1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/intel/intel_lpe_audio.h>
43
44 #include <media/cec-notifier.h>
45
46 #include "g4x_hdmi.h"
47 #include "i915_drv.h"
48 #include "i915_reg.h"
49 #include "intel_atomic.h"
50 #include "intel_audio.h"
51 #include "intel_connector.h"
52 #include "intel_cx0_phy.h"
53 #include "intel_ddi.h"
54 #include "intel_de.h"
55 #include "intel_display_driver.h"
56 #include "intel_display_types.h"
57 #include "intel_dp.h"
58 #include "intel_gmbus.h"
59 #include "intel_hdcp.h"
60 #include "intel_hdcp_regs.h"
61 #include "intel_hdcp_shim.h"
62 #include "intel_hdmi.h"
63 #include "intel_lspcon.h"
64 #include "intel_panel.h"
65 #include "intel_pfit.h"
66 #include "intel_snps_phy.h"
67
68 static void
assert_hdmi_port_disabled(struct intel_hdmi * intel_hdmi)69 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
70 {
71 struct intel_display *display = to_intel_display(intel_hdmi);
72 u32 enabled_bits;
73
74 enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
75
76 drm_WARN(display->drm,
77 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
78 "HDMI port enabled, expecting disabled\n");
79 }
80
81 static void
assert_hdmi_transcoder_func_disabled(struct intel_display * display,enum transcoder cpu_transcoder)82 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
83 enum transcoder cpu_transcoder)
84 {
85 drm_WARN(display->drm,
86 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
87 TRANS_DDI_FUNC_ENABLE,
88 "HDMI transcoder function enabled, expecting disabled\n");
89 }
90
g4x_infoframe_index(unsigned int type)91 static u32 g4x_infoframe_index(unsigned int type)
92 {
93 switch (type) {
94 case HDMI_PACKET_TYPE_GAMUT_METADATA:
95 return VIDEO_DIP_SELECT_GAMUT;
96 case HDMI_INFOFRAME_TYPE_AVI:
97 return VIDEO_DIP_SELECT_AVI;
98 case HDMI_INFOFRAME_TYPE_SPD:
99 return VIDEO_DIP_SELECT_SPD;
100 case HDMI_INFOFRAME_TYPE_VENDOR:
101 return VIDEO_DIP_SELECT_VENDOR;
102 default:
103 MISSING_CASE(type);
104 return 0;
105 }
106 }
107
g4x_infoframe_enable(unsigned int type)108 static u32 g4x_infoframe_enable(unsigned int type)
109 {
110 switch (type) {
111 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
112 return VIDEO_DIP_ENABLE_GCP;
113 case HDMI_PACKET_TYPE_GAMUT_METADATA:
114 return VIDEO_DIP_ENABLE_GAMUT;
115 case DP_SDP_VSC:
116 return 0;
117 case DP_SDP_ADAPTIVE_SYNC:
118 return 0;
119 case HDMI_INFOFRAME_TYPE_AVI:
120 return VIDEO_DIP_ENABLE_AVI;
121 case HDMI_INFOFRAME_TYPE_SPD:
122 return VIDEO_DIP_ENABLE_SPD;
123 case HDMI_INFOFRAME_TYPE_VENDOR:
124 return VIDEO_DIP_ENABLE_VENDOR;
125 case HDMI_INFOFRAME_TYPE_DRM:
126 return 0;
127 default:
128 MISSING_CASE(type);
129 return 0;
130 }
131 }
132
hsw_infoframe_enable(unsigned int type)133 static u32 hsw_infoframe_enable(unsigned int type)
134 {
135 switch (type) {
136 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
137 return VIDEO_DIP_ENABLE_GCP_HSW;
138 case HDMI_PACKET_TYPE_GAMUT_METADATA:
139 return VIDEO_DIP_ENABLE_GMP_HSW;
140 case DP_SDP_VSC:
141 return VIDEO_DIP_ENABLE_VSC_HSW;
142 case DP_SDP_ADAPTIVE_SYNC:
143 return VIDEO_DIP_ENABLE_AS_ADL;
144 case DP_SDP_PPS:
145 return VDIP_ENABLE_PPS;
146 case HDMI_INFOFRAME_TYPE_AVI:
147 return VIDEO_DIP_ENABLE_AVI_HSW;
148 case HDMI_INFOFRAME_TYPE_SPD:
149 return VIDEO_DIP_ENABLE_SPD_HSW;
150 case HDMI_INFOFRAME_TYPE_VENDOR:
151 return VIDEO_DIP_ENABLE_VS_HSW;
152 case HDMI_INFOFRAME_TYPE_DRM:
153 return VIDEO_DIP_ENABLE_DRM_GLK;
154 default:
155 MISSING_CASE(type);
156 return 0;
157 }
158 }
159
160 static i915_reg_t
hsw_dip_data_reg(struct intel_display * display,enum transcoder cpu_transcoder,unsigned int type,int i)161 hsw_dip_data_reg(struct intel_display *display,
162 enum transcoder cpu_transcoder,
163 unsigned int type,
164 int i)
165 {
166 switch (type) {
167 case HDMI_PACKET_TYPE_GAMUT_METADATA:
168 return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
169 case DP_SDP_VSC:
170 return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
171 case DP_SDP_ADAPTIVE_SYNC:
172 return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
173 case DP_SDP_PPS:
174 return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
175 case HDMI_INFOFRAME_TYPE_AVI:
176 return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
177 case HDMI_INFOFRAME_TYPE_SPD:
178 return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
179 case HDMI_INFOFRAME_TYPE_VENDOR:
180 return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
181 case HDMI_INFOFRAME_TYPE_DRM:
182 return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
183 default:
184 MISSING_CASE(type);
185 return INVALID_MMIO_REG;
186 }
187 }
188
hsw_dip_data_size(struct intel_display * display,unsigned int type)189 static int hsw_dip_data_size(struct intel_display *display,
190 unsigned int type)
191 {
192 switch (type) {
193 case DP_SDP_VSC:
194 return VIDEO_DIP_VSC_DATA_SIZE;
195 case DP_SDP_ADAPTIVE_SYNC:
196 return VIDEO_DIP_ASYNC_DATA_SIZE;
197 case DP_SDP_PPS:
198 return VIDEO_DIP_PPS_DATA_SIZE;
199 case HDMI_PACKET_TYPE_GAMUT_METADATA:
200 if (DISPLAY_VER(display) >= 11)
201 return VIDEO_DIP_GMP_DATA_SIZE;
202 else
203 return VIDEO_DIP_DATA_SIZE;
204 default:
205 return VIDEO_DIP_DATA_SIZE;
206 }
207 }
208
g4x_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)209 static void g4x_write_infoframe(struct intel_encoder *encoder,
210 const struct intel_crtc_state *crtc_state,
211 unsigned int type,
212 const void *frame, ssize_t len)
213 {
214 struct intel_display *display = to_intel_display(encoder);
215 const u32 *data = frame;
216 u32 val = intel_de_read(display, VIDEO_DIP_CTL);
217 int i;
218
219 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
220 "Writing DIP with CTL reg disabled\n");
221
222 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
223 val |= g4x_infoframe_index(type);
224
225 val &= ~g4x_infoframe_enable(type);
226
227 intel_de_write(display, VIDEO_DIP_CTL, val);
228
229 for (i = 0; i < len; i += 4) {
230 intel_de_write(display, VIDEO_DIP_DATA, *data);
231 data++;
232 }
233 /* Write every possible data byte to force correct ECC calculation. */
234 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
235 intel_de_write(display, VIDEO_DIP_DATA, 0);
236
237 val |= g4x_infoframe_enable(type);
238 val &= ~VIDEO_DIP_FREQ_MASK;
239 val |= VIDEO_DIP_FREQ_VSYNC;
240
241 intel_de_write(display, VIDEO_DIP_CTL, val);
242 intel_de_posting_read(display, VIDEO_DIP_CTL);
243 }
244
g4x_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)245 static void g4x_read_infoframe(struct intel_encoder *encoder,
246 const struct intel_crtc_state *crtc_state,
247 unsigned int type,
248 void *frame, ssize_t len)
249 {
250 struct intel_display *display = to_intel_display(encoder);
251 u32 *data = frame;
252 int i;
253
254 intel_de_rmw(display, VIDEO_DIP_CTL,
255 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
256
257 for (i = 0; i < len; i += 4)
258 *data++ = intel_de_read(display, VIDEO_DIP_DATA);
259 }
260
g4x_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)261 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
262 const struct intel_crtc_state *pipe_config)
263 {
264 struct intel_display *display = to_intel_display(encoder);
265 u32 val = intel_de_read(display, VIDEO_DIP_CTL);
266
267 if ((val & VIDEO_DIP_ENABLE) == 0)
268 return 0;
269
270 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
271 return 0;
272
273 return val & (VIDEO_DIP_ENABLE_AVI |
274 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
275 }
276
ibx_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)277 static void ibx_write_infoframe(struct intel_encoder *encoder,
278 const struct intel_crtc_state *crtc_state,
279 unsigned int type,
280 const void *frame, ssize_t len)
281 {
282 struct intel_display *display = to_intel_display(encoder);
283 const u32 *data = frame;
284 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
285 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
286 u32 val = intel_de_read(display, reg);
287 int i;
288
289 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
290 "Writing DIP with CTL reg disabled\n");
291
292 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
293 val |= g4x_infoframe_index(type);
294
295 val &= ~g4x_infoframe_enable(type);
296
297 intel_de_write(display, reg, val);
298
299 for (i = 0; i < len; i += 4) {
300 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
301 *data);
302 data++;
303 }
304 /* Write every possible data byte to force correct ECC calculation. */
305 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
306 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
307
308 val |= g4x_infoframe_enable(type);
309 val &= ~VIDEO_DIP_FREQ_MASK;
310 val |= VIDEO_DIP_FREQ_VSYNC;
311
312 intel_de_write(display, reg, val);
313 intel_de_posting_read(display, reg);
314 }
315
ibx_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)316 static void ibx_read_infoframe(struct intel_encoder *encoder,
317 const struct intel_crtc_state *crtc_state,
318 unsigned int type,
319 void *frame, ssize_t len)
320 {
321 struct intel_display *display = to_intel_display(encoder);
322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
323 u32 *data = frame;
324 int i;
325
326 intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
327 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
328
329 for (i = 0; i < len; i += 4)
330 *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
331 }
332
ibx_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)333 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
334 const struct intel_crtc_state *pipe_config)
335 {
336 struct intel_display *display = to_intel_display(encoder);
337 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
338 i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
339 u32 val = intel_de_read(display, reg);
340
341 if ((val & VIDEO_DIP_ENABLE) == 0)
342 return 0;
343
344 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
345 return 0;
346
347 return val & (VIDEO_DIP_ENABLE_AVI |
348 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
349 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
350 }
351
cpt_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)352 static void cpt_write_infoframe(struct intel_encoder *encoder,
353 const struct intel_crtc_state *crtc_state,
354 unsigned int type,
355 const void *frame, ssize_t len)
356 {
357 struct intel_display *display = to_intel_display(encoder);
358 const u32 *data = frame;
359 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
360 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
361 u32 val = intel_de_read(display, reg);
362 int i;
363
364 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
365 "Writing DIP with CTL reg disabled\n");
366
367 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
368 val |= g4x_infoframe_index(type);
369
370 /* The DIP control register spec says that we need to update the AVI
371 * infoframe without clearing its enable bit */
372 if (type != HDMI_INFOFRAME_TYPE_AVI)
373 val &= ~g4x_infoframe_enable(type);
374
375 intel_de_write(display, reg, val);
376
377 for (i = 0; i < len; i += 4) {
378 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
379 *data);
380 data++;
381 }
382 /* Write every possible data byte to force correct ECC calculation. */
383 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
384 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
385
386 val |= g4x_infoframe_enable(type);
387 val &= ~VIDEO_DIP_FREQ_MASK;
388 val |= VIDEO_DIP_FREQ_VSYNC;
389
390 intel_de_write(display, reg, val);
391 intel_de_posting_read(display, reg);
392 }
393
cpt_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)394 static void cpt_read_infoframe(struct intel_encoder *encoder,
395 const struct intel_crtc_state *crtc_state,
396 unsigned int type,
397 void *frame, ssize_t len)
398 {
399 struct intel_display *display = to_intel_display(encoder);
400 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
401 u32 *data = frame;
402 int i;
403
404 intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
405 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
406
407 for (i = 0; i < len; i += 4)
408 *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
409 }
410
cpt_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)411 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
412 const struct intel_crtc_state *pipe_config)
413 {
414 struct intel_display *display = to_intel_display(encoder);
415 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
416 u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
417
418 if ((val & VIDEO_DIP_ENABLE) == 0)
419 return 0;
420
421 return val & (VIDEO_DIP_ENABLE_AVI |
422 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
423 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
424 }
425
vlv_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)426 static void vlv_write_infoframe(struct intel_encoder *encoder,
427 const struct intel_crtc_state *crtc_state,
428 unsigned int type,
429 const void *frame, ssize_t len)
430 {
431 struct intel_display *display = to_intel_display(encoder);
432 const u32 *data = frame;
433 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
434 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
435 u32 val = intel_de_read(display, reg);
436 int i;
437
438 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
439 "Writing DIP with CTL reg disabled\n");
440
441 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
442 val |= g4x_infoframe_index(type);
443
444 val &= ~g4x_infoframe_enable(type);
445
446 intel_de_write(display, reg, val);
447
448 for (i = 0; i < len; i += 4) {
449 intel_de_write(display,
450 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
451 data++;
452 }
453 /* Write every possible data byte to force correct ECC calculation. */
454 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
455 intel_de_write(display,
456 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
457
458 val |= g4x_infoframe_enable(type);
459 val &= ~VIDEO_DIP_FREQ_MASK;
460 val |= VIDEO_DIP_FREQ_VSYNC;
461
462 intel_de_write(display, reg, val);
463 intel_de_posting_read(display, reg);
464 }
465
vlv_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)466 static void vlv_read_infoframe(struct intel_encoder *encoder,
467 const struct intel_crtc_state *crtc_state,
468 unsigned int type,
469 void *frame, ssize_t len)
470 {
471 struct intel_display *display = to_intel_display(encoder);
472 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
473 u32 *data = frame;
474 int i;
475
476 intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
477 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
478
479 for (i = 0; i < len; i += 4)
480 *data++ = intel_de_read(display,
481 VLV_TVIDEO_DIP_DATA(crtc->pipe));
482 }
483
vlv_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)484 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
485 const struct intel_crtc_state *pipe_config)
486 {
487 struct intel_display *display = to_intel_display(encoder);
488 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
489 u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
490
491 if ((val & VIDEO_DIP_ENABLE) == 0)
492 return 0;
493
494 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
495 return 0;
496
497 return val & (VIDEO_DIP_ENABLE_AVI |
498 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
499 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
500 }
501
hsw_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)502 void hsw_write_infoframe(struct intel_encoder *encoder,
503 const struct intel_crtc_state *crtc_state,
504 unsigned int type,
505 const void *frame, ssize_t len)
506 {
507 struct intel_display *display = to_intel_display(encoder);
508 const u32 *data = frame;
509 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
510 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
511 int data_size;
512 int i;
513 u32 val = intel_de_read(display, ctl_reg);
514
515 data_size = hsw_dip_data_size(display, type);
516
517 drm_WARN_ON(display->drm, len > data_size);
518
519 val &= ~hsw_infoframe_enable(type);
520 intel_de_write(display, ctl_reg, val);
521
522 for (i = 0; i < len; i += 4) {
523 intel_de_write(display,
524 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
525 *data);
526 data++;
527 }
528 /* Write every possible data byte to force correct ECC calculation. */
529 for (; i < data_size; i += 4)
530 intel_de_write(display,
531 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
532 0);
533
534 /* Wa_14013475917 */
535 if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
536 !crtc_state->has_panel_replay && type == DP_SDP_VSC))
537 val |= hsw_infoframe_enable(type);
538
539 if (type == DP_SDP_VSC)
540 val |= VSC_DIP_HW_DATA_SW_HEA;
541
542 intel_de_write(display, ctl_reg, val);
543 intel_de_posting_read(display, ctl_reg);
544 }
545
hsw_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)546 void hsw_read_infoframe(struct intel_encoder *encoder,
547 const struct intel_crtc_state *crtc_state,
548 unsigned int type, void *frame, ssize_t len)
549 {
550 struct intel_display *display = to_intel_display(encoder);
551 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
552 u32 *data = frame;
553 int i;
554
555 for (i = 0; i < len; i += 4)
556 *data++ = intel_de_read(display,
557 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
558 }
559
hsw_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)560 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
561 const struct intel_crtc_state *pipe_config)
562 {
563 struct intel_display *display = to_intel_display(encoder);
564 u32 val = intel_de_read(display,
565 HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
566 u32 mask;
567
568 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
569 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
570 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
571
572 if (DISPLAY_VER(display) >= 10)
573 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
574
575 if (HAS_AS_SDP(display))
576 mask |= VIDEO_DIP_ENABLE_AS_ADL;
577
578 return val & mask;
579 }
580
581 static const u8 infoframe_type_to_idx[] = {
582 HDMI_PACKET_TYPE_GENERAL_CONTROL,
583 HDMI_PACKET_TYPE_GAMUT_METADATA,
584 DP_SDP_VSC,
585 DP_SDP_ADAPTIVE_SYNC,
586 HDMI_INFOFRAME_TYPE_AVI,
587 HDMI_INFOFRAME_TYPE_SPD,
588 HDMI_INFOFRAME_TYPE_VENDOR,
589 HDMI_INFOFRAME_TYPE_DRM,
590 };
591
intel_hdmi_infoframe_enable(unsigned int type)592 u32 intel_hdmi_infoframe_enable(unsigned int type)
593 {
594 int i;
595
596 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
597 if (infoframe_type_to_idx[i] == type)
598 return BIT(i);
599 }
600
601 return 0;
602 }
603
intel_hdmi_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)604 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
605 const struct intel_crtc_state *crtc_state)
606 {
607 struct intel_display *display = to_intel_display(encoder);
608 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
609 u32 val, ret = 0;
610 int i;
611
612 val = dig_port->infoframes_enabled(encoder, crtc_state);
613
614 /* map from hardware bits to dip idx */
615 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
616 unsigned int type = infoframe_type_to_idx[i];
617
618 if (HAS_DDI(display)) {
619 if (val & hsw_infoframe_enable(type))
620 ret |= BIT(i);
621 } else {
622 if (val & g4x_infoframe_enable(type))
623 ret |= BIT(i);
624 }
625 }
626
627 return ret;
628 }
629
630 /*
631 * The data we write to the DIP data buffer registers is 1 byte bigger than the
632 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
633 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
634 * used for both technologies.
635 *
636 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
637 * DW1: DB3 | DB2 | DB1 | DB0
638 * DW2: DB7 | DB6 | DB5 | DB4
639 * DW3: ...
640 *
641 * (HB is Header Byte, DB is Data Byte)
642 *
643 * The hdmi pack() functions don't know about that hardware specific hole so we
644 * trick them by giving an offset into the buffer and moving back the header
645 * bytes by one.
646 */
intel_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,const union hdmi_infoframe * frame)647 static void intel_write_infoframe(struct intel_encoder *encoder,
648 const struct intel_crtc_state *crtc_state,
649 enum hdmi_infoframe_type type,
650 const union hdmi_infoframe *frame)
651 {
652 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
653 u8 buffer[VIDEO_DIP_DATA_SIZE];
654 ssize_t len;
655
656 if ((crtc_state->infoframes.enable &
657 intel_hdmi_infoframe_enable(type)) == 0)
658 return;
659
660 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
661 return;
662
663 /* see comment above for the reason for this offset */
664 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
665 if (drm_WARN_ON(encoder->base.dev, len < 0))
666 return;
667
668 /* Insert the 'hole' (see big comment above) at position 3 */
669 memmove(&buffer[0], &buffer[1], 3);
670 buffer[3] = 0;
671 len++;
672
673 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
674 }
675
intel_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,union hdmi_infoframe * frame)676 void intel_read_infoframe(struct intel_encoder *encoder,
677 const struct intel_crtc_state *crtc_state,
678 enum hdmi_infoframe_type type,
679 union hdmi_infoframe *frame)
680 {
681 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
682 u8 buffer[VIDEO_DIP_DATA_SIZE];
683 int ret;
684
685 if ((crtc_state->infoframes.enable &
686 intel_hdmi_infoframe_enable(type)) == 0)
687 return;
688
689 dig_port->read_infoframe(encoder, crtc_state,
690 type, buffer, sizeof(buffer));
691
692 /* Fill the 'hole' (see big comment above) at position 3 */
693 memmove(&buffer[1], &buffer[0], 3);
694
695 /* see comment above for the reason for this offset */
696 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
697 if (ret) {
698 drm_dbg_kms(encoder->base.dev,
699 "Failed to unpack infoframe type 0x%02x\n", type);
700 return;
701 }
702
703 if (frame->any.type != type)
704 drm_dbg_kms(encoder->base.dev,
705 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
706 frame->any.type, type);
707 }
708
709 static bool
intel_hdmi_compute_avi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)710 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
711 struct intel_crtc_state *crtc_state,
712 struct drm_connector_state *conn_state)
713 {
714 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
715 const struct drm_display_mode *adjusted_mode =
716 &crtc_state->hw.adjusted_mode;
717 struct drm_connector *connector = conn_state->connector;
718 int ret;
719
720 if (!crtc_state->has_infoframe)
721 return true;
722
723 crtc_state->infoframes.enable |=
724 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
725
726 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
727 adjusted_mode);
728 if (ret)
729 return false;
730
731 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
732 frame->colorspace = HDMI_COLORSPACE_YUV420;
733 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
734 frame->colorspace = HDMI_COLORSPACE_YUV444;
735 else
736 frame->colorspace = HDMI_COLORSPACE_RGB;
737
738 drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
739
740 /* nonsense combination */
741 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
742 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
743
744 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
745 drm_hdmi_avi_infoframe_quant_range(frame, connector,
746 adjusted_mode,
747 crtc_state->limited_color_range ?
748 HDMI_QUANTIZATION_RANGE_LIMITED :
749 HDMI_QUANTIZATION_RANGE_FULL);
750 } else {
751 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
752 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
753 }
754
755 drm_hdmi_avi_infoframe_content_type(frame, conn_state);
756
757 /* TODO: handle pixel repetition for YCBCR420 outputs */
758
759 ret = hdmi_avi_infoframe_check(frame);
760 if (drm_WARN_ON(encoder->base.dev, ret))
761 return false;
762
763 return true;
764 }
765
766 static bool
intel_hdmi_compute_spd_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)767 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
768 struct intel_crtc_state *crtc_state,
769 struct drm_connector_state *conn_state)
770 {
771 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
772 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
773 int ret;
774
775 if (!crtc_state->has_infoframe)
776 return true;
777
778 crtc_state->infoframes.enable |=
779 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
780
781 if (IS_DGFX(i915))
782 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
783 else
784 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
785
786 if (drm_WARN_ON(encoder->base.dev, ret))
787 return false;
788
789 frame->sdi = HDMI_SPD_SDI_PC;
790
791 ret = hdmi_spd_infoframe_check(frame);
792 if (drm_WARN_ON(encoder->base.dev, ret))
793 return false;
794
795 return true;
796 }
797
798 static bool
intel_hdmi_compute_hdmi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)799 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
800 struct intel_crtc_state *crtc_state,
801 struct drm_connector_state *conn_state)
802 {
803 struct hdmi_vendor_infoframe *frame =
804 &crtc_state->infoframes.hdmi.vendor.hdmi;
805 const struct drm_display_info *info =
806 &conn_state->connector->display_info;
807 int ret;
808
809 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
810 return true;
811
812 crtc_state->infoframes.enable |=
813 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
814
815 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
816 conn_state->connector,
817 &crtc_state->hw.adjusted_mode);
818 if (drm_WARN_ON(encoder->base.dev, ret))
819 return false;
820
821 ret = hdmi_vendor_infoframe_check(frame);
822 if (drm_WARN_ON(encoder->base.dev, ret))
823 return false;
824
825 return true;
826 }
827
828 static bool
intel_hdmi_compute_drm_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)829 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
830 struct intel_crtc_state *crtc_state,
831 struct drm_connector_state *conn_state)
832 {
833 struct intel_display *display = to_intel_display(encoder);
834 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
835 int ret;
836
837 if (DISPLAY_VER(display) < 10)
838 return true;
839
840 if (!crtc_state->has_infoframe)
841 return true;
842
843 if (!conn_state->hdr_output_metadata)
844 return true;
845
846 crtc_state->infoframes.enable |=
847 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
848
849 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
850 if (ret < 0) {
851 drm_dbg_kms(display->drm,
852 "couldn't set HDR metadata in infoframe\n");
853 return false;
854 }
855
856 ret = hdmi_drm_infoframe_check(frame);
857 if (drm_WARN_ON(display->drm, ret))
858 return false;
859
860 return true;
861 }
862
g4x_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)863 static void g4x_set_infoframes(struct intel_encoder *encoder,
864 bool enable,
865 const struct intel_crtc_state *crtc_state,
866 const struct drm_connector_state *conn_state)
867 {
868 struct intel_display *display = to_intel_display(encoder);
869 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
870 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
871 i915_reg_t reg = VIDEO_DIP_CTL;
872 u32 val = intel_de_read(display, reg);
873 u32 port = VIDEO_DIP_PORT(encoder->port);
874
875 assert_hdmi_port_disabled(intel_hdmi);
876
877 /* If the registers were not initialized yet, they might be zeroes,
878 * which means we're selecting the AVI DIP and we're setting its
879 * frequency to once. This seems to really confuse the HW and make
880 * things stop working (the register spec says the AVI always needs to
881 * be sent every VSync). So here we avoid writing to the register more
882 * than we need and also explicitly select the AVI DIP and explicitly
883 * set its frequency to every VSync. Avoiding to write it twice seems to
884 * be enough to solve the problem, but being defensive shouldn't hurt us
885 * either. */
886 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
887
888 if (!enable) {
889 if (!(val & VIDEO_DIP_ENABLE))
890 return;
891 if (port != (val & VIDEO_DIP_PORT_MASK)) {
892 drm_dbg_kms(display->drm,
893 "video DIP still enabled on port %c\n",
894 (val & VIDEO_DIP_PORT_MASK) >> 29);
895 return;
896 }
897 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
898 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
899 intel_de_write(display, reg, val);
900 intel_de_posting_read(display, reg);
901 return;
902 }
903
904 if (port != (val & VIDEO_DIP_PORT_MASK)) {
905 if (val & VIDEO_DIP_ENABLE) {
906 drm_dbg_kms(display->drm,
907 "video DIP already enabled on port %c\n",
908 (val & VIDEO_DIP_PORT_MASK) >> 29);
909 return;
910 }
911 val &= ~VIDEO_DIP_PORT_MASK;
912 val |= port;
913 }
914
915 val |= VIDEO_DIP_ENABLE;
916 val &= ~(VIDEO_DIP_ENABLE_AVI |
917 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
918
919 intel_de_write(display, reg, val);
920 intel_de_posting_read(display, reg);
921
922 intel_write_infoframe(encoder, crtc_state,
923 HDMI_INFOFRAME_TYPE_AVI,
924 &crtc_state->infoframes.avi);
925 intel_write_infoframe(encoder, crtc_state,
926 HDMI_INFOFRAME_TYPE_SPD,
927 &crtc_state->infoframes.spd);
928 intel_write_infoframe(encoder, crtc_state,
929 HDMI_INFOFRAME_TYPE_VENDOR,
930 &crtc_state->infoframes.hdmi);
931 }
932
933 /*
934 * Determine if default_phase=1 can be indicated in the GCP infoframe.
935 *
936 * From HDMI specification 1.4a:
937 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
938 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
939 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
940 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
941 * phase of 0
942 */
gcp_default_phase_possible(int pipe_bpp,const struct drm_display_mode * mode)943 static bool gcp_default_phase_possible(int pipe_bpp,
944 const struct drm_display_mode *mode)
945 {
946 unsigned int pixels_per_group;
947
948 switch (pipe_bpp) {
949 case 30:
950 /* 4 pixels in 5 clocks */
951 pixels_per_group = 4;
952 break;
953 case 36:
954 /* 2 pixels in 3 clocks */
955 pixels_per_group = 2;
956 break;
957 case 48:
958 /* 1 pixel in 2 clocks */
959 pixels_per_group = 1;
960 break;
961 default:
962 /* phase information not relevant for 8bpc */
963 return false;
964 }
965
966 return mode->crtc_hdisplay % pixels_per_group == 0 &&
967 mode->crtc_htotal % pixels_per_group == 0 &&
968 mode->crtc_hblank_start % pixels_per_group == 0 &&
969 mode->crtc_hblank_end % pixels_per_group == 0 &&
970 mode->crtc_hsync_start % pixels_per_group == 0 &&
971 mode->crtc_hsync_end % pixels_per_group == 0 &&
972 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
973 mode->crtc_htotal/2 % pixels_per_group == 0);
974 }
975
intel_hdmi_set_gcp_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)976 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
977 const struct intel_crtc_state *crtc_state,
978 const struct drm_connector_state *conn_state)
979 {
980 struct intel_display *display = to_intel_display(encoder);
981 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 i915_reg_t reg;
984
985 if ((crtc_state->infoframes.enable &
986 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
987 return false;
988
989 if (HAS_DDI(display))
990 reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
991 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
992 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
993 else if (HAS_PCH_SPLIT(dev_priv))
994 reg = TVIDEO_DIP_GCP(crtc->pipe);
995 else
996 return false;
997
998 intel_de_write(display, reg, crtc_state->infoframes.gcp);
999
1000 return true;
1001 }
1002
intel_hdmi_read_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)1003 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1004 struct intel_crtc_state *crtc_state)
1005 {
1006 struct intel_display *display = to_intel_display(encoder);
1007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1008 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1009 i915_reg_t reg;
1010
1011 if ((crtc_state->infoframes.enable &
1012 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1013 return;
1014
1015 if (HAS_DDI(display))
1016 reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1017 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1018 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1019 else if (HAS_PCH_SPLIT(dev_priv))
1020 reg = TVIDEO_DIP_GCP(crtc->pipe);
1021 else
1022 return;
1023
1024 crtc_state->infoframes.gcp = intel_de_read(display, reg);
1025 }
1026
intel_hdmi_compute_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)1027 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1028 struct intel_crtc_state *crtc_state,
1029 struct drm_connector_state *conn_state)
1030 {
1031 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1032
1033 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1034 return;
1035
1036 crtc_state->infoframes.enable |=
1037 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1038
1039 /* Indicate color indication for deep color mode */
1040 if (crtc_state->pipe_bpp > 24)
1041 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1042
1043 /* Enable default_phase whenever the display mode is suitably aligned */
1044 if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1045 &crtc_state->hw.adjusted_mode))
1046 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1047 }
1048
ibx_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1049 static void ibx_set_infoframes(struct intel_encoder *encoder,
1050 bool enable,
1051 const struct intel_crtc_state *crtc_state,
1052 const struct drm_connector_state *conn_state)
1053 {
1054 struct intel_display *display = to_intel_display(encoder);
1055 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1056 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1057 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1058 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1059 u32 val = intel_de_read(display, reg);
1060 u32 port = VIDEO_DIP_PORT(encoder->port);
1061
1062 assert_hdmi_port_disabled(intel_hdmi);
1063
1064 /* See the big comment in g4x_set_infoframes() */
1065 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1066
1067 if (!enable) {
1068 if (!(val & VIDEO_DIP_ENABLE))
1069 return;
1070 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1071 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1072 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1073 intel_de_write(display, reg, val);
1074 intel_de_posting_read(display, reg);
1075 return;
1076 }
1077
1078 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1079 drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1080 "DIP already enabled on port %c\n",
1081 (val & VIDEO_DIP_PORT_MASK) >> 29);
1082 val &= ~VIDEO_DIP_PORT_MASK;
1083 val |= port;
1084 }
1085
1086 val |= VIDEO_DIP_ENABLE;
1087 val &= ~(VIDEO_DIP_ENABLE_AVI |
1088 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1089 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1090
1091 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1092 val |= VIDEO_DIP_ENABLE_GCP;
1093
1094 intel_de_write(display, reg, val);
1095 intel_de_posting_read(display, reg);
1096
1097 intel_write_infoframe(encoder, crtc_state,
1098 HDMI_INFOFRAME_TYPE_AVI,
1099 &crtc_state->infoframes.avi);
1100 intel_write_infoframe(encoder, crtc_state,
1101 HDMI_INFOFRAME_TYPE_SPD,
1102 &crtc_state->infoframes.spd);
1103 intel_write_infoframe(encoder, crtc_state,
1104 HDMI_INFOFRAME_TYPE_VENDOR,
1105 &crtc_state->infoframes.hdmi);
1106 }
1107
cpt_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1108 static void cpt_set_infoframes(struct intel_encoder *encoder,
1109 bool enable,
1110 const struct intel_crtc_state *crtc_state,
1111 const struct drm_connector_state *conn_state)
1112 {
1113 struct intel_display *display = to_intel_display(encoder);
1114 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1115 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1116 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1117 u32 val = intel_de_read(display, reg);
1118
1119 assert_hdmi_port_disabled(intel_hdmi);
1120
1121 /* See the big comment in g4x_set_infoframes() */
1122 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1123
1124 if (!enable) {
1125 if (!(val & VIDEO_DIP_ENABLE))
1126 return;
1127 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1128 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1129 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1130 intel_de_write(display, reg, val);
1131 intel_de_posting_read(display, reg);
1132 return;
1133 }
1134
1135 /* Set both together, unset both together: see the spec. */
1136 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1137 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1138 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1139
1140 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1141 val |= VIDEO_DIP_ENABLE_GCP;
1142
1143 intel_de_write(display, reg, val);
1144 intel_de_posting_read(display, reg);
1145
1146 intel_write_infoframe(encoder, crtc_state,
1147 HDMI_INFOFRAME_TYPE_AVI,
1148 &crtc_state->infoframes.avi);
1149 intel_write_infoframe(encoder, crtc_state,
1150 HDMI_INFOFRAME_TYPE_SPD,
1151 &crtc_state->infoframes.spd);
1152 intel_write_infoframe(encoder, crtc_state,
1153 HDMI_INFOFRAME_TYPE_VENDOR,
1154 &crtc_state->infoframes.hdmi);
1155 }
1156
vlv_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1157 static void vlv_set_infoframes(struct intel_encoder *encoder,
1158 bool enable,
1159 const struct intel_crtc_state *crtc_state,
1160 const struct drm_connector_state *conn_state)
1161 {
1162 struct intel_display *display = to_intel_display(encoder);
1163 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1164 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1165 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1166 u32 val = intel_de_read(display, reg);
1167 u32 port = VIDEO_DIP_PORT(encoder->port);
1168
1169 assert_hdmi_port_disabled(intel_hdmi);
1170
1171 /* See the big comment in g4x_set_infoframes() */
1172 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1173
1174 if (!enable) {
1175 if (!(val & VIDEO_DIP_ENABLE))
1176 return;
1177 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1178 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1179 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1180 intel_de_write(display, reg, val);
1181 intel_de_posting_read(display, reg);
1182 return;
1183 }
1184
1185 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1186 drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1187 "DIP already enabled on port %c\n",
1188 (val & VIDEO_DIP_PORT_MASK) >> 29);
1189 val &= ~VIDEO_DIP_PORT_MASK;
1190 val |= port;
1191 }
1192
1193 val |= VIDEO_DIP_ENABLE;
1194 val &= ~(VIDEO_DIP_ENABLE_AVI |
1195 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1196 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1197
1198 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1199 val |= VIDEO_DIP_ENABLE_GCP;
1200
1201 intel_de_write(display, reg, val);
1202 intel_de_posting_read(display, reg);
1203
1204 intel_write_infoframe(encoder, crtc_state,
1205 HDMI_INFOFRAME_TYPE_AVI,
1206 &crtc_state->infoframes.avi);
1207 intel_write_infoframe(encoder, crtc_state,
1208 HDMI_INFOFRAME_TYPE_SPD,
1209 &crtc_state->infoframes.spd);
1210 intel_write_infoframe(encoder, crtc_state,
1211 HDMI_INFOFRAME_TYPE_VENDOR,
1212 &crtc_state->infoframes.hdmi);
1213 }
1214
intel_hdmi_fastset_infoframes(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1215 void intel_hdmi_fastset_infoframes(struct intel_encoder *encoder,
1216 const struct intel_crtc_state *crtc_state,
1217 const struct drm_connector_state *conn_state)
1218 {
1219 struct intel_display *display = to_intel_display(encoder);
1220 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1221 crtc_state->cpu_transcoder);
1222 u32 val = intel_de_read(display, reg);
1223
1224 if ((crtc_state->infoframes.enable &
1225 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM)) == 0 &&
1226 (val & VIDEO_DIP_ENABLE_DRM_GLK) == 0)
1227 return;
1228
1229 val &= ~(VIDEO_DIP_ENABLE_DRM_GLK);
1230
1231 intel_de_write(display, reg, val);
1232 intel_de_posting_read(display, reg);
1233
1234 intel_write_infoframe(encoder, crtc_state,
1235 HDMI_INFOFRAME_TYPE_DRM,
1236 &crtc_state->infoframes.drm);
1237 }
1238
hsw_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1239 static void hsw_set_infoframes(struct intel_encoder *encoder,
1240 bool enable,
1241 const struct intel_crtc_state *crtc_state,
1242 const struct drm_connector_state *conn_state)
1243 {
1244 struct intel_display *display = to_intel_display(encoder);
1245 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1246 crtc_state->cpu_transcoder);
1247 u32 val = intel_de_read(display, reg);
1248
1249 assert_hdmi_transcoder_func_disabled(display,
1250 crtc_state->cpu_transcoder);
1251
1252 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1253 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1254 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1255 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1256
1257 if (!enable) {
1258 intel_de_write(display, reg, val);
1259 intel_de_posting_read(display, reg);
1260 return;
1261 }
1262
1263 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1264 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1265
1266 intel_de_write(display, reg, val);
1267 intel_de_posting_read(display, reg);
1268
1269 intel_write_infoframe(encoder, crtc_state,
1270 HDMI_INFOFRAME_TYPE_AVI,
1271 &crtc_state->infoframes.avi);
1272 intel_write_infoframe(encoder, crtc_state,
1273 HDMI_INFOFRAME_TYPE_SPD,
1274 &crtc_state->infoframes.spd);
1275 intel_write_infoframe(encoder, crtc_state,
1276 HDMI_INFOFRAME_TYPE_VENDOR,
1277 &crtc_state->infoframes.hdmi);
1278 intel_write_infoframe(encoder, crtc_state,
1279 HDMI_INFOFRAME_TYPE_DRM,
1280 &crtc_state->infoframes.drm);
1281 }
1282
intel_dp_dual_mode_set_tmds_output(struct intel_hdmi * hdmi,bool enable)1283 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1284 {
1285 struct intel_display *display = to_intel_display(hdmi);
1286 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1287
1288 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1289 return;
1290
1291 drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1292 enable ? "Enabling" : "Disabling");
1293
1294 drm_dp_dual_mode_set_tmds_output(display->drm,
1295 hdmi->dp_dual_mode.type, ddc, enable);
1296 }
1297
intel_hdmi_hdcp_read(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1298 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1299 unsigned int offset, void *buffer, size_t size)
1300 {
1301 struct intel_hdmi *hdmi = &dig_port->hdmi;
1302 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1303 int ret;
1304 u8 start = offset & 0xff;
1305 struct i2c_msg msgs[] = {
1306 {
1307 .addr = DRM_HDCP_DDC_ADDR,
1308 .flags = 0,
1309 .len = 1,
1310 .buf = &start,
1311 },
1312 {
1313 .addr = DRM_HDCP_DDC_ADDR,
1314 .flags = I2C_M_RD,
1315 .len = size,
1316 .buf = buffer
1317 }
1318 };
1319 ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1320 if (ret == ARRAY_SIZE(msgs))
1321 return 0;
1322 return ret >= 0 ? -EIO : ret;
1323 }
1324
intel_hdmi_hdcp_write(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1325 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1326 unsigned int offset, void *buffer, size_t size)
1327 {
1328 struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1330 int ret;
1331 u8 *write_buf;
1332 struct i2c_msg msg;
1333
1334 write_buf = kzalloc(size + 1, GFP_KERNEL);
1335 if (!write_buf)
1336 return -ENOMEM;
1337
1338 write_buf[0] = offset & 0xff;
1339 memcpy(&write_buf[1], buffer, size);
1340
1341 msg.addr = DRM_HDCP_DDC_ADDR;
1342 msg.flags = 0;
1343 msg.len = size + 1;
1344 msg.buf = write_buf;
1345
1346 ret = i2c_transfer(ddc, &msg, 1);
1347 if (ret == 1)
1348 ret = 0;
1349 else if (ret >= 0)
1350 ret = -EIO;
1351
1352 kfree(write_buf);
1353 return ret;
1354 }
1355
1356 static
intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port * dig_port,u8 * an)1357 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1358 u8 *an)
1359 {
1360 struct intel_display *display = to_intel_display(dig_port);
1361 struct intel_hdmi *hdmi = &dig_port->hdmi;
1362 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1363 int ret;
1364
1365 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1366 DRM_HDCP_AN_LEN);
1367 if (ret) {
1368 drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1369 ret);
1370 return ret;
1371 }
1372
1373 ret = intel_gmbus_output_aksv(ddc);
1374 if (ret < 0) {
1375 drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1376 return ret;
1377 }
1378 return 0;
1379 }
1380
intel_hdmi_hdcp_read_bksv(struct intel_digital_port * dig_port,u8 * bksv)1381 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1382 u8 *bksv)
1383 {
1384 struct intel_display *display = to_intel_display(dig_port);
1385
1386 int ret;
1387 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1388 DRM_HDCP_KSV_LEN);
1389 if (ret)
1390 drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1391 ret);
1392 return ret;
1393 }
1394
1395 static
intel_hdmi_hdcp_read_bstatus(struct intel_digital_port * dig_port,u8 * bstatus)1396 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1397 u8 *bstatus)
1398 {
1399 struct intel_display *display = to_intel_display(dig_port);
1400
1401 int ret;
1402 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1403 bstatus, DRM_HDCP_BSTATUS_LEN);
1404 if (ret)
1405 drm_dbg_kms(display->drm,
1406 "Read bstatus over DDC failed (%d)\n",
1407 ret);
1408 return ret;
1409 }
1410
1411 static
intel_hdmi_hdcp_repeater_present(struct intel_digital_port * dig_port,bool * repeater_present)1412 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1413 bool *repeater_present)
1414 {
1415 struct intel_display *display = to_intel_display(dig_port);
1416 int ret;
1417 u8 val;
1418
1419 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 if (ret) {
1421 drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1422 ret);
1423 return ret;
1424 }
1425 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1426 return 0;
1427 }
1428
1429 static
intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port * dig_port,u8 * ri_prime)1430 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1431 u8 *ri_prime)
1432 {
1433 struct intel_display *display = to_intel_display(dig_port);
1434
1435 int ret;
1436 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1437 ri_prime, DRM_HDCP_RI_LEN);
1438 if (ret)
1439 drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1440 ret);
1441 return ret;
1442 }
1443
1444 static
intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port * dig_port,bool * ksv_ready)1445 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1446 bool *ksv_ready)
1447 {
1448 struct intel_display *display = to_intel_display(dig_port);
1449 int ret;
1450 u8 val;
1451
1452 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1453 if (ret) {
1454 drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1455 ret);
1456 return ret;
1457 }
1458 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1459 return 0;
1460 }
1461
1462 static
intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port * dig_port,int num_downstream,u8 * ksv_fifo)1463 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1464 int num_downstream, u8 *ksv_fifo)
1465 {
1466 struct intel_display *display = to_intel_display(dig_port);
1467 int ret;
1468 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1469 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1470 if (ret) {
1471 drm_dbg_kms(display->drm,
1472 "Read ksv fifo over DDC failed (%d)\n", ret);
1473 return ret;
1474 }
1475 return 0;
1476 }
1477
1478 static
intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port * dig_port,int i,u32 * part)1479 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1480 int i, u32 *part)
1481 {
1482 struct intel_display *display = to_intel_display(dig_port);
1483 int ret;
1484
1485 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1486 return -EINVAL;
1487
1488 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1489 part, DRM_HDCP_V_PRIME_PART_LEN);
1490 if (ret)
1491 drm_dbg_kms(display->drm,
1492 "Read V'[%d] over DDC failed (%d)\n",
1493 i, ret);
1494 return ret;
1495 }
1496
kbl_repositioning_enc_en_signal(struct intel_connector * connector,enum transcoder cpu_transcoder)1497 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1498 enum transcoder cpu_transcoder)
1499 {
1500 struct intel_display *display = to_intel_display(connector);
1501 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1502 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1503 u32 scanline;
1504 int ret;
1505
1506 for (;;) {
1507 scanline = intel_de_read(display,
1508 PIPEDSL(display, crtc->pipe));
1509 if (scanline > 100 && scanline < 200)
1510 break;
1511 usleep_range(25, 50);
1512 }
1513
1514 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1515 false, TRANS_DDI_HDCP_SIGNALLING);
1516 if (ret) {
1517 drm_err(display->drm,
1518 "Disable HDCP signalling failed (%d)\n", ret);
1519 return ret;
1520 }
1521
1522 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1523 true, TRANS_DDI_HDCP_SIGNALLING);
1524 if (ret) {
1525 drm_err(display->drm,
1526 "Enable HDCP signalling failed (%d)\n", ret);
1527 return ret;
1528 }
1529
1530 return 0;
1531 }
1532
1533 static
intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port * dig_port,enum transcoder cpu_transcoder,bool enable)1534 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1535 enum transcoder cpu_transcoder,
1536 bool enable)
1537 {
1538 struct intel_display *display = to_intel_display(dig_port);
1539 struct intel_hdmi *hdmi = &dig_port->hdmi;
1540 struct intel_connector *connector = hdmi->attached_connector;
1541 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1542 int ret;
1543
1544 if (!enable)
1545 usleep_range(6, 60); /* Bspec says >= 6us */
1546
1547 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1548 cpu_transcoder, enable,
1549 TRANS_DDI_HDCP_SIGNALLING);
1550 if (ret) {
1551 drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1552 enable ? "Enable" : "Disable", ret);
1553 return ret;
1554 }
1555
1556 /*
1557 * WA: To fix incorrect positioning of the window of
1558 * opportunity and enc_en signalling in KABYLAKE.
1559 */
1560 if (IS_KABYLAKE(dev_priv) && enable)
1561 return kbl_repositioning_enc_en_signal(connector,
1562 cpu_transcoder);
1563
1564 return 0;
1565 }
1566
1567 static
intel_hdmi_hdcp_check_link_once(struct intel_digital_port * dig_port,struct intel_connector * connector)1568 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1569 struct intel_connector *connector)
1570 {
1571 struct intel_display *display = to_intel_display(dig_port);
1572 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1573 enum port port = dig_port->base.port;
1574 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1575 int ret;
1576 union {
1577 u32 reg;
1578 u8 shim[DRM_HDCP_RI_LEN];
1579 } ri;
1580
1581 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1582 if (ret)
1583 return false;
1584
1585 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1586
1587 /* Wait for Ri prime match */
1588 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1589 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1590 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1591 drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1592 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1593 port)));
1594 return false;
1595 }
1596 return true;
1597 }
1598
1599 static
intel_hdmi_hdcp_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1600 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1601 struct intel_connector *connector)
1602 {
1603 int retry;
1604
1605 for (retry = 0; retry < 3; retry++)
1606 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1607 return true;
1608
1609 return false;
1610 }
1611
1612 struct hdcp2_hdmi_msg_timeout {
1613 u8 msg_id;
1614 u16 timeout;
1615 };
1616
1617 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1618 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1619 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1620 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1621 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1622 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1623 };
1624
1625 static
intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port * dig_port,u8 * rx_status)1626 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1627 u8 *rx_status)
1628 {
1629 return intel_hdmi_hdcp_read(dig_port,
1630 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1631 rx_status,
1632 HDCP_2_2_HDMI_RXSTATUS_LEN);
1633 }
1634
get_hdcp2_msg_timeout(u8 msg_id,bool is_paired)1635 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1636 {
1637 int i;
1638
1639 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1640 if (is_paired)
1641 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1642 else
1643 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1644 }
1645
1646 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1647 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1648 return hdcp2_msg_timeout[i].timeout;
1649 }
1650
1651 return -EINVAL;
1652 }
1653
1654 static int
hdcp2_detect_msg_availability(struct intel_digital_port * dig_port,u8 msg_id,bool * msg_ready,ssize_t * msg_sz)1655 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1656 u8 msg_id, bool *msg_ready,
1657 ssize_t *msg_sz)
1658 {
1659 struct intel_display *display = to_intel_display(dig_port);
1660 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1661 int ret;
1662
1663 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1664 if (ret < 0) {
1665 drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1666 ret);
1667 return ret;
1668 }
1669
1670 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1671 rx_status[0]);
1672
1673 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1674 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1675 *msg_sz);
1676 else
1677 *msg_ready = *msg_sz;
1678
1679 return 0;
1680 }
1681
1682 static ssize_t
intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port * dig_port,u8 msg_id,bool paired)1683 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1684 u8 msg_id, bool paired)
1685 {
1686 struct intel_display *display = to_intel_display(dig_port);
1687 bool msg_ready = false;
1688 int timeout, ret;
1689 ssize_t msg_sz = 0;
1690
1691 timeout = get_hdcp2_msg_timeout(msg_id, paired);
1692 if (timeout < 0)
1693 return timeout;
1694
1695 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1696 msg_id, &msg_ready,
1697 &msg_sz),
1698 !ret && msg_ready && msg_sz, timeout * 1000,
1699 1000, 5 * 1000);
1700 if (ret)
1701 drm_dbg_kms(display->drm,
1702 "msg_id: %d, ret: %d, timeout: %d\n",
1703 msg_id, ret, timeout);
1704
1705 return ret ? ret : msg_sz;
1706 }
1707
1708 static
intel_hdmi_hdcp2_write_msg(struct intel_connector * connector,void * buf,size_t size)1709 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1710 void *buf, size_t size)
1711 {
1712 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1713 unsigned int offset;
1714
1715 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1716 return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1717 }
1718
1719 static
intel_hdmi_hdcp2_read_msg(struct intel_connector * connector,u8 msg_id,void * buf,size_t size)1720 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1721 u8 msg_id, void *buf, size_t size)
1722 {
1723 struct intel_display *display = to_intel_display(connector);
1724 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1725 struct intel_hdmi *hdmi = &dig_port->hdmi;
1726 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1727 unsigned int offset;
1728 ssize_t ret;
1729
1730 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1731 hdcp->is_paired);
1732 if (ret < 0)
1733 return ret;
1734
1735 /*
1736 * Available msg size should be equal to or lesser than the
1737 * available buffer.
1738 */
1739 if (ret > size) {
1740 drm_dbg_kms(display->drm,
1741 "msg_sz(%zd) is more than exp size(%zu)\n",
1742 ret, size);
1743 return -EINVAL;
1744 }
1745
1746 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1747 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1748 if (ret)
1749 drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1750 msg_id, ret);
1751
1752 return ret;
1753 }
1754
1755 static
intel_hdmi_hdcp2_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1756 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1757 struct intel_connector *connector)
1758 {
1759 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1760 int ret;
1761
1762 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1763 if (ret)
1764 return ret;
1765
1766 /*
1767 * Re-auth request and Link Integrity Failures are represented by
1768 * same bit. i.e reauth_req.
1769 */
1770 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1771 ret = HDCP_REAUTH_REQUEST;
1772 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1773 ret = HDCP_TOPOLOGY_CHANGE;
1774
1775 return ret;
1776 }
1777
1778 static
intel_hdmi_hdcp2_get_capability(struct intel_connector * connector,bool * capable)1779 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1780 bool *capable)
1781 {
1782 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1783 u8 hdcp2_version;
1784 int ret;
1785
1786 *capable = false;
1787 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1788 &hdcp2_version, sizeof(hdcp2_version));
1789 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1790 *capable = true;
1791
1792 return ret;
1793 }
1794
1795 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1796 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1797 .read_bksv = intel_hdmi_hdcp_read_bksv,
1798 .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1799 .repeater_present = intel_hdmi_hdcp_repeater_present,
1800 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1801 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1802 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1803 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1804 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1805 .check_link = intel_hdmi_hdcp_check_link,
1806 .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1807 .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1808 .check_2_2_link = intel_hdmi_hdcp2_check_link,
1809 .hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1810 .protocol = HDCP_PROTOCOL_HDMI,
1811 };
1812
intel_hdmi_source_max_tmds_clock(struct intel_encoder * encoder)1813 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1814 {
1815 struct intel_display *display = to_intel_display(encoder);
1816 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1817 int max_tmds_clock, vbt_max_tmds_clock;
1818
1819 if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1820 max_tmds_clock = 600000;
1821 else if (DISPLAY_VER(display) >= 10)
1822 max_tmds_clock = 594000;
1823 else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1824 max_tmds_clock = 300000;
1825 else if (DISPLAY_VER(display) >= 5)
1826 max_tmds_clock = 225000;
1827 else
1828 max_tmds_clock = 165000;
1829
1830 vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1831 if (vbt_max_tmds_clock)
1832 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1833
1834 return max_tmds_clock;
1835 }
1836
intel_has_hdmi_sink(struct intel_hdmi * hdmi,const struct drm_connector_state * conn_state)1837 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1838 const struct drm_connector_state *conn_state)
1839 {
1840 struct intel_connector *connector = hdmi->attached_connector;
1841
1842 return connector->base.display_info.is_hdmi &&
1843 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1844 }
1845
intel_hdmi_is_ycbcr420(const struct intel_crtc_state * crtc_state)1846 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1847 {
1848 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1849 }
1850
hdmi_port_clock_limit(struct intel_hdmi * hdmi,bool respect_downstream_limits,bool has_hdmi_sink)1851 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1852 bool respect_downstream_limits,
1853 bool has_hdmi_sink)
1854 {
1855 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1856 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1857
1858 if (respect_downstream_limits) {
1859 struct intel_connector *connector = hdmi->attached_connector;
1860 const struct drm_display_info *info = &connector->base.display_info;
1861
1862 if (hdmi->dp_dual_mode.max_tmds_clock)
1863 max_tmds_clock = min(max_tmds_clock,
1864 hdmi->dp_dual_mode.max_tmds_clock);
1865
1866 if (info->max_tmds_clock)
1867 max_tmds_clock = min(max_tmds_clock,
1868 info->max_tmds_clock);
1869 else if (!has_hdmi_sink)
1870 max_tmds_clock = min(max_tmds_clock, 165000);
1871 }
1872
1873 return max_tmds_clock;
1874 }
1875
1876 static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi * hdmi,int clock,bool respect_downstream_limits,bool has_hdmi_sink)1877 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1878 int clock, bool respect_downstream_limits,
1879 bool has_hdmi_sink)
1880 {
1881 struct intel_display *display = to_intel_display(hdmi);
1882 struct drm_i915_private *dev_priv = to_i915(display->drm);
1883 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1884
1885 if (clock < 25000)
1886 return MODE_CLOCK_LOW;
1887 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1888 has_hdmi_sink))
1889 return MODE_CLOCK_HIGH;
1890
1891 /* GLK DPLL can't generate 446-480 MHz */
1892 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1893 return MODE_CLOCK_RANGE;
1894
1895 /* BXT/GLK DPLL can't generate 223-240 MHz */
1896 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1897 clock > 223333 && clock < 240000)
1898 return MODE_CLOCK_RANGE;
1899
1900 /* CHV DPLL can't generate 216-240 MHz */
1901 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1902 return MODE_CLOCK_RANGE;
1903
1904 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1905 if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1906 return MODE_CLOCK_RANGE;
1907
1908 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1909 if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1910 return MODE_CLOCK_RANGE;
1911
1912 /*
1913 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1914 * set of link rates.
1915 *
1916 * FIXME: We will hopefully get an algorithmic way of programming
1917 * the MPLLB for HDMI in the future.
1918 */
1919 if (DISPLAY_VER(display) >= 14)
1920 return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1921 else if (IS_DG2(dev_priv))
1922 return intel_snps_phy_check_hdmi_link_rate(clock);
1923
1924 return MODE_OK;
1925 }
1926
intel_hdmi_tmds_clock(int clock,int bpc,enum intel_output_format sink_format)1927 int intel_hdmi_tmds_clock(int clock, int bpc,
1928 enum intel_output_format sink_format)
1929 {
1930 /* YCBCR420 TMDS rate requirement is half the pixel clock */
1931 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1932 clock /= 2;
1933
1934 /*
1935 * Need to adjust the port link by:
1936 * 1.5x for 12bpc
1937 * 1.25x for 10bpc
1938 */
1939 return DIV_ROUND_CLOSEST(clock * bpc, 8);
1940 }
1941
intel_hdmi_source_bpc_possible(struct intel_display * display,int bpc)1942 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1943 {
1944 switch (bpc) {
1945 case 12:
1946 return !HAS_GMCH(display);
1947 case 10:
1948 return DISPLAY_VER(display) >= 11;
1949 case 8:
1950 return true;
1951 default:
1952 MISSING_CASE(bpc);
1953 return false;
1954 }
1955 }
1956
intel_hdmi_sink_bpc_possible(struct drm_connector * connector,int bpc,bool has_hdmi_sink,enum intel_output_format sink_format)1957 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1958 int bpc, bool has_hdmi_sink,
1959 enum intel_output_format sink_format)
1960 {
1961 const struct drm_display_info *info = &connector->display_info;
1962 const struct drm_hdmi_info *hdmi = &info->hdmi;
1963
1964 switch (bpc) {
1965 case 12:
1966 if (!has_hdmi_sink)
1967 return false;
1968
1969 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1970 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1971 else
1972 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1973 case 10:
1974 if (!has_hdmi_sink)
1975 return false;
1976
1977 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1978 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1979 else
1980 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1981 case 8:
1982 return true;
1983 default:
1984 MISSING_CASE(bpc);
1985 return false;
1986 }
1987 }
1988
1989 static enum drm_mode_status
intel_hdmi_mode_clock_valid(struct drm_connector * connector,int clock,bool has_hdmi_sink,enum intel_output_format sink_format)1990 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1991 bool has_hdmi_sink,
1992 enum intel_output_format sink_format)
1993 {
1994 struct intel_display *display = to_intel_display(connector->dev);
1995 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1996 enum drm_mode_status status = MODE_OK;
1997 int bpc;
1998
1999 /*
2000 * Try all color depths since valid port clock range
2001 * can have holes. Any mode that can be used with at
2002 * least one color depth is accepted.
2003 */
2004 for (bpc = 12; bpc >= 8; bpc -= 2) {
2005 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
2006
2007 if (!intel_hdmi_source_bpc_possible(display, bpc))
2008 continue;
2009
2010 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
2011 continue;
2012
2013 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
2014 if (status == MODE_OK)
2015 return MODE_OK;
2016 }
2017
2018 /* can never happen */
2019 drm_WARN_ON(display->drm, status == MODE_OK);
2020
2021 return status;
2022 }
2023
2024 static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)2025 intel_hdmi_mode_valid(struct drm_connector *connector,
2026 struct drm_display_mode *mode)
2027 {
2028 struct intel_display *display = to_intel_display(connector->dev);
2029 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2030 struct drm_i915_private *dev_priv = to_i915(display->drm);
2031 enum drm_mode_status status;
2032 int clock = mode->clock;
2033 int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2034 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2035 bool ycbcr_420_only;
2036 enum intel_output_format sink_format;
2037
2038 status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2039 if (status != MODE_OK)
2040 return status;
2041
2042 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2043 clock *= 2;
2044
2045 if (clock > max_dotclk)
2046 return MODE_CLOCK_HIGH;
2047
2048 if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2049 if (!has_hdmi_sink)
2050 return MODE_CLOCK_LOW;
2051 clock *= 2;
2052 }
2053
2054 /*
2055 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2056 * enumerated only if FRL is supported. Current platforms do not support
2057 * FRL so prune the higher resolution modes that require doctclock more
2058 * than 600MHz.
2059 */
2060 if (clock > 600000)
2061 return MODE_CLOCK_HIGH;
2062
2063 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2064
2065 if (ycbcr_420_only)
2066 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2067 else
2068 sink_format = INTEL_OUTPUT_FORMAT_RGB;
2069
2070 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2071 if (status != MODE_OK) {
2072 if (ycbcr_420_only ||
2073 !connector->ycbcr_420_allowed ||
2074 !drm_mode_is_420_also(&connector->display_info, mode))
2075 return status;
2076
2077 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2078 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2079 if (status != MODE_OK)
2080 return status;
2081 }
2082
2083 return intel_mode_valid_max_plane_size(dev_priv, mode, 1);
2084 }
2085
intel_hdmi_bpc_possible(const struct intel_crtc_state * crtc_state,int bpc,bool has_hdmi_sink)2086 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2087 int bpc, bool has_hdmi_sink)
2088 {
2089 struct drm_atomic_state *state = crtc_state->uapi.state;
2090 struct drm_connector_state *connector_state;
2091 struct drm_connector *connector;
2092 int i;
2093
2094 for_each_new_connector_in_state(state, connector, connector_state, i) {
2095 if (connector_state->crtc != crtc_state->uapi.crtc)
2096 continue;
2097
2098 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2099 crtc_state->sink_format))
2100 return false;
2101 }
2102
2103 return true;
2104 }
2105
hdmi_bpc_possible(const struct intel_crtc_state * crtc_state,int bpc)2106 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2107 {
2108 struct intel_display *display = to_intel_display(crtc_state);
2109 const struct drm_display_mode *adjusted_mode =
2110 &crtc_state->hw.adjusted_mode;
2111
2112 if (!intel_hdmi_source_bpc_possible(display, bpc))
2113 return false;
2114
2115 /* Display Wa_1405510057:icl,ehl */
2116 if (intel_hdmi_is_ycbcr420(crtc_state) &&
2117 bpc == 10 && DISPLAY_VER(display) == 11 &&
2118 (adjusted_mode->crtc_hblank_end -
2119 adjusted_mode->crtc_hblank_start) % 8 == 2)
2120 return false;
2121
2122 return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2123 }
2124
intel_hdmi_compute_bpc(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int clock,bool respect_downstream_limits)2125 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2126 struct intel_crtc_state *crtc_state,
2127 int clock, bool respect_downstream_limits)
2128 {
2129 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2130 int bpc;
2131
2132 /*
2133 * pipe_bpp could already be below 8bpc due to FDI
2134 * bandwidth constraints. HDMI minimum is 8bpc however.
2135 */
2136 bpc = max(crtc_state->pipe_bpp / 3, 8);
2137
2138 /*
2139 * We will never exceed downstream TMDS clock limits while
2140 * attempting deep color. If the user insists on forcing an
2141 * out of spec mode they will have to be satisfied with 8bpc.
2142 */
2143 if (!respect_downstream_limits)
2144 bpc = 8;
2145
2146 for (; bpc >= 8; bpc -= 2) {
2147 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2148 crtc_state->sink_format);
2149
2150 if (hdmi_bpc_possible(crtc_state, bpc) &&
2151 hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2152 respect_downstream_limits,
2153 crtc_state->has_hdmi_sink) == MODE_OK)
2154 return bpc;
2155 }
2156
2157 return -EINVAL;
2158 }
2159
intel_hdmi_compute_clock(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,bool respect_downstream_limits)2160 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2161 struct intel_crtc_state *crtc_state,
2162 bool respect_downstream_limits)
2163 {
2164 struct intel_display *display = to_intel_display(encoder);
2165 const struct drm_display_mode *adjusted_mode =
2166 &crtc_state->hw.adjusted_mode;
2167 int bpc, clock = adjusted_mode->crtc_clock;
2168
2169 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2170 clock *= 2;
2171
2172 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2173 respect_downstream_limits);
2174 if (bpc < 0)
2175 return bpc;
2176
2177 crtc_state->port_clock =
2178 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2179
2180 /*
2181 * pipe_bpp could already be below 8bpc due to
2182 * FDI bandwidth constraints. We shouldn't bump it
2183 * back up to the HDMI minimum 8bpc in that case.
2184 */
2185 crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2186
2187 drm_dbg_kms(display->drm,
2188 "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2189 bpc, crtc_state->pipe_bpp);
2190
2191 return 0;
2192 }
2193
intel_hdmi_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2194 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2195 const struct drm_connector_state *conn_state)
2196 {
2197 const struct intel_digital_connector_state *intel_conn_state =
2198 to_intel_digital_connector_state(conn_state);
2199 const struct drm_display_mode *adjusted_mode =
2200 &crtc_state->hw.adjusted_mode;
2201
2202 /*
2203 * Our YCbCr output is always limited range.
2204 * crtc_state->limited_color_range only applies to RGB,
2205 * and it must never be set for YCbCr or we risk setting
2206 * some conflicting bits in TRANSCONF which will mess up
2207 * the colors on the monitor.
2208 */
2209 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2210 return false;
2211
2212 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2213 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2214 return crtc_state->has_hdmi_sink &&
2215 drm_default_rgb_quant_range(adjusted_mode) ==
2216 HDMI_QUANTIZATION_RANGE_LIMITED;
2217 } else {
2218 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2219 }
2220 }
2221
intel_hdmi_has_audio(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2222 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2223 const struct intel_crtc_state *crtc_state,
2224 const struct drm_connector_state *conn_state)
2225 {
2226 struct drm_connector *connector = conn_state->connector;
2227 const struct intel_digital_connector_state *intel_conn_state =
2228 to_intel_digital_connector_state(conn_state);
2229
2230 if (!crtc_state->has_hdmi_sink)
2231 return false;
2232
2233 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2234 return connector->display_info.has_audio;
2235 else
2236 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2237 }
2238
2239 static enum intel_output_format
intel_hdmi_sink_format(const struct intel_crtc_state * crtc_state,struct intel_connector * connector,bool ycbcr_420_output)2240 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2241 struct intel_connector *connector,
2242 bool ycbcr_420_output)
2243 {
2244 if (!crtc_state->has_hdmi_sink)
2245 return INTEL_OUTPUT_FORMAT_RGB;
2246
2247 if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2248 return INTEL_OUTPUT_FORMAT_YCBCR420;
2249 else
2250 return INTEL_OUTPUT_FORMAT_RGB;
2251 }
2252
2253 static enum intel_output_format
intel_hdmi_output_format(const struct intel_crtc_state * crtc_state)2254 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2255 {
2256 return crtc_state->sink_format;
2257 }
2258
intel_hdmi_compute_output_format(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,bool respect_downstream_limits)2259 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2260 struct intel_crtc_state *crtc_state,
2261 const struct drm_connector_state *conn_state,
2262 bool respect_downstream_limits)
2263 {
2264 struct intel_display *display = to_intel_display(encoder);
2265 struct intel_connector *connector = to_intel_connector(conn_state->connector);
2266 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2267 const struct drm_display_info *info = &connector->base.display_info;
2268 bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2269 int ret;
2270
2271 crtc_state->sink_format =
2272 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2273
2274 if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2275 drm_dbg_kms(display->drm,
2276 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2277 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2278 }
2279
2280 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2281 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2282 if (ret) {
2283 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2284 !crtc_state->has_hdmi_sink ||
2285 !connector->base.ycbcr_420_allowed ||
2286 !drm_mode_is_420_also(info, adjusted_mode))
2287 return ret;
2288
2289 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2290 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2291 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2292 }
2293
2294 return ret;
2295 }
2296
intel_hdmi_is_cloned(const struct intel_crtc_state * crtc_state)2297 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2298 {
2299 return crtc_state->uapi.encoder_mask &&
2300 !is_power_of_2(crtc_state->uapi.encoder_mask);
2301 }
2302
source_supports_scrambling(struct intel_encoder * encoder)2303 static bool source_supports_scrambling(struct intel_encoder *encoder)
2304 {
2305 /*
2306 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2307 * scrambling is supported.
2308 * But there seem to be cases where certain platforms that support
2309 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2310 * capped by VBT to less than 340MHz.
2311 *
2312 * In such cases when an HDMI2.0 sink is connected, it creates a
2313 * problem : the platform and the sink both support scrambling but the
2314 * HDMI 1.4 retimer chip doesn't.
2315 *
2316 * So go for scrambling, based on the max tmds clock taking into account,
2317 * restrictions coming from VBT.
2318 */
2319 return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2320 }
2321
intel_hdmi_compute_has_hdmi_sink(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2322 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2323 const struct intel_crtc_state *crtc_state,
2324 const struct drm_connector_state *conn_state)
2325 {
2326 struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2327
2328 return intel_has_hdmi_sink(hdmi, conn_state) &&
2329 !intel_hdmi_is_cloned(crtc_state);
2330 }
2331
intel_hdmi_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2332 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2333 struct intel_crtc_state *pipe_config,
2334 struct drm_connector_state *conn_state)
2335 {
2336 struct intel_display *display = to_intel_display(encoder);
2337 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2338 struct drm_connector *connector = conn_state->connector;
2339 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2340 int ret;
2341
2342 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2343 return -EINVAL;
2344
2345 if (!connector->interlace_allowed &&
2346 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2347 return -EINVAL;
2348
2349 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2350
2351 if (pipe_config->has_hdmi_sink)
2352 pipe_config->has_infoframe = true;
2353
2354 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2355 pipe_config->pixel_multiplier = 2;
2356
2357 pipe_config->has_audio =
2358 intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2359 intel_audio_compute_config(encoder, pipe_config, conn_state);
2360
2361 /*
2362 * Try to respect downstream TMDS clock limits first, if
2363 * that fails assume the user might know something we don't.
2364 */
2365 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2366 if (ret)
2367 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2368 if (ret) {
2369 drm_dbg_kms(display->drm,
2370 "unsupported HDMI clock (%d kHz), rejecting mode\n",
2371 pipe_config->hw.adjusted_mode.crtc_clock);
2372 return ret;
2373 }
2374
2375 if (intel_hdmi_is_ycbcr420(pipe_config)) {
2376 ret = intel_panel_fitting(pipe_config, conn_state);
2377 if (ret)
2378 return ret;
2379 }
2380
2381 pipe_config->limited_color_range =
2382 intel_hdmi_limited_color_range(pipe_config, conn_state);
2383
2384 if (conn_state->picture_aspect_ratio)
2385 adjusted_mode->picture_aspect_ratio =
2386 conn_state->picture_aspect_ratio;
2387
2388 pipe_config->lane_count = 4;
2389
2390 if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2391 if (scdc->scrambling.low_rates)
2392 pipe_config->hdmi_scrambling = true;
2393
2394 if (pipe_config->port_clock > 340000) {
2395 pipe_config->hdmi_scrambling = true;
2396 pipe_config->hdmi_high_tmds_clock_ratio = true;
2397 }
2398 }
2399
2400 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2401 conn_state);
2402
2403 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2404 drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2405 return -EINVAL;
2406 }
2407
2408 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2409 drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2410 return -EINVAL;
2411 }
2412
2413 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2414 drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2415 return -EINVAL;
2416 }
2417
2418 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2419 drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2420 return -EINVAL;
2421 }
2422
2423 return 0;
2424 }
2425
intel_hdmi_encoder_shutdown(struct intel_encoder * encoder)2426 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2427 {
2428 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2429
2430 /*
2431 * Give a hand to buggy BIOSen which forget to turn
2432 * the TMDS output buffers back on after a reboot.
2433 */
2434 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2435 }
2436
2437 static void
intel_hdmi_unset_edid(struct drm_connector * connector)2438 intel_hdmi_unset_edid(struct drm_connector *connector)
2439 {
2440 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2441
2442 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2443 intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2444
2445 drm_edid_free(to_intel_connector(connector)->detect_edid);
2446 to_intel_connector(connector)->detect_edid = NULL;
2447 }
2448
2449 static void
intel_hdmi_dp_dual_mode_detect(struct drm_connector * connector)2450 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2451 {
2452 struct intel_display *display = to_intel_display(connector->dev);
2453 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2454 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2455 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2456 struct i2c_adapter *ddc = connector->ddc;
2457 enum drm_dp_dual_mode_type type;
2458
2459 type = drm_dp_dual_mode_detect(display->drm, ddc);
2460
2461 /*
2462 * Type 1 DVI adaptors are not required to implement any
2463 * registers, so we can't always detect their presence.
2464 * Ideally we should be able to check the state of the
2465 * CONFIG1 pin, but no such luck on our hardware.
2466 *
2467 * The only method left to us is to check the VBT to see
2468 * if the port is a dual mode capable DP port.
2469 */
2470 if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2471 if (!connector->force &&
2472 intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2473 drm_dbg_kms(display->drm,
2474 "Assuming DP dual mode adaptor presence based on VBT\n");
2475 type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2476 } else {
2477 type = DRM_DP_DUAL_MODE_NONE;
2478 }
2479 }
2480
2481 if (type == DRM_DP_DUAL_MODE_NONE)
2482 return;
2483
2484 hdmi->dp_dual_mode.type = type;
2485 hdmi->dp_dual_mode.max_tmds_clock =
2486 drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2487
2488 drm_dbg_kms(display->drm,
2489 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2490 drm_dp_get_dual_mode_type_name(type),
2491 hdmi->dp_dual_mode.max_tmds_clock);
2492
2493 /* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2494 if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2495 !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2496 drm_dbg_kms(display->drm,
2497 "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2498 hdmi->dp_dual_mode.max_tmds_clock = 0;
2499 }
2500 }
2501
2502 static bool
intel_hdmi_set_edid(struct drm_connector * connector)2503 intel_hdmi_set_edid(struct drm_connector *connector)
2504 {
2505 struct intel_display *display = to_intel_display(connector->dev);
2506 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2507 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2508 struct i2c_adapter *ddc = connector->ddc;
2509 intel_wakeref_t wakeref;
2510 const struct drm_edid *drm_edid;
2511 bool connected = false;
2512
2513 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2514
2515 drm_edid = drm_edid_read_ddc(connector, ddc);
2516
2517 if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2518 drm_dbg_kms(display->drm,
2519 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2520 intel_gmbus_force_bit(ddc, true);
2521 drm_edid = drm_edid_read_ddc(connector, ddc);
2522 intel_gmbus_force_bit(ddc, false);
2523 }
2524
2525 /* Below we depend on display info having been updated */
2526 drm_edid_connector_update(connector, drm_edid);
2527
2528 to_intel_connector(connector)->detect_edid = drm_edid;
2529
2530 if (drm_edid_is_digital(drm_edid)) {
2531 intel_hdmi_dp_dual_mode_detect(connector);
2532
2533 connected = true;
2534 }
2535
2536 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2537
2538 cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2539 connector->display_info.source_physical_address);
2540
2541 return connected;
2542 }
2543
2544 static enum drm_connector_status
intel_hdmi_detect(struct drm_connector * connector,bool force)2545 intel_hdmi_detect(struct drm_connector *connector, bool force)
2546 {
2547 struct intel_display *display = to_intel_display(connector->dev);
2548 enum drm_connector_status status = connector_status_disconnected;
2549 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2550 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2551 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2552 intel_wakeref_t wakeref;
2553
2554 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2555 connector->base.id, connector->name);
2556
2557 if (!intel_display_device_enabled(display))
2558 return connector_status_disconnected;
2559
2560 if (!intel_display_driver_check_access(display))
2561 return connector->status;
2562
2563 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2564
2565 if (DISPLAY_VER(display) >= 11 &&
2566 !intel_digital_port_connected(encoder))
2567 goto out;
2568
2569 intel_hdmi_unset_edid(connector);
2570
2571 if (intel_hdmi_set_edid(connector))
2572 status = connector_status_connected;
2573
2574 out:
2575 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2576
2577 if (status != connector_status_connected)
2578 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2579
2580 return status;
2581 }
2582
2583 static void
intel_hdmi_force(struct drm_connector * connector)2584 intel_hdmi_force(struct drm_connector *connector)
2585 {
2586 struct intel_display *display = to_intel_display(connector->dev);
2587
2588 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2589 connector->base.id, connector->name);
2590
2591 if (!intel_display_driver_check_access(display))
2592 return;
2593
2594 intel_hdmi_unset_edid(connector);
2595
2596 if (connector->status != connector_status_connected)
2597 return;
2598
2599 intel_hdmi_set_edid(connector);
2600 }
2601
intel_hdmi_get_modes(struct drm_connector * connector)2602 static int intel_hdmi_get_modes(struct drm_connector *connector)
2603 {
2604 /* drm_edid_connector_update() done in ->detect() or ->force() */
2605 return drm_edid_connector_add_modes(connector);
2606 }
2607
2608 static int
intel_hdmi_connector_register(struct drm_connector * connector)2609 intel_hdmi_connector_register(struct drm_connector *connector)
2610 {
2611 int ret;
2612
2613 ret = intel_connector_register(connector);
2614 if (ret)
2615 return ret;
2616
2617 return ret;
2618 }
2619
intel_hdmi_connector_unregister(struct drm_connector * connector)2620 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2621 {
2622 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2623
2624 cec_notifier_conn_unregister(n);
2625
2626 intel_connector_unregister(connector);
2627 }
2628
2629 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2630 .detect = intel_hdmi_detect,
2631 .force = intel_hdmi_force,
2632 .fill_modes = drm_helper_probe_single_connector_modes,
2633 .atomic_get_property = intel_digital_connector_atomic_get_property,
2634 .atomic_set_property = intel_digital_connector_atomic_set_property,
2635 .late_register = intel_hdmi_connector_register,
2636 .early_unregister = intel_hdmi_connector_unregister,
2637 .destroy = intel_connector_destroy,
2638 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2639 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2640 };
2641
intel_hdmi_connector_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)2642 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2643 struct drm_atomic_state *state)
2644 {
2645 struct intel_display *display = to_intel_display(connector->dev);
2646
2647 if (HAS_DDI(display))
2648 return intel_digital_connector_atomic_check(connector, state);
2649 else
2650 return g4x_hdmi_connector_atomic_check(connector, state);
2651 }
2652
2653 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2654 .get_modes = intel_hdmi_get_modes,
2655 .mode_valid = intel_hdmi_mode_valid,
2656 .atomic_check = intel_hdmi_connector_atomic_check,
2657 };
2658
2659 static void
intel_hdmi_add_properties(struct intel_hdmi * intel_hdmi,struct drm_connector * connector)2660 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2661 {
2662 struct intel_display *display = to_intel_display(intel_hdmi);
2663
2664 intel_attach_force_audio_property(connector);
2665 intel_attach_broadcast_rgb_property(connector);
2666 intel_attach_aspect_ratio_property(connector);
2667
2668 intel_attach_hdmi_colorspace_property(connector);
2669 drm_connector_attach_content_type_property(connector);
2670
2671 if (DISPLAY_VER(display) >= 10)
2672 drm_connector_attach_hdr_output_metadata_property(connector);
2673
2674 if (!HAS_GMCH(display))
2675 drm_connector_attach_max_bpc_property(connector, 8, 12);
2676 }
2677
2678 /*
2679 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2680 * @encoder: intel_encoder
2681 * @connector: drm_connector
2682 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2683 * or reset the high tmds clock ratio for scrambling
2684 * @scrambling: bool to Indicate if the function needs to set or reset
2685 * sink scrambling
2686 *
2687 * This function handles scrambling on HDMI 2.0 capable sinks.
2688 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2689 * it enables scrambling. This should be called before enabling the HDMI
2690 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2691 * detect a scrambled clock within 100 ms.
2692 *
2693 * Returns:
2694 * True on success, false on failure.
2695 */
intel_hdmi_handle_sink_scrambling(struct intel_encoder * encoder,struct drm_connector * connector,bool high_tmds_clock_ratio,bool scrambling)2696 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2697 struct drm_connector *connector,
2698 bool high_tmds_clock_ratio,
2699 bool scrambling)
2700 {
2701 struct intel_display *display = to_intel_display(encoder);
2702 struct drm_scrambling *sink_scrambling =
2703 &connector->display_info.hdmi.scdc.scrambling;
2704
2705 if (!sink_scrambling->supported)
2706 return true;
2707
2708 drm_dbg_kms(display->drm,
2709 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2710 connector->base.id, connector->name,
2711 str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2712
2713 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2714 return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2715 drm_scdc_set_scrambling(connector, scrambling);
2716 }
2717
chv_encoder_to_ddc_pin(struct intel_encoder * encoder)2718 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2719 {
2720 enum port port = encoder->port;
2721 u8 ddc_pin;
2722
2723 switch (port) {
2724 case PORT_B:
2725 ddc_pin = GMBUS_PIN_DPB;
2726 break;
2727 case PORT_C:
2728 ddc_pin = GMBUS_PIN_DPC;
2729 break;
2730 case PORT_D:
2731 ddc_pin = GMBUS_PIN_DPD_CHV;
2732 break;
2733 default:
2734 MISSING_CASE(port);
2735 ddc_pin = GMBUS_PIN_DPB;
2736 break;
2737 }
2738 return ddc_pin;
2739 }
2740
bxt_encoder_to_ddc_pin(struct intel_encoder * encoder)2741 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2742 {
2743 enum port port = encoder->port;
2744 u8 ddc_pin;
2745
2746 switch (port) {
2747 case PORT_B:
2748 ddc_pin = GMBUS_PIN_1_BXT;
2749 break;
2750 case PORT_C:
2751 ddc_pin = GMBUS_PIN_2_BXT;
2752 break;
2753 default:
2754 MISSING_CASE(port);
2755 ddc_pin = GMBUS_PIN_1_BXT;
2756 break;
2757 }
2758 return ddc_pin;
2759 }
2760
cnp_encoder_to_ddc_pin(struct intel_encoder * encoder)2761 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2762 {
2763 enum port port = encoder->port;
2764 u8 ddc_pin;
2765
2766 switch (port) {
2767 case PORT_B:
2768 ddc_pin = GMBUS_PIN_1_BXT;
2769 break;
2770 case PORT_C:
2771 ddc_pin = GMBUS_PIN_2_BXT;
2772 break;
2773 case PORT_D:
2774 ddc_pin = GMBUS_PIN_4_CNP;
2775 break;
2776 case PORT_F:
2777 ddc_pin = GMBUS_PIN_3_BXT;
2778 break;
2779 default:
2780 MISSING_CASE(port);
2781 ddc_pin = GMBUS_PIN_1_BXT;
2782 break;
2783 }
2784 return ddc_pin;
2785 }
2786
icl_encoder_to_ddc_pin(struct intel_encoder * encoder)2787 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2788 {
2789 struct intel_display *display = to_intel_display(encoder);
2790 enum port port = encoder->port;
2791
2792 if (intel_encoder_is_combo(encoder))
2793 return GMBUS_PIN_1_BXT + port;
2794 else if (intel_encoder_is_tc(encoder))
2795 return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2796
2797 drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2798 return GMBUS_PIN_2_BXT;
2799 }
2800
mcc_encoder_to_ddc_pin(struct intel_encoder * encoder)2801 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2802 {
2803 enum phy phy = intel_encoder_to_phy(encoder);
2804 u8 ddc_pin;
2805
2806 switch (phy) {
2807 case PHY_A:
2808 ddc_pin = GMBUS_PIN_1_BXT;
2809 break;
2810 case PHY_B:
2811 ddc_pin = GMBUS_PIN_2_BXT;
2812 break;
2813 case PHY_C:
2814 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2815 break;
2816 default:
2817 MISSING_CASE(phy);
2818 ddc_pin = GMBUS_PIN_1_BXT;
2819 break;
2820 }
2821 return ddc_pin;
2822 }
2823
rkl_encoder_to_ddc_pin(struct intel_encoder * encoder)2824 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2825 {
2826 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2827 enum phy phy = intel_encoder_to_phy(encoder);
2828
2829 WARN_ON(encoder->port == PORT_C);
2830
2831 /*
2832 * Pin mapping for RKL depends on which PCH is present. With TGP, the
2833 * final two outputs use type-c pins, even though they're actually
2834 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2835 * all outputs.
2836 */
2837 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2838 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2839
2840 return GMBUS_PIN_1_BXT + phy;
2841 }
2842
gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder * encoder)2843 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2844 {
2845 struct intel_display *display = to_intel_display(encoder);
2846 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2847 enum phy phy = intel_encoder_to_phy(encoder);
2848
2849 drm_WARN_ON(display->drm, encoder->port == PORT_A);
2850
2851 /*
2852 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP,
2853 * final two outputs use type-c pins, even though they're actually
2854 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2855 * all outputs.
2856 */
2857 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2858 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2859
2860 return GMBUS_PIN_1_BXT + phy;
2861 }
2862
dg1_encoder_to_ddc_pin(struct intel_encoder * encoder)2863 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2864 {
2865 return intel_encoder_to_phy(encoder) + 1;
2866 }
2867
adls_encoder_to_ddc_pin(struct intel_encoder * encoder)2868 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2869 {
2870 enum phy phy = intel_encoder_to_phy(encoder);
2871
2872 WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2873
2874 /*
2875 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2876 * except first combo output.
2877 */
2878 if (phy == PHY_A)
2879 return GMBUS_PIN_1_BXT;
2880
2881 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2882 }
2883
g4x_encoder_to_ddc_pin(struct intel_encoder * encoder)2884 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2885 {
2886 enum port port = encoder->port;
2887 u8 ddc_pin;
2888
2889 switch (port) {
2890 case PORT_B:
2891 ddc_pin = GMBUS_PIN_DPB;
2892 break;
2893 case PORT_C:
2894 ddc_pin = GMBUS_PIN_DPC;
2895 break;
2896 case PORT_D:
2897 ddc_pin = GMBUS_PIN_DPD;
2898 break;
2899 default:
2900 MISSING_CASE(port);
2901 ddc_pin = GMBUS_PIN_DPB;
2902 break;
2903 }
2904 return ddc_pin;
2905 }
2906
intel_hdmi_default_ddc_pin(struct intel_encoder * encoder)2907 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2908 {
2909 struct intel_display *display = to_intel_display(encoder);
2910 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2911 u8 ddc_pin;
2912
2913 if (IS_ALDERLAKE_S(dev_priv))
2914 ddc_pin = adls_encoder_to_ddc_pin(encoder);
2915 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2916 ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2917 else if (IS_ROCKETLAKE(dev_priv))
2918 ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2919 else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2920 ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2921 else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2922 HAS_PCH_TGP(dev_priv))
2923 ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2924 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2925 ddc_pin = icl_encoder_to_ddc_pin(encoder);
2926 else if (HAS_PCH_CNP(dev_priv))
2927 ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2928 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2929 ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2930 else if (IS_CHERRYVIEW(dev_priv))
2931 ddc_pin = chv_encoder_to_ddc_pin(encoder);
2932 else
2933 ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2934
2935 return ddc_pin;
2936 }
2937
2938 static struct intel_encoder *
get_encoder_by_ddc_pin(struct intel_encoder * encoder,u8 ddc_pin)2939 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2940 {
2941 struct intel_display *display = to_intel_display(encoder);
2942 struct intel_encoder *other;
2943
2944 for_each_intel_encoder(display->drm, other) {
2945 struct intel_connector *connector;
2946
2947 if (other == encoder)
2948 continue;
2949
2950 if (!intel_encoder_is_dig_port(other))
2951 continue;
2952
2953 connector = enc_to_dig_port(other)->hdmi.attached_connector;
2954
2955 if (connector && connector->base.ddc == intel_gmbus_get_adapter(display, ddc_pin))
2956 return other;
2957 }
2958
2959 return NULL;
2960 }
2961
intel_hdmi_ddc_pin(struct intel_encoder * encoder)2962 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2963 {
2964 struct intel_display *display = to_intel_display(encoder);
2965 struct intel_encoder *other;
2966 const char *source;
2967 u8 ddc_pin;
2968
2969 ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2970 source = "VBT";
2971
2972 if (!ddc_pin) {
2973 ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2974 source = "platform default";
2975 }
2976
2977 if (!intel_gmbus_is_valid_pin(display, ddc_pin)) {
2978 drm_dbg_kms(display->drm,
2979 "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2980 encoder->base.base.id, encoder->base.name, ddc_pin);
2981 return 0;
2982 }
2983
2984 other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2985 if (other) {
2986 drm_dbg_kms(display->drm,
2987 "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2988 encoder->base.base.id, encoder->base.name, ddc_pin,
2989 other->base.base.id, other->base.name);
2990 return 0;
2991 }
2992
2993 drm_dbg_kms(display->drm,
2994 "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2995 encoder->base.base.id, encoder->base.name,
2996 ddc_pin, source);
2997
2998 return ddc_pin;
2999 }
3000
intel_infoframe_init(struct intel_digital_port * dig_port)3001 void intel_infoframe_init(struct intel_digital_port *dig_port)
3002 {
3003 struct intel_display *display = to_intel_display(dig_port);
3004 struct drm_i915_private *dev_priv =
3005 to_i915(dig_port->base.base.dev);
3006
3007 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3008 dig_port->write_infoframe = vlv_write_infoframe;
3009 dig_port->read_infoframe = vlv_read_infoframe;
3010 dig_port->set_infoframes = vlv_set_infoframes;
3011 dig_port->infoframes_enabled = vlv_infoframes_enabled;
3012 } else if (IS_G4X(dev_priv)) {
3013 dig_port->write_infoframe = g4x_write_infoframe;
3014 dig_port->read_infoframe = g4x_read_infoframe;
3015 dig_port->set_infoframes = g4x_set_infoframes;
3016 dig_port->infoframes_enabled = g4x_infoframes_enabled;
3017 } else if (HAS_DDI(display)) {
3018 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
3019 dig_port->write_infoframe = lspcon_write_infoframe;
3020 dig_port->read_infoframe = lspcon_read_infoframe;
3021 dig_port->set_infoframes = lspcon_set_infoframes;
3022 dig_port->infoframes_enabled = lspcon_infoframes_enabled;
3023 } else {
3024 dig_port->write_infoframe = hsw_write_infoframe;
3025 dig_port->read_infoframe = hsw_read_infoframe;
3026 dig_port->set_infoframes = hsw_set_infoframes;
3027 dig_port->infoframes_enabled = hsw_infoframes_enabled;
3028 }
3029 } else if (HAS_PCH_IBX(dev_priv)) {
3030 dig_port->write_infoframe = ibx_write_infoframe;
3031 dig_port->read_infoframe = ibx_read_infoframe;
3032 dig_port->set_infoframes = ibx_set_infoframes;
3033 dig_port->infoframes_enabled = ibx_infoframes_enabled;
3034 } else {
3035 dig_port->write_infoframe = cpt_write_infoframe;
3036 dig_port->read_infoframe = cpt_read_infoframe;
3037 dig_port->set_infoframes = cpt_set_infoframes;
3038 dig_port->infoframes_enabled = cpt_infoframes_enabled;
3039 }
3040 }
3041
intel_hdmi_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)3042 bool intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3043 struct intel_connector *intel_connector)
3044 {
3045 struct intel_display *display = to_intel_display(dig_port);
3046 struct drm_connector *connector = &intel_connector->base;
3047 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3048 struct intel_encoder *intel_encoder = &dig_port->base;
3049 struct drm_device *dev = intel_encoder->base.dev;
3050 enum port port = intel_encoder->port;
3051 struct cec_connector_info conn_info;
3052 u8 ddc_pin;
3053
3054 drm_dbg_kms(display->drm,
3055 "Adding HDMI connector on [ENCODER:%d:%s]\n",
3056 intel_encoder->base.base.id, intel_encoder->base.name);
3057
3058 if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3059 return false;
3060
3061 if (drm_WARN(dev, dig_port->max_lanes < 4,
3062 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3063 dig_port->max_lanes, intel_encoder->base.base.id,
3064 intel_encoder->base.name))
3065 return false;
3066
3067 ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3068 if (!ddc_pin)
3069 return false;
3070
3071 drm_connector_init_with_ddc(dev, connector,
3072 &intel_hdmi_connector_funcs,
3073 DRM_MODE_CONNECTOR_HDMIA,
3074 intel_gmbus_get_adapter(display, ddc_pin));
3075
3076 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3077
3078 if (DISPLAY_VER(display) < 12)
3079 connector->interlace_allowed = true;
3080
3081 connector->stereo_allowed = true;
3082
3083 if (DISPLAY_VER(display) >= 10)
3084 connector->ycbcr_420_allowed = true;
3085
3086 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3087 intel_connector->base.polled = intel_connector->polled;
3088
3089 if (HAS_DDI(display))
3090 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3091 else
3092 intel_connector->get_hw_state = intel_connector_get_hw_state;
3093
3094 intel_hdmi_add_properties(intel_hdmi, connector);
3095
3096 intel_connector_attach_encoder(intel_connector, intel_encoder);
3097 intel_hdmi->attached_connector = intel_connector;
3098
3099 if (is_hdcp_supported(display, port)) {
3100 int ret = intel_hdcp_init(intel_connector, dig_port,
3101 &intel_hdmi_hdcp_shim);
3102 if (ret)
3103 drm_dbg_kms(display->drm,
3104 "HDCP init failed, skipping.\n");
3105 }
3106
3107 cec_fill_conn_info_from_drm(&conn_info, connector);
3108
3109 intel_hdmi->cec_notifier =
3110 cec_notifier_conn_register(dev->dev, port_identifier(port),
3111 &conn_info);
3112 if (!intel_hdmi->cec_notifier)
3113 drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3114
3115 return true;
3116 }
3117
3118 /*
3119 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3120 * @vactive: Vactive of a display mode
3121 *
3122 * @return: appropriate dsc slice height for a given mode.
3123 */
intel_hdmi_dsc_get_slice_height(int vactive)3124 int intel_hdmi_dsc_get_slice_height(int vactive)
3125 {
3126 int slice_height;
3127
3128 /*
3129 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3130 * Select smallest slice height >=96, that results in a valid PPS and
3131 * requires minimum padding lines required for final slice.
3132 *
3133 * Assumption : Vactive is even.
3134 */
3135 for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3136 if (vactive % slice_height == 0)
3137 return slice_height;
3138
3139 return 0;
3140 }
3141
3142 /*
3143 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3144 * and dsc decoder capabilities
3145 *
3146 * @crtc_state: intel crtc_state
3147 * @src_max_slices: maximum slices supported by the DSC encoder
3148 * @src_max_slice_width: maximum slice width supported by DSC encoder
3149 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3150 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3151 *
3152 * @return: num of dsc slices that can be supported by the dsc encoder
3153 * and decoder.
3154 */
3155 int
intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state * crtc_state,int src_max_slices,int src_max_slice_width,int hdmi_max_slices,int hdmi_throughput)3156 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3157 int src_max_slices, int src_max_slice_width,
3158 int hdmi_max_slices, int hdmi_throughput)
3159 {
3160 /* Pixel rates in KPixels/sec */
3161 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000
3162 /*
3163 * Rates at which the source and sink are required to process pixels in each
3164 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3165 */
3166 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000
3167 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000
3168
3169 /* Spec limits the slice width to 2720 pixels */
3170 #define MAX_HDMI_SLICE_WIDTH 2720
3171 int kslice_adjust;
3172 int adjusted_clk_khz;
3173 int min_slices;
3174 int target_slices;
3175 int max_throughput; /* max clock freq. in khz per slice */
3176 int max_slice_width;
3177 int slice_width;
3178 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3179
3180 if (!hdmi_throughput)
3181 return 0;
3182
3183 /*
3184 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3185 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3186 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3187 * dividing adjusted clock value by 10.
3188 */
3189 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3190 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3191 kslice_adjust = 10;
3192 else
3193 kslice_adjust = 5;
3194
3195 /*
3196 * As per spec, the rate at which the source and the sink process
3197 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3198 * This depends upon the pixel clock rate and output formats
3199 * (kslice adjust).
3200 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3201 * at max 340MHz, otherwise they can be processed at max 400MHz.
3202 */
3203
3204 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3205
3206 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3207 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3208 else
3209 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3210
3211 /*
3212 * Taking into account the sink's capability for maximum
3213 * clock per slice (in MHz) as read from HF-VSDB.
3214 */
3215 max_throughput = min(max_throughput, hdmi_throughput * 1000);
3216
3217 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3218 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3219
3220 /*
3221 * Keep on increasing the num of slices/line, starting from min_slices
3222 * per line till we get such a number, for which the slice_width is
3223 * just less than max_slice_width. The slices/line selected should be
3224 * less than or equal to the max horizontal slices that the combination
3225 * of PCON encoder and HDMI decoder can support.
3226 */
3227 slice_width = max_slice_width;
3228
3229 do {
3230 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3231 target_slices = 1;
3232 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3233 target_slices = 2;
3234 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3235 target_slices = 4;
3236 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3237 target_slices = 8;
3238 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3239 target_slices = 12;
3240 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3241 target_slices = 16;
3242 else
3243 return 0;
3244
3245 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3246 if (slice_width >= max_slice_width)
3247 min_slices = target_slices + 1;
3248 } while (slice_width >= max_slice_width);
3249
3250 return target_slices;
3251 }
3252
3253 /*
3254 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3255 * source and sink capabilities.
3256 *
3257 * @src_fraction_bpp: fractional bpp supported by the source
3258 * @slice_width: dsc slice width supported by the source and sink
3259 * @num_slices: num of slices supported by the source and sink
3260 * @output_format: video output format
3261 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3262 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3263 *
3264 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3265 */
3266 int
intel_hdmi_dsc_get_bpp(int src_fractional_bpp,int slice_width,int num_slices,int output_format,bool hdmi_all_bpp,int hdmi_max_chunk_bytes)3267 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3268 int output_format, bool hdmi_all_bpp,
3269 int hdmi_max_chunk_bytes)
3270 {
3271 int max_dsc_bpp, min_dsc_bpp;
3272 int target_bytes;
3273 bool bpp_found = false;
3274 int bpp_decrement_x16;
3275 int bpp_target;
3276 int bpp_target_x16;
3277
3278 /*
3279 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3280 * Start with the max bpp and keep on decrementing with
3281 * fractional bpp, if supported by PCON DSC encoder
3282 *
3283 * for each bpp we check if no of bytes can be supported by HDMI sink
3284 */
3285
3286 /* Assuming: bpc as 8*/
3287 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3288 min_dsc_bpp = 6;
3289 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3290 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3291 output_format == INTEL_OUTPUT_FORMAT_RGB) {
3292 min_dsc_bpp = 8;
3293 max_dsc_bpp = 3 * 8; /* 3*bpc */
3294 } else {
3295 /* Assuming 4:2:2 encoding */
3296 min_dsc_bpp = 7;
3297 max_dsc_bpp = 2 * 8; /* 2*bpc */
3298 }
3299
3300 /*
3301 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3302 * Section 7.7.34 : Source shall not enable compressed Video
3303 * Transport with bpp_target settings above 12 bpp unless
3304 * DSC_all_bpp is set to 1.
3305 */
3306 if (!hdmi_all_bpp)
3307 max_dsc_bpp = min(max_dsc_bpp, 12);
3308
3309 /*
3310 * The Sink has a limit of compressed data in bytes for a scanline,
3311 * as described in max_chunk_bytes field in HFVSDB block of edid.
3312 * The no. of bytes depend on the target bits per pixel that the
3313 * source configures. So we start with the max_bpp and calculate
3314 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3315 * till we get the target_chunk_bytes just less than what the sink's
3316 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3317 *
3318 * The decrement is according to the fractional support from PCON DSC
3319 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3320 *
3321 * bpp_target_x16 = bpp_target * 16
3322 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3323 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3324 */
3325
3326 bpp_target = max_dsc_bpp;
3327
3328 /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3329 if (!src_fractional_bpp)
3330 src_fractional_bpp = 1;
3331 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3332 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3333
3334 while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3335 int bpp;
3336
3337 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3338 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3339 if (target_bytes <= hdmi_max_chunk_bytes) {
3340 bpp_found = true;
3341 break;
3342 }
3343 bpp_target_x16 -= bpp_decrement_x16;
3344 }
3345 if (bpp_found)
3346 return bpp_target_x16;
3347
3348 return 0;
3349 }
3350