xref: /linux/drivers/block/brd.c (revision 1880df2cf44af6266b48a905596726c267bc2b04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Ram backed block device driver.
4  *
5  * Copyright (C) 2007 Nick Piggin
6  * Copyright (C) 2007 Novell Inc.
7  *
8  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9  * of their respective owners.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/xarray.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27 
28 #include <linux/uaccess.h>
29 
30 /*
31  * Each block ramdisk device has a xarray brd_pages of pages that stores
32  * the pages containing the block device's contents.
33  */
34 struct brd_device {
35 	int			brd_number;
36 	struct gendisk		*brd_disk;
37 	struct list_head	brd_list;
38 
39 	/*
40 	 * Backing store of pages. This is the contents of the block device.
41 	 */
42 	struct xarray	        brd_pages;
43 	u64			brd_nr_pages;
44 };
45 
46 /*
47  * Look up and return a brd's page for a given sector.
48  */
brd_lookup_page(struct brd_device * brd,sector_t sector)49 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
50 {
51 	return xa_load(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT);
52 }
53 
54 /*
55  * Insert a new page for a given sector, if one does not already exist.
56  */
brd_insert_page(struct brd_device * brd,sector_t sector,blk_opf_t opf)57 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector,
58 		blk_opf_t opf)
59 	__releases(rcu)
60 	__acquires(rcu)
61 {
62 	gfp_t gfp = (opf & REQ_NOWAIT) ? GFP_NOWAIT : GFP_NOIO;
63 	struct page *page, *ret;
64 
65 	rcu_read_unlock();
66 	page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
67 	if (!page) {
68 		rcu_read_lock();
69 		return ERR_PTR(-ENOMEM);
70 	}
71 
72 	xa_lock(&brd->brd_pages);
73 	ret = __xa_cmpxchg(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT, NULL,
74 			page, gfp);
75 	rcu_read_lock();
76 	if (ret) {
77 		xa_unlock(&brd->brd_pages);
78 		__free_page(page);
79 		if (xa_is_err(ret))
80 			return ERR_PTR(xa_err(ret));
81 		return ret;
82 	}
83 	brd->brd_nr_pages++;
84 	xa_unlock(&brd->brd_pages);
85 	return page;
86 }
87 
88 /*
89  * Free all backing store pages and xarray. This must only be called when
90  * there are no other users of the device.
91  */
brd_free_pages(struct brd_device * brd)92 static void brd_free_pages(struct brd_device *brd)
93 {
94 	struct page *page;
95 	pgoff_t idx;
96 
97 	xa_for_each(&brd->brd_pages, idx, page) {
98 		__free_page(page);
99 		cond_resched();
100 	}
101 
102 	xa_destroy(&brd->brd_pages);
103 }
104 
105 /*
106  * Process a single segment.  The segment is capped to not cross page boundaries
107  * in both the bio and the brd backing memory.
108  */
brd_rw_bvec(struct brd_device * brd,struct bio * bio)109 static bool brd_rw_bvec(struct brd_device *brd, struct bio *bio)
110 {
111 	struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
112 	sector_t sector = bio->bi_iter.bi_sector;
113 	u32 offset = (sector & (PAGE_SECTORS - 1)) << SECTOR_SHIFT;
114 	blk_opf_t opf = bio->bi_opf;
115 	struct page *page;
116 	void *kaddr;
117 
118 	bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
119 
120 	rcu_read_lock();
121 	page = brd_lookup_page(brd, sector);
122 	if (!page && op_is_write(opf)) {
123 		page = brd_insert_page(brd, sector, opf);
124 		if (IS_ERR(page))
125 			goto out_error;
126 	}
127 
128 	kaddr = bvec_kmap_local(&bv);
129 	if (op_is_write(opf)) {
130 		memcpy_to_page(page, offset, kaddr, bv.bv_len);
131 	} else {
132 		if (page)
133 			memcpy_from_page(kaddr, page, offset, bv.bv_len);
134 		else
135 			memset(kaddr, 0, bv.bv_len);
136 	}
137 	kunmap_local(kaddr);
138 	rcu_read_unlock();
139 
140 	bio_advance_iter_single(bio, &bio->bi_iter, bv.bv_len);
141 	return true;
142 
143 out_error:
144 	rcu_read_unlock();
145 	if (PTR_ERR(page) == -ENOMEM && (opf & REQ_NOWAIT))
146 		bio_wouldblock_error(bio);
147 	else
148 		bio_io_error(bio);
149 	return false;
150 }
151 
brd_free_one_page(struct rcu_head * head)152 static void brd_free_one_page(struct rcu_head *head)
153 {
154 	struct page *page = container_of(head, struct page, rcu_head);
155 
156 	__free_page(page);
157 }
158 
brd_do_discard(struct brd_device * brd,sector_t sector,u32 size)159 static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
160 {
161 	sector_t aligned_sector = round_up(sector, PAGE_SECTORS);
162 	sector_t aligned_end = round_down(
163 			sector + (size >> SECTOR_SHIFT), PAGE_SECTORS);
164 	struct page *page;
165 
166 	if (aligned_end <= aligned_sector)
167 		return;
168 
169 	xa_lock(&brd->brd_pages);
170 	while (aligned_sector < aligned_end && aligned_sector < rd_size * 2) {
171 		page = __xa_erase(&brd->brd_pages, aligned_sector >> PAGE_SECTORS_SHIFT);
172 		if (page) {
173 			call_rcu(&page->rcu_head, brd_free_one_page);
174 			brd->brd_nr_pages--;
175 		}
176 		aligned_sector += PAGE_SECTORS;
177 	}
178 	xa_unlock(&brd->brd_pages);
179 }
180 
brd_submit_bio(struct bio * bio)181 static void brd_submit_bio(struct bio *bio)
182 {
183 	struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
184 
185 	if (unlikely(op_is_discard(bio->bi_opf))) {
186 		brd_do_discard(brd, bio->bi_iter.bi_sector,
187 				bio->bi_iter.bi_size);
188 		bio_endio(bio);
189 		return;
190 	}
191 
192 	do {
193 		if (!brd_rw_bvec(brd, bio))
194 			return;
195 	} while (bio->bi_iter.bi_size);
196 
197 	bio_endio(bio);
198 }
199 
200 static const struct block_device_operations brd_fops = {
201 	.owner =		THIS_MODULE,
202 	.submit_bio =		brd_submit_bio,
203 };
204 
205 /*
206  * And now the modules code and kernel interface.
207  */
208 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
209 module_param(rd_nr, int, 0444);
210 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
211 
212 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
213 module_param(rd_size, ulong, 0444);
214 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
215 
216 static int max_part = 1;
217 module_param(max_part, int, 0444);
218 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
219 
220 MODULE_DESCRIPTION("Ram backed block device driver");
221 MODULE_LICENSE("GPL");
222 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
223 MODULE_ALIAS("rd");
224 
225 #ifndef MODULE
226 /* Legacy boot options - nonmodular */
ramdisk_size(char * str)227 static int __init ramdisk_size(char *str)
228 {
229 	rd_size = simple_strtol(str, NULL, 0);
230 	return 1;
231 }
232 __setup("ramdisk_size=", ramdisk_size);
233 #endif
234 
235 /*
236  * The device scheme is derived from loop.c. Keep them in synch where possible
237  * (should share code eventually).
238  */
239 static LIST_HEAD(brd_devices);
240 static DEFINE_MUTEX(brd_devices_mutex);
241 static struct dentry *brd_debugfs_dir;
242 
brd_find_or_alloc_device(int i)243 static struct brd_device *brd_find_or_alloc_device(int i)
244 {
245 	struct brd_device *brd;
246 
247 	mutex_lock(&brd_devices_mutex);
248 	list_for_each_entry(brd, &brd_devices, brd_list) {
249 		if (brd->brd_number == i) {
250 			mutex_unlock(&brd_devices_mutex);
251 			return ERR_PTR(-EEXIST);
252 		}
253 	}
254 
255 	brd = kzalloc(sizeof(*brd), GFP_KERNEL);
256 	if (!brd) {
257 		mutex_unlock(&brd_devices_mutex);
258 		return ERR_PTR(-ENOMEM);
259 	}
260 	brd->brd_number	= i;
261 	list_add_tail(&brd->brd_list, &brd_devices);
262 	mutex_unlock(&brd_devices_mutex);
263 	return brd;
264 }
265 
brd_free_device(struct brd_device * brd)266 static void brd_free_device(struct brd_device *brd)
267 {
268 	mutex_lock(&brd_devices_mutex);
269 	list_del(&brd->brd_list);
270 	mutex_unlock(&brd_devices_mutex);
271 	kfree(brd);
272 }
273 
brd_alloc(int i)274 static int brd_alloc(int i)
275 {
276 	struct brd_device *brd;
277 	struct gendisk *disk;
278 	char buf[DISK_NAME_LEN];
279 	int err = -ENOMEM;
280 	struct queue_limits lim = {
281 		/*
282 		 * This is so fdisk will align partitions on 4k, because of
283 		 * direct_access API needing 4k alignment, returning a PFN
284 		 * (This is only a problem on very small devices <= 4M,
285 		 *  otherwise fdisk will align on 1M. Regardless this call
286 		 *  is harmless)
287 		 */
288 		.physical_block_size	= PAGE_SIZE,
289 		.max_hw_discard_sectors	= UINT_MAX,
290 		.max_discard_segments	= 1,
291 		.discard_granularity	= PAGE_SIZE,
292 		.features		= BLK_FEAT_SYNCHRONOUS |
293 					  BLK_FEAT_NOWAIT,
294 	};
295 
296 	brd = brd_find_or_alloc_device(i);
297 	if (IS_ERR(brd))
298 		return PTR_ERR(brd);
299 
300 	xa_init(&brd->brd_pages);
301 
302 	snprintf(buf, DISK_NAME_LEN, "ram%d", i);
303 	if (!IS_ERR_OR_NULL(brd_debugfs_dir))
304 		debugfs_create_u64(buf, 0444, brd_debugfs_dir,
305 				&brd->brd_nr_pages);
306 
307 	disk = brd->brd_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
308 	if (IS_ERR(disk)) {
309 		err = PTR_ERR(disk);
310 		goto out_free_dev;
311 	}
312 	disk->major		= RAMDISK_MAJOR;
313 	disk->first_minor	= i * max_part;
314 	disk->minors		= max_part;
315 	disk->fops		= &brd_fops;
316 	disk->private_data	= brd;
317 	strscpy(disk->disk_name, buf, DISK_NAME_LEN);
318 	set_capacity(disk, rd_size * 2);
319 
320 	err = add_disk(disk);
321 	if (err)
322 		goto out_cleanup_disk;
323 
324 	return 0;
325 
326 out_cleanup_disk:
327 	put_disk(disk);
328 out_free_dev:
329 	brd_free_device(brd);
330 	return err;
331 }
332 
brd_probe(dev_t dev)333 static void brd_probe(dev_t dev)
334 {
335 	brd_alloc(MINOR(dev) / max_part);
336 }
337 
brd_cleanup(void)338 static void brd_cleanup(void)
339 {
340 	struct brd_device *brd, *next;
341 
342 	debugfs_remove_recursive(brd_debugfs_dir);
343 
344 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
345 		del_gendisk(brd->brd_disk);
346 		put_disk(brd->brd_disk);
347 		brd_free_pages(brd);
348 		brd_free_device(brd);
349 	}
350 }
351 
brd_check_and_reset_par(void)352 static inline void brd_check_and_reset_par(void)
353 {
354 	if (unlikely(!max_part))
355 		max_part = 1;
356 
357 	/*
358 	 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
359 	 * otherwise, it is possiable to get same dev_t when adding partitions.
360 	 */
361 	if ((1U << MINORBITS) % max_part != 0)
362 		max_part = 1UL << fls(max_part);
363 
364 	if (max_part > DISK_MAX_PARTS) {
365 		pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
366 			DISK_MAX_PARTS, DISK_MAX_PARTS);
367 		max_part = DISK_MAX_PARTS;
368 	}
369 }
370 
brd_init(void)371 static int __init brd_init(void)
372 {
373 	int err, i;
374 
375 	/*
376 	 * brd module now has a feature to instantiate underlying device
377 	 * structure on-demand, provided that there is an access dev node.
378 	 *
379 	 * (1) if rd_nr is specified, create that many upfront. else
380 	 *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
381 	 * (2) User can further extend brd devices by create dev node themselves
382 	 *     and have kernel automatically instantiate actual device
383 	 *     on-demand. Example:
384 	 *		mknod /path/devnod_name b 1 X	# 1 is the rd major
385 	 *		fdisk -l /path/devnod_name
386 	 *	If (X / max_part) was not already created it will be created
387 	 *	dynamically.
388 	 */
389 
390 	brd_check_and_reset_par();
391 
392 	brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
393 
394 	if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
395 		err = -EIO;
396 		goto out_free;
397 	}
398 
399 	for (i = 0; i < rd_nr; i++)
400 		brd_alloc(i);
401 
402 	pr_info("brd: module loaded\n");
403 	return 0;
404 
405 out_free:
406 	brd_cleanup();
407 
408 	pr_info("brd: module NOT loaded !!!\n");
409 	return err;
410 }
411 
brd_exit(void)412 static void __exit brd_exit(void)
413 {
414 
415 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
416 	brd_cleanup();
417 
418 	pr_info("brd: module unloaded\n");
419 }
420 
421 module_init(brd_init);
422 module_exit(brd_exit);
423 
424