1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define MAX_EVENT_NAME_LEN 64 64 65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 66 67 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 68 69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 70 * compilation if user enables corresponding warning. Disable it explicitly. 71 */ 72 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 73 74 #define __printf(a, b) __attribute__((format(printf, a, b))) 75 76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 78 static int map_set_def_max_entries(struct bpf_map *map); 79 80 static const char * const attach_type_name[] = { 81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 86 [BPF_CGROUP_DEVICE] = "cgroup_device", 87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 113 [BPF_LIRC_MODE2] = "lirc_mode2", 114 [BPF_FLOW_DISSECTOR] = "flow_dissector", 115 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 116 [BPF_TRACE_FENTRY] = "trace_fentry", 117 [BPF_TRACE_FEXIT] = "trace_fexit", 118 [BPF_MODIFY_RETURN] = "modify_return", 119 [BPF_LSM_MAC] = "lsm_mac", 120 [BPF_LSM_CGROUP] = "lsm_cgroup", 121 [BPF_SK_LOOKUP] = "sk_lookup", 122 [BPF_TRACE_ITER] = "trace_iter", 123 [BPF_XDP_DEVMAP] = "xdp_devmap", 124 [BPF_XDP_CPUMAP] = "xdp_cpumap", 125 [BPF_XDP] = "xdp", 126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 128 [BPF_PERF_EVENT] = "perf_event", 129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 130 [BPF_STRUCT_OPS] = "struct_ops", 131 [BPF_NETFILTER] = "netfilter", 132 [BPF_TCX_INGRESS] = "tcx_ingress", 133 [BPF_TCX_EGRESS] = "tcx_egress", 134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 135 [BPF_NETKIT_PRIMARY] = "netkit_primary", 136 [BPF_NETKIT_PEER] = "netkit_peer", 137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 139 }; 140 141 static const char * const link_type_name[] = { 142 [BPF_LINK_TYPE_UNSPEC] = "unspec", 143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 144 [BPF_LINK_TYPE_TRACING] = "tracing", 145 [BPF_LINK_TYPE_CGROUP] = "cgroup", 146 [BPF_LINK_TYPE_ITER] = "iter", 147 [BPF_LINK_TYPE_NETNS] = "netns", 148 [BPF_LINK_TYPE_XDP] = "xdp", 149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 152 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 153 [BPF_LINK_TYPE_TCX] = "tcx", 154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 155 [BPF_LINK_TYPE_NETKIT] = "netkit", 156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 157 }; 158 159 static const char * const map_type_name[] = { 160 [BPF_MAP_TYPE_UNSPEC] = "unspec", 161 [BPF_MAP_TYPE_HASH] = "hash", 162 [BPF_MAP_TYPE_ARRAY] = "array", 163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 174 [BPF_MAP_TYPE_DEVMAP] = "devmap", 175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 177 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 178 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 183 [BPF_MAP_TYPE_QUEUE] = "queue", 184 [BPF_MAP_TYPE_STACK] = "stack", 185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 193 [BPF_MAP_TYPE_ARENA] = "arena", 194 }; 195 196 static const char * const prog_type_name[] = { 197 [BPF_PROG_TYPE_UNSPEC] = "unspec", 198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 199 [BPF_PROG_TYPE_KPROBE] = "kprobe", 200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 203 [BPF_PROG_TYPE_XDP] = "xdp", 204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 223 [BPF_PROG_TYPE_TRACING] = "tracing", 224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 225 [BPF_PROG_TYPE_EXT] = "ext", 226 [BPF_PROG_TYPE_LSM] = "lsm", 227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 228 [BPF_PROG_TYPE_SYSCALL] = "syscall", 229 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 230 }; 231 232 static int __base_pr(enum libbpf_print_level level, const char *format, 233 va_list args) 234 { 235 const char *env_var = "LIBBPF_LOG_LEVEL"; 236 static enum libbpf_print_level min_level = LIBBPF_INFO; 237 static bool initialized; 238 239 if (!initialized) { 240 char *verbosity; 241 242 initialized = true; 243 verbosity = getenv(env_var); 244 if (verbosity) { 245 if (strcasecmp(verbosity, "warn") == 0) 246 min_level = LIBBPF_WARN; 247 else if (strcasecmp(verbosity, "debug") == 0) 248 min_level = LIBBPF_DEBUG; 249 else if (strcasecmp(verbosity, "info") == 0) 250 min_level = LIBBPF_INFO; 251 else 252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 253 env_var, verbosity); 254 } 255 } 256 257 /* if too verbose, skip logging */ 258 if (level > min_level) 259 return 0; 260 261 return vfprintf(stderr, format, args); 262 } 263 264 static libbpf_print_fn_t __libbpf_pr = __base_pr; 265 266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 267 { 268 libbpf_print_fn_t old_print_fn; 269 270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 271 272 return old_print_fn; 273 } 274 275 __printf(2, 3) 276 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 277 { 278 va_list args; 279 int old_errno; 280 libbpf_print_fn_t print_fn; 281 282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 283 if (!print_fn) 284 return; 285 286 old_errno = errno; 287 288 va_start(args, format); 289 print_fn(level, format, args); 290 va_end(args); 291 292 errno = old_errno; 293 } 294 295 static void pr_perm_msg(int err) 296 { 297 struct rlimit limit; 298 char buf[100]; 299 300 if (err != -EPERM || geteuid() != 0) 301 return; 302 303 err = getrlimit(RLIMIT_MEMLOCK, &limit); 304 if (err) 305 return; 306 307 if (limit.rlim_cur == RLIM_INFINITY) 308 return; 309 310 if (limit.rlim_cur < 1024) 311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 312 else if (limit.rlim_cur < 1024*1024) 313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 314 else 315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 316 317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 318 buf); 319 } 320 321 #define STRERR_BUFSIZE 128 322 323 /* Copied from tools/perf/util/util.h */ 324 #ifndef zfree 325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 326 #endif 327 328 #ifndef zclose 329 # define zclose(fd) ({ \ 330 int ___err = 0; \ 331 if ((fd) >= 0) \ 332 ___err = close((fd)); \ 333 fd = -1; \ 334 ___err; }) 335 #endif 336 337 static inline __u64 ptr_to_u64(const void *ptr) 338 { 339 return (__u64) (unsigned long) ptr; 340 } 341 342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 343 { 344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 345 return 0; 346 } 347 348 __u32 libbpf_major_version(void) 349 { 350 return LIBBPF_MAJOR_VERSION; 351 } 352 353 __u32 libbpf_minor_version(void) 354 { 355 return LIBBPF_MINOR_VERSION; 356 } 357 358 const char *libbpf_version_string(void) 359 { 360 #define __S(X) #X 361 #define _S(X) __S(X) 362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 363 #undef _S 364 #undef __S 365 } 366 367 enum reloc_type { 368 RELO_LD64, 369 RELO_CALL, 370 RELO_DATA, 371 RELO_EXTERN_LD64, 372 RELO_EXTERN_CALL, 373 RELO_SUBPROG_ADDR, 374 RELO_CORE, 375 }; 376 377 struct reloc_desc { 378 enum reloc_type type; 379 int insn_idx; 380 union { 381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 382 struct { 383 int map_idx; 384 int sym_off; 385 int ext_idx; 386 }; 387 }; 388 }; 389 390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 391 enum sec_def_flags { 392 SEC_NONE = 0, 393 /* expected_attach_type is optional, if kernel doesn't support that */ 394 SEC_EXP_ATTACH_OPT = 1, 395 /* legacy, only used by libbpf_get_type_names() and 396 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 397 * This used to be associated with cgroup (and few other) BPF programs 398 * that were attachable through BPF_PROG_ATTACH command. Pretty 399 * meaningless nowadays, though. 400 */ 401 SEC_ATTACHABLE = 2, 402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 403 /* attachment target is specified through BTF ID in either kernel or 404 * other BPF program's BTF object 405 */ 406 SEC_ATTACH_BTF = 4, 407 /* BPF program type allows sleeping/blocking in kernel */ 408 SEC_SLEEPABLE = 8, 409 /* BPF program support non-linear XDP buffer */ 410 SEC_XDP_FRAGS = 16, 411 /* Setup proper attach type for usdt probes. */ 412 SEC_USDT = 32, 413 }; 414 415 struct bpf_sec_def { 416 char *sec; 417 enum bpf_prog_type prog_type; 418 enum bpf_attach_type expected_attach_type; 419 long cookie; 420 int handler_id; 421 422 libbpf_prog_setup_fn_t prog_setup_fn; 423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 424 libbpf_prog_attach_fn_t prog_attach_fn; 425 }; 426 427 /* 428 * bpf_prog should be a better name but it has been used in 429 * linux/filter.h. 430 */ 431 struct bpf_program { 432 char *name; 433 char *sec_name; 434 size_t sec_idx; 435 const struct bpf_sec_def *sec_def; 436 /* this program's instruction offset (in number of instructions) 437 * within its containing ELF section 438 */ 439 size_t sec_insn_off; 440 /* number of original instructions in ELF section belonging to this 441 * program, not taking into account subprogram instructions possible 442 * appended later during relocation 443 */ 444 size_t sec_insn_cnt; 445 /* Offset (in number of instructions) of the start of instruction 446 * belonging to this BPF program within its containing main BPF 447 * program. For the entry-point (main) BPF program, this is always 448 * zero. For a sub-program, this gets reset before each of main BPF 449 * programs are processed and relocated and is used to determined 450 * whether sub-program was already appended to the main program, and 451 * if yes, at which instruction offset. 452 */ 453 size_t sub_insn_off; 454 455 /* instructions that belong to BPF program; insns[0] is located at 456 * sec_insn_off instruction within its ELF section in ELF file, so 457 * when mapping ELF file instruction index to the local instruction, 458 * one needs to subtract sec_insn_off; and vice versa. 459 */ 460 struct bpf_insn *insns; 461 /* actual number of instruction in this BPF program's image; for 462 * entry-point BPF programs this includes the size of main program 463 * itself plus all the used sub-programs, appended at the end 464 */ 465 size_t insns_cnt; 466 467 struct reloc_desc *reloc_desc; 468 int nr_reloc; 469 470 /* BPF verifier log settings */ 471 char *log_buf; 472 size_t log_size; 473 __u32 log_level; 474 475 struct bpf_object *obj; 476 477 int fd; 478 bool autoload; 479 bool autoattach; 480 bool sym_global; 481 bool mark_btf_static; 482 enum bpf_prog_type type; 483 enum bpf_attach_type expected_attach_type; 484 int exception_cb_idx; 485 486 int prog_ifindex; 487 __u32 attach_btf_obj_fd; 488 __u32 attach_btf_id; 489 __u32 attach_prog_fd; 490 491 void *func_info; 492 __u32 func_info_rec_size; 493 __u32 func_info_cnt; 494 495 void *line_info; 496 __u32 line_info_rec_size; 497 __u32 line_info_cnt; 498 __u32 prog_flags; 499 }; 500 501 struct bpf_struct_ops { 502 struct bpf_program **progs; 503 __u32 *kern_func_off; 504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 505 void *data; 506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 507 * btf_vmlinux's format. 508 * struct bpf_struct_ops_tcp_congestion_ops { 509 * [... some other kernel fields ...] 510 * struct tcp_congestion_ops data; 511 * } 512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 514 * from "data". 515 */ 516 void *kern_vdata; 517 __u32 type_id; 518 }; 519 520 #define DATA_SEC ".data" 521 #define BSS_SEC ".bss" 522 #define RODATA_SEC ".rodata" 523 #define KCONFIG_SEC ".kconfig" 524 #define KSYMS_SEC ".ksyms" 525 #define STRUCT_OPS_SEC ".struct_ops" 526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 527 #define ARENA_SEC ".addr_space.1" 528 529 enum libbpf_map_type { 530 LIBBPF_MAP_UNSPEC, 531 LIBBPF_MAP_DATA, 532 LIBBPF_MAP_BSS, 533 LIBBPF_MAP_RODATA, 534 LIBBPF_MAP_KCONFIG, 535 }; 536 537 struct bpf_map_def { 538 unsigned int type; 539 unsigned int key_size; 540 unsigned int value_size; 541 unsigned int max_entries; 542 unsigned int map_flags; 543 }; 544 545 struct bpf_map { 546 struct bpf_object *obj; 547 char *name; 548 /* real_name is defined for special internal maps (.rodata*, 549 * .data*, .bss, .kconfig) and preserves their original ELF section 550 * name. This is important to be able to find corresponding BTF 551 * DATASEC information. 552 */ 553 char *real_name; 554 int fd; 555 int sec_idx; 556 size_t sec_offset; 557 int map_ifindex; 558 int inner_map_fd; 559 struct bpf_map_def def; 560 __u32 numa_node; 561 __u32 btf_var_idx; 562 int mod_btf_fd; 563 __u32 btf_key_type_id; 564 __u32 btf_value_type_id; 565 __u32 btf_vmlinux_value_type_id; 566 enum libbpf_map_type libbpf_type; 567 void *mmaped; 568 struct bpf_struct_ops *st_ops; 569 struct bpf_map *inner_map; 570 void **init_slots; 571 int init_slots_sz; 572 char *pin_path; 573 bool pinned; 574 bool reused; 575 bool autocreate; 576 bool autoattach; 577 __u64 map_extra; 578 }; 579 580 enum extern_type { 581 EXT_UNKNOWN, 582 EXT_KCFG, 583 EXT_KSYM, 584 }; 585 586 enum kcfg_type { 587 KCFG_UNKNOWN, 588 KCFG_CHAR, 589 KCFG_BOOL, 590 KCFG_INT, 591 KCFG_TRISTATE, 592 KCFG_CHAR_ARR, 593 }; 594 595 struct extern_desc { 596 enum extern_type type; 597 int sym_idx; 598 int btf_id; 599 int sec_btf_id; 600 char *name; 601 char *essent_name; 602 bool is_set; 603 bool is_weak; 604 union { 605 struct { 606 enum kcfg_type type; 607 int sz; 608 int align; 609 int data_off; 610 bool is_signed; 611 } kcfg; 612 struct { 613 unsigned long long addr; 614 615 /* target btf_id of the corresponding kernel var. */ 616 int kernel_btf_obj_fd; 617 int kernel_btf_id; 618 619 /* local btf_id of the ksym extern's type. */ 620 __u32 type_id; 621 /* BTF fd index to be patched in for insn->off, this is 622 * 0 for vmlinux BTF, index in obj->fd_array for module 623 * BTF 624 */ 625 __s16 btf_fd_idx; 626 } ksym; 627 }; 628 }; 629 630 struct module_btf { 631 struct btf *btf; 632 char *name; 633 __u32 id; 634 int fd; 635 int fd_array_idx; 636 }; 637 638 enum sec_type { 639 SEC_UNUSED = 0, 640 SEC_RELO, 641 SEC_BSS, 642 SEC_DATA, 643 SEC_RODATA, 644 SEC_ST_OPS, 645 }; 646 647 struct elf_sec_desc { 648 enum sec_type sec_type; 649 Elf64_Shdr *shdr; 650 Elf_Data *data; 651 }; 652 653 struct elf_state { 654 int fd; 655 const void *obj_buf; 656 size_t obj_buf_sz; 657 Elf *elf; 658 Elf64_Ehdr *ehdr; 659 Elf_Data *symbols; 660 Elf_Data *arena_data; 661 size_t shstrndx; /* section index for section name strings */ 662 size_t strtabidx; 663 struct elf_sec_desc *secs; 664 size_t sec_cnt; 665 int btf_maps_shndx; 666 __u32 btf_maps_sec_btf_id; 667 int text_shndx; 668 int symbols_shndx; 669 bool has_st_ops; 670 int arena_data_shndx; 671 }; 672 673 struct usdt_manager; 674 675 enum bpf_object_state { 676 OBJ_OPEN, 677 OBJ_PREPARED, 678 OBJ_LOADED, 679 }; 680 681 struct bpf_object { 682 char name[BPF_OBJ_NAME_LEN]; 683 char license[64]; 684 __u32 kern_version; 685 686 enum bpf_object_state state; 687 struct bpf_program *programs; 688 size_t nr_programs; 689 struct bpf_map *maps; 690 size_t nr_maps; 691 size_t maps_cap; 692 693 char *kconfig; 694 struct extern_desc *externs; 695 int nr_extern; 696 int kconfig_map_idx; 697 698 bool has_subcalls; 699 bool has_rodata; 700 701 struct bpf_gen *gen_loader; 702 703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 704 struct elf_state efile; 705 706 unsigned char byteorder; 707 708 struct btf *btf; 709 struct btf_ext *btf_ext; 710 711 /* Parse and load BTF vmlinux if any of the programs in the object need 712 * it at load time. 713 */ 714 struct btf *btf_vmlinux; 715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 716 * override for vmlinux BTF. 717 */ 718 char *btf_custom_path; 719 /* vmlinux BTF override for CO-RE relocations */ 720 struct btf *btf_vmlinux_override; 721 /* Lazily initialized kernel module BTFs */ 722 struct module_btf *btf_modules; 723 bool btf_modules_loaded; 724 size_t btf_module_cnt; 725 size_t btf_module_cap; 726 727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 728 char *log_buf; 729 size_t log_size; 730 __u32 log_level; 731 732 int *fd_array; 733 size_t fd_array_cap; 734 size_t fd_array_cnt; 735 736 struct usdt_manager *usdt_man; 737 738 int arena_map_idx; 739 void *arena_data; 740 size_t arena_data_sz; 741 742 struct kern_feature_cache *feat_cache; 743 char *token_path; 744 int token_fd; 745 746 char path[]; 747 }; 748 749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 758 759 void bpf_program__unload(struct bpf_program *prog) 760 { 761 if (!prog) 762 return; 763 764 zclose(prog->fd); 765 766 zfree(&prog->func_info); 767 zfree(&prog->line_info); 768 } 769 770 static void bpf_program__exit(struct bpf_program *prog) 771 { 772 if (!prog) 773 return; 774 775 bpf_program__unload(prog); 776 zfree(&prog->name); 777 zfree(&prog->sec_name); 778 zfree(&prog->insns); 779 zfree(&prog->reloc_desc); 780 781 prog->nr_reloc = 0; 782 prog->insns_cnt = 0; 783 prog->sec_idx = -1; 784 } 785 786 static bool insn_is_subprog_call(const struct bpf_insn *insn) 787 { 788 return BPF_CLASS(insn->code) == BPF_JMP && 789 BPF_OP(insn->code) == BPF_CALL && 790 BPF_SRC(insn->code) == BPF_K && 791 insn->src_reg == BPF_PSEUDO_CALL && 792 insn->dst_reg == 0 && 793 insn->off == 0; 794 } 795 796 static bool is_call_insn(const struct bpf_insn *insn) 797 { 798 return insn->code == (BPF_JMP | BPF_CALL); 799 } 800 801 static bool insn_is_pseudo_func(struct bpf_insn *insn) 802 { 803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 804 } 805 806 static int 807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 808 const char *name, size_t sec_idx, const char *sec_name, 809 size_t sec_off, void *insn_data, size_t insn_data_sz) 810 { 811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 813 sec_name, name, sec_off, insn_data_sz); 814 return -EINVAL; 815 } 816 817 memset(prog, 0, sizeof(*prog)); 818 prog->obj = obj; 819 820 prog->sec_idx = sec_idx; 821 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 823 /* insns_cnt can later be increased by appending used subprograms */ 824 prog->insns_cnt = prog->sec_insn_cnt; 825 826 prog->type = BPF_PROG_TYPE_UNSPEC; 827 prog->fd = -1; 828 prog->exception_cb_idx = -1; 829 830 /* libbpf's convention for SEC("?abc...") is that it's just like 831 * SEC("abc...") but the corresponding bpf_program starts out with 832 * autoload set to false. 833 */ 834 if (sec_name[0] == '?') { 835 prog->autoload = false; 836 /* from now on forget there was ? in section name */ 837 sec_name++; 838 } else { 839 prog->autoload = true; 840 } 841 842 prog->autoattach = true; 843 844 /* inherit object's log_level */ 845 prog->log_level = obj->log_level; 846 847 prog->sec_name = strdup(sec_name); 848 if (!prog->sec_name) 849 goto errout; 850 851 prog->name = strdup(name); 852 if (!prog->name) 853 goto errout; 854 855 prog->insns = malloc(insn_data_sz); 856 if (!prog->insns) 857 goto errout; 858 memcpy(prog->insns, insn_data, insn_data_sz); 859 860 return 0; 861 errout: 862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 863 bpf_program__exit(prog); 864 return -ENOMEM; 865 } 866 867 static int 868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 869 const char *sec_name, int sec_idx) 870 { 871 Elf_Data *symbols = obj->efile.symbols; 872 struct bpf_program *prog, *progs; 873 void *data = sec_data->d_buf; 874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 875 int nr_progs, err, i; 876 const char *name; 877 Elf64_Sym *sym; 878 879 progs = obj->programs; 880 nr_progs = obj->nr_programs; 881 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 882 883 for (i = 0; i < nr_syms; i++) { 884 sym = elf_sym_by_idx(obj, i); 885 886 if (sym->st_shndx != sec_idx) 887 continue; 888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 889 continue; 890 891 prog_sz = sym->st_size; 892 sec_off = sym->st_value; 893 894 name = elf_sym_str(obj, sym->st_name); 895 if (!name) { 896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 897 sec_name, sec_off); 898 return -LIBBPF_ERRNO__FORMAT; 899 } 900 901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 903 sec_name, sec_off); 904 return -LIBBPF_ERRNO__FORMAT; 905 } 906 907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 909 return -ENOTSUP; 910 } 911 912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 914 915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 916 if (!progs) { 917 /* 918 * In this case the original obj->programs 919 * is still valid, so don't need special treat for 920 * bpf_close_object(). 921 */ 922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 923 sec_name, name); 924 return -ENOMEM; 925 } 926 obj->programs = progs; 927 928 prog = &progs[nr_progs]; 929 930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 931 sec_off, data + sec_off, prog_sz); 932 if (err) 933 return err; 934 935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 936 prog->sym_global = true; 937 938 /* if function is a global/weak symbol, but has restricted 939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 940 * as static to enable more permissive BPF verification mode 941 * with more outside context available to BPF verifier 942 */ 943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 945 prog->mark_btf_static = true; 946 947 nr_progs++; 948 obj->nr_programs = nr_progs; 949 } 950 951 return 0; 952 } 953 954 static void bpf_object_bswap_progs(struct bpf_object *obj) 955 { 956 struct bpf_program *prog = obj->programs; 957 struct bpf_insn *insn; 958 int p, i; 959 960 for (p = 0; p < obj->nr_programs; p++, prog++) { 961 insn = prog->insns; 962 for (i = 0; i < prog->insns_cnt; i++, insn++) 963 bpf_insn_bswap(insn); 964 } 965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 966 } 967 968 static const struct btf_member * 969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 970 { 971 struct btf_member *m; 972 int i; 973 974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 975 if (btf_member_bit_offset(t, i) == bit_offset) 976 return m; 977 } 978 979 return NULL; 980 } 981 982 static const struct btf_member * 983 find_member_by_name(const struct btf *btf, const struct btf_type *t, 984 const char *name) 985 { 986 struct btf_member *m; 987 int i; 988 989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 991 return m; 992 } 993 994 return NULL; 995 } 996 997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 998 __u16 kind, struct btf **res_btf, 999 struct module_btf **res_mod_btf); 1000 1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1003 const char *name, __u32 kind); 1004 1005 static int 1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1007 struct module_btf **mod_btf, 1008 const struct btf_type **type, __u32 *type_id, 1009 const struct btf_type **vtype, __u32 *vtype_id, 1010 const struct btf_member **data_member) 1011 { 1012 const struct btf_type *kern_type, *kern_vtype; 1013 const struct btf_member *kern_data_member; 1014 struct btf *btf = NULL; 1015 __s32 kern_vtype_id, kern_type_id; 1016 char tname[256]; 1017 __u32 i; 1018 1019 snprintf(tname, sizeof(tname), "%.*s", 1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1021 1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1023 &btf, mod_btf); 1024 if (kern_type_id < 0) { 1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1026 tname); 1027 return kern_type_id; 1028 } 1029 kern_type = btf__type_by_id(btf, kern_type_id); 1030 1031 /* Find the corresponding "map_value" type that will be used 1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1034 * btf_vmlinux. 1035 */ 1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1037 tname, BTF_KIND_STRUCT); 1038 if (kern_vtype_id < 0) { 1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1040 STRUCT_OPS_VALUE_PREFIX, tname); 1041 return kern_vtype_id; 1042 } 1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1044 1045 /* Find "struct tcp_congestion_ops" from 1046 * struct bpf_struct_ops_tcp_congestion_ops { 1047 * [ ... ] 1048 * struct tcp_congestion_ops data; 1049 * } 1050 */ 1051 kern_data_member = btf_members(kern_vtype); 1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1053 if (kern_data_member->type == kern_type_id) 1054 break; 1055 } 1056 if (i == btf_vlen(kern_vtype)) { 1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1058 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1059 return -EINVAL; 1060 } 1061 1062 *type = kern_type; 1063 *type_id = kern_type_id; 1064 *vtype = kern_vtype; 1065 *vtype_id = kern_vtype_id; 1066 *data_member = kern_data_member; 1067 1068 return 0; 1069 } 1070 1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1072 { 1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1074 } 1075 1076 static bool is_valid_st_ops_program(struct bpf_object *obj, 1077 const struct bpf_program *prog) 1078 { 1079 int i; 1080 1081 for (i = 0; i < obj->nr_programs; i++) { 1082 if (&obj->programs[i] == prog) 1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1084 } 1085 1086 return false; 1087 } 1088 1089 /* For each struct_ops program P, referenced from some struct_ops map M, 1090 * enable P.autoload if there are Ms for which M.autocreate is true, 1091 * disable P.autoload if for all Ms M.autocreate is false. 1092 * Don't change P.autoload for programs that are not referenced from any maps. 1093 */ 1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1095 { 1096 struct bpf_program *prog, *slot_prog; 1097 struct bpf_map *map; 1098 int i, j, k, vlen; 1099 1100 for (i = 0; i < obj->nr_programs; ++i) { 1101 int should_load = false; 1102 int use_cnt = 0; 1103 1104 prog = &obj->programs[i]; 1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1106 continue; 1107 1108 for (j = 0; j < obj->nr_maps; ++j) { 1109 const struct btf_type *type; 1110 1111 map = &obj->maps[j]; 1112 if (!bpf_map__is_struct_ops(map)) 1113 continue; 1114 1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1116 vlen = btf_vlen(type); 1117 for (k = 0; k < vlen; ++k) { 1118 slot_prog = map->st_ops->progs[k]; 1119 if (prog != slot_prog) 1120 continue; 1121 1122 use_cnt++; 1123 if (map->autocreate) 1124 should_load = true; 1125 } 1126 } 1127 if (use_cnt) 1128 prog->autoload = should_load; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* Init the map's fields that depend on kern_btf */ 1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1136 { 1137 const struct btf_member *member, *kern_member, *kern_data_member; 1138 const struct btf_type *type, *kern_type, *kern_vtype; 1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1140 struct bpf_object *obj = map->obj; 1141 const struct btf *btf = obj->btf; 1142 struct bpf_struct_ops *st_ops; 1143 const struct btf *kern_btf; 1144 struct module_btf *mod_btf = NULL; 1145 void *data, *kern_data; 1146 const char *tname; 1147 int err; 1148 1149 st_ops = map->st_ops; 1150 type = btf__type_by_id(btf, st_ops->type_id); 1151 tname = btf__name_by_offset(btf, type->name_off); 1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1153 &kern_type, &kern_type_id, 1154 &kern_vtype, &kern_vtype_id, 1155 &kern_data_member); 1156 if (err) 1157 return err; 1158 1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1160 1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1163 1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1165 map->def.value_size = kern_vtype->size; 1166 map->btf_vmlinux_value_type_id = kern_vtype_id; 1167 1168 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1169 if (!st_ops->kern_vdata) 1170 return -ENOMEM; 1171 1172 data = st_ops->data; 1173 kern_data_off = kern_data_member->offset / 8; 1174 kern_data = st_ops->kern_vdata + kern_data_off; 1175 1176 member = btf_members(type); 1177 for (i = 0; i < btf_vlen(type); i++, member++) { 1178 const struct btf_type *mtype, *kern_mtype; 1179 __u32 mtype_id, kern_mtype_id; 1180 void *mdata, *kern_mdata; 1181 struct bpf_program *prog; 1182 __s64 msize, kern_msize; 1183 __u32 moff, kern_moff; 1184 __u32 kern_member_idx; 1185 const char *mname; 1186 1187 mname = btf__name_by_offset(btf, member->name_off); 1188 moff = member->offset / 8; 1189 mdata = data + moff; 1190 msize = btf__resolve_size(btf, member->type); 1191 if (msize < 0) { 1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1193 map->name, mname); 1194 return msize; 1195 } 1196 1197 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1198 if (!kern_member) { 1199 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1201 map->name, mname); 1202 return -ENOTSUP; 1203 } 1204 1205 if (st_ops->progs[i]) { 1206 /* If we had declaratively set struct_ops callback, we need to 1207 * force its autoload to false, because it doesn't have 1208 * a chance of succeeding from POV of the current struct_ops map. 1209 * If this program is still referenced somewhere else, though, 1210 * then bpf_object_adjust_struct_ops_autoload() will update its 1211 * autoload accordingly. 1212 */ 1213 st_ops->progs[i]->autoload = false; 1214 st_ops->progs[i] = NULL; 1215 } 1216 1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1219 map->name, mname); 1220 continue; 1221 } 1222 1223 kern_member_idx = kern_member - btf_members(kern_type); 1224 if (btf_member_bitfield_size(type, i) || 1225 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1227 map->name, mname); 1228 return -ENOTSUP; 1229 } 1230 1231 kern_moff = kern_member->offset / 8; 1232 kern_mdata = kern_data + kern_moff; 1233 1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1236 &kern_mtype_id); 1237 if (BTF_INFO_KIND(mtype->info) != 1238 BTF_INFO_KIND(kern_mtype->info)) { 1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1240 map->name, mname, BTF_INFO_KIND(mtype->info), 1241 BTF_INFO_KIND(kern_mtype->info)); 1242 return -ENOTSUP; 1243 } 1244 1245 if (btf_is_ptr(mtype)) { 1246 prog = *(void **)mdata; 1247 /* just like for !kern_member case above, reset declaratively 1248 * set (at compile time) program's autload to false, 1249 * if user replaced it with another program or NULL 1250 */ 1251 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1252 st_ops->progs[i]->autoload = false; 1253 1254 /* Update the value from the shadow type */ 1255 st_ops->progs[i] = prog; 1256 if (!prog) 1257 continue; 1258 1259 if (!is_valid_st_ops_program(obj, prog)) { 1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1261 map->name, mname); 1262 return -ENOTSUP; 1263 } 1264 1265 kern_mtype = skip_mods_and_typedefs(kern_btf, 1266 kern_mtype->type, 1267 &kern_mtype_id); 1268 1269 /* mtype->type must be a func_proto which was 1270 * guaranteed in bpf_object__collect_st_ops_relos(), 1271 * so only check kern_mtype for func_proto here. 1272 */ 1273 if (!btf_is_func_proto(kern_mtype)) { 1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1275 map->name, mname); 1276 return -ENOTSUP; 1277 } 1278 1279 if (mod_btf) 1280 prog->attach_btf_obj_fd = mod_btf->fd; 1281 1282 /* if we haven't yet processed this BPF program, record proper 1283 * attach_btf_id and member_idx 1284 */ 1285 if (!prog->attach_btf_id) { 1286 prog->attach_btf_id = kern_type_id; 1287 prog->expected_attach_type = kern_member_idx; 1288 } 1289 1290 /* struct_ops BPF prog can be re-used between multiple 1291 * .struct_ops & .struct_ops.link as long as it's the 1292 * same struct_ops struct definition and the same 1293 * function pointer field 1294 */ 1295 if (prog->attach_btf_id != kern_type_id) { 1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1297 map->name, mname, prog->name, prog->sec_name, prog->type, 1298 prog->attach_btf_id, kern_type_id); 1299 return -EINVAL; 1300 } 1301 if (prog->expected_attach_type != kern_member_idx) { 1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1303 map->name, mname, prog->name, prog->sec_name, prog->type, 1304 prog->expected_attach_type, kern_member_idx); 1305 return -EINVAL; 1306 } 1307 1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1309 1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1311 map->name, mname, prog->name, moff, 1312 kern_moff); 1313 1314 continue; 1315 } 1316 1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1318 if (kern_msize < 0 || msize != kern_msize) { 1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1320 map->name, mname, (ssize_t)msize, 1321 (ssize_t)kern_msize); 1322 return -ENOTSUP; 1323 } 1324 1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1326 map->name, mname, (unsigned int)msize, 1327 moff, kern_moff); 1328 memcpy(kern_mdata, mdata, msize); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1335 { 1336 struct bpf_map *map; 1337 size_t i; 1338 int err; 1339 1340 for (i = 0; i < obj->nr_maps; i++) { 1341 map = &obj->maps[i]; 1342 1343 if (!bpf_map__is_struct_ops(map)) 1344 continue; 1345 1346 if (!map->autocreate) 1347 continue; 1348 1349 err = bpf_map__init_kern_struct_ops(map); 1350 if (err) 1351 return err; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1358 int shndx, Elf_Data *data) 1359 { 1360 const struct btf_type *type, *datasec; 1361 const struct btf_var_secinfo *vsi; 1362 struct bpf_struct_ops *st_ops; 1363 const char *tname, *var_name; 1364 __s32 type_id, datasec_id; 1365 const struct btf *btf; 1366 struct bpf_map *map; 1367 __u32 i; 1368 1369 if (shndx == -1) 1370 return 0; 1371 1372 btf = obj->btf; 1373 datasec_id = btf__find_by_name_kind(btf, sec_name, 1374 BTF_KIND_DATASEC); 1375 if (datasec_id < 0) { 1376 pr_warn("struct_ops init: DATASEC %s not found\n", 1377 sec_name); 1378 return -EINVAL; 1379 } 1380 1381 datasec = btf__type_by_id(btf, datasec_id); 1382 vsi = btf_var_secinfos(datasec); 1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1384 type = btf__type_by_id(obj->btf, vsi->type); 1385 var_name = btf__name_by_offset(obj->btf, type->name_off); 1386 1387 type_id = btf__resolve_type(obj->btf, vsi->type); 1388 if (type_id < 0) { 1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1390 vsi->type, sec_name); 1391 return -EINVAL; 1392 } 1393 1394 type = btf__type_by_id(obj->btf, type_id); 1395 tname = btf__name_by_offset(obj->btf, type->name_off); 1396 if (!tname[0]) { 1397 pr_warn("struct_ops init: anonymous type is not supported\n"); 1398 return -ENOTSUP; 1399 } 1400 if (!btf_is_struct(type)) { 1401 pr_warn("struct_ops init: %s is not a struct\n", tname); 1402 return -EINVAL; 1403 } 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->sec_idx = shndx; 1410 map->sec_offset = vsi->offset; 1411 map->name = strdup(var_name); 1412 if (!map->name) 1413 return -ENOMEM; 1414 map->btf_value_type_id = type_id; 1415 1416 /* Follow same convention as for programs autoload: 1417 * SEC("?.struct_ops") means map is not created by default. 1418 */ 1419 if (sec_name[0] == '?') { 1420 map->autocreate = false; 1421 /* from now on forget there was ? in section name */ 1422 sec_name++; 1423 } 1424 1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1426 map->def.key_size = sizeof(int); 1427 map->def.value_size = type->size; 1428 map->def.max_entries = 1; 1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1430 map->autoattach = true; 1431 1432 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1433 if (!map->st_ops) 1434 return -ENOMEM; 1435 st_ops = map->st_ops; 1436 st_ops->data = malloc(type->size); 1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1438 st_ops->kern_func_off = malloc(btf_vlen(type) * 1439 sizeof(*st_ops->kern_func_off)); 1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1441 return -ENOMEM; 1442 1443 if (vsi->offset + type->size > data->d_size) { 1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1445 var_name, sec_name); 1446 return -EINVAL; 1447 } 1448 1449 memcpy(st_ops->data, 1450 data->d_buf + vsi->offset, 1451 type->size); 1452 st_ops->type_id = type_id; 1453 1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1455 tname, type_id, var_name, vsi->offset); 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1462 { 1463 const char *sec_name; 1464 int sec_idx, err; 1465 1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1468 1469 if (desc->sec_type != SEC_ST_OPS) 1470 continue; 1471 1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1473 if (!sec_name) 1474 return -LIBBPF_ERRNO__FORMAT; 1475 1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1477 if (err) 1478 return err; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static struct bpf_object *bpf_object__new(const char *path, 1485 const void *obj_buf, 1486 size_t obj_buf_sz, 1487 const char *obj_name) 1488 { 1489 struct bpf_object *obj; 1490 char *end; 1491 1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1493 if (!obj) { 1494 pr_warn("alloc memory failed for %s\n", path); 1495 return ERR_PTR(-ENOMEM); 1496 } 1497 1498 strcpy(obj->path, path); 1499 if (obj_name) { 1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1501 } else { 1502 /* Using basename() GNU version which doesn't modify arg. */ 1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1504 end = strchr(obj->name, '.'); 1505 if (end) 1506 *end = 0; 1507 } 1508 1509 obj->efile.fd = -1; 1510 /* 1511 * Caller of this function should also call 1512 * bpf_object__elf_finish() after data collection to return 1513 * obj_buf to user. If not, we should duplicate the buffer to 1514 * avoid user freeing them before elf finish. 1515 */ 1516 obj->efile.obj_buf = obj_buf; 1517 obj->efile.obj_buf_sz = obj_buf_sz; 1518 obj->efile.btf_maps_shndx = -1; 1519 obj->kconfig_map_idx = -1; 1520 obj->arena_map_idx = -1; 1521 1522 obj->kern_version = get_kernel_version(); 1523 obj->state = OBJ_OPEN; 1524 1525 return obj; 1526 } 1527 1528 static void bpf_object__elf_finish(struct bpf_object *obj) 1529 { 1530 if (!obj->efile.elf) 1531 return; 1532 1533 elf_end(obj->efile.elf); 1534 obj->efile.elf = NULL; 1535 obj->efile.ehdr = NULL; 1536 obj->efile.symbols = NULL; 1537 obj->efile.arena_data = NULL; 1538 1539 zfree(&obj->efile.secs); 1540 obj->efile.sec_cnt = 0; 1541 zclose(obj->efile.fd); 1542 obj->efile.obj_buf = NULL; 1543 obj->efile.obj_buf_sz = 0; 1544 } 1545 1546 static int bpf_object__elf_init(struct bpf_object *obj) 1547 { 1548 Elf64_Ehdr *ehdr; 1549 int err = 0; 1550 Elf *elf; 1551 1552 if (obj->efile.elf) { 1553 pr_warn("elf: init internal error\n"); 1554 return -LIBBPF_ERRNO__LIBELF; 1555 } 1556 1557 if (obj->efile.obj_buf_sz > 0) { 1558 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1559 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1560 } else { 1561 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1562 if (obj->efile.fd < 0) { 1563 err = -errno; 1564 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1565 return err; 1566 } 1567 1568 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1569 } 1570 1571 if (!elf) { 1572 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1573 err = -LIBBPF_ERRNO__LIBELF; 1574 goto errout; 1575 } 1576 1577 obj->efile.elf = elf; 1578 1579 if (elf_kind(elf) != ELF_K_ELF) { 1580 err = -LIBBPF_ERRNO__FORMAT; 1581 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1582 goto errout; 1583 } 1584 1585 if (gelf_getclass(elf) != ELFCLASS64) { 1586 err = -LIBBPF_ERRNO__FORMAT; 1587 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1588 goto errout; 1589 } 1590 1591 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1592 if (!obj->efile.ehdr) { 1593 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1594 err = -LIBBPF_ERRNO__FORMAT; 1595 goto errout; 1596 } 1597 1598 /* Validate ELF object endianness... */ 1599 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1600 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1601 err = -LIBBPF_ERRNO__ENDIAN; 1602 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1603 goto errout; 1604 } 1605 /* and save after bpf_object_open() frees ELF data */ 1606 obj->byteorder = ehdr->e_ident[EI_DATA]; 1607 1608 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1609 pr_warn("elf: failed to get section names section index for %s: %s\n", 1610 obj->path, elf_errmsg(-1)); 1611 err = -LIBBPF_ERRNO__FORMAT; 1612 goto errout; 1613 } 1614 1615 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1616 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1617 pr_warn("elf: failed to get section names strings from %s: %s\n", 1618 obj->path, elf_errmsg(-1)); 1619 err = -LIBBPF_ERRNO__FORMAT; 1620 goto errout; 1621 } 1622 1623 /* Old LLVM set e_machine to EM_NONE */ 1624 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1625 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1626 err = -LIBBPF_ERRNO__FORMAT; 1627 goto errout; 1628 } 1629 1630 return 0; 1631 errout: 1632 bpf_object__elf_finish(obj); 1633 return err; 1634 } 1635 1636 static bool is_native_endianness(struct bpf_object *obj) 1637 { 1638 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1639 return obj->byteorder == ELFDATA2LSB; 1640 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1641 return obj->byteorder == ELFDATA2MSB; 1642 #else 1643 # error "Unrecognized __BYTE_ORDER__" 1644 #endif 1645 } 1646 1647 static int 1648 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1649 { 1650 if (!data) { 1651 pr_warn("invalid license section in %s\n", obj->path); 1652 return -LIBBPF_ERRNO__FORMAT; 1653 } 1654 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1655 * go over allowed ELF data section buffer 1656 */ 1657 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1658 pr_debug("license of %s is %s\n", obj->path, obj->license); 1659 return 0; 1660 } 1661 1662 static int 1663 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1664 { 1665 __u32 kver; 1666 1667 if (!data || size != sizeof(kver)) { 1668 pr_warn("invalid kver section in %s\n", obj->path); 1669 return -LIBBPF_ERRNO__FORMAT; 1670 } 1671 memcpy(&kver, data, sizeof(kver)); 1672 obj->kern_version = kver; 1673 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1674 return 0; 1675 } 1676 1677 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1678 { 1679 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1680 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1681 return true; 1682 return false; 1683 } 1684 1685 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1686 { 1687 Elf_Data *data; 1688 Elf_Scn *scn; 1689 1690 if (!name) 1691 return -EINVAL; 1692 1693 scn = elf_sec_by_name(obj, name); 1694 data = elf_sec_data(obj, scn); 1695 if (data) { 1696 *size = data->d_size; 1697 return 0; /* found it */ 1698 } 1699 1700 return -ENOENT; 1701 } 1702 1703 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1704 { 1705 Elf_Data *symbols = obj->efile.symbols; 1706 const char *sname; 1707 size_t si; 1708 1709 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1710 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1711 1712 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1713 continue; 1714 1715 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1716 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1717 continue; 1718 1719 sname = elf_sym_str(obj, sym->st_name); 1720 if (!sname) { 1721 pr_warn("failed to get sym name string for var %s\n", name); 1722 return ERR_PTR(-EIO); 1723 } 1724 if (strcmp(name, sname) == 0) 1725 return sym; 1726 } 1727 1728 return ERR_PTR(-ENOENT); 1729 } 1730 1731 #ifndef MFD_CLOEXEC 1732 #define MFD_CLOEXEC 0x0001U 1733 #endif 1734 #ifndef MFD_NOEXEC_SEAL 1735 #define MFD_NOEXEC_SEAL 0x0008U 1736 #endif 1737 1738 static int create_placeholder_fd(void) 1739 { 1740 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1741 const char *name = "libbpf-placeholder-fd"; 1742 int fd; 1743 1744 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1745 if (fd >= 0) 1746 return fd; 1747 else if (errno != EINVAL) 1748 return -errno; 1749 1750 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1751 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1752 if (fd < 0) 1753 return -errno; 1754 return fd; 1755 } 1756 1757 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1758 { 1759 struct bpf_map *map; 1760 int err; 1761 1762 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1763 sizeof(*obj->maps), obj->nr_maps + 1); 1764 if (err) 1765 return ERR_PTR(err); 1766 1767 map = &obj->maps[obj->nr_maps++]; 1768 map->obj = obj; 1769 /* Preallocate map FD without actually creating BPF map just yet. 1770 * These map FD "placeholders" will be reused later without changing 1771 * FD value when map is actually created in the kernel. 1772 * 1773 * This is useful to be able to perform BPF program relocations 1774 * without having to create BPF maps before that step. This allows us 1775 * to finalize and load BTF very late in BPF object's loading phase, 1776 * right before BPF maps have to be created and BPF programs have to 1777 * be loaded. By having these map FD placeholders we can perform all 1778 * the sanitizations, relocations, and any other adjustments before we 1779 * start creating actual BPF kernel objects (BTF, maps, progs). 1780 */ 1781 map->fd = create_placeholder_fd(); 1782 if (map->fd < 0) 1783 return ERR_PTR(map->fd); 1784 map->inner_map_fd = -1; 1785 map->autocreate = true; 1786 1787 return map; 1788 } 1789 1790 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1791 { 1792 const long page_sz = sysconf(_SC_PAGE_SIZE); 1793 size_t map_sz; 1794 1795 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1796 map_sz = roundup(map_sz, page_sz); 1797 return map_sz; 1798 } 1799 1800 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1801 { 1802 const long page_sz = sysconf(_SC_PAGE_SIZE); 1803 1804 switch (map->def.type) { 1805 case BPF_MAP_TYPE_ARRAY: 1806 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1807 case BPF_MAP_TYPE_ARENA: 1808 return page_sz * map->def.max_entries; 1809 default: 1810 return 0; /* not supported */ 1811 } 1812 } 1813 1814 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1815 { 1816 void *mmaped; 1817 1818 if (!map->mmaped) 1819 return -EINVAL; 1820 1821 if (old_sz == new_sz) 1822 return 0; 1823 1824 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1825 if (mmaped == MAP_FAILED) 1826 return -errno; 1827 1828 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1829 munmap(map->mmaped, old_sz); 1830 map->mmaped = mmaped; 1831 return 0; 1832 } 1833 1834 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1835 { 1836 char map_name[BPF_OBJ_NAME_LEN], *p; 1837 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1838 1839 /* This is one of the more confusing parts of libbpf for various 1840 * reasons, some of which are historical. The original idea for naming 1841 * internal names was to include as much of BPF object name prefix as 1842 * possible, so that it can be distinguished from similar internal 1843 * maps of a different BPF object. 1844 * As an example, let's say we have bpf_object named 'my_object_name' 1845 * and internal map corresponding to '.rodata' ELF section. The final 1846 * map name advertised to user and to the kernel will be 1847 * 'my_objec.rodata', taking first 8 characters of object name and 1848 * entire 7 characters of '.rodata'. 1849 * Somewhat confusingly, if internal map ELF section name is shorter 1850 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1851 * for the suffix, even though we only have 4 actual characters, and 1852 * resulting map will be called 'my_objec.bss', not even using all 15 1853 * characters allowed by the kernel. Oh well, at least the truncated 1854 * object name is somewhat consistent in this case. But if the map 1855 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1856 * (8 chars) and thus will be left with only first 7 characters of the 1857 * object name ('my_obje'). Happy guessing, user, that the final map 1858 * name will be "my_obje.kconfig". 1859 * Now, with libbpf starting to support arbitrarily named .rodata.* 1860 * and .data.* data sections, it's possible that ELF section name is 1861 * longer than allowed 15 chars, so we now need to be careful to take 1862 * only up to 15 first characters of ELF name, taking no BPF object 1863 * name characters at all. So '.rodata.abracadabra' will result in 1864 * '.rodata.abracad' kernel and user-visible name. 1865 * We need to keep this convoluted logic intact for .data, .bss and 1866 * .rodata maps, but for new custom .data.custom and .rodata.custom 1867 * maps we use their ELF names as is, not prepending bpf_object name 1868 * in front. We still need to truncate them to 15 characters for the 1869 * kernel. Full name can be recovered for such maps by using DATASEC 1870 * BTF type associated with such map's value type, though. 1871 */ 1872 if (sfx_len >= BPF_OBJ_NAME_LEN) 1873 sfx_len = BPF_OBJ_NAME_LEN - 1; 1874 1875 /* if there are two or more dots in map name, it's a custom dot map */ 1876 if (strchr(real_name + 1, '.') != NULL) 1877 pfx_len = 0; 1878 else 1879 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1880 1881 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1882 sfx_len, real_name); 1883 1884 /* sanities map name to characters allowed by kernel */ 1885 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1886 if (!isalnum(*p) && *p != '_' && *p != '.') 1887 *p = '_'; 1888 1889 return strdup(map_name); 1890 } 1891 1892 static int 1893 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1894 1895 /* Internal BPF map is mmap()'able only if at least one of corresponding 1896 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1897 * variable and it's not marked as __hidden (which turns it into, effectively, 1898 * a STATIC variable). 1899 */ 1900 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1901 { 1902 const struct btf_type *t, *vt; 1903 struct btf_var_secinfo *vsi; 1904 int i, n; 1905 1906 if (!map->btf_value_type_id) 1907 return false; 1908 1909 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1910 if (!btf_is_datasec(t)) 1911 return false; 1912 1913 vsi = btf_var_secinfos(t); 1914 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1915 vt = btf__type_by_id(obj->btf, vsi->type); 1916 if (!btf_is_var(vt)) 1917 continue; 1918 1919 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1920 return true; 1921 } 1922 1923 return false; 1924 } 1925 1926 static int 1927 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1928 const char *real_name, int sec_idx, void *data, size_t data_sz) 1929 { 1930 struct bpf_map_def *def; 1931 struct bpf_map *map; 1932 size_t mmap_sz; 1933 int err; 1934 1935 map = bpf_object__add_map(obj); 1936 if (IS_ERR(map)) 1937 return PTR_ERR(map); 1938 1939 map->libbpf_type = type; 1940 map->sec_idx = sec_idx; 1941 map->sec_offset = 0; 1942 map->real_name = strdup(real_name); 1943 map->name = internal_map_name(obj, real_name); 1944 if (!map->real_name || !map->name) { 1945 zfree(&map->real_name); 1946 zfree(&map->name); 1947 return -ENOMEM; 1948 } 1949 1950 def = &map->def; 1951 def->type = BPF_MAP_TYPE_ARRAY; 1952 def->key_size = sizeof(int); 1953 def->value_size = data_sz; 1954 def->max_entries = 1; 1955 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1956 ? BPF_F_RDONLY_PROG : 0; 1957 1958 /* failures are fine because of maps like .rodata.str1.1 */ 1959 (void) map_fill_btf_type_info(obj, map); 1960 1961 if (map_is_mmapable(obj, map)) 1962 def->map_flags |= BPF_F_MMAPABLE; 1963 1964 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1965 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1966 1967 mmap_sz = bpf_map_mmap_sz(map); 1968 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1969 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1970 if (map->mmaped == MAP_FAILED) { 1971 err = -errno; 1972 map->mmaped = NULL; 1973 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1974 zfree(&map->real_name); 1975 zfree(&map->name); 1976 return err; 1977 } 1978 1979 if (data) 1980 memcpy(map->mmaped, data, data_sz); 1981 1982 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1983 return 0; 1984 } 1985 1986 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1987 { 1988 struct elf_sec_desc *sec_desc; 1989 const char *sec_name; 1990 int err = 0, sec_idx; 1991 1992 /* 1993 * Populate obj->maps with libbpf internal maps. 1994 */ 1995 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1996 sec_desc = &obj->efile.secs[sec_idx]; 1997 1998 /* Skip recognized sections with size 0. */ 1999 if (!sec_desc->data || sec_desc->data->d_size == 0) 2000 continue; 2001 2002 switch (sec_desc->sec_type) { 2003 case SEC_DATA: 2004 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2005 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2006 sec_name, sec_idx, 2007 sec_desc->data->d_buf, 2008 sec_desc->data->d_size); 2009 break; 2010 case SEC_RODATA: 2011 obj->has_rodata = true; 2012 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2013 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2014 sec_name, sec_idx, 2015 sec_desc->data->d_buf, 2016 sec_desc->data->d_size); 2017 break; 2018 case SEC_BSS: 2019 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2020 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2021 sec_name, sec_idx, 2022 NULL, 2023 sec_desc->data->d_size); 2024 break; 2025 default: 2026 /* skip */ 2027 break; 2028 } 2029 if (err) 2030 return err; 2031 } 2032 return 0; 2033 } 2034 2035 2036 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2037 const void *name) 2038 { 2039 int i; 2040 2041 for (i = 0; i < obj->nr_extern; i++) { 2042 if (strcmp(obj->externs[i].name, name) == 0) 2043 return &obj->externs[i]; 2044 } 2045 return NULL; 2046 } 2047 2048 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2049 const void *name, int len) 2050 { 2051 const char *ext_name; 2052 int i; 2053 2054 for (i = 0; i < obj->nr_extern; i++) { 2055 ext_name = obj->externs[i].name; 2056 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2057 return &obj->externs[i]; 2058 } 2059 return NULL; 2060 } 2061 2062 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2063 char value) 2064 { 2065 switch (ext->kcfg.type) { 2066 case KCFG_BOOL: 2067 if (value == 'm') { 2068 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2069 ext->name, value); 2070 return -EINVAL; 2071 } 2072 *(bool *)ext_val = value == 'y' ? true : false; 2073 break; 2074 case KCFG_TRISTATE: 2075 if (value == 'y') 2076 *(enum libbpf_tristate *)ext_val = TRI_YES; 2077 else if (value == 'm') 2078 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2079 else /* value == 'n' */ 2080 *(enum libbpf_tristate *)ext_val = TRI_NO; 2081 break; 2082 case KCFG_CHAR: 2083 *(char *)ext_val = value; 2084 break; 2085 case KCFG_UNKNOWN: 2086 case KCFG_INT: 2087 case KCFG_CHAR_ARR: 2088 default: 2089 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2090 ext->name, value); 2091 return -EINVAL; 2092 } 2093 ext->is_set = true; 2094 return 0; 2095 } 2096 2097 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2098 const char *value) 2099 { 2100 size_t len; 2101 2102 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2103 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2104 ext->name, value); 2105 return -EINVAL; 2106 } 2107 2108 len = strlen(value); 2109 if (len < 2 || value[len - 1] != '"') { 2110 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2111 ext->name, value); 2112 return -EINVAL; 2113 } 2114 2115 /* strip quotes */ 2116 len -= 2; 2117 if (len >= ext->kcfg.sz) { 2118 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2119 ext->name, value, len, ext->kcfg.sz - 1); 2120 len = ext->kcfg.sz - 1; 2121 } 2122 memcpy(ext_val, value + 1, len); 2123 ext_val[len] = '\0'; 2124 ext->is_set = true; 2125 return 0; 2126 } 2127 2128 static int parse_u64(const char *value, __u64 *res) 2129 { 2130 char *value_end; 2131 int err; 2132 2133 errno = 0; 2134 *res = strtoull(value, &value_end, 0); 2135 if (errno) { 2136 err = -errno; 2137 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2138 return err; 2139 } 2140 if (*value_end) { 2141 pr_warn("failed to parse '%s' as integer completely\n", value); 2142 return -EINVAL; 2143 } 2144 return 0; 2145 } 2146 2147 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2148 { 2149 int bit_sz = ext->kcfg.sz * 8; 2150 2151 if (ext->kcfg.sz == 8) 2152 return true; 2153 2154 /* Validate that value stored in u64 fits in integer of `ext->sz` 2155 * bytes size without any loss of information. If the target integer 2156 * is signed, we rely on the following limits of integer type of 2157 * Y bits and subsequent transformation: 2158 * 2159 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2160 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2161 * 0 <= X + 2^(Y-1) < 2^Y 2162 * 2163 * For unsigned target integer, check that all the (64 - Y) bits are 2164 * zero. 2165 */ 2166 if (ext->kcfg.is_signed) 2167 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2168 else 2169 return (v >> bit_sz) == 0; 2170 } 2171 2172 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2173 __u64 value) 2174 { 2175 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2176 ext->kcfg.type != KCFG_BOOL) { 2177 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2178 ext->name, (unsigned long long)value); 2179 return -EINVAL; 2180 } 2181 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2182 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2183 ext->name, (unsigned long long)value); 2184 return -EINVAL; 2185 2186 } 2187 if (!is_kcfg_value_in_range(ext, value)) { 2188 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2189 ext->name, (unsigned long long)value, ext->kcfg.sz); 2190 return -ERANGE; 2191 } 2192 switch (ext->kcfg.sz) { 2193 case 1: 2194 *(__u8 *)ext_val = value; 2195 break; 2196 case 2: 2197 *(__u16 *)ext_val = value; 2198 break; 2199 case 4: 2200 *(__u32 *)ext_val = value; 2201 break; 2202 case 8: 2203 *(__u64 *)ext_val = value; 2204 break; 2205 default: 2206 return -EINVAL; 2207 } 2208 ext->is_set = true; 2209 return 0; 2210 } 2211 2212 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2213 char *buf, void *data) 2214 { 2215 struct extern_desc *ext; 2216 char *sep, *value; 2217 int len, err = 0; 2218 void *ext_val; 2219 __u64 num; 2220 2221 if (!str_has_pfx(buf, "CONFIG_")) 2222 return 0; 2223 2224 sep = strchr(buf, '='); 2225 if (!sep) { 2226 pr_warn("failed to parse '%s': no separator\n", buf); 2227 return -EINVAL; 2228 } 2229 2230 /* Trim ending '\n' */ 2231 len = strlen(buf); 2232 if (buf[len - 1] == '\n') 2233 buf[len - 1] = '\0'; 2234 /* Split on '=' and ensure that a value is present. */ 2235 *sep = '\0'; 2236 if (!sep[1]) { 2237 *sep = '='; 2238 pr_warn("failed to parse '%s': no value\n", buf); 2239 return -EINVAL; 2240 } 2241 2242 ext = find_extern_by_name(obj, buf); 2243 if (!ext || ext->is_set) 2244 return 0; 2245 2246 ext_val = data + ext->kcfg.data_off; 2247 value = sep + 1; 2248 2249 switch (*value) { 2250 case 'y': case 'n': case 'm': 2251 err = set_kcfg_value_tri(ext, ext_val, *value); 2252 break; 2253 case '"': 2254 err = set_kcfg_value_str(ext, ext_val, value); 2255 break; 2256 default: 2257 /* assume integer */ 2258 err = parse_u64(value, &num); 2259 if (err) { 2260 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2261 return err; 2262 } 2263 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2264 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2265 return -EINVAL; 2266 } 2267 err = set_kcfg_value_num(ext, ext_val, num); 2268 break; 2269 } 2270 if (err) 2271 return err; 2272 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2273 return 0; 2274 } 2275 2276 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2277 { 2278 char buf[PATH_MAX]; 2279 struct utsname uts; 2280 int len, err = 0; 2281 gzFile file; 2282 2283 uname(&uts); 2284 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2285 if (len < 0) 2286 return -EINVAL; 2287 else if (len >= PATH_MAX) 2288 return -ENAMETOOLONG; 2289 2290 /* gzopen also accepts uncompressed files. */ 2291 file = gzopen(buf, "re"); 2292 if (!file) 2293 file = gzopen("/proc/config.gz", "re"); 2294 2295 if (!file) { 2296 pr_warn("failed to open system Kconfig\n"); 2297 return -ENOENT; 2298 } 2299 2300 while (gzgets(file, buf, sizeof(buf))) { 2301 err = bpf_object__process_kconfig_line(obj, buf, data); 2302 if (err) { 2303 pr_warn("error parsing system Kconfig line '%s': %s\n", 2304 buf, errstr(err)); 2305 goto out; 2306 } 2307 } 2308 2309 out: 2310 gzclose(file); 2311 return err; 2312 } 2313 2314 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2315 const char *config, void *data) 2316 { 2317 char buf[PATH_MAX]; 2318 int err = 0; 2319 FILE *file; 2320 2321 file = fmemopen((void *)config, strlen(config), "r"); 2322 if (!file) { 2323 err = -errno; 2324 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2325 return err; 2326 } 2327 2328 while (fgets(buf, sizeof(buf), file)) { 2329 err = bpf_object__process_kconfig_line(obj, buf, data); 2330 if (err) { 2331 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2332 buf, errstr(err)); 2333 break; 2334 } 2335 } 2336 2337 fclose(file); 2338 return err; 2339 } 2340 2341 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2342 { 2343 struct extern_desc *last_ext = NULL, *ext; 2344 size_t map_sz; 2345 int i, err; 2346 2347 for (i = 0; i < obj->nr_extern; i++) { 2348 ext = &obj->externs[i]; 2349 if (ext->type == EXT_KCFG) 2350 last_ext = ext; 2351 } 2352 2353 if (!last_ext) 2354 return 0; 2355 2356 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2357 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2358 ".kconfig", obj->efile.symbols_shndx, 2359 NULL, map_sz); 2360 if (err) 2361 return err; 2362 2363 obj->kconfig_map_idx = obj->nr_maps - 1; 2364 2365 return 0; 2366 } 2367 2368 const struct btf_type * 2369 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2370 { 2371 const struct btf_type *t = btf__type_by_id(btf, id); 2372 2373 if (res_id) 2374 *res_id = id; 2375 2376 while (btf_is_mod(t) || btf_is_typedef(t)) { 2377 if (res_id) 2378 *res_id = t->type; 2379 t = btf__type_by_id(btf, t->type); 2380 } 2381 2382 return t; 2383 } 2384 2385 static const struct btf_type * 2386 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2387 { 2388 const struct btf_type *t; 2389 2390 t = skip_mods_and_typedefs(btf, id, NULL); 2391 if (!btf_is_ptr(t)) 2392 return NULL; 2393 2394 t = skip_mods_and_typedefs(btf, t->type, res_id); 2395 2396 return btf_is_func_proto(t) ? t : NULL; 2397 } 2398 2399 static const char *__btf_kind_str(__u16 kind) 2400 { 2401 switch (kind) { 2402 case BTF_KIND_UNKN: return "void"; 2403 case BTF_KIND_INT: return "int"; 2404 case BTF_KIND_PTR: return "ptr"; 2405 case BTF_KIND_ARRAY: return "array"; 2406 case BTF_KIND_STRUCT: return "struct"; 2407 case BTF_KIND_UNION: return "union"; 2408 case BTF_KIND_ENUM: return "enum"; 2409 case BTF_KIND_FWD: return "fwd"; 2410 case BTF_KIND_TYPEDEF: return "typedef"; 2411 case BTF_KIND_VOLATILE: return "volatile"; 2412 case BTF_KIND_CONST: return "const"; 2413 case BTF_KIND_RESTRICT: return "restrict"; 2414 case BTF_KIND_FUNC: return "func"; 2415 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2416 case BTF_KIND_VAR: return "var"; 2417 case BTF_KIND_DATASEC: return "datasec"; 2418 case BTF_KIND_FLOAT: return "float"; 2419 case BTF_KIND_DECL_TAG: return "decl_tag"; 2420 case BTF_KIND_TYPE_TAG: return "type_tag"; 2421 case BTF_KIND_ENUM64: return "enum64"; 2422 default: return "unknown"; 2423 } 2424 } 2425 2426 const char *btf_kind_str(const struct btf_type *t) 2427 { 2428 return __btf_kind_str(btf_kind(t)); 2429 } 2430 2431 /* 2432 * Fetch integer attribute of BTF map definition. Such attributes are 2433 * represented using a pointer to an array, in which dimensionality of array 2434 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2435 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2436 * type definition, while using only sizeof(void *) space in ELF data section. 2437 */ 2438 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2439 const struct btf_member *m, __u32 *res) 2440 { 2441 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2442 const char *name = btf__name_by_offset(btf, m->name_off); 2443 const struct btf_array *arr_info; 2444 const struct btf_type *arr_t; 2445 2446 if (!btf_is_ptr(t)) { 2447 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2448 map_name, name, btf_kind_str(t)); 2449 return false; 2450 } 2451 2452 arr_t = btf__type_by_id(btf, t->type); 2453 if (!arr_t) { 2454 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2455 map_name, name, t->type); 2456 return false; 2457 } 2458 if (!btf_is_array(arr_t)) { 2459 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2460 map_name, name, btf_kind_str(arr_t)); 2461 return false; 2462 } 2463 arr_info = btf_array(arr_t); 2464 *res = arr_info->nelems; 2465 return true; 2466 } 2467 2468 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2469 const struct btf_member *m, __u64 *res) 2470 { 2471 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2472 const char *name = btf__name_by_offset(btf, m->name_off); 2473 2474 if (btf_is_ptr(t)) { 2475 __u32 res32; 2476 bool ret; 2477 2478 ret = get_map_field_int(map_name, btf, m, &res32); 2479 if (ret) 2480 *res = (__u64)res32; 2481 return ret; 2482 } 2483 2484 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2485 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2486 map_name, name, btf_kind_str(t)); 2487 return false; 2488 } 2489 2490 if (btf_vlen(t) != 1) { 2491 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2492 map_name, name); 2493 return false; 2494 } 2495 2496 if (btf_is_enum(t)) { 2497 const struct btf_enum *e = btf_enum(t); 2498 2499 *res = e->val; 2500 } else { 2501 const struct btf_enum64 *e = btf_enum64(t); 2502 2503 *res = btf_enum64_value(e); 2504 } 2505 return true; 2506 } 2507 2508 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2509 { 2510 int len; 2511 2512 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2513 if (len < 0) 2514 return -EINVAL; 2515 if (len >= buf_sz) 2516 return -ENAMETOOLONG; 2517 2518 return 0; 2519 } 2520 2521 static int build_map_pin_path(struct bpf_map *map, const char *path) 2522 { 2523 char buf[PATH_MAX]; 2524 int err; 2525 2526 if (!path) 2527 path = BPF_FS_DEFAULT_PATH; 2528 2529 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2530 if (err) 2531 return err; 2532 2533 return bpf_map__set_pin_path(map, buf); 2534 } 2535 2536 /* should match definition in bpf_helpers.h */ 2537 enum libbpf_pin_type { 2538 LIBBPF_PIN_NONE, 2539 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2540 LIBBPF_PIN_BY_NAME, 2541 }; 2542 2543 int parse_btf_map_def(const char *map_name, struct btf *btf, 2544 const struct btf_type *def_t, bool strict, 2545 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2546 { 2547 const struct btf_type *t; 2548 const struct btf_member *m; 2549 bool is_inner = inner_def == NULL; 2550 int vlen, i; 2551 2552 vlen = btf_vlen(def_t); 2553 m = btf_members(def_t); 2554 for (i = 0; i < vlen; i++, m++) { 2555 const char *name = btf__name_by_offset(btf, m->name_off); 2556 2557 if (!name) { 2558 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2559 return -EINVAL; 2560 } 2561 if (strcmp(name, "type") == 0) { 2562 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2563 return -EINVAL; 2564 map_def->parts |= MAP_DEF_MAP_TYPE; 2565 } else if (strcmp(name, "max_entries") == 0) { 2566 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2567 return -EINVAL; 2568 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2569 } else if (strcmp(name, "map_flags") == 0) { 2570 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2571 return -EINVAL; 2572 map_def->parts |= MAP_DEF_MAP_FLAGS; 2573 } else if (strcmp(name, "numa_node") == 0) { 2574 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2575 return -EINVAL; 2576 map_def->parts |= MAP_DEF_NUMA_NODE; 2577 } else if (strcmp(name, "key_size") == 0) { 2578 __u32 sz; 2579 2580 if (!get_map_field_int(map_name, btf, m, &sz)) 2581 return -EINVAL; 2582 if (map_def->key_size && map_def->key_size != sz) { 2583 pr_warn("map '%s': conflicting key size %u != %u.\n", 2584 map_name, map_def->key_size, sz); 2585 return -EINVAL; 2586 } 2587 map_def->key_size = sz; 2588 map_def->parts |= MAP_DEF_KEY_SIZE; 2589 } else if (strcmp(name, "key") == 0) { 2590 __s64 sz; 2591 2592 t = btf__type_by_id(btf, m->type); 2593 if (!t) { 2594 pr_warn("map '%s': key type [%d] not found.\n", 2595 map_name, m->type); 2596 return -EINVAL; 2597 } 2598 if (!btf_is_ptr(t)) { 2599 pr_warn("map '%s': key spec is not PTR: %s.\n", 2600 map_name, btf_kind_str(t)); 2601 return -EINVAL; 2602 } 2603 sz = btf__resolve_size(btf, t->type); 2604 if (sz < 0) { 2605 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2606 map_name, t->type, (ssize_t)sz); 2607 return sz; 2608 } 2609 if (map_def->key_size && map_def->key_size != sz) { 2610 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2611 map_name, map_def->key_size, (ssize_t)sz); 2612 return -EINVAL; 2613 } 2614 map_def->key_size = sz; 2615 map_def->key_type_id = t->type; 2616 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2617 } else if (strcmp(name, "value_size") == 0) { 2618 __u32 sz; 2619 2620 if (!get_map_field_int(map_name, btf, m, &sz)) 2621 return -EINVAL; 2622 if (map_def->value_size && map_def->value_size != sz) { 2623 pr_warn("map '%s': conflicting value size %u != %u.\n", 2624 map_name, map_def->value_size, sz); 2625 return -EINVAL; 2626 } 2627 map_def->value_size = sz; 2628 map_def->parts |= MAP_DEF_VALUE_SIZE; 2629 } else if (strcmp(name, "value") == 0) { 2630 __s64 sz; 2631 2632 t = btf__type_by_id(btf, m->type); 2633 if (!t) { 2634 pr_warn("map '%s': value type [%d] not found.\n", 2635 map_name, m->type); 2636 return -EINVAL; 2637 } 2638 if (!btf_is_ptr(t)) { 2639 pr_warn("map '%s': value spec is not PTR: %s.\n", 2640 map_name, btf_kind_str(t)); 2641 return -EINVAL; 2642 } 2643 sz = btf__resolve_size(btf, t->type); 2644 if (sz < 0) { 2645 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2646 map_name, t->type, (ssize_t)sz); 2647 return sz; 2648 } 2649 if (map_def->value_size && map_def->value_size != sz) { 2650 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2651 map_name, map_def->value_size, (ssize_t)sz); 2652 return -EINVAL; 2653 } 2654 map_def->value_size = sz; 2655 map_def->value_type_id = t->type; 2656 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2657 } 2658 else if (strcmp(name, "values") == 0) { 2659 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2660 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2661 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2662 char inner_map_name[128]; 2663 int err; 2664 2665 if (is_inner) { 2666 pr_warn("map '%s': multi-level inner maps not supported.\n", 2667 map_name); 2668 return -ENOTSUP; 2669 } 2670 if (i != vlen - 1) { 2671 pr_warn("map '%s': '%s' member should be last.\n", 2672 map_name, name); 2673 return -EINVAL; 2674 } 2675 if (!is_map_in_map && !is_prog_array) { 2676 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2677 map_name); 2678 return -ENOTSUP; 2679 } 2680 if (map_def->value_size && map_def->value_size != 4) { 2681 pr_warn("map '%s': conflicting value size %u != 4.\n", 2682 map_name, map_def->value_size); 2683 return -EINVAL; 2684 } 2685 map_def->value_size = 4; 2686 t = btf__type_by_id(btf, m->type); 2687 if (!t) { 2688 pr_warn("map '%s': %s type [%d] not found.\n", 2689 map_name, desc, m->type); 2690 return -EINVAL; 2691 } 2692 if (!btf_is_array(t) || btf_array(t)->nelems) { 2693 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2694 map_name, desc); 2695 return -EINVAL; 2696 } 2697 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2698 if (!btf_is_ptr(t)) { 2699 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2700 map_name, desc, btf_kind_str(t)); 2701 return -EINVAL; 2702 } 2703 t = skip_mods_and_typedefs(btf, t->type, NULL); 2704 if (is_prog_array) { 2705 if (!btf_is_func_proto(t)) { 2706 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2707 map_name, btf_kind_str(t)); 2708 return -EINVAL; 2709 } 2710 continue; 2711 } 2712 if (!btf_is_struct(t)) { 2713 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2714 map_name, btf_kind_str(t)); 2715 return -EINVAL; 2716 } 2717 2718 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2719 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2720 if (err) 2721 return err; 2722 2723 map_def->parts |= MAP_DEF_INNER_MAP; 2724 } else if (strcmp(name, "pinning") == 0) { 2725 __u32 val; 2726 2727 if (is_inner) { 2728 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2729 return -EINVAL; 2730 } 2731 if (!get_map_field_int(map_name, btf, m, &val)) 2732 return -EINVAL; 2733 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2734 pr_warn("map '%s': invalid pinning value %u.\n", 2735 map_name, val); 2736 return -EINVAL; 2737 } 2738 map_def->pinning = val; 2739 map_def->parts |= MAP_DEF_PINNING; 2740 } else if (strcmp(name, "map_extra") == 0) { 2741 __u64 map_extra; 2742 2743 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2744 return -EINVAL; 2745 map_def->map_extra = map_extra; 2746 map_def->parts |= MAP_DEF_MAP_EXTRA; 2747 } else { 2748 if (strict) { 2749 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2750 return -ENOTSUP; 2751 } 2752 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2753 } 2754 } 2755 2756 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2757 pr_warn("map '%s': map type isn't specified.\n", map_name); 2758 return -EINVAL; 2759 } 2760 2761 return 0; 2762 } 2763 2764 static size_t adjust_ringbuf_sz(size_t sz) 2765 { 2766 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2767 __u32 mul; 2768 2769 /* if user forgot to set any size, make sure they see error */ 2770 if (sz == 0) 2771 return 0; 2772 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2773 * a power-of-2 multiple of kernel's page size. If user diligently 2774 * satisified these conditions, pass the size through. 2775 */ 2776 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2777 return sz; 2778 2779 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2780 * user-set size to satisfy both user size request and kernel 2781 * requirements and substitute correct max_entries for map creation. 2782 */ 2783 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2784 if (mul * page_sz > sz) 2785 return mul * page_sz; 2786 } 2787 2788 /* if it's impossible to satisfy the conditions (i.e., user size is 2789 * very close to UINT_MAX but is not a power-of-2 multiple of 2790 * page_size) then just return original size and let kernel reject it 2791 */ 2792 return sz; 2793 } 2794 2795 static bool map_is_ringbuf(const struct bpf_map *map) 2796 { 2797 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2798 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2799 } 2800 2801 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2802 { 2803 map->def.type = def->map_type; 2804 map->def.key_size = def->key_size; 2805 map->def.value_size = def->value_size; 2806 map->def.max_entries = def->max_entries; 2807 map->def.map_flags = def->map_flags; 2808 map->map_extra = def->map_extra; 2809 2810 map->numa_node = def->numa_node; 2811 map->btf_key_type_id = def->key_type_id; 2812 map->btf_value_type_id = def->value_type_id; 2813 2814 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2815 if (map_is_ringbuf(map)) 2816 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2817 2818 if (def->parts & MAP_DEF_MAP_TYPE) 2819 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2820 2821 if (def->parts & MAP_DEF_KEY_TYPE) 2822 pr_debug("map '%s': found key [%u], sz = %u.\n", 2823 map->name, def->key_type_id, def->key_size); 2824 else if (def->parts & MAP_DEF_KEY_SIZE) 2825 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2826 2827 if (def->parts & MAP_DEF_VALUE_TYPE) 2828 pr_debug("map '%s': found value [%u], sz = %u.\n", 2829 map->name, def->value_type_id, def->value_size); 2830 else if (def->parts & MAP_DEF_VALUE_SIZE) 2831 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2832 2833 if (def->parts & MAP_DEF_MAX_ENTRIES) 2834 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2835 if (def->parts & MAP_DEF_MAP_FLAGS) 2836 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2837 if (def->parts & MAP_DEF_MAP_EXTRA) 2838 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2839 (unsigned long long)def->map_extra); 2840 if (def->parts & MAP_DEF_PINNING) 2841 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2842 if (def->parts & MAP_DEF_NUMA_NODE) 2843 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2844 2845 if (def->parts & MAP_DEF_INNER_MAP) 2846 pr_debug("map '%s': found inner map definition.\n", map->name); 2847 } 2848 2849 static const char *btf_var_linkage_str(__u32 linkage) 2850 { 2851 switch (linkage) { 2852 case BTF_VAR_STATIC: return "static"; 2853 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2854 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2855 default: return "unknown"; 2856 } 2857 } 2858 2859 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2860 const struct btf_type *sec, 2861 int var_idx, int sec_idx, 2862 const Elf_Data *data, bool strict, 2863 const char *pin_root_path) 2864 { 2865 struct btf_map_def map_def = {}, inner_def = {}; 2866 const struct btf_type *var, *def; 2867 const struct btf_var_secinfo *vi; 2868 const struct btf_var *var_extra; 2869 const char *map_name; 2870 struct bpf_map *map; 2871 int err; 2872 2873 vi = btf_var_secinfos(sec) + var_idx; 2874 var = btf__type_by_id(obj->btf, vi->type); 2875 var_extra = btf_var(var); 2876 map_name = btf__name_by_offset(obj->btf, var->name_off); 2877 2878 if (map_name == NULL || map_name[0] == '\0') { 2879 pr_warn("map #%d: empty name.\n", var_idx); 2880 return -EINVAL; 2881 } 2882 if ((__u64)vi->offset + vi->size > data->d_size) { 2883 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2884 return -EINVAL; 2885 } 2886 if (!btf_is_var(var)) { 2887 pr_warn("map '%s': unexpected var kind %s.\n", 2888 map_name, btf_kind_str(var)); 2889 return -EINVAL; 2890 } 2891 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2892 pr_warn("map '%s': unsupported map linkage %s.\n", 2893 map_name, btf_var_linkage_str(var_extra->linkage)); 2894 return -EOPNOTSUPP; 2895 } 2896 2897 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2898 if (!btf_is_struct(def)) { 2899 pr_warn("map '%s': unexpected def kind %s.\n", 2900 map_name, btf_kind_str(var)); 2901 return -EINVAL; 2902 } 2903 if (def->size > vi->size) { 2904 pr_warn("map '%s': invalid def size.\n", map_name); 2905 return -EINVAL; 2906 } 2907 2908 map = bpf_object__add_map(obj); 2909 if (IS_ERR(map)) 2910 return PTR_ERR(map); 2911 map->name = strdup(map_name); 2912 if (!map->name) { 2913 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2914 return -ENOMEM; 2915 } 2916 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2917 map->def.type = BPF_MAP_TYPE_UNSPEC; 2918 map->sec_idx = sec_idx; 2919 map->sec_offset = vi->offset; 2920 map->btf_var_idx = var_idx; 2921 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2922 map_name, map->sec_idx, map->sec_offset); 2923 2924 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2925 if (err) 2926 return err; 2927 2928 fill_map_from_def(map, &map_def); 2929 2930 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2931 err = build_map_pin_path(map, pin_root_path); 2932 if (err) { 2933 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2934 return err; 2935 } 2936 } 2937 2938 if (map_def.parts & MAP_DEF_INNER_MAP) { 2939 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2940 if (!map->inner_map) 2941 return -ENOMEM; 2942 map->inner_map->fd = create_placeholder_fd(); 2943 if (map->inner_map->fd < 0) 2944 return map->inner_map->fd; 2945 map->inner_map->sec_idx = sec_idx; 2946 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2947 if (!map->inner_map->name) 2948 return -ENOMEM; 2949 sprintf(map->inner_map->name, "%s.inner", map_name); 2950 2951 fill_map_from_def(map->inner_map, &inner_def); 2952 } 2953 2954 err = map_fill_btf_type_info(obj, map); 2955 if (err) 2956 return err; 2957 2958 return 0; 2959 } 2960 2961 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2962 const char *sec_name, int sec_idx, 2963 void *data, size_t data_sz) 2964 { 2965 const long page_sz = sysconf(_SC_PAGE_SIZE); 2966 size_t mmap_sz; 2967 2968 mmap_sz = bpf_map_mmap_sz(map); 2969 if (roundup(data_sz, page_sz) > mmap_sz) { 2970 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2971 sec_name, mmap_sz, data_sz); 2972 return -E2BIG; 2973 } 2974 2975 obj->arena_data = malloc(data_sz); 2976 if (!obj->arena_data) 2977 return -ENOMEM; 2978 memcpy(obj->arena_data, data, data_sz); 2979 obj->arena_data_sz = data_sz; 2980 2981 /* make bpf_map__init_value() work for ARENA maps */ 2982 map->mmaped = obj->arena_data; 2983 2984 return 0; 2985 } 2986 2987 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2988 const char *pin_root_path) 2989 { 2990 const struct btf_type *sec = NULL; 2991 int nr_types, i, vlen, err; 2992 const struct btf_type *t; 2993 const char *name; 2994 Elf_Data *data; 2995 Elf_Scn *scn; 2996 2997 if (obj->efile.btf_maps_shndx < 0) 2998 return 0; 2999 3000 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3001 data = elf_sec_data(obj, scn); 3002 if (!scn || !data) { 3003 pr_warn("elf: failed to get %s map definitions for %s\n", 3004 MAPS_ELF_SEC, obj->path); 3005 return -EINVAL; 3006 } 3007 3008 nr_types = btf__type_cnt(obj->btf); 3009 for (i = 1; i < nr_types; i++) { 3010 t = btf__type_by_id(obj->btf, i); 3011 if (!btf_is_datasec(t)) 3012 continue; 3013 name = btf__name_by_offset(obj->btf, t->name_off); 3014 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3015 sec = t; 3016 obj->efile.btf_maps_sec_btf_id = i; 3017 break; 3018 } 3019 } 3020 3021 if (!sec) { 3022 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3023 return -ENOENT; 3024 } 3025 3026 vlen = btf_vlen(sec); 3027 for (i = 0; i < vlen; i++) { 3028 err = bpf_object__init_user_btf_map(obj, sec, i, 3029 obj->efile.btf_maps_shndx, 3030 data, strict, 3031 pin_root_path); 3032 if (err) 3033 return err; 3034 } 3035 3036 for (i = 0; i < obj->nr_maps; i++) { 3037 struct bpf_map *map = &obj->maps[i]; 3038 3039 if (map->def.type != BPF_MAP_TYPE_ARENA) 3040 continue; 3041 3042 if (obj->arena_map_idx >= 0) { 3043 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3044 map->name, obj->maps[obj->arena_map_idx].name); 3045 return -EINVAL; 3046 } 3047 obj->arena_map_idx = i; 3048 3049 if (obj->efile.arena_data) { 3050 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3051 obj->efile.arena_data->d_buf, 3052 obj->efile.arena_data->d_size); 3053 if (err) 3054 return err; 3055 } 3056 } 3057 if (obj->efile.arena_data && obj->arena_map_idx < 0) { 3058 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3059 ARENA_SEC); 3060 return -ENOENT; 3061 } 3062 3063 return 0; 3064 } 3065 3066 static int bpf_object__init_maps(struct bpf_object *obj, 3067 const struct bpf_object_open_opts *opts) 3068 { 3069 const char *pin_root_path; 3070 bool strict; 3071 int err = 0; 3072 3073 strict = !OPTS_GET(opts, relaxed_maps, false); 3074 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3075 3076 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3077 err = err ?: bpf_object__init_global_data_maps(obj); 3078 err = err ?: bpf_object__init_kconfig_map(obj); 3079 err = err ?: bpf_object_init_struct_ops(obj); 3080 3081 return err; 3082 } 3083 3084 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3085 { 3086 Elf64_Shdr *sh; 3087 3088 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3089 if (!sh) 3090 return false; 3091 3092 return sh->sh_flags & SHF_EXECINSTR; 3093 } 3094 3095 static bool starts_with_qmark(const char *s) 3096 { 3097 return s && s[0] == '?'; 3098 } 3099 3100 static bool btf_needs_sanitization(struct bpf_object *obj) 3101 { 3102 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3103 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3104 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3105 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3106 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3107 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3108 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3109 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3110 3111 return !has_func || !has_datasec || !has_func_global || !has_float || 3112 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3113 } 3114 3115 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3116 { 3117 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3118 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3119 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3120 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3121 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3122 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3123 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3124 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3125 int enum64_placeholder_id = 0; 3126 struct btf_type *t; 3127 int i, j, vlen; 3128 3129 for (i = 1; i < btf__type_cnt(btf); i++) { 3130 t = (struct btf_type *)btf__type_by_id(btf, i); 3131 3132 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3133 /* replace VAR/DECL_TAG with INT */ 3134 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3135 /* 3136 * using size = 1 is the safest choice, 4 will be too 3137 * big and cause kernel BTF validation failure if 3138 * original variable took less than 4 bytes 3139 */ 3140 t->size = 1; 3141 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3142 } else if (!has_datasec && btf_is_datasec(t)) { 3143 /* replace DATASEC with STRUCT */ 3144 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3145 struct btf_member *m = btf_members(t); 3146 struct btf_type *vt; 3147 char *name; 3148 3149 name = (char *)btf__name_by_offset(btf, t->name_off); 3150 while (*name) { 3151 if (*name == '.' || *name == '?') 3152 *name = '_'; 3153 name++; 3154 } 3155 3156 vlen = btf_vlen(t); 3157 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3158 for (j = 0; j < vlen; j++, v++, m++) { 3159 /* order of field assignments is important */ 3160 m->offset = v->offset * 8; 3161 m->type = v->type; 3162 /* preserve variable name as member name */ 3163 vt = (void *)btf__type_by_id(btf, v->type); 3164 m->name_off = vt->name_off; 3165 } 3166 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3167 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3168 /* replace '?' prefix with '_' for DATASEC names */ 3169 char *name; 3170 3171 name = (char *)btf__name_by_offset(btf, t->name_off); 3172 if (name[0] == '?') 3173 name[0] = '_'; 3174 } else if (!has_func && btf_is_func_proto(t)) { 3175 /* replace FUNC_PROTO with ENUM */ 3176 vlen = btf_vlen(t); 3177 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3178 t->size = sizeof(__u32); /* kernel enforced */ 3179 } else if (!has_func && btf_is_func(t)) { 3180 /* replace FUNC with TYPEDEF */ 3181 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3182 } else if (!has_func_global && btf_is_func(t)) { 3183 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3184 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3185 } else if (!has_float && btf_is_float(t)) { 3186 /* replace FLOAT with an equally-sized empty STRUCT; 3187 * since C compilers do not accept e.g. "float" as a 3188 * valid struct name, make it anonymous 3189 */ 3190 t->name_off = 0; 3191 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3192 } else if (!has_type_tag && btf_is_type_tag(t)) { 3193 /* replace TYPE_TAG with a CONST */ 3194 t->name_off = 0; 3195 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3196 } else if (!has_enum64 && btf_is_enum(t)) { 3197 /* clear the kflag */ 3198 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3199 } else if (!has_enum64 && btf_is_enum64(t)) { 3200 /* replace ENUM64 with a union */ 3201 struct btf_member *m; 3202 3203 if (enum64_placeholder_id == 0) { 3204 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3205 if (enum64_placeholder_id < 0) 3206 return enum64_placeholder_id; 3207 3208 t = (struct btf_type *)btf__type_by_id(btf, i); 3209 } 3210 3211 m = btf_members(t); 3212 vlen = btf_vlen(t); 3213 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3214 for (j = 0; j < vlen; j++, m++) { 3215 m->type = enum64_placeholder_id; 3216 m->offset = 0; 3217 } 3218 } 3219 } 3220 3221 return 0; 3222 } 3223 3224 static bool libbpf_needs_btf(const struct bpf_object *obj) 3225 { 3226 return obj->efile.btf_maps_shndx >= 0 || 3227 obj->efile.has_st_ops || 3228 obj->nr_extern > 0; 3229 } 3230 3231 static bool kernel_needs_btf(const struct bpf_object *obj) 3232 { 3233 return obj->efile.has_st_ops; 3234 } 3235 3236 static int bpf_object__init_btf(struct bpf_object *obj, 3237 Elf_Data *btf_data, 3238 Elf_Data *btf_ext_data) 3239 { 3240 int err = -ENOENT; 3241 3242 if (btf_data) { 3243 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3244 err = libbpf_get_error(obj->btf); 3245 if (err) { 3246 obj->btf = NULL; 3247 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3248 goto out; 3249 } 3250 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3251 btf__set_pointer_size(obj->btf, 8); 3252 } 3253 if (btf_ext_data) { 3254 struct btf_ext_info *ext_segs[3]; 3255 int seg_num, sec_num; 3256 3257 if (!obj->btf) { 3258 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3259 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3260 goto out; 3261 } 3262 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3263 err = libbpf_get_error(obj->btf_ext); 3264 if (err) { 3265 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3266 BTF_EXT_ELF_SEC, errstr(err)); 3267 obj->btf_ext = NULL; 3268 goto out; 3269 } 3270 3271 /* setup .BTF.ext to ELF section mapping */ 3272 ext_segs[0] = &obj->btf_ext->func_info; 3273 ext_segs[1] = &obj->btf_ext->line_info; 3274 ext_segs[2] = &obj->btf_ext->core_relo_info; 3275 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3276 struct btf_ext_info *seg = ext_segs[seg_num]; 3277 const struct btf_ext_info_sec *sec; 3278 const char *sec_name; 3279 Elf_Scn *scn; 3280 3281 if (seg->sec_cnt == 0) 3282 continue; 3283 3284 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3285 if (!seg->sec_idxs) { 3286 err = -ENOMEM; 3287 goto out; 3288 } 3289 3290 sec_num = 0; 3291 for_each_btf_ext_sec(seg, sec) { 3292 /* preventively increment index to avoid doing 3293 * this before every continue below 3294 */ 3295 sec_num++; 3296 3297 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3298 if (str_is_empty(sec_name)) 3299 continue; 3300 scn = elf_sec_by_name(obj, sec_name); 3301 if (!scn) 3302 continue; 3303 3304 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3305 } 3306 } 3307 } 3308 out: 3309 if (err && libbpf_needs_btf(obj)) { 3310 pr_warn("BTF is required, but is missing or corrupted.\n"); 3311 return err; 3312 } 3313 return 0; 3314 } 3315 3316 static int compare_vsi_off(const void *_a, const void *_b) 3317 { 3318 const struct btf_var_secinfo *a = _a; 3319 const struct btf_var_secinfo *b = _b; 3320 3321 return a->offset - b->offset; 3322 } 3323 3324 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3325 struct btf_type *t) 3326 { 3327 __u32 size = 0, i, vars = btf_vlen(t); 3328 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3329 struct btf_var_secinfo *vsi; 3330 bool fixup_offsets = false; 3331 int err; 3332 3333 if (!sec_name) { 3334 pr_debug("No name found in string section for DATASEC kind.\n"); 3335 return -ENOENT; 3336 } 3337 3338 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3339 * variable offsets set at the previous step. Further, not every 3340 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3341 * all fixups altogether for such sections and go straight to sorting 3342 * VARs within their DATASEC. 3343 */ 3344 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3345 goto sort_vars; 3346 3347 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3348 * fix this up. But BPF static linker already fixes this up and fills 3349 * all the sizes and offsets during static linking. So this step has 3350 * to be optional. But the STV_HIDDEN handling is non-optional for any 3351 * non-extern DATASEC, so the variable fixup loop below handles both 3352 * functions at the same time, paying the cost of BTF VAR <-> ELF 3353 * symbol matching just once. 3354 */ 3355 if (t->size == 0) { 3356 err = find_elf_sec_sz(obj, sec_name, &size); 3357 if (err || !size) { 3358 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3359 sec_name, size, errstr(err)); 3360 return -ENOENT; 3361 } 3362 3363 t->size = size; 3364 fixup_offsets = true; 3365 } 3366 3367 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3368 const struct btf_type *t_var; 3369 struct btf_var *var; 3370 const char *var_name; 3371 Elf64_Sym *sym; 3372 3373 t_var = btf__type_by_id(btf, vsi->type); 3374 if (!t_var || !btf_is_var(t_var)) { 3375 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3376 return -EINVAL; 3377 } 3378 3379 var = btf_var(t_var); 3380 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3381 continue; 3382 3383 var_name = btf__name_by_offset(btf, t_var->name_off); 3384 if (!var_name) { 3385 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3386 sec_name, i); 3387 return -ENOENT; 3388 } 3389 3390 sym = find_elf_var_sym(obj, var_name); 3391 if (IS_ERR(sym)) { 3392 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3393 sec_name, var_name); 3394 return -ENOENT; 3395 } 3396 3397 if (fixup_offsets) 3398 vsi->offset = sym->st_value; 3399 3400 /* if variable is a global/weak symbol, but has restricted 3401 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3402 * as static. This follows similar logic for functions (BPF 3403 * subprogs) and influences libbpf's further decisions about 3404 * whether to make global data BPF array maps as 3405 * BPF_F_MMAPABLE. 3406 */ 3407 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3408 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3409 var->linkage = BTF_VAR_STATIC; 3410 } 3411 3412 sort_vars: 3413 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3414 return 0; 3415 } 3416 3417 static int bpf_object_fixup_btf(struct bpf_object *obj) 3418 { 3419 int i, n, err = 0; 3420 3421 if (!obj->btf) 3422 return 0; 3423 3424 n = btf__type_cnt(obj->btf); 3425 for (i = 1; i < n; i++) { 3426 struct btf_type *t = btf_type_by_id(obj->btf, i); 3427 3428 /* Loader needs to fix up some of the things compiler 3429 * couldn't get its hands on while emitting BTF. This 3430 * is section size and global variable offset. We use 3431 * the info from the ELF itself for this purpose. 3432 */ 3433 if (btf_is_datasec(t)) { 3434 err = btf_fixup_datasec(obj, obj->btf, t); 3435 if (err) 3436 return err; 3437 } 3438 } 3439 3440 return 0; 3441 } 3442 3443 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3444 { 3445 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3446 prog->type == BPF_PROG_TYPE_LSM) 3447 return true; 3448 3449 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3450 * also need vmlinux BTF 3451 */ 3452 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3453 return true; 3454 3455 return false; 3456 } 3457 3458 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3459 { 3460 return bpf_map__is_struct_ops(map); 3461 } 3462 3463 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3464 { 3465 struct bpf_program *prog; 3466 struct bpf_map *map; 3467 int i; 3468 3469 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3470 * is not specified 3471 */ 3472 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3473 return true; 3474 3475 /* Support for typed ksyms needs kernel BTF */ 3476 for (i = 0; i < obj->nr_extern; i++) { 3477 const struct extern_desc *ext; 3478 3479 ext = &obj->externs[i]; 3480 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3481 return true; 3482 } 3483 3484 bpf_object__for_each_program(prog, obj) { 3485 if (!prog->autoload) 3486 continue; 3487 if (prog_needs_vmlinux_btf(prog)) 3488 return true; 3489 } 3490 3491 bpf_object__for_each_map(map, obj) { 3492 if (map_needs_vmlinux_btf(map)) 3493 return true; 3494 } 3495 3496 return false; 3497 } 3498 3499 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3500 { 3501 int err; 3502 3503 /* btf_vmlinux could be loaded earlier */ 3504 if (obj->btf_vmlinux || obj->gen_loader) 3505 return 0; 3506 3507 if (!force && !obj_needs_vmlinux_btf(obj)) 3508 return 0; 3509 3510 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3511 err = libbpf_get_error(obj->btf_vmlinux); 3512 if (err) { 3513 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3514 obj->btf_vmlinux = NULL; 3515 return err; 3516 } 3517 return 0; 3518 } 3519 3520 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3521 { 3522 struct btf *kern_btf = obj->btf; 3523 bool btf_mandatory, sanitize; 3524 int i, err = 0; 3525 3526 if (!obj->btf) 3527 return 0; 3528 3529 if (!kernel_supports(obj, FEAT_BTF)) { 3530 if (kernel_needs_btf(obj)) { 3531 err = -EOPNOTSUPP; 3532 goto report; 3533 } 3534 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3535 return 0; 3536 } 3537 3538 /* Even though some subprogs are global/weak, user might prefer more 3539 * permissive BPF verification process that BPF verifier performs for 3540 * static functions, taking into account more context from the caller 3541 * functions. In such case, they need to mark such subprogs with 3542 * __attribute__((visibility("hidden"))) and libbpf will adjust 3543 * corresponding FUNC BTF type to be marked as static and trigger more 3544 * involved BPF verification process. 3545 */ 3546 for (i = 0; i < obj->nr_programs; i++) { 3547 struct bpf_program *prog = &obj->programs[i]; 3548 struct btf_type *t; 3549 const char *name; 3550 int j, n; 3551 3552 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3553 continue; 3554 3555 n = btf__type_cnt(obj->btf); 3556 for (j = 1; j < n; j++) { 3557 t = btf_type_by_id(obj->btf, j); 3558 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3559 continue; 3560 3561 name = btf__str_by_offset(obj->btf, t->name_off); 3562 if (strcmp(name, prog->name) != 0) 3563 continue; 3564 3565 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3566 break; 3567 } 3568 } 3569 3570 sanitize = btf_needs_sanitization(obj); 3571 if (sanitize) { 3572 const void *raw_data; 3573 __u32 sz; 3574 3575 /* clone BTF to sanitize a copy and leave the original intact */ 3576 raw_data = btf__raw_data(obj->btf, &sz); 3577 kern_btf = btf__new(raw_data, sz); 3578 err = libbpf_get_error(kern_btf); 3579 if (err) 3580 return err; 3581 3582 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3583 btf__set_pointer_size(obj->btf, 8); 3584 err = bpf_object__sanitize_btf(obj, kern_btf); 3585 if (err) 3586 return err; 3587 } 3588 3589 if (obj->gen_loader) { 3590 __u32 raw_size = 0; 3591 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3592 3593 if (!raw_data) 3594 return -ENOMEM; 3595 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3596 /* Pretend to have valid FD to pass various fd >= 0 checks. 3597 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3598 */ 3599 btf__set_fd(kern_btf, 0); 3600 } else { 3601 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3602 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3603 obj->log_level ? 1 : 0, obj->token_fd); 3604 } 3605 if (sanitize) { 3606 if (!err) { 3607 /* move fd to libbpf's BTF */ 3608 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3609 btf__set_fd(kern_btf, -1); 3610 } 3611 btf__free(kern_btf); 3612 } 3613 report: 3614 if (err) { 3615 btf_mandatory = kernel_needs_btf(obj); 3616 if (btf_mandatory) { 3617 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3618 errstr(err)); 3619 } else { 3620 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3621 errstr(err)); 3622 err = 0; 3623 } 3624 } 3625 return err; 3626 } 3627 3628 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3629 { 3630 const char *name; 3631 3632 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3633 if (!name) { 3634 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3635 off, obj->path, elf_errmsg(-1)); 3636 return NULL; 3637 } 3638 3639 return name; 3640 } 3641 3642 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3643 { 3644 const char *name; 3645 3646 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3647 if (!name) { 3648 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3649 off, obj->path, elf_errmsg(-1)); 3650 return NULL; 3651 } 3652 3653 return name; 3654 } 3655 3656 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3657 { 3658 Elf_Scn *scn; 3659 3660 scn = elf_getscn(obj->efile.elf, idx); 3661 if (!scn) { 3662 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3663 idx, obj->path, elf_errmsg(-1)); 3664 return NULL; 3665 } 3666 return scn; 3667 } 3668 3669 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3670 { 3671 Elf_Scn *scn = NULL; 3672 Elf *elf = obj->efile.elf; 3673 const char *sec_name; 3674 3675 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3676 sec_name = elf_sec_name(obj, scn); 3677 if (!sec_name) 3678 return NULL; 3679 3680 if (strcmp(sec_name, name) != 0) 3681 continue; 3682 3683 return scn; 3684 } 3685 return NULL; 3686 } 3687 3688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3689 { 3690 Elf64_Shdr *shdr; 3691 3692 if (!scn) 3693 return NULL; 3694 3695 shdr = elf64_getshdr(scn); 3696 if (!shdr) { 3697 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3698 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3699 return NULL; 3700 } 3701 3702 return shdr; 3703 } 3704 3705 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3706 { 3707 const char *name; 3708 Elf64_Shdr *sh; 3709 3710 if (!scn) 3711 return NULL; 3712 3713 sh = elf_sec_hdr(obj, scn); 3714 if (!sh) 3715 return NULL; 3716 3717 name = elf_sec_str(obj, sh->sh_name); 3718 if (!name) { 3719 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3720 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3721 return NULL; 3722 } 3723 3724 return name; 3725 } 3726 3727 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3728 { 3729 Elf_Data *data; 3730 3731 if (!scn) 3732 return NULL; 3733 3734 data = elf_getdata(scn, 0); 3735 if (!data) { 3736 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3737 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3738 obj->path, elf_errmsg(-1)); 3739 return NULL; 3740 } 3741 3742 return data; 3743 } 3744 3745 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3746 { 3747 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3748 return NULL; 3749 3750 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3751 } 3752 3753 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3754 { 3755 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3756 return NULL; 3757 3758 return (Elf64_Rel *)data->d_buf + idx; 3759 } 3760 3761 static bool is_sec_name_dwarf(const char *name) 3762 { 3763 /* approximation, but the actual list is too long */ 3764 return str_has_pfx(name, ".debug_"); 3765 } 3766 3767 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3768 { 3769 /* no special handling of .strtab */ 3770 if (hdr->sh_type == SHT_STRTAB) 3771 return true; 3772 3773 /* ignore .llvm_addrsig section as well */ 3774 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3775 return true; 3776 3777 /* no subprograms will lead to an empty .text section, ignore it */ 3778 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3779 strcmp(name, ".text") == 0) 3780 return true; 3781 3782 /* DWARF sections */ 3783 if (is_sec_name_dwarf(name)) 3784 return true; 3785 3786 if (str_has_pfx(name, ".rel")) { 3787 name += sizeof(".rel") - 1; 3788 /* DWARF section relocations */ 3789 if (is_sec_name_dwarf(name)) 3790 return true; 3791 3792 /* .BTF and .BTF.ext don't need relocations */ 3793 if (strcmp(name, BTF_ELF_SEC) == 0 || 3794 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3795 return true; 3796 } 3797 3798 return false; 3799 } 3800 3801 static int cmp_progs(const void *_a, const void *_b) 3802 { 3803 const struct bpf_program *a = _a; 3804 const struct bpf_program *b = _b; 3805 3806 if (a->sec_idx != b->sec_idx) 3807 return a->sec_idx < b->sec_idx ? -1 : 1; 3808 3809 /* sec_insn_off can't be the same within the section */ 3810 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3811 } 3812 3813 static int bpf_object__elf_collect(struct bpf_object *obj) 3814 { 3815 struct elf_sec_desc *sec_desc; 3816 Elf *elf = obj->efile.elf; 3817 Elf_Data *btf_ext_data = NULL; 3818 Elf_Data *btf_data = NULL; 3819 int idx = 0, err = 0; 3820 const char *name; 3821 Elf_Data *data; 3822 Elf_Scn *scn; 3823 Elf64_Shdr *sh; 3824 3825 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3826 * section. Since section count retrieved by elf_getshdrnum() does 3827 * include sec #0, it is already the necessary size of an array to keep 3828 * all the sections. 3829 */ 3830 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3831 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3832 obj->path, elf_errmsg(-1)); 3833 return -LIBBPF_ERRNO__FORMAT; 3834 } 3835 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3836 if (!obj->efile.secs) 3837 return -ENOMEM; 3838 3839 /* a bunch of ELF parsing functionality depends on processing symbols, 3840 * so do the first pass and find the symbol table 3841 */ 3842 scn = NULL; 3843 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3844 sh = elf_sec_hdr(obj, scn); 3845 if (!sh) 3846 return -LIBBPF_ERRNO__FORMAT; 3847 3848 if (sh->sh_type == SHT_SYMTAB) { 3849 if (obj->efile.symbols) { 3850 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3851 return -LIBBPF_ERRNO__FORMAT; 3852 } 3853 3854 data = elf_sec_data(obj, scn); 3855 if (!data) 3856 return -LIBBPF_ERRNO__FORMAT; 3857 3858 idx = elf_ndxscn(scn); 3859 3860 obj->efile.symbols = data; 3861 obj->efile.symbols_shndx = idx; 3862 obj->efile.strtabidx = sh->sh_link; 3863 } 3864 } 3865 3866 if (!obj->efile.symbols) { 3867 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3868 obj->path); 3869 return -ENOENT; 3870 } 3871 3872 scn = NULL; 3873 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3874 idx = elf_ndxscn(scn); 3875 sec_desc = &obj->efile.secs[idx]; 3876 3877 sh = elf_sec_hdr(obj, scn); 3878 if (!sh) 3879 return -LIBBPF_ERRNO__FORMAT; 3880 3881 name = elf_sec_str(obj, sh->sh_name); 3882 if (!name) 3883 return -LIBBPF_ERRNO__FORMAT; 3884 3885 if (ignore_elf_section(sh, name)) 3886 continue; 3887 3888 data = elf_sec_data(obj, scn); 3889 if (!data) 3890 return -LIBBPF_ERRNO__FORMAT; 3891 3892 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3893 idx, name, (unsigned long)data->d_size, 3894 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3895 (int)sh->sh_type); 3896 3897 if (strcmp(name, "license") == 0) { 3898 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3899 if (err) 3900 return err; 3901 } else if (strcmp(name, "version") == 0) { 3902 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3903 if (err) 3904 return err; 3905 } else if (strcmp(name, "maps") == 0) { 3906 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3907 return -ENOTSUP; 3908 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3909 obj->efile.btf_maps_shndx = idx; 3910 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3911 if (sh->sh_type != SHT_PROGBITS) 3912 return -LIBBPF_ERRNO__FORMAT; 3913 btf_data = data; 3914 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3915 if (sh->sh_type != SHT_PROGBITS) 3916 return -LIBBPF_ERRNO__FORMAT; 3917 btf_ext_data = data; 3918 } else if (sh->sh_type == SHT_SYMTAB) { 3919 /* already processed during the first pass above */ 3920 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3921 if (sh->sh_flags & SHF_EXECINSTR) { 3922 if (strcmp(name, ".text") == 0) 3923 obj->efile.text_shndx = idx; 3924 err = bpf_object__add_programs(obj, data, name, idx); 3925 if (err) 3926 return err; 3927 } else if (strcmp(name, DATA_SEC) == 0 || 3928 str_has_pfx(name, DATA_SEC ".")) { 3929 sec_desc->sec_type = SEC_DATA; 3930 sec_desc->shdr = sh; 3931 sec_desc->data = data; 3932 } else if (strcmp(name, RODATA_SEC) == 0 || 3933 str_has_pfx(name, RODATA_SEC ".")) { 3934 sec_desc->sec_type = SEC_RODATA; 3935 sec_desc->shdr = sh; 3936 sec_desc->data = data; 3937 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3938 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3939 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3940 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3941 sec_desc->sec_type = SEC_ST_OPS; 3942 sec_desc->shdr = sh; 3943 sec_desc->data = data; 3944 obj->efile.has_st_ops = true; 3945 } else if (strcmp(name, ARENA_SEC) == 0) { 3946 obj->efile.arena_data = data; 3947 obj->efile.arena_data_shndx = idx; 3948 } else { 3949 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3950 idx, name); 3951 } 3952 } else if (sh->sh_type == SHT_REL) { 3953 int targ_sec_idx = sh->sh_info; /* points to other section */ 3954 3955 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3956 targ_sec_idx >= obj->efile.sec_cnt) 3957 return -LIBBPF_ERRNO__FORMAT; 3958 3959 /* Only do relo for section with exec instructions */ 3960 if (!section_have_execinstr(obj, targ_sec_idx) && 3961 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3962 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3963 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3964 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3965 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3966 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3967 idx, name, targ_sec_idx, 3968 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3969 continue; 3970 } 3971 3972 sec_desc->sec_type = SEC_RELO; 3973 sec_desc->shdr = sh; 3974 sec_desc->data = data; 3975 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3976 str_has_pfx(name, BSS_SEC "."))) { 3977 sec_desc->sec_type = SEC_BSS; 3978 sec_desc->shdr = sh; 3979 sec_desc->data = data; 3980 } else { 3981 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3982 (size_t)sh->sh_size); 3983 } 3984 } 3985 3986 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3987 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3988 return -LIBBPF_ERRNO__FORMAT; 3989 } 3990 3991 /* change BPF program insns to native endianness for introspection */ 3992 if (!is_native_endianness(obj)) 3993 bpf_object_bswap_progs(obj); 3994 3995 /* sort BPF programs by section name and in-section instruction offset 3996 * for faster search 3997 */ 3998 if (obj->nr_programs) 3999 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 4000 4001 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4002 } 4003 4004 static bool sym_is_extern(const Elf64_Sym *sym) 4005 { 4006 int bind = ELF64_ST_BIND(sym->st_info); 4007 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4008 return sym->st_shndx == SHN_UNDEF && 4009 (bind == STB_GLOBAL || bind == STB_WEAK) && 4010 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4011 } 4012 4013 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4014 { 4015 int bind = ELF64_ST_BIND(sym->st_info); 4016 int type = ELF64_ST_TYPE(sym->st_info); 4017 4018 /* in .text section */ 4019 if (sym->st_shndx != text_shndx) 4020 return false; 4021 4022 /* local function */ 4023 if (bind == STB_LOCAL && type == STT_SECTION) 4024 return true; 4025 4026 /* global function */ 4027 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4028 } 4029 4030 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4031 { 4032 const struct btf_type *t; 4033 const char *tname; 4034 int i, n; 4035 4036 if (!btf) 4037 return -ESRCH; 4038 4039 n = btf__type_cnt(btf); 4040 for (i = 1; i < n; i++) { 4041 t = btf__type_by_id(btf, i); 4042 4043 if (!btf_is_var(t) && !btf_is_func(t)) 4044 continue; 4045 4046 tname = btf__name_by_offset(btf, t->name_off); 4047 if (strcmp(tname, ext_name)) 4048 continue; 4049 4050 if (btf_is_var(t) && 4051 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4052 return -EINVAL; 4053 4054 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4055 return -EINVAL; 4056 4057 return i; 4058 } 4059 4060 return -ENOENT; 4061 } 4062 4063 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4064 const struct btf_var_secinfo *vs; 4065 const struct btf_type *t; 4066 int i, j, n; 4067 4068 if (!btf) 4069 return -ESRCH; 4070 4071 n = btf__type_cnt(btf); 4072 for (i = 1; i < n; i++) { 4073 t = btf__type_by_id(btf, i); 4074 4075 if (!btf_is_datasec(t)) 4076 continue; 4077 4078 vs = btf_var_secinfos(t); 4079 for (j = 0; j < btf_vlen(t); j++, vs++) { 4080 if (vs->type == ext_btf_id) 4081 return i; 4082 } 4083 } 4084 4085 return -ENOENT; 4086 } 4087 4088 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4089 bool *is_signed) 4090 { 4091 const struct btf_type *t; 4092 const char *name; 4093 4094 t = skip_mods_and_typedefs(btf, id, NULL); 4095 name = btf__name_by_offset(btf, t->name_off); 4096 4097 if (is_signed) 4098 *is_signed = false; 4099 switch (btf_kind(t)) { 4100 case BTF_KIND_INT: { 4101 int enc = btf_int_encoding(t); 4102 4103 if (enc & BTF_INT_BOOL) 4104 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4105 if (is_signed) 4106 *is_signed = enc & BTF_INT_SIGNED; 4107 if (t->size == 1) 4108 return KCFG_CHAR; 4109 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4110 return KCFG_UNKNOWN; 4111 return KCFG_INT; 4112 } 4113 case BTF_KIND_ENUM: 4114 if (t->size != 4) 4115 return KCFG_UNKNOWN; 4116 if (strcmp(name, "libbpf_tristate")) 4117 return KCFG_UNKNOWN; 4118 return KCFG_TRISTATE; 4119 case BTF_KIND_ENUM64: 4120 if (strcmp(name, "libbpf_tristate")) 4121 return KCFG_UNKNOWN; 4122 return KCFG_TRISTATE; 4123 case BTF_KIND_ARRAY: 4124 if (btf_array(t)->nelems == 0) 4125 return KCFG_UNKNOWN; 4126 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4127 return KCFG_UNKNOWN; 4128 return KCFG_CHAR_ARR; 4129 default: 4130 return KCFG_UNKNOWN; 4131 } 4132 } 4133 4134 static int cmp_externs(const void *_a, const void *_b) 4135 { 4136 const struct extern_desc *a = _a; 4137 const struct extern_desc *b = _b; 4138 4139 if (a->type != b->type) 4140 return a->type < b->type ? -1 : 1; 4141 4142 if (a->type == EXT_KCFG) { 4143 /* descending order by alignment requirements */ 4144 if (a->kcfg.align != b->kcfg.align) 4145 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4146 /* ascending order by size, within same alignment class */ 4147 if (a->kcfg.sz != b->kcfg.sz) 4148 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4149 } 4150 4151 /* resolve ties by name */ 4152 return strcmp(a->name, b->name); 4153 } 4154 4155 static int find_int_btf_id(const struct btf *btf) 4156 { 4157 const struct btf_type *t; 4158 int i, n; 4159 4160 n = btf__type_cnt(btf); 4161 for (i = 1; i < n; i++) { 4162 t = btf__type_by_id(btf, i); 4163 4164 if (btf_is_int(t) && btf_int_bits(t) == 32) 4165 return i; 4166 } 4167 4168 return 0; 4169 } 4170 4171 static int add_dummy_ksym_var(struct btf *btf) 4172 { 4173 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4174 const struct btf_var_secinfo *vs; 4175 const struct btf_type *sec; 4176 4177 if (!btf) 4178 return 0; 4179 4180 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4181 BTF_KIND_DATASEC); 4182 if (sec_btf_id < 0) 4183 return 0; 4184 4185 sec = btf__type_by_id(btf, sec_btf_id); 4186 vs = btf_var_secinfos(sec); 4187 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4188 const struct btf_type *vt; 4189 4190 vt = btf__type_by_id(btf, vs->type); 4191 if (btf_is_func(vt)) 4192 break; 4193 } 4194 4195 /* No func in ksyms sec. No need to add dummy var. */ 4196 if (i == btf_vlen(sec)) 4197 return 0; 4198 4199 int_btf_id = find_int_btf_id(btf); 4200 dummy_var_btf_id = btf__add_var(btf, 4201 "dummy_ksym", 4202 BTF_VAR_GLOBAL_ALLOCATED, 4203 int_btf_id); 4204 if (dummy_var_btf_id < 0) 4205 pr_warn("cannot create a dummy_ksym var\n"); 4206 4207 return dummy_var_btf_id; 4208 } 4209 4210 static int bpf_object__collect_externs(struct bpf_object *obj) 4211 { 4212 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4213 const struct btf_type *t; 4214 struct extern_desc *ext; 4215 int i, n, off, dummy_var_btf_id; 4216 const char *ext_name, *sec_name; 4217 size_t ext_essent_len; 4218 Elf_Scn *scn; 4219 Elf64_Shdr *sh; 4220 4221 if (!obj->efile.symbols) 4222 return 0; 4223 4224 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4225 sh = elf_sec_hdr(obj, scn); 4226 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4227 return -LIBBPF_ERRNO__FORMAT; 4228 4229 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4230 if (dummy_var_btf_id < 0) 4231 return dummy_var_btf_id; 4232 4233 n = sh->sh_size / sh->sh_entsize; 4234 pr_debug("looking for externs among %d symbols...\n", n); 4235 4236 for (i = 0; i < n; i++) { 4237 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4238 4239 if (!sym) 4240 return -LIBBPF_ERRNO__FORMAT; 4241 if (!sym_is_extern(sym)) 4242 continue; 4243 ext_name = elf_sym_str(obj, sym->st_name); 4244 if (!ext_name || !ext_name[0]) 4245 continue; 4246 4247 ext = obj->externs; 4248 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4249 if (!ext) 4250 return -ENOMEM; 4251 obj->externs = ext; 4252 ext = &ext[obj->nr_extern]; 4253 memset(ext, 0, sizeof(*ext)); 4254 obj->nr_extern++; 4255 4256 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4257 if (ext->btf_id <= 0) { 4258 pr_warn("failed to find BTF for extern '%s': %d\n", 4259 ext_name, ext->btf_id); 4260 return ext->btf_id; 4261 } 4262 t = btf__type_by_id(obj->btf, ext->btf_id); 4263 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4264 if (!ext->name) 4265 return -ENOMEM; 4266 ext->sym_idx = i; 4267 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4268 4269 ext_essent_len = bpf_core_essential_name_len(ext->name); 4270 ext->essent_name = NULL; 4271 if (ext_essent_len != strlen(ext->name)) { 4272 ext->essent_name = strndup(ext->name, ext_essent_len); 4273 if (!ext->essent_name) 4274 return -ENOMEM; 4275 } 4276 4277 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4278 if (ext->sec_btf_id <= 0) { 4279 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4280 ext_name, ext->btf_id, ext->sec_btf_id); 4281 return ext->sec_btf_id; 4282 } 4283 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4284 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4285 4286 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4287 if (btf_is_func(t)) { 4288 pr_warn("extern function %s is unsupported under %s section\n", 4289 ext->name, KCONFIG_SEC); 4290 return -ENOTSUP; 4291 } 4292 kcfg_sec = sec; 4293 ext->type = EXT_KCFG; 4294 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4295 if (ext->kcfg.sz <= 0) { 4296 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4297 ext_name, ext->kcfg.sz); 4298 return ext->kcfg.sz; 4299 } 4300 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4301 if (ext->kcfg.align <= 0) { 4302 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4303 ext_name, ext->kcfg.align); 4304 return -EINVAL; 4305 } 4306 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4307 &ext->kcfg.is_signed); 4308 if (ext->kcfg.type == KCFG_UNKNOWN) { 4309 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4310 return -ENOTSUP; 4311 } 4312 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4313 ksym_sec = sec; 4314 ext->type = EXT_KSYM; 4315 skip_mods_and_typedefs(obj->btf, t->type, 4316 &ext->ksym.type_id); 4317 } else { 4318 pr_warn("unrecognized extern section '%s'\n", sec_name); 4319 return -ENOTSUP; 4320 } 4321 } 4322 pr_debug("collected %d externs total\n", obj->nr_extern); 4323 4324 if (!obj->nr_extern) 4325 return 0; 4326 4327 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4328 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4329 4330 /* for .ksyms section, we need to turn all externs into allocated 4331 * variables in BTF to pass kernel verification; we do this by 4332 * pretending that each extern is a 8-byte variable 4333 */ 4334 if (ksym_sec) { 4335 /* find existing 4-byte integer type in BTF to use for fake 4336 * extern variables in DATASEC 4337 */ 4338 int int_btf_id = find_int_btf_id(obj->btf); 4339 /* For extern function, a dummy_var added earlier 4340 * will be used to replace the vs->type and 4341 * its name string will be used to refill 4342 * the missing param's name. 4343 */ 4344 const struct btf_type *dummy_var; 4345 4346 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4347 for (i = 0; i < obj->nr_extern; i++) { 4348 ext = &obj->externs[i]; 4349 if (ext->type != EXT_KSYM) 4350 continue; 4351 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4352 i, ext->sym_idx, ext->name); 4353 } 4354 4355 sec = ksym_sec; 4356 n = btf_vlen(sec); 4357 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4358 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4359 struct btf_type *vt; 4360 4361 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4362 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4363 ext = find_extern_by_name(obj, ext_name); 4364 if (!ext) { 4365 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4366 btf_kind_str(vt), ext_name); 4367 return -ESRCH; 4368 } 4369 if (btf_is_func(vt)) { 4370 const struct btf_type *func_proto; 4371 struct btf_param *param; 4372 int j; 4373 4374 func_proto = btf__type_by_id(obj->btf, 4375 vt->type); 4376 param = btf_params(func_proto); 4377 /* Reuse the dummy_var string if the 4378 * func proto does not have param name. 4379 */ 4380 for (j = 0; j < btf_vlen(func_proto); j++) 4381 if (param[j].type && !param[j].name_off) 4382 param[j].name_off = 4383 dummy_var->name_off; 4384 vs->type = dummy_var_btf_id; 4385 vt->info &= ~0xffff; 4386 vt->info |= BTF_FUNC_GLOBAL; 4387 } else { 4388 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4389 vt->type = int_btf_id; 4390 } 4391 vs->offset = off; 4392 vs->size = sizeof(int); 4393 } 4394 sec->size = off; 4395 } 4396 4397 if (kcfg_sec) { 4398 sec = kcfg_sec; 4399 /* for kcfg externs calculate their offsets within a .kconfig map */ 4400 off = 0; 4401 for (i = 0; i < obj->nr_extern; i++) { 4402 ext = &obj->externs[i]; 4403 if (ext->type != EXT_KCFG) 4404 continue; 4405 4406 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4407 off = ext->kcfg.data_off + ext->kcfg.sz; 4408 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4409 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4410 } 4411 sec->size = off; 4412 n = btf_vlen(sec); 4413 for (i = 0; i < n; i++) { 4414 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4415 4416 t = btf__type_by_id(obj->btf, vs->type); 4417 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4418 ext = find_extern_by_name(obj, ext_name); 4419 if (!ext) { 4420 pr_warn("failed to find extern definition for BTF var '%s'\n", 4421 ext_name); 4422 return -ESRCH; 4423 } 4424 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4425 vs->offset = ext->kcfg.data_off; 4426 } 4427 } 4428 return 0; 4429 } 4430 4431 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4432 { 4433 return prog->sec_idx == obj->efile.text_shndx; 4434 } 4435 4436 struct bpf_program * 4437 bpf_object__find_program_by_name(const struct bpf_object *obj, 4438 const char *name) 4439 { 4440 struct bpf_program *prog; 4441 4442 bpf_object__for_each_program(prog, obj) { 4443 if (prog_is_subprog(obj, prog)) 4444 continue; 4445 if (!strcmp(prog->name, name)) 4446 return prog; 4447 } 4448 return errno = ENOENT, NULL; 4449 } 4450 4451 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4452 int shndx) 4453 { 4454 switch (obj->efile.secs[shndx].sec_type) { 4455 case SEC_BSS: 4456 case SEC_DATA: 4457 case SEC_RODATA: 4458 return true; 4459 default: 4460 return false; 4461 } 4462 } 4463 4464 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4465 int shndx) 4466 { 4467 return shndx == obj->efile.btf_maps_shndx; 4468 } 4469 4470 static enum libbpf_map_type 4471 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4472 { 4473 if (shndx == obj->efile.symbols_shndx) 4474 return LIBBPF_MAP_KCONFIG; 4475 4476 switch (obj->efile.secs[shndx].sec_type) { 4477 case SEC_BSS: 4478 return LIBBPF_MAP_BSS; 4479 case SEC_DATA: 4480 return LIBBPF_MAP_DATA; 4481 case SEC_RODATA: 4482 return LIBBPF_MAP_RODATA; 4483 default: 4484 return LIBBPF_MAP_UNSPEC; 4485 } 4486 } 4487 4488 static int bpf_program__record_reloc(struct bpf_program *prog, 4489 struct reloc_desc *reloc_desc, 4490 __u32 insn_idx, const char *sym_name, 4491 const Elf64_Sym *sym, const Elf64_Rel *rel) 4492 { 4493 struct bpf_insn *insn = &prog->insns[insn_idx]; 4494 size_t map_idx, nr_maps = prog->obj->nr_maps; 4495 struct bpf_object *obj = prog->obj; 4496 __u32 shdr_idx = sym->st_shndx; 4497 enum libbpf_map_type type; 4498 const char *sym_sec_name; 4499 struct bpf_map *map; 4500 4501 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4502 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4503 prog->name, sym_name, insn_idx, insn->code); 4504 return -LIBBPF_ERRNO__RELOC; 4505 } 4506 4507 if (sym_is_extern(sym)) { 4508 int sym_idx = ELF64_R_SYM(rel->r_info); 4509 int i, n = obj->nr_extern; 4510 struct extern_desc *ext; 4511 4512 for (i = 0; i < n; i++) { 4513 ext = &obj->externs[i]; 4514 if (ext->sym_idx == sym_idx) 4515 break; 4516 } 4517 if (i >= n) { 4518 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4519 prog->name, sym_name, sym_idx); 4520 return -LIBBPF_ERRNO__RELOC; 4521 } 4522 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4523 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4524 if (insn->code == (BPF_JMP | BPF_CALL)) 4525 reloc_desc->type = RELO_EXTERN_CALL; 4526 else 4527 reloc_desc->type = RELO_EXTERN_LD64; 4528 reloc_desc->insn_idx = insn_idx; 4529 reloc_desc->ext_idx = i; 4530 return 0; 4531 } 4532 4533 /* sub-program call relocation */ 4534 if (is_call_insn(insn)) { 4535 if (insn->src_reg != BPF_PSEUDO_CALL) { 4536 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4537 return -LIBBPF_ERRNO__RELOC; 4538 } 4539 /* text_shndx can be 0, if no default "main" program exists */ 4540 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4541 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4542 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4543 prog->name, sym_name, sym_sec_name); 4544 return -LIBBPF_ERRNO__RELOC; 4545 } 4546 if (sym->st_value % BPF_INSN_SZ) { 4547 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4548 prog->name, sym_name, (size_t)sym->st_value); 4549 return -LIBBPF_ERRNO__RELOC; 4550 } 4551 reloc_desc->type = RELO_CALL; 4552 reloc_desc->insn_idx = insn_idx; 4553 reloc_desc->sym_off = sym->st_value; 4554 return 0; 4555 } 4556 4557 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4558 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4559 prog->name, sym_name, shdr_idx); 4560 return -LIBBPF_ERRNO__RELOC; 4561 } 4562 4563 /* loading subprog addresses */ 4564 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4565 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4566 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4567 */ 4568 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4569 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4570 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4571 return -LIBBPF_ERRNO__RELOC; 4572 } 4573 4574 reloc_desc->type = RELO_SUBPROG_ADDR; 4575 reloc_desc->insn_idx = insn_idx; 4576 reloc_desc->sym_off = sym->st_value; 4577 return 0; 4578 } 4579 4580 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4581 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4582 4583 /* arena data relocation */ 4584 if (shdr_idx == obj->efile.arena_data_shndx) { 4585 reloc_desc->type = RELO_DATA; 4586 reloc_desc->insn_idx = insn_idx; 4587 reloc_desc->map_idx = obj->arena_map_idx; 4588 reloc_desc->sym_off = sym->st_value; 4589 4590 map = &obj->maps[obj->arena_map_idx]; 4591 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n", 4592 prog->name, obj->arena_map_idx, map->name, map->sec_idx, 4593 map->sec_offset, insn_idx); 4594 return 0; 4595 } 4596 4597 /* generic map reference relocation */ 4598 if (type == LIBBPF_MAP_UNSPEC) { 4599 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4600 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4601 prog->name, sym_name, sym_sec_name); 4602 return -LIBBPF_ERRNO__RELOC; 4603 } 4604 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4605 map = &obj->maps[map_idx]; 4606 if (map->libbpf_type != type || 4607 map->sec_idx != sym->st_shndx || 4608 map->sec_offset != sym->st_value) 4609 continue; 4610 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4611 prog->name, map_idx, map->name, map->sec_idx, 4612 map->sec_offset, insn_idx); 4613 break; 4614 } 4615 if (map_idx >= nr_maps) { 4616 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4617 prog->name, sym_sec_name, (size_t)sym->st_value); 4618 return -LIBBPF_ERRNO__RELOC; 4619 } 4620 reloc_desc->type = RELO_LD64; 4621 reloc_desc->insn_idx = insn_idx; 4622 reloc_desc->map_idx = map_idx; 4623 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4624 return 0; 4625 } 4626 4627 /* global data map relocation */ 4628 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4629 pr_warn("prog '%s': bad data relo against section '%s'\n", 4630 prog->name, sym_sec_name); 4631 return -LIBBPF_ERRNO__RELOC; 4632 } 4633 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4634 map = &obj->maps[map_idx]; 4635 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4636 continue; 4637 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4638 prog->name, map_idx, map->name, map->sec_idx, 4639 map->sec_offset, insn_idx); 4640 break; 4641 } 4642 if (map_idx >= nr_maps) { 4643 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4644 prog->name, sym_sec_name); 4645 return -LIBBPF_ERRNO__RELOC; 4646 } 4647 4648 reloc_desc->type = RELO_DATA; 4649 reloc_desc->insn_idx = insn_idx; 4650 reloc_desc->map_idx = map_idx; 4651 reloc_desc->sym_off = sym->st_value; 4652 return 0; 4653 } 4654 4655 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4656 { 4657 return insn_idx >= prog->sec_insn_off && 4658 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4659 } 4660 4661 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4662 size_t sec_idx, size_t insn_idx) 4663 { 4664 int l = 0, r = obj->nr_programs - 1, m; 4665 struct bpf_program *prog; 4666 4667 if (!obj->nr_programs) 4668 return NULL; 4669 4670 while (l < r) { 4671 m = l + (r - l + 1) / 2; 4672 prog = &obj->programs[m]; 4673 4674 if (prog->sec_idx < sec_idx || 4675 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4676 l = m; 4677 else 4678 r = m - 1; 4679 } 4680 /* matching program could be at index l, but it still might be the 4681 * wrong one, so we need to double check conditions for the last time 4682 */ 4683 prog = &obj->programs[l]; 4684 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4685 return prog; 4686 return NULL; 4687 } 4688 4689 static int 4690 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4691 { 4692 const char *relo_sec_name, *sec_name; 4693 size_t sec_idx = shdr->sh_info, sym_idx; 4694 struct bpf_program *prog; 4695 struct reloc_desc *relos; 4696 int err, i, nrels; 4697 const char *sym_name; 4698 __u32 insn_idx; 4699 Elf_Scn *scn; 4700 Elf_Data *scn_data; 4701 Elf64_Sym *sym; 4702 Elf64_Rel *rel; 4703 4704 if (sec_idx >= obj->efile.sec_cnt) 4705 return -EINVAL; 4706 4707 scn = elf_sec_by_idx(obj, sec_idx); 4708 scn_data = elf_sec_data(obj, scn); 4709 if (!scn_data) 4710 return -LIBBPF_ERRNO__FORMAT; 4711 4712 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4713 sec_name = elf_sec_name(obj, scn); 4714 if (!relo_sec_name || !sec_name) 4715 return -EINVAL; 4716 4717 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4718 relo_sec_name, sec_idx, sec_name); 4719 nrels = shdr->sh_size / shdr->sh_entsize; 4720 4721 for (i = 0; i < nrels; i++) { 4722 rel = elf_rel_by_idx(data, i); 4723 if (!rel) { 4724 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4725 return -LIBBPF_ERRNO__FORMAT; 4726 } 4727 4728 sym_idx = ELF64_R_SYM(rel->r_info); 4729 sym = elf_sym_by_idx(obj, sym_idx); 4730 if (!sym) { 4731 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4732 relo_sec_name, sym_idx, i); 4733 return -LIBBPF_ERRNO__FORMAT; 4734 } 4735 4736 if (sym->st_shndx >= obj->efile.sec_cnt) { 4737 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4738 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4739 return -LIBBPF_ERRNO__FORMAT; 4740 } 4741 4742 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4743 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4744 relo_sec_name, (size_t)rel->r_offset, i); 4745 return -LIBBPF_ERRNO__FORMAT; 4746 } 4747 4748 insn_idx = rel->r_offset / BPF_INSN_SZ; 4749 /* relocations against static functions are recorded as 4750 * relocations against the section that contains a function; 4751 * in such case, symbol will be STT_SECTION and sym.st_name 4752 * will point to empty string (0), so fetch section name 4753 * instead 4754 */ 4755 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4756 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4757 else 4758 sym_name = elf_sym_str(obj, sym->st_name); 4759 sym_name = sym_name ?: "<?"; 4760 4761 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4762 relo_sec_name, i, insn_idx, sym_name); 4763 4764 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4765 if (!prog) { 4766 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4767 relo_sec_name, i, sec_name, insn_idx); 4768 continue; 4769 } 4770 4771 relos = libbpf_reallocarray(prog->reloc_desc, 4772 prog->nr_reloc + 1, sizeof(*relos)); 4773 if (!relos) 4774 return -ENOMEM; 4775 prog->reloc_desc = relos; 4776 4777 /* adjust insn_idx to local BPF program frame of reference */ 4778 insn_idx -= prog->sec_insn_off; 4779 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4780 insn_idx, sym_name, sym, rel); 4781 if (err) 4782 return err; 4783 4784 prog->nr_reloc++; 4785 } 4786 return 0; 4787 } 4788 4789 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4790 { 4791 int id; 4792 4793 if (!obj->btf) 4794 return -ENOENT; 4795 4796 /* if it's BTF-defined map, we don't need to search for type IDs. 4797 * For struct_ops map, it does not need btf_key_type_id and 4798 * btf_value_type_id. 4799 */ 4800 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4801 return 0; 4802 4803 /* 4804 * LLVM annotates global data differently in BTF, that is, 4805 * only as '.data', '.bss' or '.rodata'. 4806 */ 4807 if (!bpf_map__is_internal(map)) 4808 return -ENOENT; 4809 4810 id = btf__find_by_name(obj->btf, map->real_name); 4811 if (id < 0) 4812 return id; 4813 4814 map->btf_key_type_id = 0; 4815 map->btf_value_type_id = id; 4816 return 0; 4817 } 4818 4819 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4820 { 4821 char file[PATH_MAX], buff[4096]; 4822 FILE *fp; 4823 __u32 val; 4824 int err; 4825 4826 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4827 memset(info, 0, sizeof(*info)); 4828 4829 fp = fopen(file, "re"); 4830 if (!fp) { 4831 err = -errno; 4832 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4833 errstr(err)); 4834 return err; 4835 } 4836 4837 while (fgets(buff, sizeof(buff), fp)) { 4838 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4839 info->type = val; 4840 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4841 info->key_size = val; 4842 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4843 info->value_size = val; 4844 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4845 info->max_entries = val; 4846 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4847 info->map_flags = val; 4848 } 4849 4850 fclose(fp); 4851 4852 return 0; 4853 } 4854 4855 static bool map_is_created(const struct bpf_map *map) 4856 { 4857 return map->obj->state >= OBJ_PREPARED || map->reused; 4858 } 4859 4860 bool bpf_map__autocreate(const struct bpf_map *map) 4861 { 4862 return map->autocreate; 4863 } 4864 4865 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4866 { 4867 if (map_is_created(map)) 4868 return libbpf_err(-EBUSY); 4869 4870 map->autocreate = autocreate; 4871 return 0; 4872 } 4873 4874 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4875 { 4876 if (!bpf_map__is_struct_ops(map)) 4877 return libbpf_err(-EINVAL); 4878 4879 map->autoattach = autoattach; 4880 return 0; 4881 } 4882 4883 bool bpf_map__autoattach(const struct bpf_map *map) 4884 { 4885 return map->autoattach; 4886 } 4887 4888 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4889 { 4890 struct bpf_map_info info; 4891 __u32 len = sizeof(info), name_len; 4892 int new_fd, err; 4893 char *new_name; 4894 4895 memset(&info, 0, len); 4896 err = bpf_map_get_info_by_fd(fd, &info, &len); 4897 if (err && errno == EINVAL) 4898 err = bpf_get_map_info_from_fdinfo(fd, &info); 4899 if (err) 4900 return libbpf_err(err); 4901 4902 name_len = strlen(info.name); 4903 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4904 new_name = strdup(map->name); 4905 else 4906 new_name = strdup(info.name); 4907 4908 if (!new_name) 4909 return libbpf_err(-errno); 4910 4911 /* 4912 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4913 * This is similar to what we do in ensure_good_fd(), but without 4914 * closing original FD. 4915 */ 4916 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4917 if (new_fd < 0) { 4918 err = -errno; 4919 goto err_free_new_name; 4920 } 4921 4922 err = reuse_fd(map->fd, new_fd); 4923 if (err) 4924 goto err_free_new_name; 4925 4926 free(map->name); 4927 4928 map->name = new_name; 4929 map->def.type = info.type; 4930 map->def.key_size = info.key_size; 4931 map->def.value_size = info.value_size; 4932 map->def.max_entries = info.max_entries; 4933 map->def.map_flags = info.map_flags; 4934 map->btf_key_type_id = info.btf_key_type_id; 4935 map->btf_value_type_id = info.btf_value_type_id; 4936 map->reused = true; 4937 map->map_extra = info.map_extra; 4938 4939 return 0; 4940 4941 err_free_new_name: 4942 free(new_name); 4943 return libbpf_err(err); 4944 } 4945 4946 __u32 bpf_map__max_entries(const struct bpf_map *map) 4947 { 4948 return map->def.max_entries; 4949 } 4950 4951 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4952 { 4953 if (!bpf_map_type__is_map_in_map(map->def.type)) 4954 return errno = EINVAL, NULL; 4955 4956 return map->inner_map; 4957 } 4958 4959 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4960 { 4961 if (map_is_created(map)) 4962 return libbpf_err(-EBUSY); 4963 4964 map->def.max_entries = max_entries; 4965 4966 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4967 if (map_is_ringbuf(map)) 4968 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4969 4970 return 0; 4971 } 4972 4973 static int bpf_object_prepare_token(struct bpf_object *obj) 4974 { 4975 const char *bpffs_path; 4976 int bpffs_fd = -1, token_fd, err; 4977 bool mandatory; 4978 enum libbpf_print_level level; 4979 4980 /* token is explicitly prevented */ 4981 if (obj->token_path && obj->token_path[0] == '\0') { 4982 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4983 return 0; 4984 } 4985 4986 mandatory = obj->token_path != NULL; 4987 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4988 4989 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4990 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4991 if (bpffs_fd < 0) { 4992 err = -errno; 4993 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4994 obj->name, errstr(err), bpffs_path, 4995 mandatory ? "" : ", skipping optional step..."); 4996 return mandatory ? err : 0; 4997 } 4998 4999 token_fd = bpf_token_create(bpffs_fd, 0); 5000 close(bpffs_fd); 5001 if (token_fd < 0) { 5002 if (!mandatory && token_fd == -ENOENT) { 5003 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 5004 obj->name, bpffs_path); 5005 return 0; 5006 } 5007 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5008 obj->name, token_fd, bpffs_path, 5009 mandatory ? "" : ", skipping optional step..."); 5010 return mandatory ? token_fd : 0; 5011 } 5012 5013 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5014 if (!obj->feat_cache) { 5015 close(token_fd); 5016 return -ENOMEM; 5017 } 5018 5019 obj->token_fd = token_fd; 5020 obj->feat_cache->token_fd = token_fd; 5021 5022 return 0; 5023 } 5024 5025 static int 5026 bpf_object__probe_loading(struct bpf_object *obj) 5027 { 5028 struct bpf_insn insns[] = { 5029 BPF_MOV64_IMM(BPF_REG_0, 0), 5030 BPF_EXIT_INSN(), 5031 }; 5032 int ret, insn_cnt = ARRAY_SIZE(insns); 5033 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5034 .token_fd = obj->token_fd, 5035 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5036 ); 5037 5038 if (obj->gen_loader) 5039 return 0; 5040 5041 ret = bump_rlimit_memlock(); 5042 if (ret) 5043 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5044 errstr(ret)); 5045 5046 /* make sure basic loading works */ 5047 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5048 if (ret < 0) 5049 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5050 if (ret < 0) { 5051 ret = errno; 5052 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5053 __func__, errstr(ret)); 5054 return -ret; 5055 } 5056 close(ret); 5057 5058 return 0; 5059 } 5060 5061 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5062 { 5063 if (obj->gen_loader) 5064 /* To generate loader program assume the latest kernel 5065 * to avoid doing extra prog_load, map_create syscalls. 5066 */ 5067 return true; 5068 5069 if (obj->token_fd) 5070 return feat_supported(obj->feat_cache, feat_id); 5071 5072 return feat_supported(NULL, feat_id); 5073 } 5074 5075 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5076 { 5077 struct bpf_map_info map_info; 5078 __u32 map_info_len = sizeof(map_info); 5079 int err; 5080 5081 memset(&map_info, 0, map_info_len); 5082 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5083 if (err && errno == EINVAL) 5084 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5085 if (err) { 5086 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5087 errstr(err)); 5088 return false; 5089 } 5090 5091 return (map_info.type == map->def.type && 5092 map_info.key_size == map->def.key_size && 5093 map_info.value_size == map->def.value_size && 5094 map_info.max_entries == map->def.max_entries && 5095 map_info.map_flags == map->def.map_flags && 5096 map_info.map_extra == map->map_extra); 5097 } 5098 5099 static int 5100 bpf_object__reuse_map(struct bpf_map *map) 5101 { 5102 int err, pin_fd; 5103 5104 pin_fd = bpf_obj_get(map->pin_path); 5105 if (pin_fd < 0) { 5106 err = -errno; 5107 if (err == -ENOENT) { 5108 pr_debug("found no pinned map to reuse at '%s'\n", 5109 map->pin_path); 5110 return 0; 5111 } 5112 5113 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5114 map->pin_path, errstr(err)); 5115 return err; 5116 } 5117 5118 if (!map_is_reuse_compat(map, pin_fd)) { 5119 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5120 map->pin_path); 5121 close(pin_fd); 5122 return -EINVAL; 5123 } 5124 5125 err = bpf_map__reuse_fd(map, pin_fd); 5126 close(pin_fd); 5127 if (err) 5128 return err; 5129 5130 map->pinned = true; 5131 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5132 5133 return 0; 5134 } 5135 5136 static int 5137 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5138 { 5139 enum libbpf_map_type map_type = map->libbpf_type; 5140 int err, zero = 0; 5141 size_t mmap_sz; 5142 5143 if (obj->gen_loader) { 5144 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5145 map->mmaped, map->def.value_size); 5146 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5147 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5148 return 0; 5149 } 5150 5151 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5152 if (err) { 5153 err = -errno; 5154 pr_warn("map '%s': failed to set initial contents: %s\n", 5155 bpf_map__name(map), errstr(err)); 5156 return err; 5157 } 5158 5159 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5160 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5161 err = bpf_map_freeze(map->fd); 5162 if (err) { 5163 err = -errno; 5164 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5165 bpf_map__name(map), errstr(err)); 5166 return err; 5167 } 5168 } 5169 5170 /* Remap anonymous mmap()-ed "map initialization image" as 5171 * a BPF map-backed mmap()-ed memory, but preserving the same 5172 * memory address. This will cause kernel to change process' 5173 * page table to point to a different piece of kernel memory, 5174 * but from userspace point of view memory address (and its 5175 * contents, being identical at this point) will stay the 5176 * same. This mapping will be released by bpf_object__close() 5177 * as per normal clean up procedure. 5178 */ 5179 mmap_sz = bpf_map_mmap_sz(map); 5180 if (map->def.map_flags & BPF_F_MMAPABLE) { 5181 void *mmaped; 5182 int prot; 5183 5184 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5185 prot = PROT_READ; 5186 else 5187 prot = PROT_READ | PROT_WRITE; 5188 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5189 if (mmaped == MAP_FAILED) { 5190 err = -errno; 5191 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5192 bpf_map__name(map), errstr(err)); 5193 return err; 5194 } 5195 map->mmaped = mmaped; 5196 } else if (map->mmaped) { 5197 munmap(map->mmaped, mmap_sz); 5198 map->mmaped = NULL; 5199 } 5200 5201 return 0; 5202 } 5203 5204 static void bpf_map__destroy(struct bpf_map *map); 5205 5206 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5207 { 5208 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5209 struct bpf_map_def *def = &map->def; 5210 const char *map_name = NULL; 5211 int err = 0, map_fd; 5212 5213 if (kernel_supports(obj, FEAT_PROG_NAME)) 5214 map_name = map->name; 5215 create_attr.map_ifindex = map->map_ifindex; 5216 create_attr.map_flags = def->map_flags; 5217 create_attr.numa_node = map->numa_node; 5218 create_attr.map_extra = map->map_extra; 5219 create_attr.token_fd = obj->token_fd; 5220 if (obj->token_fd) 5221 create_attr.map_flags |= BPF_F_TOKEN_FD; 5222 5223 if (bpf_map__is_struct_ops(map)) { 5224 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5225 if (map->mod_btf_fd >= 0) { 5226 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5227 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5228 } 5229 } 5230 5231 if (obj->btf && btf__fd(obj->btf) >= 0) { 5232 create_attr.btf_fd = btf__fd(obj->btf); 5233 create_attr.btf_key_type_id = map->btf_key_type_id; 5234 create_attr.btf_value_type_id = map->btf_value_type_id; 5235 } 5236 5237 if (bpf_map_type__is_map_in_map(def->type)) { 5238 if (map->inner_map) { 5239 err = map_set_def_max_entries(map->inner_map); 5240 if (err) 5241 return err; 5242 err = bpf_object__create_map(obj, map->inner_map, true); 5243 if (err) { 5244 pr_warn("map '%s': failed to create inner map: %s\n", 5245 map->name, errstr(err)); 5246 return err; 5247 } 5248 map->inner_map_fd = map->inner_map->fd; 5249 } 5250 if (map->inner_map_fd >= 0) 5251 create_attr.inner_map_fd = map->inner_map_fd; 5252 } 5253 5254 switch (def->type) { 5255 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5256 case BPF_MAP_TYPE_CGROUP_ARRAY: 5257 case BPF_MAP_TYPE_STACK_TRACE: 5258 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5259 case BPF_MAP_TYPE_HASH_OF_MAPS: 5260 case BPF_MAP_TYPE_DEVMAP: 5261 case BPF_MAP_TYPE_DEVMAP_HASH: 5262 case BPF_MAP_TYPE_CPUMAP: 5263 case BPF_MAP_TYPE_XSKMAP: 5264 case BPF_MAP_TYPE_SOCKMAP: 5265 case BPF_MAP_TYPE_SOCKHASH: 5266 case BPF_MAP_TYPE_QUEUE: 5267 case BPF_MAP_TYPE_STACK: 5268 case BPF_MAP_TYPE_ARENA: 5269 create_attr.btf_fd = 0; 5270 create_attr.btf_key_type_id = 0; 5271 create_attr.btf_value_type_id = 0; 5272 map->btf_key_type_id = 0; 5273 map->btf_value_type_id = 0; 5274 break; 5275 case BPF_MAP_TYPE_STRUCT_OPS: 5276 create_attr.btf_value_type_id = 0; 5277 break; 5278 default: 5279 break; 5280 } 5281 5282 if (obj->gen_loader) { 5283 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5284 def->key_size, def->value_size, def->max_entries, 5285 &create_attr, is_inner ? -1 : map - obj->maps); 5286 /* We keep pretenting we have valid FD to pass various fd >= 0 5287 * checks by just keeping original placeholder FDs in place. 5288 * See bpf_object__add_map() comment. 5289 * This placeholder fd will not be used with any syscall and 5290 * will be reset to -1 eventually. 5291 */ 5292 map_fd = map->fd; 5293 } else { 5294 map_fd = bpf_map_create(def->type, map_name, 5295 def->key_size, def->value_size, 5296 def->max_entries, &create_attr); 5297 } 5298 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5299 err = -errno; 5300 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5301 map->name, errstr(err)); 5302 create_attr.btf_fd = 0; 5303 create_attr.btf_key_type_id = 0; 5304 create_attr.btf_value_type_id = 0; 5305 map->btf_key_type_id = 0; 5306 map->btf_value_type_id = 0; 5307 map_fd = bpf_map_create(def->type, map_name, 5308 def->key_size, def->value_size, 5309 def->max_entries, &create_attr); 5310 } 5311 5312 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5313 if (obj->gen_loader) 5314 map->inner_map->fd = -1; 5315 bpf_map__destroy(map->inner_map); 5316 zfree(&map->inner_map); 5317 } 5318 5319 if (map_fd < 0) 5320 return map_fd; 5321 5322 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5323 if (map->fd == map_fd) 5324 return 0; 5325 5326 /* Keep placeholder FD value but now point it to the BPF map object. 5327 * This way everything that relied on this map's FD (e.g., relocated 5328 * ldimm64 instructions) will stay valid and won't need adjustments. 5329 * map->fd stays valid but now point to what map_fd points to. 5330 */ 5331 return reuse_fd(map->fd, map_fd); 5332 } 5333 5334 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5335 { 5336 const struct bpf_map *targ_map; 5337 unsigned int i; 5338 int fd, err = 0; 5339 5340 for (i = 0; i < map->init_slots_sz; i++) { 5341 if (!map->init_slots[i]) 5342 continue; 5343 5344 targ_map = map->init_slots[i]; 5345 fd = targ_map->fd; 5346 5347 if (obj->gen_loader) { 5348 bpf_gen__populate_outer_map(obj->gen_loader, 5349 map - obj->maps, i, 5350 targ_map - obj->maps); 5351 } else { 5352 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5353 } 5354 if (err) { 5355 err = -errno; 5356 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5357 map->name, i, targ_map->name, fd, errstr(err)); 5358 return err; 5359 } 5360 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5361 map->name, i, targ_map->name, fd); 5362 } 5363 5364 zfree(&map->init_slots); 5365 map->init_slots_sz = 0; 5366 5367 return 0; 5368 } 5369 5370 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5371 { 5372 const struct bpf_program *targ_prog; 5373 unsigned int i; 5374 int fd, err; 5375 5376 if (obj->gen_loader) 5377 return -ENOTSUP; 5378 5379 for (i = 0; i < map->init_slots_sz; i++) { 5380 if (!map->init_slots[i]) 5381 continue; 5382 5383 targ_prog = map->init_slots[i]; 5384 fd = bpf_program__fd(targ_prog); 5385 5386 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5387 if (err) { 5388 err = -errno; 5389 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5390 map->name, i, targ_prog->name, fd, errstr(err)); 5391 return err; 5392 } 5393 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5394 map->name, i, targ_prog->name, fd); 5395 } 5396 5397 zfree(&map->init_slots); 5398 map->init_slots_sz = 0; 5399 5400 return 0; 5401 } 5402 5403 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5404 { 5405 struct bpf_map *map; 5406 int i, err; 5407 5408 for (i = 0; i < obj->nr_maps; i++) { 5409 map = &obj->maps[i]; 5410 5411 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5412 continue; 5413 5414 err = init_prog_array_slots(obj, map); 5415 if (err < 0) 5416 return err; 5417 } 5418 return 0; 5419 } 5420 5421 static int map_set_def_max_entries(struct bpf_map *map) 5422 { 5423 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5424 int nr_cpus; 5425 5426 nr_cpus = libbpf_num_possible_cpus(); 5427 if (nr_cpus < 0) { 5428 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5429 map->name, nr_cpus); 5430 return nr_cpus; 5431 } 5432 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5433 map->def.max_entries = nr_cpus; 5434 } 5435 5436 return 0; 5437 } 5438 5439 static int 5440 bpf_object__create_maps(struct bpf_object *obj) 5441 { 5442 struct bpf_map *map; 5443 unsigned int i, j; 5444 int err; 5445 bool retried; 5446 5447 for (i = 0; i < obj->nr_maps; i++) { 5448 map = &obj->maps[i]; 5449 5450 /* To support old kernels, we skip creating global data maps 5451 * (.rodata, .data, .kconfig, etc); later on, during program 5452 * loading, if we detect that at least one of the to-be-loaded 5453 * programs is referencing any global data map, we'll error 5454 * out with program name and relocation index logged. 5455 * This approach allows to accommodate Clang emitting 5456 * unnecessary .rodata.str1.1 sections for string literals, 5457 * but also it allows to have CO-RE applications that use 5458 * global variables in some of BPF programs, but not others. 5459 * If those global variable-using programs are not loaded at 5460 * runtime due to bpf_program__set_autoload(prog, false), 5461 * bpf_object loading will succeed just fine even on old 5462 * kernels. 5463 */ 5464 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5465 map->autocreate = false; 5466 5467 if (!map->autocreate) { 5468 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5469 continue; 5470 } 5471 5472 err = map_set_def_max_entries(map); 5473 if (err) 5474 goto err_out; 5475 5476 retried = false; 5477 retry: 5478 if (map->pin_path) { 5479 err = bpf_object__reuse_map(map); 5480 if (err) { 5481 pr_warn("map '%s': error reusing pinned map\n", 5482 map->name); 5483 goto err_out; 5484 } 5485 if (retried && map->fd < 0) { 5486 pr_warn("map '%s': cannot find pinned map\n", 5487 map->name); 5488 err = -ENOENT; 5489 goto err_out; 5490 } 5491 } 5492 5493 if (map->reused) { 5494 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5495 map->name, map->fd); 5496 } else { 5497 err = bpf_object__create_map(obj, map, false); 5498 if (err) 5499 goto err_out; 5500 5501 pr_debug("map '%s': created successfully, fd=%d\n", 5502 map->name, map->fd); 5503 5504 if (bpf_map__is_internal(map)) { 5505 err = bpf_object__populate_internal_map(obj, map); 5506 if (err < 0) 5507 goto err_out; 5508 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5509 map->mmaped = mmap((void *)(long)map->map_extra, 5510 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5511 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5512 map->fd, 0); 5513 if (map->mmaped == MAP_FAILED) { 5514 err = -errno; 5515 map->mmaped = NULL; 5516 pr_warn("map '%s': failed to mmap arena: %s\n", 5517 map->name, errstr(err)); 5518 return err; 5519 } 5520 if (obj->arena_data) { 5521 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5522 zfree(&obj->arena_data); 5523 } 5524 } 5525 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5526 err = init_map_in_map_slots(obj, map); 5527 if (err < 0) 5528 goto err_out; 5529 } 5530 } 5531 5532 if (map->pin_path && !map->pinned) { 5533 err = bpf_map__pin(map, NULL); 5534 if (err) { 5535 if (!retried && err == -EEXIST) { 5536 retried = true; 5537 goto retry; 5538 } 5539 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5540 map->name, map->pin_path, errstr(err)); 5541 goto err_out; 5542 } 5543 } 5544 } 5545 5546 return 0; 5547 5548 err_out: 5549 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5550 pr_perm_msg(err); 5551 for (j = 0; j < i; j++) 5552 zclose(obj->maps[j].fd); 5553 return err; 5554 } 5555 5556 static bool bpf_core_is_flavor_sep(const char *s) 5557 { 5558 /* check X___Y name pattern, where X and Y are not underscores */ 5559 return s[0] != '_' && /* X */ 5560 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5561 s[4] != '_'; /* Y */ 5562 } 5563 5564 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5565 * before last triple underscore. Struct name part after last triple 5566 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5567 */ 5568 size_t bpf_core_essential_name_len(const char *name) 5569 { 5570 size_t n = strlen(name); 5571 int i; 5572 5573 for (i = n - 5; i >= 0; i--) { 5574 if (bpf_core_is_flavor_sep(name + i)) 5575 return i + 1; 5576 } 5577 return n; 5578 } 5579 5580 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5581 { 5582 if (!cands) 5583 return; 5584 5585 free(cands->cands); 5586 free(cands); 5587 } 5588 5589 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5590 size_t local_essent_len, 5591 const struct btf *targ_btf, 5592 const char *targ_btf_name, 5593 int targ_start_id, 5594 struct bpf_core_cand_list *cands) 5595 { 5596 struct bpf_core_cand *new_cands, *cand; 5597 const struct btf_type *t, *local_t; 5598 const char *targ_name, *local_name; 5599 size_t targ_essent_len; 5600 int n, i; 5601 5602 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5603 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5604 5605 n = btf__type_cnt(targ_btf); 5606 for (i = targ_start_id; i < n; i++) { 5607 t = btf__type_by_id(targ_btf, i); 5608 if (!btf_kind_core_compat(t, local_t)) 5609 continue; 5610 5611 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5612 if (str_is_empty(targ_name)) 5613 continue; 5614 5615 targ_essent_len = bpf_core_essential_name_len(targ_name); 5616 if (targ_essent_len != local_essent_len) 5617 continue; 5618 5619 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5620 continue; 5621 5622 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5623 local_cand->id, btf_kind_str(local_t), 5624 local_name, i, btf_kind_str(t), targ_name, 5625 targ_btf_name); 5626 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5627 sizeof(*cands->cands)); 5628 if (!new_cands) 5629 return -ENOMEM; 5630 5631 cand = &new_cands[cands->len]; 5632 cand->btf = targ_btf; 5633 cand->id = i; 5634 5635 cands->cands = new_cands; 5636 cands->len++; 5637 } 5638 return 0; 5639 } 5640 5641 static int load_module_btfs(struct bpf_object *obj) 5642 { 5643 struct bpf_btf_info info; 5644 struct module_btf *mod_btf; 5645 struct btf *btf; 5646 char name[64]; 5647 __u32 id = 0, len; 5648 int err, fd; 5649 5650 if (obj->btf_modules_loaded) 5651 return 0; 5652 5653 if (obj->gen_loader) 5654 return 0; 5655 5656 /* don't do this again, even if we find no module BTFs */ 5657 obj->btf_modules_loaded = true; 5658 5659 /* kernel too old to support module BTFs */ 5660 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5661 return 0; 5662 5663 while (true) { 5664 err = bpf_btf_get_next_id(id, &id); 5665 if (err && errno == ENOENT) 5666 return 0; 5667 if (err && errno == EPERM) { 5668 pr_debug("skipping module BTFs loading, missing privileges\n"); 5669 return 0; 5670 } 5671 if (err) { 5672 err = -errno; 5673 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5674 return err; 5675 } 5676 5677 fd = bpf_btf_get_fd_by_id(id); 5678 if (fd < 0) { 5679 if (errno == ENOENT) 5680 continue; /* expected race: BTF was unloaded */ 5681 err = -errno; 5682 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5683 return err; 5684 } 5685 5686 len = sizeof(info); 5687 memset(&info, 0, sizeof(info)); 5688 info.name = ptr_to_u64(name); 5689 info.name_len = sizeof(name); 5690 5691 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5692 if (err) { 5693 err = -errno; 5694 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5695 goto err_out; 5696 } 5697 5698 /* ignore non-module BTFs */ 5699 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5700 close(fd); 5701 continue; 5702 } 5703 5704 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5705 err = libbpf_get_error(btf); 5706 if (err) { 5707 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5708 name, id, errstr(err)); 5709 goto err_out; 5710 } 5711 5712 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5713 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5714 if (err) 5715 goto err_out; 5716 5717 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5718 5719 mod_btf->btf = btf; 5720 mod_btf->id = id; 5721 mod_btf->fd = fd; 5722 mod_btf->name = strdup(name); 5723 if (!mod_btf->name) { 5724 err = -ENOMEM; 5725 goto err_out; 5726 } 5727 continue; 5728 5729 err_out: 5730 close(fd); 5731 return err; 5732 } 5733 5734 return 0; 5735 } 5736 5737 static struct bpf_core_cand_list * 5738 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5739 { 5740 struct bpf_core_cand local_cand = {}; 5741 struct bpf_core_cand_list *cands; 5742 const struct btf *main_btf; 5743 const struct btf_type *local_t; 5744 const char *local_name; 5745 size_t local_essent_len; 5746 int err, i; 5747 5748 local_cand.btf = local_btf; 5749 local_cand.id = local_type_id; 5750 local_t = btf__type_by_id(local_btf, local_type_id); 5751 if (!local_t) 5752 return ERR_PTR(-EINVAL); 5753 5754 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5755 if (str_is_empty(local_name)) 5756 return ERR_PTR(-EINVAL); 5757 local_essent_len = bpf_core_essential_name_len(local_name); 5758 5759 cands = calloc(1, sizeof(*cands)); 5760 if (!cands) 5761 return ERR_PTR(-ENOMEM); 5762 5763 /* Attempt to find target candidates in vmlinux BTF first */ 5764 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5765 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5766 if (err) 5767 goto err_out; 5768 5769 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5770 if (cands->len) 5771 return cands; 5772 5773 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5774 if (obj->btf_vmlinux_override) 5775 return cands; 5776 5777 /* now look through module BTFs, trying to still find candidates */ 5778 err = load_module_btfs(obj); 5779 if (err) 5780 goto err_out; 5781 5782 for (i = 0; i < obj->btf_module_cnt; i++) { 5783 err = bpf_core_add_cands(&local_cand, local_essent_len, 5784 obj->btf_modules[i].btf, 5785 obj->btf_modules[i].name, 5786 btf__type_cnt(obj->btf_vmlinux), 5787 cands); 5788 if (err) 5789 goto err_out; 5790 } 5791 5792 return cands; 5793 err_out: 5794 bpf_core_free_cands(cands); 5795 return ERR_PTR(err); 5796 } 5797 5798 /* Check local and target types for compatibility. This check is used for 5799 * type-based CO-RE relocations and follow slightly different rules than 5800 * field-based relocations. This function assumes that root types were already 5801 * checked for name match. Beyond that initial root-level name check, names 5802 * are completely ignored. Compatibility rules are as follows: 5803 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5804 * kind should match for local and target types (i.e., STRUCT is not 5805 * compatible with UNION); 5806 * - for ENUMs, the size is ignored; 5807 * - for INT, size and signedness are ignored; 5808 * - for ARRAY, dimensionality is ignored, element types are checked for 5809 * compatibility recursively; 5810 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5811 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5812 * - FUNC_PROTOs are compatible if they have compatible signature: same 5813 * number of input args and compatible return and argument types. 5814 * These rules are not set in stone and probably will be adjusted as we get 5815 * more experience with using BPF CO-RE relocations. 5816 */ 5817 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5818 const struct btf *targ_btf, __u32 targ_id) 5819 { 5820 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5821 } 5822 5823 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5824 const struct btf *targ_btf, __u32 targ_id) 5825 { 5826 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5827 } 5828 5829 static size_t bpf_core_hash_fn(const long key, void *ctx) 5830 { 5831 return key; 5832 } 5833 5834 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5835 { 5836 return k1 == k2; 5837 } 5838 5839 static int record_relo_core(struct bpf_program *prog, 5840 const struct bpf_core_relo *core_relo, int insn_idx) 5841 { 5842 struct reloc_desc *relos, *relo; 5843 5844 relos = libbpf_reallocarray(prog->reloc_desc, 5845 prog->nr_reloc + 1, sizeof(*relos)); 5846 if (!relos) 5847 return -ENOMEM; 5848 relo = &relos[prog->nr_reloc]; 5849 relo->type = RELO_CORE; 5850 relo->insn_idx = insn_idx; 5851 relo->core_relo = core_relo; 5852 prog->reloc_desc = relos; 5853 prog->nr_reloc++; 5854 return 0; 5855 } 5856 5857 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5858 { 5859 struct reloc_desc *relo; 5860 int i; 5861 5862 for (i = 0; i < prog->nr_reloc; i++) { 5863 relo = &prog->reloc_desc[i]; 5864 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5865 continue; 5866 5867 return relo->core_relo; 5868 } 5869 5870 return NULL; 5871 } 5872 5873 static int bpf_core_resolve_relo(struct bpf_program *prog, 5874 const struct bpf_core_relo *relo, 5875 int relo_idx, 5876 const struct btf *local_btf, 5877 struct hashmap *cand_cache, 5878 struct bpf_core_relo_res *targ_res) 5879 { 5880 struct bpf_core_spec specs_scratch[3] = {}; 5881 struct bpf_core_cand_list *cands = NULL; 5882 const char *prog_name = prog->name; 5883 const struct btf_type *local_type; 5884 const char *local_name; 5885 __u32 local_id = relo->type_id; 5886 int err; 5887 5888 local_type = btf__type_by_id(local_btf, local_id); 5889 if (!local_type) 5890 return -EINVAL; 5891 5892 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5893 if (!local_name) 5894 return -EINVAL; 5895 5896 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5897 !hashmap__find(cand_cache, local_id, &cands)) { 5898 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5899 if (IS_ERR(cands)) { 5900 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5901 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5902 local_name, PTR_ERR(cands)); 5903 return PTR_ERR(cands); 5904 } 5905 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5906 if (err) { 5907 bpf_core_free_cands(cands); 5908 return err; 5909 } 5910 } 5911 5912 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5913 targ_res); 5914 } 5915 5916 static int 5917 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5918 { 5919 const struct btf_ext_info_sec *sec; 5920 struct bpf_core_relo_res targ_res; 5921 const struct bpf_core_relo *rec; 5922 const struct btf_ext_info *seg; 5923 struct hashmap_entry *entry; 5924 struct hashmap *cand_cache = NULL; 5925 struct bpf_program *prog; 5926 struct bpf_insn *insn; 5927 const char *sec_name; 5928 int i, err = 0, insn_idx, sec_idx, sec_num; 5929 5930 if (obj->btf_ext->core_relo_info.len == 0) 5931 return 0; 5932 5933 if (targ_btf_path) { 5934 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5935 err = libbpf_get_error(obj->btf_vmlinux_override); 5936 if (err) { 5937 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5938 return err; 5939 } 5940 } 5941 5942 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5943 if (IS_ERR(cand_cache)) { 5944 err = PTR_ERR(cand_cache); 5945 goto out; 5946 } 5947 5948 seg = &obj->btf_ext->core_relo_info; 5949 sec_num = 0; 5950 for_each_btf_ext_sec(seg, sec) { 5951 sec_idx = seg->sec_idxs[sec_num]; 5952 sec_num++; 5953 5954 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5955 if (str_is_empty(sec_name)) { 5956 err = -EINVAL; 5957 goto out; 5958 } 5959 5960 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5961 5962 for_each_btf_ext_rec(seg, sec, i, rec) { 5963 if (rec->insn_off % BPF_INSN_SZ) 5964 return -EINVAL; 5965 insn_idx = rec->insn_off / BPF_INSN_SZ; 5966 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5967 if (!prog) { 5968 /* When __weak subprog is "overridden" by another instance 5969 * of the subprog from a different object file, linker still 5970 * appends all the .BTF.ext info that used to belong to that 5971 * eliminated subprogram. 5972 * This is similar to what x86-64 linker does for relocations. 5973 * So just ignore such relocations just like we ignore 5974 * subprog instructions when discovering subprograms. 5975 */ 5976 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5977 sec_name, i, insn_idx); 5978 continue; 5979 } 5980 /* no need to apply CO-RE relocation if the program is 5981 * not going to be loaded 5982 */ 5983 if (!prog->autoload) 5984 continue; 5985 5986 /* adjust insn_idx from section frame of reference to the local 5987 * program's frame of reference; (sub-)program code is not yet 5988 * relocated, so it's enough to just subtract in-section offset 5989 */ 5990 insn_idx = insn_idx - prog->sec_insn_off; 5991 if (insn_idx >= prog->insns_cnt) 5992 return -EINVAL; 5993 insn = &prog->insns[insn_idx]; 5994 5995 err = record_relo_core(prog, rec, insn_idx); 5996 if (err) { 5997 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 5998 prog->name, i, errstr(err)); 5999 goto out; 6000 } 6001 6002 if (prog->obj->gen_loader) 6003 continue; 6004 6005 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6006 if (err) { 6007 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6008 prog->name, i, errstr(err)); 6009 goto out; 6010 } 6011 6012 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6013 if (err) { 6014 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6015 prog->name, i, insn_idx, errstr(err)); 6016 goto out; 6017 } 6018 } 6019 } 6020 6021 out: 6022 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6023 btf__free(obj->btf_vmlinux_override); 6024 obj->btf_vmlinux_override = NULL; 6025 6026 if (!IS_ERR_OR_NULL(cand_cache)) { 6027 hashmap__for_each_entry(cand_cache, entry, i) { 6028 bpf_core_free_cands(entry->pvalue); 6029 } 6030 hashmap__free(cand_cache); 6031 } 6032 return err; 6033 } 6034 6035 /* base map load ldimm64 special constant, used also for log fixup logic */ 6036 #define POISON_LDIMM64_MAP_BASE 2001000000 6037 #define POISON_LDIMM64_MAP_PFX "200100" 6038 6039 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6040 int insn_idx, struct bpf_insn *insn, 6041 int map_idx, const struct bpf_map *map) 6042 { 6043 int i; 6044 6045 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6046 prog->name, relo_idx, insn_idx, map_idx, map->name); 6047 6048 /* we turn single ldimm64 into two identical invalid calls */ 6049 for (i = 0; i < 2; i++) { 6050 insn->code = BPF_JMP | BPF_CALL; 6051 insn->dst_reg = 0; 6052 insn->src_reg = 0; 6053 insn->off = 0; 6054 /* if this instruction is reachable (not a dead code), 6055 * verifier will complain with something like: 6056 * invalid func unknown#2001000123 6057 * where lower 123 is map index into obj->maps[] array 6058 */ 6059 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6060 6061 insn++; 6062 } 6063 } 6064 6065 /* unresolved kfunc call special constant, used also for log fixup logic */ 6066 #define POISON_CALL_KFUNC_BASE 2002000000 6067 #define POISON_CALL_KFUNC_PFX "2002" 6068 6069 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6070 int insn_idx, struct bpf_insn *insn, 6071 int ext_idx, const struct extern_desc *ext) 6072 { 6073 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6074 prog->name, relo_idx, insn_idx, ext->name); 6075 6076 /* we turn kfunc call into invalid helper call with identifiable constant */ 6077 insn->code = BPF_JMP | BPF_CALL; 6078 insn->dst_reg = 0; 6079 insn->src_reg = 0; 6080 insn->off = 0; 6081 /* if this instruction is reachable (not a dead code), 6082 * verifier will complain with something like: 6083 * invalid func unknown#2001000123 6084 * where lower 123 is extern index into obj->externs[] array 6085 */ 6086 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6087 } 6088 6089 /* Relocate data references within program code: 6090 * - map references; 6091 * - global variable references; 6092 * - extern references. 6093 */ 6094 static int 6095 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6096 { 6097 int i; 6098 6099 for (i = 0; i < prog->nr_reloc; i++) { 6100 struct reloc_desc *relo = &prog->reloc_desc[i]; 6101 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6102 const struct bpf_map *map; 6103 struct extern_desc *ext; 6104 6105 switch (relo->type) { 6106 case RELO_LD64: 6107 map = &obj->maps[relo->map_idx]; 6108 if (obj->gen_loader) { 6109 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6110 insn[0].imm = relo->map_idx; 6111 } else if (map->autocreate) { 6112 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6113 insn[0].imm = map->fd; 6114 } else { 6115 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6116 relo->map_idx, map); 6117 } 6118 break; 6119 case RELO_DATA: 6120 map = &obj->maps[relo->map_idx]; 6121 insn[1].imm = insn[0].imm + relo->sym_off; 6122 if (obj->gen_loader) { 6123 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6124 insn[0].imm = relo->map_idx; 6125 } else if (map->autocreate) { 6126 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6127 insn[0].imm = map->fd; 6128 } else { 6129 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6130 relo->map_idx, map); 6131 } 6132 break; 6133 case RELO_EXTERN_LD64: 6134 ext = &obj->externs[relo->ext_idx]; 6135 if (ext->type == EXT_KCFG) { 6136 if (obj->gen_loader) { 6137 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6138 insn[0].imm = obj->kconfig_map_idx; 6139 } else { 6140 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6141 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6142 } 6143 insn[1].imm = ext->kcfg.data_off; 6144 } else /* EXT_KSYM */ { 6145 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6146 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6147 insn[0].imm = ext->ksym.kernel_btf_id; 6148 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6149 } else { /* typeless ksyms or unresolved typed ksyms */ 6150 insn[0].imm = (__u32)ext->ksym.addr; 6151 insn[1].imm = ext->ksym.addr >> 32; 6152 } 6153 } 6154 break; 6155 case RELO_EXTERN_CALL: 6156 ext = &obj->externs[relo->ext_idx]; 6157 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6158 if (ext->is_set) { 6159 insn[0].imm = ext->ksym.kernel_btf_id; 6160 insn[0].off = ext->ksym.btf_fd_idx; 6161 } else { /* unresolved weak kfunc call */ 6162 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6163 relo->ext_idx, ext); 6164 } 6165 break; 6166 case RELO_SUBPROG_ADDR: 6167 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6168 pr_warn("prog '%s': relo #%d: bad insn\n", 6169 prog->name, i); 6170 return -EINVAL; 6171 } 6172 /* handled already */ 6173 break; 6174 case RELO_CALL: 6175 /* handled already */ 6176 break; 6177 case RELO_CORE: 6178 /* will be handled by bpf_program_record_relos() */ 6179 break; 6180 default: 6181 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6182 prog->name, i, relo->type); 6183 return -EINVAL; 6184 } 6185 } 6186 6187 return 0; 6188 } 6189 6190 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6191 const struct bpf_program *prog, 6192 const struct btf_ext_info *ext_info, 6193 void **prog_info, __u32 *prog_rec_cnt, 6194 __u32 *prog_rec_sz) 6195 { 6196 void *copy_start = NULL, *copy_end = NULL; 6197 void *rec, *rec_end, *new_prog_info; 6198 const struct btf_ext_info_sec *sec; 6199 size_t old_sz, new_sz; 6200 int i, sec_num, sec_idx, off_adj; 6201 6202 sec_num = 0; 6203 for_each_btf_ext_sec(ext_info, sec) { 6204 sec_idx = ext_info->sec_idxs[sec_num]; 6205 sec_num++; 6206 if (prog->sec_idx != sec_idx) 6207 continue; 6208 6209 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6210 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6211 6212 if (insn_off < prog->sec_insn_off) 6213 continue; 6214 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6215 break; 6216 6217 if (!copy_start) 6218 copy_start = rec; 6219 copy_end = rec + ext_info->rec_size; 6220 } 6221 6222 if (!copy_start) 6223 return -ENOENT; 6224 6225 /* append func/line info of a given (sub-)program to the main 6226 * program func/line info 6227 */ 6228 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6229 new_sz = old_sz + (copy_end - copy_start); 6230 new_prog_info = realloc(*prog_info, new_sz); 6231 if (!new_prog_info) 6232 return -ENOMEM; 6233 *prog_info = new_prog_info; 6234 *prog_rec_cnt = new_sz / ext_info->rec_size; 6235 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6236 6237 /* Kernel instruction offsets are in units of 8-byte 6238 * instructions, while .BTF.ext instruction offsets generated 6239 * by Clang are in units of bytes. So convert Clang offsets 6240 * into kernel offsets and adjust offset according to program 6241 * relocated position. 6242 */ 6243 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6244 rec = new_prog_info + old_sz; 6245 rec_end = new_prog_info + new_sz; 6246 for (; rec < rec_end; rec += ext_info->rec_size) { 6247 __u32 *insn_off = rec; 6248 6249 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6250 } 6251 *prog_rec_sz = ext_info->rec_size; 6252 return 0; 6253 } 6254 6255 return -ENOENT; 6256 } 6257 6258 static int 6259 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6260 struct bpf_program *main_prog, 6261 const struct bpf_program *prog) 6262 { 6263 int err; 6264 6265 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6266 * support func/line info 6267 */ 6268 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6269 return 0; 6270 6271 /* only attempt func info relocation if main program's func_info 6272 * relocation was successful 6273 */ 6274 if (main_prog != prog && !main_prog->func_info) 6275 goto line_info; 6276 6277 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6278 &main_prog->func_info, 6279 &main_prog->func_info_cnt, 6280 &main_prog->func_info_rec_size); 6281 if (err) { 6282 if (err != -ENOENT) { 6283 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6284 prog->name, errstr(err)); 6285 return err; 6286 } 6287 if (main_prog->func_info) { 6288 /* 6289 * Some info has already been found but has problem 6290 * in the last btf_ext reloc. Must have to error out. 6291 */ 6292 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6293 return err; 6294 } 6295 /* Have problem loading the very first info. Ignore the rest. */ 6296 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6297 prog->name); 6298 } 6299 6300 line_info: 6301 /* don't relocate line info if main program's relocation failed */ 6302 if (main_prog != prog && !main_prog->line_info) 6303 return 0; 6304 6305 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6306 &main_prog->line_info, 6307 &main_prog->line_info_cnt, 6308 &main_prog->line_info_rec_size); 6309 if (err) { 6310 if (err != -ENOENT) { 6311 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6312 prog->name, errstr(err)); 6313 return err; 6314 } 6315 if (main_prog->line_info) { 6316 /* 6317 * Some info has already been found but has problem 6318 * in the last btf_ext reloc. Must have to error out. 6319 */ 6320 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6321 return err; 6322 } 6323 /* Have problem loading the very first info. Ignore the rest. */ 6324 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6325 prog->name); 6326 } 6327 return 0; 6328 } 6329 6330 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6331 { 6332 size_t insn_idx = *(const size_t *)key; 6333 const struct reloc_desc *relo = elem; 6334 6335 if (insn_idx == relo->insn_idx) 6336 return 0; 6337 return insn_idx < relo->insn_idx ? -1 : 1; 6338 } 6339 6340 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6341 { 6342 if (!prog->nr_reloc) 6343 return NULL; 6344 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6345 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6346 } 6347 6348 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6349 { 6350 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6351 struct reloc_desc *relos; 6352 int i; 6353 6354 if (main_prog == subprog) 6355 return 0; 6356 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6357 /* if new count is zero, reallocarray can return a valid NULL result; 6358 * in this case the previous pointer will be freed, so we *have to* 6359 * reassign old pointer to the new value (even if it's NULL) 6360 */ 6361 if (!relos && new_cnt) 6362 return -ENOMEM; 6363 if (subprog->nr_reloc) 6364 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6365 sizeof(*relos) * subprog->nr_reloc); 6366 6367 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6368 relos[i].insn_idx += subprog->sub_insn_off; 6369 /* After insn_idx adjustment the 'relos' array is still sorted 6370 * by insn_idx and doesn't break bsearch. 6371 */ 6372 main_prog->reloc_desc = relos; 6373 main_prog->nr_reloc = new_cnt; 6374 return 0; 6375 } 6376 6377 static int 6378 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6379 struct bpf_program *subprog) 6380 { 6381 struct bpf_insn *insns; 6382 size_t new_cnt; 6383 int err; 6384 6385 subprog->sub_insn_off = main_prog->insns_cnt; 6386 6387 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6388 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6389 if (!insns) { 6390 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6391 return -ENOMEM; 6392 } 6393 main_prog->insns = insns; 6394 main_prog->insns_cnt = new_cnt; 6395 6396 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6397 subprog->insns_cnt * sizeof(*insns)); 6398 6399 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6400 main_prog->name, subprog->insns_cnt, subprog->name); 6401 6402 /* The subprog insns are now appended. Append its relos too. */ 6403 err = append_subprog_relos(main_prog, subprog); 6404 if (err) 6405 return err; 6406 return 0; 6407 } 6408 6409 static int 6410 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6411 struct bpf_program *prog) 6412 { 6413 size_t sub_insn_idx, insn_idx; 6414 struct bpf_program *subprog; 6415 struct reloc_desc *relo; 6416 struct bpf_insn *insn; 6417 int err; 6418 6419 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6420 if (err) 6421 return err; 6422 6423 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6424 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6425 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6426 continue; 6427 6428 relo = find_prog_insn_relo(prog, insn_idx); 6429 if (relo && relo->type == RELO_EXTERN_CALL) 6430 /* kfunc relocations will be handled later 6431 * in bpf_object__relocate_data() 6432 */ 6433 continue; 6434 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6435 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6436 prog->name, insn_idx, relo->type); 6437 return -LIBBPF_ERRNO__RELOC; 6438 } 6439 if (relo) { 6440 /* sub-program instruction index is a combination of 6441 * an offset of a symbol pointed to by relocation and 6442 * call instruction's imm field; for global functions, 6443 * call always has imm = -1, but for static functions 6444 * relocation is against STT_SECTION and insn->imm 6445 * points to a start of a static function 6446 * 6447 * for subprog addr relocation, the relo->sym_off + insn->imm is 6448 * the byte offset in the corresponding section. 6449 */ 6450 if (relo->type == RELO_CALL) 6451 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6452 else 6453 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6454 } else if (insn_is_pseudo_func(insn)) { 6455 /* 6456 * RELO_SUBPROG_ADDR relo is always emitted even if both 6457 * functions are in the same section, so it shouldn't reach here. 6458 */ 6459 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6460 prog->name, insn_idx); 6461 return -LIBBPF_ERRNO__RELOC; 6462 } else { 6463 /* if subprogram call is to a static function within 6464 * the same ELF section, there won't be any relocation 6465 * emitted, but it also means there is no additional 6466 * offset necessary, insns->imm is relative to 6467 * instruction's original position within the section 6468 */ 6469 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6470 } 6471 6472 /* we enforce that sub-programs should be in .text section */ 6473 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6474 if (!subprog) { 6475 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6476 prog->name); 6477 return -LIBBPF_ERRNO__RELOC; 6478 } 6479 6480 /* if it's the first call instruction calling into this 6481 * subprogram (meaning this subprog hasn't been processed 6482 * yet) within the context of current main program: 6483 * - append it at the end of main program's instructions blog; 6484 * - process is recursively, while current program is put on hold; 6485 * - if that subprogram calls some other not yet processes 6486 * subprogram, same thing will happen recursively until 6487 * there are no more unprocesses subprograms left to append 6488 * and relocate. 6489 */ 6490 if (subprog->sub_insn_off == 0) { 6491 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6492 if (err) 6493 return err; 6494 err = bpf_object__reloc_code(obj, main_prog, subprog); 6495 if (err) 6496 return err; 6497 } 6498 6499 /* main_prog->insns memory could have been re-allocated, so 6500 * calculate pointer again 6501 */ 6502 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6503 /* calculate correct instruction position within current main 6504 * prog; each main prog can have a different set of 6505 * subprograms appended (potentially in different order as 6506 * well), so position of any subprog can be different for 6507 * different main programs 6508 */ 6509 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6510 6511 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6512 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6513 } 6514 6515 return 0; 6516 } 6517 6518 /* 6519 * Relocate sub-program calls. 6520 * 6521 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6522 * main prog) is processed separately. For each subprog (non-entry functions, 6523 * that can be called from either entry progs or other subprogs) gets their 6524 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6525 * hasn't been yet appended and relocated within current main prog. Once its 6526 * relocated, sub_insn_off will point at the position within current main prog 6527 * where given subprog was appended. This will further be used to relocate all 6528 * the call instructions jumping into this subprog. 6529 * 6530 * We start with main program and process all call instructions. If the call 6531 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6532 * is zero), subprog instructions are appended at the end of main program's 6533 * instruction array. Then main program is "put on hold" while we recursively 6534 * process newly appended subprogram. If that subprogram calls into another 6535 * subprogram that hasn't been appended, new subprogram is appended again to 6536 * the *main* prog's instructions (subprog's instructions are always left 6537 * untouched, as they need to be in unmodified state for subsequent main progs 6538 * and subprog instructions are always sent only as part of a main prog) and 6539 * the process continues recursively. Once all the subprogs called from a main 6540 * prog or any of its subprogs are appended (and relocated), all their 6541 * positions within finalized instructions array are known, so it's easy to 6542 * rewrite call instructions with correct relative offsets, corresponding to 6543 * desired target subprog. 6544 * 6545 * Its important to realize that some subprogs might not be called from some 6546 * main prog and any of its called/used subprogs. Those will keep their 6547 * subprog->sub_insn_off as zero at all times and won't be appended to current 6548 * main prog and won't be relocated within the context of current main prog. 6549 * They might still be used from other main progs later. 6550 * 6551 * Visually this process can be shown as below. Suppose we have two main 6552 * programs mainA and mainB and BPF object contains three subprogs: subA, 6553 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6554 * subC both call subB: 6555 * 6556 * +--------+ +-------+ 6557 * | v v | 6558 * +--+---+ +--+-+-+ +---+--+ 6559 * | subA | | subB | | subC | 6560 * +--+---+ +------+ +---+--+ 6561 * ^ ^ 6562 * | | 6563 * +---+-------+ +------+----+ 6564 * | mainA | | mainB | 6565 * +-----------+ +-----------+ 6566 * 6567 * We'll start relocating mainA, will find subA, append it and start 6568 * processing sub A recursively: 6569 * 6570 * +-----------+------+ 6571 * | mainA | subA | 6572 * +-----------+------+ 6573 * 6574 * At this point we notice that subB is used from subA, so we append it and 6575 * relocate (there are no further subcalls from subB): 6576 * 6577 * +-----------+------+------+ 6578 * | mainA | subA | subB | 6579 * +-----------+------+------+ 6580 * 6581 * At this point, we relocate subA calls, then go one level up and finish with 6582 * relocatin mainA calls. mainA is done. 6583 * 6584 * For mainB process is similar but results in different order. We start with 6585 * mainB and skip subA and subB, as mainB never calls them (at least 6586 * directly), but we see subC is needed, so we append and start processing it: 6587 * 6588 * +-----------+------+ 6589 * | mainB | subC | 6590 * +-----------+------+ 6591 * Now we see subC needs subB, so we go back to it, append and relocate it: 6592 * 6593 * +-----------+------+------+ 6594 * | mainB | subC | subB | 6595 * +-----------+------+------+ 6596 * 6597 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6598 */ 6599 static int 6600 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6601 { 6602 struct bpf_program *subprog; 6603 int i, err; 6604 6605 /* mark all subprogs as not relocated (yet) within the context of 6606 * current main program 6607 */ 6608 for (i = 0; i < obj->nr_programs; i++) { 6609 subprog = &obj->programs[i]; 6610 if (!prog_is_subprog(obj, subprog)) 6611 continue; 6612 6613 subprog->sub_insn_off = 0; 6614 } 6615 6616 err = bpf_object__reloc_code(obj, prog, prog); 6617 if (err) 6618 return err; 6619 6620 return 0; 6621 } 6622 6623 static void 6624 bpf_object__free_relocs(struct bpf_object *obj) 6625 { 6626 struct bpf_program *prog; 6627 int i; 6628 6629 /* free up relocation descriptors */ 6630 for (i = 0; i < obj->nr_programs; i++) { 6631 prog = &obj->programs[i]; 6632 zfree(&prog->reloc_desc); 6633 prog->nr_reloc = 0; 6634 } 6635 } 6636 6637 static int cmp_relocs(const void *_a, const void *_b) 6638 { 6639 const struct reloc_desc *a = _a; 6640 const struct reloc_desc *b = _b; 6641 6642 if (a->insn_idx != b->insn_idx) 6643 return a->insn_idx < b->insn_idx ? -1 : 1; 6644 6645 /* no two relocations should have the same insn_idx, but ... */ 6646 if (a->type != b->type) 6647 return a->type < b->type ? -1 : 1; 6648 6649 return 0; 6650 } 6651 6652 static void bpf_object__sort_relos(struct bpf_object *obj) 6653 { 6654 int i; 6655 6656 for (i = 0; i < obj->nr_programs; i++) { 6657 struct bpf_program *p = &obj->programs[i]; 6658 6659 if (!p->nr_reloc) 6660 continue; 6661 6662 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6663 } 6664 } 6665 6666 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6667 { 6668 const char *str = "exception_callback:"; 6669 size_t pfx_len = strlen(str); 6670 int i, j, n; 6671 6672 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6673 return 0; 6674 6675 n = btf__type_cnt(obj->btf); 6676 for (i = 1; i < n; i++) { 6677 const char *name; 6678 struct btf_type *t; 6679 6680 t = btf_type_by_id(obj->btf, i); 6681 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6682 continue; 6683 6684 name = btf__str_by_offset(obj->btf, t->name_off); 6685 if (strncmp(name, str, pfx_len) != 0) 6686 continue; 6687 6688 t = btf_type_by_id(obj->btf, t->type); 6689 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6690 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6691 prog->name); 6692 return -EINVAL; 6693 } 6694 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6695 continue; 6696 /* Multiple callbacks are specified for the same prog, 6697 * the verifier will eventually return an error for this 6698 * case, hence simply skip appending a subprog. 6699 */ 6700 if (prog->exception_cb_idx >= 0) { 6701 prog->exception_cb_idx = -1; 6702 break; 6703 } 6704 6705 name += pfx_len; 6706 if (str_is_empty(name)) { 6707 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6708 prog->name); 6709 return -EINVAL; 6710 } 6711 6712 for (j = 0; j < obj->nr_programs; j++) { 6713 struct bpf_program *subprog = &obj->programs[j]; 6714 6715 if (!prog_is_subprog(obj, subprog)) 6716 continue; 6717 if (strcmp(name, subprog->name) != 0) 6718 continue; 6719 /* Enforce non-hidden, as from verifier point of 6720 * view it expects global functions, whereas the 6721 * mark_btf_static fixes up linkage as static. 6722 */ 6723 if (!subprog->sym_global || subprog->mark_btf_static) { 6724 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6725 prog->name, subprog->name); 6726 return -EINVAL; 6727 } 6728 /* Let's see if we already saw a static exception callback with the same name */ 6729 if (prog->exception_cb_idx >= 0) { 6730 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6731 prog->name, subprog->name); 6732 return -EINVAL; 6733 } 6734 prog->exception_cb_idx = j; 6735 break; 6736 } 6737 6738 if (prog->exception_cb_idx >= 0) 6739 continue; 6740 6741 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6742 return -ENOENT; 6743 } 6744 6745 return 0; 6746 } 6747 6748 static struct { 6749 enum bpf_prog_type prog_type; 6750 const char *ctx_name; 6751 } global_ctx_map[] = { 6752 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6753 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6754 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6755 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6756 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6757 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6758 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6759 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6760 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6761 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6762 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6763 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6764 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6765 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6766 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6767 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6768 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6769 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6770 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6771 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6772 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6773 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6774 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6775 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6776 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6777 /* all other program types don't have "named" context structs */ 6778 }; 6779 6780 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6781 * for below __builtin_types_compatible_p() checks; 6782 * with this approach we don't need any extra arch-specific #ifdef guards 6783 */ 6784 struct pt_regs; 6785 struct user_pt_regs; 6786 struct user_regs_struct; 6787 6788 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6789 const char *subprog_name, int arg_idx, 6790 int arg_type_id, const char *ctx_name) 6791 { 6792 const struct btf_type *t; 6793 const char *tname; 6794 6795 /* check if existing parameter already matches verifier expectations */ 6796 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6797 if (!btf_is_ptr(t)) 6798 goto out_warn; 6799 6800 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6801 * and perf_event programs, so check this case early on and forget 6802 * about it for subsequent checks 6803 */ 6804 while (btf_is_mod(t)) 6805 t = btf__type_by_id(btf, t->type); 6806 if (btf_is_typedef(t) && 6807 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6808 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6809 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6810 return false; /* canonical type for kprobe/perf_event */ 6811 } 6812 6813 /* now we can ignore typedefs moving forward */ 6814 t = skip_mods_and_typedefs(btf, t->type, NULL); 6815 6816 /* if it's `void *`, definitely fix up BTF info */ 6817 if (btf_is_void(t)) 6818 return true; 6819 6820 /* if it's already proper canonical type, no need to fix up */ 6821 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6822 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6823 return false; 6824 6825 /* special cases */ 6826 switch (prog->type) { 6827 case BPF_PROG_TYPE_KPROBE: 6828 /* `struct pt_regs *` is expected, but we need to fix up */ 6829 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6830 return true; 6831 break; 6832 case BPF_PROG_TYPE_PERF_EVENT: 6833 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6834 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6835 return true; 6836 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6837 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6838 return true; 6839 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6840 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6841 return true; 6842 break; 6843 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6844 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6845 /* allow u64* as ctx */ 6846 if (btf_is_int(t) && t->size == 8) 6847 return true; 6848 break; 6849 default: 6850 break; 6851 } 6852 6853 out_warn: 6854 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6855 prog->name, subprog_name, arg_idx, ctx_name); 6856 return false; 6857 } 6858 6859 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6860 { 6861 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6862 int i, err, arg_cnt, fn_name_off, linkage; 6863 struct btf_type *fn_t, *fn_proto_t, *t; 6864 struct btf_param *p; 6865 6866 /* caller already validated FUNC -> FUNC_PROTO validity */ 6867 fn_t = btf_type_by_id(btf, orig_fn_id); 6868 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6869 6870 /* Note that each btf__add_xxx() operation invalidates 6871 * all btf_type and string pointers, so we need to be 6872 * very careful when cloning BTF types. BTF type 6873 * pointers have to be always refetched. And to avoid 6874 * problems with invalidated string pointers, we 6875 * add empty strings initially, then just fix up 6876 * name_off offsets in place. Offsets are stable for 6877 * existing strings, so that works out. 6878 */ 6879 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6880 linkage = btf_func_linkage(fn_t); 6881 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6882 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6883 arg_cnt = btf_vlen(fn_proto_t); 6884 6885 /* clone FUNC_PROTO and its params */ 6886 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6887 if (fn_proto_id < 0) 6888 return -EINVAL; 6889 6890 for (i = 0; i < arg_cnt; i++) { 6891 int name_off; 6892 6893 /* copy original parameter data */ 6894 t = btf_type_by_id(btf, orig_proto_id); 6895 p = &btf_params(t)[i]; 6896 name_off = p->name_off; 6897 6898 err = btf__add_func_param(btf, "", p->type); 6899 if (err) 6900 return err; 6901 6902 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6903 p = &btf_params(fn_proto_t)[i]; 6904 p->name_off = name_off; /* use remembered str offset */ 6905 } 6906 6907 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6908 * entry program's name as a placeholder, which we replace immediately 6909 * with original name_off 6910 */ 6911 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6912 if (fn_id < 0) 6913 return -EINVAL; 6914 6915 fn_t = btf_type_by_id(btf, fn_id); 6916 fn_t->name_off = fn_name_off; /* reuse original string */ 6917 6918 return fn_id; 6919 } 6920 6921 /* Check if main program or global subprog's function prototype has `arg:ctx` 6922 * argument tags, and, if necessary, substitute correct type to match what BPF 6923 * verifier would expect, taking into account specific program type. This 6924 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6925 * have a native support for it in the verifier, making user's life much 6926 * easier. 6927 */ 6928 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6929 { 6930 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6931 struct bpf_func_info_min *func_rec; 6932 struct btf_type *fn_t, *fn_proto_t; 6933 struct btf *btf = obj->btf; 6934 const struct btf_type *t; 6935 struct btf_param *p; 6936 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6937 int i, n, arg_idx, arg_cnt, err, rec_idx; 6938 int *orig_ids; 6939 6940 /* no .BTF.ext, no problem */ 6941 if (!obj->btf_ext || !prog->func_info) 6942 return 0; 6943 6944 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6945 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6946 return 0; 6947 6948 /* some BPF program types just don't have named context structs, so 6949 * this fallback mechanism doesn't work for them 6950 */ 6951 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6952 if (global_ctx_map[i].prog_type != prog->type) 6953 continue; 6954 ctx_name = global_ctx_map[i].ctx_name; 6955 break; 6956 } 6957 if (!ctx_name) 6958 return 0; 6959 6960 /* remember original func BTF IDs to detect if we already cloned them */ 6961 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6962 if (!orig_ids) 6963 return -ENOMEM; 6964 for (i = 0; i < prog->func_info_cnt; i++) { 6965 func_rec = prog->func_info + prog->func_info_rec_size * i; 6966 orig_ids[i] = func_rec->type_id; 6967 } 6968 6969 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6970 * of our subprogs; if yes and subprog is global and needs adjustment, 6971 * clone and adjust FUNC -> FUNC_PROTO combo 6972 */ 6973 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6974 /* only DECL_TAG with "arg:ctx" value are interesting */ 6975 t = btf__type_by_id(btf, i); 6976 if (!btf_is_decl_tag(t)) 6977 continue; 6978 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6979 continue; 6980 6981 /* only global funcs need adjustment, if at all */ 6982 orig_fn_id = t->type; 6983 fn_t = btf_type_by_id(btf, orig_fn_id); 6984 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6985 continue; 6986 6987 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6988 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6989 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6990 continue; 6991 6992 /* find corresponding func_info record */ 6993 func_rec = NULL; 6994 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6995 if (orig_ids[rec_idx] == t->type) { 6996 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6997 break; 6998 } 6999 } 7000 /* current main program doesn't call into this subprog */ 7001 if (!func_rec) 7002 continue; 7003 7004 /* some more sanity checking of DECL_TAG */ 7005 arg_cnt = btf_vlen(fn_proto_t); 7006 arg_idx = btf_decl_tag(t)->component_idx; 7007 if (arg_idx < 0 || arg_idx >= arg_cnt) 7008 continue; 7009 7010 /* check if we should fix up argument type */ 7011 p = &btf_params(fn_proto_t)[arg_idx]; 7012 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7013 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7014 continue; 7015 7016 /* clone fn/fn_proto, unless we already did it for another arg */ 7017 if (func_rec->type_id == orig_fn_id) { 7018 int fn_id; 7019 7020 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7021 if (fn_id < 0) { 7022 err = fn_id; 7023 goto err_out; 7024 } 7025 7026 /* point func_info record to a cloned FUNC type */ 7027 func_rec->type_id = fn_id; 7028 } 7029 7030 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7031 * we do it just once per main BPF program, as all global 7032 * funcs share the same program type, so need only PTR -> 7033 * STRUCT type chain 7034 */ 7035 if (ptr_id == 0) { 7036 struct_id = btf__add_struct(btf, ctx_name, 0); 7037 ptr_id = btf__add_ptr(btf, struct_id); 7038 if (ptr_id < 0 || struct_id < 0) { 7039 err = -EINVAL; 7040 goto err_out; 7041 } 7042 } 7043 7044 /* for completeness, clone DECL_TAG and point it to cloned param */ 7045 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7046 if (tag_id < 0) { 7047 err = -EINVAL; 7048 goto err_out; 7049 } 7050 7051 /* all the BTF manipulations invalidated pointers, refetch them */ 7052 fn_t = btf_type_by_id(btf, func_rec->type_id); 7053 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7054 7055 /* fix up type ID pointed to by param */ 7056 p = &btf_params(fn_proto_t)[arg_idx]; 7057 p->type = ptr_id; 7058 } 7059 7060 free(orig_ids); 7061 return 0; 7062 err_out: 7063 free(orig_ids); 7064 return err; 7065 } 7066 7067 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7068 { 7069 struct bpf_program *prog; 7070 size_t i, j; 7071 int err; 7072 7073 if (obj->btf_ext) { 7074 err = bpf_object__relocate_core(obj, targ_btf_path); 7075 if (err) { 7076 pr_warn("failed to perform CO-RE relocations: %s\n", 7077 errstr(err)); 7078 return err; 7079 } 7080 bpf_object__sort_relos(obj); 7081 } 7082 7083 /* Before relocating calls pre-process relocations and mark 7084 * few ld_imm64 instructions that points to subprogs. 7085 * Otherwise bpf_object__reloc_code() later would have to consider 7086 * all ld_imm64 insns as relocation candidates. That would 7087 * reduce relocation speed, since amount of find_prog_insn_relo() 7088 * would increase and most of them will fail to find a relo. 7089 */ 7090 for (i = 0; i < obj->nr_programs; i++) { 7091 prog = &obj->programs[i]; 7092 for (j = 0; j < prog->nr_reloc; j++) { 7093 struct reloc_desc *relo = &prog->reloc_desc[j]; 7094 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7095 7096 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7097 if (relo->type == RELO_SUBPROG_ADDR) 7098 insn[0].src_reg = BPF_PSEUDO_FUNC; 7099 } 7100 } 7101 7102 /* relocate subprogram calls and append used subprograms to main 7103 * programs; each copy of subprogram code needs to be relocated 7104 * differently for each main program, because its code location might 7105 * have changed. 7106 * Append subprog relos to main programs to allow data relos to be 7107 * processed after text is completely relocated. 7108 */ 7109 for (i = 0; i < obj->nr_programs; i++) { 7110 prog = &obj->programs[i]; 7111 /* sub-program's sub-calls are relocated within the context of 7112 * its main program only 7113 */ 7114 if (prog_is_subprog(obj, prog)) 7115 continue; 7116 if (!prog->autoload) 7117 continue; 7118 7119 err = bpf_object__relocate_calls(obj, prog); 7120 if (err) { 7121 pr_warn("prog '%s': failed to relocate calls: %s\n", 7122 prog->name, errstr(err)); 7123 return err; 7124 } 7125 7126 err = bpf_prog_assign_exc_cb(obj, prog); 7127 if (err) 7128 return err; 7129 /* Now, also append exception callback if it has not been done already. */ 7130 if (prog->exception_cb_idx >= 0) { 7131 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7132 7133 /* Calling exception callback directly is disallowed, which the 7134 * verifier will reject later. In case it was processed already, 7135 * we can skip this step, otherwise for all other valid cases we 7136 * have to append exception callback now. 7137 */ 7138 if (subprog->sub_insn_off == 0) { 7139 err = bpf_object__append_subprog_code(obj, prog, subprog); 7140 if (err) 7141 return err; 7142 err = bpf_object__reloc_code(obj, prog, subprog); 7143 if (err) 7144 return err; 7145 } 7146 } 7147 } 7148 for (i = 0; i < obj->nr_programs; i++) { 7149 prog = &obj->programs[i]; 7150 if (prog_is_subprog(obj, prog)) 7151 continue; 7152 if (!prog->autoload) 7153 continue; 7154 7155 /* Process data relos for main programs */ 7156 err = bpf_object__relocate_data(obj, prog); 7157 if (err) { 7158 pr_warn("prog '%s': failed to relocate data references: %s\n", 7159 prog->name, errstr(err)); 7160 return err; 7161 } 7162 7163 /* Fix up .BTF.ext information, if necessary */ 7164 err = bpf_program_fixup_func_info(obj, prog); 7165 if (err) { 7166 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7167 prog->name, errstr(err)); 7168 return err; 7169 } 7170 } 7171 7172 return 0; 7173 } 7174 7175 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7176 Elf64_Shdr *shdr, Elf_Data *data); 7177 7178 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7179 Elf64_Shdr *shdr, Elf_Data *data) 7180 { 7181 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7182 int i, j, nrels, new_sz; 7183 const struct btf_var_secinfo *vi = NULL; 7184 const struct btf_type *sec, *var, *def; 7185 struct bpf_map *map = NULL, *targ_map = NULL; 7186 struct bpf_program *targ_prog = NULL; 7187 bool is_prog_array, is_map_in_map; 7188 const struct btf_member *member; 7189 const char *name, *mname, *type; 7190 unsigned int moff; 7191 Elf64_Sym *sym; 7192 Elf64_Rel *rel; 7193 void *tmp; 7194 7195 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7196 return -EINVAL; 7197 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7198 if (!sec) 7199 return -EINVAL; 7200 7201 nrels = shdr->sh_size / shdr->sh_entsize; 7202 for (i = 0; i < nrels; i++) { 7203 rel = elf_rel_by_idx(data, i); 7204 if (!rel) { 7205 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7206 return -LIBBPF_ERRNO__FORMAT; 7207 } 7208 7209 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7210 if (!sym) { 7211 pr_warn(".maps relo #%d: symbol %zx not found\n", 7212 i, (size_t)ELF64_R_SYM(rel->r_info)); 7213 return -LIBBPF_ERRNO__FORMAT; 7214 } 7215 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7216 7217 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7218 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7219 (size_t)rel->r_offset, sym->st_name, name); 7220 7221 for (j = 0; j < obj->nr_maps; j++) { 7222 map = &obj->maps[j]; 7223 if (map->sec_idx != obj->efile.btf_maps_shndx) 7224 continue; 7225 7226 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7227 if (vi->offset <= rel->r_offset && 7228 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7229 break; 7230 } 7231 if (j == obj->nr_maps) { 7232 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7233 i, name, (size_t)rel->r_offset); 7234 return -EINVAL; 7235 } 7236 7237 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7238 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7239 type = is_map_in_map ? "map" : "prog"; 7240 if (is_map_in_map) { 7241 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7242 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7243 i, name); 7244 return -LIBBPF_ERRNO__RELOC; 7245 } 7246 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7247 map->def.key_size != sizeof(int)) { 7248 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7249 i, map->name, sizeof(int)); 7250 return -EINVAL; 7251 } 7252 targ_map = bpf_object__find_map_by_name(obj, name); 7253 if (!targ_map) { 7254 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7255 i, name); 7256 return -ESRCH; 7257 } 7258 } else if (is_prog_array) { 7259 targ_prog = bpf_object__find_program_by_name(obj, name); 7260 if (!targ_prog) { 7261 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7262 i, name); 7263 return -ESRCH; 7264 } 7265 if (targ_prog->sec_idx != sym->st_shndx || 7266 targ_prog->sec_insn_off * 8 != sym->st_value || 7267 prog_is_subprog(obj, targ_prog)) { 7268 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7269 i, name); 7270 return -LIBBPF_ERRNO__RELOC; 7271 } 7272 } else { 7273 return -EINVAL; 7274 } 7275 7276 var = btf__type_by_id(obj->btf, vi->type); 7277 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7278 if (btf_vlen(def) == 0) 7279 return -EINVAL; 7280 member = btf_members(def) + btf_vlen(def) - 1; 7281 mname = btf__name_by_offset(obj->btf, member->name_off); 7282 if (strcmp(mname, "values")) 7283 return -EINVAL; 7284 7285 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7286 if (rel->r_offset - vi->offset < moff) 7287 return -EINVAL; 7288 7289 moff = rel->r_offset - vi->offset - moff; 7290 /* here we use BPF pointer size, which is always 64 bit, as we 7291 * are parsing ELF that was built for BPF target 7292 */ 7293 if (moff % bpf_ptr_sz) 7294 return -EINVAL; 7295 moff /= bpf_ptr_sz; 7296 if (moff >= map->init_slots_sz) { 7297 new_sz = moff + 1; 7298 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7299 if (!tmp) 7300 return -ENOMEM; 7301 map->init_slots = tmp; 7302 memset(map->init_slots + map->init_slots_sz, 0, 7303 (new_sz - map->init_slots_sz) * host_ptr_sz); 7304 map->init_slots_sz = new_sz; 7305 } 7306 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7307 7308 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7309 i, map->name, moff, type, name); 7310 } 7311 7312 return 0; 7313 } 7314 7315 static int bpf_object__collect_relos(struct bpf_object *obj) 7316 { 7317 int i, err; 7318 7319 for (i = 0; i < obj->efile.sec_cnt; i++) { 7320 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7321 Elf64_Shdr *shdr; 7322 Elf_Data *data; 7323 int idx; 7324 7325 if (sec_desc->sec_type != SEC_RELO) 7326 continue; 7327 7328 shdr = sec_desc->shdr; 7329 data = sec_desc->data; 7330 idx = shdr->sh_info; 7331 7332 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7333 pr_warn("internal error at %d\n", __LINE__); 7334 return -LIBBPF_ERRNO__INTERNAL; 7335 } 7336 7337 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7338 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7339 else if (idx == obj->efile.btf_maps_shndx) 7340 err = bpf_object__collect_map_relos(obj, shdr, data); 7341 else 7342 err = bpf_object__collect_prog_relos(obj, shdr, data); 7343 if (err) 7344 return err; 7345 } 7346 7347 bpf_object__sort_relos(obj); 7348 return 0; 7349 } 7350 7351 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7352 { 7353 if (BPF_CLASS(insn->code) == BPF_JMP && 7354 BPF_OP(insn->code) == BPF_CALL && 7355 BPF_SRC(insn->code) == BPF_K && 7356 insn->src_reg == 0 && 7357 insn->dst_reg == 0) { 7358 *func_id = insn->imm; 7359 return true; 7360 } 7361 return false; 7362 } 7363 7364 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7365 { 7366 struct bpf_insn *insn = prog->insns; 7367 enum bpf_func_id func_id; 7368 int i; 7369 7370 if (obj->gen_loader) 7371 return 0; 7372 7373 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7374 if (!insn_is_helper_call(insn, &func_id)) 7375 continue; 7376 7377 /* on kernels that don't yet support 7378 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7379 * to bpf_probe_read() which works well for old kernels 7380 */ 7381 switch (func_id) { 7382 case BPF_FUNC_probe_read_kernel: 7383 case BPF_FUNC_probe_read_user: 7384 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7385 insn->imm = BPF_FUNC_probe_read; 7386 break; 7387 case BPF_FUNC_probe_read_kernel_str: 7388 case BPF_FUNC_probe_read_user_str: 7389 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7390 insn->imm = BPF_FUNC_probe_read_str; 7391 break; 7392 default: 7393 break; 7394 } 7395 } 7396 return 0; 7397 } 7398 7399 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7400 int *btf_obj_fd, int *btf_type_id); 7401 7402 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7403 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7404 struct bpf_prog_load_opts *opts, long cookie) 7405 { 7406 enum sec_def_flags def = cookie; 7407 7408 /* old kernels might not support specifying expected_attach_type */ 7409 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7410 opts->expected_attach_type = 0; 7411 7412 if (def & SEC_SLEEPABLE) 7413 opts->prog_flags |= BPF_F_SLEEPABLE; 7414 7415 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7416 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7417 7418 /* special check for usdt to use uprobe_multi link */ 7419 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7420 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7421 * in prog, and expected_attach_type we set in kernel is from opts, so we 7422 * update both. 7423 */ 7424 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7425 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7426 } 7427 7428 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7429 int btf_obj_fd = 0, btf_type_id = 0, err; 7430 const char *attach_name; 7431 7432 attach_name = strchr(prog->sec_name, '/'); 7433 if (!attach_name) { 7434 /* if BPF program is annotated with just SEC("fentry") 7435 * (or similar) without declaratively specifying 7436 * target, then it is expected that target will be 7437 * specified with bpf_program__set_attach_target() at 7438 * runtime before BPF object load step. If not, then 7439 * there is nothing to load into the kernel as BPF 7440 * verifier won't be able to validate BPF program 7441 * correctness anyways. 7442 */ 7443 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7444 prog->name); 7445 return -EINVAL; 7446 } 7447 attach_name++; /* skip over / */ 7448 7449 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7450 if (err) 7451 return err; 7452 7453 /* cache resolved BTF FD and BTF type ID in the prog */ 7454 prog->attach_btf_obj_fd = btf_obj_fd; 7455 prog->attach_btf_id = btf_type_id; 7456 7457 /* but by now libbpf common logic is not utilizing 7458 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7459 * this callback is called after opts were populated by 7460 * libbpf, so this callback has to update opts explicitly here 7461 */ 7462 opts->attach_btf_obj_fd = btf_obj_fd; 7463 opts->attach_btf_id = btf_type_id; 7464 } 7465 return 0; 7466 } 7467 7468 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7469 7470 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7471 struct bpf_insn *insns, int insns_cnt, 7472 const char *license, __u32 kern_version, int *prog_fd) 7473 { 7474 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7475 const char *prog_name = NULL; 7476 size_t log_buf_size = 0; 7477 char *log_buf = NULL, *tmp; 7478 bool own_log_buf = true; 7479 __u32 log_level = prog->log_level; 7480 int ret, err; 7481 7482 /* Be more helpful by rejecting programs that can't be validated early 7483 * with more meaningful and actionable error message. 7484 */ 7485 switch (prog->type) { 7486 case BPF_PROG_TYPE_UNSPEC: 7487 /* 7488 * The program type must be set. Most likely we couldn't find a proper 7489 * section definition at load time, and thus we didn't infer the type. 7490 */ 7491 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7492 prog->name, prog->sec_name); 7493 return -EINVAL; 7494 case BPF_PROG_TYPE_STRUCT_OPS: 7495 if (prog->attach_btf_id == 0) { 7496 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7497 prog->name); 7498 return -EINVAL; 7499 } 7500 break; 7501 default: 7502 break; 7503 } 7504 7505 if (!insns || !insns_cnt) 7506 return -EINVAL; 7507 7508 if (kernel_supports(obj, FEAT_PROG_NAME)) 7509 prog_name = prog->name; 7510 load_attr.attach_prog_fd = prog->attach_prog_fd; 7511 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7512 load_attr.attach_btf_id = prog->attach_btf_id; 7513 load_attr.kern_version = kern_version; 7514 load_attr.prog_ifindex = prog->prog_ifindex; 7515 load_attr.expected_attach_type = prog->expected_attach_type; 7516 7517 /* specify func_info/line_info only if kernel supports them */ 7518 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7519 load_attr.prog_btf_fd = btf__fd(obj->btf); 7520 load_attr.func_info = prog->func_info; 7521 load_attr.func_info_rec_size = prog->func_info_rec_size; 7522 load_attr.func_info_cnt = prog->func_info_cnt; 7523 load_attr.line_info = prog->line_info; 7524 load_attr.line_info_rec_size = prog->line_info_rec_size; 7525 load_attr.line_info_cnt = prog->line_info_cnt; 7526 } 7527 load_attr.log_level = log_level; 7528 load_attr.prog_flags = prog->prog_flags; 7529 load_attr.fd_array = obj->fd_array; 7530 7531 load_attr.token_fd = obj->token_fd; 7532 if (obj->token_fd) 7533 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7534 7535 /* adjust load_attr if sec_def provides custom preload callback */ 7536 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7537 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7538 if (err < 0) { 7539 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7540 prog->name, errstr(err)); 7541 return err; 7542 } 7543 insns = prog->insns; 7544 insns_cnt = prog->insns_cnt; 7545 } 7546 7547 if (obj->gen_loader) { 7548 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7549 license, insns, insns_cnt, &load_attr, 7550 prog - obj->programs); 7551 *prog_fd = -1; 7552 return 0; 7553 } 7554 7555 retry_load: 7556 /* if log_level is zero, we don't request logs initially even if 7557 * custom log_buf is specified; if the program load fails, then we'll 7558 * bump log_level to 1 and use either custom log_buf or we'll allocate 7559 * our own and retry the load to get details on what failed 7560 */ 7561 if (log_level) { 7562 if (prog->log_buf) { 7563 log_buf = prog->log_buf; 7564 log_buf_size = prog->log_size; 7565 own_log_buf = false; 7566 } else if (obj->log_buf) { 7567 log_buf = obj->log_buf; 7568 log_buf_size = obj->log_size; 7569 own_log_buf = false; 7570 } else { 7571 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7572 tmp = realloc(log_buf, log_buf_size); 7573 if (!tmp) { 7574 ret = -ENOMEM; 7575 goto out; 7576 } 7577 log_buf = tmp; 7578 log_buf[0] = '\0'; 7579 own_log_buf = true; 7580 } 7581 } 7582 7583 load_attr.log_buf = log_buf; 7584 load_attr.log_size = log_buf_size; 7585 load_attr.log_level = log_level; 7586 7587 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7588 if (ret >= 0) { 7589 if (log_level && own_log_buf) { 7590 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7591 prog->name, log_buf); 7592 } 7593 7594 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7595 struct bpf_map *map; 7596 int i; 7597 7598 for (i = 0; i < obj->nr_maps; i++) { 7599 map = &prog->obj->maps[i]; 7600 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7601 continue; 7602 7603 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7604 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7605 prog->name, map->real_name, errstr(errno)); 7606 /* Don't fail hard if can't bind rodata. */ 7607 } 7608 } 7609 } 7610 7611 *prog_fd = ret; 7612 ret = 0; 7613 goto out; 7614 } 7615 7616 if (log_level == 0) { 7617 log_level = 1; 7618 goto retry_load; 7619 } 7620 /* On ENOSPC, increase log buffer size and retry, unless custom 7621 * log_buf is specified. 7622 * Be careful to not overflow u32, though. Kernel's log buf size limit 7623 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7624 * multiply by 2 unless we are sure we'll fit within 32 bits. 7625 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7626 */ 7627 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7628 goto retry_load; 7629 7630 ret = -errno; 7631 7632 /* post-process verifier log to improve error descriptions */ 7633 fixup_verifier_log(prog, log_buf, log_buf_size); 7634 7635 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7636 pr_perm_msg(ret); 7637 7638 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7639 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7640 prog->name, log_buf); 7641 } 7642 7643 out: 7644 if (own_log_buf) 7645 free(log_buf); 7646 return ret; 7647 } 7648 7649 static char *find_prev_line(char *buf, char *cur) 7650 { 7651 char *p; 7652 7653 if (cur == buf) /* end of a log buf */ 7654 return NULL; 7655 7656 p = cur - 1; 7657 while (p - 1 >= buf && *(p - 1) != '\n') 7658 p--; 7659 7660 return p; 7661 } 7662 7663 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7664 char *orig, size_t orig_sz, const char *patch) 7665 { 7666 /* size of the remaining log content to the right from the to-be-replaced part */ 7667 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7668 size_t patch_sz = strlen(patch); 7669 7670 if (patch_sz != orig_sz) { 7671 /* If patch line(s) are longer than original piece of verifier log, 7672 * shift log contents by (patch_sz - orig_sz) bytes to the right 7673 * starting from after to-be-replaced part of the log. 7674 * 7675 * If patch line(s) are shorter than original piece of verifier log, 7676 * shift log contents by (orig_sz - patch_sz) bytes to the left 7677 * starting from after to-be-replaced part of the log 7678 * 7679 * We need to be careful about not overflowing available 7680 * buf_sz capacity. If that's the case, we'll truncate the end 7681 * of the original log, as necessary. 7682 */ 7683 if (patch_sz > orig_sz) { 7684 if (orig + patch_sz >= buf + buf_sz) { 7685 /* patch is big enough to cover remaining space completely */ 7686 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7687 rem_sz = 0; 7688 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7689 /* patch causes part of remaining log to be truncated */ 7690 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7691 } 7692 } 7693 /* shift remaining log to the right by calculated amount */ 7694 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7695 } 7696 7697 memcpy(orig, patch, patch_sz); 7698 } 7699 7700 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7701 char *buf, size_t buf_sz, size_t log_sz, 7702 char *line1, char *line2, char *line3) 7703 { 7704 /* Expected log for failed and not properly guarded CO-RE relocation: 7705 * line1 -> 123: (85) call unknown#195896080 7706 * line2 -> invalid func unknown#195896080 7707 * line3 -> <anything else or end of buffer> 7708 * 7709 * "123" is the index of the instruction that was poisoned. We extract 7710 * instruction index to find corresponding CO-RE relocation and 7711 * replace this part of the log with more relevant information about 7712 * failed CO-RE relocation. 7713 */ 7714 const struct bpf_core_relo *relo; 7715 struct bpf_core_spec spec; 7716 char patch[512], spec_buf[256]; 7717 int insn_idx, err, spec_len; 7718 7719 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7720 return; 7721 7722 relo = find_relo_core(prog, insn_idx); 7723 if (!relo) 7724 return; 7725 7726 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7727 if (err) 7728 return; 7729 7730 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7731 snprintf(patch, sizeof(patch), 7732 "%d: <invalid CO-RE relocation>\n" 7733 "failed to resolve CO-RE relocation %s%s\n", 7734 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7735 7736 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7737 } 7738 7739 static void fixup_log_missing_map_load(struct bpf_program *prog, 7740 char *buf, size_t buf_sz, size_t log_sz, 7741 char *line1, char *line2, char *line3) 7742 { 7743 /* Expected log for failed and not properly guarded map reference: 7744 * line1 -> 123: (85) call unknown#2001000345 7745 * line2 -> invalid func unknown#2001000345 7746 * line3 -> <anything else or end of buffer> 7747 * 7748 * "123" is the index of the instruction that was poisoned. 7749 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7750 */ 7751 struct bpf_object *obj = prog->obj; 7752 const struct bpf_map *map; 7753 int insn_idx, map_idx; 7754 char patch[128]; 7755 7756 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7757 return; 7758 7759 map_idx -= POISON_LDIMM64_MAP_BASE; 7760 if (map_idx < 0 || map_idx >= obj->nr_maps) 7761 return; 7762 map = &obj->maps[map_idx]; 7763 7764 snprintf(patch, sizeof(patch), 7765 "%d: <invalid BPF map reference>\n" 7766 "BPF map '%s' is referenced but wasn't created\n", 7767 insn_idx, map->name); 7768 7769 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7770 } 7771 7772 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7773 char *buf, size_t buf_sz, size_t log_sz, 7774 char *line1, char *line2, char *line3) 7775 { 7776 /* Expected log for failed and not properly guarded kfunc call: 7777 * line1 -> 123: (85) call unknown#2002000345 7778 * line2 -> invalid func unknown#2002000345 7779 * line3 -> <anything else or end of buffer> 7780 * 7781 * "123" is the index of the instruction that was poisoned. 7782 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7783 */ 7784 struct bpf_object *obj = prog->obj; 7785 const struct extern_desc *ext; 7786 int insn_idx, ext_idx; 7787 char patch[128]; 7788 7789 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7790 return; 7791 7792 ext_idx -= POISON_CALL_KFUNC_BASE; 7793 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7794 return; 7795 ext = &obj->externs[ext_idx]; 7796 7797 snprintf(patch, sizeof(patch), 7798 "%d: <invalid kfunc call>\n" 7799 "kfunc '%s' is referenced but wasn't resolved\n", 7800 insn_idx, ext->name); 7801 7802 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7803 } 7804 7805 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7806 { 7807 /* look for familiar error patterns in last N lines of the log */ 7808 const size_t max_last_line_cnt = 10; 7809 char *prev_line, *cur_line, *next_line; 7810 size_t log_sz; 7811 int i; 7812 7813 if (!buf) 7814 return; 7815 7816 log_sz = strlen(buf) + 1; 7817 next_line = buf + log_sz - 1; 7818 7819 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7820 cur_line = find_prev_line(buf, next_line); 7821 if (!cur_line) 7822 return; 7823 7824 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7825 prev_line = find_prev_line(buf, cur_line); 7826 if (!prev_line) 7827 continue; 7828 7829 /* failed CO-RE relocation case */ 7830 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7831 prev_line, cur_line, next_line); 7832 return; 7833 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7834 prev_line = find_prev_line(buf, cur_line); 7835 if (!prev_line) 7836 continue; 7837 7838 /* reference to uncreated BPF map */ 7839 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7840 prev_line, cur_line, next_line); 7841 return; 7842 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7843 prev_line = find_prev_line(buf, cur_line); 7844 if (!prev_line) 7845 continue; 7846 7847 /* reference to unresolved kfunc */ 7848 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7849 prev_line, cur_line, next_line); 7850 return; 7851 } 7852 } 7853 } 7854 7855 static int bpf_program_record_relos(struct bpf_program *prog) 7856 { 7857 struct bpf_object *obj = prog->obj; 7858 int i; 7859 7860 for (i = 0; i < prog->nr_reloc; i++) { 7861 struct reloc_desc *relo = &prog->reloc_desc[i]; 7862 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7863 int kind; 7864 7865 switch (relo->type) { 7866 case RELO_EXTERN_LD64: 7867 if (ext->type != EXT_KSYM) 7868 continue; 7869 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7870 BTF_KIND_VAR : BTF_KIND_FUNC; 7871 bpf_gen__record_extern(obj->gen_loader, ext->name, 7872 ext->is_weak, !ext->ksym.type_id, 7873 true, kind, relo->insn_idx); 7874 break; 7875 case RELO_EXTERN_CALL: 7876 bpf_gen__record_extern(obj->gen_loader, ext->name, 7877 ext->is_weak, false, false, BTF_KIND_FUNC, 7878 relo->insn_idx); 7879 break; 7880 case RELO_CORE: { 7881 struct bpf_core_relo cr = { 7882 .insn_off = relo->insn_idx * 8, 7883 .type_id = relo->core_relo->type_id, 7884 .access_str_off = relo->core_relo->access_str_off, 7885 .kind = relo->core_relo->kind, 7886 }; 7887 7888 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7889 break; 7890 } 7891 default: 7892 continue; 7893 } 7894 } 7895 return 0; 7896 } 7897 7898 static int 7899 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7900 { 7901 struct bpf_program *prog; 7902 size_t i; 7903 int err; 7904 7905 for (i = 0; i < obj->nr_programs; i++) { 7906 prog = &obj->programs[i]; 7907 if (prog_is_subprog(obj, prog)) 7908 continue; 7909 if (!prog->autoload) { 7910 pr_debug("prog '%s': skipped loading\n", prog->name); 7911 continue; 7912 } 7913 prog->log_level |= log_level; 7914 7915 if (obj->gen_loader) 7916 bpf_program_record_relos(prog); 7917 7918 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7919 obj->license, obj->kern_version, &prog->fd); 7920 if (err) { 7921 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7922 return err; 7923 } 7924 } 7925 7926 bpf_object__free_relocs(obj); 7927 return 0; 7928 } 7929 7930 static int bpf_object_prepare_progs(struct bpf_object *obj) 7931 { 7932 struct bpf_program *prog; 7933 size_t i; 7934 int err; 7935 7936 for (i = 0; i < obj->nr_programs; i++) { 7937 prog = &obj->programs[i]; 7938 err = bpf_object__sanitize_prog(obj, prog); 7939 if (err) 7940 return err; 7941 } 7942 return 0; 7943 } 7944 7945 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7946 7947 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7948 { 7949 struct bpf_program *prog; 7950 int err; 7951 7952 bpf_object__for_each_program(prog, obj) { 7953 prog->sec_def = find_sec_def(prog->sec_name); 7954 if (!prog->sec_def) { 7955 /* couldn't guess, but user might manually specify */ 7956 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7957 prog->name, prog->sec_name); 7958 continue; 7959 } 7960 7961 prog->type = prog->sec_def->prog_type; 7962 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7963 7964 /* sec_def can have custom callback which should be called 7965 * after bpf_program is initialized to adjust its properties 7966 */ 7967 if (prog->sec_def->prog_setup_fn) { 7968 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7969 if (err < 0) { 7970 pr_warn("prog '%s': failed to initialize: %s\n", 7971 prog->name, errstr(err)); 7972 return err; 7973 } 7974 } 7975 } 7976 7977 return 0; 7978 } 7979 7980 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7981 const char *obj_name, 7982 const struct bpf_object_open_opts *opts) 7983 { 7984 const char *kconfig, *btf_tmp_path, *token_path; 7985 struct bpf_object *obj; 7986 int err; 7987 char *log_buf; 7988 size_t log_size; 7989 __u32 log_level; 7990 7991 if (obj_buf && !obj_name) 7992 return ERR_PTR(-EINVAL); 7993 7994 if (elf_version(EV_CURRENT) == EV_NONE) { 7995 pr_warn("failed to init libelf for %s\n", 7996 path ? : "(mem buf)"); 7997 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7998 } 7999 8000 if (!OPTS_VALID(opts, bpf_object_open_opts)) 8001 return ERR_PTR(-EINVAL); 8002 8003 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 8004 if (obj_buf) { 8005 path = obj_name; 8006 pr_debug("loading object '%s' from buffer\n", obj_name); 8007 } else { 8008 pr_debug("loading object from %s\n", path); 8009 } 8010 8011 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8012 log_size = OPTS_GET(opts, kernel_log_size, 0); 8013 log_level = OPTS_GET(opts, kernel_log_level, 0); 8014 if (log_size > UINT_MAX) 8015 return ERR_PTR(-EINVAL); 8016 if (log_size && !log_buf) 8017 return ERR_PTR(-EINVAL); 8018 8019 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8020 /* if user didn't specify bpf_token_path explicitly, check if 8021 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8022 * option 8023 */ 8024 if (!token_path) 8025 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8026 if (token_path && strlen(token_path) >= PATH_MAX) 8027 return ERR_PTR(-ENAMETOOLONG); 8028 8029 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8030 if (IS_ERR(obj)) 8031 return obj; 8032 8033 obj->log_buf = log_buf; 8034 obj->log_size = log_size; 8035 obj->log_level = log_level; 8036 8037 if (token_path) { 8038 obj->token_path = strdup(token_path); 8039 if (!obj->token_path) { 8040 err = -ENOMEM; 8041 goto out; 8042 } 8043 } 8044 8045 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8046 if (btf_tmp_path) { 8047 if (strlen(btf_tmp_path) >= PATH_MAX) { 8048 err = -ENAMETOOLONG; 8049 goto out; 8050 } 8051 obj->btf_custom_path = strdup(btf_tmp_path); 8052 if (!obj->btf_custom_path) { 8053 err = -ENOMEM; 8054 goto out; 8055 } 8056 } 8057 8058 kconfig = OPTS_GET(opts, kconfig, NULL); 8059 if (kconfig) { 8060 obj->kconfig = strdup(kconfig); 8061 if (!obj->kconfig) { 8062 err = -ENOMEM; 8063 goto out; 8064 } 8065 } 8066 8067 err = bpf_object__elf_init(obj); 8068 err = err ? : bpf_object__elf_collect(obj); 8069 err = err ? : bpf_object__collect_externs(obj); 8070 err = err ? : bpf_object_fixup_btf(obj); 8071 err = err ? : bpf_object__init_maps(obj, opts); 8072 err = err ? : bpf_object_init_progs(obj, opts); 8073 err = err ? : bpf_object__collect_relos(obj); 8074 if (err) 8075 goto out; 8076 8077 bpf_object__elf_finish(obj); 8078 8079 return obj; 8080 out: 8081 bpf_object__close(obj); 8082 return ERR_PTR(err); 8083 } 8084 8085 struct bpf_object * 8086 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8087 { 8088 if (!path) 8089 return libbpf_err_ptr(-EINVAL); 8090 8091 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8092 } 8093 8094 struct bpf_object *bpf_object__open(const char *path) 8095 { 8096 return bpf_object__open_file(path, NULL); 8097 } 8098 8099 struct bpf_object * 8100 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8101 const struct bpf_object_open_opts *opts) 8102 { 8103 char tmp_name[64]; 8104 8105 if (!obj_buf || obj_buf_sz == 0) 8106 return libbpf_err_ptr(-EINVAL); 8107 8108 /* create a (quite useless) default "name" for this memory buffer object */ 8109 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8110 8111 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8112 } 8113 8114 static int bpf_object_unload(struct bpf_object *obj) 8115 { 8116 size_t i; 8117 8118 if (!obj) 8119 return libbpf_err(-EINVAL); 8120 8121 for (i = 0; i < obj->nr_maps; i++) { 8122 zclose(obj->maps[i].fd); 8123 if (obj->maps[i].st_ops) 8124 zfree(&obj->maps[i].st_ops->kern_vdata); 8125 } 8126 8127 for (i = 0; i < obj->nr_programs; i++) 8128 bpf_program__unload(&obj->programs[i]); 8129 8130 return 0; 8131 } 8132 8133 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8134 { 8135 struct bpf_map *m; 8136 8137 bpf_object__for_each_map(m, obj) { 8138 if (!bpf_map__is_internal(m)) 8139 continue; 8140 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8141 m->def.map_flags &= ~BPF_F_MMAPABLE; 8142 } 8143 8144 return 0; 8145 } 8146 8147 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8148 const char *sym_name, void *ctx); 8149 8150 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8151 { 8152 char sym_type, sym_name[500]; 8153 unsigned long long sym_addr; 8154 int ret, err = 0; 8155 FILE *f; 8156 8157 f = fopen("/proc/kallsyms", "re"); 8158 if (!f) { 8159 err = -errno; 8160 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8161 return err; 8162 } 8163 8164 while (true) { 8165 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8166 &sym_addr, &sym_type, sym_name); 8167 if (ret == EOF && feof(f)) 8168 break; 8169 if (ret != 3) { 8170 pr_warn("failed to read kallsyms entry: %d\n", ret); 8171 err = -EINVAL; 8172 break; 8173 } 8174 8175 err = cb(sym_addr, sym_type, sym_name, ctx); 8176 if (err) 8177 break; 8178 } 8179 8180 fclose(f); 8181 return err; 8182 } 8183 8184 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8185 const char *sym_name, void *ctx) 8186 { 8187 struct bpf_object *obj = ctx; 8188 const struct btf_type *t; 8189 struct extern_desc *ext; 8190 char *res; 8191 8192 res = strstr(sym_name, ".llvm."); 8193 if (sym_type == 'd' && res) 8194 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8195 else 8196 ext = find_extern_by_name(obj, sym_name); 8197 if (!ext || ext->type != EXT_KSYM) 8198 return 0; 8199 8200 t = btf__type_by_id(obj->btf, ext->btf_id); 8201 if (!btf_is_var(t)) 8202 return 0; 8203 8204 if (ext->is_set && ext->ksym.addr != sym_addr) { 8205 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8206 sym_name, ext->ksym.addr, sym_addr); 8207 return -EINVAL; 8208 } 8209 if (!ext->is_set) { 8210 ext->is_set = true; 8211 ext->ksym.addr = sym_addr; 8212 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8213 } 8214 return 0; 8215 } 8216 8217 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8218 { 8219 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8220 } 8221 8222 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8223 __u16 kind, struct btf **res_btf, 8224 struct module_btf **res_mod_btf) 8225 { 8226 struct module_btf *mod_btf; 8227 struct btf *btf; 8228 int i, id, err; 8229 8230 btf = obj->btf_vmlinux; 8231 mod_btf = NULL; 8232 id = btf__find_by_name_kind(btf, ksym_name, kind); 8233 8234 if (id == -ENOENT) { 8235 err = load_module_btfs(obj); 8236 if (err) 8237 return err; 8238 8239 for (i = 0; i < obj->btf_module_cnt; i++) { 8240 /* we assume module_btf's BTF FD is always >0 */ 8241 mod_btf = &obj->btf_modules[i]; 8242 btf = mod_btf->btf; 8243 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8244 if (id != -ENOENT) 8245 break; 8246 } 8247 } 8248 if (id <= 0) 8249 return -ESRCH; 8250 8251 *res_btf = btf; 8252 *res_mod_btf = mod_btf; 8253 return id; 8254 } 8255 8256 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8257 struct extern_desc *ext) 8258 { 8259 const struct btf_type *targ_var, *targ_type; 8260 __u32 targ_type_id, local_type_id; 8261 struct module_btf *mod_btf = NULL; 8262 const char *targ_var_name; 8263 struct btf *btf = NULL; 8264 int id, err; 8265 8266 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8267 if (id < 0) { 8268 if (id == -ESRCH && ext->is_weak) 8269 return 0; 8270 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8271 ext->name); 8272 return id; 8273 } 8274 8275 /* find local type_id */ 8276 local_type_id = ext->ksym.type_id; 8277 8278 /* find target type_id */ 8279 targ_var = btf__type_by_id(btf, id); 8280 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8281 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8282 8283 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8284 btf, targ_type_id); 8285 if (err <= 0) { 8286 const struct btf_type *local_type; 8287 const char *targ_name, *local_name; 8288 8289 local_type = btf__type_by_id(obj->btf, local_type_id); 8290 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8291 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8292 8293 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8294 ext->name, local_type_id, 8295 btf_kind_str(local_type), local_name, targ_type_id, 8296 btf_kind_str(targ_type), targ_name); 8297 return -EINVAL; 8298 } 8299 8300 ext->is_set = true; 8301 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8302 ext->ksym.kernel_btf_id = id; 8303 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8304 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8305 8306 return 0; 8307 } 8308 8309 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8310 struct extern_desc *ext) 8311 { 8312 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8313 struct module_btf *mod_btf = NULL; 8314 const struct btf_type *kern_func; 8315 struct btf *kern_btf = NULL; 8316 int ret; 8317 8318 local_func_proto_id = ext->ksym.type_id; 8319 8320 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8321 &mod_btf); 8322 if (kfunc_id < 0) { 8323 if (kfunc_id == -ESRCH && ext->is_weak) 8324 return 0; 8325 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8326 ext->name); 8327 return kfunc_id; 8328 } 8329 8330 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8331 kfunc_proto_id = kern_func->type; 8332 8333 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8334 kern_btf, kfunc_proto_id); 8335 if (ret <= 0) { 8336 if (ext->is_weak) 8337 return 0; 8338 8339 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8340 ext->name, local_func_proto_id, 8341 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8342 return -EINVAL; 8343 } 8344 8345 /* set index for module BTF fd in fd_array, if unset */ 8346 if (mod_btf && !mod_btf->fd_array_idx) { 8347 /* insn->off is s16 */ 8348 if (obj->fd_array_cnt == INT16_MAX) { 8349 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8350 ext->name, mod_btf->fd_array_idx); 8351 return -E2BIG; 8352 } 8353 /* Cannot use index 0 for module BTF fd */ 8354 if (!obj->fd_array_cnt) 8355 obj->fd_array_cnt = 1; 8356 8357 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8358 obj->fd_array_cnt + 1); 8359 if (ret) 8360 return ret; 8361 mod_btf->fd_array_idx = obj->fd_array_cnt; 8362 /* we assume module BTF FD is always >0 */ 8363 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8364 } 8365 8366 ext->is_set = true; 8367 ext->ksym.kernel_btf_id = kfunc_id; 8368 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8369 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8370 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8371 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8372 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8373 */ 8374 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8375 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8376 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8377 8378 return 0; 8379 } 8380 8381 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8382 { 8383 const struct btf_type *t; 8384 struct extern_desc *ext; 8385 int i, err; 8386 8387 for (i = 0; i < obj->nr_extern; i++) { 8388 ext = &obj->externs[i]; 8389 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8390 continue; 8391 8392 if (obj->gen_loader) { 8393 ext->is_set = true; 8394 ext->ksym.kernel_btf_obj_fd = 0; 8395 ext->ksym.kernel_btf_id = 0; 8396 continue; 8397 } 8398 t = btf__type_by_id(obj->btf, ext->btf_id); 8399 if (btf_is_var(t)) 8400 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8401 else 8402 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8403 if (err) 8404 return err; 8405 } 8406 return 0; 8407 } 8408 8409 static int bpf_object__resolve_externs(struct bpf_object *obj, 8410 const char *extra_kconfig) 8411 { 8412 bool need_config = false, need_kallsyms = false; 8413 bool need_vmlinux_btf = false; 8414 struct extern_desc *ext; 8415 void *kcfg_data = NULL; 8416 int err, i; 8417 8418 if (obj->nr_extern == 0) 8419 return 0; 8420 8421 if (obj->kconfig_map_idx >= 0) 8422 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8423 8424 for (i = 0; i < obj->nr_extern; i++) { 8425 ext = &obj->externs[i]; 8426 8427 if (ext->type == EXT_KSYM) { 8428 if (ext->ksym.type_id) 8429 need_vmlinux_btf = true; 8430 else 8431 need_kallsyms = true; 8432 continue; 8433 } else if (ext->type == EXT_KCFG) { 8434 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8435 __u64 value = 0; 8436 8437 /* Kconfig externs need actual /proc/config.gz */ 8438 if (str_has_pfx(ext->name, "CONFIG_")) { 8439 need_config = true; 8440 continue; 8441 } 8442 8443 /* Virtual kcfg externs are customly handled by libbpf */ 8444 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8445 value = get_kernel_version(); 8446 if (!value) { 8447 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8448 return -EINVAL; 8449 } 8450 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8451 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8452 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8453 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8454 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8455 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8456 * __kconfig externs, where LINUX_ ones are virtual and filled out 8457 * customly by libbpf (their values don't come from Kconfig). 8458 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8459 * __weak, it defaults to zero value, just like for CONFIG_xxx 8460 * externs. 8461 */ 8462 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8463 return -EINVAL; 8464 } 8465 8466 err = set_kcfg_value_num(ext, ext_ptr, value); 8467 if (err) 8468 return err; 8469 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8470 ext->name, (long long)value); 8471 } else { 8472 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8473 return -EINVAL; 8474 } 8475 } 8476 if (need_config && extra_kconfig) { 8477 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8478 if (err) 8479 return -EINVAL; 8480 need_config = false; 8481 for (i = 0; i < obj->nr_extern; i++) { 8482 ext = &obj->externs[i]; 8483 if (ext->type == EXT_KCFG && !ext->is_set) { 8484 need_config = true; 8485 break; 8486 } 8487 } 8488 } 8489 if (need_config) { 8490 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8491 if (err) 8492 return -EINVAL; 8493 } 8494 if (need_kallsyms) { 8495 err = bpf_object__read_kallsyms_file(obj); 8496 if (err) 8497 return -EINVAL; 8498 } 8499 if (need_vmlinux_btf) { 8500 err = bpf_object__resolve_ksyms_btf_id(obj); 8501 if (err) 8502 return -EINVAL; 8503 } 8504 for (i = 0; i < obj->nr_extern; i++) { 8505 ext = &obj->externs[i]; 8506 8507 if (!ext->is_set && !ext->is_weak) { 8508 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8509 return -ESRCH; 8510 } else if (!ext->is_set) { 8511 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8512 ext->name); 8513 } 8514 } 8515 8516 return 0; 8517 } 8518 8519 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8520 { 8521 const struct btf_type *type; 8522 struct bpf_struct_ops *st_ops; 8523 __u32 i; 8524 8525 st_ops = map->st_ops; 8526 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8527 for (i = 0; i < btf_vlen(type); i++) { 8528 struct bpf_program *prog = st_ops->progs[i]; 8529 void *kern_data; 8530 int prog_fd; 8531 8532 if (!prog) 8533 continue; 8534 8535 prog_fd = bpf_program__fd(prog); 8536 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8537 *(unsigned long *)kern_data = prog_fd; 8538 } 8539 } 8540 8541 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8542 { 8543 struct bpf_map *map; 8544 int i; 8545 8546 for (i = 0; i < obj->nr_maps; i++) { 8547 map = &obj->maps[i]; 8548 8549 if (!bpf_map__is_struct_ops(map)) 8550 continue; 8551 8552 if (!map->autocreate) 8553 continue; 8554 8555 bpf_map_prepare_vdata(map); 8556 } 8557 8558 return 0; 8559 } 8560 8561 static void bpf_object_unpin(struct bpf_object *obj) 8562 { 8563 int i; 8564 8565 /* unpin any maps that were auto-pinned during load */ 8566 for (i = 0; i < obj->nr_maps; i++) 8567 if (obj->maps[i].pinned && !obj->maps[i].reused) 8568 bpf_map__unpin(&obj->maps[i], NULL); 8569 } 8570 8571 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8572 { 8573 int i; 8574 8575 /* clean up fd_array */ 8576 zfree(&obj->fd_array); 8577 8578 /* clean up module BTFs */ 8579 for (i = 0; i < obj->btf_module_cnt; i++) { 8580 close(obj->btf_modules[i].fd); 8581 btf__free(obj->btf_modules[i].btf); 8582 free(obj->btf_modules[i].name); 8583 } 8584 obj->btf_module_cnt = 0; 8585 zfree(&obj->btf_modules); 8586 8587 /* clean up vmlinux BTF */ 8588 btf__free(obj->btf_vmlinux); 8589 obj->btf_vmlinux = NULL; 8590 } 8591 8592 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8593 { 8594 int err; 8595 8596 if (obj->state >= OBJ_PREPARED) { 8597 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8598 return -EINVAL; 8599 } 8600 8601 err = bpf_object_prepare_token(obj); 8602 err = err ? : bpf_object__probe_loading(obj); 8603 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8604 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8605 err = err ? : bpf_object__sanitize_maps(obj); 8606 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8607 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8608 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8609 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8610 err = err ? : bpf_object__create_maps(obj); 8611 err = err ? : bpf_object_prepare_progs(obj); 8612 8613 if (err) { 8614 bpf_object_unpin(obj); 8615 bpf_object_unload(obj); 8616 obj->state = OBJ_LOADED; 8617 return err; 8618 } 8619 8620 obj->state = OBJ_PREPARED; 8621 return 0; 8622 } 8623 8624 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8625 { 8626 int err; 8627 8628 if (!obj) 8629 return libbpf_err(-EINVAL); 8630 8631 if (obj->state >= OBJ_LOADED) { 8632 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8633 return libbpf_err(-EINVAL); 8634 } 8635 8636 /* Disallow kernel loading programs of non-native endianness but 8637 * permit cross-endian creation of "light skeleton". 8638 */ 8639 if (obj->gen_loader) { 8640 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8641 } else if (!is_native_endianness(obj)) { 8642 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8643 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8644 } 8645 8646 if (obj->state < OBJ_PREPARED) { 8647 err = bpf_object_prepare(obj, target_btf_path); 8648 if (err) 8649 return libbpf_err(err); 8650 } 8651 err = bpf_object__load_progs(obj, extra_log_level); 8652 err = err ? : bpf_object_init_prog_arrays(obj); 8653 err = err ? : bpf_object_prepare_struct_ops(obj); 8654 8655 if (obj->gen_loader) { 8656 /* reset FDs */ 8657 if (obj->btf) 8658 btf__set_fd(obj->btf, -1); 8659 if (!err) 8660 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8661 } 8662 8663 bpf_object_post_load_cleanup(obj); 8664 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8665 8666 if (err) { 8667 bpf_object_unpin(obj); 8668 bpf_object_unload(obj); 8669 pr_warn("failed to load object '%s'\n", obj->path); 8670 return libbpf_err(err); 8671 } 8672 8673 return 0; 8674 } 8675 8676 int bpf_object__prepare(struct bpf_object *obj) 8677 { 8678 return libbpf_err(bpf_object_prepare(obj, NULL)); 8679 } 8680 8681 int bpf_object__load(struct bpf_object *obj) 8682 { 8683 return bpf_object_load(obj, 0, NULL); 8684 } 8685 8686 static int make_parent_dir(const char *path) 8687 { 8688 char *dname, *dir; 8689 int err = 0; 8690 8691 dname = strdup(path); 8692 if (dname == NULL) 8693 return -ENOMEM; 8694 8695 dir = dirname(dname); 8696 if (mkdir(dir, 0700) && errno != EEXIST) 8697 err = -errno; 8698 8699 free(dname); 8700 if (err) { 8701 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8702 } 8703 return err; 8704 } 8705 8706 static int check_path(const char *path) 8707 { 8708 struct statfs st_fs; 8709 char *dname, *dir; 8710 int err = 0; 8711 8712 if (path == NULL) 8713 return -EINVAL; 8714 8715 dname = strdup(path); 8716 if (dname == NULL) 8717 return -ENOMEM; 8718 8719 dir = dirname(dname); 8720 if (statfs(dir, &st_fs)) { 8721 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8722 err = -errno; 8723 } 8724 free(dname); 8725 8726 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8727 pr_warn("specified path %s is not on BPF FS\n", path); 8728 err = -EINVAL; 8729 } 8730 8731 return err; 8732 } 8733 8734 int bpf_program__pin(struct bpf_program *prog, const char *path) 8735 { 8736 int err; 8737 8738 if (prog->fd < 0) { 8739 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8740 return libbpf_err(-EINVAL); 8741 } 8742 8743 err = make_parent_dir(path); 8744 if (err) 8745 return libbpf_err(err); 8746 8747 err = check_path(path); 8748 if (err) 8749 return libbpf_err(err); 8750 8751 if (bpf_obj_pin(prog->fd, path)) { 8752 err = -errno; 8753 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8754 return libbpf_err(err); 8755 } 8756 8757 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8758 return 0; 8759 } 8760 8761 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8762 { 8763 int err; 8764 8765 if (prog->fd < 0) { 8766 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8767 return libbpf_err(-EINVAL); 8768 } 8769 8770 err = check_path(path); 8771 if (err) 8772 return libbpf_err(err); 8773 8774 err = unlink(path); 8775 if (err) 8776 return libbpf_err(-errno); 8777 8778 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8779 return 0; 8780 } 8781 8782 int bpf_map__pin(struct bpf_map *map, const char *path) 8783 { 8784 int err; 8785 8786 if (map == NULL) { 8787 pr_warn("invalid map pointer\n"); 8788 return libbpf_err(-EINVAL); 8789 } 8790 8791 if (map->fd < 0) { 8792 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8793 return libbpf_err(-EINVAL); 8794 } 8795 8796 if (map->pin_path) { 8797 if (path && strcmp(path, map->pin_path)) { 8798 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8799 bpf_map__name(map), map->pin_path, path); 8800 return libbpf_err(-EINVAL); 8801 } else if (map->pinned) { 8802 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8803 bpf_map__name(map), map->pin_path); 8804 return 0; 8805 } 8806 } else { 8807 if (!path) { 8808 pr_warn("missing a path to pin map '%s' at\n", 8809 bpf_map__name(map)); 8810 return libbpf_err(-EINVAL); 8811 } else if (map->pinned) { 8812 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8813 return libbpf_err(-EEXIST); 8814 } 8815 8816 map->pin_path = strdup(path); 8817 if (!map->pin_path) { 8818 err = -errno; 8819 goto out_err; 8820 } 8821 } 8822 8823 err = make_parent_dir(map->pin_path); 8824 if (err) 8825 return libbpf_err(err); 8826 8827 err = check_path(map->pin_path); 8828 if (err) 8829 return libbpf_err(err); 8830 8831 if (bpf_obj_pin(map->fd, map->pin_path)) { 8832 err = -errno; 8833 goto out_err; 8834 } 8835 8836 map->pinned = true; 8837 pr_debug("pinned map '%s'\n", map->pin_path); 8838 8839 return 0; 8840 8841 out_err: 8842 pr_warn("failed to pin map: %s\n", errstr(err)); 8843 return libbpf_err(err); 8844 } 8845 8846 int bpf_map__unpin(struct bpf_map *map, const char *path) 8847 { 8848 int err; 8849 8850 if (map == NULL) { 8851 pr_warn("invalid map pointer\n"); 8852 return libbpf_err(-EINVAL); 8853 } 8854 8855 if (map->pin_path) { 8856 if (path && strcmp(path, map->pin_path)) { 8857 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8858 bpf_map__name(map), map->pin_path, path); 8859 return libbpf_err(-EINVAL); 8860 } 8861 path = map->pin_path; 8862 } else if (!path) { 8863 pr_warn("no path to unpin map '%s' from\n", 8864 bpf_map__name(map)); 8865 return libbpf_err(-EINVAL); 8866 } 8867 8868 err = check_path(path); 8869 if (err) 8870 return libbpf_err(err); 8871 8872 err = unlink(path); 8873 if (err != 0) 8874 return libbpf_err(-errno); 8875 8876 map->pinned = false; 8877 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8878 8879 return 0; 8880 } 8881 8882 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8883 { 8884 char *new = NULL; 8885 8886 if (path) { 8887 new = strdup(path); 8888 if (!new) 8889 return libbpf_err(-errno); 8890 } 8891 8892 free(map->pin_path); 8893 map->pin_path = new; 8894 return 0; 8895 } 8896 8897 __alias(bpf_map__pin_path) 8898 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8899 8900 const char *bpf_map__pin_path(const struct bpf_map *map) 8901 { 8902 return map->pin_path; 8903 } 8904 8905 bool bpf_map__is_pinned(const struct bpf_map *map) 8906 { 8907 return map->pinned; 8908 } 8909 8910 static void sanitize_pin_path(char *s) 8911 { 8912 /* bpffs disallows periods in path names */ 8913 while (*s) { 8914 if (*s == '.') 8915 *s = '_'; 8916 s++; 8917 } 8918 } 8919 8920 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8921 { 8922 struct bpf_map *map; 8923 int err; 8924 8925 if (!obj) 8926 return libbpf_err(-ENOENT); 8927 8928 if (obj->state < OBJ_PREPARED) { 8929 pr_warn("object not yet loaded; load it first\n"); 8930 return libbpf_err(-ENOENT); 8931 } 8932 8933 bpf_object__for_each_map(map, obj) { 8934 char *pin_path = NULL; 8935 char buf[PATH_MAX]; 8936 8937 if (!map->autocreate) 8938 continue; 8939 8940 if (path) { 8941 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8942 if (err) 8943 goto err_unpin_maps; 8944 sanitize_pin_path(buf); 8945 pin_path = buf; 8946 } else if (!map->pin_path) { 8947 continue; 8948 } 8949 8950 err = bpf_map__pin(map, pin_path); 8951 if (err) 8952 goto err_unpin_maps; 8953 } 8954 8955 return 0; 8956 8957 err_unpin_maps: 8958 while ((map = bpf_object__prev_map(obj, map))) { 8959 if (!map->pin_path) 8960 continue; 8961 8962 bpf_map__unpin(map, NULL); 8963 } 8964 8965 return libbpf_err(err); 8966 } 8967 8968 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8969 { 8970 struct bpf_map *map; 8971 int err; 8972 8973 if (!obj) 8974 return libbpf_err(-ENOENT); 8975 8976 bpf_object__for_each_map(map, obj) { 8977 char *pin_path = NULL; 8978 char buf[PATH_MAX]; 8979 8980 if (path) { 8981 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8982 if (err) 8983 return libbpf_err(err); 8984 sanitize_pin_path(buf); 8985 pin_path = buf; 8986 } else if (!map->pin_path) { 8987 continue; 8988 } 8989 8990 err = bpf_map__unpin(map, pin_path); 8991 if (err) 8992 return libbpf_err(err); 8993 } 8994 8995 return 0; 8996 } 8997 8998 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8999 { 9000 struct bpf_program *prog; 9001 char buf[PATH_MAX]; 9002 int err; 9003 9004 if (!obj) 9005 return libbpf_err(-ENOENT); 9006 9007 if (obj->state < OBJ_LOADED) { 9008 pr_warn("object not yet loaded; load it first\n"); 9009 return libbpf_err(-ENOENT); 9010 } 9011 9012 bpf_object__for_each_program(prog, obj) { 9013 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9014 if (err) 9015 goto err_unpin_programs; 9016 9017 err = bpf_program__pin(prog, buf); 9018 if (err) 9019 goto err_unpin_programs; 9020 } 9021 9022 return 0; 9023 9024 err_unpin_programs: 9025 while ((prog = bpf_object__prev_program(obj, prog))) { 9026 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9027 continue; 9028 9029 bpf_program__unpin(prog, buf); 9030 } 9031 9032 return libbpf_err(err); 9033 } 9034 9035 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9036 { 9037 struct bpf_program *prog; 9038 int err; 9039 9040 if (!obj) 9041 return libbpf_err(-ENOENT); 9042 9043 bpf_object__for_each_program(prog, obj) { 9044 char buf[PATH_MAX]; 9045 9046 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9047 if (err) 9048 return libbpf_err(err); 9049 9050 err = bpf_program__unpin(prog, buf); 9051 if (err) 9052 return libbpf_err(err); 9053 } 9054 9055 return 0; 9056 } 9057 9058 int bpf_object__pin(struct bpf_object *obj, const char *path) 9059 { 9060 int err; 9061 9062 err = bpf_object__pin_maps(obj, path); 9063 if (err) 9064 return libbpf_err(err); 9065 9066 err = bpf_object__pin_programs(obj, path); 9067 if (err) { 9068 bpf_object__unpin_maps(obj, path); 9069 return libbpf_err(err); 9070 } 9071 9072 return 0; 9073 } 9074 9075 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9076 { 9077 int err; 9078 9079 err = bpf_object__unpin_programs(obj, path); 9080 if (err) 9081 return libbpf_err(err); 9082 9083 err = bpf_object__unpin_maps(obj, path); 9084 if (err) 9085 return libbpf_err(err); 9086 9087 return 0; 9088 } 9089 9090 static void bpf_map__destroy(struct bpf_map *map) 9091 { 9092 if (map->inner_map) { 9093 bpf_map__destroy(map->inner_map); 9094 zfree(&map->inner_map); 9095 } 9096 9097 zfree(&map->init_slots); 9098 map->init_slots_sz = 0; 9099 9100 if (map->mmaped && map->mmaped != map->obj->arena_data) 9101 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9102 map->mmaped = NULL; 9103 9104 if (map->st_ops) { 9105 zfree(&map->st_ops->data); 9106 zfree(&map->st_ops->progs); 9107 zfree(&map->st_ops->kern_func_off); 9108 zfree(&map->st_ops); 9109 } 9110 9111 zfree(&map->name); 9112 zfree(&map->real_name); 9113 zfree(&map->pin_path); 9114 9115 if (map->fd >= 0) 9116 zclose(map->fd); 9117 } 9118 9119 void bpf_object__close(struct bpf_object *obj) 9120 { 9121 size_t i; 9122 9123 if (IS_ERR_OR_NULL(obj)) 9124 return; 9125 9126 /* 9127 * if user called bpf_object__prepare() without ever getting to 9128 * bpf_object__load(), we need to clean up stuff that is normally 9129 * cleaned up at the end of loading step 9130 */ 9131 bpf_object_post_load_cleanup(obj); 9132 9133 usdt_manager_free(obj->usdt_man); 9134 obj->usdt_man = NULL; 9135 9136 bpf_gen__free(obj->gen_loader); 9137 bpf_object__elf_finish(obj); 9138 bpf_object_unload(obj); 9139 btf__free(obj->btf); 9140 btf__free(obj->btf_vmlinux); 9141 btf_ext__free(obj->btf_ext); 9142 9143 for (i = 0; i < obj->nr_maps; i++) 9144 bpf_map__destroy(&obj->maps[i]); 9145 9146 zfree(&obj->btf_custom_path); 9147 zfree(&obj->kconfig); 9148 9149 for (i = 0; i < obj->nr_extern; i++) { 9150 zfree(&obj->externs[i].name); 9151 zfree(&obj->externs[i].essent_name); 9152 } 9153 9154 zfree(&obj->externs); 9155 obj->nr_extern = 0; 9156 9157 zfree(&obj->maps); 9158 obj->nr_maps = 0; 9159 9160 if (obj->programs && obj->nr_programs) { 9161 for (i = 0; i < obj->nr_programs; i++) 9162 bpf_program__exit(&obj->programs[i]); 9163 } 9164 zfree(&obj->programs); 9165 9166 zfree(&obj->feat_cache); 9167 zfree(&obj->token_path); 9168 if (obj->token_fd > 0) 9169 close(obj->token_fd); 9170 9171 zfree(&obj->arena_data); 9172 9173 free(obj); 9174 } 9175 9176 const char *bpf_object__name(const struct bpf_object *obj) 9177 { 9178 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9179 } 9180 9181 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9182 { 9183 return obj ? obj->kern_version : 0; 9184 } 9185 9186 int bpf_object__token_fd(const struct bpf_object *obj) 9187 { 9188 return obj->token_fd ?: -1; 9189 } 9190 9191 struct btf *bpf_object__btf(const struct bpf_object *obj) 9192 { 9193 return obj ? obj->btf : NULL; 9194 } 9195 9196 int bpf_object__btf_fd(const struct bpf_object *obj) 9197 { 9198 return obj->btf ? btf__fd(obj->btf) : -1; 9199 } 9200 9201 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9202 { 9203 if (obj->state >= OBJ_LOADED) 9204 return libbpf_err(-EINVAL); 9205 9206 obj->kern_version = kern_version; 9207 9208 return 0; 9209 } 9210 9211 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9212 { 9213 struct bpf_gen *gen; 9214 9215 if (!opts) 9216 return libbpf_err(-EFAULT); 9217 if (!OPTS_VALID(opts, gen_loader_opts)) 9218 return libbpf_err(-EINVAL); 9219 gen = calloc(sizeof(*gen), 1); 9220 if (!gen) 9221 return libbpf_err(-ENOMEM); 9222 gen->opts = opts; 9223 gen->swapped_endian = !is_native_endianness(obj); 9224 obj->gen_loader = gen; 9225 return 0; 9226 } 9227 9228 static struct bpf_program * 9229 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9230 bool forward) 9231 { 9232 size_t nr_programs = obj->nr_programs; 9233 ssize_t idx; 9234 9235 if (!nr_programs) 9236 return NULL; 9237 9238 if (!p) 9239 /* Iter from the beginning */ 9240 return forward ? &obj->programs[0] : 9241 &obj->programs[nr_programs - 1]; 9242 9243 if (p->obj != obj) { 9244 pr_warn("error: program handler doesn't match object\n"); 9245 return errno = EINVAL, NULL; 9246 } 9247 9248 idx = (p - obj->programs) + (forward ? 1 : -1); 9249 if (idx >= obj->nr_programs || idx < 0) 9250 return NULL; 9251 return &obj->programs[idx]; 9252 } 9253 9254 struct bpf_program * 9255 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9256 { 9257 struct bpf_program *prog = prev; 9258 9259 do { 9260 prog = __bpf_program__iter(prog, obj, true); 9261 } while (prog && prog_is_subprog(obj, prog)); 9262 9263 return prog; 9264 } 9265 9266 struct bpf_program * 9267 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9268 { 9269 struct bpf_program *prog = next; 9270 9271 do { 9272 prog = __bpf_program__iter(prog, obj, false); 9273 } while (prog && prog_is_subprog(obj, prog)); 9274 9275 return prog; 9276 } 9277 9278 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9279 { 9280 prog->prog_ifindex = ifindex; 9281 } 9282 9283 const char *bpf_program__name(const struct bpf_program *prog) 9284 { 9285 return prog->name; 9286 } 9287 9288 const char *bpf_program__section_name(const struct bpf_program *prog) 9289 { 9290 return prog->sec_name; 9291 } 9292 9293 bool bpf_program__autoload(const struct bpf_program *prog) 9294 { 9295 return prog->autoload; 9296 } 9297 9298 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9299 { 9300 if (prog->obj->state >= OBJ_LOADED) 9301 return libbpf_err(-EINVAL); 9302 9303 prog->autoload = autoload; 9304 return 0; 9305 } 9306 9307 bool bpf_program__autoattach(const struct bpf_program *prog) 9308 { 9309 return prog->autoattach; 9310 } 9311 9312 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9313 { 9314 prog->autoattach = autoattach; 9315 } 9316 9317 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9318 { 9319 return prog->insns; 9320 } 9321 9322 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9323 { 9324 return prog->insns_cnt; 9325 } 9326 9327 int bpf_program__set_insns(struct bpf_program *prog, 9328 struct bpf_insn *new_insns, size_t new_insn_cnt) 9329 { 9330 struct bpf_insn *insns; 9331 9332 if (prog->obj->state >= OBJ_LOADED) 9333 return libbpf_err(-EBUSY); 9334 9335 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9336 /* NULL is a valid return from reallocarray if the new count is zero */ 9337 if (!insns && new_insn_cnt) { 9338 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9339 return libbpf_err(-ENOMEM); 9340 } 9341 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9342 9343 prog->insns = insns; 9344 prog->insns_cnt = new_insn_cnt; 9345 return 0; 9346 } 9347 9348 int bpf_program__fd(const struct bpf_program *prog) 9349 { 9350 if (!prog) 9351 return libbpf_err(-EINVAL); 9352 9353 if (prog->fd < 0) 9354 return libbpf_err(-ENOENT); 9355 9356 return prog->fd; 9357 } 9358 9359 __alias(bpf_program__type) 9360 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9361 9362 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9363 { 9364 return prog->type; 9365 } 9366 9367 static size_t custom_sec_def_cnt; 9368 static struct bpf_sec_def *custom_sec_defs; 9369 static struct bpf_sec_def custom_fallback_def; 9370 static bool has_custom_fallback_def; 9371 static int last_custom_sec_def_handler_id; 9372 9373 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9374 { 9375 if (prog->obj->state >= OBJ_LOADED) 9376 return libbpf_err(-EBUSY); 9377 9378 /* if type is not changed, do nothing */ 9379 if (prog->type == type) 9380 return 0; 9381 9382 prog->type = type; 9383 9384 /* If a program type was changed, we need to reset associated SEC() 9385 * handler, as it will be invalid now. The only exception is a generic 9386 * fallback handler, which by definition is program type-agnostic and 9387 * is a catch-all custom handler, optionally set by the application, 9388 * so should be able to handle any type of BPF program. 9389 */ 9390 if (prog->sec_def != &custom_fallback_def) 9391 prog->sec_def = NULL; 9392 return 0; 9393 } 9394 9395 __alias(bpf_program__expected_attach_type) 9396 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9397 9398 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9399 { 9400 return prog->expected_attach_type; 9401 } 9402 9403 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9404 enum bpf_attach_type type) 9405 { 9406 if (prog->obj->state >= OBJ_LOADED) 9407 return libbpf_err(-EBUSY); 9408 9409 prog->expected_attach_type = type; 9410 return 0; 9411 } 9412 9413 __u32 bpf_program__flags(const struct bpf_program *prog) 9414 { 9415 return prog->prog_flags; 9416 } 9417 9418 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9419 { 9420 if (prog->obj->state >= OBJ_LOADED) 9421 return libbpf_err(-EBUSY); 9422 9423 prog->prog_flags = flags; 9424 return 0; 9425 } 9426 9427 __u32 bpf_program__log_level(const struct bpf_program *prog) 9428 { 9429 return prog->log_level; 9430 } 9431 9432 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9433 { 9434 if (prog->obj->state >= OBJ_LOADED) 9435 return libbpf_err(-EBUSY); 9436 9437 prog->log_level = log_level; 9438 return 0; 9439 } 9440 9441 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9442 { 9443 *log_size = prog->log_size; 9444 return prog->log_buf; 9445 } 9446 9447 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9448 { 9449 if (log_size && !log_buf) 9450 return libbpf_err(-EINVAL); 9451 if (prog->log_size > UINT_MAX) 9452 return libbpf_err(-EINVAL); 9453 if (prog->obj->state >= OBJ_LOADED) 9454 return libbpf_err(-EBUSY); 9455 9456 prog->log_buf = log_buf; 9457 prog->log_size = log_size; 9458 return 0; 9459 } 9460 9461 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9462 { 9463 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9464 return libbpf_err_ptr(-EOPNOTSUPP); 9465 return prog->func_info; 9466 } 9467 9468 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9469 { 9470 return prog->func_info_cnt; 9471 } 9472 9473 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9474 { 9475 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9476 return libbpf_err_ptr(-EOPNOTSUPP); 9477 return prog->line_info; 9478 } 9479 9480 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9481 { 9482 return prog->line_info_cnt; 9483 } 9484 9485 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9486 .sec = (char *)sec_pfx, \ 9487 .prog_type = BPF_PROG_TYPE_##ptype, \ 9488 .expected_attach_type = atype, \ 9489 .cookie = (long)(flags), \ 9490 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9491 __VA_ARGS__ \ 9492 } 9493 9494 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9495 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9496 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9497 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9498 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9499 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9500 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9501 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9502 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9503 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9504 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9505 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9506 9507 static const struct bpf_sec_def section_defs[] = { 9508 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9509 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9510 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9511 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9512 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9513 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9514 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9515 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9516 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9517 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9518 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9519 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9520 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9521 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9522 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9523 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9524 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9525 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9526 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9527 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9528 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9529 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9530 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9531 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9532 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9533 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9534 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9535 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9536 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9537 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9538 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9539 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9540 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9541 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9542 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9543 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9544 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9545 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9546 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9547 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9548 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9549 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9550 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9551 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9552 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9553 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9554 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9555 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9556 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9557 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9558 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9559 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9560 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9561 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9562 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9563 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9564 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9565 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9566 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9567 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9568 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9569 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9570 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9571 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9572 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9573 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9574 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9575 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9576 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9577 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9578 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9579 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9580 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9581 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9582 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9583 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9584 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9585 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9586 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9587 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9588 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9589 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9590 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9591 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9592 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9593 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9594 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9595 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9596 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9597 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9598 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9599 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9600 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9601 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9602 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9603 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9604 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9605 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9606 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9607 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9608 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9609 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9610 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9611 }; 9612 9613 int libbpf_register_prog_handler(const char *sec, 9614 enum bpf_prog_type prog_type, 9615 enum bpf_attach_type exp_attach_type, 9616 const struct libbpf_prog_handler_opts *opts) 9617 { 9618 struct bpf_sec_def *sec_def; 9619 9620 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9621 return libbpf_err(-EINVAL); 9622 9623 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9624 return libbpf_err(-E2BIG); 9625 9626 if (sec) { 9627 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9628 sizeof(*sec_def)); 9629 if (!sec_def) 9630 return libbpf_err(-ENOMEM); 9631 9632 custom_sec_defs = sec_def; 9633 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9634 } else { 9635 if (has_custom_fallback_def) 9636 return libbpf_err(-EBUSY); 9637 9638 sec_def = &custom_fallback_def; 9639 } 9640 9641 sec_def->sec = sec ? strdup(sec) : NULL; 9642 if (sec && !sec_def->sec) 9643 return libbpf_err(-ENOMEM); 9644 9645 sec_def->prog_type = prog_type; 9646 sec_def->expected_attach_type = exp_attach_type; 9647 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9648 9649 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9650 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9651 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9652 9653 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9654 9655 if (sec) 9656 custom_sec_def_cnt++; 9657 else 9658 has_custom_fallback_def = true; 9659 9660 return sec_def->handler_id; 9661 } 9662 9663 int libbpf_unregister_prog_handler(int handler_id) 9664 { 9665 struct bpf_sec_def *sec_defs; 9666 int i; 9667 9668 if (handler_id <= 0) 9669 return libbpf_err(-EINVAL); 9670 9671 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9672 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9673 has_custom_fallback_def = false; 9674 return 0; 9675 } 9676 9677 for (i = 0; i < custom_sec_def_cnt; i++) { 9678 if (custom_sec_defs[i].handler_id == handler_id) 9679 break; 9680 } 9681 9682 if (i == custom_sec_def_cnt) 9683 return libbpf_err(-ENOENT); 9684 9685 free(custom_sec_defs[i].sec); 9686 for (i = i + 1; i < custom_sec_def_cnt; i++) 9687 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9688 custom_sec_def_cnt--; 9689 9690 /* try to shrink the array, but it's ok if we couldn't */ 9691 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9692 /* if new count is zero, reallocarray can return a valid NULL result; 9693 * in this case the previous pointer will be freed, so we *have to* 9694 * reassign old pointer to the new value (even if it's NULL) 9695 */ 9696 if (sec_defs || custom_sec_def_cnt == 0) 9697 custom_sec_defs = sec_defs; 9698 9699 return 0; 9700 } 9701 9702 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9703 { 9704 size_t len = strlen(sec_def->sec); 9705 9706 /* "type/" always has to have proper SEC("type/extras") form */ 9707 if (sec_def->sec[len - 1] == '/') { 9708 if (str_has_pfx(sec_name, sec_def->sec)) 9709 return true; 9710 return false; 9711 } 9712 9713 /* "type+" means it can be either exact SEC("type") or 9714 * well-formed SEC("type/extras") with proper '/' separator 9715 */ 9716 if (sec_def->sec[len - 1] == '+') { 9717 len--; 9718 /* not even a prefix */ 9719 if (strncmp(sec_name, sec_def->sec, len) != 0) 9720 return false; 9721 /* exact match or has '/' separator */ 9722 if (sec_name[len] == '\0' || sec_name[len] == '/') 9723 return true; 9724 return false; 9725 } 9726 9727 return strcmp(sec_name, sec_def->sec) == 0; 9728 } 9729 9730 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9731 { 9732 const struct bpf_sec_def *sec_def; 9733 int i, n; 9734 9735 n = custom_sec_def_cnt; 9736 for (i = 0; i < n; i++) { 9737 sec_def = &custom_sec_defs[i]; 9738 if (sec_def_matches(sec_def, sec_name)) 9739 return sec_def; 9740 } 9741 9742 n = ARRAY_SIZE(section_defs); 9743 for (i = 0; i < n; i++) { 9744 sec_def = §ion_defs[i]; 9745 if (sec_def_matches(sec_def, sec_name)) 9746 return sec_def; 9747 } 9748 9749 if (has_custom_fallback_def) 9750 return &custom_fallback_def; 9751 9752 return NULL; 9753 } 9754 9755 #define MAX_TYPE_NAME_SIZE 32 9756 9757 static char *libbpf_get_type_names(bool attach_type) 9758 { 9759 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9760 char *buf; 9761 9762 buf = malloc(len); 9763 if (!buf) 9764 return NULL; 9765 9766 buf[0] = '\0'; 9767 /* Forge string buf with all available names */ 9768 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9769 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9770 9771 if (attach_type) { 9772 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9773 continue; 9774 9775 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9776 continue; 9777 } 9778 9779 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9780 free(buf); 9781 return NULL; 9782 } 9783 strcat(buf, " "); 9784 strcat(buf, section_defs[i].sec); 9785 } 9786 9787 return buf; 9788 } 9789 9790 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9791 enum bpf_attach_type *expected_attach_type) 9792 { 9793 const struct bpf_sec_def *sec_def; 9794 char *type_names; 9795 9796 if (!name) 9797 return libbpf_err(-EINVAL); 9798 9799 sec_def = find_sec_def(name); 9800 if (sec_def) { 9801 *prog_type = sec_def->prog_type; 9802 *expected_attach_type = sec_def->expected_attach_type; 9803 return 0; 9804 } 9805 9806 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9807 type_names = libbpf_get_type_names(false); 9808 if (type_names != NULL) { 9809 pr_debug("supported section(type) names are:%s\n", type_names); 9810 free(type_names); 9811 } 9812 9813 return libbpf_err(-ESRCH); 9814 } 9815 9816 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9817 { 9818 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9819 return NULL; 9820 9821 return attach_type_name[t]; 9822 } 9823 9824 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9825 { 9826 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9827 return NULL; 9828 9829 return link_type_name[t]; 9830 } 9831 9832 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9833 { 9834 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9835 return NULL; 9836 9837 return map_type_name[t]; 9838 } 9839 9840 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9841 { 9842 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9843 return NULL; 9844 9845 return prog_type_name[t]; 9846 } 9847 9848 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9849 int sec_idx, 9850 size_t offset) 9851 { 9852 struct bpf_map *map; 9853 size_t i; 9854 9855 for (i = 0; i < obj->nr_maps; i++) { 9856 map = &obj->maps[i]; 9857 if (!bpf_map__is_struct_ops(map)) 9858 continue; 9859 if (map->sec_idx == sec_idx && 9860 map->sec_offset <= offset && 9861 offset - map->sec_offset < map->def.value_size) 9862 return map; 9863 } 9864 9865 return NULL; 9866 } 9867 9868 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9869 * st_ops->data for shadow type. 9870 */ 9871 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9872 Elf64_Shdr *shdr, Elf_Data *data) 9873 { 9874 const struct btf_type *type; 9875 const struct btf_member *member; 9876 struct bpf_struct_ops *st_ops; 9877 struct bpf_program *prog; 9878 unsigned int shdr_idx; 9879 const struct btf *btf; 9880 struct bpf_map *map; 9881 unsigned int moff, insn_idx; 9882 const char *name; 9883 __u32 member_idx; 9884 Elf64_Sym *sym; 9885 Elf64_Rel *rel; 9886 int i, nrels; 9887 9888 btf = obj->btf; 9889 nrels = shdr->sh_size / shdr->sh_entsize; 9890 for (i = 0; i < nrels; i++) { 9891 rel = elf_rel_by_idx(data, i); 9892 if (!rel) { 9893 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9894 return -LIBBPF_ERRNO__FORMAT; 9895 } 9896 9897 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9898 if (!sym) { 9899 pr_warn("struct_ops reloc: symbol %zx not found\n", 9900 (size_t)ELF64_R_SYM(rel->r_info)); 9901 return -LIBBPF_ERRNO__FORMAT; 9902 } 9903 9904 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9905 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9906 if (!map) { 9907 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9908 (size_t)rel->r_offset); 9909 return -EINVAL; 9910 } 9911 9912 moff = rel->r_offset - map->sec_offset; 9913 shdr_idx = sym->st_shndx; 9914 st_ops = map->st_ops; 9915 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9916 map->name, 9917 (long long)(rel->r_info >> 32), 9918 (long long)sym->st_value, 9919 shdr_idx, (size_t)rel->r_offset, 9920 map->sec_offset, sym->st_name, name); 9921 9922 if (shdr_idx >= SHN_LORESERVE) { 9923 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9924 map->name, (size_t)rel->r_offset, shdr_idx); 9925 return -LIBBPF_ERRNO__RELOC; 9926 } 9927 if (sym->st_value % BPF_INSN_SZ) { 9928 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9929 map->name, (unsigned long long)sym->st_value); 9930 return -LIBBPF_ERRNO__FORMAT; 9931 } 9932 insn_idx = sym->st_value / BPF_INSN_SZ; 9933 9934 type = btf__type_by_id(btf, st_ops->type_id); 9935 member = find_member_by_offset(type, moff * 8); 9936 if (!member) { 9937 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9938 map->name, moff); 9939 return -EINVAL; 9940 } 9941 member_idx = member - btf_members(type); 9942 name = btf__name_by_offset(btf, member->name_off); 9943 9944 if (!resolve_func_ptr(btf, member->type, NULL)) { 9945 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9946 map->name, name); 9947 return -EINVAL; 9948 } 9949 9950 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9951 if (!prog) { 9952 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9953 map->name, shdr_idx, name); 9954 return -EINVAL; 9955 } 9956 9957 /* prevent the use of BPF prog with invalid type */ 9958 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9959 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9960 map->name, prog->name); 9961 return -EINVAL; 9962 } 9963 9964 st_ops->progs[member_idx] = prog; 9965 9966 /* st_ops->data will be exposed to users, being returned by 9967 * bpf_map__initial_value() as a pointer to the shadow 9968 * type. All function pointers in the original struct type 9969 * should be converted to a pointer to struct bpf_program 9970 * in the shadow type. 9971 */ 9972 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9973 } 9974 9975 return 0; 9976 } 9977 9978 #define BTF_TRACE_PREFIX "btf_trace_" 9979 #define BTF_LSM_PREFIX "bpf_lsm_" 9980 #define BTF_ITER_PREFIX "bpf_iter_" 9981 #define BTF_MAX_NAME_SIZE 128 9982 9983 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9984 const char **prefix, int *kind) 9985 { 9986 switch (attach_type) { 9987 case BPF_TRACE_RAW_TP: 9988 *prefix = BTF_TRACE_PREFIX; 9989 *kind = BTF_KIND_TYPEDEF; 9990 break; 9991 case BPF_LSM_MAC: 9992 case BPF_LSM_CGROUP: 9993 *prefix = BTF_LSM_PREFIX; 9994 *kind = BTF_KIND_FUNC; 9995 break; 9996 case BPF_TRACE_ITER: 9997 *prefix = BTF_ITER_PREFIX; 9998 *kind = BTF_KIND_FUNC; 9999 break; 10000 default: 10001 *prefix = ""; 10002 *kind = BTF_KIND_FUNC; 10003 } 10004 } 10005 10006 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10007 const char *name, __u32 kind) 10008 { 10009 char btf_type_name[BTF_MAX_NAME_SIZE]; 10010 int ret; 10011 10012 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10013 "%s%s", prefix, name); 10014 /* snprintf returns the number of characters written excluding the 10015 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10016 * indicates truncation. 10017 */ 10018 if (ret < 0 || ret >= sizeof(btf_type_name)) 10019 return -ENAMETOOLONG; 10020 return btf__find_by_name_kind(btf, btf_type_name, kind); 10021 } 10022 10023 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10024 enum bpf_attach_type attach_type) 10025 { 10026 const char *prefix; 10027 int kind; 10028 10029 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10030 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10031 } 10032 10033 int libbpf_find_vmlinux_btf_id(const char *name, 10034 enum bpf_attach_type attach_type) 10035 { 10036 struct btf *btf; 10037 int err; 10038 10039 btf = btf__load_vmlinux_btf(); 10040 err = libbpf_get_error(btf); 10041 if (err) { 10042 pr_warn("vmlinux BTF is not found\n"); 10043 return libbpf_err(err); 10044 } 10045 10046 err = find_attach_btf_id(btf, name, attach_type); 10047 if (err <= 0) 10048 pr_warn("%s is not found in vmlinux BTF\n", name); 10049 10050 btf__free(btf); 10051 return libbpf_err(err); 10052 } 10053 10054 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10055 { 10056 struct bpf_prog_info info; 10057 __u32 info_len = sizeof(info); 10058 struct btf *btf; 10059 int err; 10060 10061 memset(&info, 0, info_len); 10062 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10063 if (err) { 10064 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10065 attach_prog_fd, errstr(err)); 10066 return err; 10067 } 10068 10069 err = -EINVAL; 10070 if (!info.btf_id) { 10071 pr_warn("The target program doesn't have BTF\n"); 10072 goto out; 10073 } 10074 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10075 err = libbpf_get_error(btf); 10076 if (err) { 10077 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10078 goto out; 10079 } 10080 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10081 btf__free(btf); 10082 if (err <= 0) { 10083 pr_warn("%s is not found in prog's BTF\n", name); 10084 goto out; 10085 } 10086 out: 10087 return err; 10088 } 10089 10090 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10091 enum bpf_attach_type attach_type, 10092 int *btf_obj_fd, int *btf_type_id) 10093 { 10094 int ret, i, mod_len; 10095 const char *fn_name, *mod_name = NULL; 10096 10097 fn_name = strchr(attach_name, ':'); 10098 if (fn_name) { 10099 mod_name = attach_name; 10100 mod_len = fn_name - mod_name; 10101 fn_name++; 10102 } 10103 10104 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10105 ret = find_attach_btf_id(obj->btf_vmlinux, 10106 mod_name ? fn_name : attach_name, 10107 attach_type); 10108 if (ret > 0) { 10109 *btf_obj_fd = 0; /* vmlinux BTF */ 10110 *btf_type_id = ret; 10111 return 0; 10112 } 10113 if (ret != -ENOENT) 10114 return ret; 10115 } 10116 10117 ret = load_module_btfs(obj); 10118 if (ret) 10119 return ret; 10120 10121 for (i = 0; i < obj->btf_module_cnt; i++) { 10122 const struct module_btf *mod = &obj->btf_modules[i]; 10123 10124 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10125 continue; 10126 10127 ret = find_attach_btf_id(mod->btf, 10128 mod_name ? fn_name : attach_name, 10129 attach_type); 10130 if (ret > 0) { 10131 *btf_obj_fd = mod->fd; 10132 *btf_type_id = ret; 10133 return 0; 10134 } 10135 if (ret == -ENOENT) 10136 continue; 10137 10138 return ret; 10139 } 10140 10141 return -ESRCH; 10142 } 10143 10144 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10145 int *btf_obj_fd, int *btf_type_id) 10146 { 10147 enum bpf_attach_type attach_type = prog->expected_attach_type; 10148 __u32 attach_prog_fd = prog->attach_prog_fd; 10149 int err = 0; 10150 10151 /* BPF program's BTF ID */ 10152 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10153 if (!attach_prog_fd) { 10154 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10155 return -EINVAL; 10156 } 10157 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10158 if (err < 0) { 10159 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10160 prog->name, attach_prog_fd, attach_name, errstr(err)); 10161 return err; 10162 } 10163 *btf_obj_fd = 0; 10164 *btf_type_id = err; 10165 return 0; 10166 } 10167 10168 /* kernel/module BTF ID */ 10169 if (prog->obj->gen_loader) { 10170 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10171 *btf_obj_fd = 0; 10172 *btf_type_id = 1; 10173 } else { 10174 err = find_kernel_btf_id(prog->obj, attach_name, 10175 attach_type, btf_obj_fd, 10176 btf_type_id); 10177 } 10178 if (err) { 10179 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10180 prog->name, attach_name, errstr(err)); 10181 return err; 10182 } 10183 return 0; 10184 } 10185 10186 int libbpf_attach_type_by_name(const char *name, 10187 enum bpf_attach_type *attach_type) 10188 { 10189 char *type_names; 10190 const struct bpf_sec_def *sec_def; 10191 10192 if (!name) 10193 return libbpf_err(-EINVAL); 10194 10195 sec_def = find_sec_def(name); 10196 if (!sec_def) { 10197 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10198 type_names = libbpf_get_type_names(true); 10199 if (type_names != NULL) { 10200 pr_debug("attachable section(type) names are:%s\n", type_names); 10201 free(type_names); 10202 } 10203 10204 return libbpf_err(-EINVAL); 10205 } 10206 10207 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10208 return libbpf_err(-EINVAL); 10209 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10210 return libbpf_err(-EINVAL); 10211 10212 *attach_type = sec_def->expected_attach_type; 10213 return 0; 10214 } 10215 10216 int bpf_map__fd(const struct bpf_map *map) 10217 { 10218 if (!map) 10219 return libbpf_err(-EINVAL); 10220 if (!map_is_created(map)) 10221 return -1; 10222 return map->fd; 10223 } 10224 10225 static bool map_uses_real_name(const struct bpf_map *map) 10226 { 10227 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10228 * their user-visible name differs from kernel-visible name. Users see 10229 * such map's corresponding ELF section name as a map name. 10230 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10231 * maps to know which name has to be returned to the user. 10232 */ 10233 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10234 return true; 10235 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10236 return true; 10237 return false; 10238 } 10239 10240 const char *bpf_map__name(const struct bpf_map *map) 10241 { 10242 if (!map) 10243 return NULL; 10244 10245 if (map_uses_real_name(map)) 10246 return map->real_name; 10247 10248 return map->name; 10249 } 10250 10251 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10252 { 10253 return map->def.type; 10254 } 10255 10256 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10257 { 10258 if (map_is_created(map)) 10259 return libbpf_err(-EBUSY); 10260 map->def.type = type; 10261 return 0; 10262 } 10263 10264 __u32 bpf_map__map_flags(const struct bpf_map *map) 10265 { 10266 return map->def.map_flags; 10267 } 10268 10269 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10270 { 10271 if (map_is_created(map)) 10272 return libbpf_err(-EBUSY); 10273 map->def.map_flags = flags; 10274 return 0; 10275 } 10276 10277 __u64 bpf_map__map_extra(const struct bpf_map *map) 10278 { 10279 return map->map_extra; 10280 } 10281 10282 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10283 { 10284 if (map_is_created(map)) 10285 return libbpf_err(-EBUSY); 10286 map->map_extra = map_extra; 10287 return 0; 10288 } 10289 10290 __u32 bpf_map__numa_node(const struct bpf_map *map) 10291 { 10292 return map->numa_node; 10293 } 10294 10295 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10296 { 10297 if (map_is_created(map)) 10298 return libbpf_err(-EBUSY); 10299 map->numa_node = numa_node; 10300 return 0; 10301 } 10302 10303 __u32 bpf_map__key_size(const struct bpf_map *map) 10304 { 10305 return map->def.key_size; 10306 } 10307 10308 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10309 { 10310 if (map_is_created(map)) 10311 return libbpf_err(-EBUSY); 10312 map->def.key_size = size; 10313 return 0; 10314 } 10315 10316 __u32 bpf_map__value_size(const struct bpf_map *map) 10317 { 10318 return map->def.value_size; 10319 } 10320 10321 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10322 { 10323 struct btf *btf; 10324 struct btf_type *datasec_type, *var_type; 10325 struct btf_var_secinfo *var; 10326 const struct btf_type *array_type; 10327 const struct btf_array *array; 10328 int vlen, element_sz, new_array_id; 10329 __u32 nr_elements; 10330 10331 /* check btf existence */ 10332 btf = bpf_object__btf(map->obj); 10333 if (!btf) 10334 return -ENOENT; 10335 10336 /* verify map is datasec */ 10337 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10338 if (!btf_is_datasec(datasec_type)) { 10339 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10340 bpf_map__name(map)); 10341 return -EINVAL; 10342 } 10343 10344 /* verify datasec has at least one var */ 10345 vlen = btf_vlen(datasec_type); 10346 if (vlen == 0) { 10347 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10348 bpf_map__name(map)); 10349 return -EINVAL; 10350 } 10351 10352 /* verify last var in the datasec is an array */ 10353 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10354 var_type = btf_type_by_id(btf, var->type); 10355 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10356 if (!btf_is_array(array_type)) { 10357 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10358 bpf_map__name(map)); 10359 return -EINVAL; 10360 } 10361 10362 /* verify request size aligns with array */ 10363 array = btf_array(array_type); 10364 element_sz = btf__resolve_size(btf, array->type); 10365 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10366 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10367 bpf_map__name(map), element_sz, size); 10368 return -EINVAL; 10369 } 10370 10371 /* create a new array based on the existing array, but with new length */ 10372 nr_elements = (size - var->offset) / element_sz; 10373 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10374 if (new_array_id < 0) 10375 return new_array_id; 10376 10377 /* adding a new btf type invalidates existing pointers to btf objects, 10378 * so refresh pointers before proceeding 10379 */ 10380 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10381 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10382 var_type = btf_type_by_id(btf, var->type); 10383 10384 /* finally update btf info */ 10385 datasec_type->size = size; 10386 var->size = size - var->offset; 10387 var_type->type = new_array_id; 10388 10389 return 0; 10390 } 10391 10392 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10393 { 10394 if (map_is_created(map)) 10395 return libbpf_err(-EBUSY); 10396 10397 if (map->mmaped) { 10398 size_t mmap_old_sz, mmap_new_sz; 10399 int err; 10400 10401 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10402 return libbpf_err(-EOPNOTSUPP); 10403 10404 mmap_old_sz = bpf_map_mmap_sz(map); 10405 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10406 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10407 if (err) { 10408 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10409 bpf_map__name(map), errstr(err)); 10410 return libbpf_err(err); 10411 } 10412 err = map_btf_datasec_resize(map, size); 10413 if (err && err != -ENOENT) { 10414 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10415 bpf_map__name(map), errstr(err)); 10416 map->btf_value_type_id = 0; 10417 map->btf_key_type_id = 0; 10418 } 10419 } 10420 10421 map->def.value_size = size; 10422 return 0; 10423 } 10424 10425 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10426 { 10427 return map ? map->btf_key_type_id : 0; 10428 } 10429 10430 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10431 { 10432 return map ? map->btf_value_type_id : 0; 10433 } 10434 10435 int bpf_map__set_initial_value(struct bpf_map *map, 10436 const void *data, size_t size) 10437 { 10438 size_t actual_sz; 10439 10440 if (map_is_created(map)) 10441 return libbpf_err(-EBUSY); 10442 10443 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10444 return libbpf_err(-EINVAL); 10445 10446 if (map->def.type == BPF_MAP_TYPE_ARENA) 10447 actual_sz = map->obj->arena_data_sz; 10448 else 10449 actual_sz = map->def.value_size; 10450 if (size != actual_sz) 10451 return libbpf_err(-EINVAL); 10452 10453 memcpy(map->mmaped, data, size); 10454 return 0; 10455 } 10456 10457 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10458 { 10459 if (bpf_map__is_struct_ops(map)) { 10460 if (psize) 10461 *psize = map->def.value_size; 10462 return map->st_ops->data; 10463 } 10464 10465 if (!map->mmaped) 10466 return NULL; 10467 10468 if (map->def.type == BPF_MAP_TYPE_ARENA) 10469 *psize = map->obj->arena_data_sz; 10470 else 10471 *psize = map->def.value_size; 10472 10473 return map->mmaped; 10474 } 10475 10476 bool bpf_map__is_internal(const struct bpf_map *map) 10477 { 10478 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10479 } 10480 10481 __u32 bpf_map__ifindex(const struct bpf_map *map) 10482 { 10483 return map->map_ifindex; 10484 } 10485 10486 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10487 { 10488 if (map_is_created(map)) 10489 return libbpf_err(-EBUSY); 10490 map->map_ifindex = ifindex; 10491 return 0; 10492 } 10493 10494 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10495 { 10496 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10497 pr_warn("error: unsupported map type\n"); 10498 return libbpf_err(-EINVAL); 10499 } 10500 if (map->inner_map_fd != -1) { 10501 pr_warn("error: inner_map_fd already specified\n"); 10502 return libbpf_err(-EINVAL); 10503 } 10504 if (map->inner_map) { 10505 bpf_map__destroy(map->inner_map); 10506 zfree(&map->inner_map); 10507 } 10508 map->inner_map_fd = fd; 10509 return 0; 10510 } 10511 10512 static struct bpf_map * 10513 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10514 { 10515 ssize_t idx; 10516 struct bpf_map *s, *e; 10517 10518 if (!obj || !obj->maps) 10519 return errno = EINVAL, NULL; 10520 10521 s = obj->maps; 10522 e = obj->maps + obj->nr_maps; 10523 10524 if ((m < s) || (m >= e)) { 10525 pr_warn("error in %s: map handler doesn't belong to object\n", 10526 __func__); 10527 return errno = EINVAL, NULL; 10528 } 10529 10530 idx = (m - obj->maps) + i; 10531 if (idx >= obj->nr_maps || idx < 0) 10532 return NULL; 10533 return &obj->maps[idx]; 10534 } 10535 10536 struct bpf_map * 10537 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10538 { 10539 if (prev == NULL && obj != NULL) 10540 return obj->maps; 10541 10542 return __bpf_map__iter(prev, obj, 1); 10543 } 10544 10545 struct bpf_map * 10546 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10547 { 10548 if (next == NULL && obj != NULL) { 10549 if (!obj->nr_maps) 10550 return NULL; 10551 return obj->maps + obj->nr_maps - 1; 10552 } 10553 10554 return __bpf_map__iter(next, obj, -1); 10555 } 10556 10557 struct bpf_map * 10558 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10559 { 10560 struct bpf_map *pos; 10561 10562 bpf_object__for_each_map(pos, obj) { 10563 /* if it's a special internal map name (which always starts 10564 * with dot) then check if that special name matches the 10565 * real map name (ELF section name) 10566 */ 10567 if (name[0] == '.') { 10568 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10569 return pos; 10570 continue; 10571 } 10572 /* otherwise map name has to be an exact match */ 10573 if (map_uses_real_name(pos)) { 10574 if (strcmp(pos->real_name, name) == 0) 10575 return pos; 10576 continue; 10577 } 10578 if (strcmp(pos->name, name) == 0) 10579 return pos; 10580 } 10581 return errno = ENOENT, NULL; 10582 } 10583 10584 int 10585 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10586 { 10587 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10588 } 10589 10590 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10591 size_t value_sz, bool check_value_sz) 10592 { 10593 if (!map_is_created(map)) /* map is not yet created */ 10594 return -ENOENT; 10595 10596 if (map->def.key_size != key_sz) { 10597 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10598 map->name, key_sz, map->def.key_size); 10599 return -EINVAL; 10600 } 10601 10602 if (map->fd < 0) { 10603 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10604 return -EINVAL; 10605 } 10606 10607 if (!check_value_sz) 10608 return 0; 10609 10610 switch (map->def.type) { 10611 case BPF_MAP_TYPE_PERCPU_ARRAY: 10612 case BPF_MAP_TYPE_PERCPU_HASH: 10613 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10614 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10615 int num_cpu = libbpf_num_possible_cpus(); 10616 size_t elem_sz = roundup(map->def.value_size, 8); 10617 10618 if (value_sz != num_cpu * elem_sz) { 10619 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10620 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10621 return -EINVAL; 10622 } 10623 break; 10624 } 10625 default: 10626 if (map->def.value_size != value_sz) { 10627 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10628 map->name, value_sz, map->def.value_size); 10629 return -EINVAL; 10630 } 10631 break; 10632 } 10633 return 0; 10634 } 10635 10636 int bpf_map__lookup_elem(const struct bpf_map *map, 10637 const void *key, size_t key_sz, 10638 void *value, size_t value_sz, __u64 flags) 10639 { 10640 int err; 10641 10642 err = validate_map_op(map, key_sz, value_sz, true); 10643 if (err) 10644 return libbpf_err(err); 10645 10646 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10647 } 10648 10649 int bpf_map__update_elem(const struct bpf_map *map, 10650 const void *key, size_t key_sz, 10651 const void *value, size_t value_sz, __u64 flags) 10652 { 10653 int err; 10654 10655 err = validate_map_op(map, key_sz, value_sz, true); 10656 if (err) 10657 return libbpf_err(err); 10658 10659 return bpf_map_update_elem(map->fd, key, value, flags); 10660 } 10661 10662 int bpf_map__delete_elem(const struct bpf_map *map, 10663 const void *key, size_t key_sz, __u64 flags) 10664 { 10665 int err; 10666 10667 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10668 if (err) 10669 return libbpf_err(err); 10670 10671 return bpf_map_delete_elem_flags(map->fd, key, flags); 10672 } 10673 10674 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10675 const void *key, size_t key_sz, 10676 void *value, size_t value_sz, __u64 flags) 10677 { 10678 int err; 10679 10680 err = validate_map_op(map, key_sz, value_sz, true); 10681 if (err) 10682 return libbpf_err(err); 10683 10684 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10685 } 10686 10687 int bpf_map__get_next_key(const struct bpf_map *map, 10688 const void *cur_key, void *next_key, size_t key_sz) 10689 { 10690 int err; 10691 10692 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10693 if (err) 10694 return libbpf_err(err); 10695 10696 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10697 } 10698 10699 long libbpf_get_error(const void *ptr) 10700 { 10701 if (!IS_ERR_OR_NULL(ptr)) 10702 return 0; 10703 10704 if (IS_ERR(ptr)) 10705 errno = -PTR_ERR(ptr); 10706 10707 /* If ptr == NULL, then errno should be already set by the failing 10708 * API, because libbpf never returns NULL on success and it now always 10709 * sets errno on error. So no extra errno handling for ptr == NULL 10710 * case. 10711 */ 10712 return -errno; 10713 } 10714 10715 /* Replace link's underlying BPF program with the new one */ 10716 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10717 { 10718 int ret; 10719 int prog_fd = bpf_program__fd(prog); 10720 10721 if (prog_fd < 0) { 10722 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10723 prog->name); 10724 return libbpf_err(-EINVAL); 10725 } 10726 10727 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10728 return libbpf_err_errno(ret); 10729 } 10730 10731 /* Release "ownership" of underlying BPF resource (typically, BPF program 10732 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10733 * link, when destructed through bpf_link__destroy() call won't attempt to 10734 * detach/unregisted that BPF resource. This is useful in situations where, 10735 * say, attached BPF program has to outlive userspace program that attached it 10736 * in the system. Depending on type of BPF program, though, there might be 10737 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10738 * exit of userspace program doesn't trigger automatic detachment and clean up 10739 * inside the kernel. 10740 */ 10741 void bpf_link__disconnect(struct bpf_link *link) 10742 { 10743 link->disconnected = true; 10744 } 10745 10746 int bpf_link__destroy(struct bpf_link *link) 10747 { 10748 int err = 0; 10749 10750 if (IS_ERR_OR_NULL(link)) 10751 return 0; 10752 10753 if (!link->disconnected && link->detach) 10754 err = link->detach(link); 10755 if (link->pin_path) 10756 free(link->pin_path); 10757 if (link->dealloc) 10758 link->dealloc(link); 10759 else 10760 free(link); 10761 10762 return libbpf_err(err); 10763 } 10764 10765 int bpf_link__fd(const struct bpf_link *link) 10766 { 10767 return link->fd; 10768 } 10769 10770 const char *bpf_link__pin_path(const struct bpf_link *link) 10771 { 10772 return link->pin_path; 10773 } 10774 10775 static int bpf_link__detach_fd(struct bpf_link *link) 10776 { 10777 return libbpf_err_errno(close(link->fd)); 10778 } 10779 10780 struct bpf_link *bpf_link__open(const char *path) 10781 { 10782 struct bpf_link *link; 10783 int fd; 10784 10785 fd = bpf_obj_get(path); 10786 if (fd < 0) { 10787 fd = -errno; 10788 pr_warn("failed to open link at %s: %d\n", path, fd); 10789 return libbpf_err_ptr(fd); 10790 } 10791 10792 link = calloc(1, sizeof(*link)); 10793 if (!link) { 10794 close(fd); 10795 return libbpf_err_ptr(-ENOMEM); 10796 } 10797 link->detach = &bpf_link__detach_fd; 10798 link->fd = fd; 10799 10800 link->pin_path = strdup(path); 10801 if (!link->pin_path) { 10802 bpf_link__destroy(link); 10803 return libbpf_err_ptr(-ENOMEM); 10804 } 10805 10806 return link; 10807 } 10808 10809 int bpf_link__detach(struct bpf_link *link) 10810 { 10811 return bpf_link_detach(link->fd) ? -errno : 0; 10812 } 10813 10814 int bpf_link__pin(struct bpf_link *link, const char *path) 10815 { 10816 int err; 10817 10818 if (link->pin_path) 10819 return libbpf_err(-EBUSY); 10820 err = make_parent_dir(path); 10821 if (err) 10822 return libbpf_err(err); 10823 err = check_path(path); 10824 if (err) 10825 return libbpf_err(err); 10826 10827 link->pin_path = strdup(path); 10828 if (!link->pin_path) 10829 return libbpf_err(-ENOMEM); 10830 10831 if (bpf_obj_pin(link->fd, link->pin_path)) { 10832 err = -errno; 10833 zfree(&link->pin_path); 10834 return libbpf_err(err); 10835 } 10836 10837 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10838 return 0; 10839 } 10840 10841 int bpf_link__unpin(struct bpf_link *link) 10842 { 10843 int err; 10844 10845 if (!link->pin_path) 10846 return libbpf_err(-EINVAL); 10847 10848 err = unlink(link->pin_path); 10849 if (err != 0) 10850 return -errno; 10851 10852 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10853 zfree(&link->pin_path); 10854 return 0; 10855 } 10856 10857 struct bpf_link_perf { 10858 struct bpf_link link; 10859 int perf_event_fd; 10860 /* legacy kprobe support: keep track of probe identifier and type */ 10861 char *legacy_probe_name; 10862 bool legacy_is_kprobe; 10863 bool legacy_is_retprobe; 10864 }; 10865 10866 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10867 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10868 10869 static int bpf_link_perf_detach(struct bpf_link *link) 10870 { 10871 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10872 int err = 0; 10873 10874 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10875 err = -errno; 10876 10877 if (perf_link->perf_event_fd != link->fd) 10878 close(perf_link->perf_event_fd); 10879 close(link->fd); 10880 10881 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10882 if (perf_link->legacy_probe_name) { 10883 if (perf_link->legacy_is_kprobe) { 10884 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10885 perf_link->legacy_is_retprobe); 10886 } else { 10887 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10888 perf_link->legacy_is_retprobe); 10889 } 10890 } 10891 10892 return err; 10893 } 10894 10895 static void bpf_link_perf_dealloc(struct bpf_link *link) 10896 { 10897 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10898 10899 free(perf_link->legacy_probe_name); 10900 free(perf_link); 10901 } 10902 10903 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10904 const struct bpf_perf_event_opts *opts) 10905 { 10906 struct bpf_link_perf *link; 10907 int prog_fd, link_fd = -1, err; 10908 bool force_ioctl_attach; 10909 10910 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10911 return libbpf_err_ptr(-EINVAL); 10912 10913 if (pfd < 0) { 10914 pr_warn("prog '%s': invalid perf event FD %d\n", 10915 prog->name, pfd); 10916 return libbpf_err_ptr(-EINVAL); 10917 } 10918 prog_fd = bpf_program__fd(prog); 10919 if (prog_fd < 0) { 10920 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10921 prog->name); 10922 return libbpf_err_ptr(-EINVAL); 10923 } 10924 10925 link = calloc(1, sizeof(*link)); 10926 if (!link) 10927 return libbpf_err_ptr(-ENOMEM); 10928 link->link.detach = &bpf_link_perf_detach; 10929 link->link.dealloc = &bpf_link_perf_dealloc; 10930 link->perf_event_fd = pfd; 10931 10932 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10933 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10934 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10935 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10936 10937 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10938 if (link_fd < 0) { 10939 err = -errno; 10940 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10941 prog->name, pfd, errstr(err)); 10942 goto err_out; 10943 } 10944 link->link.fd = link_fd; 10945 } else { 10946 if (OPTS_GET(opts, bpf_cookie, 0)) { 10947 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10948 err = -EOPNOTSUPP; 10949 goto err_out; 10950 } 10951 10952 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10953 err = -errno; 10954 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10955 prog->name, pfd, errstr(err)); 10956 if (err == -EPROTO) 10957 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10958 prog->name, pfd); 10959 goto err_out; 10960 } 10961 link->link.fd = pfd; 10962 } 10963 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10964 err = -errno; 10965 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10966 prog->name, pfd, errstr(err)); 10967 goto err_out; 10968 } 10969 10970 return &link->link; 10971 err_out: 10972 if (link_fd >= 0) 10973 close(link_fd); 10974 free(link); 10975 return libbpf_err_ptr(err); 10976 } 10977 10978 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10979 { 10980 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10981 } 10982 10983 /* 10984 * this function is expected to parse integer in the range of [0, 2^31-1] from 10985 * given file using scanf format string fmt. If actual parsed value is 10986 * negative, the result might be indistinguishable from error 10987 */ 10988 static int parse_uint_from_file(const char *file, const char *fmt) 10989 { 10990 int err, ret; 10991 FILE *f; 10992 10993 f = fopen(file, "re"); 10994 if (!f) { 10995 err = -errno; 10996 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 10997 return err; 10998 } 10999 err = fscanf(f, fmt, &ret); 11000 if (err != 1) { 11001 err = err == EOF ? -EIO : -errno; 11002 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 11003 fclose(f); 11004 return err; 11005 } 11006 fclose(f); 11007 return ret; 11008 } 11009 11010 static int determine_kprobe_perf_type(void) 11011 { 11012 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11013 11014 return parse_uint_from_file(file, "%d\n"); 11015 } 11016 11017 static int determine_uprobe_perf_type(void) 11018 { 11019 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11020 11021 return parse_uint_from_file(file, "%d\n"); 11022 } 11023 11024 static int determine_kprobe_retprobe_bit(void) 11025 { 11026 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11027 11028 return parse_uint_from_file(file, "config:%d\n"); 11029 } 11030 11031 static int determine_uprobe_retprobe_bit(void) 11032 { 11033 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11034 11035 return parse_uint_from_file(file, "config:%d\n"); 11036 } 11037 11038 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11039 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11040 11041 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11042 uint64_t offset, int pid, size_t ref_ctr_off) 11043 { 11044 const size_t attr_sz = sizeof(struct perf_event_attr); 11045 struct perf_event_attr attr; 11046 int type, pfd; 11047 11048 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11049 return -EINVAL; 11050 11051 memset(&attr, 0, attr_sz); 11052 11053 type = uprobe ? determine_uprobe_perf_type() 11054 : determine_kprobe_perf_type(); 11055 if (type < 0) { 11056 pr_warn("failed to determine %s perf type: %s\n", 11057 uprobe ? "uprobe" : "kprobe", 11058 errstr(type)); 11059 return type; 11060 } 11061 if (retprobe) { 11062 int bit = uprobe ? determine_uprobe_retprobe_bit() 11063 : determine_kprobe_retprobe_bit(); 11064 11065 if (bit < 0) { 11066 pr_warn("failed to determine %s retprobe bit: %s\n", 11067 uprobe ? "uprobe" : "kprobe", 11068 errstr(bit)); 11069 return bit; 11070 } 11071 attr.config |= 1 << bit; 11072 } 11073 attr.size = attr_sz; 11074 attr.type = type; 11075 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11076 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11077 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11078 11079 /* pid filter is meaningful only for uprobes */ 11080 pfd = syscall(__NR_perf_event_open, &attr, 11081 pid < 0 ? -1 : pid /* pid */, 11082 pid == -1 ? 0 : -1 /* cpu */, 11083 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11084 return pfd >= 0 ? pfd : -errno; 11085 } 11086 11087 static int append_to_file(const char *file, const char *fmt, ...) 11088 { 11089 int fd, n, err = 0; 11090 va_list ap; 11091 char buf[1024]; 11092 11093 va_start(ap, fmt); 11094 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11095 va_end(ap); 11096 11097 if (n < 0 || n >= sizeof(buf)) 11098 return -EINVAL; 11099 11100 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11101 if (fd < 0) 11102 return -errno; 11103 11104 if (write(fd, buf, n) < 0) 11105 err = -errno; 11106 11107 close(fd); 11108 return err; 11109 } 11110 11111 #define DEBUGFS "/sys/kernel/debug/tracing" 11112 #define TRACEFS "/sys/kernel/tracing" 11113 11114 static bool use_debugfs(void) 11115 { 11116 static int has_debugfs = -1; 11117 11118 if (has_debugfs < 0) 11119 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11120 11121 return has_debugfs == 1; 11122 } 11123 11124 static const char *tracefs_path(void) 11125 { 11126 return use_debugfs() ? DEBUGFS : TRACEFS; 11127 } 11128 11129 static const char *tracefs_kprobe_events(void) 11130 { 11131 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11132 } 11133 11134 static const char *tracefs_uprobe_events(void) 11135 { 11136 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11137 } 11138 11139 static const char *tracefs_available_filter_functions(void) 11140 { 11141 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11142 : TRACEFS"/available_filter_functions"; 11143 } 11144 11145 static const char *tracefs_available_filter_functions_addrs(void) 11146 { 11147 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11148 : TRACEFS"/available_filter_functions_addrs"; 11149 } 11150 11151 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11152 const char *name, size_t offset) 11153 { 11154 static int index = 0; 11155 int i; 11156 11157 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11158 __sync_fetch_and_add(&index, 1), name, offset); 11159 11160 /* sanitize name in the probe name */ 11161 for (i = 0; buf[i]; i++) { 11162 if (!isalnum(buf[i])) 11163 buf[i] = '_'; 11164 } 11165 } 11166 11167 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11168 const char *kfunc_name, size_t offset) 11169 { 11170 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11171 retprobe ? 'r' : 'p', 11172 retprobe ? "kretprobes" : "kprobes", 11173 probe_name, kfunc_name, offset); 11174 } 11175 11176 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11177 { 11178 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11179 retprobe ? "kretprobes" : "kprobes", probe_name); 11180 } 11181 11182 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11183 { 11184 char file[256]; 11185 11186 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11187 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11188 11189 return parse_uint_from_file(file, "%d\n"); 11190 } 11191 11192 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11193 const char *kfunc_name, size_t offset, int pid) 11194 { 11195 const size_t attr_sz = sizeof(struct perf_event_attr); 11196 struct perf_event_attr attr; 11197 int type, pfd, err; 11198 11199 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11200 if (err < 0) { 11201 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11202 kfunc_name, offset, 11203 errstr(err)); 11204 return err; 11205 } 11206 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11207 if (type < 0) { 11208 err = type; 11209 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11210 kfunc_name, offset, 11211 errstr(err)); 11212 goto err_clean_legacy; 11213 } 11214 11215 memset(&attr, 0, attr_sz); 11216 attr.size = attr_sz; 11217 attr.config = type; 11218 attr.type = PERF_TYPE_TRACEPOINT; 11219 11220 pfd = syscall(__NR_perf_event_open, &attr, 11221 pid < 0 ? -1 : pid, /* pid */ 11222 pid == -1 ? 0 : -1, /* cpu */ 11223 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11224 if (pfd < 0) { 11225 err = -errno; 11226 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11227 errstr(err)); 11228 goto err_clean_legacy; 11229 } 11230 return pfd; 11231 11232 err_clean_legacy: 11233 /* Clear the newly added legacy kprobe_event */ 11234 remove_kprobe_event_legacy(probe_name, retprobe); 11235 return err; 11236 } 11237 11238 static const char *arch_specific_syscall_pfx(void) 11239 { 11240 #if defined(__x86_64__) 11241 return "x64"; 11242 #elif defined(__i386__) 11243 return "ia32"; 11244 #elif defined(__s390x__) 11245 return "s390x"; 11246 #elif defined(__s390__) 11247 return "s390"; 11248 #elif defined(__arm__) 11249 return "arm"; 11250 #elif defined(__aarch64__) 11251 return "arm64"; 11252 #elif defined(__mips__) 11253 return "mips"; 11254 #elif defined(__riscv) 11255 return "riscv"; 11256 #elif defined(__powerpc__) 11257 return "powerpc"; 11258 #elif defined(__powerpc64__) 11259 return "powerpc64"; 11260 #else 11261 return NULL; 11262 #endif 11263 } 11264 11265 int probe_kern_syscall_wrapper(int token_fd) 11266 { 11267 char syscall_name[64]; 11268 const char *ksys_pfx; 11269 11270 ksys_pfx = arch_specific_syscall_pfx(); 11271 if (!ksys_pfx) 11272 return 0; 11273 11274 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11275 11276 if (determine_kprobe_perf_type() >= 0) { 11277 int pfd; 11278 11279 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11280 if (pfd >= 0) 11281 close(pfd); 11282 11283 return pfd >= 0 ? 1 : 0; 11284 } else { /* legacy mode */ 11285 char probe_name[MAX_EVENT_NAME_LEN]; 11286 11287 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11288 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11289 return 0; 11290 11291 (void)remove_kprobe_event_legacy(probe_name, false); 11292 return 1; 11293 } 11294 } 11295 11296 struct bpf_link * 11297 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11298 const char *func_name, 11299 const struct bpf_kprobe_opts *opts) 11300 { 11301 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11302 enum probe_attach_mode attach_mode; 11303 char *legacy_probe = NULL; 11304 struct bpf_link *link; 11305 size_t offset; 11306 bool retprobe, legacy; 11307 int pfd, err; 11308 11309 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11310 return libbpf_err_ptr(-EINVAL); 11311 11312 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11313 retprobe = OPTS_GET(opts, retprobe, false); 11314 offset = OPTS_GET(opts, offset, 0); 11315 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11316 11317 legacy = determine_kprobe_perf_type() < 0; 11318 switch (attach_mode) { 11319 case PROBE_ATTACH_MODE_LEGACY: 11320 legacy = true; 11321 pe_opts.force_ioctl_attach = true; 11322 break; 11323 case PROBE_ATTACH_MODE_PERF: 11324 if (legacy) 11325 return libbpf_err_ptr(-ENOTSUP); 11326 pe_opts.force_ioctl_attach = true; 11327 break; 11328 case PROBE_ATTACH_MODE_LINK: 11329 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11330 return libbpf_err_ptr(-ENOTSUP); 11331 break; 11332 case PROBE_ATTACH_MODE_DEFAULT: 11333 break; 11334 default: 11335 return libbpf_err_ptr(-EINVAL); 11336 } 11337 11338 if (!legacy) { 11339 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11340 func_name, offset, 11341 -1 /* pid */, 0 /* ref_ctr_off */); 11342 } else { 11343 char probe_name[MAX_EVENT_NAME_LEN]; 11344 11345 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11346 func_name, offset); 11347 11348 legacy_probe = strdup(probe_name); 11349 if (!legacy_probe) 11350 return libbpf_err_ptr(-ENOMEM); 11351 11352 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11353 offset, -1 /* pid */); 11354 } 11355 if (pfd < 0) { 11356 err = -errno; 11357 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11358 prog->name, retprobe ? "kretprobe" : "kprobe", 11359 func_name, offset, 11360 errstr(err)); 11361 goto err_out; 11362 } 11363 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11364 err = libbpf_get_error(link); 11365 if (err) { 11366 close(pfd); 11367 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11368 prog->name, retprobe ? "kretprobe" : "kprobe", 11369 func_name, offset, 11370 errstr(err)); 11371 goto err_clean_legacy; 11372 } 11373 if (legacy) { 11374 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11375 11376 perf_link->legacy_probe_name = legacy_probe; 11377 perf_link->legacy_is_kprobe = true; 11378 perf_link->legacy_is_retprobe = retprobe; 11379 } 11380 11381 return link; 11382 11383 err_clean_legacy: 11384 if (legacy) 11385 remove_kprobe_event_legacy(legacy_probe, retprobe); 11386 err_out: 11387 free(legacy_probe); 11388 return libbpf_err_ptr(err); 11389 } 11390 11391 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11392 bool retprobe, 11393 const char *func_name) 11394 { 11395 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11396 .retprobe = retprobe, 11397 ); 11398 11399 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11400 } 11401 11402 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11403 const char *syscall_name, 11404 const struct bpf_ksyscall_opts *opts) 11405 { 11406 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11407 char func_name[128]; 11408 11409 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11410 return libbpf_err_ptr(-EINVAL); 11411 11412 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11413 /* arch_specific_syscall_pfx() should never return NULL here 11414 * because it is guarded by kernel_supports(). However, since 11415 * compiler does not know that we have an explicit conditional 11416 * as well. 11417 */ 11418 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11419 arch_specific_syscall_pfx() ? : "", syscall_name); 11420 } else { 11421 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11422 } 11423 11424 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11425 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11426 11427 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11428 } 11429 11430 /* Adapted from perf/util/string.c */ 11431 bool glob_match(const char *str, const char *pat) 11432 { 11433 while (*str && *pat && *pat != '*') { 11434 if (*pat == '?') { /* Matches any single character */ 11435 str++; 11436 pat++; 11437 continue; 11438 } 11439 if (*str != *pat) 11440 return false; 11441 str++; 11442 pat++; 11443 } 11444 /* Check wild card */ 11445 if (*pat == '*') { 11446 while (*pat == '*') 11447 pat++; 11448 if (!*pat) /* Tail wild card matches all */ 11449 return true; 11450 while (*str) 11451 if (glob_match(str++, pat)) 11452 return true; 11453 } 11454 return !*str && !*pat; 11455 } 11456 11457 struct kprobe_multi_resolve { 11458 const char *pattern; 11459 unsigned long *addrs; 11460 size_t cap; 11461 size_t cnt; 11462 }; 11463 11464 struct avail_kallsyms_data { 11465 char **syms; 11466 size_t cnt; 11467 struct kprobe_multi_resolve *res; 11468 }; 11469 11470 static int avail_func_cmp(const void *a, const void *b) 11471 { 11472 return strcmp(*(const char **)a, *(const char **)b); 11473 } 11474 11475 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11476 const char *sym_name, void *ctx) 11477 { 11478 struct avail_kallsyms_data *data = ctx; 11479 struct kprobe_multi_resolve *res = data->res; 11480 int err; 11481 11482 if (!glob_match(sym_name, res->pattern)) 11483 return 0; 11484 11485 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11486 /* Some versions of kernel strip out .llvm.<hash> suffix from 11487 * function names reported in available_filter_functions, but 11488 * don't do so for kallsyms. While this is clearly a kernel 11489 * bug (fixed by [0]) we try to accommodate that in libbpf to 11490 * make multi-kprobe usability a bit better: if no match is 11491 * found, we will strip .llvm. suffix and try one more time. 11492 * 11493 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11494 */ 11495 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11496 11497 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11498 return 0; 11499 11500 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11501 * coercion differences and get proper `const char **` pointer 11502 * which avail_func_cmp() expects 11503 */ 11504 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11505 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11506 return 0; 11507 } 11508 11509 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11510 if (err) 11511 return err; 11512 11513 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11514 return 0; 11515 } 11516 11517 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11518 { 11519 const char *available_functions_file = tracefs_available_filter_functions(); 11520 struct avail_kallsyms_data data; 11521 char sym_name[500]; 11522 FILE *f; 11523 int err = 0, ret, i; 11524 char **syms = NULL; 11525 size_t cap = 0, cnt = 0; 11526 11527 f = fopen(available_functions_file, "re"); 11528 if (!f) { 11529 err = -errno; 11530 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11531 return err; 11532 } 11533 11534 while (true) { 11535 char *name; 11536 11537 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11538 if (ret == EOF && feof(f)) 11539 break; 11540 11541 if (ret != 1) { 11542 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11543 err = -EINVAL; 11544 goto cleanup; 11545 } 11546 11547 if (!glob_match(sym_name, res->pattern)) 11548 continue; 11549 11550 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11551 if (err) 11552 goto cleanup; 11553 11554 name = strdup(sym_name); 11555 if (!name) { 11556 err = -errno; 11557 goto cleanup; 11558 } 11559 11560 syms[cnt++] = name; 11561 } 11562 11563 /* no entries found, bail out */ 11564 if (cnt == 0) { 11565 err = -ENOENT; 11566 goto cleanup; 11567 } 11568 11569 /* sort available functions */ 11570 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11571 11572 data.syms = syms; 11573 data.res = res; 11574 data.cnt = cnt; 11575 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11576 11577 if (res->cnt == 0) 11578 err = -ENOENT; 11579 11580 cleanup: 11581 for (i = 0; i < cnt; i++) 11582 free((char *)syms[i]); 11583 free(syms); 11584 11585 fclose(f); 11586 return err; 11587 } 11588 11589 static bool has_available_filter_functions_addrs(void) 11590 { 11591 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11592 } 11593 11594 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11595 { 11596 const char *available_path = tracefs_available_filter_functions_addrs(); 11597 char sym_name[500]; 11598 FILE *f; 11599 int ret, err = 0; 11600 unsigned long long sym_addr; 11601 11602 f = fopen(available_path, "re"); 11603 if (!f) { 11604 err = -errno; 11605 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11606 return err; 11607 } 11608 11609 while (true) { 11610 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11611 if (ret == EOF && feof(f)) 11612 break; 11613 11614 if (ret != 2) { 11615 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11616 ret); 11617 err = -EINVAL; 11618 goto cleanup; 11619 } 11620 11621 if (!glob_match(sym_name, res->pattern)) 11622 continue; 11623 11624 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11625 sizeof(*res->addrs), res->cnt + 1); 11626 if (err) 11627 goto cleanup; 11628 11629 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11630 } 11631 11632 if (res->cnt == 0) 11633 err = -ENOENT; 11634 11635 cleanup: 11636 fclose(f); 11637 return err; 11638 } 11639 11640 struct bpf_link * 11641 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11642 const char *pattern, 11643 const struct bpf_kprobe_multi_opts *opts) 11644 { 11645 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11646 struct kprobe_multi_resolve res = { 11647 .pattern = pattern, 11648 }; 11649 enum bpf_attach_type attach_type; 11650 struct bpf_link *link = NULL; 11651 const unsigned long *addrs; 11652 int err, link_fd, prog_fd; 11653 bool retprobe, session, unique_match; 11654 const __u64 *cookies; 11655 const char **syms; 11656 size_t cnt; 11657 11658 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11659 return libbpf_err_ptr(-EINVAL); 11660 11661 prog_fd = bpf_program__fd(prog); 11662 if (prog_fd < 0) { 11663 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11664 prog->name); 11665 return libbpf_err_ptr(-EINVAL); 11666 } 11667 11668 syms = OPTS_GET(opts, syms, false); 11669 addrs = OPTS_GET(opts, addrs, false); 11670 cnt = OPTS_GET(opts, cnt, false); 11671 cookies = OPTS_GET(opts, cookies, false); 11672 unique_match = OPTS_GET(opts, unique_match, false); 11673 11674 if (!pattern && !addrs && !syms) 11675 return libbpf_err_ptr(-EINVAL); 11676 if (pattern && (addrs || syms || cookies || cnt)) 11677 return libbpf_err_ptr(-EINVAL); 11678 if (!pattern && !cnt) 11679 return libbpf_err_ptr(-EINVAL); 11680 if (!pattern && unique_match) 11681 return libbpf_err_ptr(-EINVAL); 11682 if (addrs && syms) 11683 return libbpf_err_ptr(-EINVAL); 11684 11685 if (pattern) { 11686 if (has_available_filter_functions_addrs()) 11687 err = libbpf_available_kprobes_parse(&res); 11688 else 11689 err = libbpf_available_kallsyms_parse(&res); 11690 if (err) 11691 goto error; 11692 11693 if (unique_match && res.cnt != 1) { 11694 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11695 prog->name, pattern, res.cnt); 11696 err = -EINVAL; 11697 goto error; 11698 } 11699 11700 addrs = res.addrs; 11701 cnt = res.cnt; 11702 } 11703 11704 retprobe = OPTS_GET(opts, retprobe, false); 11705 session = OPTS_GET(opts, session, false); 11706 11707 if (retprobe && session) 11708 return libbpf_err_ptr(-EINVAL); 11709 11710 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11711 11712 lopts.kprobe_multi.syms = syms; 11713 lopts.kprobe_multi.addrs = addrs; 11714 lopts.kprobe_multi.cookies = cookies; 11715 lopts.kprobe_multi.cnt = cnt; 11716 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11717 11718 link = calloc(1, sizeof(*link)); 11719 if (!link) { 11720 err = -ENOMEM; 11721 goto error; 11722 } 11723 link->detach = &bpf_link__detach_fd; 11724 11725 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11726 if (link_fd < 0) { 11727 err = -errno; 11728 pr_warn("prog '%s': failed to attach: %s\n", 11729 prog->name, errstr(err)); 11730 goto error; 11731 } 11732 link->fd = link_fd; 11733 free(res.addrs); 11734 return link; 11735 11736 error: 11737 free(link); 11738 free(res.addrs); 11739 return libbpf_err_ptr(err); 11740 } 11741 11742 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11743 { 11744 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11745 unsigned long offset = 0; 11746 const char *func_name; 11747 char *func; 11748 int n; 11749 11750 *link = NULL; 11751 11752 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11753 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11754 return 0; 11755 11756 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11757 if (opts.retprobe) 11758 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11759 else 11760 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11761 11762 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11763 if (n < 1) { 11764 pr_warn("kprobe name is invalid: %s\n", func_name); 11765 return -EINVAL; 11766 } 11767 if (opts.retprobe && offset != 0) { 11768 free(func); 11769 pr_warn("kretprobes do not support offset specification\n"); 11770 return -EINVAL; 11771 } 11772 11773 opts.offset = offset; 11774 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11775 free(func); 11776 return libbpf_get_error(*link); 11777 } 11778 11779 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11780 { 11781 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11782 const char *syscall_name; 11783 11784 *link = NULL; 11785 11786 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11787 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11788 return 0; 11789 11790 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11791 if (opts.retprobe) 11792 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11793 else 11794 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11795 11796 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11797 return *link ? 0 : -errno; 11798 } 11799 11800 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11801 { 11802 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11803 const char *spec; 11804 char *pattern; 11805 int n; 11806 11807 *link = NULL; 11808 11809 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11810 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11811 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11812 return 0; 11813 11814 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11815 if (opts.retprobe) 11816 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11817 else 11818 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11819 11820 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11821 if (n < 1) { 11822 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11823 return -EINVAL; 11824 } 11825 11826 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11827 free(pattern); 11828 return libbpf_get_error(*link); 11829 } 11830 11831 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11832 struct bpf_link **link) 11833 { 11834 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11835 const char *spec; 11836 char *pattern; 11837 int n; 11838 11839 *link = NULL; 11840 11841 /* no auto-attach for SEC("kprobe.session") */ 11842 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11843 return 0; 11844 11845 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11846 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11847 if (n < 1) { 11848 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11849 return -EINVAL; 11850 } 11851 11852 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11853 free(pattern); 11854 return *link ? 0 : -errno; 11855 } 11856 11857 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11858 { 11859 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11860 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11861 int n, ret = -EINVAL; 11862 11863 *link = NULL; 11864 11865 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11866 &probe_type, &binary_path, &func_name); 11867 switch (n) { 11868 case 1: 11869 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11870 ret = 0; 11871 break; 11872 case 3: 11873 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11874 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11875 11876 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11877 ret = libbpf_get_error(*link); 11878 break; 11879 default: 11880 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11881 prog->sec_name); 11882 break; 11883 } 11884 free(probe_type); 11885 free(binary_path); 11886 free(func_name); 11887 return ret; 11888 } 11889 11890 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11891 const char *binary_path, size_t offset) 11892 { 11893 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11894 retprobe ? 'r' : 'p', 11895 retprobe ? "uretprobes" : "uprobes", 11896 probe_name, binary_path, offset); 11897 } 11898 11899 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11900 { 11901 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11902 retprobe ? "uretprobes" : "uprobes", probe_name); 11903 } 11904 11905 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11906 { 11907 char file[512]; 11908 11909 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11910 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11911 11912 return parse_uint_from_file(file, "%d\n"); 11913 } 11914 11915 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11916 const char *binary_path, size_t offset, int pid) 11917 { 11918 const size_t attr_sz = sizeof(struct perf_event_attr); 11919 struct perf_event_attr attr; 11920 int type, pfd, err; 11921 11922 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11923 if (err < 0) { 11924 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11925 binary_path, (size_t)offset, errstr(err)); 11926 return err; 11927 } 11928 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11929 if (type < 0) { 11930 err = type; 11931 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11932 binary_path, offset, errstr(err)); 11933 goto err_clean_legacy; 11934 } 11935 11936 memset(&attr, 0, attr_sz); 11937 attr.size = attr_sz; 11938 attr.config = type; 11939 attr.type = PERF_TYPE_TRACEPOINT; 11940 11941 pfd = syscall(__NR_perf_event_open, &attr, 11942 pid < 0 ? -1 : pid, /* pid */ 11943 pid == -1 ? 0 : -1, /* cpu */ 11944 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11945 if (pfd < 0) { 11946 err = -errno; 11947 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11948 goto err_clean_legacy; 11949 } 11950 return pfd; 11951 11952 err_clean_legacy: 11953 /* Clear the newly added legacy uprobe_event */ 11954 remove_uprobe_event_legacy(probe_name, retprobe); 11955 return err; 11956 } 11957 11958 /* Find offset of function name in archive specified by path. Currently 11959 * supported are .zip files that do not compress their contents, as used on 11960 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11961 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11962 * library functions. 11963 * 11964 * An overview of the APK format specifically provided here: 11965 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11966 */ 11967 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11968 const char *func_name) 11969 { 11970 struct zip_archive *archive; 11971 struct zip_entry entry; 11972 long ret; 11973 Elf *elf; 11974 11975 archive = zip_archive_open(archive_path); 11976 if (IS_ERR(archive)) { 11977 ret = PTR_ERR(archive); 11978 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11979 return ret; 11980 } 11981 11982 ret = zip_archive_find_entry(archive, file_name, &entry); 11983 if (ret) { 11984 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11985 archive_path, ret); 11986 goto out; 11987 } 11988 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11989 (unsigned long)entry.data_offset); 11990 11991 if (entry.compression) { 11992 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11993 archive_path); 11994 ret = -LIBBPF_ERRNO__FORMAT; 11995 goto out; 11996 } 11997 11998 elf = elf_memory((void *)entry.data, entry.data_length); 11999 if (!elf) { 12000 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 12001 elf_errmsg(-1)); 12002 ret = -LIBBPF_ERRNO__LIBELF; 12003 goto out; 12004 } 12005 12006 ret = elf_find_func_offset(elf, file_name, func_name); 12007 if (ret > 0) { 12008 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12009 func_name, file_name, archive_path, entry.data_offset, ret, 12010 ret + entry.data_offset); 12011 ret += entry.data_offset; 12012 } 12013 elf_end(elf); 12014 12015 out: 12016 zip_archive_close(archive); 12017 return ret; 12018 } 12019 12020 static const char *arch_specific_lib_paths(void) 12021 { 12022 /* 12023 * Based on https://packages.debian.org/sid/libc6. 12024 * 12025 * Assume that the traced program is built for the same architecture 12026 * as libbpf, which should cover the vast majority of cases. 12027 */ 12028 #if defined(__x86_64__) 12029 return "/lib/x86_64-linux-gnu"; 12030 #elif defined(__i386__) 12031 return "/lib/i386-linux-gnu"; 12032 #elif defined(__s390x__) 12033 return "/lib/s390x-linux-gnu"; 12034 #elif defined(__s390__) 12035 return "/lib/s390-linux-gnu"; 12036 #elif defined(__arm__) && defined(__SOFTFP__) 12037 return "/lib/arm-linux-gnueabi"; 12038 #elif defined(__arm__) && !defined(__SOFTFP__) 12039 return "/lib/arm-linux-gnueabihf"; 12040 #elif defined(__aarch64__) 12041 return "/lib/aarch64-linux-gnu"; 12042 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12043 return "/lib/mips64el-linux-gnuabi64"; 12044 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12045 return "/lib/mipsel-linux-gnu"; 12046 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12047 return "/lib/powerpc64le-linux-gnu"; 12048 #elif defined(__sparc__) && defined(__arch64__) 12049 return "/lib/sparc64-linux-gnu"; 12050 #elif defined(__riscv) && __riscv_xlen == 64 12051 return "/lib/riscv64-linux-gnu"; 12052 #else 12053 return NULL; 12054 #endif 12055 } 12056 12057 /* Get full path to program/shared library. */ 12058 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12059 { 12060 const char *search_paths[3] = {}; 12061 int i, perm; 12062 12063 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12064 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12065 search_paths[1] = "/usr/lib64:/usr/lib"; 12066 search_paths[2] = arch_specific_lib_paths(); 12067 perm = R_OK; 12068 } else { 12069 search_paths[0] = getenv("PATH"); 12070 search_paths[1] = "/usr/bin:/usr/sbin"; 12071 perm = R_OK | X_OK; 12072 } 12073 12074 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12075 const char *s; 12076 12077 if (!search_paths[i]) 12078 continue; 12079 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12080 char *next_path; 12081 int seg_len; 12082 12083 if (s[0] == ':') 12084 s++; 12085 next_path = strchr(s, ':'); 12086 seg_len = next_path ? next_path - s : strlen(s); 12087 if (!seg_len) 12088 continue; 12089 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12090 /* ensure it has required permissions */ 12091 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12092 continue; 12093 pr_debug("resolved '%s' to '%s'\n", file, result); 12094 return 0; 12095 } 12096 } 12097 return -ENOENT; 12098 } 12099 12100 struct bpf_link * 12101 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12102 pid_t pid, 12103 const char *path, 12104 const char *func_pattern, 12105 const struct bpf_uprobe_multi_opts *opts) 12106 { 12107 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12108 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12109 unsigned long *resolved_offsets = NULL; 12110 enum bpf_attach_type attach_type; 12111 int err = 0, link_fd, prog_fd; 12112 struct bpf_link *link = NULL; 12113 char full_path[PATH_MAX]; 12114 bool retprobe, session; 12115 const __u64 *cookies; 12116 const char **syms; 12117 size_t cnt; 12118 12119 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12120 return libbpf_err_ptr(-EINVAL); 12121 12122 prog_fd = bpf_program__fd(prog); 12123 if (prog_fd < 0) { 12124 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12125 prog->name); 12126 return libbpf_err_ptr(-EINVAL); 12127 } 12128 12129 syms = OPTS_GET(opts, syms, NULL); 12130 offsets = OPTS_GET(opts, offsets, NULL); 12131 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12132 cookies = OPTS_GET(opts, cookies, NULL); 12133 cnt = OPTS_GET(opts, cnt, 0); 12134 retprobe = OPTS_GET(opts, retprobe, false); 12135 session = OPTS_GET(opts, session, false); 12136 12137 /* 12138 * User can specify 2 mutually exclusive set of inputs: 12139 * 12140 * 1) use only path/func_pattern/pid arguments 12141 * 12142 * 2) use path/pid with allowed combinations of: 12143 * syms/offsets/ref_ctr_offsets/cookies/cnt 12144 * 12145 * - syms and offsets are mutually exclusive 12146 * - ref_ctr_offsets and cookies are optional 12147 * 12148 * Any other usage results in error. 12149 */ 12150 12151 if (!path) 12152 return libbpf_err_ptr(-EINVAL); 12153 if (!func_pattern && cnt == 0) 12154 return libbpf_err_ptr(-EINVAL); 12155 12156 if (func_pattern) { 12157 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12158 return libbpf_err_ptr(-EINVAL); 12159 } else { 12160 if (!!syms == !!offsets) 12161 return libbpf_err_ptr(-EINVAL); 12162 } 12163 12164 if (retprobe && session) 12165 return libbpf_err_ptr(-EINVAL); 12166 12167 if (func_pattern) { 12168 if (!strchr(path, '/')) { 12169 err = resolve_full_path(path, full_path, sizeof(full_path)); 12170 if (err) { 12171 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12172 prog->name, path, errstr(err)); 12173 return libbpf_err_ptr(err); 12174 } 12175 path = full_path; 12176 } 12177 12178 err = elf_resolve_pattern_offsets(path, func_pattern, 12179 &resolved_offsets, &cnt); 12180 if (err < 0) 12181 return libbpf_err_ptr(err); 12182 offsets = resolved_offsets; 12183 } else if (syms) { 12184 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12185 if (err < 0) 12186 return libbpf_err_ptr(err); 12187 offsets = resolved_offsets; 12188 } 12189 12190 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12191 12192 lopts.uprobe_multi.path = path; 12193 lopts.uprobe_multi.offsets = offsets; 12194 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12195 lopts.uprobe_multi.cookies = cookies; 12196 lopts.uprobe_multi.cnt = cnt; 12197 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12198 12199 if (pid == 0) 12200 pid = getpid(); 12201 if (pid > 0) 12202 lopts.uprobe_multi.pid = pid; 12203 12204 link = calloc(1, sizeof(*link)); 12205 if (!link) { 12206 err = -ENOMEM; 12207 goto error; 12208 } 12209 link->detach = &bpf_link__detach_fd; 12210 12211 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12212 if (link_fd < 0) { 12213 err = -errno; 12214 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12215 prog->name, errstr(err)); 12216 goto error; 12217 } 12218 link->fd = link_fd; 12219 free(resolved_offsets); 12220 return link; 12221 12222 error: 12223 free(resolved_offsets); 12224 free(link); 12225 return libbpf_err_ptr(err); 12226 } 12227 12228 LIBBPF_API struct bpf_link * 12229 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12230 const char *binary_path, size_t func_offset, 12231 const struct bpf_uprobe_opts *opts) 12232 { 12233 const char *archive_path = NULL, *archive_sep = NULL; 12234 char *legacy_probe = NULL; 12235 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12236 enum probe_attach_mode attach_mode; 12237 char full_path[PATH_MAX]; 12238 struct bpf_link *link; 12239 size_t ref_ctr_off; 12240 int pfd, err; 12241 bool retprobe, legacy; 12242 const char *func_name; 12243 12244 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12245 return libbpf_err_ptr(-EINVAL); 12246 12247 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12248 retprobe = OPTS_GET(opts, retprobe, false); 12249 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12250 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12251 12252 if (!binary_path) 12253 return libbpf_err_ptr(-EINVAL); 12254 12255 /* Check if "binary_path" refers to an archive. */ 12256 archive_sep = strstr(binary_path, "!/"); 12257 if (archive_sep) { 12258 full_path[0] = '\0'; 12259 libbpf_strlcpy(full_path, binary_path, 12260 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12261 archive_path = full_path; 12262 binary_path = archive_sep + 2; 12263 } else if (!strchr(binary_path, '/')) { 12264 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12265 if (err) { 12266 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12267 prog->name, binary_path, errstr(err)); 12268 return libbpf_err_ptr(err); 12269 } 12270 binary_path = full_path; 12271 } 12272 func_name = OPTS_GET(opts, func_name, NULL); 12273 if (func_name) { 12274 long sym_off; 12275 12276 if (archive_path) { 12277 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12278 func_name); 12279 binary_path = archive_path; 12280 } else { 12281 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12282 } 12283 if (sym_off < 0) 12284 return libbpf_err_ptr(sym_off); 12285 func_offset += sym_off; 12286 } 12287 12288 legacy = determine_uprobe_perf_type() < 0; 12289 switch (attach_mode) { 12290 case PROBE_ATTACH_MODE_LEGACY: 12291 legacy = true; 12292 pe_opts.force_ioctl_attach = true; 12293 break; 12294 case PROBE_ATTACH_MODE_PERF: 12295 if (legacy) 12296 return libbpf_err_ptr(-ENOTSUP); 12297 pe_opts.force_ioctl_attach = true; 12298 break; 12299 case PROBE_ATTACH_MODE_LINK: 12300 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12301 return libbpf_err_ptr(-ENOTSUP); 12302 break; 12303 case PROBE_ATTACH_MODE_DEFAULT: 12304 break; 12305 default: 12306 return libbpf_err_ptr(-EINVAL); 12307 } 12308 12309 if (!legacy) { 12310 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12311 func_offset, pid, ref_ctr_off); 12312 } else { 12313 char probe_name[MAX_EVENT_NAME_LEN]; 12314 12315 if (ref_ctr_off) 12316 return libbpf_err_ptr(-EINVAL); 12317 12318 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12319 strrchr(binary_path, '/') ? : binary_path, 12320 func_offset); 12321 12322 legacy_probe = strdup(probe_name); 12323 if (!legacy_probe) 12324 return libbpf_err_ptr(-ENOMEM); 12325 12326 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12327 binary_path, func_offset, pid); 12328 } 12329 if (pfd < 0) { 12330 err = -errno; 12331 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12332 prog->name, retprobe ? "uretprobe" : "uprobe", 12333 binary_path, func_offset, 12334 errstr(err)); 12335 goto err_out; 12336 } 12337 12338 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12339 err = libbpf_get_error(link); 12340 if (err) { 12341 close(pfd); 12342 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12343 prog->name, retprobe ? "uretprobe" : "uprobe", 12344 binary_path, func_offset, 12345 errstr(err)); 12346 goto err_clean_legacy; 12347 } 12348 if (legacy) { 12349 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12350 12351 perf_link->legacy_probe_name = legacy_probe; 12352 perf_link->legacy_is_kprobe = false; 12353 perf_link->legacy_is_retprobe = retprobe; 12354 } 12355 return link; 12356 12357 err_clean_legacy: 12358 if (legacy) 12359 remove_uprobe_event_legacy(legacy_probe, retprobe); 12360 err_out: 12361 free(legacy_probe); 12362 return libbpf_err_ptr(err); 12363 } 12364 12365 /* Format of u[ret]probe section definition supporting auto-attach: 12366 * u[ret]probe/binary:function[+offset] 12367 * 12368 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12369 * full binary path via bpf_program__attach_uprobe_opts. 12370 * 12371 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12372 * specified (and auto-attach is not possible) or the above format is specified for 12373 * auto-attach. 12374 */ 12375 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12376 { 12377 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12378 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12379 int n, c, ret = -EINVAL; 12380 long offset = 0; 12381 12382 *link = NULL; 12383 12384 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12385 &probe_type, &binary_path, &func_name); 12386 switch (n) { 12387 case 1: 12388 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12389 ret = 0; 12390 break; 12391 case 2: 12392 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12393 prog->name, prog->sec_name); 12394 break; 12395 case 3: 12396 /* check if user specifies `+offset`, if yes, this should be 12397 * the last part of the string, make sure sscanf read to EOL 12398 */ 12399 func_off = strrchr(func_name, '+'); 12400 if (func_off) { 12401 n = sscanf(func_off, "+%li%n", &offset, &c); 12402 if (n == 1 && *(func_off + c) == '\0') 12403 func_off[0] = '\0'; 12404 else 12405 offset = 0; 12406 } 12407 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12408 strcmp(probe_type, "uretprobe.s") == 0; 12409 if (opts.retprobe && offset != 0) { 12410 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12411 prog->name); 12412 break; 12413 } 12414 opts.func_name = func_name; 12415 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12416 ret = libbpf_get_error(*link); 12417 break; 12418 default: 12419 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12420 prog->sec_name); 12421 break; 12422 } 12423 free(probe_type); 12424 free(binary_path); 12425 free(func_name); 12426 12427 return ret; 12428 } 12429 12430 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12431 bool retprobe, pid_t pid, 12432 const char *binary_path, 12433 size_t func_offset) 12434 { 12435 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12436 12437 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12438 } 12439 12440 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12441 pid_t pid, const char *binary_path, 12442 const char *usdt_provider, const char *usdt_name, 12443 const struct bpf_usdt_opts *opts) 12444 { 12445 char resolved_path[512]; 12446 struct bpf_object *obj = prog->obj; 12447 struct bpf_link *link; 12448 __u64 usdt_cookie; 12449 int err; 12450 12451 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12452 return libbpf_err_ptr(-EINVAL); 12453 12454 if (bpf_program__fd(prog) < 0) { 12455 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12456 prog->name); 12457 return libbpf_err_ptr(-EINVAL); 12458 } 12459 12460 if (!binary_path) 12461 return libbpf_err_ptr(-EINVAL); 12462 12463 if (!strchr(binary_path, '/')) { 12464 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12465 if (err) { 12466 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12467 prog->name, binary_path, errstr(err)); 12468 return libbpf_err_ptr(err); 12469 } 12470 binary_path = resolved_path; 12471 } 12472 12473 /* USDT manager is instantiated lazily on first USDT attach. It will 12474 * be destroyed together with BPF object in bpf_object__close(). 12475 */ 12476 if (IS_ERR(obj->usdt_man)) 12477 return libbpf_ptr(obj->usdt_man); 12478 if (!obj->usdt_man) { 12479 obj->usdt_man = usdt_manager_new(obj); 12480 if (IS_ERR(obj->usdt_man)) 12481 return libbpf_ptr(obj->usdt_man); 12482 } 12483 12484 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12485 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12486 usdt_provider, usdt_name, usdt_cookie); 12487 err = libbpf_get_error(link); 12488 if (err) 12489 return libbpf_err_ptr(err); 12490 return link; 12491 } 12492 12493 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12494 { 12495 char *path = NULL, *provider = NULL, *name = NULL; 12496 const char *sec_name; 12497 int n, err; 12498 12499 sec_name = bpf_program__section_name(prog); 12500 if (strcmp(sec_name, "usdt") == 0) { 12501 /* no auto-attach for just SEC("usdt") */ 12502 *link = NULL; 12503 return 0; 12504 } 12505 12506 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12507 if (n != 3) { 12508 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12509 sec_name); 12510 err = -EINVAL; 12511 } else { 12512 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12513 provider, name, NULL); 12514 err = libbpf_get_error(*link); 12515 } 12516 free(path); 12517 free(provider); 12518 free(name); 12519 return err; 12520 } 12521 12522 static int determine_tracepoint_id(const char *tp_category, 12523 const char *tp_name) 12524 { 12525 char file[PATH_MAX]; 12526 int ret; 12527 12528 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12529 tracefs_path(), tp_category, tp_name); 12530 if (ret < 0) 12531 return -errno; 12532 if (ret >= sizeof(file)) { 12533 pr_debug("tracepoint %s/%s path is too long\n", 12534 tp_category, tp_name); 12535 return -E2BIG; 12536 } 12537 return parse_uint_from_file(file, "%d\n"); 12538 } 12539 12540 static int perf_event_open_tracepoint(const char *tp_category, 12541 const char *tp_name) 12542 { 12543 const size_t attr_sz = sizeof(struct perf_event_attr); 12544 struct perf_event_attr attr; 12545 int tp_id, pfd, err; 12546 12547 tp_id = determine_tracepoint_id(tp_category, tp_name); 12548 if (tp_id < 0) { 12549 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12550 tp_category, tp_name, 12551 errstr(tp_id)); 12552 return tp_id; 12553 } 12554 12555 memset(&attr, 0, attr_sz); 12556 attr.type = PERF_TYPE_TRACEPOINT; 12557 attr.size = attr_sz; 12558 attr.config = tp_id; 12559 12560 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12561 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12562 if (pfd < 0) { 12563 err = -errno; 12564 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12565 tp_category, tp_name, 12566 errstr(err)); 12567 return err; 12568 } 12569 return pfd; 12570 } 12571 12572 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12573 const char *tp_category, 12574 const char *tp_name, 12575 const struct bpf_tracepoint_opts *opts) 12576 { 12577 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12578 struct bpf_link *link; 12579 int pfd, err; 12580 12581 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12582 return libbpf_err_ptr(-EINVAL); 12583 12584 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12585 12586 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12587 if (pfd < 0) { 12588 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12589 prog->name, tp_category, tp_name, 12590 errstr(pfd)); 12591 return libbpf_err_ptr(pfd); 12592 } 12593 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12594 err = libbpf_get_error(link); 12595 if (err) { 12596 close(pfd); 12597 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12598 prog->name, tp_category, tp_name, 12599 errstr(err)); 12600 return libbpf_err_ptr(err); 12601 } 12602 return link; 12603 } 12604 12605 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12606 const char *tp_category, 12607 const char *tp_name) 12608 { 12609 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12610 } 12611 12612 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12613 { 12614 char *sec_name, *tp_cat, *tp_name; 12615 12616 *link = NULL; 12617 12618 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12619 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12620 return 0; 12621 12622 sec_name = strdup(prog->sec_name); 12623 if (!sec_name) 12624 return -ENOMEM; 12625 12626 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12627 if (str_has_pfx(prog->sec_name, "tp/")) 12628 tp_cat = sec_name + sizeof("tp/") - 1; 12629 else 12630 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12631 tp_name = strchr(tp_cat, '/'); 12632 if (!tp_name) { 12633 free(sec_name); 12634 return -EINVAL; 12635 } 12636 *tp_name = '\0'; 12637 tp_name++; 12638 12639 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12640 free(sec_name); 12641 return libbpf_get_error(*link); 12642 } 12643 12644 struct bpf_link * 12645 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12646 const char *tp_name, 12647 struct bpf_raw_tracepoint_opts *opts) 12648 { 12649 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12650 struct bpf_link *link; 12651 int prog_fd, pfd; 12652 12653 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12654 return libbpf_err_ptr(-EINVAL); 12655 12656 prog_fd = bpf_program__fd(prog); 12657 if (prog_fd < 0) { 12658 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12659 return libbpf_err_ptr(-EINVAL); 12660 } 12661 12662 link = calloc(1, sizeof(*link)); 12663 if (!link) 12664 return libbpf_err_ptr(-ENOMEM); 12665 link->detach = &bpf_link__detach_fd; 12666 12667 raw_opts.tp_name = tp_name; 12668 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12669 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12670 if (pfd < 0) { 12671 pfd = -errno; 12672 free(link); 12673 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12674 prog->name, tp_name, errstr(pfd)); 12675 return libbpf_err_ptr(pfd); 12676 } 12677 link->fd = pfd; 12678 return link; 12679 } 12680 12681 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12682 const char *tp_name) 12683 { 12684 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12685 } 12686 12687 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12688 { 12689 static const char *const prefixes[] = { 12690 "raw_tp", 12691 "raw_tracepoint", 12692 "raw_tp.w", 12693 "raw_tracepoint.w", 12694 }; 12695 size_t i; 12696 const char *tp_name = NULL; 12697 12698 *link = NULL; 12699 12700 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12701 size_t pfx_len; 12702 12703 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12704 continue; 12705 12706 pfx_len = strlen(prefixes[i]); 12707 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12708 if (prog->sec_name[pfx_len] == '\0') 12709 return 0; 12710 12711 if (prog->sec_name[pfx_len] != '/') 12712 continue; 12713 12714 tp_name = prog->sec_name + pfx_len + 1; 12715 break; 12716 } 12717 12718 if (!tp_name) { 12719 pr_warn("prog '%s': invalid section name '%s'\n", 12720 prog->name, prog->sec_name); 12721 return -EINVAL; 12722 } 12723 12724 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12725 return libbpf_get_error(*link); 12726 } 12727 12728 /* Common logic for all BPF program types that attach to a btf_id */ 12729 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12730 const struct bpf_trace_opts *opts) 12731 { 12732 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12733 struct bpf_link *link; 12734 int prog_fd, pfd; 12735 12736 if (!OPTS_VALID(opts, bpf_trace_opts)) 12737 return libbpf_err_ptr(-EINVAL); 12738 12739 prog_fd = bpf_program__fd(prog); 12740 if (prog_fd < 0) { 12741 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12742 return libbpf_err_ptr(-EINVAL); 12743 } 12744 12745 link = calloc(1, sizeof(*link)); 12746 if (!link) 12747 return libbpf_err_ptr(-ENOMEM); 12748 link->detach = &bpf_link__detach_fd; 12749 12750 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12751 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12752 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12753 if (pfd < 0) { 12754 pfd = -errno; 12755 free(link); 12756 pr_warn("prog '%s': failed to attach: %s\n", 12757 prog->name, errstr(pfd)); 12758 return libbpf_err_ptr(pfd); 12759 } 12760 link->fd = pfd; 12761 return link; 12762 } 12763 12764 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12765 { 12766 return bpf_program__attach_btf_id(prog, NULL); 12767 } 12768 12769 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12770 const struct bpf_trace_opts *opts) 12771 { 12772 return bpf_program__attach_btf_id(prog, opts); 12773 } 12774 12775 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12776 { 12777 return bpf_program__attach_btf_id(prog, NULL); 12778 } 12779 12780 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12781 { 12782 *link = bpf_program__attach_trace(prog); 12783 return libbpf_get_error(*link); 12784 } 12785 12786 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12787 { 12788 *link = bpf_program__attach_lsm(prog); 12789 return libbpf_get_error(*link); 12790 } 12791 12792 static struct bpf_link * 12793 bpf_program_attach_fd(const struct bpf_program *prog, 12794 int target_fd, const char *target_name, 12795 const struct bpf_link_create_opts *opts) 12796 { 12797 enum bpf_attach_type attach_type; 12798 struct bpf_link *link; 12799 int prog_fd, link_fd; 12800 12801 prog_fd = bpf_program__fd(prog); 12802 if (prog_fd < 0) { 12803 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12804 return libbpf_err_ptr(-EINVAL); 12805 } 12806 12807 link = calloc(1, sizeof(*link)); 12808 if (!link) 12809 return libbpf_err_ptr(-ENOMEM); 12810 link->detach = &bpf_link__detach_fd; 12811 12812 attach_type = bpf_program__expected_attach_type(prog); 12813 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12814 if (link_fd < 0) { 12815 link_fd = -errno; 12816 free(link); 12817 pr_warn("prog '%s': failed to attach to %s: %s\n", 12818 prog->name, target_name, 12819 errstr(link_fd)); 12820 return libbpf_err_ptr(link_fd); 12821 } 12822 link->fd = link_fd; 12823 return link; 12824 } 12825 12826 struct bpf_link * 12827 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12828 { 12829 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12830 } 12831 12832 struct bpf_link * 12833 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12834 { 12835 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12836 } 12837 12838 struct bpf_link * 12839 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12840 { 12841 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12842 } 12843 12844 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12845 { 12846 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12847 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12848 } 12849 12850 struct bpf_link * 12851 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12852 const struct bpf_tcx_opts *opts) 12853 { 12854 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12855 __u32 relative_id; 12856 int relative_fd; 12857 12858 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12859 return libbpf_err_ptr(-EINVAL); 12860 12861 relative_id = OPTS_GET(opts, relative_id, 0); 12862 relative_fd = OPTS_GET(opts, relative_fd, 0); 12863 12864 /* validate we don't have unexpected combinations of non-zero fields */ 12865 if (!ifindex) { 12866 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12867 prog->name); 12868 return libbpf_err_ptr(-EINVAL); 12869 } 12870 if (relative_fd && relative_id) { 12871 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12872 prog->name); 12873 return libbpf_err_ptr(-EINVAL); 12874 } 12875 12876 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12877 link_create_opts.tcx.relative_fd = relative_fd; 12878 link_create_opts.tcx.relative_id = relative_id; 12879 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12880 12881 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12882 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12883 } 12884 12885 struct bpf_link * 12886 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12887 const struct bpf_netkit_opts *opts) 12888 { 12889 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12890 __u32 relative_id; 12891 int relative_fd; 12892 12893 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12894 return libbpf_err_ptr(-EINVAL); 12895 12896 relative_id = OPTS_GET(opts, relative_id, 0); 12897 relative_fd = OPTS_GET(opts, relative_fd, 0); 12898 12899 /* validate we don't have unexpected combinations of non-zero fields */ 12900 if (!ifindex) { 12901 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12902 prog->name); 12903 return libbpf_err_ptr(-EINVAL); 12904 } 12905 if (relative_fd && relative_id) { 12906 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12907 prog->name); 12908 return libbpf_err_ptr(-EINVAL); 12909 } 12910 12911 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12912 link_create_opts.netkit.relative_fd = relative_fd; 12913 link_create_opts.netkit.relative_id = relative_id; 12914 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12915 12916 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12917 } 12918 12919 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12920 int target_fd, 12921 const char *attach_func_name) 12922 { 12923 int btf_id; 12924 12925 if (!!target_fd != !!attach_func_name) { 12926 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12927 prog->name); 12928 return libbpf_err_ptr(-EINVAL); 12929 } 12930 12931 if (prog->type != BPF_PROG_TYPE_EXT) { 12932 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12933 prog->name); 12934 return libbpf_err_ptr(-EINVAL); 12935 } 12936 12937 if (target_fd) { 12938 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12939 12940 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 12941 if (btf_id < 0) 12942 return libbpf_err_ptr(btf_id); 12943 12944 target_opts.target_btf_id = btf_id; 12945 12946 return bpf_program_attach_fd(prog, target_fd, "freplace", 12947 &target_opts); 12948 } else { 12949 /* no target, so use raw_tracepoint_open for compatibility 12950 * with old kernels 12951 */ 12952 return bpf_program__attach_trace(prog); 12953 } 12954 } 12955 12956 struct bpf_link * 12957 bpf_program__attach_iter(const struct bpf_program *prog, 12958 const struct bpf_iter_attach_opts *opts) 12959 { 12960 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12961 struct bpf_link *link; 12962 int prog_fd, link_fd; 12963 __u32 target_fd = 0; 12964 12965 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12966 return libbpf_err_ptr(-EINVAL); 12967 12968 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12969 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12970 12971 prog_fd = bpf_program__fd(prog); 12972 if (prog_fd < 0) { 12973 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12974 return libbpf_err_ptr(-EINVAL); 12975 } 12976 12977 link = calloc(1, sizeof(*link)); 12978 if (!link) 12979 return libbpf_err_ptr(-ENOMEM); 12980 link->detach = &bpf_link__detach_fd; 12981 12982 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12983 &link_create_opts); 12984 if (link_fd < 0) { 12985 link_fd = -errno; 12986 free(link); 12987 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12988 prog->name, errstr(link_fd)); 12989 return libbpf_err_ptr(link_fd); 12990 } 12991 link->fd = link_fd; 12992 return link; 12993 } 12994 12995 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12996 { 12997 *link = bpf_program__attach_iter(prog, NULL); 12998 return libbpf_get_error(*link); 12999 } 13000 13001 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 13002 const struct bpf_netfilter_opts *opts) 13003 { 13004 LIBBPF_OPTS(bpf_link_create_opts, lopts); 13005 struct bpf_link *link; 13006 int prog_fd, link_fd; 13007 13008 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13009 return libbpf_err_ptr(-EINVAL); 13010 13011 prog_fd = bpf_program__fd(prog); 13012 if (prog_fd < 0) { 13013 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13014 return libbpf_err_ptr(-EINVAL); 13015 } 13016 13017 link = calloc(1, sizeof(*link)); 13018 if (!link) 13019 return libbpf_err_ptr(-ENOMEM); 13020 13021 link->detach = &bpf_link__detach_fd; 13022 13023 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13024 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13025 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13026 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13027 13028 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13029 if (link_fd < 0) { 13030 link_fd = -errno; 13031 free(link); 13032 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13033 prog->name, errstr(link_fd)); 13034 return libbpf_err_ptr(link_fd); 13035 } 13036 link->fd = link_fd; 13037 13038 return link; 13039 } 13040 13041 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13042 { 13043 struct bpf_link *link = NULL; 13044 int err; 13045 13046 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13047 return libbpf_err_ptr(-EOPNOTSUPP); 13048 13049 if (bpf_program__fd(prog) < 0) { 13050 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13051 prog->name); 13052 return libbpf_err_ptr(-EINVAL); 13053 } 13054 13055 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13056 if (err) 13057 return libbpf_err_ptr(err); 13058 13059 /* When calling bpf_program__attach() explicitly, auto-attach support 13060 * is expected to work, so NULL returned link is considered an error. 13061 * This is different for skeleton's attach, see comment in 13062 * bpf_object__attach_skeleton(). 13063 */ 13064 if (!link) 13065 return libbpf_err_ptr(-EOPNOTSUPP); 13066 13067 return link; 13068 } 13069 13070 struct bpf_link_struct_ops { 13071 struct bpf_link link; 13072 int map_fd; 13073 }; 13074 13075 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13076 { 13077 struct bpf_link_struct_ops *st_link; 13078 __u32 zero = 0; 13079 13080 st_link = container_of(link, struct bpf_link_struct_ops, link); 13081 13082 if (st_link->map_fd < 0) 13083 /* w/o a real link */ 13084 return bpf_map_delete_elem(link->fd, &zero); 13085 13086 return close(link->fd); 13087 } 13088 13089 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13090 { 13091 struct bpf_link_struct_ops *link; 13092 __u32 zero = 0; 13093 int err, fd; 13094 13095 if (!bpf_map__is_struct_ops(map)) { 13096 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13097 return libbpf_err_ptr(-EINVAL); 13098 } 13099 13100 if (map->fd < 0) { 13101 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13102 return libbpf_err_ptr(-EINVAL); 13103 } 13104 13105 link = calloc(1, sizeof(*link)); 13106 if (!link) 13107 return libbpf_err_ptr(-EINVAL); 13108 13109 /* kern_vdata should be prepared during the loading phase. */ 13110 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13111 /* It can be EBUSY if the map has been used to create or 13112 * update a link before. We don't allow updating the value of 13113 * a struct_ops once it is set. That ensures that the value 13114 * never changed. So, it is safe to skip EBUSY. 13115 */ 13116 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13117 free(link); 13118 return libbpf_err_ptr(err); 13119 } 13120 13121 link->link.detach = bpf_link__detach_struct_ops; 13122 13123 if (!(map->def.map_flags & BPF_F_LINK)) { 13124 /* w/o a real link */ 13125 link->link.fd = map->fd; 13126 link->map_fd = -1; 13127 return &link->link; 13128 } 13129 13130 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13131 if (fd < 0) { 13132 free(link); 13133 return libbpf_err_ptr(fd); 13134 } 13135 13136 link->link.fd = fd; 13137 link->map_fd = map->fd; 13138 13139 return &link->link; 13140 } 13141 13142 /* 13143 * Swap the back struct_ops of a link with a new struct_ops map. 13144 */ 13145 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13146 { 13147 struct bpf_link_struct_ops *st_ops_link; 13148 __u32 zero = 0; 13149 int err; 13150 13151 if (!bpf_map__is_struct_ops(map)) 13152 return libbpf_err(-EINVAL); 13153 13154 if (map->fd < 0) { 13155 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13156 return libbpf_err(-EINVAL); 13157 } 13158 13159 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13160 /* Ensure the type of a link is correct */ 13161 if (st_ops_link->map_fd < 0) 13162 return libbpf_err(-EINVAL); 13163 13164 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13165 /* It can be EBUSY if the map has been used to create or 13166 * update a link before. We don't allow updating the value of 13167 * a struct_ops once it is set. That ensures that the value 13168 * never changed. So, it is safe to skip EBUSY. 13169 */ 13170 if (err && err != -EBUSY) 13171 return err; 13172 13173 err = bpf_link_update(link->fd, map->fd, NULL); 13174 if (err < 0) 13175 return err; 13176 13177 st_ops_link->map_fd = map->fd; 13178 13179 return 0; 13180 } 13181 13182 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13183 void *private_data); 13184 13185 static enum bpf_perf_event_ret 13186 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13187 void **copy_mem, size_t *copy_size, 13188 bpf_perf_event_print_t fn, void *private_data) 13189 { 13190 struct perf_event_mmap_page *header = mmap_mem; 13191 __u64 data_head = ring_buffer_read_head(header); 13192 __u64 data_tail = header->data_tail; 13193 void *base = ((__u8 *)header) + page_size; 13194 int ret = LIBBPF_PERF_EVENT_CONT; 13195 struct perf_event_header *ehdr; 13196 size_t ehdr_size; 13197 13198 while (data_head != data_tail) { 13199 ehdr = base + (data_tail & (mmap_size - 1)); 13200 ehdr_size = ehdr->size; 13201 13202 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13203 void *copy_start = ehdr; 13204 size_t len_first = base + mmap_size - copy_start; 13205 size_t len_secnd = ehdr_size - len_first; 13206 13207 if (*copy_size < ehdr_size) { 13208 free(*copy_mem); 13209 *copy_mem = malloc(ehdr_size); 13210 if (!*copy_mem) { 13211 *copy_size = 0; 13212 ret = LIBBPF_PERF_EVENT_ERROR; 13213 break; 13214 } 13215 *copy_size = ehdr_size; 13216 } 13217 13218 memcpy(*copy_mem, copy_start, len_first); 13219 memcpy(*copy_mem + len_first, base, len_secnd); 13220 ehdr = *copy_mem; 13221 } 13222 13223 ret = fn(ehdr, private_data); 13224 data_tail += ehdr_size; 13225 if (ret != LIBBPF_PERF_EVENT_CONT) 13226 break; 13227 } 13228 13229 ring_buffer_write_tail(header, data_tail); 13230 return libbpf_err(ret); 13231 } 13232 13233 struct perf_buffer; 13234 13235 struct perf_buffer_params { 13236 struct perf_event_attr *attr; 13237 /* if event_cb is specified, it takes precendence */ 13238 perf_buffer_event_fn event_cb; 13239 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13240 perf_buffer_sample_fn sample_cb; 13241 perf_buffer_lost_fn lost_cb; 13242 void *ctx; 13243 int cpu_cnt; 13244 int *cpus; 13245 int *map_keys; 13246 }; 13247 13248 struct perf_cpu_buf { 13249 struct perf_buffer *pb; 13250 void *base; /* mmap()'ed memory */ 13251 void *buf; /* for reconstructing segmented data */ 13252 size_t buf_size; 13253 int fd; 13254 int cpu; 13255 int map_key; 13256 }; 13257 13258 struct perf_buffer { 13259 perf_buffer_event_fn event_cb; 13260 perf_buffer_sample_fn sample_cb; 13261 perf_buffer_lost_fn lost_cb; 13262 void *ctx; /* passed into callbacks */ 13263 13264 size_t page_size; 13265 size_t mmap_size; 13266 struct perf_cpu_buf **cpu_bufs; 13267 struct epoll_event *events; 13268 int cpu_cnt; /* number of allocated CPU buffers */ 13269 int epoll_fd; /* perf event FD */ 13270 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13271 }; 13272 13273 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13274 struct perf_cpu_buf *cpu_buf) 13275 { 13276 if (!cpu_buf) 13277 return; 13278 if (cpu_buf->base && 13279 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13280 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13281 if (cpu_buf->fd >= 0) { 13282 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13283 close(cpu_buf->fd); 13284 } 13285 free(cpu_buf->buf); 13286 free(cpu_buf); 13287 } 13288 13289 void perf_buffer__free(struct perf_buffer *pb) 13290 { 13291 int i; 13292 13293 if (IS_ERR_OR_NULL(pb)) 13294 return; 13295 if (pb->cpu_bufs) { 13296 for (i = 0; i < pb->cpu_cnt; i++) { 13297 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13298 13299 if (!cpu_buf) 13300 continue; 13301 13302 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13303 perf_buffer__free_cpu_buf(pb, cpu_buf); 13304 } 13305 free(pb->cpu_bufs); 13306 } 13307 if (pb->epoll_fd >= 0) 13308 close(pb->epoll_fd); 13309 free(pb->events); 13310 free(pb); 13311 } 13312 13313 static struct perf_cpu_buf * 13314 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13315 int cpu, int map_key) 13316 { 13317 struct perf_cpu_buf *cpu_buf; 13318 int err; 13319 13320 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13321 if (!cpu_buf) 13322 return ERR_PTR(-ENOMEM); 13323 13324 cpu_buf->pb = pb; 13325 cpu_buf->cpu = cpu; 13326 cpu_buf->map_key = map_key; 13327 13328 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13329 -1, PERF_FLAG_FD_CLOEXEC); 13330 if (cpu_buf->fd < 0) { 13331 err = -errno; 13332 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13333 cpu, errstr(err)); 13334 goto error; 13335 } 13336 13337 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13338 PROT_READ | PROT_WRITE, MAP_SHARED, 13339 cpu_buf->fd, 0); 13340 if (cpu_buf->base == MAP_FAILED) { 13341 cpu_buf->base = NULL; 13342 err = -errno; 13343 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13344 cpu, errstr(err)); 13345 goto error; 13346 } 13347 13348 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13349 err = -errno; 13350 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13351 cpu, errstr(err)); 13352 goto error; 13353 } 13354 13355 return cpu_buf; 13356 13357 error: 13358 perf_buffer__free_cpu_buf(pb, cpu_buf); 13359 return (struct perf_cpu_buf *)ERR_PTR(err); 13360 } 13361 13362 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13363 struct perf_buffer_params *p); 13364 13365 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13366 perf_buffer_sample_fn sample_cb, 13367 perf_buffer_lost_fn lost_cb, 13368 void *ctx, 13369 const struct perf_buffer_opts *opts) 13370 { 13371 const size_t attr_sz = sizeof(struct perf_event_attr); 13372 struct perf_buffer_params p = {}; 13373 struct perf_event_attr attr; 13374 __u32 sample_period; 13375 13376 if (!OPTS_VALID(opts, perf_buffer_opts)) 13377 return libbpf_err_ptr(-EINVAL); 13378 13379 sample_period = OPTS_GET(opts, sample_period, 1); 13380 if (!sample_period) 13381 sample_period = 1; 13382 13383 memset(&attr, 0, attr_sz); 13384 attr.size = attr_sz; 13385 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13386 attr.type = PERF_TYPE_SOFTWARE; 13387 attr.sample_type = PERF_SAMPLE_RAW; 13388 attr.wakeup_events = sample_period; 13389 13390 p.attr = &attr; 13391 p.sample_cb = sample_cb; 13392 p.lost_cb = lost_cb; 13393 p.ctx = ctx; 13394 13395 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13396 } 13397 13398 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13399 struct perf_event_attr *attr, 13400 perf_buffer_event_fn event_cb, void *ctx, 13401 const struct perf_buffer_raw_opts *opts) 13402 { 13403 struct perf_buffer_params p = {}; 13404 13405 if (!attr) 13406 return libbpf_err_ptr(-EINVAL); 13407 13408 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13409 return libbpf_err_ptr(-EINVAL); 13410 13411 p.attr = attr; 13412 p.event_cb = event_cb; 13413 p.ctx = ctx; 13414 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13415 p.cpus = OPTS_GET(opts, cpus, NULL); 13416 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13417 13418 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13419 } 13420 13421 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13422 struct perf_buffer_params *p) 13423 { 13424 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13425 struct bpf_map_info map; 13426 struct perf_buffer *pb; 13427 bool *online = NULL; 13428 __u32 map_info_len; 13429 int err, i, j, n; 13430 13431 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13432 pr_warn("page count should be power of two, but is %zu\n", 13433 page_cnt); 13434 return ERR_PTR(-EINVAL); 13435 } 13436 13437 /* best-effort sanity checks */ 13438 memset(&map, 0, sizeof(map)); 13439 map_info_len = sizeof(map); 13440 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13441 if (err) { 13442 err = -errno; 13443 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13444 * -EBADFD, -EFAULT, or -E2BIG on real error 13445 */ 13446 if (err != -EINVAL) { 13447 pr_warn("failed to get map info for map FD %d: %s\n", 13448 map_fd, errstr(err)); 13449 return ERR_PTR(err); 13450 } 13451 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13452 map_fd); 13453 } else { 13454 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13455 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13456 map.name); 13457 return ERR_PTR(-EINVAL); 13458 } 13459 } 13460 13461 pb = calloc(1, sizeof(*pb)); 13462 if (!pb) 13463 return ERR_PTR(-ENOMEM); 13464 13465 pb->event_cb = p->event_cb; 13466 pb->sample_cb = p->sample_cb; 13467 pb->lost_cb = p->lost_cb; 13468 pb->ctx = p->ctx; 13469 13470 pb->page_size = getpagesize(); 13471 pb->mmap_size = pb->page_size * page_cnt; 13472 pb->map_fd = map_fd; 13473 13474 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13475 if (pb->epoll_fd < 0) { 13476 err = -errno; 13477 pr_warn("failed to create epoll instance: %s\n", 13478 errstr(err)); 13479 goto error; 13480 } 13481 13482 if (p->cpu_cnt > 0) { 13483 pb->cpu_cnt = p->cpu_cnt; 13484 } else { 13485 pb->cpu_cnt = libbpf_num_possible_cpus(); 13486 if (pb->cpu_cnt < 0) { 13487 err = pb->cpu_cnt; 13488 goto error; 13489 } 13490 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13491 pb->cpu_cnt = map.max_entries; 13492 } 13493 13494 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13495 if (!pb->events) { 13496 err = -ENOMEM; 13497 pr_warn("failed to allocate events: out of memory\n"); 13498 goto error; 13499 } 13500 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13501 if (!pb->cpu_bufs) { 13502 err = -ENOMEM; 13503 pr_warn("failed to allocate buffers: out of memory\n"); 13504 goto error; 13505 } 13506 13507 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13508 if (err) { 13509 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13510 goto error; 13511 } 13512 13513 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13514 struct perf_cpu_buf *cpu_buf; 13515 int cpu, map_key; 13516 13517 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13518 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13519 13520 /* in case user didn't explicitly requested particular CPUs to 13521 * be attached to, skip offline/not present CPUs 13522 */ 13523 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13524 continue; 13525 13526 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13527 if (IS_ERR(cpu_buf)) { 13528 err = PTR_ERR(cpu_buf); 13529 goto error; 13530 } 13531 13532 pb->cpu_bufs[j] = cpu_buf; 13533 13534 err = bpf_map_update_elem(pb->map_fd, &map_key, 13535 &cpu_buf->fd, 0); 13536 if (err) { 13537 err = -errno; 13538 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13539 cpu, map_key, cpu_buf->fd, 13540 errstr(err)); 13541 goto error; 13542 } 13543 13544 pb->events[j].events = EPOLLIN; 13545 pb->events[j].data.ptr = cpu_buf; 13546 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13547 &pb->events[j]) < 0) { 13548 err = -errno; 13549 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13550 cpu, cpu_buf->fd, 13551 errstr(err)); 13552 goto error; 13553 } 13554 j++; 13555 } 13556 pb->cpu_cnt = j; 13557 free(online); 13558 13559 return pb; 13560 13561 error: 13562 free(online); 13563 if (pb) 13564 perf_buffer__free(pb); 13565 return ERR_PTR(err); 13566 } 13567 13568 struct perf_sample_raw { 13569 struct perf_event_header header; 13570 uint32_t size; 13571 char data[]; 13572 }; 13573 13574 struct perf_sample_lost { 13575 struct perf_event_header header; 13576 uint64_t id; 13577 uint64_t lost; 13578 uint64_t sample_id; 13579 }; 13580 13581 static enum bpf_perf_event_ret 13582 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13583 { 13584 struct perf_cpu_buf *cpu_buf = ctx; 13585 struct perf_buffer *pb = cpu_buf->pb; 13586 void *data = e; 13587 13588 /* user wants full control over parsing perf event */ 13589 if (pb->event_cb) 13590 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13591 13592 switch (e->type) { 13593 case PERF_RECORD_SAMPLE: { 13594 struct perf_sample_raw *s = data; 13595 13596 if (pb->sample_cb) 13597 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13598 break; 13599 } 13600 case PERF_RECORD_LOST: { 13601 struct perf_sample_lost *s = data; 13602 13603 if (pb->lost_cb) 13604 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13605 break; 13606 } 13607 default: 13608 pr_warn("unknown perf sample type %d\n", e->type); 13609 return LIBBPF_PERF_EVENT_ERROR; 13610 } 13611 return LIBBPF_PERF_EVENT_CONT; 13612 } 13613 13614 static int perf_buffer__process_records(struct perf_buffer *pb, 13615 struct perf_cpu_buf *cpu_buf) 13616 { 13617 enum bpf_perf_event_ret ret; 13618 13619 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13620 pb->page_size, &cpu_buf->buf, 13621 &cpu_buf->buf_size, 13622 perf_buffer__process_record, cpu_buf); 13623 if (ret != LIBBPF_PERF_EVENT_CONT) 13624 return ret; 13625 return 0; 13626 } 13627 13628 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13629 { 13630 return pb->epoll_fd; 13631 } 13632 13633 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13634 { 13635 int i, cnt, err; 13636 13637 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13638 if (cnt < 0) 13639 return -errno; 13640 13641 for (i = 0; i < cnt; i++) { 13642 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13643 13644 err = perf_buffer__process_records(pb, cpu_buf); 13645 if (err) { 13646 pr_warn("error while processing records: %s\n", errstr(err)); 13647 return libbpf_err(err); 13648 } 13649 } 13650 return cnt; 13651 } 13652 13653 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13654 * manager. 13655 */ 13656 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13657 { 13658 return pb->cpu_cnt; 13659 } 13660 13661 /* 13662 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13663 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13664 * select()/poll()/epoll() Linux syscalls. 13665 */ 13666 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13667 { 13668 struct perf_cpu_buf *cpu_buf; 13669 13670 if (buf_idx >= pb->cpu_cnt) 13671 return libbpf_err(-EINVAL); 13672 13673 cpu_buf = pb->cpu_bufs[buf_idx]; 13674 if (!cpu_buf) 13675 return libbpf_err(-ENOENT); 13676 13677 return cpu_buf->fd; 13678 } 13679 13680 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13681 { 13682 struct perf_cpu_buf *cpu_buf; 13683 13684 if (buf_idx >= pb->cpu_cnt) 13685 return libbpf_err(-EINVAL); 13686 13687 cpu_buf = pb->cpu_bufs[buf_idx]; 13688 if (!cpu_buf) 13689 return libbpf_err(-ENOENT); 13690 13691 *buf = cpu_buf->base; 13692 *buf_size = pb->mmap_size; 13693 return 0; 13694 } 13695 13696 /* 13697 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13698 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13699 * consume, do nothing and return success. 13700 * Returns: 13701 * - 0 on success; 13702 * - <0 on failure. 13703 */ 13704 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13705 { 13706 struct perf_cpu_buf *cpu_buf; 13707 13708 if (buf_idx >= pb->cpu_cnt) 13709 return libbpf_err(-EINVAL); 13710 13711 cpu_buf = pb->cpu_bufs[buf_idx]; 13712 if (!cpu_buf) 13713 return libbpf_err(-ENOENT); 13714 13715 return perf_buffer__process_records(pb, cpu_buf); 13716 } 13717 13718 int perf_buffer__consume(struct perf_buffer *pb) 13719 { 13720 int i, err; 13721 13722 for (i = 0; i < pb->cpu_cnt; i++) { 13723 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13724 13725 if (!cpu_buf) 13726 continue; 13727 13728 err = perf_buffer__process_records(pb, cpu_buf); 13729 if (err) { 13730 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13731 i, errstr(err)); 13732 return libbpf_err(err); 13733 } 13734 } 13735 return 0; 13736 } 13737 13738 int bpf_program__set_attach_target(struct bpf_program *prog, 13739 int attach_prog_fd, 13740 const char *attach_func_name) 13741 { 13742 int btf_obj_fd = 0, btf_id = 0, err; 13743 13744 if (!prog || attach_prog_fd < 0) 13745 return libbpf_err(-EINVAL); 13746 13747 if (prog->obj->state >= OBJ_LOADED) 13748 return libbpf_err(-EINVAL); 13749 13750 if (attach_prog_fd && !attach_func_name) { 13751 /* remember attach_prog_fd and let bpf_program__load() find 13752 * BTF ID during the program load 13753 */ 13754 prog->attach_prog_fd = attach_prog_fd; 13755 return 0; 13756 } 13757 13758 if (attach_prog_fd) { 13759 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13760 attach_prog_fd, prog->obj->token_fd); 13761 if (btf_id < 0) 13762 return libbpf_err(btf_id); 13763 } else { 13764 if (!attach_func_name) 13765 return libbpf_err(-EINVAL); 13766 13767 /* load btf_vmlinux, if not yet */ 13768 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13769 if (err) 13770 return libbpf_err(err); 13771 err = find_kernel_btf_id(prog->obj, attach_func_name, 13772 prog->expected_attach_type, 13773 &btf_obj_fd, &btf_id); 13774 if (err) 13775 return libbpf_err(err); 13776 } 13777 13778 prog->attach_btf_id = btf_id; 13779 prog->attach_btf_obj_fd = btf_obj_fd; 13780 prog->attach_prog_fd = attach_prog_fd; 13781 return 0; 13782 } 13783 13784 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13785 { 13786 int err = 0, n, len, start, end = -1; 13787 bool *tmp; 13788 13789 *mask = NULL; 13790 *mask_sz = 0; 13791 13792 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13793 while (*s) { 13794 if (*s == ',' || *s == '\n') { 13795 s++; 13796 continue; 13797 } 13798 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13799 if (n <= 0 || n > 2) { 13800 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13801 err = -EINVAL; 13802 goto cleanup; 13803 } else if (n == 1) { 13804 end = start; 13805 } 13806 if (start < 0 || start > end) { 13807 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13808 start, end, s); 13809 err = -EINVAL; 13810 goto cleanup; 13811 } 13812 tmp = realloc(*mask, end + 1); 13813 if (!tmp) { 13814 err = -ENOMEM; 13815 goto cleanup; 13816 } 13817 *mask = tmp; 13818 memset(tmp + *mask_sz, 0, start - *mask_sz); 13819 memset(tmp + start, 1, end - start + 1); 13820 *mask_sz = end + 1; 13821 s += len; 13822 } 13823 if (!*mask_sz) { 13824 pr_warn("Empty CPU range\n"); 13825 return -EINVAL; 13826 } 13827 return 0; 13828 cleanup: 13829 free(*mask); 13830 *mask = NULL; 13831 return err; 13832 } 13833 13834 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13835 { 13836 int fd, err = 0, len; 13837 char buf[128]; 13838 13839 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13840 if (fd < 0) { 13841 err = -errno; 13842 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13843 return err; 13844 } 13845 len = read(fd, buf, sizeof(buf)); 13846 close(fd); 13847 if (len <= 0) { 13848 err = len ? -errno : -EINVAL; 13849 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13850 return err; 13851 } 13852 if (len >= sizeof(buf)) { 13853 pr_warn("CPU mask is too big in file %s\n", fcpu); 13854 return -E2BIG; 13855 } 13856 buf[len] = '\0'; 13857 13858 return parse_cpu_mask_str(buf, mask, mask_sz); 13859 } 13860 13861 int libbpf_num_possible_cpus(void) 13862 { 13863 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13864 static int cpus; 13865 int err, n, i, tmp_cpus; 13866 bool *mask; 13867 13868 tmp_cpus = READ_ONCE(cpus); 13869 if (tmp_cpus > 0) 13870 return tmp_cpus; 13871 13872 err = parse_cpu_mask_file(fcpu, &mask, &n); 13873 if (err) 13874 return libbpf_err(err); 13875 13876 tmp_cpus = 0; 13877 for (i = 0; i < n; i++) { 13878 if (mask[i]) 13879 tmp_cpus++; 13880 } 13881 free(mask); 13882 13883 WRITE_ONCE(cpus, tmp_cpus); 13884 return tmp_cpus; 13885 } 13886 13887 static int populate_skeleton_maps(const struct bpf_object *obj, 13888 struct bpf_map_skeleton *maps, 13889 size_t map_cnt, size_t map_skel_sz) 13890 { 13891 int i; 13892 13893 for (i = 0; i < map_cnt; i++) { 13894 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13895 struct bpf_map **map = map_skel->map; 13896 const char *name = map_skel->name; 13897 void **mmaped = map_skel->mmaped; 13898 13899 *map = bpf_object__find_map_by_name(obj, name); 13900 if (!*map) { 13901 pr_warn("failed to find skeleton map '%s'\n", name); 13902 return -ESRCH; 13903 } 13904 13905 /* externs shouldn't be pre-setup from user code */ 13906 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13907 *mmaped = (*map)->mmaped; 13908 } 13909 return 0; 13910 } 13911 13912 static int populate_skeleton_progs(const struct bpf_object *obj, 13913 struct bpf_prog_skeleton *progs, 13914 size_t prog_cnt, size_t prog_skel_sz) 13915 { 13916 int i; 13917 13918 for (i = 0; i < prog_cnt; i++) { 13919 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13920 struct bpf_program **prog = prog_skel->prog; 13921 const char *name = prog_skel->name; 13922 13923 *prog = bpf_object__find_program_by_name(obj, name); 13924 if (!*prog) { 13925 pr_warn("failed to find skeleton program '%s'\n", name); 13926 return -ESRCH; 13927 } 13928 } 13929 return 0; 13930 } 13931 13932 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13933 const struct bpf_object_open_opts *opts) 13934 { 13935 struct bpf_object *obj; 13936 int err; 13937 13938 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13939 if (IS_ERR(obj)) { 13940 err = PTR_ERR(obj); 13941 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13942 s->name, errstr(err)); 13943 return libbpf_err(err); 13944 } 13945 13946 *s->obj = obj; 13947 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13948 if (err) { 13949 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13950 return libbpf_err(err); 13951 } 13952 13953 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13954 if (err) { 13955 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 13956 return libbpf_err(err); 13957 } 13958 13959 return 0; 13960 } 13961 13962 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13963 { 13964 int err, len, var_idx, i; 13965 const char *var_name; 13966 const struct bpf_map *map; 13967 struct btf *btf; 13968 __u32 map_type_id; 13969 const struct btf_type *map_type, *var_type; 13970 const struct bpf_var_skeleton *var_skel; 13971 struct btf_var_secinfo *var; 13972 13973 if (!s->obj) 13974 return libbpf_err(-EINVAL); 13975 13976 btf = bpf_object__btf(s->obj); 13977 if (!btf) { 13978 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13979 bpf_object__name(s->obj)); 13980 return libbpf_err(-errno); 13981 } 13982 13983 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13984 if (err) { 13985 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13986 return libbpf_err(err); 13987 } 13988 13989 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13990 if (err) { 13991 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13992 return libbpf_err(err); 13993 } 13994 13995 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13996 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13997 map = *var_skel->map; 13998 map_type_id = bpf_map__btf_value_type_id(map); 13999 map_type = btf__type_by_id(btf, map_type_id); 14000 14001 if (!btf_is_datasec(map_type)) { 14002 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 14003 bpf_map__name(map), 14004 __btf_kind_str(btf_kind(map_type))); 14005 return libbpf_err(-EINVAL); 14006 } 14007 14008 len = btf_vlen(map_type); 14009 var = btf_var_secinfos(map_type); 14010 for (i = 0; i < len; i++, var++) { 14011 var_type = btf__type_by_id(btf, var->type); 14012 var_name = btf__name_by_offset(btf, var_type->name_off); 14013 if (strcmp(var_name, var_skel->name) == 0) { 14014 *var_skel->addr = map->mmaped + var->offset; 14015 break; 14016 } 14017 } 14018 } 14019 return 0; 14020 } 14021 14022 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14023 { 14024 if (!s) 14025 return; 14026 free(s->maps); 14027 free(s->progs); 14028 free(s->vars); 14029 free(s); 14030 } 14031 14032 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14033 { 14034 int i, err; 14035 14036 err = bpf_object__load(*s->obj); 14037 if (err) { 14038 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14039 return libbpf_err(err); 14040 } 14041 14042 for (i = 0; i < s->map_cnt; i++) { 14043 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14044 struct bpf_map *map = *map_skel->map; 14045 14046 if (!map_skel->mmaped) 14047 continue; 14048 14049 *map_skel->mmaped = map->mmaped; 14050 } 14051 14052 return 0; 14053 } 14054 14055 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14056 { 14057 int i, err; 14058 14059 for (i = 0; i < s->prog_cnt; i++) { 14060 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14061 struct bpf_program *prog = *prog_skel->prog; 14062 struct bpf_link **link = prog_skel->link; 14063 14064 if (!prog->autoload || !prog->autoattach) 14065 continue; 14066 14067 /* auto-attaching not supported for this program */ 14068 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14069 continue; 14070 14071 /* if user already set the link manually, don't attempt auto-attach */ 14072 if (*link) 14073 continue; 14074 14075 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14076 if (err) { 14077 pr_warn("prog '%s': failed to auto-attach: %s\n", 14078 bpf_program__name(prog), errstr(err)); 14079 return libbpf_err(err); 14080 } 14081 14082 /* It's possible that for some SEC() definitions auto-attach 14083 * is supported in some cases (e.g., if definition completely 14084 * specifies target information), but is not in other cases. 14085 * SEC("uprobe") is one such case. If user specified target 14086 * binary and function name, such BPF program can be 14087 * auto-attached. But if not, it shouldn't trigger skeleton's 14088 * attach to fail. It should just be skipped. 14089 * attach_fn signals such case with returning 0 (no error) and 14090 * setting link to NULL. 14091 */ 14092 } 14093 14094 14095 for (i = 0; i < s->map_cnt; i++) { 14096 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14097 struct bpf_map *map = *map_skel->map; 14098 struct bpf_link **link; 14099 14100 if (!map->autocreate || !map->autoattach) 14101 continue; 14102 14103 /* only struct_ops maps can be attached */ 14104 if (!bpf_map__is_struct_ops(map)) 14105 continue; 14106 14107 /* skeleton is created with earlier version of bpftool, notify user */ 14108 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14109 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14110 bpf_map__name(map)); 14111 continue; 14112 } 14113 14114 link = map_skel->link; 14115 if (!link) { 14116 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14117 bpf_map__name(map)); 14118 continue; 14119 } 14120 14121 if (*link) 14122 continue; 14123 14124 *link = bpf_map__attach_struct_ops(map); 14125 if (!*link) { 14126 err = -errno; 14127 pr_warn("map '%s': failed to auto-attach: %s\n", 14128 bpf_map__name(map), errstr(err)); 14129 return libbpf_err(err); 14130 } 14131 } 14132 14133 return 0; 14134 } 14135 14136 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14137 { 14138 int i; 14139 14140 for (i = 0; i < s->prog_cnt; i++) { 14141 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14142 struct bpf_link **link = prog_skel->link; 14143 14144 bpf_link__destroy(*link); 14145 *link = NULL; 14146 } 14147 14148 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14149 return; 14150 14151 for (i = 0; i < s->map_cnt; i++) { 14152 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14153 struct bpf_link **link = map_skel->link; 14154 14155 if (link) { 14156 bpf_link__destroy(*link); 14157 *link = NULL; 14158 } 14159 } 14160 } 14161 14162 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14163 { 14164 if (!s) 14165 return; 14166 14167 bpf_object__detach_skeleton(s); 14168 if (s->obj) 14169 bpf_object__close(*s->obj); 14170 free(s->maps); 14171 free(s->progs); 14172 free(s); 14173 } 14174