1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28 #include <linux/verification.h>
29 #include <linux/task_work.h>
30 #include <linux/irq_work.h>
31
32 #include "../../lib/kstrtox.h"
33
34 /* If kernel subsystem is allowing eBPF programs to call this function,
35 * inside its own verifier_ops->get_func_proto() callback it should return
36 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
37 *
38 * Different map implementations will rely on rcu in map methods
39 * lookup/update/delete, therefore eBPF programs must run under rcu lock
40 * if program is allowed to access maps, so check rcu_read_lock_held() or
41 * rcu_read_lock_trace_held() in all three functions.
42 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)43 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
44 {
45 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
46 !rcu_read_lock_bh_held());
47 return (unsigned long) map->ops->map_lookup_elem(map, key);
48 }
49
50 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
51 .func = bpf_map_lookup_elem,
52 .gpl_only = false,
53 .pkt_access = true,
54 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
55 .arg1_type = ARG_CONST_MAP_PTR,
56 .arg2_type = ARG_PTR_TO_MAP_KEY,
57 };
58
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)59 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
60 void *, value, u64, flags)
61 {
62 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
63 !rcu_read_lock_bh_held());
64 return map->ops->map_update_elem(map, key, value, flags);
65 }
66
67 const struct bpf_func_proto bpf_map_update_elem_proto = {
68 .func = bpf_map_update_elem,
69 .gpl_only = false,
70 .pkt_access = true,
71 .ret_type = RET_INTEGER,
72 .arg1_type = ARG_CONST_MAP_PTR,
73 .arg2_type = ARG_PTR_TO_MAP_KEY,
74 .arg3_type = ARG_PTR_TO_MAP_VALUE,
75 .arg4_type = ARG_ANYTHING,
76 };
77
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)78 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
79 {
80 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
81 !rcu_read_lock_bh_held());
82 return map->ops->map_delete_elem(map, key);
83 }
84
85 const struct bpf_func_proto bpf_map_delete_elem_proto = {
86 .func = bpf_map_delete_elem,
87 .gpl_only = false,
88 .pkt_access = true,
89 .ret_type = RET_INTEGER,
90 .arg1_type = ARG_CONST_MAP_PTR,
91 .arg2_type = ARG_PTR_TO_MAP_KEY,
92 };
93
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)94 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
95 {
96 return map->ops->map_push_elem(map, value, flags);
97 }
98
99 const struct bpf_func_proto bpf_map_push_elem_proto = {
100 .func = bpf_map_push_elem,
101 .gpl_only = false,
102 .pkt_access = true,
103 .ret_type = RET_INTEGER,
104 .arg1_type = ARG_CONST_MAP_PTR,
105 .arg2_type = ARG_PTR_TO_MAP_VALUE,
106 .arg3_type = ARG_ANYTHING,
107 };
108
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)109 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
110 {
111 return map->ops->map_pop_elem(map, value);
112 }
113
114 const struct bpf_func_proto bpf_map_pop_elem_proto = {
115 .func = bpf_map_pop_elem,
116 .gpl_only = false,
117 .ret_type = RET_INTEGER,
118 .arg1_type = ARG_CONST_MAP_PTR,
119 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
120 };
121
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)122 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
123 {
124 return map->ops->map_peek_elem(map, value);
125 }
126
127 const struct bpf_func_proto bpf_map_peek_elem_proto = {
128 .func = bpf_map_peek_elem,
129 .gpl_only = false,
130 .ret_type = RET_INTEGER,
131 .arg1_type = ARG_CONST_MAP_PTR,
132 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
133 };
134
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)135 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
136 {
137 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
138 !rcu_read_lock_bh_held());
139 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
140 }
141
142 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
143 .func = bpf_map_lookup_percpu_elem,
144 .gpl_only = false,
145 .pkt_access = true,
146 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
147 .arg1_type = ARG_CONST_MAP_PTR,
148 .arg2_type = ARG_PTR_TO_MAP_KEY,
149 .arg3_type = ARG_ANYTHING,
150 };
151
152 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
153 .func = bpf_user_rnd_u32,
154 .gpl_only = false,
155 .ret_type = RET_INTEGER,
156 };
157
BPF_CALL_0(bpf_get_smp_processor_id)158 BPF_CALL_0(bpf_get_smp_processor_id)
159 {
160 return smp_processor_id();
161 }
162
163 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
164 .func = bpf_get_smp_processor_id,
165 .gpl_only = false,
166 .ret_type = RET_INTEGER,
167 .allow_fastcall = true,
168 };
169
BPF_CALL_0(bpf_get_numa_node_id)170 BPF_CALL_0(bpf_get_numa_node_id)
171 {
172 return numa_node_id();
173 }
174
175 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
176 .func = bpf_get_numa_node_id,
177 .gpl_only = false,
178 .ret_type = RET_INTEGER,
179 };
180
BPF_CALL_0(bpf_ktime_get_ns)181 BPF_CALL_0(bpf_ktime_get_ns)
182 {
183 /* NMI safe access to clock monotonic */
184 return ktime_get_mono_fast_ns();
185 }
186
187 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
188 .func = bpf_ktime_get_ns,
189 .gpl_only = false,
190 .ret_type = RET_INTEGER,
191 };
192
BPF_CALL_0(bpf_ktime_get_boot_ns)193 BPF_CALL_0(bpf_ktime_get_boot_ns)
194 {
195 /* NMI safe access to clock boottime */
196 return ktime_get_boot_fast_ns();
197 }
198
199 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
200 .func = bpf_ktime_get_boot_ns,
201 .gpl_only = false,
202 .ret_type = RET_INTEGER,
203 };
204
BPF_CALL_0(bpf_ktime_get_coarse_ns)205 BPF_CALL_0(bpf_ktime_get_coarse_ns)
206 {
207 return ktime_get_coarse_ns();
208 }
209
210 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
211 .func = bpf_ktime_get_coarse_ns,
212 .gpl_only = false,
213 .ret_type = RET_INTEGER,
214 };
215
BPF_CALL_0(bpf_ktime_get_tai_ns)216 BPF_CALL_0(bpf_ktime_get_tai_ns)
217 {
218 /* NMI safe access to clock tai */
219 return ktime_get_tai_fast_ns();
220 }
221
222 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
223 .func = bpf_ktime_get_tai_ns,
224 .gpl_only = false,
225 .ret_type = RET_INTEGER,
226 };
227
BPF_CALL_0(bpf_get_current_pid_tgid)228 BPF_CALL_0(bpf_get_current_pid_tgid)
229 {
230 struct task_struct *task = current;
231
232 if (unlikely(!task))
233 return -EINVAL;
234
235 return (u64) task->tgid << 32 | task->pid;
236 }
237
238 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
239 .func = bpf_get_current_pid_tgid,
240 .gpl_only = false,
241 .ret_type = RET_INTEGER,
242 };
243
BPF_CALL_0(bpf_get_current_uid_gid)244 BPF_CALL_0(bpf_get_current_uid_gid)
245 {
246 struct task_struct *task = current;
247 kuid_t uid;
248 kgid_t gid;
249
250 if (unlikely(!task))
251 return -EINVAL;
252
253 current_uid_gid(&uid, &gid);
254 return (u64) from_kgid(&init_user_ns, gid) << 32 |
255 from_kuid(&init_user_ns, uid);
256 }
257
258 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
259 .func = bpf_get_current_uid_gid,
260 .gpl_only = false,
261 .ret_type = RET_INTEGER,
262 };
263
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)264 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
265 {
266 struct task_struct *task = current;
267
268 if (unlikely(!task))
269 goto err_clear;
270
271 /* Verifier guarantees that size > 0 */
272 strscpy_pad(buf, task->comm, size);
273 return 0;
274 err_clear:
275 memset(buf, 0, size);
276 return -EINVAL;
277 }
278
279 const struct bpf_func_proto bpf_get_current_comm_proto = {
280 .func = bpf_get_current_comm,
281 .gpl_only = false,
282 .ret_type = RET_INTEGER,
283 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
284 .arg2_type = ARG_CONST_SIZE,
285 };
286
287 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
288
__bpf_spin_lock(struct bpf_spin_lock * lock)289 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
290 {
291 arch_spinlock_t *l = (void *)lock;
292 union {
293 __u32 val;
294 arch_spinlock_t lock;
295 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
296
297 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
298 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
299 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
300 preempt_disable();
301 arch_spin_lock(l);
302 }
303
__bpf_spin_unlock(struct bpf_spin_lock * lock)304 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
305 {
306 arch_spinlock_t *l = (void *)lock;
307
308 arch_spin_unlock(l);
309 preempt_enable();
310 }
311
312 #else
313
__bpf_spin_lock(struct bpf_spin_lock * lock)314 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
315 {
316 atomic_t *l = (void *)lock;
317
318 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
319 do {
320 atomic_cond_read_relaxed(l, !VAL);
321 } while (atomic_xchg(l, 1));
322 }
323
__bpf_spin_unlock(struct bpf_spin_lock * lock)324 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
325 {
326 atomic_t *l = (void *)lock;
327
328 atomic_set_release(l, 0);
329 }
330
331 #endif
332
333 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
334
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)335 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
336 {
337 unsigned long flags;
338
339 local_irq_save(flags);
340 __bpf_spin_lock(lock);
341 __this_cpu_write(irqsave_flags, flags);
342 }
343
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)344 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
345 {
346 __bpf_spin_lock_irqsave(lock);
347 return 0;
348 }
349
350 const struct bpf_func_proto bpf_spin_lock_proto = {
351 .func = bpf_spin_lock,
352 .gpl_only = false,
353 .ret_type = RET_VOID,
354 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
355 .arg1_btf_id = BPF_PTR_POISON,
356 };
357
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)358 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
359 {
360 unsigned long flags;
361
362 flags = __this_cpu_read(irqsave_flags);
363 __bpf_spin_unlock(lock);
364 local_irq_restore(flags);
365 }
366
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)367 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
368 {
369 __bpf_spin_unlock_irqrestore(lock);
370 return 0;
371 }
372
373 const struct bpf_func_proto bpf_spin_unlock_proto = {
374 .func = bpf_spin_unlock,
375 .gpl_only = false,
376 .ret_type = RET_VOID,
377 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
378 .arg1_btf_id = BPF_PTR_POISON,
379 };
380
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)381 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
382 bool lock_src)
383 {
384 struct bpf_spin_lock *lock;
385
386 if (lock_src)
387 lock = src + map->record->spin_lock_off;
388 else
389 lock = dst + map->record->spin_lock_off;
390 preempt_disable();
391 __bpf_spin_lock_irqsave(lock);
392 copy_map_value(map, dst, src);
393 __bpf_spin_unlock_irqrestore(lock);
394 preempt_enable();
395 }
396
BPF_CALL_0(bpf_jiffies64)397 BPF_CALL_0(bpf_jiffies64)
398 {
399 return get_jiffies_64();
400 }
401
402 const struct bpf_func_proto bpf_jiffies64_proto = {
403 .func = bpf_jiffies64,
404 .gpl_only = false,
405 .ret_type = RET_INTEGER,
406 };
407
408 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)409 BPF_CALL_0(bpf_get_current_cgroup_id)
410 {
411 struct cgroup *cgrp;
412 u64 cgrp_id;
413
414 rcu_read_lock();
415 cgrp = task_dfl_cgroup(current);
416 cgrp_id = cgroup_id(cgrp);
417 rcu_read_unlock();
418
419 return cgrp_id;
420 }
421
422 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
423 .func = bpf_get_current_cgroup_id,
424 .gpl_only = false,
425 .ret_type = RET_INTEGER,
426 };
427
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)428 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
429 {
430 struct cgroup *cgrp;
431 struct cgroup *ancestor;
432 u64 cgrp_id;
433
434 rcu_read_lock();
435 cgrp = task_dfl_cgroup(current);
436 ancestor = cgroup_ancestor(cgrp, ancestor_level);
437 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
438 rcu_read_unlock();
439
440 return cgrp_id;
441 }
442
443 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
444 .func = bpf_get_current_ancestor_cgroup_id,
445 .gpl_only = false,
446 .ret_type = RET_INTEGER,
447 .arg1_type = ARG_ANYTHING,
448 };
449 #endif /* CONFIG_CGROUPS */
450
451 #define BPF_STRTOX_BASE_MASK 0x1F
452
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)453 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
454 unsigned long long *res, bool *is_negative)
455 {
456 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
457 const char *cur_buf = buf;
458 size_t cur_len = buf_len;
459 unsigned int consumed;
460 size_t val_len;
461 char str[64];
462
463 if (!buf || !buf_len || !res || !is_negative)
464 return -EINVAL;
465
466 if (base != 0 && base != 8 && base != 10 && base != 16)
467 return -EINVAL;
468
469 if (flags & ~BPF_STRTOX_BASE_MASK)
470 return -EINVAL;
471
472 while (cur_buf < buf + buf_len && isspace(*cur_buf))
473 ++cur_buf;
474
475 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
476 if (*is_negative)
477 ++cur_buf;
478
479 consumed = cur_buf - buf;
480 cur_len -= consumed;
481 if (!cur_len)
482 return -EINVAL;
483
484 cur_len = min(cur_len, sizeof(str) - 1);
485 memcpy(str, cur_buf, cur_len);
486 str[cur_len] = '\0';
487 cur_buf = str;
488
489 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
490 val_len = _parse_integer(cur_buf, base, res);
491
492 if (val_len & KSTRTOX_OVERFLOW)
493 return -ERANGE;
494
495 if (val_len == 0)
496 return -EINVAL;
497
498 cur_buf += val_len;
499 consumed += cur_buf - str;
500
501 return consumed;
502 }
503
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)504 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
505 long long *res)
506 {
507 unsigned long long _res;
508 bool is_negative;
509 int err;
510
511 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
512 if (err < 0)
513 return err;
514 if (is_negative) {
515 if ((long long)-_res > 0)
516 return -ERANGE;
517 *res = -_res;
518 } else {
519 if ((long long)_res < 0)
520 return -ERANGE;
521 *res = _res;
522 }
523 return err;
524 }
525
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)526 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
527 s64 *, res)
528 {
529 long long _res;
530 int err;
531
532 *res = 0;
533 err = __bpf_strtoll(buf, buf_len, flags, &_res);
534 if (err < 0)
535 return err;
536 *res = _res;
537 return err;
538 }
539
540 const struct bpf_func_proto bpf_strtol_proto = {
541 .func = bpf_strtol,
542 .gpl_only = false,
543 .ret_type = RET_INTEGER,
544 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
545 .arg2_type = ARG_CONST_SIZE,
546 .arg3_type = ARG_ANYTHING,
547 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
548 .arg4_size = sizeof(s64),
549 };
550
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)551 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
552 u64 *, res)
553 {
554 unsigned long long _res;
555 bool is_negative;
556 int err;
557
558 *res = 0;
559 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
560 if (err < 0)
561 return err;
562 if (is_negative)
563 return -EINVAL;
564 *res = _res;
565 return err;
566 }
567
568 const struct bpf_func_proto bpf_strtoul_proto = {
569 .func = bpf_strtoul,
570 .gpl_only = false,
571 .ret_type = RET_INTEGER,
572 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
573 .arg2_type = ARG_CONST_SIZE,
574 .arg3_type = ARG_ANYTHING,
575 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
576 .arg4_size = sizeof(u64),
577 };
578
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)579 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
580 {
581 return strncmp(s1, s2, s1_sz);
582 }
583
584 static const struct bpf_func_proto bpf_strncmp_proto = {
585 .func = bpf_strncmp,
586 .gpl_only = false,
587 .ret_type = RET_INTEGER,
588 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
589 .arg2_type = ARG_CONST_SIZE,
590 .arg3_type = ARG_PTR_TO_CONST_STR,
591 };
592
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)593 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
594 struct bpf_pidns_info *, nsdata, u32, size)
595 {
596 struct task_struct *task = current;
597 struct pid_namespace *pidns;
598 int err = -EINVAL;
599
600 if (unlikely(size != sizeof(struct bpf_pidns_info)))
601 goto clear;
602
603 if (unlikely((u64)(dev_t)dev != dev))
604 goto clear;
605
606 if (unlikely(!task))
607 goto clear;
608
609 pidns = task_active_pid_ns(task);
610 if (unlikely(!pidns)) {
611 err = -ENOENT;
612 goto clear;
613 }
614
615 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
616 goto clear;
617
618 nsdata->pid = task_pid_nr_ns(task, pidns);
619 nsdata->tgid = task_tgid_nr_ns(task, pidns);
620 return 0;
621 clear:
622 memset((void *)nsdata, 0, (size_t) size);
623 return err;
624 }
625
626 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
627 .func = bpf_get_ns_current_pid_tgid,
628 .gpl_only = false,
629 .ret_type = RET_INTEGER,
630 .arg1_type = ARG_ANYTHING,
631 .arg2_type = ARG_ANYTHING,
632 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
633 .arg4_type = ARG_CONST_SIZE,
634 };
635
636 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
637 .func = bpf_get_raw_cpu_id,
638 .gpl_only = false,
639 .ret_type = RET_INTEGER,
640 };
641
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)642 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
643 u64, flags, void *, data, u64, size)
644 {
645 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
646 return -EINVAL;
647
648 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
649 }
650
651 const struct bpf_func_proto bpf_event_output_data_proto = {
652 .func = bpf_event_output_data,
653 .gpl_only = true,
654 .ret_type = RET_INTEGER,
655 .arg1_type = ARG_PTR_TO_CTX,
656 .arg2_type = ARG_CONST_MAP_PTR,
657 .arg3_type = ARG_ANYTHING,
658 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
659 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
660 };
661
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)662 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
663 const void __user *, user_ptr)
664 {
665 int ret = copy_from_user(dst, user_ptr, size);
666
667 if (unlikely(ret)) {
668 memset(dst, 0, size);
669 ret = -EFAULT;
670 }
671
672 return ret;
673 }
674
675 const struct bpf_func_proto bpf_copy_from_user_proto = {
676 .func = bpf_copy_from_user,
677 .gpl_only = false,
678 .might_sleep = true,
679 .ret_type = RET_INTEGER,
680 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
681 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
682 .arg3_type = ARG_ANYTHING,
683 };
684
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)685 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
686 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
687 {
688 int ret;
689
690 /* flags is not used yet */
691 if (unlikely(flags))
692 return -EINVAL;
693
694 if (unlikely(!size))
695 return 0;
696
697 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
698 if (ret == size)
699 return 0;
700
701 memset(dst, 0, size);
702 /* Return -EFAULT for partial read */
703 return ret < 0 ? ret : -EFAULT;
704 }
705
706 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
707 .func = bpf_copy_from_user_task,
708 .gpl_only = true,
709 .might_sleep = true,
710 .ret_type = RET_INTEGER,
711 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
712 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
713 .arg3_type = ARG_ANYTHING,
714 .arg4_type = ARG_PTR_TO_BTF_ID,
715 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
716 .arg5_type = ARG_ANYTHING
717 };
718
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)719 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
720 {
721 if (cpu >= nr_cpu_ids)
722 return (unsigned long)NULL;
723
724 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
725 }
726
727 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
728 .func = bpf_per_cpu_ptr,
729 .gpl_only = false,
730 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
731 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
732 .arg2_type = ARG_ANYTHING,
733 };
734
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)735 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
736 {
737 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
738 }
739
740 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
741 .func = bpf_this_cpu_ptr,
742 .gpl_only = false,
743 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
744 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
745 };
746
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)747 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
748 size_t bufsz)
749 {
750 void __user *user_ptr = (__force void __user *)unsafe_ptr;
751
752 buf[0] = 0;
753
754 switch (fmt_ptype) {
755 case 's':
756 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
757 if ((unsigned long)unsafe_ptr < TASK_SIZE)
758 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
759 fallthrough;
760 #endif
761 case 'k':
762 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
763 case 'u':
764 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
765 }
766
767 return -EINVAL;
768 }
769
770 /* Support executing three nested bprintf helper calls on a given CPU */
771 #define MAX_BPRINTF_NEST_LEVEL 3
772
773 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
774 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
775
bpf_try_get_buffers(struct bpf_bprintf_buffers ** bufs)776 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
777 {
778 int nest_level;
779
780 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
781 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
782 this_cpu_dec(bpf_bprintf_nest_level);
783 return -EBUSY;
784 }
785 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
786
787 return 0;
788 }
789
bpf_put_buffers(void)790 void bpf_put_buffers(void)
791 {
792 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
793 return;
794 this_cpu_dec(bpf_bprintf_nest_level);
795 }
796
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 if (!data->bin_args && !data->buf)
800 return;
801 bpf_put_buffers();
802 }
803
804 /*
805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806 *
807 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808 *
809 * This can be used in two ways:
810 * - Format string verification only: when data->get_bin_args is false
811 * - Arguments preparation: in addition to the above verification, it writes in
812 * data->bin_args a binary representation of arguments usable by bstr_printf
813 * where pointers from BPF have been sanitized.
814 *
815 * In argument preparation mode, if 0 is returned, safe temporary buffers are
816 * allocated and bpf_bprintf_cleanup should be called to free them after use.
817 */
bpf_bprintf_prepare(const char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 u32 num_args, struct bpf_bprintf_data *data)
820 {
821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 struct bpf_bprintf_buffers *buffers = NULL;
824 size_t sizeof_cur_arg, sizeof_cur_ip;
825 int err, i, num_spec = 0;
826 u64 cur_arg;
827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828
829 fmt_end = strnchr(fmt, fmt_size, 0);
830 if (!fmt_end)
831 return -EINVAL;
832 fmt_size = fmt_end - fmt;
833
834 if (get_buffers && bpf_try_get_buffers(&buffers))
835 return -EBUSY;
836
837 if (data->get_bin_args) {
838 if (num_args)
839 tmp_buf = buffers->bin_args;
840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 data->bin_args = (u32 *)tmp_buf;
842 }
843
844 if (data->get_buf)
845 data->buf = buffers->buf;
846
847 for (i = 0; i < fmt_size; i++) {
848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 err = -EINVAL;
850 goto out;
851 }
852
853 if (fmt[i] != '%')
854 continue;
855
856 if (fmt[i + 1] == '%') {
857 i++;
858 continue;
859 }
860
861 if (num_spec >= num_args) {
862 err = -EINVAL;
863 goto out;
864 }
865
866 /* The string is zero-terminated so if fmt[i] != 0, we can
867 * always access fmt[i + 1], in the worst case it will be a 0
868 */
869 i++;
870
871 /* skip optional "[0 +-][num]" width formatting field */
872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
873 fmt[i] == ' ')
874 i++;
875 if (fmt[i] >= '1' && fmt[i] <= '9') {
876 i++;
877 while (fmt[i] >= '0' && fmt[i] <= '9')
878 i++;
879 }
880
881 if (fmt[i] == 'p') {
882 sizeof_cur_arg = sizeof(long);
883
884 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 ispunct(fmt[i + 1])) {
886 if (tmp_buf)
887 cur_arg = raw_args[num_spec];
888 goto nocopy_fmt;
889 }
890
891 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 fmt[i + 2] == 's') {
893 fmt_ptype = fmt[i + 1];
894 i += 2;
895 goto fmt_str;
896 }
897
898 if (fmt[i + 1] == 'K' ||
899 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 fmt[i + 1] == 'S') {
901 if (tmp_buf)
902 cur_arg = raw_args[num_spec];
903 i++;
904 goto nocopy_fmt;
905 }
906
907 if (fmt[i + 1] == 'B') {
908 if (tmp_buf) {
909 err = snprintf(tmp_buf,
910 (tmp_buf_end - tmp_buf),
911 "%pB",
912 (void *)(long)raw_args[num_spec]);
913 tmp_buf += (err + 1);
914 }
915
916 i++;
917 num_spec++;
918 continue;
919 }
920
921 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 err = -EINVAL;
925 goto out;
926 }
927
928 i += 2;
929 if (!tmp_buf)
930 goto nocopy_fmt;
931
932 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 err = -ENOSPC;
935 goto out;
936 }
937
938 unsafe_ptr = (char *)(long)raw_args[num_spec];
939 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 sizeof_cur_ip);
941 if (err < 0)
942 memset(cur_ip, 0, sizeof_cur_ip);
943
944 /* hack: bstr_printf expects IP addresses to be
945 * pre-formatted as strings, ironically, the easiest way
946 * to do that is to call snprintf.
947 */
948 ip_spec[2] = fmt[i - 1];
949 ip_spec[3] = fmt[i];
950 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 ip_spec, &cur_ip);
952
953 tmp_buf += err + 1;
954 num_spec++;
955
956 continue;
957 } else if (fmt[i] == 's') {
958 fmt_ptype = fmt[i];
959 fmt_str:
960 if (fmt[i + 1] != 0 &&
961 !isspace(fmt[i + 1]) &&
962 !ispunct(fmt[i + 1])) {
963 err = -EINVAL;
964 goto out;
965 }
966
967 if (!tmp_buf)
968 goto nocopy_fmt;
969
970 if (tmp_buf_end == tmp_buf) {
971 err = -ENOSPC;
972 goto out;
973 }
974
975 unsafe_ptr = (char *)(long)raw_args[num_spec];
976 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 fmt_ptype,
978 tmp_buf_end - tmp_buf);
979 if (err < 0) {
980 tmp_buf[0] = '\0';
981 err = 1;
982 }
983
984 tmp_buf += err;
985 num_spec++;
986
987 continue;
988 } else if (fmt[i] == 'c') {
989 if (!tmp_buf)
990 goto nocopy_fmt;
991
992 if (tmp_buf_end == tmp_buf) {
993 err = -ENOSPC;
994 goto out;
995 }
996
997 *tmp_buf = raw_args[num_spec];
998 tmp_buf++;
999 num_spec++;
1000
1001 continue;
1002 }
1003
1004 sizeof_cur_arg = sizeof(int);
1005
1006 if (fmt[i] == 'l') {
1007 sizeof_cur_arg = sizeof(long);
1008 i++;
1009 }
1010 if (fmt[i] == 'l') {
1011 sizeof_cur_arg = sizeof(long long);
1012 i++;
1013 }
1014
1015 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 fmt[i] != 'x' && fmt[i] != 'X') {
1017 err = -EINVAL;
1018 goto out;
1019 }
1020
1021 if (tmp_buf)
1022 cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 if (tmp_buf) {
1025 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 err = -ENOSPC;
1028 goto out;
1029 }
1030
1031 if (sizeof_cur_arg == 8) {
1032 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 } else {
1035 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 }
1037 tmp_buf += sizeof_cur_arg;
1038 }
1039 num_spec++;
1040 }
1041
1042 err = 0;
1043 out:
1044 if (err)
1045 bpf_bprintf_cleanup(data);
1046 return err;
1047 }
1048
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 const void *, args, u32, data_len)
1051 {
1052 struct bpf_bprintf_data data = {
1053 .get_bin_args = true,
1054 };
1055 int err, num_args;
1056
1057 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 (data_len && !args))
1059 return -EINVAL;
1060 num_args = data_len / 8;
1061
1062 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 * can safely give an unbounded size.
1064 */
1065 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 if (err < 0)
1067 return err;
1068
1069 err = bstr_printf(str, str_size, fmt, data.bin_args);
1070
1071 bpf_bprintf_cleanup(&data);
1072
1073 return err + 1;
1074 }
1075
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 .func = bpf_snprintf,
1078 .gpl_only = true,
1079 .ret_type = RET_INTEGER,
1080 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1081 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1082 .arg3_type = ARG_PTR_TO_CONST_STR,
1083 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1085 };
1086
map_key_from_value(struct bpf_map * map,void * value,u32 * arr_idx)1087 static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx)
1088 {
1089 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1090 struct bpf_array *array = container_of(map, struct bpf_array, map);
1091
1092 *arr_idx = ((char *)value - array->value) / array->elem_size;
1093 return arr_idx;
1094 }
1095 return (void *)value - round_up(map->key_size, 8);
1096 }
1097
1098 struct bpf_async_cb {
1099 struct bpf_map *map;
1100 struct bpf_prog *prog;
1101 void __rcu *callback_fn;
1102 void *value;
1103 union {
1104 struct rcu_head rcu;
1105 struct work_struct delete_work;
1106 };
1107 u64 flags;
1108 };
1109
1110 /* BPF map elements can contain 'struct bpf_timer'.
1111 * Such map owns all of its BPF timers.
1112 * 'struct bpf_timer' is allocated as part of map element allocation
1113 * and it's zero initialized.
1114 * That space is used to keep 'struct bpf_async_kern'.
1115 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1116 * remembers 'struct bpf_map *' pointer it's part of.
1117 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1118 * bpf_timer_start() arms the timer.
1119 * If user space reference to a map goes to zero at this point
1120 * ops->map_release_uref callback is responsible for cancelling the timers,
1121 * freeing their memory, and decrementing prog's refcnts.
1122 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1123 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1124 * freeing the timers when inner map is replaced or deleted by user space.
1125 */
1126 struct bpf_hrtimer {
1127 struct bpf_async_cb cb;
1128 struct hrtimer timer;
1129 atomic_t cancelling;
1130 };
1131
1132 struct bpf_work {
1133 struct bpf_async_cb cb;
1134 struct work_struct work;
1135 struct work_struct delete_work;
1136 };
1137
1138 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1139 struct bpf_async_kern {
1140 union {
1141 struct bpf_async_cb *cb;
1142 struct bpf_hrtimer *timer;
1143 struct bpf_work *work;
1144 };
1145 /* bpf_spin_lock is used here instead of spinlock_t to make
1146 * sure that it always fits into space reserved by struct bpf_timer
1147 * regardless of LOCKDEP and spinlock debug flags.
1148 */
1149 struct bpf_spin_lock lock;
1150 } __attribute__((aligned(8)));
1151
1152 enum bpf_async_type {
1153 BPF_ASYNC_TYPE_TIMER = 0,
1154 BPF_ASYNC_TYPE_WQ,
1155 };
1156
1157 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1158
bpf_timer_cb(struct hrtimer * hrtimer)1159 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1160 {
1161 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1162 struct bpf_map *map = t->cb.map;
1163 void *value = t->cb.value;
1164 bpf_callback_t callback_fn;
1165 void *key;
1166 u32 idx;
1167
1168 BTF_TYPE_EMIT(struct bpf_timer);
1169 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1170 if (!callback_fn)
1171 goto out;
1172
1173 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1174 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1175 * Remember the timer this callback is servicing to prevent
1176 * deadlock if callback_fn() calls bpf_timer_cancel() or
1177 * bpf_map_delete_elem() on the same timer.
1178 */
1179 this_cpu_write(hrtimer_running, t);
1180
1181 key = map_key_from_value(map, value, &idx);
1182
1183 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1184 /* The verifier checked that return value is zero. */
1185
1186 this_cpu_write(hrtimer_running, NULL);
1187 out:
1188 return HRTIMER_NORESTART;
1189 }
1190
bpf_wq_work(struct work_struct * work)1191 static void bpf_wq_work(struct work_struct *work)
1192 {
1193 struct bpf_work *w = container_of(work, struct bpf_work, work);
1194 struct bpf_async_cb *cb = &w->cb;
1195 struct bpf_map *map = cb->map;
1196 bpf_callback_t callback_fn;
1197 void *value = cb->value;
1198 void *key;
1199 u32 idx;
1200
1201 BTF_TYPE_EMIT(struct bpf_wq);
1202
1203 callback_fn = READ_ONCE(cb->callback_fn);
1204 if (!callback_fn)
1205 return;
1206
1207 key = map_key_from_value(map, value, &idx);
1208
1209 rcu_read_lock_trace();
1210 migrate_disable();
1211
1212 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1213
1214 migrate_enable();
1215 rcu_read_unlock_trace();
1216 }
1217
bpf_wq_delete_work(struct work_struct * work)1218 static void bpf_wq_delete_work(struct work_struct *work)
1219 {
1220 struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1221
1222 cancel_work_sync(&w->work);
1223
1224 kfree_rcu(w, cb.rcu);
1225 }
1226
bpf_timer_delete_work(struct work_struct * work)1227 static void bpf_timer_delete_work(struct work_struct *work)
1228 {
1229 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1230
1231 /* Cancel the timer and wait for callback to complete if it was running.
1232 * If hrtimer_cancel() can be safely called it's safe to call
1233 * kfree_rcu(t) right after for both preallocated and non-preallocated
1234 * maps. The async->cb = NULL was already done and no code path can see
1235 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1236 * bpf_timer_cancel_and_free will have been cancelled.
1237 */
1238 hrtimer_cancel(&t->timer);
1239 kfree_rcu(t, cb.rcu);
1240 }
1241
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1242 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1243 enum bpf_async_type type)
1244 {
1245 struct bpf_async_cb *cb;
1246 struct bpf_hrtimer *t;
1247 struct bpf_work *w;
1248 clockid_t clockid;
1249 size_t size;
1250 int ret = 0;
1251
1252 if (in_nmi())
1253 return -EOPNOTSUPP;
1254
1255 switch (type) {
1256 case BPF_ASYNC_TYPE_TIMER:
1257 size = sizeof(struct bpf_hrtimer);
1258 break;
1259 case BPF_ASYNC_TYPE_WQ:
1260 size = sizeof(struct bpf_work);
1261 break;
1262 default:
1263 return -EINVAL;
1264 }
1265
1266 __bpf_spin_lock_irqsave(&async->lock);
1267 t = async->timer;
1268 if (t) {
1269 ret = -EBUSY;
1270 goto out;
1271 }
1272
1273 /* Allocate via bpf_map_kmalloc_node() for memcg accounting. Until
1274 * kmalloc_nolock() is available, avoid locking issues by using
1275 * __GFP_HIGH (GFP_ATOMIC & ~__GFP_RECLAIM).
1276 */
1277 cb = bpf_map_kmalloc_node(map, size, __GFP_HIGH, map->numa_node);
1278 if (!cb) {
1279 ret = -ENOMEM;
1280 goto out;
1281 }
1282
1283 switch (type) {
1284 case BPF_ASYNC_TYPE_TIMER:
1285 clockid = flags & (MAX_CLOCKS - 1);
1286 t = (struct bpf_hrtimer *)cb;
1287
1288 atomic_set(&t->cancelling, 0);
1289 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1290 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1291 cb->value = (void *)async - map->record->timer_off;
1292 break;
1293 case BPF_ASYNC_TYPE_WQ:
1294 w = (struct bpf_work *)cb;
1295
1296 INIT_WORK(&w->work, bpf_wq_work);
1297 INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1298 cb->value = (void *)async - map->record->wq_off;
1299 break;
1300 }
1301 cb->map = map;
1302 cb->prog = NULL;
1303 cb->flags = flags;
1304 rcu_assign_pointer(cb->callback_fn, NULL);
1305
1306 WRITE_ONCE(async->cb, cb);
1307 /* Guarantee the order between async->cb and map->usercnt. So
1308 * when there are concurrent uref release and bpf timer init, either
1309 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1310 * timer or atomic64_read() below returns a zero usercnt.
1311 */
1312 smp_mb();
1313 if (!atomic64_read(&map->usercnt)) {
1314 /* maps with timers must be either held by user space
1315 * or pinned in bpffs.
1316 */
1317 WRITE_ONCE(async->cb, NULL);
1318 kfree(cb);
1319 ret = -EPERM;
1320 }
1321 out:
1322 __bpf_spin_unlock_irqrestore(&async->lock);
1323 return ret;
1324 }
1325
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1326 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1327 u64, flags)
1328 {
1329 clock_t clockid = flags & (MAX_CLOCKS - 1);
1330
1331 BUILD_BUG_ON(MAX_CLOCKS != 16);
1332 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1333 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1334
1335 if (flags >= MAX_CLOCKS ||
1336 /* similar to timerfd except _ALARM variants are not supported */
1337 (clockid != CLOCK_MONOTONIC &&
1338 clockid != CLOCK_REALTIME &&
1339 clockid != CLOCK_BOOTTIME))
1340 return -EINVAL;
1341
1342 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1343 }
1344
1345 static const struct bpf_func_proto bpf_timer_init_proto = {
1346 .func = bpf_timer_init,
1347 .gpl_only = true,
1348 .ret_type = RET_INTEGER,
1349 .arg1_type = ARG_PTR_TO_TIMER,
1350 .arg2_type = ARG_CONST_MAP_PTR,
1351 .arg3_type = ARG_ANYTHING,
1352 };
1353
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1354 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1355 struct bpf_prog_aux *aux, unsigned int flags,
1356 enum bpf_async_type type)
1357 {
1358 struct bpf_prog *prev, *prog = aux->prog;
1359 struct bpf_async_cb *cb;
1360 int ret = 0;
1361
1362 if (in_nmi())
1363 return -EOPNOTSUPP;
1364 __bpf_spin_lock_irqsave(&async->lock);
1365 cb = async->cb;
1366 if (!cb) {
1367 ret = -EINVAL;
1368 goto out;
1369 }
1370 if (!atomic64_read(&cb->map->usercnt)) {
1371 /* maps with timers must be either held by user space
1372 * or pinned in bpffs. Otherwise timer might still be
1373 * running even when bpf prog is detached and user space
1374 * is gone, since map_release_uref won't ever be called.
1375 */
1376 ret = -EPERM;
1377 goto out;
1378 }
1379 prev = cb->prog;
1380 if (prev != prog) {
1381 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1382 * can pick different callback_fn-s within the same prog.
1383 */
1384 prog = bpf_prog_inc_not_zero(prog);
1385 if (IS_ERR(prog)) {
1386 ret = PTR_ERR(prog);
1387 goto out;
1388 }
1389 if (prev)
1390 /* Drop prev prog refcnt when swapping with new prog */
1391 bpf_prog_put(prev);
1392 cb->prog = prog;
1393 }
1394 rcu_assign_pointer(cb->callback_fn, callback_fn);
1395 out:
1396 __bpf_spin_unlock_irqrestore(&async->lock);
1397 return ret;
1398 }
1399
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1400 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1401 struct bpf_prog_aux *, aux)
1402 {
1403 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1404 }
1405
1406 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1407 .func = bpf_timer_set_callback,
1408 .gpl_only = true,
1409 .ret_type = RET_INTEGER,
1410 .arg1_type = ARG_PTR_TO_TIMER,
1411 .arg2_type = ARG_PTR_TO_FUNC,
1412 };
1413
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1414 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1415 {
1416 struct bpf_hrtimer *t;
1417 int ret = 0;
1418 enum hrtimer_mode mode;
1419
1420 if (in_nmi())
1421 return -EOPNOTSUPP;
1422 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1423 return -EINVAL;
1424 __bpf_spin_lock_irqsave(&timer->lock);
1425 t = timer->timer;
1426 if (!t || !t->cb.prog) {
1427 ret = -EINVAL;
1428 goto out;
1429 }
1430
1431 if (flags & BPF_F_TIMER_ABS)
1432 mode = HRTIMER_MODE_ABS_SOFT;
1433 else
1434 mode = HRTIMER_MODE_REL_SOFT;
1435
1436 if (flags & BPF_F_TIMER_CPU_PIN)
1437 mode |= HRTIMER_MODE_PINNED;
1438
1439 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1440 out:
1441 __bpf_spin_unlock_irqrestore(&timer->lock);
1442 return ret;
1443 }
1444
1445 static const struct bpf_func_proto bpf_timer_start_proto = {
1446 .func = bpf_timer_start,
1447 .gpl_only = true,
1448 .ret_type = RET_INTEGER,
1449 .arg1_type = ARG_PTR_TO_TIMER,
1450 .arg2_type = ARG_ANYTHING,
1451 .arg3_type = ARG_ANYTHING,
1452 };
1453
drop_prog_refcnt(struct bpf_async_cb * async)1454 static void drop_prog_refcnt(struct bpf_async_cb *async)
1455 {
1456 struct bpf_prog *prog = async->prog;
1457
1458 if (prog) {
1459 bpf_prog_put(prog);
1460 async->prog = NULL;
1461 rcu_assign_pointer(async->callback_fn, NULL);
1462 }
1463 }
1464
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1465 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1466 {
1467 struct bpf_hrtimer *t, *cur_t;
1468 bool inc = false;
1469 int ret = 0;
1470
1471 if (in_nmi())
1472 return -EOPNOTSUPP;
1473 rcu_read_lock();
1474 __bpf_spin_lock_irqsave(&timer->lock);
1475 t = timer->timer;
1476 if (!t) {
1477 ret = -EINVAL;
1478 goto out;
1479 }
1480
1481 cur_t = this_cpu_read(hrtimer_running);
1482 if (cur_t == t) {
1483 /* If bpf callback_fn is trying to bpf_timer_cancel()
1484 * its own timer the hrtimer_cancel() will deadlock
1485 * since it waits for callback_fn to finish.
1486 */
1487 ret = -EDEADLK;
1488 goto out;
1489 }
1490
1491 /* Only account in-flight cancellations when invoked from a timer
1492 * callback, since we want to avoid waiting only if other _callbacks_
1493 * are waiting on us, to avoid introducing lockups. Non-callback paths
1494 * are ok, since nobody would synchronously wait for their completion.
1495 */
1496 if (!cur_t)
1497 goto drop;
1498 atomic_inc(&t->cancelling);
1499 /* Need full barrier after relaxed atomic_inc */
1500 smp_mb__after_atomic();
1501 inc = true;
1502 if (atomic_read(&cur_t->cancelling)) {
1503 /* We're cancelling timer t, while some other timer callback is
1504 * attempting to cancel us. In such a case, it might be possible
1505 * that timer t belongs to the other callback, or some other
1506 * callback waiting upon it (creating transitive dependencies
1507 * upon us), and we will enter a deadlock if we continue
1508 * cancelling and waiting for it synchronously, since it might
1509 * do the same. Bail!
1510 */
1511 ret = -EDEADLK;
1512 goto out;
1513 }
1514 drop:
1515 drop_prog_refcnt(&t->cb);
1516 out:
1517 __bpf_spin_unlock_irqrestore(&timer->lock);
1518 /* Cancel the timer and wait for associated callback to finish
1519 * if it was running.
1520 */
1521 ret = ret ?: hrtimer_cancel(&t->timer);
1522 if (inc)
1523 atomic_dec(&t->cancelling);
1524 rcu_read_unlock();
1525 return ret;
1526 }
1527
1528 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1529 .func = bpf_timer_cancel,
1530 .gpl_only = true,
1531 .ret_type = RET_INTEGER,
1532 .arg1_type = ARG_PTR_TO_TIMER,
1533 };
1534
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1535 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1536 {
1537 struct bpf_async_cb *cb;
1538
1539 /* Performance optimization: read async->cb without lock first. */
1540 if (!READ_ONCE(async->cb))
1541 return NULL;
1542
1543 __bpf_spin_lock_irqsave(&async->lock);
1544 /* re-read it under lock */
1545 cb = async->cb;
1546 if (!cb)
1547 goto out;
1548 drop_prog_refcnt(cb);
1549 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1550 * this timer, since it won't be initialized.
1551 */
1552 WRITE_ONCE(async->cb, NULL);
1553 out:
1554 __bpf_spin_unlock_irqrestore(&async->lock);
1555 return cb;
1556 }
1557
1558 /* This function is called by map_delete/update_elem for individual element and
1559 * by ops->map_release_uref when the user space reference to a map reaches zero.
1560 */
bpf_timer_cancel_and_free(void * val)1561 void bpf_timer_cancel_and_free(void *val)
1562 {
1563 struct bpf_hrtimer *t;
1564
1565 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1566
1567 if (!t)
1568 return;
1569 /* We check that bpf_map_delete/update_elem() was called from timer
1570 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1571 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1572 * just return -1). Though callback_fn is still running on this cpu it's
1573 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1574 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1575 * since async->cb = NULL was already done. The timer will be
1576 * effectively cancelled because bpf_timer_cb() will return
1577 * HRTIMER_NORESTART.
1578 *
1579 * However, it is possible the timer callback_fn calling us armed the
1580 * timer _before_ calling us, such that failing to cancel it here will
1581 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1582 * Therefore, we _need_ to cancel any outstanding timers before we do
1583 * kfree_rcu, even though no more timers can be armed.
1584 *
1585 * Moreover, we need to schedule work even if timer does not belong to
1586 * the calling callback_fn, as on two different CPUs, we can end up in a
1587 * situation where both sides run in parallel, try to cancel one
1588 * another, and we end up waiting on both sides in hrtimer_cancel
1589 * without making forward progress, since timer1 depends on time2
1590 * callback to finish, and vice versa.
1591 *
1592 * CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1593 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1594 *
1595 * To avoid these issues, punt to workqueue context when we are in a
1596 * timer callback.
1597 */
1598 if (this_cpu_read(hrtimer_running)) {
1599 queue_work(system_dfl_wq, &t->cb.delete_work);
1600 return;
1601 }
1602
1603 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1604 /* If the timer is running on other CPU, also use a kworker to
1605 * wait for the completion of the timer instead of trying to
1606 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1607 * completion.
1608 */
1609 if (hrtimer_try_to_cancel(&t->timer) >= 0)
1610 kfree_rcu(t, cb.rcu);
1611 else
1612 queue_work(system_dfl_wq, &t->cb.delete_work);
1613 } else {
1614 bpf_timer_delete_work(&t->cb.delete_work);
1615 }
1616 }
1617
1618 /* This function is called by map_delete/update_elem for individual element and
1619 * by ops->map_release_uref when the user space reference to a map reaches zero.
1620 */
bpf_wq_cancel_and_free(void * val)1621 void bpf_wq_cancel_and_free(void *val)
1622 {
1623 struct bpf_work *work;
1624
1625 BTF_TYPE_EMIT(struct bpf_wq);
1626
1627 work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1628 if (!work)
1629 return;
1630 /* Trigger cancel of the sleepable work, but *do not* wait for
1631 * it to finish if it was running as we might not be in a
1632 * sleepable context.
1633 * kfree will be called once the work has finished.
1634 */
1635 schedule_work(&work->delete_work);
1636 }
1637
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1638 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1639 {
1640 unsigned long *kptr = dst;
1641
1642 /* This helper may be inlined by verifier. */
1643 return xchg(kptr, (unsigned long)ptr);
1644 }
1645
1646 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1647 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1648 * denote type that verifier will determine.
1649 */
1650 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1651 .func = bpf_kptr_xchg,
1652 .gpl_only = false,
1653 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1654 .ret_btf_id = BPF_PTR_POISON,
1655 .arg1_type = ARG_KPTR_XCHG_DEST,
1656 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1657 .arg2_btf_id = BPF_PTR_POISON,
1658 };
1659
1660 /* Since the upper 8 bits of dynptr->size is reserved, the
1661 * maximum supported size is 2^24 - 1.
1662 */
1663 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1664 #define DYNPTR_TYPE_SHIFT 28
1665 #define DYNPTR_SIZE_MASK 0xFFFFFF
1666 #define DYNPTR_RDONLY_BIT BIT(31)
1667
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1668 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1669 {
1670 return ptr->size & DYNPTR_RDONLY_BIT;
1671 }
1672
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1673 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1674 {
1675 ptr->size |= DYNPTR_RDONLY_BIT;
1676 }
1677
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1678 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1679 {
1680 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1681 }
1682
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1683 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1684 {
1685 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1686 }
1687
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1688 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1689 {
1690 return ptr->size & DYNPTR_SIZE_MASK;
1691 }
1692
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1693 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1694 {
1695 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1696
1697 ptr->size = new_size | metadata;
1698 }
1699
bpf_dynptr_check_size(u32 size)1700 int bpf_dynptr_check_size(u32 size)
1701 {
1702 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1703 }
1704
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1705 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1706 enum bpf_dynptr_type type, u32 offset, u32 size)
1707 {
1708 ptr->data = data;
1709 ptr->offset = offset;
1710 ptr->size = size;
1711 bpf_dynptr_set_type(ptr, type);
1712 }
1713
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1714 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1715 {
1716 memset(ptr, 0, sizeof(*ptr));
1717 }
1718
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1719 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1720 {
1721 int err;
1722
1723 BTF_TYPE_EMIT(struct bpf_dynptr);
1724
1725 err = bpf_dynptr_check_size(size);
1726 if (err)
1727 goto error;
1728
1729 /* flags is currently unsupported */
1730 if (flags) {
1731 err = -EINVAL;
1732 goto error;
1733 }
1734
1735 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1736
1737 return 0;
1738
1739 error:
1740 bpf_dynptr_set_null(ptr);
1741 return err;
1742 }
1743
1744 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1745 .func = bpf_dynptr_from_mem,
1746 .gpl_only = false,
1747 .ret_type = RET_INTEGER,
1748 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1749 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1750 .arg3_type = ARG_ANYTHING,
1751 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1752 };
1753
__bpf_dynptr_read(void * dst,u32 len,const struct bpf_dynptr_kern * src,u32 offset,u64 flags)1754 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1755 u32 offset, u64 flags)
1756 {
1757 enum bpf_dynptr_type type;
1758 int err;
1759
1760 if (!src->data || flags)
1761 return -EINVAL;
1762
1763 err = bpf_dynptr_check_off_len(src, offset, len);
1764 if (err)
1765 return err;
1766
1767 type = bpf_dynptr_get_type(src);
1768
1769 switch (type) {
1770 case BPF_DYNPTR_TYPE_LOCAL:
1771 case BPF_DYNPTR_TYPE_RINGBUF:
1772 /* Source and destination may possibly overlap, hence use memmove to
1773 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1774 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1775 */
1776 memmove(dst, src->data + src->offset + offset, len);
1777 return 0;
1778 case BPF_DYNPTR_TYPE_SKB:
1779 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1780 case BPF_DYNPTR_TYPE_XDP:
1781 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1782 case BPF_DYNPTR_TYPE_SKB_META:
1783 memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len);
1784 return 0;
1785 default:
1786 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1787 return -EFAULT;
1788 }
1789 }
1790
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1791 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1792 u32, offset, u64, flags)
1793 {
1794 return __bpf_dynptr_read(dst, len, src, offset, flags);
1795 }
1796
1797 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1798 .func = bpf_dynptr_read,
1799 .gpl_only = false,
1800 .ret_type = RET_INTEGER,
1801 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1802 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1803 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1804 .arg4_type = ARG_ANYTHING,
1805 .arg5_type = ARG_ANYTHING,
1806 };
1807
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u32 offset,void * src,u32 len,u64 flags)1808 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1809 u32 len, u64 flags)
1810 {
1811 enum bpf_dynptr_type type;
1812 int err;
1813
1814 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1815 return -EINVAL;
1816
1817 err = bpf_dynptr_check_off_len(dst, offset, len);
1818 if (err)
1819 return err;
1820
1821 type = bpf_dynptr_get_type(dst);
1822
1823 switch (type) {
1824 case BPF_DYNPTR_TYPE_LOCAL:
1825 case BPF_DYNPTR_TYPE_RINGBUF:
1826 if (flags)
1827 return -EINVAL;
1828 /* Source and destination may possibly overlap, hence use memmove to
1829 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1830 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1831 */
1832 memmove(dst->data + dst->offset + offset, src, len);
1833 return 0;
1834 case BPF_DYNPTR_TYPE_SKB:
1835 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1836 flags);
1837 case BPF_DYNPTR_TYPE_XDP:
1838 if (flags)
1839 return -EINVAL;
1840 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1841 case BPF_DYNPTR_TYPE_SKB_META:
1842 if (flags)
1843 return -EINVAL;
1844 memmove(bpf_skb_meta_pointer(dst->data, dst->offset + offset), src, len);
1845 return 0;
1846 default:
1847 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1848 return -EFAULT;
1849 }
1850 }
1851
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1852 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1853 u32, len, u64, flags)
1854 {
1855 return __bpf_dynptr_write(dst, offset, src, len, flags);
1856 }
1857
1858 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1859 .func = bpf_dynptr_write,
1860 .gpl_only = false,
1861 .ret_type = RET_INTEGER,
1862 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1863 .arg2_type = ARG_ANYTHING,
1864 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1865 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1866 .arg5_type = ARG_ANYTHING,
1867 };
1868
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1869 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1870 {
1871 enum bpf_dynptr_type type;
1872 int err;
1873
1874 if (!ptr->data)
1875 return 0;
1876
1877 err = bpf_dynptr_check_off_len(ptr, offset, len);
1878 if (err)
1879 return 0;
1880
1881 if (__bpf_dynptr_is_rdonly(ptr))
1882 return 0;
1883
1884 type = bpf_dynptr_get_type(ptr);
1885
1886 switch (type) {
1887 case BPF_DYNPTR_TYPE_LOCAL:
1888 case BPF_DYNPTR_TYPE_RINGBUF:
1889 return (unsigned long)(ptr->data + ptr->offset + offset);
1890 case BPF_DYNPTR_TYPE_SKB:
1891 case BPF_DYNPTR_TYPE_XDP:
1892 case BPF_DYNPTR_TYPE_SKB_META:
1893 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1894 return 0;
1895 default:
1896 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1897 return 0;
1898 }
1899 }
1900
1901 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1902 .func = bpf_dynptr_data,
1903 .gpl_only = false,
1904 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1905 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1906 .arg2_type = ARG_ANYTHING,
1907 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1908 };
1909
1910 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1911 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1912 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1913 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1914 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1915 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1916 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1917 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1918 const struct bpf_func_proto bpf_send_signal_proto __weak;
1919 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1920 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1921 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1922 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1923
1924 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1925 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1926 {
1927 switch (func_id) {
1928 case BPF_FUNC_map_lookup_elem:
1929 return &bpf_map_lookup_elem_proto;
1930 case BPF_FUNC_map_update_elem:
1931 return &bpf_map_update_elem_proto;
1932 case BPF_FUNC_map_delete_elem:
1933 return &bpf_map_delete_elem_proto;
1934 case BPF_FUNC_map_push_elem:
1935 return &bpf_map_push_elem_proto;
1936 case BPF_FUNC_map_pop_elem:
1937 return &bpf_map_pop_elem_proto;
1938 case BPF_FUNC_map_peek_elem:
1939 return &bpf_map_peek_elem_proto;
1940 case BPF_FUNC_map_lookup_percpu_elem:
1941 return &bpf_map_lookup_percpu_elem_proto;
1942 case BPF_FUNC_get_prandom_u32:
1943 return &bpf_get_prandom_u32_proto;
1944 case BPF_FUNC_get_smp_processor_id:
1945 return &bpf_get_raw_smp_processor_id_proto;
1946 case BPF_FUNC_get_numa_node_id:
1947 return &bpf_get_numa_node_id_proto;
1948 case BPF_FUNC_tail_call:
1949 return &bpf_tail_call_proto;
1950 case BPF_FUNC_ktime_get_ns:
1951 return &bpf_ktime_get_ns_proto;
1952 case BPF_FUNC_ktime_get_boot_ns:
1953 return &bpf_ktime_get_boot_ns_proto;
1954 case BPF_FUNC_ktime_get_tai_ns:
1955 return &bpf_ktime_get_tai_ns_proto;
1956 case BPF_FUNC_ringbuf_output:
1957 return &bpf_ringbuf_output_proto;
1958 case BPF_FUNC_ringbuf_reserve:
1959 return &bpf_ringbuf_reserve_proto;
1960 case BPF_FUNC_ringbuf_submit:
1961 return &bpf_ringbuf_submit_proto;
1962 case BPF_FUNC_ringbuf_discard:
1963 return &bpf_ringbuf_discard_proto;
1964 case BPF_FUNC_ringbuf_query:
1965 return &bpf_ringbuf_query_proto;
1966 case BPF_FUNC_strncmp:
1967 return &bpf_strncmp_proto;
1968 case BPF_FUNC_strtol:
1969 return &bpf_strtol_proto;
1970 case BPF_FUNC_strtoul:
1971 return &bpf_strtoul_proto;
1972 case BPF_FUNC_get_current_pid_tgid:
1973 return &bpf_get_current_pid_tgid_proto;
1974 case BPF_FUNC_get_ns_current_pid_tgid:
1975 return &bpf_get_ns_current_pid_tgid_proto;
1976 case BPF_FUNC_get_current_uid_gid:
1977 return &bpf_get_current_uid_gid_proto;
1978 default:
1979 break;
1980 }
1981
1982 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1983 return NULL;
1984
1985 switch (func_id) {
1986 case BPF_FUNC_spin_lock:
1987 return &bpf_spin_lock_proto;
1988 case BPF_FUNC_spin_unlock:
1989 return &bpf_spin_unlock_proto;
1990 case BPF_FUNC_jiffies64:
1991 return &bpf_jiffies64_proto;
1992 case BPF_FUNC_per_cpu_ptr:
1993 return &bpf_per_cpu_ptr_proto;
1994 case BPF_FUNC_this_cpu_ptr:
1995 return &bpf_this_cpu_ptr_proto;
1996 case BPF_FUNC_timer_init:
1997 return &bpf_timer_init_proto;
1998 case BPF_FUNC_timer_set_callback:
1999 return &bpf_timer_set_callback_proto;
2000 case BPF_FUNC_timer_start:
2001 return &bpf_timer_start_proto;
2002 case BPF_FUNC_timer_cancel:
2003 return &bpf_timer_cancel_proto;
2004 case BPF_FUNC_kptr_xchg:
2005 return &bpf_kptr_xchg_proto;
2006 case BPF_FUNC_for_each_map_elem:
2007 return &bpf_for_each_map_elem_proto;
2008 case BPF_FUNC_loop:
2009 return &bpf_loop_proto;
2010 case BPF_FUNC_user_ringbuf_drain:
2011 return &bpf_user_ringbuf_drain_proto;
2012 case BPF_FUNC_ringbuf_reserve_dynptr:
2013 return &bpf_ringbuf_reserve_dynptr_proto;
2014 case BPF_FUNC_ringbuf_submit_dynptr:
2015 return &bpf_ringbuf_submit_dynptr_proto;
2016 case BPF_FUNC_ringbuf_discard_dynptr:
2017 return &bpf_ringbuf_discard_dynptr_proto;
2018 case BPF_FUNC_dynptr_from_mem:
2019 return &bpf_dynptr_from_mem_proto;
2020 case BPF_FUNC_dynptr_read:
2021 return &bpf_dynptr_read_proto;
2022 case BPF_FUNC_dynptr_write:
2023 return &bpf_dynptr_write_proto;
2024 case BPF_FUNC_dynptr_data:
2025 return &bpf_dynptr_data_proto;
2026 #ifdef CONFIG_CGROUPS
2027 case BPF_FUNC_cgrp_storage_get:
2028 return &bpf_cgrp_storage_get_proto;
2029 case BPF_FUNC_cgrp_storage_delete:
2030 return &bpf_cgrp_storage_delete_proto;
2031 case BPF_FUNC_get_current_cgroup_id:
2032 return &bpf_get_current_cgroup_id_proto;
2033 case BPF_FUNC_get_current_ancestor_cgroup_id:
2034 return &bpf_get_current_ancestor_cgroup_id_proto;
2035 case BPF_FUNC_current_task_under_cgroup:
2036 return &bpf_current_task_under_cgroup_proto;
2037 #endif
2038 #ifdef CONFIG_CGROUP_NET_CLASSID
2039 case BPF_FUNC_get_cgroup_classid:
2040 return &bpf_get_cgroup_classid_curr_proto;
2041 #endif
2042 case BPF_FUNC_task_storage_get:
2043 if (bpf_prog_check_recur(prog))
2044 return &bpf_task_storage_get_recur_proto;
2045 return &bpf_task_storage_get_proto;
2046 case BPF_FUNC_task_storage_delete:
2047 if (bpf_prog_check_recur(prog))
2048 return &bpf_task_storage_delete_recur_proto;
2049 return &bpf_task_storage_delete_proto;
2050 default:
2051 break;
2052 }
2053
2054 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2055 return NULL;
2056
2057 switch (func_id) {
2058 case BPF_FUNC_trace_printk:
2059 return bpf_get_trace_printk_proto();
2060 case BPF_FUNC_get_current_task:
2061 return &bpf_get_current_task_proto;
2062 case BPF_FUNC_get_current_task_btf:
2063 return &bpf_get_current_task_btf_proto;
2064 case BPF_FUNC_get_current_comm:
2065 return &bpf_get_current_comm_proto;
2066 case BPF_FUNC_probe_read_user:
2067 return &bpf_probe_read_user_proto;
2068 case BPF_FUNC_probe_read_kernel:
2069 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2070 NULL : &bpf_probe_read_kernel_proto;
2071 case BPF_FUNC_probe_read_user_str:
2072 return &bpf_probe_read_user_str_proto;
2073 case BPF_FUNC_probe_read_kernel_str:
2074 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2075 NULL : &bpf_probe_read_kernel_str_proto;
2076 case BPF_FUNC_copy_from_user:
2077 return &bpf_copy_from_user_proto;
2078 case BPF_FUNC_copy_from_user_task:
2079 return &bpf_copy_from_user_task_proto;
2080 case BPF_FUNC_snprintf_btf:
2081 return &bpf_snprintf_btf_proto;
2082 case BPF_FUNC_snprintf:
2083 return &bpf_snprintf_proto;
2084 case BPF_FUNC_task_pt_regs:
2085 return &bpf_task_pt_regs_proto;
2086 case BPF_FUNC_trace_vprintk:
2087 return bpf_get_trace_vprintk_proto();
2088 case BPF_FUNC_perf_event_read_value:
2089 return bpf_get_perf_event_read_value_proto();
2090 case BPF_FUNC_perf_event_read:
2091 return &bpf_perf_event_read_proto;
2092 case BPF_FUNC_send_signal:
2093 return &bpf_send_signal_proto;
2094 case BPF_FUNC_send_signal_thread:
2095 return &bpf_send_signal_thread_proto;
2096 case BPF_FUNC_get_task_stack:
2097 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2098 : &bpf_get_task_stack_proto;
2099 case BPF_FUNC_get_branch_snapshot:
2100 return &bpf_get_branch_snapshot_proto;
2101 case BPF_FUNC_find_vma:
2102 return &bpf_find_vma_proto;
2103 default:
2104 return NULL;
2105 }
2106 }
2107 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2108
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2109 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2110 struct bpf_spin_lock *spin_lock)
2111 {
2112 struct list_head *head = list_head, *orig_head = list_head;
2113
2114 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2115 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2116
2117 /* Do the actual list draining outside the lock to not hold the lock for
2118 * too long, and also prevent deadlocks if tracing programs end up
2119 * executing on entry/exit of functions called inside the critical
2120 * section, and end up doing map ops that call bpf_list_head_free for
2121 * the same map value again.
2122 */
2123 __bpf_spin_lock_irqsave(spin_lock);
2124 if (!head->next || list_empty(head))
2125 goto unlock;
2126 head = head->next;
2127 unlock:
2128 INIT_LIST_HEAD(orig_head);
2129 __bpf_spin_unlock_irqrestore(spin_lock);
2130
2131 while (head != orig_head) {
2132 void *obj = head;
2133
2134 obj -= field->graph_root.node_offset;
2135 head = head->next;
2136 /* The contained type can also have resources, including a
2137 * bpf_list_head which needs to be freed.
2138 */
2139 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2140 }
2141 }
2142
2143 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2144 * 'rb_node *', so field name of rb_node within containing struct is not
2145 * needed.
2146 *
2147 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2148 * graph_root.node_offset, it's not necessary to know field name
2149 * or type of node struct
2150 */
2151 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2152 for (pos = rb_first_postorder(root); \
2153 pos && ({ n = rb_next_postorder(pos); 1; }); \
2154 pos = n)
2155
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2156 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2157 struct bpf_spin_lock *spin_lock)
2158 {
2159 struct rb_root_cached orig_root, *root = rb_root;
2160 struct rb_node *pos, *n;
2161 void *obj;
2162
2163 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2164 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2165
2166 __bpf_spin_lock_irqsave(spin_lock);
2167 orig_root = *root;
2168 *root = RB_ROOT_CACHED;
2169 __bpf_spin_unlock_irqrestore(spin_lock);
2170
2171 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2172 obj = pos;
2173 obj -= field->graph_root.node_offset;
2174
2175
2176 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2177 }
2178 }
2179
2180 __bpf_kfunc_start_defs();
2181
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2182 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2183 {
2184 struct btf_struct_meta *meta = meta__ign;
2185 u64 size = local_type_id__k;
2186 void *p;
2187
2188 p = bpf_mem_alloc(&bpf_global_ma, size);
2189 if (!p)
2190 return NULL;
2191 if (meta)
2192 bpf_obj_init(meta->record, p);
2193 return p;
2194 }
2195
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2196 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2197 {
2198 u64 size = local_type_id__k;
2199
2200 /* The verifier has ensured that meta__ign must be NULL */
2201 return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2202 }
2203
2204 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2205 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2206 {
2207 struct bpf_mem_alloc *ma;
2208
2209 if (rec && rec->refcount_off >= 0 &&
2210 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2211 /* Object is refcounted and refcount_dec didn't result in 0
2212 * refcount. Return without freeing the object
2213 */
2214 return;
2215 }
2216
2217 if (rec)
2218 bpf_obj_free_fields(rec, p);
2219
2220 if (percpu)
2221 ma = &bpf_global_percpu_ma;
2222 else
2223 ma = &bpf_global_ma;
2224 bpf_mem_free_rcu(ma, p);
2225 }
2226
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2227 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2228 {
2229 struct btf_struct_meta *meta = meta__ign;
2230 void *p = p__alloc;
2231
2232 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2233 }
2234
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2235 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2236 {
2237 /* The verifier has ensured that meta__ign must be NULL */
2238 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2239 }
2240
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2241 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2242 {
2243 struct btf_struct_meta *meta = meta__ign;
2244 struct bpf_refcount *ref;
2245
2246 /* Could just cast directly to refcount_t *, but need some code using
2247 * bpf_refcount type so that it is emitted in vmlinux BTF
2248 */
2249 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2250 if (!refcount_inc_not_zero((refcount_t *)ref))
2251 return NULL;
2252
2253 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2254 * in verifier.c
2255 */
2256 return (void *)p__refcounted_kptr;
2257 }
2258
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2259 static int __bpf_list_add(struct bpf_list_node_kern *node,
2260 struct bpf_list_head *head,
2261 bool tail, struct btf_record *rec, u64 off)
2262 {
2263 struct list_head *n = &node->list_head, *h = (void *)head;
2264
2265 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2266 * called on its fields, so init here
2267 */
2268 if (unlikely(!h->next))
2269 INIT_LIST_HEAD(h);
2270
2271 /* node->owner != NULL implies !list_empty(n), no need to separately
2272 * check the latter
2273 */
2274 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2275 /* Only called from BPF prog, no need to migrate_disable */
2276 __bpf_obj_drop_impl((void *)n - off, rec, false);
2277 return -EINVAL;
2278 }
2279
2280 tail ? list_add_tail(n, h) : list_add(n, h);
2281 WRITE_ONCE(node->owner, head);
2282
2283 return 0;
2284 }
2285
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2286 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2287 struct bpf_list_node *node,
2288 void *meta__ign, u64 off)
2289 {
2290 struct bpf_list_node_kern *n = (void *)node;
2291 struct btf_struct_meta *meta = meta__ign;
2292
2293 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2294 }
2295
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2296 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2297 struct bpf_list_node *node,
2298 void *meta__ign, u64 off)
2299 {
2300 struct bpf_list_node_kern *n = (void *)node;
2301 struct btf_struct_meta *meta = meta__ign;
2302
2303 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2304 }
2305
__bpf_list_del(struct bpf_list_head * head,bool tail)2306 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2307 {
2308 struct list_head *n, *h = (void *)head;
2309 struct bpf_list_node_kern *node;
2310
2311 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2312 * called on its fields, so init here
2313 */
2314 if (unlikely(!h->next))
2315 INIT_LIST_HEAD(h);
2316 if (list_empty(h))
2317 return NULL;
2318
2319 n = tail ? h->prev : h->next;
2320 node = container_of(n, struct bpf_list_node_kern, list_head);
2321 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2322 return NULL;
2323
2324 list_del_init(n);
2325 WRITE_ONCE(node->owner, NULL);
2326 return (struct bpf_list_node *)n;
2327 }
2328
bpf_list_pop_front(struct bpf_list_head * head)2329 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2330 {
2331 return __bpf_list_del(head, false);
2332 }
2333
bpf_list_pop_back(struct bpf_list_head * head)2334 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2335 {
2336 return __bpf_list_del(head, true);
2337 }
2338
bpf_list_front(struct bpf_list_head * head)2339 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2340 {
2341 struct list_head *h = (struct list_head *)head;
2342
2343 if (list_empty(h) || unlikely(!h->next))
2344 return NULL;
2345
2346 return (struct bpf_list_node *)h->next;
2347 }
2348
bpf_list_back(struct bpf_list_head * head)2349 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2350 {
2351 struct list_head *h = (struct list_head *)head;
2352
2353 if (list_empty(h) || unlikely(!h->next))
2354 return NULL;
2355
2356 return (struct bpf_list_node *)h->prev;
2357 }
2358
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2359 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2360 struct bpf_rb_node *node)
2361 {
2362 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2363 struct rb_root_cached *r = (struct rb_root_cached *)root;
2364 struct rb_node *n = &node_internal->rb_node;
2365
2366 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2367 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2368 */
2369 if (READ_ONCE(node_internal->owner) != root)
2370 return NULL;
2371
2372 rb_erase_cached(n, r);
2373 RB_CLEAR_NODE(n);
2374 WRITE_ONCE(node_internal->owner, NULL);
2375 return (struct bpf_rb_node *)n;
2376 }
2377
2378 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2379 * program
2380 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2381 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2382 struct bpf_rb_node_kern *node,
2383 void *less, struct btf_record *rec, u64 off)
2384 {
2385 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2386 struct rb_node *parent = NULL, *n = &node->rb_node;
2387 bpf_callback_t cb = (bpf_callback_t)less;
2388 bool leftmost = true;
2389
2390 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2391 * check the latter
2392 */
2393 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2394 /* Only called from BPF prog, no need to migrate_disable */
2395 __bpf_obj_drop_impl((void *)n - off, rec, false);
2396 return -EINVAL;
2397 }
2398
2399 while (*link) {
2400 parent = *link;
2401 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2402 link = &parent->rb_left;
2403 } else {
2404 link = &parent->rb_right;
2405 leftmost = false;
2406 }
2407 }
2408
2409 rb_link_node(n, parent, link);
2410 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2411 WRITE_ONCE(node->owner, root);
2412 return 0;
2413 }
2414
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2415 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2416 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2417 void *meta__ign, u64 off)
2418 {
2419 struct btf_struct_meta *meta = meta__ign;
2420 struct bpf_rb_node_kern *n = (void *)node;
2421
2422 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2423 }
2424
bpf_rbtree_first(struct bpf_rb_root * root)2425 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2426 {
2427 struct rb_root_cached *r = (struct rb_root_cached *)root;
2428
2429 return (struct bpf_rb_node *)rb_first_cached(r);
2430 }
2431
bpf_rbtree_root(struct bpf_rb_root * root)2432 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2433 {
2434 struct rb_root_cached *r = (struct rb_root_cached *)root;
2435
2436 return (struct bpf_rb_node *)r->rb_root.rb_node;
2437 }
2438
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2439 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2440 {
2441 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2442
2443 if (READ_ONCE(node_internal->owner) != root)
2444 return NULL;
2445
2446 return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2447 }
2448
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2449 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2450 {
2451 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2452
2453 if (READ_ONCE(node_internal->owner) != root)
2454 return NULL;
2455
2456 return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2457 }
2458
2459 /**
2460 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2461 * kfunc which is not stored in a map as a kptr, must be released by calling
2462 * bpf_task_release().
2463 * @p: The task on which a reference is being acquired.
2464 */
bpf_task_acquire(struct task_struct * p)2465 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2466 {
2467 if (refcount_inc_not_zero(&p->rcu_users))
2468 return p;
2469 return NULL;
2470 }
2471
2472 /**
2473 * bpf_task_release - Release the reference acquired on a task.
2474 * @p: The task on which a reference is being released.
2475 */
bpf_task_release(struct task_struct * p)2476 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2477 {
2478 put_task_struct_rcu_user(p);
2479 }
2480
bpf_task_release_dtor(void * p)2481 __bpf_kfunc void bpf_task_release_dtor(void *p)
2482 {
2483 put_task_struct_rcu_user(p);
2484 }
2485 CFI_NOSEAL(bpf_task_release_dtor);
2486
2487 #ifdef CONFIG_CGROUPS
2488 /**
2489 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2490 * this kfunc which is not stored in a map as a kptr, must be released by
2491 * calling bpf_cgroup_release().
2492 * @cgrp: The cgroup on which a reference is being acquired.
2493 */
bpf_cgroup_acquire(struct cgroup * cgrp)2494 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2495 {
2496 return cgroup_tryget(cgrp) ? cgrp : NULL;
2497 }
2498
2499 /**
2500 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2501 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2502 * not be freed until the current grace period has ended, even if its refcount
2503 * drops to 0.
2504 * @cgrp: The cgroup on which a reference is being released.
2505 */
bpf_cgroup_release(struct cgroup * cgrp)2506 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2507 {
2508 cgroup_put(cgrp);
2509 }
2510
bpf_cgroup_release_dtor(void * cgrp)2511 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2512 {
2513 cgroup_put(cgrp);
2514 }
2515 CFI_NOSEAL(bpf_cgroup_release_dtor);
2516
2517 /**
2518 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2519 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2520 * map, must be released by calling bpf_cgroup_release().
2521 * @cgrp: The cgroup for which we're performing a lookup.
2522 * @level: The level of ancestor to look up.
2523 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2524 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2525 {
2526 struct cgroup *ancestor;
2527
2528 if (level > cgrp->level || level < 0)
2529 return NULL;
2530
2531 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2532 ancestor = cgrp->ancestors[level];
2533 if (!cgroup_tryget(ancestor))
2534 return NULL;
2535 return ancestor;
2536 }
2537
2538 /**
2539 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2540 * kfunc which is not subsequently stored in a map, must be released by calling
2541 * bpf_cgroup_release().
2542 * @cgid: cgroup id.
2543 */
bpf_cgroup_from_id(u64 cgid)2544 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2545 {
2546 struct cgroup *cgrp;
2547
2548 cgrp = __cgroup_get_from_id(cgid);
2549 if (IS_ERR(cgrp))
2550 return NULL;
2551 return cgrp;
2552 }
2553
2554 /**
2555 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2556 * task's membership of cgroup ancestry.
2557 * @task: the task to be tested
2558 * @ancestor: possible ancestor of @task's cgroup
2559 *
2560 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2561 * It follows all the same rules as cgroup_is_descendant, and only applies
2562 * to the default hierarchy.
2563 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2564 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2565 struct cgroup *ancestor)
2566 {
2567 long ret;
2568
2569 rcu_read_lock();
2570 ret = task_under_cgroup_hierarchy(task, ancestor);
2571 rcu_read_unlock();
2572 return ret;
2573 }
2574
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2575 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2576 {
2577 struct bpf_array *array = container_of(map, struct bpf_array, map);
2578 struct cgroup *cgrp;
2579
2580 if (unlikely(idx >= array->map.max_entries))
2581 return -E2BIG;
2582
2583 cgrp = READ_ONCE(array->ptrs[idx]);
2584 if (unlikely(!cgrp))
2585 return -EAGAIN;
2586
2587 return task_under_cgroup_hierarchy(current, cgrp);
2588 }
2589
2590 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2591 .func = bpf_current_task_under_cgroup,
2592 .gpl_only = false,
2593 .ret_type = RET_INTEGER,
2594 .arg1_type = ARG_CONST_MAP_PTR,
2595 .arg2_type = ARG_ANYTHING,
2596 };
2597
2598 /**
2599 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2600 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2601 * hierarchy ID.
2602 * @task: The target task
2603 * @hierarchy_id: The ID of a cgroup1 hierarchy
2604 *
2605 * On success, the cgroup is returen. On failure, NULL is returned.
2606 */
2607 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2608 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2609 {
2610 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2611
2612 if (IS_ERR(cgrp))
2613 return NULL;
2614 return cgrp;
2615 }
2616 #endif /* CONFIG_CGROUPS */
2617
2618 /**
2619 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2620 * in the root pid namespace idr. If a task is returned, it must either be
2621 * stored in a map, or released with bpf_task_release().
2622 * @pid: The pid of the task being looked up.
2623 */
bpf_task_from_pid(s32 pid)2624 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2625 {
2626 struct task_struct *p;
2627
2628 rcu_read_lock();
2629 p = find_task_by_pid_ns(pid, &init_pid_ns);
2630 if (p)
2631 p = bpf_task_acquire(p);
2632 rcu_read_unlock();
2633
2634 return p;
2635 }
2636
2637 /**
2638 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2639 * in the pid namespace of the current task. If a task is returned, it must
2640 * either be stored in a map, or released with bpf_task_release().
2641 * @vpid: The vpid of the task being looked up.
2642 */
bpf_task_from_vpid(s32 vpid)2643 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2644 {
2645 struct task_struct *p;
2646
2647 rcu_read_lock();
2648 p = find_task_by_vpid(vpid);
2649 if (p)
2650 p = bpf_task_acquire(p);
2651 rcu_read_unlock();
2652
2653 return p;
2654 }
2655
2656 /**
2657 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2658 * @p: The dynptr whose data slice to retrieve
2659 * @offset: Offset into the dynptr
2660 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2661 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2662 * length of the requested slice. This must be a constant.
2663 *
2664 * For non-skb and non-xdp type dynptrs, there is no difference between
2665 * bpf_dynptr_slice and bpf_dynptr_data.
2666 *
2667 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2668 *
2669 * If the intention is to write to the data slice, please use
2670 * bpf_dynptr_slice_rdwr.
2671 *
2672 * The user must check that the returned pointer is not null before using it.
2673 *
2674 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2675 * does not change the underlying packet data pointers, so a call to
2676 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2677 * the bpf program.
2678 *
2679 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2680 * data slice (can be either direct pointer to the data or a pointer to the user
2681 * provided buffer, with its contents containing the data, if unable to obtain
2682 * direct pointer)
2683 */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2684 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2685 void *buffer__opt, u32 buffer__szk)
2686 {
2687 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2688 enum bpf_dynptr_type type;
2689 u32 len = buffer__szk;
2690 int err;
2691
2692 if (!ptr->data)
2693 return NULL;
2694
2695 err = bpf_dynptr_check_off_len(ptr, offset, len);
2696 if (err)
2697 return NULL;
2698
2699 type = bpf_dynptr_get_type(ptr);
2700
2701 switch (type) {
2702 case BPF_DYNPTR_TYPE_LOCAL:
2703 case BPF_DYNPTR_TYPE_RINGBUF:
2704 return ptr->data + ptr->offset + offset;
2705 case BPF_DYNPTR_TYPE_SKB:
2706 if (buffer__opt)
2707 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2708 else
2709 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2710 case BPF_DYNPTR_TYPE_XDP:
2711 {
2712 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2713 if (!IS_ERR_OR_NULL(xdp_ptr))
2714 return xdp_ptr;
2715
2716 if (!buffer__opt)
2717 return NULL;
2718 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2719 return buffer__opt;
2720 }
2721 case BPF_DYNPTR_TYPE_SKB_META:
2722 return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset);
2723 default:
2724 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2725 return NULL;
2726 }
2727 }
2728
2729 /**
2730 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2731 * @p: The dynptr whose data slice to retrieve
2732 * @offset: Offset into the dynptr
2733 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2734 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2735 * length of the requested slice. This must be a constant.
2736 *
2737 * For non-skb and non-xdp type dynptrs, there is no difference between
2738 * bpf_dynptr_slice and bpf_dynptr_data.
2739 *
2740 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2741 *
2742 * The returned pointer is writable and may point to either directly the dynptr
2743 * data at the requested offset or to the buffer if unable to obtain a direct
2744 * data pointer to (example: the requested slice is to the paged area of an skb
2745 * packet). In the case where the returned pointer is to the buffer, the user
2746 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2747 * usually looks something like this pattern:
2748 *
2749 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2750 * if (!eth)
2751 * return TC_ACT_SHOT;
2752 *
2753 * // mutate eth header //
2754 *
2755 * if (eth == buffer)
2756 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2757 *
2758 * Please note that, as in the example above, the user must check that the
2759 * returned pointer is not null before using it.
2760 *
2761 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2762 * does not change the underlying packet data pointers, so a call to
2763 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2764 * the bpf program.
2765 *
2766 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2767 * data slice (can be either direct pointer to the data or a pointer to the user
2768 * provided buffer, with its contents containing the data, if unable to obtain
2769 * direct pointer)
2770 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2771 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2772 void *buffer__opt, u32 buffer__szk)
2773 {
2774 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2775
2776 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2777 return NULL;
2778
2779 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2780 *
2781 * For skb-type dynptrs, it is safe to write into the returned pointer
2782 * if the bpf program allows skb data writes. There are two possibilities
2783 * that may occur when calling bpf_dynptr_slice_rdwr:
2784 *
2785 * 1) The requested slice is in the head of the skb. In this case, the
2786 * returned pointer is directly to skb data, and if the skb is cloned, the
2787 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2788 * The pointer can be directly written into.
2789 *
2790 * 2) Some portion of the requested slice is in the paged buffer area.
2791 * In this case, the requested data will be copied out into the buffer
2792 * and the returned pointer will be a pointer to the buffer. The skb
2793 * will not be pulled. To persist the write, the user will need to call
2794 * bpf_dynptr_write(), which will pull the skb and commit the write.
2795 *
2796 * Similarly for xdp programs, if the requested slice is not across xdp
2797 * fragments, then a direct pointer will be returned, otherwise the data
2798 * will be copied out into the buffer and the user will need to call
2799 * bpf_dynptr_write() to commit changes.
2800 */
2801 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2802 }
2803
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2804 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2805 {
2806 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2807 u32 size;
2808
2809 if (!ptr->data || start > end)
2810 return -EINVAL;
2811
2812 size = __bpf_dynptr_size(ptr);
2813
2814 if (start > size || end > size)
2815 return -ERANGE;
2816
2817 ptr->offset += start;
2818 bpf_dynptr_set_size(ptr, end - start);
2819
2820 return 0;
2821 }
2822
bpf_dynptr_is_null(const struct bpf_dynptr * p)2823 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2824 {
2825 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2826
2827 return !ptr->data;
2828 }
2829
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2830 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2831 {
2832 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2833
2834 if (!ptr->data)
2835 return false;
2836
2837 return __bpf_dynptr_is_rdonly(ptr);
2838 }
2839
bpf_dynptr_size(const struct bpf_dynptr * p)2840 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2841 {
2842 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2843
2844 if (!ptr->data)
2845 return -EINVAL;
2846
2847 return __bpf_dynptr_size(ptr);
2848 }
2849
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2850 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2851 struct bpf_dynptr *clone__uninit)
2852 {
2853 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2854 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2855
2856 if (!ptr->data) {
2857 bpf_dynptr_set_null(clone);
2858 return -EINVAL;
2859 }
2860
2861 *clone = *ptr;
2862
2863 return 0;
2864 }
2865
2866 /**
2867 * bpf_dynptr_copy() - Copy data from one dynptr to another.
2868 * @dst_ptr: Destination dynptr - where data should be copied to
2869 * @dst_off: Offset into the destination dynptr
2870 * @src_ptr: Source dynptr - where data should be copied from
2871 * @src_off: Offset into the source dynptr
2872 * @size: Length of the data to copy from source to destination
2873 *
2874 * Copies data from source dynptr to destination dynptr.
2875 * Returns 0 on success; negative error, otherwise.
2876 */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u32 dst_off,struct bpf_dynptr * src_ptr,u32 src_off,u32 size)2877 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2878 struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2879 {
2880 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2881 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2882 void *src_slice, *dst_slice;
2883 char buf[256];
2884 u32 off;
2885
2886 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2887 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2888
2889 if (src_slice && dst_slice) {
2890 memmove(dst_slice, src_slice, size);
2891 return 0;
2892 }
2893
2894 if (src_slice)
2895 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2896
2897 if (dst_slice)
2898 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2899
2900 if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2901 bpf_dynptr_check_off_len(src, src_off, size))
2902 return -E2BIG;
2903
2904 off = 0;
2905 while (off < size) {
2906 u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2907 int err;
2908
2909 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2910 if (err)
2911 return err;
2912 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2913 if (err)
2914 return err;
2915
2916 off += chunk_sz;
2917 }
2918 return 0;
2919 }
2920
2921 /**
2922 * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2923 * @p: Destination dynptr - where data will be filled
2924 * @offset: Offset into the dynptr to start filling from
2925 * @size: Number of bytes to fill
2926 * @val: Constant byte to fill the memory with
2927 *
2928 * Fills the @size bytes of the memory area pointed to by @p
2929 * at @offset with the constant byte @val.
2930 * Returns 0 on success; negative error, otherwise.
2931 */
bpf_dynptr_memset(struct bpf_dynptr * p,u32 offset,u32 size,u8 val)2932 __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u32 offset, u32 size, u8 val)
2933 {
2934 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2935 u32 chunk_sz, write_off;
2936 char buf[256];
2937 void* slice;
2938 int err;
2939
2940 slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2941 if (likely(slice)) {
2942 memset(slice, val, size);
2943 return 0;
2944 }
2945
2946 if (__bpf_dynptr_is_rdonly(ptr))
2947 return -EINVAL;
2948
2949 err = bpf_dynptr_check_off_len(ptr, offset, size);
2950 if (err)
2951 return err;
2952
2953 /* Non-linear data under the dynptr, write from a local buffer */
2954 chunk_sz = min_t(u32, sizeof(buf), size);
2955 memset(buf, val, chunk_sz);
2956
2957 for (write_off = 0; write_off < size; write_off += chunk_sz) {
2958 chunk_sz = min_t(u32, sizeof(buf), size - write_off);
2959 err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
2960 if (err)
2961 return err;
2962 }
2963
2964 return 0;
2965 }
2966
bpf_cast_to_kern_ctx(void * obj)2967 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2968 {
2969 return obj;
2970 }
2971
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2972 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2973 {
2974 return (void *)obj__ign;
2975 }
2976
bpf_rcu_read_lock(void)2977 __bpf_kfunc void bpf_rcu_read_lock(void)
2978 {
2979 rcu_read_lock();
2980 }
2981
bpf_rcu_read_unlock(void)2982 __bpf_kfunc void bpf_rcu_read_unlock(void)
2983 {
2984 rcu_read_unlock();
2985 }
2986
2987 struct bpf_throw_ctx {
2988 struct bpf_prog_aux *aux;
2989 u64 sp;
2990 u64 bp;
2991 int cnt;
2992 };
2993
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2994 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2995 {
2996 struct bpf_throw_ctx *ctx = cookie;
2997 struct bpf_prog *prog;
2998
2999 /*
3000 * The RCU read lock is held to safely traverse the latch tree, but we
3001 * don't need its protection when accessing the prog, since it has an
3002 * active stack frame on the current stack trace, and won't disappear.
3003 */
3004 rcu_read_lock();
3005 prog = bpf_prog_ksym_find(ip);
3006 rcu_read_unlock();
3007 if (!prog)
3008 return !ctx->cnt;
3009 ctx->cnt++;
3010 if (bpf_is_subprog(prog))
3011 return true;
3012 ctx->aux = prog->aux;
3013 ctx->sp = sp;
3014 ctx->bp = bp;
3015 return false;
3016 }
3017
bpf_throw(u64 cookie)3018 __bpf_kfunc void bpf_throw(u64 cookie)
3019 {
3020 struct bpf_throw_ctx ctx = {};
3021
3022 arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3023 WARN_ON_ONCE(!ctx.aux);
3024 if (ctx.aux)
3025 WARN_ON_ONCE(!ctx.aux->exception_boundary);
3026 WARN_ON_ONCE(!ctx.bp);
3027 WARN_ON_ONCE(!ctx.cnt);
3028 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3029 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3030 * which skips compiler generated instrumentation to do the same.
3031 */
3032 kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3033 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3034 WARN(1, "A call to BPF exception callback should never return\n");
3035 }
3036
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)3037 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3038 {
3039 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3040 struct bpf_map *map = p__map;
3041
3042 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3043 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3044
3045 if (flags)
3046 return -EINVAL;
3047
3048 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3049 }
3050
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)3051 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3052 {
3053 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3054 struct bpf_work *w;
3055
3056 if (in_nmi())
3057 return -EOPNOTSUPP;
3058 if (flags)
3059 return -EINVAL;
3060 w = READ_ONCE(async->work);
3061 if (!w || !READ_ONCE(w->cb.prog))
3062 return -EINVAL;
3063
3064 schedule_work(&w->work);
3065 return 0;
3066 }
3067
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3068 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3069 int (callback_fn)(void *map, int *key, void *value),
3070 unsigned int flags,
3071 void *aux__prog)
3072 {
3073 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3074 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3075
3076 if (flags)
3077 return -EINVAL;
3078
3079 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3080 }
3081
bpf_preempt_disable(void)3082 __bpf_kfunc void bpf_preempt_disable(void)
3083 {
3084 preempt_disable();
3085 }
3086
bpf_preempt_enable(void)3087 __bpf_kfunc void bpf_preempt_enable(void)
3088 {
3089 preempt_enable();
3090 }
3091
3092 struct bpf_iter_bits {
3093 __u64 __opaque[2];
3094 } __aligned(8);
3095
3096 #define BITS_ITER_NR_WORDS_MAX 511
3097
3098 struct bpf_iter_bits_kern {
3099 union {
3100 __u64 *bits;
3101 __u64 bits_copy;
3102 };
3103 int nr_bits;
3104 int bit;
3105 } __aligned(8);
3106
3107 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3108 * a u64 pointer and an unsigned long pointer to find_next_bit() will
3109 * return the same result, as both point to the same 8-byte area.
3110 *
3111 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3112 * pointer also makes no difference. This is because the first iterated
3113 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3114 * long is composed of bits 32-63 of the u64.
3115 *
3116 * However, for 32-bit big-endian hosts, this is not the case. The first
3117 * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3118 * ulong values within the u64.
3119 */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3120 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3121 {
3122 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3123 unsigned int i;
3124
3125 for (i = 0; i < nr; i++)
3126 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3127 #endif
3128 }
3129
3130 /**
3131 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3132 * @it: The new bpf_iter_bits to be created
3133 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3134 * @nr_words: The size of the specified memory area, measured in 8-byte units.
3135 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3136 * further reduced by the BPF memory allocator implementation.
3137 *
3138 * This function initializes a new bpf_iter_bits structure for iterating over
3139 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3140 * copies the data of the memory area to the newly created bpf_iter_bits @it for
3141 * subsequent iteration operations.
3142 *
3143 * On success, 0 is returned. On failure, ERR is returned.
3144 */
3145 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3146 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3147 {
3148 struct bpf_iter_bits_kern *kit = (void *)it;
3149 u32 nr_bytes = nr_words * sizeof(u64);
3150 u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3151 int err;
3152
3153 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3154 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3155 __alignof__(struct bpf_iter_bits));
3156
3157 kit->nr_bits = 0;
3158 kit->bits_copy = 0;
3159 kit->bit = -1;
3160
3161 if (!unsafe_ptr__ign || !nr_words)
3162 return -EINVAL;
3163 if (nr_words > BITS_ITER_NR_WORDS_MAX)
3164 return -E2BIG;
3165
3166 /* Optimization for u64 mask */
3167 if (nr_bits == 64) {
3168 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3169 if (err)
3170 return -EFAULT;
3171
3172 swap_ulong_in_u64(&kit->bits_copy, nr_words);
3173
3174 kit->nr_bits = nr_bits;
3175 return 0;
3176 }
3177
3178 if (bpf_mem_alloc_check_size(false, nr_bytes))
3179 return -E2BIG;
3180
3181 /* Fallback to memalloc */
3182 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3183 if (!kit->bits)
3184 return -ENOMEM;
3185
3186 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3187 if (err) {
3188 bpf_mem_free(&bpf_global_ma, kit->bits);
3189 return err;
3190 }
3191
3192 swap_ulong_in_u64(kit->bits, nr_words);
3193
3194 kit->nr_bits = nr_bits;
3195 return 0;
3196 }
3197
3198 /**
3199 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3200 * @it: The bpf_iter_bits to be checked
3201 *
3202 * This function returns a pointer to a number representing the value of the
3203 * next bit in the bits.
3204 *
3205 * If there are no further bits available, it returns NULL.
3206 */
bpf_iter_bits_next(struct bpf_iter_bits * it)3207 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3208 {
3209 struct bpf_iter_bits_kern *kit = (void *)it;
3210 int bit = kit->bit, nr_bits = kit->nr_bits;
3211 const void *bits;
3212
3213 if (!nr_bits || bit >= nr_bits)
3214 return NULL;
3215
3216 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3217 bit = find_next_bit(bits, nr_bits, bit + 1);
3218 if (bit >= nr_bits) {
3219 kit->bit = bit;
3220 return NULL;
3221 }
3222
3223 kit->bit = bit;
3224 return &kit->bit;
3225 }
3226
3227 /**
3228 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3229 * @it: The bpf_iter_bits to be destroyed
3230 *
3231 * Destroy the resource associated with the bpf_iter_bits.
3232 */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3233 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3234 {
3235 struct bpf_iter_bits_kern *kit = (void *)it;
3236
3237 if (kit->nr_bits <= 64)
3238 return;
3239 bpf_mem_free(&bpf_global_ma, kit->bits);
3240 }
3241
3242 /**
3243 * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3244 * @dst: Destination address, in kernel space. This buffer must be
3245 * at least @dst__sz bytes long.
3246 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3247 * @unsafe_ptr__ign: Source address, in user space.
3248 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3249 *
3250 * Copies a NUL-terminated string from userspace to BPF space. If user string is
3251 * too long this will still ensure zero termination in the dst buffer unless
3252 * buffer size is 0.
3253 *
3254 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3255 * memset all of @dst on failure.
3256 */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3257 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3258 {
3259 int ret;
3260
3261 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3262 return -EINVAL;
3263
3264 if (unlikely(!dst__sz))
3265 return 0;
3266
3267 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3268 if (ret < 0) {
3269 if (flags & BPF_F_PAD_ZEROS)
3270 memset((char *)dst, 0, dst__sz);
3271
3272 return ret;
3273 }
3274
3275 if (flags & BPF_F_PAD_ZEROS)
3276 memset((char *)dst + ret, 0, dst__sz - ret);
3277 else
3278 ((char *)dst)[ret] = '\0';
3279
3280 return ret + 1;
3281 }
3282
3283 /**
3284 * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3285 * @dst: Destination address, in kernel space. This buffer must be
3286 * at least @dst__sz bytes long.
3287 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3288 * @unsafe_ptr__ign: Source address in the task's address space.
3289 * @tsk: The task whose address space will be used
3290 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3291 *
3292 * Copies a NUL terminated string from a task's address space to @dst__sz
3293 * buffer. If user string is too long this will still ensure zero termination
3294 * in the @dst__sz buffer unless buffer size is 0.
3295 *
3296 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3297 * and memset all of @dst__sz on failure.
3298 *
3299 * Return: The number of copied bytes on success including the NUL terminator.
3300 * A negative error code on failure.
3301 */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3302 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3303 const void __user *unsafe_ptr__ign,
3304 struct task_struct *tsk, u64 flags)
3305 {
3306 int ret;
3307
3308 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3309 return -EINVAL;
3310
3311 if (unlikely(dst__sz == 0))
3312 return 0;
3313
3314 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3315 if (ret < 0) {
3316 if (flags & BPF_F_PAD_ZEROS)
3317 memset(dst, 0, dst__sz);
3318 return ret;
3319 }
3320
3321 if (flags & BPF_F_PAD_ZEROS)
3322 memset(dst + ret, 0, dst__sz - ret);
3323
3324 return ret + 1;
3325 }
3326
3327 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3328 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3329 * unsigned long always points to 8-byte region on stack, the kernel may only
3330 * read and write the 4-bytes on 32-bit.
3331 */
bpf_local_irq_save(unsigned long * flags__irq_flag)3332 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3333 {
3334 local_irq_save(*flags__irq_flag);
3335 }
3336
bpf_local_irq_restore(unsigned long * flags__irq_flag)3337 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3338 {
3339 local_irq_restore(*flags__irq_flag);
3340 }
3341
__bpf_trap(void)3342 __bpf_kfunc void __bpf_trap(void)
3343 {
3344 }
3345
3346 /*
3347 * Kfuncs for string operations.
3348 *
3349 * Since strings are not necessarily %NUL-terminated, we cannot directly call
3350 * in-kernel implementations. Instead, we open-code the implementations using
3351 * __get_kernel_nofault instead of plain dereference to make them safe.
3352 */
3353
__bpf_strcasecmp(const char * s1,const char * s2,bool ignore_case)3354 static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case)
3355 {
3356 char c1, c2;
3357 int i;
3358
3359 if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3360 !copy_from_kernel_nofault_allowed(s2, 1)) {
3361 return -ERANGE;
3362 }
3363
3364 guard(pagefault)();
3365 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3366 __get_kernel_nofault(&c1, s1, char, err_out);
3367 __get_kernel_nofault(&c2, s2, char, err_out);
3368 if (ignore_case) {
3369 c1 = tolower(c1);
3370 c2 = tolower(c2);
3371 }
3372 if (c1 != c2)
3373 return c1 < c2 ? -1 : 1;
3374 if (c1 == '\0')
3375 return 0;
3376 s1++;
3377 s2++;
3378 }
3379 return -E2BIG;
3380 err_out:
3381 return -EFAULT;
3382 }
3383
3384 /**
3385 * bpf_strcmp - Compare two strings
3386 * @s1__ign: One string
3387 * @s2__ign: Another string
3388 *
3389 * Return:
3390 * * %0 - Strings are equal
3391 * * %-1 - @s1__ign is smaller
3392 * * %1 - @s2__ign is smaller
3393 * * %-EFAULT - Cannot read one of the strings
3394 * * %-E2BIG - One of strings is too large
3395 * * %-ERANGE - One of strings is outside of kernel address space
3396 */
bpf_strcmp(const char * s1__ign,const char * s2__ign)3397 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3398 {
3399 return __bpf_strcasecmp(s1__ign, s2__ign, false);
3400 }
3401
3402 /**
3403 * bpf_strcasecmp - Compare two strings, ignoring the case of the characters
3404 * @s1__ign: One string
3405 * @s2__ign: Another string
3406 *
3407 * Return:
3408 * * %0 - Strings are equal
3409 * * %-1 - @s1__ign is smaller
3410 * * %1 - @s2__ign is smaller
3411 * * %-EFAULT - Cannot read one of the strings
3412 * * %-E2BIG - One of strings is too large
3413 * * %-ERANGE - One of strings is outside of kernel address space
3414 */
bpf_strcasecmp(const char * s1__ign,const char * s2__ign)3415 __bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign)
3416 {
3417 return __bpf_strcasecmp(s1__ign, s2__ign, true);
3418 }
3419
3420 /**
3421 * bpf_strnchr - Find a character in a length limited string
3422 * @s__ign: The string to be searched
3423 * @count: The number of characters to be searched
3424 * @c: The character to search for
3425 *
3426 * Note that the %NUL-terminator is considered part of the string, and can
3427 * be searched for.
3428 *
3429 * Return:
3430 * * >=0 - Index of the first occurrence of @c within @s__ign
3431 * * %-ENOENT - @c not found in the first @count characters of @s__ign
3432 * * %-EFAULT - Cannot read @s__ign
3433 * * %-E2BIG - @s__ign is too large
3434 * * %-ERANGE - @s__ign is outside of kernel address space
3435 */
bpf_strnchr(const char * s__ign,size_t count,char c)3436 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3437 {
3438 char sc;
3439 int i;
3440
3441 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3442 return -ERANGE;
3443
3444 guard(pagefault)();
3445 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3446 __get_kernel_nofault(&sc, s__ign, char, err_out);
3447 if (sc == c)
3448 return i;
3449 if (sc == '\0')
3450 return -ENOENT;
3451 s__ign++;
3452 }
3453 return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3454 err_out:
3455 return -EFAULT;
3456 }
3457
3458 /**
3459 * bpf_strchr - Find the first occurrence of a character in a string
3460 * @s__ign: The string to be searched
3461 * @c: The character to search for
3462 *
3463 * Note that the %NUL-terminator is considered part of the string, and can
3464 * be searched for.
3465 *
3466 * Return:
3467 * * >=0 - The index of the first occurrence of @c within @s__ign
3468 * * %-ENOENT - @c not found in @s__ign
3469 * * %-EFAULT - Cannot read @s__ign
3470 * * %-E2BIG - @s__ign is too large
3471 * * %-ERANGE - @s__ign is outside of kernel address space
3472 */
bpf_strchr(const char * s__ign,char c)3473 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3474 {
3475 return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3476 }
3477
3478 /**
3479 * bpf_strchrnul - Find and return a character in a string, or end of string
3480 * @s__ign: The string to be searched
3481 * @c: The character to search for
3482 *
3483 * Return:
3484 * * >=0 - Index of the first occurrence of @c within @s__ign or index of
3485 * the null byte at the end of @s__ign when @c is not found
3486 * * %-EFAULT - Cannot read @s__ign
3487 * * %-E2BIG - @s__ign is too large
3488 * * %-ERANGE - @s__ign is outside of kernel address space
3489 */
bpf_strchrnul(const char * s__ign,char c)3490 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3491 {
3492 char sc;
3493 int i;
3494
3495 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3496 return -ERANGE;
3497
3498 guard(pagefault)();
3499 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3500 __get_kernel_nofault(&sc, s__ign, char, err_out);
3501 if (sc == '\0' || sc == c)
3502 return i;
3503 s__ign++;
3504 }
3505 return -E2BIG;
3506 err_out:
3507 return -EFAULT;
3508 }
3509
3510 /**
3511 * bpf_strrchr - Find the last occurrence of a character in a string
3512 * @s__ign: The string to be searched
3513 * @c: The character to search for
3514 *
3515 * Return:
3516 * * >=0 - Index of the last occurrence of @c within @s__ign
3517 * * %-ENOENT - @c not found in @s__ign
3518 * * %-EFAULT - Cannot read @s__ign
3519 * * %-E2BIG - @s__ign is too large
3520 * * %-ERANGE - @s__ign is outside of kernel address space
3521 */
bpf_strrchr(const char * s__ign,int c)3522 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3523 {
3524 char sc;
3525 int i, last = -ENOENT;
3526
3527 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3528 return -ERANGE;
3529
3530 guard(pagefault)();
3531 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3532 __get_kernel_nofault(&sc, s__ign, char, err_out);
3533 if (sc == c)
3534 last = i;
3535 if (sc == '\0')
3536 return last;
3537 s__ign++;
3538 }
3539 return -E2BIG;
3540 err_out:
3541 return -EFAULT;
3542 }
3543
3544 /**
3545 * bpf_strnlen - Calculate the length of a length-limited string
3546 * @s__ign: The string
3547 * @count: The maximum number of characters to count
3548 *
3549 * Return:
3550 * * >=0 - The length of @s__ign
3551 * * %-EFAULT - Cannot read @s__ign
3552 * * %-E2BIG - @s__ign is too large
3553 * * %-ERANGE - @s__ign is outside of kernel address space
3554 */
bpf_strnlen(const char * s__ign,size_t count)3555 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3556 {
3557 char c;
3558 int i;
3559
3560 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3561 return -ERANGE;
3562
3563 guard(pagefault)();
3564 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3565 __get_kernel_nofault(&c, s__ign, char, err_out);
3566 if (c == '\0')
3567 return i;
3568 s__ign++;
3569 }
3570 return i == XATTR_SIZE_MAX ? -E2BIG : i;
3571 err_out:
3572 return -EFAULT;
3573 }
3574
3575 /**
3576 * bpf_strlen - Calculate the length of a string
3577 * @s__ign: The string
3578 *
3579 * Return:
3580 * * >=0 - The length of @s__ign
3581 * * %-EFAULT - Cannot read @s__ign
3582 * * %-E2BIG - @s__ign is too large
3583 * * %-ERANGE - @s__ign is outside of kernel address space
3584 */
bpf_strlen(const char * s__ign)3585 __bpf_kfunc int bpf_strlen(const char *s__ign)
3586 {
3587 return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3588 }
3589
3590 /**
3591 * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3592 * only contains letters in @accept__ign
3593 * @s__ign: The string to be searched
3594 * @accept__ign: The string to search for
3595 *
3596 * Return:
3597 * * >=0 - The length of the initial substring of @s__ign which only
3598 * contains letters from @accept__ign
3599 * * %-EFAULT - Cannot read one of the strings
3600 * * %-E2BIG - One of the strings is too large
3601 * * %-ERANGE - One of the strings is outside of kernel address space
3602 */
bpf_strspn(const char * s__ign,const char * accept__ign)3603 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3604 {
3605 char cs, ca;
3606 int i, j;
3607
3608 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3609 !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3610 return -ERANGE;
3611 }
3612
3613 guard(pagefault)();
3614 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3615 __get_kernel_nofault(&cs, s__ign, char, err_out);
3616 if (cs == '\0')
3617 return i;
3618 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3619 __get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3620 if (cs == ca || ca == '\0')
3621 break;
3622 }
3623 if (j == XATTR_SIZE_MAX)
3624 return -E2BIG;
3625 if (ca == '\0')
3626 return i;
3627 s__ign++;
3628 }
3629 return -E2BIG;
3630 err_out:
3631 return -EFAULT;
3632 }
3633
3634 /**
3635 * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3636 * does not contain letters in @reject__ign
3637 * @s__ign: The string to be searched
3638 * @reject__ign: The string to search for
3639 *
3640 * Return:
3641 * * >=0 - The length of the initial substring of @s__ign which does not
3642 * contain letters from @reject__ign
3643 * * %-EFAULT - Cannot read one of the strings
3644 * * %-E2BIG - One of the strings is too large
3645 * * %-ERANGE - One of the strings is outside of kernel address space
3646 */
bpf_strcspn(const char * s__ign,const char * reject__ign)3647 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3648 {
3649 char cs, cr;
3650 int i, j;
3651
3652 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3653 !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3654 return -ERANGE;
3655 }
3656
3657 guard(pagefault)();
3658 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3659 __get_kernel_nofault(&cs, s__ign, char, err_out);
3660 if (cs == '\0')
3661 return i;
3662 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3663 __get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3664 if (cs == cr || cr == '\0')
3665 break;
3666 }
3667 if (j == XATTR_SIZE_MAX)
3668 return -E2BIG;
3669 if (cr != '\0')
3670 return i;
3671 s__ign++;
3672 }
3673 return -E2BIG;
3674 err_out:
3675 return -EFAULT;
3676 }
3677
3678 /**
3679 * bpf_strnstr - Find the first substring in a length-limited string
3680 * @s1__ign: The string to be searched
3681 * @s2__ign: The string to search for
3682 * @len: the maximum number of characters to search
3683 *
3684 * Return:
3685 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3686 * within the first @len characters of @s1__ign
3687 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3688 * * %-EFAULT - Cannot read one of the strings
3689 * * %-E2BIG - One of the strings is too large
3690 * * %-ERANGE - One of the strings is outside of kernel address space
3691 */
bpf_strnstr(const char * s1__ign,const char * s2__ign,size_t len)3692 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len)
3693 {
3694 char c1, c2;
3695 int i, j;
3696
3697 if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3698 !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3699 return -ERANGE;
3700 }
3701
3702 guard(pagefault)();
3703 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3704 for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3705 __get_kernel_nofault(&c2, s2__ign + j, char, err_out);
3706 if (c2 == '\0')
3707 return i;
3708 /*
3709 * We allow reading an extra byte from s2 (note the
3710 * `i + j <= len` above) to cover the case when s2 is
3711 * a suffix of the first len chars of s1.
3712 */
3713 if (i + j == len)
3714 break;
3715 __get_kernel_nofault(&c1, s1__ign + j, char, err_out);
3716 if (c1 == '\0')
3717 return -ENOENT;
3718 if (c1 != c2)
3719 break;
3720 }
3721 if (j == XATTR_SIZE_MAX)
3722 return -E2BIG;
3723 if (i + j == len)
3724 return -ENOENT;
3725 s1__ign++;
3726 }
3727 return -E2BIG;
3728 err_out:
3729 return -EFAULT;
3730 }
3731
3732 /**
3733 * bpf_strstr - Find the first substring in a string
3734 * @s1__ign: The string to be searched
3735 * @s2__ign: The string to search for
3736 *
3737 * Return:
3738 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3739 * within @s1__ign
3740 * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3741 * * %-EFAULT - Cannot read one of the strings
3742 * * %-E2BIG - One of the strings is too large
3743 * * %-ERANGE - One of the strings is outside of kernel address space
3744 */
bpf_strstr(const char * s1__ign,const char * s2__ign)3745 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3746 {
3747 return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX);
3748 }
3749 #ifdef CONFIG_KEYS
3750 /**
3751 * bpf_lookup_user_key - lookup a key by its serial
3752 * @serial: key handle serial number
3753 * @flags: lookup-specific flags
3754 *
3755 * Search a key with a given *serial* and the provided *flags*.
3756 * If found, increment the reference count of the key by one, and
3757 * return it in the bpf_key structure.
3758 *
3759 * The bpf_key structure must be passed to bpf_key_put() when done
3760 * with it, so that the key reference count is decremented and the
3761 * bpf_key structure is freed.
3762 *
3763 * Permission checks are deferred to the time the key is used by
3764 * one of the available key-specific kfuncs.
3765 *
3766 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
3767 * special keyring (e.g. session keyring), if it doesn't yet exist.
3768 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
3769 * for the key construction, and to retrieve uninstantiated keys (keys
3770 * without data attached to them).
3771 *
3772 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
3773 * NULL pointer otherwise.
3774 */
bpf_lookup_user_key(s32 serial,u64 flags)3775 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags)
3776 {
3777 key_ref_t key_ref;
3778 struct bpf_key *bkey;
3779
3780 if (flags & ~KEY_LOOKUP_ALL)
3781 return NULL;
3782
3783 /*
3784 * Permission check is deferred until the key is used, as the
3785 * intent of the caller is unknown here.
3786 */
3787 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
3788 if (IS_ERR(key_ref))
3789 return NULL;
3790
3791 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
3792 if (!bkey) {
3793 key_put(key_ref_to_ptr(key_ref));
3794 return NULL;
3795 }
3796
3797 bkey->key = key_ref_to_ptr(key_ref);
3798 bkey->has_ref = true;
3799
3800 return bkey;
3801 }
3802
3803 /**
3804 * bpf_lookup_system_key - lookup a key by a system-defined ID
3805 * @id: key ID
3806 *
3807 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
3808 * The key pointer is marked as invalid, to prevent bpf_key_put() from
3809 * attempting to decrement the key reference count on that pointer. The key
3810 * pointer set in such way is currently understood only by
3811 * verify_pkcs7_signature().
3812 *
3813 * Set *id* to one of the values defined in include/linux/verification.h:
3814 * 0 for the primary keyring (immutable keyring of system keys);
3815 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
3816 * (where keys can be added only if they are vouched for by existing keys
3817 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
3818 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
3819 * kerned image and, possibly, the initramfs signature).
3820 *
3821 * Return: a bpf_key pointer with an invalid key pointer set from the
3822 * pre-determined ID on success, a NULL pointer otherwise
3823 */
bpf_lookup_system_key(u64 id)3824 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
3825 {
3826 struct bpf_key *bkey;
3827
3828 if (system_keyring_id_check(id) < 0)
3829 return NULL;
3830
3831 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
3832 if (!bkey)
3833 return NULL;
3834
3835 bkey->key = (struct key *)(unsigned long)id;
3836 bkey->has_ref = false;
3837
3838 return bkey;
3839 }
3840
3841 /**
3842 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
3843 * @bkey: bpf_key structure
3844 *
3845 * Decrement the reference count of the key inside *bkey*, if the pointer
3846 * is valid, and free *bkey*.
3847 */
bpf_key_put(struct bpf_key * bkey)3848 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
3849 {
3850 if (bkey->has_ref)
3851 key_put(bkey->key);
3852
3853 kfree(bkey);
3854 }
3855
3856 /**
3857 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
3858 * @data_p: data to verify
3859 * @sig_p: signature of the data
3860 * @trusted_keyring: keyring with keys trusted for signature verification
3861 *
3862 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
3863 * with keys in a keyring referenced by *trusted_keyring*.
3864 *
3865 * Return: 0 on success, a negative value on error.
3866 */
bpf_verify_pkcs7_signature(struct bpf_dynptr * data_p,struct bpf_dynptr * sig_p,struct bpf_key * trusted_keyring)3867 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3868 struct bpf_dynptr *sig_p,
3869 struct bpf_key *trusted_keyring)
3870 {
3871 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
3872 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
3873 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
3874 const void *data, *sig;
3875 u32 data_len, sig_len;
3876 int ret;
3877
3878 if (trusted_keyring->has_ref) {
3879 /*
3880 * Do the permission check deferred in bpf_lookup_user_key().
3881 * See bpf_lookup_user_key() for more details.
3882 *
3883 * A call to key_task_permission() here would be redundant, as
3884 * it is already done by keyring_search() called by
3885 * find_asymmetric_key().
3886 */
3887 ret = key_validate(trusted_keyring->key);
3888 if (ret < 0)
3889 return ret;
3890 }
3891
3892 data_len = __bpf_dynptr_size(data_ptr);
3893 data = __bpf_dynptr_data(data_ptr, data_len);
3894 sig_len = __bpf_dynptr_size(sig_ptr);
3895 sig = __bpf_dynptr_data(sig_ptr, sig_len);
3896
3897 return verify_pkcs7_signature(data, data_len, sig, sig_len,
3898 trusted_keyring->key,
3899 VERIFYING_BPF_SIGNATURE, NULL,
3900 NULL);
3901 #else
3902 return -EOPNOTSUPP;
3903 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
3904 }
3905 #endif /* CONFIG_KEYS */
3906
3907 typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value);
3908
3909 enum bpf_task_work_state {
3910 /* bpf_task_work is ready to be used */
3911 BPF_TW_STANDBY = 0,
3912 /* irq work scheduling in progress */
3913 BPF_TW_PENDING,
3914 /* task work scheduling in progress */
3915 BPF_TW_SCHEDULING,
3916 /* task work is scheduled successfully */
3917 BPF_TW_SCHEDULED,
3918 /* callback is running */
3919 BPF_TW_RUNNING,
3920 /* associated BPF map value is deleted */
3921 BPF_TW_FREED,
3922 };
3923
3924 struct bpf_task_work_ctx {
3925 enum bpf_task_work_state state;
3926 refcount_t refcnt;
3927 struct callback_head work;
3928 struct irq_work irq_work;
3929 /* bpf_prog that schedules task work */
3930 struct bpf_prog *prog;
3931 /* task for which callback is scheduled */
3932 struct task_struct *task;
3933 /* the map and map value associated with this context */
3934 struct bpf_map *map;
3935 void *map_val;
3936 enum task_work_notify_mode mode;
3937 bpf_task_work_callback_t callback_fn;
3938 struct rcu_head rcu;
3939 } __aligned(8);
3940
3941 /* Actual type for struct bpf_task_work */
3942 struct bpf_task_work_kern {
3943 struct bpf_task_work_ctx *ctx;
3944 };
3945
bpf_task_work_ctx_reset(struct bpf_task_work_ctx * ctx)3946 static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx)
3947 {
3948 if (ctx->prog) {
3949 bpf_prog_put(ctx->prog);
3950 ctx->prog = NULL;
3951 }
3952 if (ctx->task) {
3953 bpf_task_release(ctx->task);
3954 ctx->task = NULL;
3955 }
3956 }
3957
bpf_task_work_ctx_tryget(struct bpf_task_work_ctx * ctx)3958 static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx)
3959 {
3960 return refcount_inc_not_zero(&ctx->refcnt);
3961 }
3962
bpf_task_work_ctx_put(struct bpf_task_work_ctx * ctx)3963 static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx)
3964 {
3965 if (!refcount_dec_and_test(&ctx->refcnt))
3966 return;
3967
3968 bpf_task_work_ctx_reset(ctx);
3969
3970 /* bpf_mem_free expects migration to be disabled */
3971 migrate_disable();
3972 bpf_mem_free(&bpf_global_ma, ctx);
3973 migrate_enable();
3974 }
3975
bpf_task_work_cancel(struct bpf_task_work_ctx * ctx)3976 static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx)
3977 {
3978 /*
3979 * Scheduled task_work callback holds ctx ref, so if we successfully
3980 * cancelled, we put that ref on callback's behalf. If we couldn't
3981 * cancel, callback will inevitably run or has already completed
3982 * running, and it would have taken care of its ctx ref itself.
3983 */
3984 if (task_work_cancel(ctx->task, &ctx->work))
3985 bpf_task_work_ctx_put(ctx);
3986 }
3987
bpf_task_work_callback(struct callback_head * cb)3988 static void bpf_task_work_callback(struct callback_head *cb)
3989 {
3990 struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work);
3991 enum bpf_task_work_state state;
3992 u32 idx;
3993 void *key;
3994
3995 /* Read lock is needed to protect ctx and map key/value access */
3996 guard(rcu_tasks_trace)();
3997 /*
3998 * This callback may start running before bpf_task_work_irq() switched to
3999 * SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING.
4000 */
4001 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING);
4002 if (state == BPF_TW_SCHEDULED)
4003 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING);
4004 if (state == BPF_TW_FREED) {
4005 bpf_task_work_ctx_put(ctx);
4006 return;
4007 }
4008
4009 key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx);
4010
4011 migrate_disable();
4012 ctx->callback_fn(ctx->map, key, ctx->map_val);
4013 migrate_enable();
4014
4015 bpf_task_work_ctx_reset(ctx);
4016 (void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY);
4017
4018 bpf_task_work_ctx_put(ctx);
4019 }
4020
bpf_task_work_irq(struct irq_work * irq_work)4021 static void bpf_task_work_irq(struct irq_work *irq_work)
4022 {
4023 struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4024 enum bpf_task_work_state state;
4025 int err;
4026
4027 guard(rcu_tasks_trace)();
4028
4029 if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) {
4030 bpf_task_work_ctx_put(ctx);
4031 return;
4032 }
4033
4034 err = task_work_add(ctx->task, &ctx->work, ctx->mode);
4035 if (err) {
4036 bpf_task_work_ctx_reset(ctx);
4037 /*
4038 * try to switch back to STANDBY for another task_work reuse, but we might have
4039 * gone to FREED already, which is fine as we already cleaned up after ourselves
4040 */
4041 (void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY);
4042 bpf_task_work_ctx_put(ctx);
4043 return;
4044 }
4045
4046 /*
4047 * It's technically possible for just scheduled task_work callback to
4048 * complete running by now, going SCHEDULING -> RUNNING and then
4049 * dropping its ctx refcount. Instead of capturing extra ref just to
4050 * protected below ctx->state access, we rely on RCU protection to
4051 * perform below SCHEDULING -> SCHEDULED attempt.
4052 */
4053 state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED);
4054 if (state == BPF_TW_FREED)
4055 bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */
4056 }
4057
bpf_task_work_fetch_ctx(struct bpf_task_work * tw,struct bpf_map * map)4058 static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw,
4059 struct bpf_map *map)
4060 {
4061 struct bpf_task_work_kern *twk = (void *)tw;
4062 struct bpf_task_work_ctx *ctx, *old_ctx;
4063
4064 ctx = READ_ONCE(twk->ctx);
4065 if (ctx)
4066 return ctx;
4067
4068 ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx));
4069 if (!ctx)
4070 return ERR_PTR(-ENOMEM);
4071
4072 memset(ctx, 0, sizeof(*ctx));
4073 refcount_set(&ctx->refcnt, 1); /* map's own ref */
4074 ctx->state = BPF_TW_STANDBY;
4075
4076 old_ctx = cmpxchg(&twk->ctx, NULL, ctx);
4077 if (old_ctx) {
4078 /*
4079 * tw->ctx is set by concurrent BPF program, release allocated
4080 * memory and try to reuse already set context.
4081 */
4082 bpf_mem_free(&bpf_global_ma, ctx);
4083 return old_ctx;
4084 }
4085
4086 return ctx; /* Success */
4087 }
4088
bpf_task_work_acquire_ctx(struct bpf_task_work * tw,struct bpf_map * map)4089 static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw,
4090 struct bpf_map *map)
4091 {
4092 struct bpf_task_work_ctx *ctx;
4093
4094 ctx = bpf_task_work_fetch_ctx(tw, map);
4095 if (IS_ERR(ctx))
4096 return ctx;
4097
4098 /* try to get ref for task_work callback to hold */
4099 if (!bpf_task_work_ctx_tryget(ctx))
4100 return ERR_PTR(-EBUSY);
4101
4102 if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) {
4103 /* lost acquiring race or map_release_uref() stole it from us, put ref and bail */
4104 bpf_task_work_ctx_put(ctx);
4105 return ERR_PTR(-EBUSY);
4106 }
4107
4108 /*
4109 * If no process or bpffs is holding a reference to the map, no new callbacks should be
4110 * scheduled. This does not address any race or correctness issue, but rather is a policy
4111 * choice: dropping user references should stop everything.
4112 */
4113 if (!atomic64_read(&map->usercnt)) {
4114 /* drop ref we just got for task_work callback itself */
4115 bpf_task_work_ctx_put(ctx);
4116 /* transfer map's ref into cancel_and_free() */
4117 bpf_task_work_cancel_and_free(tw);
4118 return ERR_PTR(-EBUSY);
4119 }
4120
4121 return ctx;
4122 }
4123
bpf_task_work_schedule(struct task_struct * task,struct bpf_task_work * tw,struct bpf_map * map,bpf_task_work_callback_t callback_fn,struct bpf_prog_aux * aux,enum task_work_notify_mode mode)4124 static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw,
4125 struct bpf_map *map, bpf_task_work_callback_t callback_fn,
4126 struct bpf_prog_aux *aux, enum task_work_notify_mode mode)
4127 {
4128 struct bpf_prog *prog;
4129 struct bpf_task_work_ctx *ctx;
4130 int err;
4131
4132 BTF_TYPE_EMIT(struct bpf_task_work);
4133
4134 prog = bpf_prog_inc_not_zero(aux->prog);
4135 if (IS_ERR(prog))
4136 return -EBADF;
4137 task = bpf_task_acquire(task);
4138 if (!task) {
4139 err = -EBADF;
4140 goto release_prog;
4141 }
4142
4143 ctx = bpf_task_work_acquire_ctx(tw, map);
4144 if (IS_ERR(ctx)) {
4145 err = PTR_ERR(ctx);
4146 goto release_all;
4147 }
4148
4149 ctx->task = task;
4150 ctx->callback_fn = callback_fn;
4151 ctx->prog = prog;
4152 ctx->mode = mode;
4153 ctx->map = map;
4154 ctx->map_val = (void *)tw - map->record->task_work_off;
4155 init_task_work(&ctx->work, bpf_task_work_callback);
4156 init_irq_work(&ctx->irq_work, bpf_task_work_irq);
4157
4158 irq_work_queue(&ctx->irq_work);
4159 return 0;
4160
4161 release_all:
4162 bpf_task_release(task);
4163 release_prog:
4164 bpf_prog_put(prog);
4165 return err;
4166 }
4167
4168 /**
4169 * bpf_task_work_schedule_signal - Schedule BPF callback using task_work_add with TWA_SIGNAL mode
4170 * @task: Task struct for which callback should be scheduled
4171 * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4172 * @map__map: bpf_map that embeds struct bpf_task_work in the values
4173 * @callback: pointer to BPF subprogram to call
4174 * @aux__prog: user should pass NULL
4175 *
4176 * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4177 */
bpf_task_work_schedule_signal(struct task_struct * task,struct bpf_task_work * tw,void * map__map,bpf_task_work_callback_t callback,void * aux__prog)4178 __bpf_kfunc int bpf_task_work_schedule_signal(struct task_struct *task, struct bpf_task_work *tw,
4179 void *map__map, bpf_task_work_callback_t callback,
4180 void *aux__prog)
4181 {
4182 return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL);
4183 }
4184
4185 /**
4186 * bpf_task_work_schedule_resume - Schedule BPF callback using task_work_add with TWA_RESUME mode
4187 * @task: Task struct for which callback should be scheduled
4188 * @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4189 * @map__map: bpf_map that embeds struct bpf_task_work in the values
4190 * @callback: pointer to BPF subprogram to call
4191 * @aux__prog: user should pass NULL
4192 *
4193 * Return: 0 if task work has been scheduled successfully, negative error code otherwise
4194 */
bpf_task_work_schedule_resume(struct task_struct * task,struct bpf_task_work * tw,void * map__map,bpf_task_work_callback_t callback,void * aux__prog)4195 __bpf_kfunc int bpf_task_work_schedule_resume(struct task_struct *task, struct bpf_task_work *tw,
4196 void *map__map, bpf_task_work_callback_t callback,
4197 void *aux__prog)
4198 {
4199 return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME);
4200 }
4201
4202 __bpf_kfunc_end_defs();
4203
bpf_task_work_cancel_scheduled(struct irq_work * irq_work)4204 static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work)
4205 {
4206 struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4207
4208 bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */
4209 bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */
4210 }
4211
bpf_task_work_cancel_and_free(void * val)4212 void bpf_task_work_cancel_and_free(void *val)
4213 {
4214 struct bpf_task_work_kern *twk = val;
4215 struct bpf_task_work_ctx *ctx;
4216 enum bpf_task_work_state state;
4217
4218 ctx = xchg(&twk->ctx, NULL);
4219 if (!ctx)
4220 return;
4221
4222 state = xchg(&ctx->state, BPF_TW_FREED);
4223 if (state == BPF_TW_SCHEDULED) {
4224 /* run in irq_work to avoid locks in NMI */
4225 init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled);
4226 irq_work_queue(&ctx->irq_work);
4227 return;
4228 }
4229
4230 bpf_task_work_ctx_put(ctx); /* put bpf map's ref */
4231 }
4232
4233 BTF_KFUNCS_START(generic_btf_ids)
4234 #ifdef CONFIG_CRASH_DUMP
4235 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
4236 #endif
4237 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4238 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4239 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
4240 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
4241 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
4242 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
4243 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
4244 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
4245 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
4246 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
4247 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
4248 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4249 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
4250 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
4251 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
4252 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
4253 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
4254 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
4255 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
4256
4257 #ifdef CONFIG_CGROUPS
4258 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4259 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
4260 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4261 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
4262 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
4263 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4264 #endif
4265 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
4266 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
4267 BTF_ID_FLAGS(func, bpf_throw)
4268 #ifdef CONFIG_BPF_EVENTS
4269 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
4270 #endif
4271 #ifdef CONFIG_KEYS
4272 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
4273 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
4274 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
4275 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
4276 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
4277 #endif
4278 #endif
4279 BTF_KFUNCS_END(generic_btf_ids)
4280
4281 static const struct btf_kfunc_id_set generic_kfunc_set = {
4282 .owner = THIS_MODULE,
4283 .set = &generic_btf_ids,
4284 };
4285
4286
4287 BTF_ID_LIST(generic_dtor_ids)
4288 BTF_ID(struct, task_struct)
4289 BTF_ID(func, bpf_task_release_dtor)
4290 #ifdef CONFIG_CGROUPS
4291 BTF_ID(struct, cgroup)
4292 BTF_ID(func, bpf_cgroup_release_dtor)
4293 #endif
4294
4295 BTF_KFUNCS_START(common_btf_ids)
4296 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
4297 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
4298 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
4299 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
4300 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
4301 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
4302 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
4303 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
4304 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
4305 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
4306 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
4307 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
4308 #ifdef CONFIG_CGROUPS
4309 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
4310 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
4311 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
4312 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4313 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
4314 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
4315 #endif
4316 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4317 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
4318 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
4319 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
4320 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
4321 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
4322 BTF_ID_FLAGS(func, bpf_dynptr_size)
4323 BTF_ID_FLAGS(func, bpf_dynptr_clone)
4324 BTF_ID_FLAGS(func, bpf_dynptr_copy)
4325 BTF_ID_FLAGS(func, bpf_dynptr_memset)
4326 #ifdef CONFIG_NET
4327 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
4328 #endif
4329 BTF_ID_FLAGS(func, bpf_wq_init)
4330 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
4331 BTF_ID_FLAGS(func, bpf_wq_start)
4332 BTF_ID_FLAGS(func, bpf_preempt_disable)
4333 BTF_ID_FLAGS(func, bpf_preempt_enable)
4334 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
4335 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
4336 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
4337 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
4338 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
4339 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
4340 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
4341 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4342 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4343 BTF_ID_FLAGS(func, bpf_local_irq_save)
4344 BTF_ID_FLAGS(func, bpf_local_irq_restore)
4345 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
4346 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
4347 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
4348 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
4349 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
4350 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
4351 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4352 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4353 #ifdef CONFIG_DMA_SHARED_BUFFER
4354 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
4355 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4356 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4357 #endif
4358 BTF_ID_FLAGS(func, __bpf_trap)
4359 BTF_ID_FLAGS(func, bpf_strcmp);
4360 BTF_ID_FLAGS(func, bpf_strcasecmp);
4361 BTF_ID_FLAGS(func, bpf_strchr);
4362 BTF_ID_FLAGS(func, bpf_strchrnul);
4363 BTF_ID_FLAGS(func, bpf_strnchr);
4364 BTF_ID_FLAGS(func, bpf_strrchr);
4365 BTF_ID_FLAGS(func, bpf_strlen);
4366 BTF_ID_FLAGS(func, bpf_strnlen);
4367 BTF_ID_FLAGS(func, bpf_strspn);
4368 BTF_ID_FLAGS(func, bpf_strcspn);
4369 BTF_ID_FLAGS(func, bpf_strstr);
4370 BTF_ID_FLAGS(func, bpf_strnstr);
4371 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
4372 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
4373 #endif
4374 BTF_ID_FLAGS(func, bpf_stream_vprintk, KF_TRUSTED_ARGS)
4375 BTF_ID_FLAGS(func, bpf_task_work_schedule_signal, KF_TRUSTED_ARGS)
4376 BTF_ID_FLAGS(func, bpf_task_work_schedule_resume, KF_TRUSTED_ARGS)
4377 BTF_KFUNCS_END(common_btf_ids)
4378
4379 static const struct btf_kfunc_id_set common_kfunc_set = {
4380 .owner = THIS_MODULE,
4381 .set = &common_btf_ids,
4382 };
4383
kfunc_init(void)4384 static int __init kfunc_init(void)
4385 {
4386 int ret;
4387 const struct btf_id_dtor_kfunc generic_dtors[] = {
4388 {
4389 .btf_id = generic_dtor_ids[0],
4390 .kfunc_btf_id = generic_dtor_ids[1]
4391 },
4392 #ifdef CONFIG_CGROUPS
4393 {
4394 .btf_id = generic_dtor_ids[2],
4395 .kfunc_btf_id = generic_dtor_ids[3]
4396 },
4397 #endif
4398 };
4399
4400 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
4401 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
4402 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
4403 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
4404 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
4405 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
4406 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
4407 ARRAY_SIZE(generic_dtors),
4408 THIS_MODULE);
4409 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
4410 }
4411
4412 late_initcall(kfunc_init);
4413
4414 /* Get a pointer to dynptr data up to len bytes for read only access. If
4415 * the dynptr doesn't have continuous data up to len bytes, return NULL.
4416 */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)4417 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
4418 {
4419 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
4420
4421 return bpf_dynptr_slice(p, 0, NULL, len);
4422 }
4423
4424 /* Get a pointer to dynptr data up to len bytes for read write access. If
4425 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
4426 * is read only, return NULL.
4427 */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)4428 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
4429 {
4430 if (__bpf_dynptr_is_rdonly(ptr))
4431 return NULL;
4432 return (void *)__bpf_dynptr_data(ptr, len);
4433 }
4434