2670 	struct btf_type *t;
2671 	struct btf_param *p;
2672 	int sz, name_off = 0;
2673 
2674 	if (validate_type_id(type_id))
2675 		return libbpf_err(-EINVAL);
2676 
2677 	/* last type should be BTF_KIND_FUNC_PROTO */
2678 	if (btf->nr_types == 0)
2679 		return libbpf_err(-EINVAL);
2680 	t = btf_last_type(btf);
2681 	if (!btf_is_func_proto(t))
2682 		return libbpf_err(-EINVAL);
2683 
2684 	/* decompose and invalidate raw data */
2685 	if (btf_ensure_modifiable(btf))
2686 		return libbpf_err(-ENOMEM);
2687 
2688 	sz = sizeof(struct btf_param);
2689 	p = btf_add_type_mem(btf, sz);
2690 	if (!p)
2691 		return libbpf_err(-ENOMEM);
2692 
2693 	if (name && name[0]) {
2694 		name_off = btf__add_str(btf, name);
2695 		if (name_off < 0)
2696 			return name_off;
2697 	}
2698 
2699 	p->name_off = name_off;
2700 	p->type = type_id;
2701 
2702 	/* update parent type's vlen */
2703 	t = btf_last_type(btf);
2704 	btf_type_inc_vlen(t);
2705 
2706 	btf->hdr->type_len += sz;
2707 	btf->hdr->str_off += sz;
2708 	return 0;
2709 }
2710 
2711 /*
2712  * Append new BTF_KIND_VAR type with:
2713  *   - *name* - non-empty/non-NULL name;
2714  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2715  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2716  *   - *type_id* - type ID of the type describing the type of the variable.
2717  * Returns:
2718  *   - >0, type ID of newly added BTF type;
2719  *   - <0, on error.
2720  */
btf__add_var(struct btf * btf,const char * name,int linkage,int type_id)2721 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2722 {
2723 	struct btf_type *t;
2724 	struct btf_var *v;
2725 	int sz, name_off;
2726 
2727 	/* non-empty name */
2728 	if (!name || !name[0])
2729 		return libbpf_err(-EINVAL);
2730 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2731 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2732 		return libbpf_err(-EINVAL);
2733 	if (validate_type_id(type_id))
2734 		return libbpf_err(-EINVAL);
2735 
2736 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2737 	if (btf_ensure_modifiable(btf))
2738 		return libbpf_err(-ENOMEM);
2739 
2740 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2741 	t = btf_add_type_mem(btf, sz);
2742 	if (!t)
2743 		return libbpf_err(-ENOMEM);
2744 
2745 	name_off = btf__add_str(btf, name);
2746 	if (name_off < 0)
2747 		return name_off;
2748 
2749 	t->name_off = name_off;
2750 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2751 	t->type = type_id;
2752 
2753 	v = btf_var(t);
2754 	v->linkage = linkage;
2755 
2756 	return btf_commit_type(btf, sz);
2757 }
2758 
2759 /*
2760  * Append new BTF_KIND_DATASEC type with:
2761  *   - *name* - non-empty/non-NULL name;
2762  *   - *byte_sz* - data section size, in bytes.
2763  *
2764  * Data section is initially empty. Variables info can be added with
2765  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2766  *
2767  * Returns:
2768  *   - >0, type ID of newly added BTF type;
2769  *   - <0, on error.
2770  */
btf__add_datasec(struct btf * btf,const char * name,__u32 byte_sz)2771 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2772 {
2773 	struct btf_type *t;
2774 	int sz, name_off;
2775 
2776 	/* non-empty name */
2777 	if (!name || !name[0])
2778 		return libbpf_err(-EINVAL);
2779 
2780 	if (btf_ensure_modifiable(btf))
2781 		return libbpf_err(-ENOMEM);
2782 
2783 	sz = sizeof(struct btf_type);
2784 	t = btf_add_type_mem(btf, sz);
2785 	if (!t)
2786 		return libbpf_err(-ENOMEM);
2787 
2788 	name_off = btf__add_str(btf, name);
2789 	if (name_off < 0)
2790 		return name_off;
2791 
2792 	/* start with vlen=0, which will be update as var_secinfos are added */
2793 	t->name_off = name_off;
2794 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2795 	t->size = byte_sz;
2796 
2797 	return btf_commit_type(btf, sz);
2798 }
2799 
2800 /*
2801  * Append new data section variable information entry for current DATASEC type:
2802  *   - *var_type_id* - type ID, describing type of the variable;
2803  *   - *offset* - variable offset within data section, in bytes;
2804  *   - *byte_sz* - variable size, in bytes.
2805  *
2806  * Returns:
2807  *   -  0, on success;
2808  *   - <0, on error.
2809  */
btf__add_datasec_var_info(struct btf * btf,int var_type_id,__u32 offset,__u32 byte_sz)2810 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2811 {
2812 	struct btf_type *t;
2813 	struct btf_var_secinfo *v;
2814 	int sz;
2815 
2816 	/* last type should be BTF_KIND_DATASEC */
2817 	if (btf->nr_types == 0)
2818 		return libbpf_err(-EINVAL);
2819 	t = btf_last_type(btf);
2820 	if (!btf_is_datasec(t))
2821 		return libbpf_err(-EINVAL);
2822 
2823 	if (validate_type_id(var_type_id))
2824 		return libbpf_err(-EINVAL);
2825 
2826 	/* decompose and invalidate raw data */
2827 	if (btf_ensure_modifiable(btf))
2828 		return libbpf_err(-ENOMEM);
2829 
2830 	sz = sizeof(struct btf_var_secinfo);
2831 	v = btf_add_type_mem(btf, sz);
2832 	if (!v)
2833 		return libbpf_err(-ENOMEM);
2834 
2835 	v->type = var_type_id;
2836 	v->offset = offset;
2837 	v->size = byte_sz;
2838 
2839 	/* update parent type's vlen */
2840 	t = btf_last_type(btf);
2841 	btf_type_inc_vlen(t);
2842 
2843 	btf->hdr->type_len += sz;
2844 	btf->hdr->str_off += sz;
2845 	return 0;
2846 }
2847 
2848 /*
2849  * Append new BTF_KIND_DECL_TAG type with:
2850  *   - *value* - non-empty/non-NULL string;
2851  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2852  *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2853  *     member or function argument index;
2854  * Returns:
2855  *   - >0, type ID of newly added BTF type;
2856  *   - <0, on error.
2857  */
btf__add_decl_tag(struct btf * btf,const char * value,int ref_type_id,int component_idx)2858 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2859 		 int component_idx)
2860 {
2861 	struct btf_type *t;
2862 	int sz, value_off;
2863 
2864 	if (!value || !value[0] || component_idx < -1)
2865 		return libbpf_err(-EINVAL);
2866 
2867 	if (validate_type_id(ref_type_id))
2868 		return libbpf_err(-EINVAL);
2869 
2870 	if (btf_ensure_modifiable(btf))
2871 		return libbpf_err(-ENOMEM);
2872 
2873 	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2874 	t = btf_add_type_mem(btf, sz);
2875 	if (!t)
2876 		return libbpf_err(-ENOMEM);
2877 
2878 	value_off = btf__add_str(btf, value);
2879 	if (value_off < 0)
2880 		return value_off;
2881 
2882 	t->name_off = value_off;
2883 	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2884 	t->type = ref_type_id;
2885 	btf_decl_tag(t)->component_idx = component_idx;
2886 
2887 	return btf_commit_type(btf, sz);
2888 }
2889 
2890 struct btf_ext_sec_info_param {
2891 	__u32 off;
2892 	__u32 len;
2893 	__u32 min_rec_size;
2894 	struct btf_ext_info *ext_info;
2895 	const char *desc;
2896 };
2897 
2898 /*
2899  * Parse a single info subsection of the BTF.ext info data:
2900  *  - validate subsection structure and elements
2901  *  - save info subsection start and sizing details in struct btf_ext
2902  *  - endian-independent operation, for calling before byte-swapping
2903  */
btf_ext_parse_sec_info(struct btf_ext * btf_ext,struct btf_ext_sec_info_param * ext_sec,bool is_native)2904 static int btf_ext_parse_sec_info(struct btf_ext *btf_ext,
2905 				  struct btf_ext_sec_info_param *ext_sec,
2906 				  bool is_native)
2907 {
2908 	const struct btf_ext_info_sec *sinfo;
2909 	struct btf_ext_info *ext_info;
2910 	__u32 info_left, record_size;
2911 	size_t sec_cnt = 0;
2912 	void *info;
2913 
2914 	if (ext_sec->len == 0)
2915 		return 0;
2916 
2917 	if (ext_sec->off & 0x03) {
2918 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2919 		     ext_sec->desc);
2920 		return -EINVAL;
2921 	}
2922 
2923 	/* The start of the info sec (including the __u32 record_size). */
2924 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2925 	info_left = ext_sec->len;
2926 
2927 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2928 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2929 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2930 		return -EINVAL;
2931 	}
2932 
2933 	/* At least a record size */
2934 	if (info_left < sizeof(__u32)) {
2935 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2936 		return -EINVAL;
2937 	}
2938 
2939 	/* The record size needs to meet either the minimum standard or, when
2940 	 * handling non-native endianness data, the exact standard so as
2941 	 * to allow safe byte-swapping.
2942 	 */
2943 	record_size = is_native ? *(__u32 *)info : bswap_32(*(__u32 *)info);
2944 	if (record_size < ext_sec->min_rec_size ||
2945 	    (!is_native && record_size != ext_sec->min_rec_size) ||
2946 	    record_size & 0x03) {
2947 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2948 			 ext_sec->desc, record_size);
2949 		return -EINVAL;
2950 	}
2951 
2952 	sinfo = info + sizeof(__u32);
2953 	info_left -= sizeof(__u32);
2954 
2955 	/* If no records, return failure now so .BTF.ext won't be used. */
2956 	if (!info_left) {
2957 		pr_debug("%s section in .BTF.ext has no records\n", ext_sec->desc);
2958 		return -EINVAL;
2959 	}
2960 
2961 	while (info_left) {
2962 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2963 		__u64 total_record_size;
2964 		__u32 num_records;
2965 
2966 		if (info_left < sec_hdrlen) {
2967 			pr_debug("%s section header is not found in .BTF.ext\n",
2968 			     ext_sec->desc);
2969 			return -EINVAL;
2970 		}
2971 
2972 		num_records = is_native ? sinfo->num_info : bswap_32(sinfo->num_info);
2973 		if (num_records == 0) {
2974 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2975 			     ext_sec->desc);
2976 			return -EINVAL;
2977 		}
2978 
2979 		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2980 		if (info_left < total_record_size) {
2981 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2982 			     ext_sec->desc);
2983 			return -EINVAL;
2984 		}
2985 
2986 		info_left -= total_record_size;
2987 		sinfo = (void *)sinfo + total_record_size;
2988 		sec_cnt++;
2989 	}
2990 
2991 	ext_info = ext_sec->ext_info;
2992 	ext_info->len = ext_sec->len - sizeof(__u32);
2993 	ext_info->rec_size = record_size;
2994 	ext_info->info = info + sizeof(__u32);
2995 	ext_info->sec_cnt = sec_cnt;
2996 
2997 	return 0;
2998 }
2999 
3000 /* Parse all info secs in the BTF.ext info data */
btf_ext_parse_info(struct btf_ext * btf_ext,bool is_native)3001 static int btf_ext_parse_info(struct btf_ext *btf_ext, bool is_native)
3002 {
3003 	struct btf_ext_sec_info_param func_info = {
3004 		.off = btf_ext->hdr->func_info_off,
3005 		.len = btf_ext->hdr->func_info_len,
3006 		.min_rec_size = sizeof(struct bpf_func_info_min),
3007 		.ext_info = &btf_ext->func_info,
3008 		.desc = "func_info"
3009 	};
3010 	struct btf_ext_sec_info_param line_info = {
3011 		.off = btf_ext->hdr->line_info_off,
3012 		.len = btf_ext->hdr->line_info_len,
3013 		.min_rec_size = sizeof(struct bpf_line_info_min),
3014 		.ext_info = &btf_ext->line_info,
3015 		.desc = "line_info",
3016 	};
3017 	struct btf_ext_sec_info_param core_relo = {
3018 		.off = btf_ext->hdr->core_relo_off,
3019 		.len = btf_ext->hdr->core_relo_len,
3020 		.min_rec_size = sizeof(struct bpf_core_relo),
3021 		.ext_info = &btf_ext->core_relo_info,
3022 		.desc = "core_relo",
3023 	};
3024 	int err;
3025 
3026 	err = btf_ext_parse_sec_info(btf_ext, &func_info, is_native);
3027 	if (err)
3028 		return err;
3029 
3030 	err = btf_ext_parse_sec_info(btf_ext, &line_info, is_native);
3031 	if (err)
3032 		return err;
3033 
3034 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3035 		return 0; /* skip core relos parsing */
3036 
3037 	err = btf_ext_parse_sec_info(btf_ext, &core_relo, is_native);
3038 	if (err)
3039 		return err;
3040 
3041 	return 0;
3042 }
3043 
3044 /* Swap byte-order of BTF.ext header with any endianness */
btf_ext_bswap_hdr(struct btf_ext_header * h)3045 static void btf_ext_bswap_hdr(struct btf_ext_header *h)
3046 {
3047 	bool is_native = h->magic == BTF_MAGIC;
3048 	__u32 hdr_len;
3049 
3050 	hdr_len = is_native ? h->hdr_len : bswap_32(h->hdr_len);
3051 
3052 	h->magic = bswap_16(h->magic);
3053 	h->hdr_len = bswap_32(h->hdr_len);
3054 	h->func_info_off = bswap_32(h->func_info_off);
3055 	h->func_info_len = bswap_32(h->func_info_len);
3056 	h->line_info_off = bswap_32(h->line_info_off);
3057 	h->line_info_len = bswap_32(h->line_info_len);
3058 
3059 	if (hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3060 		return;
3061 
3062 	h->core_relo_off = bswap_32(h->core_relo_off);
3063 	h->core_relo_len = bswap_32(h->core_relo_len);
3064 }
3065 
3066 /* Swap byte-order of generic info subsection */
btf_ext_bswap_info_sec(void * info,__u32 len,bool is_native,info_rec_bswap_fn bswap_fn)3067 static void btf_ext_bswap_info_sec(void *info, __u32 len, bool is_native,
3068 				   info_rec_bswap_fn bswap_fn)
3069 {
3070 	struct btf_ext_info_sec *sec;
3071 	__u32 info_left, rec_size, *rs;
3072 
3073 	if (len == 0)
3074 		return;
3075 
3076 	rs = info;				/* info record size */
3077 	rec_size = is_native ? *rs : bswap_32(*rs);
3078 	*rs = bswap_32(*rs);
3079 
3080 	sec = info + sizeof(__u32);		/* info sec #1 */
3081 	info_left = len - sizeof(__u32);
3082 	while (info_left) {
3083 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
3084 		__u32 i, num_recs;
3085 		void *p;
3086 
3087 		num_recs = is_native ? sec->num_info : bswap_32(sec->num_info);
3088 		sec->sec_name_off = bswap_32(sec->sec_name_off);
3089 		sec->num_info = bswap_32(sec->num_info);
3090 		p = sec->data;			/* info rec #1 */
3091 		for (i = 0; i < num_recs; i++, p += rec_size)
3092 			bswap_fn(p);
3093 		sec = p;
3094 		info_left -= sec_hdrlen + (__u64)rec_size * num_recs;
3095 	}
3096 }
3097 
3098 /*
3099  * Swap byte-order of all info data in a BTF.ext section
3100  *  - requires BTF.ext hdr in native endianness
3101  */
btf_ext_bswap_info(struct btf_ext * btf_ext,void * data)3102 static void btf_ext_bswap_info(struct btf_ext *btf_ext, void *data)
3103 {
3104 	const bool is_native = btf_ext->swapped_endian;
3105 	const struct btf_ext_header *h = data;
3106 	void *info;
3107 
3108 	/* Swap func_info subsection byte-order */
3109 	info = data + h->hdr_len + h->func_info_off;
3110 	btf_ext_bswap_info_sec(info, h->func_info_len, is_native,
3111 			       (info_rec_bswap_fn)bpf_func_info_bswap);
3112 
3113 	/* Swap line_info subsection byte-order */
3114 	info = data + h->hdr_len + h->line_info_off;
3115 	btf_ext_bswap_info_sec(info, h->line_info_len, is_native,
3116 			       (info_rec_bswap_fn)bpf_line_info_bswap);
3117 
3118 	/* Swap core_relo subsection byte-order (if present) */
3119 	if (h->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
3120 		return;
3121 
3122 	info = data + h->hdr_len + h->core_relo_off;
3123 	btf_ext_bswap_info_sec(info, h->core_relo_len, is_native,
3124 			       (info_rec_bswap_fn)bpf_core_relo_bswap);
3125 }
3126 
3127 /* Parse hdr data and info sections: check and convert to native endianness */
btf_ext_parse(struct btf_ext * btf_ext)3128 static int btf_ext_parse(struct btf_ext *btf_ext)
3129 {
3130 	__u32 hdr_len, data_size = btf_ext->data_size;
3131 	struct btf_ext_header *hdr = btf_ext->hdr;
3132 	bool swapped_endian = false;
3133 	int err;
3134 
3135 	if (data_size < offsetofend(struct btf_ext_header, hdr_len)) {
3136 		pr_debug("BTF.ext header too short\n");
3137 		return -EINVAL;
3138 	}
3139 
3140 	hdr_len = hdr->hdr_len;
3141 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
3142 		swapped_endian = true;
3143 		hdr_len = bswap_32(hdr_len);
3144 	} else if (hdr->magic != BTF_MAGIC) {
3145 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
3146 		return -EINVAL;
3147 	}
3148 
3149 	/* Ensure known version of structs, current BTF_VERSION == 1 */
3150 	if (hdr->version != 1) {
3151 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
3152 		return -ENOTSUP;
3153 	}
3154 
3155 	if (hdr->flags) {
3156 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
3157 		return -ENOTSUP;
3158 	}
3159 
3160 	if (data_size < hdr_len) {
3161 		pr_debug("BTF.ext header not found\n");
3162 		return -EINVAL;
3163 	} else if (data_size == hdr_len) {
3164 		pr_debug("BTF.ext has no data\n");
3165 		return -EINVAL;
3166 	}
3167 
3168 	/* Verify mandatory hdr info details present */
3169 	if (hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
3170 		pr_warn("BTF.ext header missing func_info, line_info\n");
3171 		return -EINVAL;
3172 	}
3173 
3174 	/* Keep hdr native byte-order in memory for introspection */
3175 	if (swapped_endian)
3176 		btf_ext_bswap_hdr(btf_ext->hdr);
3177 
3178 	/* Validate info subsections and cache key metadata */
3179 	err = btf_ext_parse_info(btf_ext, !swapped_endian);
3180 	if (err)
3181 		return err;
3182 
3183 	/* Keep infos native byte-order in memory for introspection */
3184 	if (swapped_endian)
3185 		btf_ext_bswap_info(btf_ext, btf_ext->data);
3186 
3187 	/*
3188 	 * Set btf_ext->swapped_endian only after all header and info data has
3189 	 * been swapped, helping bswap functions determine if their data are
3190 	 * in native byte-order when called.
3191 	 */
3192 	btf_ext->swapped_endian = swapped_endian;
3193 	return 0;
3194 }
3195 
btf_ext__free(struct btf_ext * btf_ext)3196 void btf_ext__free(struct btf_ext *btf_ext)
3197 {
3198 	if (IS_ERR_OR_NULL(btf_ext))
3199 		return;
3200 	free(btf_ext->func_info.sec_idxs);
3201 	free(btf_ext->line_info.sec_idxs);
3202 	free(btf_ext->core_relo_info.sec_idxs);
3203 	free(btf_ext->data);
3204 	free(btf_ext->data_swapped);
3205 	free(btf_ext);
3206 }
3207 
btf_ext__new(const __u8 * data,__u32 size)3208 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
3209 {
3210 	struct btf_ext *btf_ext;
3211 	int err;
3212 
3213 	btf_ext = calloc(1, sizeof(struct btf_ext));
3214 	if (!btf_ext)
3215 		return libbpf_err_ptr(-ENOMEM);
3216 
3217 	btf_ext->data_size = size;
3218 	btf_ext->data = malloc(size);
3219 	if (!btf_ext->data) {
3220 		err = -ENOMEM;
3221 		goto done;
3222 	}
3223 	memcpy(btf_ext->data, data, size);
3224 
3225 	err = btf_ext_parse(btf_ext);
3226 
3227 done:
3228 	if (err) {
3229 		btf_ext__free(btf_ext);
3230 		return libbpf_err_ptr(err);
3231 	}
3232 
3233 	return btf_ext;
3234 }
3235 
btf_ext_raw_data(const struct btf_ext * btf_ext_ro,bool swap_endian)3236 static void *btf_ext_raw_data(const struct btf_ext *btf_ext_ro, bool swap_endian)
3237 {
3238 	struct btf_ext *btf_ext = (struct btf_ext *)btf_ext_ro;
3239 	const __u32 data_sz = btf_ext->data_size;
3240 	void *data;
3241 
3242 	/* Return native data (always present) or swapped data if present */
3243 	if (!swap_endian)
3244 		return btf_ext->data;
3245 	else if (btf_ext->data_swapped)
3246 		return btf_ext->data_swapped;
3247 
3248 	/* Recreate missing swapped data, then cache and return */
3249 	data = calloc(1, data_sz);
3250 	if (!data)
3251 		return NULL;
3252 	memcpy(data, btf_ext->data, data_sz);
3253 
3254 	btf_ext_bswap_info(btf_ext, data);
3255 	btf_ext_bswap_hdr(data);
3256 	btf_ext->data_swapped = data;
3257 	return data;
3258 }
3259 
btf_ext__raw_data(const struct btf_ext * btf_ext,__u32 * size)3260 const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size)
3261 {
3262 	void *data;
3263 
3264 	data = btf_ext_raw_data(btf_ext, btf_ext->swapped_endian);
3265 	if (!data)
3266 		return errno = ENOMEM, NULL;
3267 
3268 	*size = btf_ext->data_size;
3269 	return data;
3270 }
3271 
3272 __attribute__((alias("btf_ext__raw_data")))
3273 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size);
3274 
btf_ext__endianness(const struct btf_ext * btf_ext)3275 enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext)
3276 {
3277 	if (is_host_big_endian())
3278 		return btf_ext->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
3279 	else
3280 		return btf_ext->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
3281 }
3282 
btf_ext__set_endianness(struct btf_ext * btf_ext,enum btf_endianness endian)3283 int btf_ext__set_endianness(struct btf_ext *btf_ext, enum btf_endianness endian)
3284 {
3285 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
3286 		return libbpf_err(-EINVAL);
3287 
3288 	btf_ext->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
3289 
3290 	if (!btf_ext->swapped_endian) {
3291 		free(btf_ext->data_swapped);
3292 		btf_ext->data_swapped = NULL;
3293 	}
3294 	return 0;
3295 }
3296 
3297 struct btf_dedup;
3298 
3299 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
3300 static void btf_dedup_free(struct btf_dedup *d);
3301 static int btf_dedup_prep(struct btf_dedup *d);
3302 static int btf_dedup_strings(struct btf_dedup *d);
3303 static int btf_dedup_prim_types(struct btf_dedup *d);
3304 static int btf_dedup_struct_types(struct btf_dedup *d);
3305 static int btf_dedup_ref_types(struct btf_dedup *d);
3306 static int btf_dedup_resolve_fwds(struct btf_dedup *d);
3307 static int btf_dedup_compact_types(struct btf_dedup *d);
3308 static int btf_dedup_remap_types(struct btf_dedup *d);
3309 
3310 /*
3311  * Deduplicate BTF types and strings.
3312  *
3313  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
3314  * section with all BTF type descriptors and string data. It overwrites that
3315  * memory in-place with deduplicated types and strings without any loss of
3316  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
3317  * is provided, all the strings referenced from .BTF.ext section are honored
3318  * and updated to point to the right offsets after deduplication.
3319  *
3320  * If function returns with error, type/string data might be garbled and should
3321  * be discarded.
3322  *
3323  * More verbose and detailed description of both problem btf_dedup is solving,
3324  * as well as solution could be found at:
3325  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
3326  *
3327  * Problem description and justification
3328  * =====================================
3329  *
3330  * BTF type information is typically emitted either as a result of conversion
3331  * from DWARF to BTF or directly by compiler. In both cases, each compilation
3332  * unit contains information about a subset of all the types that are used
3333  * in an application. These subsets are frequently overlapping and contain a lot
3334  * of duplicated information when later concatenated together into a single
3335  * binary. This algorithm ensures that each unique type is represented by single
3336  * BTF type descriptor, greatly reducing resulting size of BTF data.
3337  *
3338  * Compilation unit isolation and subsequent duplication of data is not the only
3339  * problem. The same type hierarchy (e.g., struct and all the type that struct
3340  * references) in different compilation units can be represented in BTF to
3341  * various degrees of completeness (or, rather, incompleteness) due to
3342  * struct/union forward declarations.
3343  *
3344  * Let's take a look at an example, that we'll use to better understand the
3345  * problem (and solution). Suppose we have two compilation units, each using
3346  * same `struct S`, but each of them having incomplete type information about
3347  * struct's fields:
3348  *
3349  * // CU #1:
3350  * struct S;
3351  * struct A {
3352  *	int a;
3353  *	struct A* self;
3354  *	struct S* parent;
3355  * };
3356  * struct B;
3357  * struct S {
3358  *	struct A* a_ptr;
3359  *	struct B* b_ptr;
3360  * };
3361  *
3362  * // CU #2:
3363  * struct S;
3364  * struct A;
3365  * struct B {
3366  *	int b;
3367  *	struct B* self;
3368  *	struct S* parent;
3369  * };
3370  * struct S {
3371  *	struct A* a_ptr;
3372  *	struct B* b_ptr;
3373  * };
3374  *
3375  * In case of CU #1, BTF data will know only that `struct B` exist (but no
3376  * more), but will know the complete type information about `struct A`. While
3377  * for CU #2, it will know full type information about `struct B`, but will
3378  * only know about forward declaration of `struct A` (in BTF terms, it will
3379  * have `BTF_KIND_FWD` type descriptor with name `B`).
3380  *
3381  * This compilation unit isolation means that it's possible that there is no
3382  * single CU with complete type information describing structs `S`, `A`, and
3383  * `B`. Also, we might get tons of duplicated and redundant type information.
3384  *
3385  * Additional complication we need to keep in mind comes from the fact that
3386  * types, in general, can form graphs containing cycles, not just DAGs.
3387  *
3388  * While algorithm does deduplication, it also merges and resolves type
3389  * information (unless disabled throught `struct btf_opts`), whenever possible.
3390  * E.g., in the example above with two compilation units having partial type
3391  * information for structs `A` and `B`, the output of algorithm will emit
3392  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3393  * (as well as type information for `int` and pointers), as if they were defined
3394  * in a single compilation unit as:
3395  *
3396  * struct A {
3397  *	int a;
3398  *	struct A* self;
3399  *	struct S* parent;
3400  * };
3401  * struct B {
3402  *	int b;
3403  *	struct B* self;
3404  *	struct S* parent;
3405  * };
3406  * struct S {
3407  *	struct A* a_ptr;
3408  *	struct B* b_ptr;
3409  * };
3410  *
3411  * Algorithm summary
3412  * =================
3413  *
3414  * Algorithm completes its work in 7 separate passes:
3415  *
3416  * 1. Strings deduplication.
3417  * 2. Primitive types deduplication (int, enum, fwd).
3418  * 3. Struct/union types deduplication.
3419  * 4. Resolve unambiguous forward declarations.
3420  * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3421  *    protos, and const/volatile/restrict modifiers).
3422  * 6. Types compaction.
3423  * 7. Types remapping.
3424  *
3425  * Algorithm determines canonical type descriptor, which is a single
3426  * representative type for each truly unique type. This canonical type is the
3427  * one that will go into final deduplicated BTF type information. For
3428  * struct/unions, it is also the type that algorithm will merge additional type
3429  * information into (while resolving FWDs), as it discovers it from data in
3430  * other CUs. Each input BTF type eventually gets either mapped to itself, if
3431  * that type is canonical, or to some other type, if that type is equivalent
3432  * and was chosen as canonical representative. This mapping is stored in
3433  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3434  * FWD type got resolved to.
3435  *
3436  * To facilitate fast discovery of canonical types, we also maintain canonical
3437  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3438  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3439  * that match that signature. With sufficiently good choice of type signature
3440  * hashing function, we can limit number of canonical types for each unique type
3441  * signature to a very small number, allowing to find canonical type for any
3442  * duplicated type very quickly.
3443  *
3444  * Struct/union deduplication is the most critical part and algorithm for
3445  * deduplicating structs/unions is described in greater details in comments for
3446  * `btf_dedup_is_equiv` function.
3447  */
btf__dedup(struct btf * btf,const struct btf_dedup_opts * opts)3448 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3449 {
3450 	struct btf_dedup *d;
3451 	int err;
3452 
3453 	if (!OPTS_VALID(opts, btf_dedup_opts))
3454 		return libbpf_err(-EINVAL);
3455 
3456 	d = btf_dedup_new(btf, opts);
3457 	if (IS_ERR(d)) {
3458 		pr_debug("btf_dedup_new failed: %ld\n", PTR_ERR(d));
3459 		return libbpf_err(-EINVAL);
3460 	}
3461 
3462 	if (btf_ensure_modifiable(btf)) {
3463 		err = -ENOMEM;
3464 		goto done;
3465 	}
3466 
3467 	err = btf_dedup_prep(d);
3468 	if (err) {
3469 		pr_debug("btf_dedup_prep failed: %s\n", errstr(err));
3470 		goto done;
3471 	}
3472 	err = btf_dedup_strings(d);
3473 	if (err < 0) {
3474 		pr_debug("btf_dedup_strings failed: %s\n", errstr(err));
3475 		goto done;
3476 	}
3477 	err = btf_dedup_prim_types(d);
3478 	if (err < 0) {
3479 		pr_debug("btf_dedup_prim_types failed: %s\n", errstr(err));
3480 		goto done;
3481 	}
3482 	err = btf_dedup_struct_types(d);
3483 	if (err < 0) {
3484 		pr_debug("btf_dedup_struct_types failed: %s\n", errstr(err));
3485 		goto done;
3486 	}
3487 	err = btf_dedup_resolve_fwds(d);
3488 	if (err < 0) {
3489 		pr_debug("btf_dedup_resolve_fwds failed: %s\n", errstr(err));
3490 		goto done;
3491 	}
3492 	err = btf_dedup_ref_types(d);
3493 	if (err < 0) {
3494 		pr_debug("btf_dedup_ref_types failed: %s\n", errstr(err));
3495 		goto done;
3496 	}
3497 	err = btf_dedup_compact_types(d);
3498 	if (err < 0) {
3499 		pr_debug("btf_dedup_compact_types failed: %s\n", errstr(err));
3500 		goto done;
3501 	}
3502 	err = btf_dedup_remap_types(d);
3503 	if (err < 0) {
3504 		pr_debug("btf_dedup_remap_types failed: %s\n", errstr(err));
3505 		goto done;
3506 	}
3507 
3508 done:
3509 	btf_dedup_free(d);
3510 	return libbpf_err(err);
3511 }
3512 
3513 #define BTF_UNPROCESSED_ID ((__u32)-1)
3514 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3515 
3516 struct btf_dedup {
3517 	/* .BTF section to be deduped in-place */
3518 	struct btf *btf;
3519 	/*
3520 	 * Optional .BTF.ext section. When provided, any strings referenced
3521 	 * from it will be taken into account when deduping strings
3522 	 */
3523 	struct btf_ext *btf_ext;
3524 	/*
3525 	 * This is a map from any type's signature hash to a list of possible
3526 	 * canonical representative type candidates. Hash collisions are
3527 	 * ignored, so even types of various kinds can share same list of
3528 	 * candidates, which is fine because we rely on subsequent
3529 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3530 	 */
3531 	struct hashmap *dedup_table;
3532 	/* Canonical types map */
3533 	__u32 *map;
3534 	/* Hypothetical mapping, used during type graph equivalence checks */
3535 	__u32 *hypot_map;
3536 	__u32 *hypot_list;
3537 	size_t hypot_cnt;
3538 	size_t hypot_cap;
3539 	/* Whether hypothetical mapping, if successful, would need to adjust
3540 	 * already canonicalized types (due to a new forward declaration to
3541 	 * concrete type resolution). In such case, during split BTF dedup
3542 	 * candidate type would still be considered as different, because base
3543 	 * BTF is considered to be immutable.
3544 	 */
3545 	bool hypot_adjust_canon;
3546 	/* Various option modifying behavior of algorithm */
3547 	struct btf_dedup_opts opts;
3548 	/* temporary strings deduplication state */
3549 	struct strset *strs_set;
3550 };
3551 
hash_combine(unsigned long h,unsigned long value)3552 static unsigned long hash_combine(unsigned long h, unsigned long value)
3553 {
3554 	return h * 31 + value;
3555 }
3556 
3557 #define for_each_dedup_cand(d, node, hash) \
3558 	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3559 
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)3560 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3561 {
3562 	return hashmap__append(d->dedup_table, hash, type_id);
3563 }
3564 
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)3565 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3566 				   __u32 from_id, __u32 to_id)
3567 {
3568 	if (d->hypot_cnt == d->hypot_cap) {
3569 		__u32 *new_list;
3570 
3571 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3572 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3573 		if (!new_list)
3574 			return -ENOMEM;
3575 		d->hypot_list = new_list;
3576 	}
3577 	d->hypot_list[d->hypot_cnt++] = from_id;
3578 	d->hypot_map[from_id] = to_id;
3579 	return 0;
3580 }
3581 
btf_dedup_clear_hypot_map(struct btf_dedup * d)3582 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3583 {
3584 	int i;
3585 
3586 	for (i = 0; i < d->hypot_cnt; i++)
3587 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3588 	d->hypot_cnt = 0;
3589 	d->hypot_adjust_canon = false;
3590 }
3591 
btf_dedup_free(struct btf_dedup * d)3592 static void btf_dedup_free(struct btf_dedup *d)
3593 {
3594 	hashmap__free(d->dedup_table);
3595 	d->dedup_table = NULL;
3596 
3597 	free(d->map);
3598 	d->map = NULL;
3599 
3600 	free(d->hypot_map);
3601 	d->hypot_map = NULL;
3602 
3603 	free(d->hypot_list);
3604 	d->hypot_list = NULL;
3605 
3606 	free(d);
3607 }
3608 
btf_dedup_identity_hash_fn(long key,void * ctx)3609 static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3610 {
3611 	return key;
3612 }
3613 
btf_dedup_collision_hash_fn(long key,void * ctx)3614 static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3615 {
3616 	return 0;
3617 }
3618 
btf_dedup_equal_fn(long k1,long k2,void * ctx)3619 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3620 {
3621 	return k1 == k2;
3622 }
3623 
btf_dedup_new(struct btf * btf,const struct btf_dedup_opts * opts)3624 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3625 {
3626 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3627 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3628 	int i, err = 0, type_cnt;
3629 
3630 	if (!d)
3631 		return ERR_PTR(-ENOMEM);
3632 
3633 	if (OPTS_GET(opts, force_collisions, false))
3634 		hash_fn = btf_dedup_collision_hash_fn;
3635 
3636 	d->btf = btf;
3637 	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3638 
3639 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3640 	if (IS_ERR(d->dedup_table)) {
3641 		err = PTR_ERR(d->dedup_table);
3642 		d->dedup_table = NULL;
3643 		goto done;
3644 	}
3645 
3646 	type_cnt = btf__type_cnt(btf);
3647 	d->map = malloc(sizeof(__u32) * type_cnt);
3648 	if (!d->map) {
3649 		err = -ENOMEM;
3650 		goto done;
3651 	}
3652 	/* special BTF "void" type is made canonical immediately */
3653 	d->map[0] = 0;
3654 	for (i = 1; i < type_cnt; i++) {
3655 		struct btf_type *t = btf_type_by_id(d->btf, i);
3656 
3657 		/* VAR and DATASEC are never deduped and are self-canonical */
3658 		if (btf_is_var(t) || btf_is_datasec(t))
3659 			d->map[i] = i;
3660 		else
3661 			d->map[i] = BTF_UNPROCESSED_ID;
3662 	}
3663 
3664 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3665 	if (!d->hypot_map) {
3666 		err = -ENOMEM;
3667 		goto done;
3668 	}
3669 	for (i = 0; i < type_cnt; i++)
3670 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3671 
3672 done:
3673 	if (err) {
3674 		btf_dedup_free(d);
3675 		return ERR_PTR(err);
3676 	}
3677 
3678 	return d;
3679 }
3680 
3681 /*
3682  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3683  * string and pass pointer to it to a provided callback `fn`.
3684  */
btf_for_each_str_off(struct btf_dedup * d,str_off_visit_fn fn,void * ctx)3685 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3686 {
3687 	int i, r;
3688 
3689 	for (i = 0; i < d->btf->nr_types; i++) {
3690 		struct btf_field_iter it;
3691 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3692 		__u32 *str_off;
3693 
3694 		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_STRS);
3695 		if (r)
3696 			return r;
3697 
3698 		while ((str_off = btf_field_iter_next(&it))) {
3699 			r = fn(str_off, ctx);
3700 			if (r)
3701 				return r;
3702 		}
3703 	}
3704 
3705 	if (!d->btf_ext)
3706 		return 0;
3707 
3708 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3709 	if (r)
3710 		return r;
3711 
3712 	return 0;
3713 }
3714 
strs_dedup_remap_str_off(__u32 * str_off_ptr,void * ctx)3715 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3716 {
3717 	struct btf_dedup *d = ctx;
3718 	__u32 str_off = *str_off_ptr;
3719 	const char *s;
3720 	int off, err;
3721 
3722 	/* don't touch empty string or string in main BTF */
3723 	if (str_off == 0 || str_off < d->btf->start_str_off)
3724 		return 0;
3725 
3726 	s = btf__str_by_offset(d->btf, str_off);
3727 	if (d->btf->base_btf) {
3728 		err = btf__find_str(d->btf->base_btf, s);
3729 		if (err >= 0) {
3730 			*str_off_ptr = err;
3731 			return 0;
3732 		}
3733 		if (err != -ENOENT)
3734 			return err;
3735 	}
3736 
3737 	off = strset__add_str(d->strs_set, s);
3738 	if (off < 0)
3739 		return off;
3740 
3741 	*str_off_ptr = d->btf->start_str_off + off;
3742 	return 0;
3743 }
3744 
3745 /*
3746  * Dedup string and filter out those that are not referenced from either .BTF
3747  * or .BTF.ext (if provided) sections.
3748  *
3749  * This is done by building index of all strings in BTF's string section,
3750  * then iterating over all entities that can reference strings (e.g., type
3751  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3752  * strings as used. After that all used strings are deduped and compacted into
3753  * sequential blob of memory and new offsets are calculated. Then all the string
3754  * references are iterated again and rewritten using new offsets.
3755  */
btf_dedup_strings(struct btf_dedup * d)3756 static int btf_dedup_strings(struct btf_dedup *d)
3757 {
3758 	int err;
3759 
3760 	if (d->btf->strs_deduped)
3761 		return 0;
3762 
3763 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3764 	if (IS_ERR(d->strs_set)) {
3765 		err = PTR_ERR(d->strs_set);
3766 		goto err_out;
3767 	}
3768 
3769 	if (!d->btf->base_btf) {
3770 		/* insert empty string; we won't be looking it up during strings
3771 		 * dedup, but it's good to have it for generic BTF string lookups
3772 		 */
3773 		err = strset__add_str(d->strs_set, "");
3774 		if (err < 0)
3775 			goto err_out;
3776 	}
3777 
3778 	/* remap string offsets */
3779 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3780 	if (err)
3781 		goto err_out;
3782 
3783 	/* replace BTF string data and hash with deduped ones */
3784 	strset__free(d->btf->strs_set);
3785 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3786 	d->btf->strs_set = d->strs_set;
3787 	d->strs_set = NULL;
3788 	d->btf->strs_deduped = true;
3789 	return 0;
3790 
3791 err_out:
3792 	strset__free(d->strs_set);
3793 	d->strs_set = NULL;
3794 
3795 	return err;
3796 }
3797 
btf_hash_common(struct btf_type * t)3798 static long btf_hash_common(struct btf_type *t)
3799 {
3800 	long h;
3801 
3802 	h = hash_combine(0, t->name_off);
3803 	h = hash_combine(h, t->info);
3804 	h = hash_combine(h, t->size);
3805 	return h;
3806 }
3807 
btf_equal_common(struct btf_type * t1,struct btf_type * t2)3808 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3809 {
3810 	return t1->name_off == t2->name_off &&
3811 	       t1->info == t2->info &&
3812 	       t1->size == t2->size;
3813 }
3814 
3815 /* Calculate type signature hash of INT or TAG. */
btf_hash_int_decl_tag(struct btf_type * t)3816 static long btf_hash_int_decl_tag(struct btf_type *t)
3817 {
3818 	__u32 info = *(__u32 *)(t + 1);
3819 	long h;
3820 
3821 	h = btf_hash_common(t);
3822 	h = hash_combine(h, info);
3823 	return h;
3824 }
3825 
3826 /* Check structural equality of two INTs or TAGs. */
btf_equal_int_tag(struct btf_type * t1,struct btf_type * t2)3827 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3828 {
3829 	__u32 info1, info2;
3830 
3831 	if (!btf_equal_common(t1, t2))
3832 		return false;
3833 	info1 = *(__u32 *)(t1 + 1);
3834 	info2 = *(__u32 *)(t2 + 1);
3835 	return info1 == info2;
3836 }
3837 
3838 /* Calculate type signature hash of ENUM/ENUM64. */
btf_hash_enum(struct btf_type * t)3839 static long btf_hash_enum(struct btf_type *t)
3840 {
3841 	long h;
3842 
3843 	/* don't hash vlen, enum members and size to support enum fwd resolving */
3844 	h = hash_combine(0, t->name_off);
3845 	return h;
3846 }
3847 
btf_equal_enum_members(struct btf_type * t1,struct btf_type * t2)3848 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3849 {
3850 	const struct btf_enum *m1, *m2;
3851 	__u16 vlen;
3852 	int i;
3853 
3854 	vlen = btf_vlen(t1);
3855 	m1 = btf_enum(t1);
3856 	m2 = btf_enum(t2);
3857 	for (i = 0; i < vlen; i++) {
3858 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3859 			return false;
3860 		m1++;
3861 		m2++;
3862 	}
3863 	return true;
3864 }
3865 
btf_equal_enum64_members(struct btf_type * t1,struct btf_type * t2)3866 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3867 {
3868 	const struct btf_enum64 *m1, *m2;
3869 	__u16 vlen;
3870 	int i;
3871 
3872 	vlen = btf_vlen(t1);
3873 	m1 = btf_enum64(t1);
3874 	m2 = btf_enum64(t2);
3875 	for (i = 0; i < vlen; i++) {
3876 		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3877 		    m1->val_hi32 != m2->val_hi32)
3878 			return false;
3879 		m1++;
3880 		m2++;
3881 	}
3882 	return true;
3883 }
3884 
3885 /* Check structural equality of two ENUMs or ENUM64s. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)3886 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3887 {
3888 	if (!btf_equal_common(t1, t2))
3889 		return false;
3890 
3891 	/* t1 & t2 kinds are identical because of btf_equal_common */
3892 	if (btf_kind(t1) == BTF_KIND_ENUM)
3893 		return btf_equal_enum_members(t1, t2);
3894 	else
3895 		return btf_equal_enum64_members(t1, t2);
3896 }
3897 
btf_is_enum_fwd(struct btf_type * t)3898 static inline bool btf_is_enum_fwd(struct btf_type *t)
3899 {
3900 	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3901 }
3902 
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)3903 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3904 {
3905 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3906 		return btf_equal_enum(t1, t2);
3907 	/* At this point either t1 or t2 or both are forward declarations, thus:
3908 	 * - skip comparing vlen because it is zero for forward declarations;
3909 	 * - skip comparing size to allow enum forward declarations
3910 	 *   to be compatible with enum64 full declarations;
3911 	 * - skip comparing kind for the same reason.
3912 	 */
3913 	return t1->name_off == t2->name_off &&
3914 	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3915 }
3916 
3917 /*
3918  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3919  * as referenced type IDs equivalence is established separately during type
3920  * graph equivalence check algorithm.
3921  */
btf_hash_struct(struct btf_type * t)3922 static long btf_hash_struct(struct btf_type *t)
3923 {
3924 	const struct btf_member *member = btf_members(t);
3925 	__u32 vlen = btf_vlen(t);
3926 	long h = btf_hash_common(t);
3927 	int i;
3928 
3929 	for (i = 0; i < vlen; i++) {
3930 		h = hash_combine(h, member->name_off);
3931 		h = hash_combine(h, member->offset);
3932 		/* no hashing of referenced type ID, it can be unresolved yet */
3933 		member++;
3934 	}
3935 	return h;
3936 }
3937 
3938 /*
3939  * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3940  * type IDs. This check is performed during type graph equivalence check and
3941  * referenced types equivalence is checked separately.
3942  */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)3943 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3944 {
3945 	const struct btf_member *m1, *m2;
3946 	__u16 vlen;
3947 	int i;
3948 
3949 	if (!btf_equal_common(t1, t2))
3950 		return false;
3951 
3952 	vlen = btf_vlen(t1);
3953 	m1 = btf_members(t1);
3954 	m2 = btf_members(t2);
3955 	for (i = 0; i < vlen; i++) {
3956 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3957 			return false;
3958 		m1++;
3959 		m2++;
3960 	}
3961 	return true;
3962 }
3963 
3964 /*
3965  * Calculate type signature hash of ARRAY, including referenced type IDs,
3966  * under assumption that they were already resolved to canonical type IDs and
3967  * are not going to change.
3968  */
btf_hash_array(struct btf_type * t)3969 static long btf_hash_array(struct btf_type *t)
3970 {
3971 	const struct btf_array *info = btf_array(t);
3972 	long h = btf_hash_common(t);
3973 
3974 	h = hash_combine(h, info->type);
3975 	h = hash_combine(h, info->index_type);
3976 	h = hash_combine(h, info->nelems);
3977 	return h;
3978 }
3979 
3980 /*
3981  * Check exact equality of two ARRAYs, taking into account referenced
3982  * type IDs, under assumption that they were already resolved to canonical
3983  * type IDs and are not going to change.
3984  * This function is called during reference types deduplication to compare
3985  * ARRAY to potential canonical representative.
3986  */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)3987 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3988 {
3989 	const struct btf_array *info1, *info2;
3990 
3991 	if (!btf_equal_common(t1, t2))
3992 		return false;
3993 
3994 	info1 = btf_array(t1);
3995 	info2 = btf_array(t2);
3996 	return info1->type == info2->type &&
3997 	       info1->index_type == info2->index_type &&
3998 	       info1->nelems == info2->nelems;
3999 }
4000 
4001 /*
4002  * Check structural compatibility of two ARRAYs, ignoring referenced type
4003  * IDs. This check is performed during type graph equivalence check and
4004  * referenced types equivalence is checked separately.
4005  */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)4006 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
4007 {
4008 	if (!btf_equal_common(t1, t2))
4009 		return false;
4010 
4011 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
4012 }
4013 
4014 /*
4015  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
4016  * under assumption that they were already resolved to canonical type IDs and
4017  * are not going to change.
4018  */
btf_hash_fnproto(struct btf_type * t)4019 static long btf_hash_fnproto(struct btf_type *t)
4020 {
4021 	const struct btf_param *member = btf_params(t);
4022 	__u16 vlen = btf_vlen(t);
4023 	long h = btf_hash_common(t);
4024 	int i;
4025 
4026 	for (i = 0; i < vlen; i++) {
4027 		h = hash_combine(h, member->name_off);
4028 		h = hash_combine(h, member->type);
4029 		member++;
4030 	}
4031 	return h;
4032 }
4033 
4034 /*
4035  * Check exact equality of two FUNC_PROTOs, taking into account referenced
4036  * type IDs, under assumption that they were already resolved to canonical
4037  * type IDs and are not going to change.
4038  * This function is called during reference types deduplication to compare
4039  * FUNC_PROTO to potential canonical representative.
4040  */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)4041 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
4042 {
4043 	const struct btf_param *m1, *m2;
4044 	__u16 vlen;
4045 	int i;
4046 
4047 	if (!btf_equal_common(t1, t2))
4048 		return false;
4049 
4050 	vlen = btf_vlen(t1);
4051 	m1 = btf_params(t1);
4052 	m2 = btf_params(t2);
4053 	for (i = 0; i < vlen; i++) {
4054 		if (m1->name_off != m2->name_off || m1->type != m2->type)
4055 			return false;
4056 		m1++;
4057 		m2++;
4058 	}
4059 	return true;
4060 }
4061 
4062 /*
4063  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
4064  * IDs. This check is performed during type graph equivalence check and
4065  * referenced types equivalence is checked separately.
4066  */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)4067 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
4068 {
4069 	const struct btf_param *m1, *m2;
4070 	__u16 vlen;
4071 	int i;
4072 
4073 	/* skip return type ID */
4074 	if (t1->name_off != t2->name_off || t1->info != t2->info)
4075 		return false;
4076 
4077 	vlen = btf_vlen(t1);
4078 	m1 = btf_params(t1);
4079 	m2 = btf_params(t2);
4080 	for (i = 0; i < vlen; i++) {
4081 		if (m1->name_off != m2->name_off)
4082 			return false;
4083 		m1++;
4084 		m2++;
4085 	}
4086 	return true;
4087 }
4088 
4089 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
4090  * types and initializing the rest of the state (canonical type mapping) for
4091  * the fixed base BTF part.
4092  */
btf_dedup_prep(struct btf_dedup * d)4093 static int btf_dedup_prep(struct btf_dedup *d)
4094 {
4095 	struct btf_type *t;
4096 	int type_id;
4097 	long h;
4098 
4099 	if (!d->btf->base_btf)
4100 		return 0;
4101 
4102 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
4103 		t = btf_type_by_id(d->btf, type_id);
4104 
4105 		/* all base BTF types are self-canonical by definition */
4106 		d->map[type_id] = type_id;
4107 
4108 		switch (btf_kind(t)) {
4109 		case BTF_KIND_VAR:
4110 		case BTF_KIND_DATASEC:
4111 			/* VAR and DATASEC are never hash/deduplicated */
4112 			continue;
4113 		case BTF_KIND_CONST:
4114 		case BTF_KIND_VOLATILE:
4115 		case BTF_KIND_RESTRICT:
4116 		case BTF_KIND_PTR:
4117 		case BTF_KIND_FWD:
4118 		case BTF_KIND_TYPEDEF:
4119 		case BTF_KIND_FUNC:
4120 		case BTF_KIND_FLOAT:
4121 		case BTF_KIND_TYPE_TAG:
4122 			h = btf_hash_common(t);
4123 			break;
4124 		case BTF_KIND_INT:
4125 		case BTF_KIND_DECL_TAG:
4126 			h = btf_hash_int_decl_tag(t);
4127 			break;
4128 		case BTF_KIND_ENUM:
4129 		case BTF_KIND_ENUM64:
4130 			h = btf_hash_enum(t);
4131 			break;
4132 		case BTF_KIND_STRUCT:
4133 		case BTF_KIND_UNION:
4134 			h = btf_hash_struct(t);
4135 			break;
4136 		case BTF_KIND_ARRAY:
4137 			h = btf_hash_array(t);
4138 			break;
4139 		case BTF_KIND_FUNC_PROTO:
4140 			h = btf_hash_fnproto(t);
4141 			break;
4142 		default:
4143 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
4144 			return -EINVAL;
4145 		}
4146 		if (btf_dedup_table_add(d, h, type_id))
4147 			return -ENOMEM;
4148 	}
4149 
4150 	return 0;
4151 }
4152 
4153 /*
4154  * Deduplicate primitive types, that can't reference other types, by calculating
4155  * their type signature hash and comparing them with any possible canonical
4156  * candidate. If no canonical candidate matches, type itself is marked as
4157  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
4158  */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)4159 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
4160 {
4161 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4162 	struct hashmap_entry *hash_entry;
4163 	struct btf_type *cand;
4164 	/* if we don't find equivalent type, then we are canonical */
4165 	__u32 new_id = type_id;
4166 	__u32 cand_id;
4167 	long h;
4168 
4169 	switch (btf_kind(t)) {
4170 	case BTF_KIND_CONST:
4171 	case BTF_KIND_VOLATILE:
4172 	case BTF_KIND_RESTRICT:
4173 	case BTF_KIND_PTR:
4174 	case BTF_KIND_TYPEDEF:
4175 	case BTF_KIND_ARRAY:
4176 	case BTF_KIND_STRUCT:
4177 	case BTF_KIND_UNION:
4178 	case BTF_KIND_FUNC:
4179 	case BTF_KIND_FUNC_PROTO:
4180 	case BTF_KIND_VAR:
4181 	case BTF_KIND_DATASEC:
4182 	case BTF_KIND_DECL_TAG:
4183 	case BTF_KIND_TYPE_TAG:
4184 		return 0;
4185 
4186 	case BTF_KIND_INT:
4187 		h = btf_hash_int_decl_tag(t);
4188 		for_each_dedup_cand(d, hash_entry, h) {
4189 			cand_id = hash_entry->value;
4190 			cand = btf_type_by_id(d->btf, cand_id);
4191 			if (btf_equal_int_tag(t, cand)) {
4192 				new_id = cand_id;
4193 				break;
4194 			}
4195 		}
4196 		break;
4197 
4198 	case BTF_KIND_ENUM:
4199 	case BTF_KIND_ENUM64:
4200 		h = btf_hash_enum(t);
4201 		for_each_dedup_cand(d, hash_entry, h) {
4202 			cand_id = hash_entry->value;
4203 			cand = btf_type_by_id(d->btf, cand_id);
4204 			if (btf_equal_enum(t, cand)) {
4205 				new_id = cand_id;
4206 				break;
4207 			}
4208 			if (btf_compat_enum(t, cand)) {
4209 				if (btf_is_enum_fwd(t)) {
4210 					/* resolve fwd to full enum */
4211 					new_id = cand_id;
4212 					break;
4213 				}
4214 				/* resolve canonical enum fwd to full enum */
4215 				d->map[cand_id] = type_id;
4216 			}
4217 		}
4218 		break;
4219 
4220 	case BTF_KIND_FWD:
4221 	case BTF_KIND_FLOAT:
4222 		h = btf_hash_common(t);
4223 		for_each_dedup_cand(d, hash_entry, h) {
4224 			cand_id = hash_entry->value;
4225 			cand = btf_type_by_id(d->btf, cand_id);
4226 			if (btf_equal_common(t, cand)) {
4227 				new_id = cand_id;
4228 				break;
4229 			}
4230 		}
4231 		break;
4232 
4233 	default:
4234 		return -EINVAL;
4235 	}
4236 
4237 	d->map[type_id] = new_id;
4238 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4239 		return -ENOMEM;
4240 
4241 	return 0;
4242 }
4243 
btf_dedup_prim_types(struct btf_dedup * d)4244 static int btf_dedup_prim_types(struct btf_dedup *d)
4245 {
4246 	int i, err;
4247 
4248 	for (i = 0; i < d->btf->nr_types; i++) {
4249 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
4250 		if (err)
4251 			return err;
4252 	}
4253 	return 0;
4254 }
4255 
4256 /*
4257  * Check whether type is already mapped into canonical one (could be to itself).
4258  */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)4259 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
4260 {
4261 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
4262 }
4263 
4264 /*
4265  * Resolve type ID into its canonical type ID, if any; otherwise return original
4266  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
4267  * STRUCT/UNION link and resolve it into canonical type ID as well.
4268  */
resolve_type_id(struct btf_dedup * d,__u32 type_id)4269 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
4270 {
4271 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4272 		type_id = d->map[type_id];
4273 	return type_id;
4274 }
4275 
4276 /*
4277  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
4278  * type ID.
4279  */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)4280 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
4281 {
4282 	__u32 orig_type_id = type_id;
4283 
4284 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4285 		return type_id;
4286 
4287 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
4288 		type_id = d->map[type_id];
4289 
4290 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
4291 		return type_id;
4292 
4293 	return orig_type_id;
4294 }
4295 
4296 
btf_fwd_kind(struct btf_type * t)4297 static inline __u16 btf_fwd_kind(struct btf_type *t)
4298 {
4299 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
4300 }
4301 
4302 /* Check if given two types are identical ARRAY definitions */
btf_dedup_identical_arrays(struct btf_dedup * d,__u32 id1,__u32 id2)4303 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
4304 {
4305 	struct btf_type *t1, *t2;
4306 
4307 	t1 = btf_type_by_id(d->btf, id1);
4308 	t2 = btf_type_by_id(d->btf, id2);
4309 	if (!btf_is_array(t1) || !btf_is_array(t2))
4310 		return false;
4311 
4312 	return btf_equal_array(t1, t2);
4313 }
4314 
4315 /* Check if given two types are identical STRUCT/UNION definitions */
btf_dedup_identical_structs(struct btf_dedup * d,__u32 id1,__u32 id2)4316 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
4317 {
4318 	const struct btf_member *m1, *m2;
4319 	struct btf_type *t1, *t2;
4320 	int n, i;
4321 
4322 	t1 = btf_type_by_id(d->btf, id1);
4323 	t2 = btf_type_by_id(d->btf, id2);
4324 
4325 	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
4326 		return false;
4327 
4328 	if (!btf_shallow_equal_struct(t1, t2))
4329 		return false;
4330 
4331 	m1 = btf_members(t1);
4332 	m2 = btf_members(t2);
4333 	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
4334 		if (m1->type != m2->type &&
4335 		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
4336 		    !btf_dedup_identical_structs(d, m1->type, m2->type))
4337 			return false;
4338 	}
4339 	return true;
4340 }
4341 
4342 /*
4343  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
4344  * call it "candidate graph" in this description for brevity) to a type graph
4345  * formed by (potential) canonical struct/union ("canonical graph" for brevity
4346  * here, though keep in mind that not all types in canonical graph are
4347  * necessarily canonical representatives themselves, some of them might be
4348  * duplicates or its uniqueness might not have been established yet).
4349  * Returns:
4350  *  - >0, if type graphs are equivalent;
4351  *  -  0, if not equivalent;
4352  *  - <0, on error.
4353  *
4354  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
4355  * equivalence of BTF types at each step. If at any point BTF types in candidate
4356  * and canonical graphs are not compatible structurally, whole graphs are
4357  * incompatible. If types are structurally equivalent (i.e., all information
4358  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
4359  * a `cand_id` is recoded in hypothetical mapping (`btf_dedup->hypot_map`).
4360  * If a type references other types, then those referenced types are checked
4361  * for equivalence recursively.
4362  *
4363  * During DFS traversal, if we find that for current `canon_id` type we
4364  * already have some mapping in hypothetical map, we check for two possible
4365  * situations:
4366  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
4367  *     happen when type graphs have cycles. In this case we assume those two
4368  *     types are equivalent.
4369  *   - `canon_id` is mapped to different type. This is contradiction in our
4370  *     hypothetical mapping, because same graph in canonical graph corresponds
4371  *     to two different types in candidate graph, which for equivalent type
4372  *     graphs shouldn't happen. This condition terminates equivalence check
4373  *     with negative result.
4374  *
4375  * If type graphs traversal exhausts types to check and find no contradiction,
4376  * then type graphs are equivalent.
4377  *
4378  * When checking types for equivalence, there is one special case: FWD types.
4379  * If FWD type resolution is allowed and one of the types (either from canonical
4380  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
4381  * flag) and their names match, hypothetical mapping is updated to point from
4382  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
4383  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
4384  *
4385  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
4386  * if there are two exactly named (or anonymous) structs/unions that are
4387  * compatible structurally, one of which has FWD field, while other is concrete
4388  * STRUCT/UNION, but according to C sources they are different structs/unions
4389  * that are referencing different types with the same name. This is extremely
4390  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
4391  * this logic is causing problems.
4392  *
4393  * Doing FWD resolution means that both candidate and/or canonical graphs can
4394  * consists of portions of the graph that come from multiple compilation units.
4395  * This is due to the fact that types within single compilation unit are always
4396  * deduplicated and FWDs are already resolved, if referenced struct/union
4397  * definition is available. So, if we had unresolved FWD and found corresponding
4398  * STRUCT/UNION, they will be from different compilation units. This
4399  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4400  * type graph will likely have at least two different BTF types that describe
4401  * same type (e.g., most probably there will be two different BTF types for the
4402  * same 'int' primitive type) and could even have "overlapping" parts of type
4403  * graph that describe same subset of types.
4404  *
4405  * This in turn means that our assumption that each type in canonical graph
4406  * must correspond to exactly one type in candidate graph might not hold
4407  * anymore and will make it harder to detect contradictions using hypothetical
4408  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4409  * resolution only in canonical graph. FWDs in candidate graphs are never
4410  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4411  * that can occur:
4412  *   - Both types in canonical and candidate graphs are FWDs. If they are
4413  *     structurally equivalent, then they can either be both resolved to the
4414  *     same STRUCT/UNION or not resolved at all. In both cases they are
4415  *     equivalent and there is no need to resolve FWD on candidate side.
4416  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4417  *     so nothing to resolve as well, algorithm will check equivalence anyway.
4418  *   - Type in canonical graph is FWD, while type in candidate is concrete
4419  *     STRUCT/UNION. In this case candidate graph comes from single compilation
4420  *     unit, so there is exactly one BTF type for each unique C type. After
4421  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4422  *     in canonical graph mapping to single BTF type in candidate graph, but
4423  *     because hypothetical mapping maps from canonical to candidate types, it's
4424  *     alright, and we still maintain the property of having single `canon_id`
4425  *     mapping to single `cand_id` (there could be two different `canon_id`
4426  *     mapped to the same `cand_id`, but it's not contradictory).
4427  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4428  *     graph is FWD. In this case we are just going to check compatibility of
4429  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4430  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4431  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4432  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4433  *     canonical graph.
4434  */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)4435 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4436 			      __u32 canon_id)
4437 {
4438 	struct btf_type *cand_type;
4439 	struct btf_type *canon_type;
4440 	__u32 hypot_type_id;
4441 	__u16 cand_kind;
4442 	__u16 canon_kind;
4443 	int i, eq;
4444 
4445 	/* if both resolve to the same canonical, they must be equivalent */
4446 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4447 		return 1;
4448 
4449 	canon_id = resolve_fwd_id(d, canon_id);
4450 
4451 	hypot_type_id = d->hypot_map[canon_id];
4452 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4453 		if (hypot_type_id == cand_id)
4454 			return 1;
4455 		/* In some cases compiler will generate different DWARF types
4456 		 * for *identical* array type definitions and use them for
4457 		 * different fields within the *same* struct. This breaks type
4458 		 * equivalence check, which makes an assumption that candidate
4459 		 * types sub-graph has a consistent and deduped-by-compiler
4460 		 * types within a single CU. So work around that by explicitly
4461 		 * allowing identical array types here.
4462 		 */
4463 		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4464 			return 1;
4465 		/* It turns out that similar situation can happen with
4466 		 * struct/union sometimes, sigh... Handle the case where
4467 		 * structs/unions are exactly the same, down to the referenced
4468 		 * type IDs. Anything more complicated (e.g., if referenced
4469 		 * types are different, but equivalent) is *way more*
4470 		 * complicated and requires a many-to-many equivalence mapping.
4471 		 */
4472 		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4473 			return 1;
4474 		return 0;
4475 	}
4476 
4477 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4478 		return -ENOMEM;
4479 
4480 	cand_type = btf_type_by_id(d->btf, cand_id);
4481 	canon_type = btf_type_by_id(d->btf, canon_id);
4482 	cand_kind = btf_kind(cand_type);
4483 	canon_kind = btf_kind(canon_type);
4484 
4485 	if (cand_type->name_off != canon_type->name_off)
4486 		return 0;
4487 
4488 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4489 	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4490 	    && cand_kind != canon_kind) {
4491 		__u16 real_kind;
4492 		__u16 fwd_kind;
4493 
4494 		if (cand_kind == BTF_KIND_FWD) {
4495 			real_kind = canon_kind;
4496 			fwd_kind = btf_fwd_kind(cand_type);
4497 		} else {
4498 			real_kind = cand_kind;
4499 			fwd_kind = btf_fwd_kind(canon_type);
4500 			/* we'd need to resolve base FWD to STRUCT/UNION */
4501 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4502 				d->hypot_adjust_canon = true;
4503 		}
4504 		return fwd_kind == real_kind;
4505 	}
4506 
4507 	if (cand_kind != canon_kind)
4508 		return 0;
4509 
4510 	switch (cand_kind) {
4511 	case BTF_KIND_INT:
4512 		return btf_equal_int_tag(cand_type, canon_type);
4513 
4514 	case BTF_KIND_ENUM:
4515 	case BTF_KIND_ENUM64:
4516 		return btf_compat_enum(cand_type, canon_type);
4517 
4518 	case BTF_KIND_FWD:
4519 	case BTF_KIND_FLOAT:
4520 		return btf_equal_common(cand_type, canon_type);
4521 
4522 	case BTF_KIND_CONST:
4523 	case BTF_KIND_VOLATILE:
4524 	case BTF_KIND_RESTRICT:
4525 	case BTF_KIND_PTR:
4526 	case BTF_KIND_TYPEDEF:
4527 	case BTF_KIND_FUNC:
4528 	case BTF_KIND_TYPE_TAG:
4529 		if (cand_type->info != canon_type->info)
4530 			return 0;
4531 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4532 
4533 	case BTF_KIND_ARRAY: {
4534 		const struct btf_array *cand_arr, *canon_arr;
4535 
4536 		if (!btf_compat_array(cand_type, canon_type))
4537 			return 0;
4538 		cand_arr = btf_array(cand_type);
4539 		canon_arr = btf_array(canon_type);
4540 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4541 		if (eq <= 0)
4542 			return eq;
4543 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4544 	}
4545 
4546 	case BTF_KIND_STRUCT:
4547 	case BTF_KIND_UNION: {
4548 		const struct btf_member *cand_m, *canon_m;
4549 		__u16 vlen;
4550 
4551 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4552 			return 0;
4553 		vlen = btf_vlen(cand_type);
4554 		cand_m = btf_members(cand_type);
4555 		canon_m = btf_members(canon_type);
4556 		for (i = 0; i < vlen; i++) {
4557 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4558 			if (eq <= 0)
4559 				return eq;
4560 			cand_m++;
4561 			canon_m++;
4562 		}
4563 
4564 		return 1;
4565 	}
4566 
4567 	case BTF_KIND_FUNC_PROTO: {
4568 		const struct btf_param *cand_p, *canon_p;
4569 		__u16 vlen;
4570 
4571 		if (!btf_compat_fnproto(cand_type, canon_type))
4572 			return 0;
4573 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4574 		if (eq <= 0)
4575 			return eq;
4576 		vlen = btf_vlen(cand_type);
4577 		cand_p = btf_params(cand_type);
4578 		canon_p = btf_params(canon_type);
4579 		for (i = 0; i < vlen; i++) {
4580 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4581 			if (eq <= 0)
4582 				return eq;
4583 			cand_p++;
4584 			canon_p++;
4585 		}
4586 		return 1;
4587 	}
4588 
4589 	default:
4590 		return -EINVAL;
4591 	}
4592 	return 0;
4593 }
4594 
4595 /*
4596  * Use hypothetical mapping, produced by successful type graph equivalence
4597  * check, to augment existing struct/union canonical mapping, where possible.
4598  *
4599  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4600  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4601  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4602  * we are recording the mapping anyway. As opposed to carefulness required
4603  * for struct/union correspondence mapping (described below), for FWD resolution
4604  * it's not important, as by the time that FWD type (reference type) will be
4605  * deduplicated all structs/unions will be deduped already anyway.
4606  *
4607  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4608  * not required for correctness. It needs to be done carefully to ensure that
4609  * struct/union from candidate's type graph is not mapped into corresponding
4610  * struct/union from canonical type graph that itself hasn't been resolved into
4611  * canonical representative. The only guarantee we have is that canonical
4612  * struct/union was determined as canonical and that won't change. But any
4613  * types referenced through that struct/union fields could have been not yet
4614  * resolved, so in case like that it's too early to establish any kind of
4615  * correspondence between structs/unions.
4616  *
4617  * No canonical correspondence is derived for primitive types (they are already
4618  * deduplicated completely already anyway) or reference types (they rely on
4619  * stability of struct/union canonical relationship for equivalence checks).
4620  */
btf_dedup_merge_hypot_map(struct btf_dedup * d)4621 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4622 {
4623 	__u32 canon_type_id, targ_type_id;
4624 	__u16 t_kind, c_kind;
4625 	__u32 t_id, c_id;
4626 	int i;
4627 
4628 	for (i = 0; i < d->hypot_cnt; i++) {
4629 		canon_type_id = d->hypot_list[i];
4630 		targ_type_id = d->hypot_map[canon_type_id];
4631 		t_id = resolve_type_id(d, targ_type_id);
4632 		c_id = resolve_type_id(d, canon_type_id);
4633 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4634 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4635 		/*
4636 		 * Resolve FWD into STRUCT/UNION.
4637 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4638 		 * mapped to canonical representative (as opposed to
4639 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4640 		 * eventually that struct is going to be mapped and all resolved
4641 		 * FWDs will automatically resolve to correct canonical
4642 		 * representative. This will happen before ref type deduping,
4643 		 * which critically depends on stability of these mapping. This
4644 		 * stability is not a requirement for STRUCT/UNION equivalence
4645 		 * checks, though.
4646 		 */
4647 
4648 		/* if it's the split BTF case, we still need to point base FWD
4649 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4650 		 * will be resolved against base FWD. If we don't point base
4651 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4652 		 * FWDs in split BTF won't be correctly resolved to a proper
4653 		 * STRUCT/UNION.
4654 		 */
4655 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4656 			d->map[c_id] = t_id;
4657 
4658 		/* if graph equivalence determined that we'd need to adjust
4659 		 * base canonical types, then we need to only point base FWDs
4660 		 * to STRUCTs/UNIONs and do no more modifications. For all
4661 		 * other purposes the type graphs were not equivalent.
4662 		 */
4663 		if (d->hypot_adjust_canon)
4664 			continue;
4665 
4666 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4667 			d->map[t_id] = c_id;
4668 
4669 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4670 		    c_kind != BTF_KIND_FWD &&
4671 		    is_type_mapped(d, c_id) &&
4672 		    !is_type_mapped(d, t_id)) {
4673 			/*
4674 			 * as a perf optimization, we can map struct/union
4675 			 * that's part of type graph we just verified for
4676 			 * equivalence. We can do that for struct/union that has
4677 			 * canonical representative only, though.
4678 			 */
4679 			d->map[t_id] = c_id;
4680 		}
4681 	}
4682 }
4683 
4684 /*
4685  * Deduplicate struct/union types.
4686  *
4687  * For each struct/union type its type signature hash is calculated, taking
4688  * into account type's name, size, number, order and names of fields, but
4689  * ignoring type ID's referenced from fields, because they might not be deduped
4690  * completely until after reference types deduplication phase. This type hash
4691  * is used to iterate over all potential canonical types, sharing same hash.
4692  * For each canonical candidate we check whether type graphs that they form
4693  * (through referenced types in fields and so on) are equivalent using algorithm
4694  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4695  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4696  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4697  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4698  * potentially map other structs/unions to their canonical representatives,
4699  * if such relationship hasn't yet been established. This speeds up algorithm
4700  * by eliminating some of the duplicate work.
4701  *
4702  * If no matching canonical representative was found, struct/union is marked
4703  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4704  * for further look ups.
4705  */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)4706 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4707 {
4708 	struct btf_type *cand_type, *t;
4709 	struct hashmap_entry *hash_entry;
4710 	/* if we don't find equivalent type, then we are canonical */
4711 	__u32 new_id = type_id;
4712 	__u16 kind;
4713 	long h;
4714 
4715 	/* already deduped or is in process of deduping (loop detected) */
4716 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4717 		return 0;
4718 
4719 	t = btf_type_by_id(d->btf, type_id);
4720 	kind = btf_kind(t);
4721 
4722 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4723 		return 0;
4724 
4725 	h = btf_hash_struct(t);
4726 	for_each_dedup_cand(d, hash_entry, h) {
4727 		__u32 cand_id = hash_entry->value;
4728 		int eq;
4729 
4730 		/*
4731 		 * Even though btf_dedup_is_equiv() checks for
4732 		 * btf_shallow_equal_struct() internally when checking two
4733 		 * structs (unions) for equivalence, we need to guard here
4734 		 * from picking matching FWD type as a dedup candidate.
4735 		 * This can happen due to hash collision. In such case just
4736 		 * relying on btf_dedup_is_equiv() would lead to potentially
4737 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4738 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4739 		 */
4740 		cand_type = btf_type_by_id(d->btf, cand_id);
4741 		if (!btf_shallow_equal_struct(t, cand_type))
4742 			continue;
4743 
4744 		btf_dedup_clear_hypot_map(d);
4745 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4746 		if (eq < 0)
4747 			return eq;
4748 		if (!eq)
4749 			continue;
4750 		btf_dedup_merge_hypot_map(d);
4751 		if (d->hypot_adjust_canon) /* not really equivalent */
4752 			continue;
4753 		new_id = cand_id;
4754 		break;
4755 	}
4756 
4757 	d->map[type_id] = new_id;
4758 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4759 		return -ENOMEM;
4760 
4761 	return 0;
4762 }
4763 
btf_dedup_struct_types(struct btf_dedup * d)4764 static int btf_dedup_struct_types(struct btf_dedup *d)
4765 {
4766 	int i, err;
4767 
4768 	for (i = 0; i < d->btf->nr_types; i++) {
4769 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4770 		if (err)
4771 			return err;
4772 	}
4773 	return 0;
4774 }
4775 
4776 /*
4777  * Deduplicate reference type.
4778  *
4779  * Once all primitive and struct/union types got deduplicated, we can easily
4780  * deduplicate all other (reference) BTF types. This is done in two steps:
4781  *
4782  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4783  * resolution can be done either immediately for primitive or struct/union types
4784  * (because they were deduped in previous two phases) or recursively for
4785  * reference types. Recursion will always terminate at either primitive or
4786  * struct/union type, at which point we can "unwind" chain of reference types
4787  * one by one. There is no danger of encountering cycles because in C type
4788  * system the only way to form type cycle is through struct/union, so any chain
4789  * of reference types, even those taking part in a type cycle, will inevitably
4790  * reach struct/union at some point.
4791  *
4792  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4793  * becomes "stable", in the sense that no further deduplication will cause
4794  * any changes to it. With that, it's now possible to calculate type's signature
4795  * hash (this time taking into account referenced type IDs) and loop over all
4796  * potential canonical representatives. If no match was found, current type
4797  * will become canonical representative of itself and will be added into
4798  * btf_dedup->dedup_table as another possible canonical representative.
4799  */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)4800 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4801 {
4802 	struct hashmap_entry *hash_entry;
4803 	__u32 new_id = type_id, cand_id;
4804 	struct btf_type *t, *cand;
4805 	/* if we don't find equivalent type, then we are representative type */
4806 	int ref_type_id;
4807 	long h;
4808 
4809 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4810 		return -ELOOP;
4811 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4812 		return resolve_type_id(d, type_id);
4813 
4814 	t = btf_type_by_id(d->btf, type_id);
4815 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4816 
4817 	switch (btf_kind(t)) {
4818 	case BTF_KIND_CONST:
4819 	case BTF_KIND_VOLATILE:
4820 	case BTF_KIND_RESTRICT:
4821 	case BTF_KIND_PTR:
4822 	case BTF_KIND_TYPEDEF:
4823 	case BTF_KIND_FUNC:
4824 	case BTF_KIND_TYPE_TAG:
4825 		ref_type_id = btf_dedup_ref_type(d, t->type);
4826 		if (ref_type_id < 0)
4827 			return ref_type_id;
4828 		t->type = ref_type_id;
4829 
4830 		h = btf_hash_common(t);
4831 		for_each_dedup_cand(d, hash_entry, h) {
4832 			cand_id = hash_entry->value;
4833 			cand = btf_type_by_id(d->btf, cand_id);
4834 			if (btf_equal_common(t, cand)) {
4835 				new_id = cand_id;
4836 				break;
4837 			}
4838 		}
4839 		break;
4840 
4841 	case BTF_KIND_DECL_TAG:
4842 		ref_type_id = btf_dedup_ref_type(d, t->type);
4843 		if (ref_type_id < 0)
4844 			return ref_type_id;
4845 		t->type = ref_type_id;
4846 
4847 		h = btf_hash_int_decl_tag(t);
4848 		for_each_dedup_cand(d, hash_entry, h) {
4849 			cand_id = hash_entry->value;
4850 			cand = btf_type_by_id(d->btf, cand_id);
4851 			if (btf_equal_int_tag(t, cand)) {
4852 				new_id = cand_id;
4853 				break;
4854 			}
4855 		}
4856 		break;
4857 
4858 	case BTF_KIND_ARRAY: {
4859 		struct btf_array *info = btf_array(t);
4860 
4861 		ref_type_id = btf_dedup_ref_type(d, info->type);
4862 		if (ref_type_id < 0)
4863 			return ref_type_id;
4864 		info->type = ref_type_id;
4865 
4866 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4867 		if (ref_type_id < 0)
4868 			return ref_type_id;
4869 		info->index_type = ref_type_id;
4870 
4871 		h = btf_hash_array(t);
4872 		for_each_dedup_cand(d, hash_entry, h) {
4873 			cand_id = hash_entry->value;
4874 			cand = btf_type_by_id(d->btf, cand_id);
4875 			if (btf_equal_array(t, cand)) {
4876 				new_id = cand_id;
4877 				break;
4878 			}
4879 		}
4880 		break;
4881 	}
4882 
4883 	case BTF_KIND_FUNC_PROTO: {
4884 		struct btf_param *param;
4885 		__u16 vlen;
4886 		int i;
4887 
4888 		ref_type_id = btf_dedup_ref_type(d, t->type);
4889 		if (ref_type_id < 0)
4890 			return ref_type_id;
4891 		t->type = ref_type_id;
4892 
4893 		vlen = btf_vlen(t);
4894 		param = btf_params(t);
4895 		for (i = 0; i < vlen; i++) {
4896 			ref_type_id = btf_dedup_ref_type(d, param->type);
4897 			if (ref_type_id < 0)
4898 				return ref_type_id;
4899 			param->type = ref_type_id;
4900 			param++;
4901 		}
4902 
4903 		h = btf_hash_fnproto(t);
4904 		for_each_dedup_cand(d, hash_entry, h) {
4905 			cand_id = hash_entry->value;
4906 			cand = btf_type_by_id(d->btf, cand_id);
4907 			if (btf_equal_fnproto(t, cand)) {
4908 				new_id = cand_id;
4909 				break;
4910 			}
4911 		}
4912 		break;
4913 	}
4914 
4915 	default:
4916 		return -EINVAL;
4917 	}
4918 
4919 	d->map[type_id] = new_id;
4920 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4921 		return -ENOMEM;
4922 
4923 	return new_id;
4924 }
4925 
btf_dedup_ref_types(struct btf_dedup * d)4926 static int btf_dedup_ref_types(struct btf_dedup *d)
4927 {
4928 	int i, err;
4929 
4930 	for (i = 0; i < d->btf->nr_types; i++) {
4931 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4932 		if (err < 0)
4933 			return err;
4934 	}
4935 	/* we won't need d->dedup_table anymore */
4936 	hashmap__free(d->dedup_table);
4937 	d->dedup_table = NULL;
4938 	return 0;
4939 }
4940 
4941 /*
4942  * Collect a map from type names to type ids for all canonical structs
4943  * and unions. If the same name is shared by several canonical types
4944  * use a special value 0 to indicate this fact.
4945  */
btf_dedup_fill_unique_names_map(struct btf_dedup * d,struct hashmap * names_map)4946 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4947 {
4948 	__u32 nr_types = btf__type_cnt(d->btf);
4949 	struct btf_type *t;
4950 	__u32 type_id;
4951 	__u16 kind;
4952 	int err;
4953 
4954 	/*
4955 	 * Iterate over base and split module ids in order to get all
4956 	 * available structs in the map.
4957 	 */
4958 	for (type_id = 1; type_id < nr_types; ++type_id) {
4959 		t = btf_type_by_id(d->btf, type_id);
4960 		kind = btf_kind(t);
4961 
4962 		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4963 			continue;
4964 
4965 		/* Skip non-canonical types */
4966 		if (type_id != d->map[type_id])
4967 			continue;
4968 
4969 		err = hashmap__add(names_map, t->name_off, type_id);
4970 		if (err == -EEXIST)
4971 			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4972 
4973 		if (err)
4974 			return err;
4975 	}
4976 
4977 	return 0;
4978 }
4979 
btf_dedup_resolve_fwd(struct btf_dedup * d,struct hashmap * names_map,__u32 type_id)4980 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4981 {
4982 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4983 	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4984 	__u16 cand_kind, kind = btf_kind(t);
4985 	struct btf_type *cand_t;
4986 	uintptr_t cand_id;
4987 
4988 	if (kind != BTF_KIND_FWD)
4989 		return 0;
4990 
4991 	/* Skip if this FWD already has a mapping */
4992 	if (type_id != d->map[type_id])
4993 		return 0;
4994 
4995 	if (!hashmap__find(names_map, t->name_off, &cand_id))
4996 		return 0;
4997 
4998 	/* Zero is a special value indicating that name is not unique */
4999 	if (!cand_id)
5000 		return 0;
5001 
5002 	cand_t = btf_type_by_id(d->btf, cand_id);
5003 	cand_kind = btf_kind(cand_t);
5004 	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
5005 	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
5006 		return 0;
5007 
5008 	d->map[type_id] = cand_id;
5009 
5010 	return 0;
5011 }
5012 
5013 /*
5014  * Resolve unambiguous forward declarations.
5015  *
5016  * The lion's share of all FWD declarations is resolved during
5017  * `btf_dedup_struct_types` phase when different type graphs are
5018  * compared against each other. However, if in some compilation unit a
5019  * FWD declaration is not a part of a type graph compared against
5020  * another type graph that declaration's canonical type would not be
5021  * changed. Example:
5022  *
5023  * CU #1:
5024  *
5025  * struct foo;
5026  * struct foo *some_global;
5027  *
5028  * CU #2:
5029  *
5030  * struct foo { int u; };
5031  * struct foo *another_global;
5032  *
5033  * After `btf_dedup_struct_types` the BTF looks as follows:
5034  *
5035  * [1] STRUCT 'foo' size=4 vlen=1 ...
5036  * [2] INT 'int' size=4 ...
5037  * [3] PTR '(anon)' type_id=1
5038  * [4] FWD 'foo' fwd_kind=struct
5039  * [5] PTR '(anon)' type_id=4
5040  *
5041  * This pass assumes that such FWD declarations should be mapped to
5042  * structs or unions with identical name in case if the name is not
5043  * ambiguous.
5044  */
btf_dedup_resolve_fwds(struct btf_dedup * d)5045 static int btf_dedup_resolve_fwds(struct btf_dedup *d)
5046 {
5047 	int i, err;
5048 	struct hashmap *names_map;
5049 
5050 	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5051 	if (IS_ERR(names_map))
5052 		return PTR_ERR(names_map);
5053 
5054 	err = btf_dedup_fill_unique_names_map(d, names_map);
5055 	if (err < 0)
5056 		goto exit;
5057 
5058 	for (i = 0; i < d->btf->nr_types; i++) {
5059 		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
5060 		if (err < 0)
5061 			break;
5062 	}
5063 
5064 exit:
5065 	hashmap__free(names_map);
5066 	return err;
5067 }
5068 
5069 /*
5070  * Compact types.
5071  *
5072  * After we established for each type its corresponding canonical representative
5073  * type, we now can eliminate types that are not canonical and leave only
5074  * canonical ones layed out sequentially in memory by copying them over
5075  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
5076  * a map from original type ID to a new compacted type ID, which will be used
5077  * during next phase to "fix up" type IDs, referenced from struct/union and
5078  * reference types.
5079  */
btf_dedup_compact_types(struct btf_dedup * d)5080 static int btf_dedup_compact_types(struct btf_dedup *d)
5081 {
5082 	__u32 *new_offs;
5083 	__u32 next_type_id = d->btf->start_id;
5084 	const struct btf_type *t;
5085 	void *p;
5086 	int i, id, len;
5087 
5088 	/* we are going to reuse hypot_map to store compaction remapping */
5089 	d->hypot_map[0] = 0;
5090 	/* base BTF types are not renumbered */
5091 	for (id = 1; id < d->btf->start_id; id++)
5092 		d->hypot_map[id] = id;
5093 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
5094 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
5095 
5096 	p = d->btf->types_data;
5097 
5098 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
5099 		if (d->map[id] != id)
5100 			continue;
5101 
5102 		t = btf__type_by_id(d->btf, id);
5103 		len = btf_type_size(t);
5104 		if (len < 0)
5105 			return len;
5106 
5107 		memmove(p, t, len);
5108 		d->hypot_map[id] = next_type_id;
5109 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
5110 		p += len;
5111 		next_type_id++;
5112 	}
5113 
5114 	/* shrink struct btf's internal types index and update btf_header */
5115 	d->btf->nr_types = next_type_id - d->btf->start_id;
5116 	d->btf->type_offs_cap = d->btf->nr_types;
5117 	d->btf->hdr->type_len = p - d->btf->types_data;
5118 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
5119 				       sizeof(*new_offs));
5120 	if (d->btf->type_offs_cap && !new_offs)
5121 		return -ENOMEM;
5122 	d->btf->type_offs = new_offs;
5123 	d->btf->hdr->str_off = d->btf->hdr->type_len;
5124 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
5125 	return 0;
5126 }
5127 
5128 /*
5129  * Figure out final (deduplicated and compacted) type ID for provided original
5130  * `type_id` by first resolving it into corresponding canonical type ID and
5131  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
5132  * which is populated during compaction phase.
5133  */
btf_dedup_remap_type_id(__u32 * type_id,void * ctx)5134 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
5135 {
5136 	struct btf_dedup *d = ctx;
5137 	__u32 resolved_type_id, new_type_id;
5138 
5139 	resolved_type_id = resolve_type_id(d, *type_id);
5140 	new_type_id = d->hypot_map[resolved_type_id];
5141 	if (new_type_id > BTF_MAX_NR_TYPES)
5142 		return -EINVAL;
5143 
5144 	*type_id = new_type_id;
5145 	return 0;
5146 }
5147 
5148 /*
5149  * Remap referenced type IDs into deduped type IDs.
5150  *
5151  * After BTF types are deduplicated and compacted, their final type IDs may
5152  * differ from original ones. The map from original to a corresponding
5153  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
5154  * compaction phase. During remapping phase we are rewriting all type IDs
5155  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
5156  * their final deduped type IDs.
5157  */
btf_dedup_remap_types(struct btf_dedup * d)5158 static int btf_dedup_remap_types(struct btf_dedup *d)
5159 {
5160 	int i, r;
5161 
5162 	for (i = 0; i < d->btf->nr_types; i++) {
5163 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
5164 		struct btf_field_iter it;
5165 		__u32 *type_id;
5166 
5167 		r = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5168 		if (r)
5169 			return r;
5170 
5171 		while ((type_id = btf_field_iter_next(&it))) {
5172 			__u32 resolved_id, new_id;
5173 
5174 			resolved_id = resolve_type_id(d, *type_id);
5175 			new_id = d->hypot_map[resolved_id];
5176 			if (new_id > BTF_MAX_NR_TYPES)
5177 				return -EINVAL;
5178 
5179 			*type_id = new_id;
5180 		}
5181 	}
5182 
5183 	if (!d->btf_ext)
5184 		return 0;
5185 
5186 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
5187 	if (r)
5188 		return r;
5189 
5190 	return 0;
5191 }
5192 
5193 /*
5194  * Probe few well-known locations for vmlinux kernel image and try to load BTF
5195  * data out of it to use for target BTF.
5196  */
btf__load_vmlinux_btf(void)5197 struct btf *btf__load_vmlinux_btf(void)
5198 {
5199 	const char *sysfs_btf_path = "/sys/kernel/btf/vmlinux";
5200 	/* fall back locations, trying to find vmlinux on disk */
5201 	const char *locations[] = {
5202 		"/boot/vmlinux-%1$s",
5203 		"/lib/modules/%1$s/vmlinux-%1$s",
5204 		"/lib/modules/%1$s/build/vmlinux",
5205 		"/usr/lib/modules/%1$s/kernel/vmlinux",
5206 		"/usr/lib/debug/boot/vmlinux-%1$s",
5207 		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
5208 		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
5209 	};
5210 	char path[PATH_MAX + 1];
5211 	struct utsname buf;
5212 	struct btf *btf;
5213 	int i, err;
5214 
5215 	/* is canonical sysfs location accessible? */
5216 	if (faccessat(AT_FDCWD, sysfs_btf_path, F_OK, AT_EACCESS) < 0) {
5217 		pr_warn("kernel BTF is missing at '%s', was CONFIG_DEBUG_INFO_BTF enabled?\n",
5218 			sysfs_btf_path);
5219 	} else {
5220 		btf = btf__parse(sysfs_btf_path, NULL);
5221 		if (!btf) {
5222 			err = -errno;
5223 			pr_warn("failed to read kernel BTF from '%s': %s\n",
5224 				sysfs_btf_path, errstr(err));
5225 			return libbpf_err_ptr(err);
5226 		}
5227 		pr_debug("loaded kernel BTF from '%s'\n", sysfs_btf_path);
5228 		return btf;
5229 	}
5230 
5231 	/* try fallback locations */
5232 	uname(&buf);
5233 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
5234 		snprintf(path, PATH_MAX, locations[i], buf.release);
5235 
5236 		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
5237 			continue;
5238 
5239 		btf = btf__parse(path, NULL);
5240 		err = libbpf_get_error(btf);
5241 		pr_debug("loading kernel BTF '%s': %s\n", path, errstr(err));
5242 		if (err)
5243 			continue;
5244 
5245 		return btf;
5246 	}
5247 
5248 	pr_warn("failed to find valid kernel BTF\n");
5249 	return libbpf_err_ptr(-ESRCH);
5250 }
5251 
5252 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
5253 
btf__load_module_btf(const char * module_name,struct btf * vmlinux_btf)5254 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
5255 {
5256 	char path[80];
5257 
5258 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
5259 	return btf__parse_split(path, vmlinux_btf);
5260 }
5261 
btf_ext_visit_type_ids(struct btf_ext * btf_ext,type_id_visit_fn visit,void * ctx)5262 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
5263 {
5264 	const struct btf_ext_info *seg;
5265 	struct btf_ext_info_sec *sec;
5266 	int i, err;
5267 
5268 	seg = &btf_ext->func_info;
5269 	for_each_btf_ext_sec(seg, sec) {
5270 		struct bpf_func_info_min *rec;
5271 
5272 		for_each_btf_ext_rec(seg, sec, i, rec) {
5273 			err = visit(&rec->type_id, ctx);
5274 			if (err < 0)
5275 				return err;
5276 		}
5277 	}
5278 
5279 	seg = &btf_ext->core_relo_info;
5280 	for_each_btf_ext_sec(seg, sec) {
5281 		struct bpf_core_relo *rec;
5282 
5283 		for_each_btf_ext_rec(seg, sec, i, rec) {
5284 			err = visit(&rec->type_id, ctx);
5285 			if (err < 0)
5286 				return err;
5287 		}
5288 	}
5289 
5290 	return 0;
5291 }
5292 
btf_ext_visit_str_offs(struct btf_ext * btf_ext,str_off_visit_fn visit,void * ctx)5293 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
5294 {
5295 	const struct btf_ext_info *seg;
5296 	struct btf_ext_info_sec *sec;
5297 	int i, err;
5298 
5299 	seg = &btf_ext->func_info;
5300 	for_each_btf_ext_sec(seg, sec) {
5301 		err = visit(&sec->sec_name_off, ctx);
5302 		if (err)
5303 			return err;
5304 	}
5305 
5306 	seg = &btf_ext->line_info;
5307 	for_each_btf_ext_sec(seg, sec) {
5308 		struct bpf_line_info_min *rec;
5309 
5310 		err = visit(&sec->sec_name_off, ctx);
5311 		if (err)
5312 			return err;
5313 
5314 		for_each_btf_ext_rec(seg, sec, i, rec) {
5315 			err = visit(&rec->file_name_off, ctx);
5316 			if (err)
5317 				return err;
5318 			err = visit(&rec->line_off, ctx);
5319 			if (err)
5320 				return err;
5321 		}
5322 	}
5323 
5324 	seg = &btf_ext->core_relo_info;
5325 	for_each_btf_ext_sec(seg, sec) {
5326 		struct bpf_core_relo *rec;
5327 
5328 		err = visit(&sec->sec_name_off, ctx);
5329 		if (err)
5330 			return err;
5331 
5332 		for_each_btf_ext_rec(seg, sec, i, rec) {
5333 			err = visit(&rec->access_str_off, ctx);
5334 			if (err)
5335 				return err;
5336 		}
5337 	}
5338 
5339 	return 0;
5340 }
5341 
5342 struct btf_distill {
5343 	struct btf_pipe pipe;
5344 	int *id_map;
5345 	unsigned int split_start_id;
5346 	unsigned int split_start_str;
5347 	int diff_id;
5348 };
5349 
btf_add_distilled_type_ids(struct btf_distill * dist,__u32 i)5350 static int btf_add_distilled_type_ids(struct btf_distill *dist, __u32 i)
5351 {
5352 	struct btf_type *split_t = btf_type_by_id(dist->pipe.src, i);
5353 	struct btf_field_iter it;
5354 	__u32 *id;
5355 	int err;
5356 
5357 	err = btf_field_iter_init(&it, split_t, BTF_FIELD_ITER_IDS);
5358 	if (err)
5359 		return err;
5360 	while ((id = btf_field_iter_next(&it))) {
5361 		struct btf_type *base_t;
5362 
5363 		if (!*id)
5364 			continue;
5365 		/* split BTF id, not needed */
5366 		if (*id >= dist->split_start_id)
5367 			continue;
5368 		/* already added ? */
5369 		if (dist->id_map[*id] > 0)
5370 			continue;
5371 
5372 		/* only a subset of base BTF types should be referenced from
5373 		 * split BTF; ensure nothing unexpected is referenced.
5374 		 */
5375 		base_t = btf_type_by_id(dist->pipe.src, *id);
5376 		switch (btf_kind(base_t)) {
5377 		case BTF_KIND_INT:
5378 		case BTF_KIND_FLOAT:
5379 		case BTF_KIND_FWD:
5380 		case BTF_KIND_ARRAY:
5381 		case BTF_KIND_STRUCT:
5382 		case BTF_KIND_UNION:
5383 		case BTF_KIND_TYPEDEF:
5384 		case BTF_KIND_ENUM:
5385 		case BTF_KIND_ENUM64:
5386 		case BTF_KIND_PTR:
5387 		case BTF_KIND_CONST:
5388 		case BTF_KIND_RESTRICT:
5389 		case BTF_KIND_VOLATILE:
5390 		case BTF_KIND_FUNC_PROTO:
5391 		case BTF_KIND_TYPE_TAG:
5392 			dist->id_map[*id] = *id;
5393 			break;
5394 		default:
5395 			pr_warn("unexpected reference to base type[%u] of kind [%u] when creating distilled base BTF.\n",
5396 				*id, btf_kind(base_t));
5397 			return -EINVAL;
5398 		}
5399 		/* If a base type is used, ensure types it refers to are
5400 		 * marked as used also; so for example if we find a PTR to INT
5401 		 * we need both the PTR and INT.
5402 		 *
5403 		 * The only exception is named struct/unions, since distilled
5404 		 * base BTF composite types have no members.
5405 		 */
5406 		if (btf_is_composite(base_t) && base_t->name_off)
5407 			continue;
5408 		err = btf_add_distilled_type_ids(dist, *id);
5409 		if (err)
5410 			return err;
5411 	}
5412 	return 0;
5413 }
5414 
btf_add_distilled_types(struct btf_distill * dist)5415 static int btf_add_distilled_types(struct btf_distill *dist)
5416 {
5417 	bool adding_to_base = dist->pipe.dst->start_id == 1;
5418 	int id = btf__type_cnt(dist->pipe.dst);
5419 	struct btf_type *t;
5420 	int i, err = 0;
5421 
5422 
5423 	/* Add types for each of the required references to either distilled
5424 	 * base or split BTF, depending on type characteristics.
5425 	 */
5426 	for (i = 1; i < dist->split_start_id; i++) {
5427 		const char *name;
5428 		int kind;
5429 
5430 		if (!dist->id_map[i])
5431 			continue;
5432 		t = btf_type_by_id(dist->pipe.src, i);
5433 		kind = btf_kind(t);
5434 		name = btf__name_by_offset(dist->pipe.src, t->name_off);
5435 
5436 		switch (kind) {
5437 		case BTF_KIND_INT:
5438 		case BTF_KIND_FLOAT:
5439 		case BTF_KIND_FWD:
5440 			/* Named int, float, fwd are added to base. */
5441 			if (!adding_to_base)
5442 				continue;
5443 			err = btf_add_type(&dist->pipe, t);
5444 			break;
5445 		case BTF_KIND_STRUCT:
5446 		case BTF_KIND_UNION:
5447 			/* Named struct/union are added to base as 0-vlen
5448 			 * struct/union of same size.  Anonymous struct/unions
5449 			 * are added to split BTF as-is.
5450 			 */
5451 			if (adding_to_base) {
5452 				if (!t->name_off)
5453 					continue;
5454 				err = btf_add_composite(dist->pipe.dst, kind, name, t->size);
5455 			} else {
5456 				if (t->name_off)
5457 					continue;
5458 				err = btf_add_type(&dist->pipe, t);
5459 			}
5460 			break;
5461 		case BTF_KIND_ENUM:
5462 		case BTF_KIND_ENUM64:
5463 			/* Named enum[64]s are added to base as a sized
5464 			 * enum; relocation will match with appropriately-named
5465 			 * and sized enum or enum64.
5466 			 *
5467 			 * Anonymous enums are added to split BTF as-is.
5468 			 */
5469 			if (adding_to_base) {
5470 				if (!t->name_off)
5471 					continue;
5472 				err = btf__add_enum(dist->pipe.dst, name, t->size);
5473 			} else {
5474 				if (t->name_off)
5475 					continue;
5476 				err = btf_add_type(&dist->pipe, t);
5477 			}
5478 			break;
5479 		case BTF_KIND_ARRAY:
5480 		case BTF_KIND_TYPEDEF:
5481 		case BTF_KIND_PTR:
5482 		case BTF_KIND_CONST:
5483 		case BTF_KIND_RESTRICT:
5484 		case BTF_KIND_VOLATILE:
5485 		case BTF_KIND_FUNC_PROTO:
5486 		case BTF_KIND_TYPE_TAG:
5487 			/* All other types are added to split BTF. */
5488 			if (adding_to_base)
5489 				continue;
5490 			err = btf_add_type(&dist->pipe, t);
5491 			break;
5492 		default:
5493 			pr_warn("unexpected kind when adding base type '%s'[%u] of kind [%u] to distilled base BTF.\n",
5494 				name, i, kind);
5495 			return -EINVAL;
5496 
5497 		}
5498 		if (err < 0)
5499 			break;
5500 		dist->id_map[i] = id++;
5501 	}
5502 	return err;
5503 }
5504 
5505 /* Split BTF ids without a mapping will be shifted downwards since distilled
5506  * base BTF is smaller than the original base BTF.  For those that have a
5507  * mapping (either to base or updated split BTF), update the id based on
5508  * that mapping.
5509  */
btf_update_distilled_type_ids(struct btf_distill * dist,__u32 i)5510 static int btf_update_distilled_type_ids(struct btf_distill *dist, __u32 i)
5511 {
5512 	struct btf_type *t = btf_type_by_id(dist->pipe.dst, i);
5513 	struct btf_field_iter it;
5514 	__u32 *id;
5515 	int err;
5516 
5517 	err = btf_field_iter_init(&it, t, BTF_FIELD_ITER_IDS);
5518 	if (err)
5519 		return err;
5520 	while ((id = btf_field_iter_next(&it))) {
5521 		if (dist->id_map[*id])
5522 			*id = dist->id_map[*id];
5523 		else if (*id >= dist->split_start_id)
5524 			*id -= dist->diff_id;
5525 	}
5526 	return 0;
5527 }
5528 
5529 /* Create updated split BTF with distilled base BTF; distilled base BTF
5530  * consists of BTF information required to clarify the types that split
5531  * BTF refers to, omitting unneeded details.  Specifically it will contain
5532  * base types and memberless definitions of named structs, unions and enumerated
5533  * types. Associated reference types like pointers, arrays and anonymous
5534  * structs, unions and enumerated types will be added to split BTF.
5535  * Size is recorded for named struct/unions to help guide matching to the
5536  * target base BTF during later relocation.
5537  *
5538  * The only case where structs, unions or enumerated types are fully represented
5539  * is when they are anonymous; in such cases, the anonymous type is added to
5540  * split BTF in full.
5541  *
5542  * We return newly-created split BTF where the split BTF refers to a newly-created
5543  * distilled base BTF. Both must be freed separately by the caller.
5544  */
btf__distill_base(const struct btf * src_btf,struct btf ** new_base_btf,struct btf ** new_split_btf)5545 int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
5546 		      struct btf **new_split_btf)
5547 {
5548 	struct btf *new_base = NULL, *new_split = NULL;
5549 	const struct btf *old_base;
5550 	unsigned int n = btf__type_cnt(src_btf);
5551 	struct btf_distill dist = {};
5552 	struct btf_type *t;
5553 	int i, err = 0;
5554 
5555 	/* src BTF must be split BTF. */
5556 	old_base = btf__base_btf(src_btf);
5557 	if (!new_base_btf || !new_split_btf || !old_base)
5558 		return libbpf_err(-EINVAL);
5559 
5560 	new_base = btf__new_empty();
5561 	if (!new_base)
5562 		return libbpf_err(-ENOMEM);
5563 
5564 	btf__set_endianness(new_base, btf__endianness(src_btf));
5565 
5566 	dist.id_map = calloc(n, sizeof(*dist.id_map));
5567 	if (!dist.id_map) {
5568 		err = -ENOMEM;
5569 		goto done;
5570 	}
5571 	dist.pipe.src = src_btf;
5572 	dist.pipe.dst = new_base;
5573 	dist.pipe.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
5574 	if (IS_ERR(dist.pipe.str_off_map)) {
5575 		err = -ENOMEM;
5576 		goto done;
5577 	}
5578 	dist.split_start_id = btf__type_cnt(old_base);
5579 	dist.split_start_str = old_base->hdr->str_len;
5580 
5581 	/* Pass over src split BTF; generate the list of base BTF type ids it
5582 	 * references; these will constitute our distilled BTF set to be
5583 	 * distributed over base and split BTF as appropriate.
5584 	 */
5585 	for (i = src_btf->start_id; i < n; i++) {
5586 		err = btf_add_distilled_type_ids(&dist, i);
5587 		if (err < 0)
5588 			goto done;
5589 	}
5590 	/* Next add types for each of the required references to base BTF and split BTF
5591 	 * in turn.
5592 	 */
5593 	err = btf_add_distilled_types(&dist);
5594 	if (err < 0)
5595 		goto done;
5596 
5597 	/* Create new split BTF with distilled base BTF as its base; the final
5598 	 * state is split BTF with distilled base BTF that represents enough
5599 	 * about its base references to allow it to be relocated with the base
5600 	 * BTF available.
5601 	 */
5602 	new_split = btf__new_empty_split(new_base);
5603 	if (!new_split) {
5604 		err = -errno;
5605 		goto done;
5606 	}
5607 	dist.pipe.dst = new_split;
5608 	/* First add all split types */
5609 	for (i = src_btf->start_id; i < n; i++) {
5610 		t = btf_type_by_id(src_btf, i);
5611 		err = btf_add_type(&dist.pipe, t);
5612 		if (err < 0)
5613 			goto done;
5614 	}
5615 	/* Now add distilled types to split BTF that are not added to base. */
5616 	err = btf_add_distilled_types(&dist);
5617 	if (err < 0)
5618 		goto done;
5619 
5620 	/* All split BTF ids will be shifted downwards since there are less base
5621 	 * BTF ids in distilled base BTF.
5622 	 */
5623 	dist.diff_id = dist.split_start_id - btf__type_cnt(new_base);
5624 
5625 	n = btf__type_cnt(new_split);
5626 	/* Now update base/split BTF ids. */
5627 	for (i = 1; i < n; i++) {
5628 		err = btf_update_distilled_type_ids(&dist, i);
5629 		if (err < 0)
5630 			break;
5631 	}
5632 done:
5633 	free(dist.id_map);
5634 	hashmap__free(dist.pipe.str_off_map);
5635 	if (err) {
5636 		btf__free(new_split);
5637 		btf__free(new_base);
5638 		return libbpf_err(err);
5639 	}
5640 	*new_base_btf = new_base;
5641 	*new_split_btf = new_split;
5642 
5643 	return 0;
5644 }
5645 
btf_header(const struct btf * btf)5646 const struct btf_header *btf_header(const struct btf *btf)
5647 {
5648 	return btf->hdr;
5649 }
5650 
btf_set_base_btf(struct btf * btf,const struct btf * base_btf)5651 void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
5652 {
5653 	btf->base_btf = (struct btf *)base_btf;
5654 	btf->start_id = btf__type_cnt(base_btf);
5655 	btf->start_str_off = base_btf->hdr->str_len;
5656 }
5657 
btf__relocate(struct btf * btf,const struct btf * base_btf)5658 int btf__relocate(struct btf *btf, const struct btf *base_btf)
5659 {
5660 	int err = btf_relocate(btf, base_btf, NULL);
5661 
5662 	if (!err)
5663 		btf->owns_base = false;
5664 	return libbpf_err(err);
5665 }
5666