1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27
28 #include "../../lib/kstrtox.h"
29
30 /* If kernel subsystem is allowing eBPF programs to call this function,
31 * inside its own verifier_ops->get_func_proto() callback it should return
32 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
33 *
34 * Different map implementations will rely on rcu in map methods
35 * lookup/update/delete, therefore eBPF programs must run under rcu lock
36 * if program is allowed to access maps, so check rcu_read_lock_held() or
37 * rcu_read_lock_trace_held() in all three functions.
38 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)39 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
40 {
41 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
42 !rcu_read_lock_bh_held());
43 return (unsigned long) map->ops->map_lookup_elem(map, key);
44 }
45
46 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
47 .func = bpf_map_lookup_elem,
48 .gpl_only = false,
49 .pkt_access = true,
50 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
51 .arg1_type = ARG_CONST_MAP_PTR,
52 .arg2_type = ARG_PTR_TO_MAP_KEY,
53 };
54
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)55 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
56 void *, value, u64, flags)
57 {
58 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
59 !rcu_read_lock_bh_held());
60 return map->ops->map_update_elem(map, key, value, flags);
61 }
62
63 const struct bpf_func_proto bpf_map_update_elem_proto = {
64 .func = bpf_map_update_elem,
65 .gpl_only = false,
66 .pkt_access = true,
67 .ret_type = RET_INTEGER,
68 .arg1_type = ARG_CONST_MAP_PTR,
69 .arg2_type = ARG_PTR_TO_MAP_KEY,
70 .arg3_type = ARG_PTR_TO_MAP_VALUE,
71 .arg4_type = ARG_ANYTHING,
72 };
73
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)74 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
75 {
76 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
77 !rcu_read_lock_bh_held());
78 return map->ops->map_delete_elem(map, key);
79 }
80
81 const struct bpf_func_proto bpf_map_delete_elem_proto = {
82 .func = bpf_map_delete_elem,
83 .gpl_only = false,
84 .pkt_access = true,
85 .ret_type = RET_INTEGER,
86 .arg1_type = ARG_CONST_MAP_PTR,
87 .arg2_type = ARG_PTR_TO_MAP_KEY,
88 };
89
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)90 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
91 {
92 return map->ops->map_push_elem(map, value, flags);
93 }
94
95 const struct bpf_func_proto bpf_map_push_elem_proto = {
96 .func = bpf_map_push_elem,
97 .gpl_only = false,
98 .pkt_access = true,
99 .ret_type = RET_INTEGER,
100 .arg1_type = ARG_CONST_MAP_PTR,
101 .arg2_type = ARG_PTR_TO_MAP_VALUE,
102 .arg3_type = ARG_ANYTHING,
103 };
104
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)105 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
106 {
107 return map->ops->map_pop_elem(map, value);
108 }
109
110 const struct bpf_func_proto bpf_map_pop_elem_proto = {
111 .func = bpf_map_pop_elem,
112 .gpl_only = false,
113 .ret_type = RET_INTEGER,
114 .arg1_type = ARG_CONST_MAP_PTR,
115 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
116 };
117
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)118 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
119 {
120 return map->ops->map_peek_elem(map, value);
121 }
122
123 const struct bpf_func_proto bpf_map_peek_elem_proto = {
124 .func = bpf_map_peek_elem,
125 .gpl_only = false,
126 .ret_type = RET_INTEGER,
127 .arg1_type = ARG_CONST_MAP_PTR,
128 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
129 };
130
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)131 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
132 {
133 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
134 !rcu_read_lock_bh_held());
135 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
136 }
137
138 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
139 .func = bpf_map_lookup_percpu_elem,
140 .gpl_only = false,
141 .pkt_access = true,
142 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
143 .arg1_type = ARG_CONST_MAP_PTR,
144 .arg2_type = ARG_PTR_TO_MAP_KEY,
145 .arg3_type = ARG_ANYTHING,
146 };
147
148 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
149 .func = bpf_user_rnd_u32,
150 .gpl_only = false,
151 .ret_type = RET_INTEGER,
152 };
153
BPF_CALL_0(bpf_get_smp_processor_id)154 BPF_CALL_0(bpf_get_smp_processor_id)
155 {
156 return smp_processor_id();
157 }
158
159 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
160 .func = bpf_get_smp_processor_id,
161 .gpl_only = false,
162 .ret_type = RET_INTEGER,
163 .allow_fastcall = true,
164 };
165
BPF_CALL_0(bpf_get_numa_node_id)166 BPF_CALL_0(bpf_get_numa_node_id)
167 {
168 return numa_node_id();
169 }
170
171 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
172 .func = bpf_get_numa_node_id,
173 .gpl_only = false,
174 .ret_type = RET_INTEGER,
175 };
176
BPF_CALL_0(bpf_ktime_get_ns)177 BPF_CALL_0(bpf_ktime_get_ns)
178 {
179 /* NMI safe access to clock monotonic */
180 return ktime_get_mono_fast_ns();
181 }
182
183 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
184 .func = bpf_ktime_get_ns,
185 .gpl_only = false,
186 .ret_type = RET_INTEGER,
187 };
188
BPF_CALL_0(bpf_ktime_get_boot_ns)189 BPF_CALL_0(bpf_ktime_get_boot_ns)
190 {
191 /* NMI safe access to clock boottime */
192 return ktime_get_boot_fast_ns();
193 }
194
195 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
196 .func = bpf_ktime_get_boot_ns,
197 .gpl_only = false,
198 .ret_type = RET_INTEGER,
199 };
200
BPF_CALL_0(bpf_ktime_get_coarse_ns)201 BPF_CALL_0(bpf_ktime_get_coarse_ns)
202 {
203 return ktime_get_coarse_ns();
204 }
205
206 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
207 .func = bpf_ktime_get_coarse_ns,
208 .gpl_only = false,
209 .ret_type = RET_INTEGER,
210 };
211
BPF_CALL_0(bpf_ktime_get_tai_ns)212 BPF_CALL_0(bpf_ktime_get_tai_ns)
213 {
214 /* NMI safe access to clock tai */
215 return ktime_get_tai_fast_ns();
216 }
217
218 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
219 .func = bpf_ktime_get_tai_ns,
220 .gpl_only = false,
221 .ret_type = RET_INTEGER,
222 };
223
BPF_CALL_0(bpf_get_current_pid_tgid)224 BPF_CALL_0(bpf_get_current_pid_tgid)
225 {
226 struct task_struct *task = current;
227
228 if (unlikely(!task))
229 return -EINVAL;
230
231 return (u64) task->tgid << 32 | task->pid;
232 }
233
234 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
235 .func = bpf_get_current_pid_tgid,
236 .gpl_only = false,
237 .ret_type = RET_INTEGER,
238 };
239
BPF_CALL_0(bpf_get_current_uid_gid)240 BPF_CALL_0(bpf_get_current_uid_gid)
241 {
242 struct task_struct *task = current;
243 kuid_t uid;
244 kgid_t gid;
245
246 if (unlikely(!task))
247 return -EINVAL;
248
249 current_uid_gid(&uid, &gid);
250 return (u64) from_kgid(&init_user_ns, gid) << 32 |
251 from_kuid(&init_user_ns, uid);
252 }
253
254 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
255 .func = bpf_get_current_uid_gid,
256 .gpl_only = false,
257 .ret_type = RET_INTEGER,
258 };
259
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)260 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
261 {
262 struct task_struct *task = current;
263
264 if (unlikely(!task))
265 goto err_clear;
266
267 /* Verifier guarantees that size > 0 */
268 strscpy_pad(buf, task->comm, size);
269 return 0;
270 err_clear:
271 memset(buf, 0, size);
272 return -EINVAL;
273 }
274
275 const struct bpf_func_proto bpf_get_current_comm_proto = {
276 .func = bpf_get_current_comm,
277 .gpl_only = false,
278 .ret_type = RET_INTEGER,
279 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
280 .arg2_type = ARG_CONST_SIZE,
281 };
282
283 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
284
__bpf_spin_lock(struct bpf_spin_lock * lock)285 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
286 {
287 arch_spinlock_t *l = (void *)lock;
288 union {
289 __u32 val;
290 arch_spinlock_t lock;
291 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
292
293 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
294 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
295 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
296 preempt_disable();
297 arch_spin_lock(l);
298 }
299
__bpf_spin_unlock(struct bpf_spin_lock * lock)300 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
301 {
302 arch_spinlock_t *l = (void *)lock;
303
304 arch_spin_unlock(l);
305 preempt_enable();
306 }
307
308 #else
309
__bpf_spin_lock(struct bpf_spin_lock * lock)310 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
311 {
312 atomic_t *l = (void *)lock;
313
314 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
315 do {
316 atomic_cond_read_relaxed(l, !VAL);
317 } while (atomic_xchg(l, 1));
318 }
319
__bpf_spin_unlock(struct bpf_spin_lock * lock)320 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
321 {
322 atomic_t *l = (void *)lock;
323
324 atomic_set_release(l, 0);
325 }
326
327 #endif
328
329 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
330
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)331 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
332 {
333 unsigned long flags;
334
335 local_irq_save(flags);
336 __bpf_spin_lock(lock);
337 __this_cpu_write(irqsave_flags, flags);
338 }
339
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)340 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
341 {
342 __bpf_spin_lock_irqsave(lock);
343 return 0;
344 }
345
346 const struct bpf_func_proto bpf_spin_lock_proto = {
347 .func = bpf_spin_lock,
348 .gpl_only = false,
349 .ret_type = RET_VOID,
350 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
351 .arg1_btf_id = BPF_PTR_POISON,
352 };
353
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)354 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
355 {
356 unsigned long flags;
357
358 flags = __this_cpu_read(irqsave_flags);
359 __bpf_spin_unlock(lock);
360 local_irq_restore(flags);
361 }
362
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)363 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
364 {
365 __bpf_spin_unlock_irqrestore(lock);
366 return 0;
367 }
368
369 const struct bpf_func_proto bpf_spin_unlock_proto = {
370 .func = bpf_spin_unlock,
371 .gpl_only = false,
372 .ret_type = RET_VOID,
373 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
374 .arg1_btf_id = BPF_PTR_POISON,
375 };
376
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)377 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
378 bool lock_src)
379 {
380 struct bpf_spin_lock *lock;
381
382 if (lock_src)
383 lock = src + map->record->spin_lock_off;
384 else
385 lock = dst + map->record->spin_lock_off;
386 preempt_disable();
387 __bpf_spin_lock_irqsave(lock);
388 copy_map_value(map, dst, src);
389 __bpf_spin_unlock_irqrestore(lock);
390 preempt_enable();
391 }
392
BPF_CALL_0(bpf_jiffies64)393 BPF_CALL_0(bpf_jiffies64)
394 {
395 return get_jiffies_64();
396 }
397
398 const struct bpf_func_proto bpf_jiffies64_proto = {
399 .func = bpf_jiffies64,
400 .gpl_only = false,
401 .ret_type = RET_INTEGER,
402 };
403
404 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)405 BPF_CALL_0(bpf_get_current_cgroup_id)
406 {
407 struct cgroup *cgrp;
408 u64 cgrp_id;
409
410 rcu_read_lock();
411 cgrp = task_dfl_cgroup(current);
412 cgrp_id = cgroup_id(cgrp);
413 rcu_read_unlock();
414
415 return cgrp_id;
416 }
417
418 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
419 .func = bpf_get_current_cgroup_id,
420 .gpl_only = false,
421 .ret_type = RET_INTEGER,
422 };
423
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)424 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
425 {
426 struct cgroup *cgrp;
427 struct cgroup *ancestor;
428 u64 cgrp_id;
429
430 rcu_read_lock();
431 cgrp = task_dfl_cgroup(current);
432 ancestor = cgroup_ancestor(cgrp, ancestor_level);
433 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
434 rcu_read_unlock();
435
436 return cgrp_id;
437 }
438
439 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
440 .func = bpf_get_current_ancestor_cgroup_id,
441 .gpl_only = false,
442 .ret_type = RET_INTEGER,
443 .arg1_type = ARG_ANYTHING,
444 };
445 #endif /* CONFIG_CGROUPS */
446
447 #define BPF_STRTOX_BASE_MASK 0x1F
448
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)449 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
450 unsigned long long *res, bool *is_negative)
451 {
452 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
453 const char *cur_buf = buf;
454 size_t cur_len = buf_len;
455 unsigned int consumed;
456 size_t val_len;
457 char str[64];
458
459 if (!buf || !buf_len || !res || !is_negative)
460 return -EINVAL;
461
462 if (base != 0 && base != 8 && base != 10 && base != 16)
463 return -EINVAL;
464
465 if (flags & ~BPF_STRTOX_BASE_MASK)
466 return -EINVAL;
467
468 while (cur_buf < buf + buf_len && isspace(*cur_buf))
469 ++cur_buf;
470
471 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
472 if (*is_negative)
473 ++cur_buf;
474
475 consumed = cur_buf - buf;
476 cur_len -= consumed;
477 if (!cur_len)
478 return -EINVAL;
479
480 cur_len = min(cur_len, sizeof(str) - 1);
481 memcpy(str, cur_buf, cur_len);
482 str[cur_len] = '\0';
483 cur_buf = str;
484
485 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
486 val_len = _parse_integer(cur_buf, base, res);
487
488 if (val_len & KSTRTOX_OVERFLOW)
489 return -ERANGE;
490
491 if (val_len == 0)
492 return -EINVAL;
493
494 cur_buf += val_len;
495 consumed += cur_buf - str;
496
497 return consumed;
498 }
499
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)500 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
501 long long *res)
502 {
503 unsigned long long _res;
504 bool is_negative;
505 int err;
506
507 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
508 if (err < 0)
509 return err;
510 if (is_negative) {
511 if ((long long)-_res > 0)
512 return -ERANGE;
513 *res = -_res;
514 } else {
515 if ((long long)_res < 0)
516 return -ERANGE;
517 *res = _res;
518 }
519 return err;
520 }
521
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)522 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
523 s64 *, res)
524 {
525 long long _res;
526 int err;
527
528 *res = 0;
529 err = __bpf_strtoll(buf, buf_len, flags, &_res);
530 if (err < 0)
531 return err;
532 *res = _res;
533 return err;
534 }
535
536 const struct bpf_func_proto bpf_strtol_proto = {
537 .func = bpf_strtol,
538 .gpl_only = false,
539 .ret_type = RET_INTEGER,
540 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
541 .arg2_type = ARG_CONST_SIZE,
542 .arg3_type = ARG_ANYTHING,
543 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
544 .arg4_size = sizeof(s64),
545 };
546
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)547 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
548 u64 *, res)
549 {
550 unsigned long long _res;
551 bool is_negative;
552 int err;
553
554 *res = 0;
555 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
556 if (err < 0)
557 return err;
558 if (is_negative)
559 return -EINVAL;
560 *res = _res;
561 return err;
562 }
563
564 const struct bpf_func_proto bpf_strtoul_proto = {
565 .func = bpf_strtoul,
566 .gpl_only = false,
567 .ret_type = RET_INTEGER,
568 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
569 .arg2_type = ARG_CONST_SIZE,
570 .arg3_type = ARG_ANYTHING,
571 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
572 .arg4_size = sizeof(u64),
573 };
574
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)575 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
576 {
577 return strncmp(s1, s2, s1_sz);
578 }
579
580 static const struct bpf_func_proto bpf_strncmp_proto = {
581 .func = bpf_strncmp,
582 .gpl_only = false,
583 .ret_type = RET_INTEGER,
584 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
585 .arg2_type = ARG_CONST_SIZE,
586 .arg3_type = ARG_PTR_TO_CONST_STR,
587 };
588
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)589 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
590 struct bpf_pidns_info *, nsdata, u32, size)
591 {
592 struct task_struct *task = current;
593 struct pid_namespace *pidns;
594 int err = -EINVAL;
595
596 if (unlikely(size != sizeof(struct bpf_pidns_info)))
597 goto clear;
598
599 if (unlikely((u64)(dev_t)dev != dev))
600 goto clear;
601
602 if (unlikely(!task))
603 goto clear;
604
605 pidns = task_active_pid_ns(task);
606 if (unlikely(!pidns)) {
607 err = -ENOENT;
608 goto clear;
609 }
610
611 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
612 goto clear;
613
614 nsdata->pid = task_pid_nr_ns(task, pidns);
615 nsdata->tgid = task_tgid_nr_ns(task, pidns);
616 return 0;
617 clear:
618 memset((void *)nsdata, 0, (size_t) size);
619 return err;
620 }
621
622 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
623 .func = bpf_get_ns_current_pid_tgid,
624 .gpl_only = false,
625 .ret_type = RET_INTEGER,
626 .arg1_type = ARG_ANYTHING,
627 .arg2_type = ARG_ANYTHING,
628 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
629 .arg4_type = ARG_CONST_SIZE,
630 };
631
632 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
633 .func = bpf_get_raw_cpu_id,
634 .gpl_only = false,
635 .ret_type = RET_INTEGER,
636 };
637
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)638 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
639 u64, flags, void *, data, u64, size)
640 {
641 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
642 return -EINVAL;
643
644 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
645 }
646
647 const struct bpf_func_proto bpf_event_output_data_proto = {
648 .func = bpf_event_output_data,
649 .gpl_only = true,
650 .ret_type = RET_INTEGER,
651 .arg1_type = ARG_PTR_TO_CTX,
652 .arg2_type = ARG_CONST_MAP_PTR,
653 .arg3_type = ARG_ANYTHING,
654 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
655 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
656 };
657
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)658 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
659 const void __user *, user_ptr)
660 {
661 int ret = copy_from_user(dst, user_ptr, size);
662
663 if (unlikely(ret)) {
664 memset(dst, 0, size);
665 ret = -EFAULT;
666 }
667
668 return ret;
669 }
670
671 const struct bpf_func_proto bpf_copy_from_user_proto = {
672 .func = bpf_copy_from_user,
673 .gpl_only = false,
674 .might_sleep = true,
675 .ret_type = RET_INTEGER,
676 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
677 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
678 .arg3_type = ARG_ANYTHING,
679 };
680
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)681 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
682 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
683 {
684 int ret;
685
686 /* flags is not used yet */
687 if (unlikely(flags))
688 return -EINVAL;
689
690 if (unlikely(!size))
691 return 0;
692
693 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
694 if (ret == size)
695 return 0;
696
697 memset(dst, 0, size);
698 /* Return -EFAULT for partial read */
699 return ret < 0 ? ret : -EFAULT;
700 }
701
702 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
703 .func = bpf_copy_from_user_task,
704 .gpl_only = true,
705 .might_sleep = true,
706 .ret_type = RET_INTEGER,
707 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
708 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
709 .arg3_type = ARG_ANYTHING,
710 .arg4_type = ARG_PTR_TO_BTF_ID,
711 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
712 .arg5_type = ARG_ANYTHING
713 };
714
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)715 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
716 {
717 if (cpu >= nr_cpu_ids)
718 return (unsigned long)NULL;
719
720 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
721 }
722
723 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
724 .func = bpf_per_cpu_ptr,
725 .gpl_only = false,
726 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
727 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
728 .arg2_type = ARG_ANYTHING,
729 };
730
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)731 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
732 {
733 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
734 }
735
736 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
737 .func = bpf_this_cpu_ptr,
738 .gpl_only = false,
739 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
740 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
741 };
742
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)743 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
744 size_t bufsz)
745 {
746 void __user *user_ptr = (__force void __user *)unsafe_ptr;
747
748 buf[0] = 0;
749
750 switch (fmt_ptype) {
751 case 's':
752 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
753 if ((unsigned long)unsafe_ptr < TASK_SIZE)
754 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
755 fallthrough;
756 #endif
757 case 'k':
758 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
759 case 'u':
760 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
761 }
762
763 return -EINVAL;
764 }
765
766 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
767 * arguments representation.
768 */
769 #define MAX_BPRINTF_BIN_ARGS 512
770
771 /* Support executing three nested bprintf helper calls on a given CPU */
772 #define MAX_BPRINTF_NEST_LEVEL 3
773 struct bpf_bprintf_buffers {
774 char bin_args[MAX_BPRINTF_BIN_ARGS];
775 char buf[MAX_BPRINTF_BUF];
776 };
777
778 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
779 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
780
try_get_buffers(struct bpf_bprintf_buffers ** bufs)781 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
782 {
783 int nest_level;
784
785 preempt_disable();
786 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
787 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
788 this_cpu_dec(bpf_bprintf_nest_level);
789 preempt_enable();
790 return -EBUSY;
791 }
792 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
793
794 return 0;
795 }
796
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 if (!data->bin_args && !data->buf)
800 return;
801 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
802 return;
803 this_cpu_dec(bpf_bprintf_nest_level);
804 preempt_enable();
805 }
806
807 /*
808 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
809 *
810 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
811 *
812 * This can be used in two ways:
813 * - Format string verification only: when data->get_bin_args is false
814 * - Arguments preparation: in addition to the above verification, it writes in
815 * data->bin_args a binary representation of arguments usable by bstr_printf
816 * where pointers from BPF have been sanitized.
817 *
818 * In argument preparation mode, if 0 is returned, safe temporary buffers are
819 * allocated and bpf_bprintf_cleanup should be called to free them after use.
820 */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)821 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
822 u32 num_args, struct bpf_bprintf_data *data)
823 {
824 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
825 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
826 struct bpf_bprintf_buffers *buffers = NULL;
827 size_t sizeof_cur_arg, sizeof_cur_ip;
828 int err, i, num_spec = 0;
829 u64 cur_arg;
830 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
831
832 fmt_end = strnchr(fmt, fmt_size, 0);
833 if (!fmt_end)
834 return -EINVAL;
835 fmt_size = fmt_end - fmt;
836
837 if (get_buffers && try_get_buffers(&buffers))
838 return -EBUSY;
839
840 if (data->get_bin_args) {
841 if (num_args)
842 tmp_buf = buffers->bin_args;
843 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
844 data->bin_args = (u32 *)tmp_buf;
845 }
846
847 if (data->get_buf)
848 data->buf = buffers->buf;
849
850 for (i = 0; i < fmt_size; i++) {
851 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
852 err = -EINVAL;
853 goto out;
854 }
855
856 if (fmt[i] != '%')
857 continue;
858
859 if (fmt[i + 1] == '%') {
860 i++;
861 continue;
862 }
863
864 if (num_spec >= num_args) {
865 err = -EINVAL;
866 goto out;
867 }
868
869 /* The string is zero-terminated so if fmt[i] != 0, we can
870 * always access fmt[i + 1], in the worst case it will be a 0
871 */
872 i++;
873
874 /* skip optional "[0 +-][num]" width formatting field */
875 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
876 fmt[i] == ' ')
877 i++;
878 if (fmt[i] >= '1' && fmt[i] <= '9') {
879 i++;
880 while (fmt[i] >= '0' && fmt[i] <= '9')
881 i++;
882 }
883
884 if (fmt[i] == 'p') {
885 sizeof_cur_arg = sizeof(long);
886
887 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
888 ispunct(fmt[i + 1])) {
889 if (tmp_buf)
890 cur_arg = raw_args[num_spec];
891 goto nocopy_fmt;
892 }
893
894 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
895 fmt[i + 2] == 's') {
896 fmt_ptype = fmt[i + 1];
897 i += 2;
898 goto fmt_str;
899 }
900
901 if (fmt[i + 1] == 'K' ||
902 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
903 fmt[i + 1] == 'S') {
904 if (tmp_buf)
905 cur_arg = raw_args[num_spec];
906 i++;
907 goto nocopy_fmt;
908 }
909
910 if (fmt[i + 1] == 'B') {
911 if (tmp_buf) {
912 err = snprintf(tmp_buf,
913 (tmp_buf_end - tmp_buf),
914 "%pB",
915 (void *)(long)raw_args[num_spec]);
916 tmp_buf += (err + 1);
917 }
918
919 i++;
920 num_spec++;
921 continue;
922 }
923
924 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
925 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
926 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
927 err = -EINVAL;
928 goto out;
929 }
930
931 i += 2;
932 if (!tmp_buf)
933 goto nocopy_fmt;
934
935 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
936 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
937 err = -ENOSPC;
938 goto out;
939 }
940
941 unsafe_ptr = (char *)(long)raw_args[num_spec];
942 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
943 sizeof_cur_ip);
944 if (err < 0)
945 memset(cur_ip, 0, sizeof_cur_ip);
946
947 /* hack: bstr_printf expects IP addresses to be
948 * pre-formatted as strings, ironically, the easiest way
949 * to do that is to call snprintf.
950 */
951 ip_spec[2] = fmt[i - 1];
952 ip_spec[3] = fmt[i];
953 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
954 ip_spec, &cur_ip);
955
956 tmp_buf += err + 1;
957 num_spec++;
958
959 continue;
960 } else if (fmt[i] == 's') {
961 fmt_ptype = fmt[i];
962 fmt_str:
963 if (fmt[i + 1] != 0 &&
964 !isspace(fmt[i + 1]) &&
965 !ispunct(fmt[i + 1])) {
966 err = -EINVAL;
967 goto out;
968 }
969
970 if (!tmp_buf)
971 goto nocopy_fmt;
972
973 if (tmp_buf_end == tmp_buf) {
974 err = -ENOSPC;
975 goto out;
976 }
977
978 unsafe_ptr = (char *)(long)raw_args[num_spec];
979 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
980 fmt_ptype,
981 tmp_buf_end - tmp_buf);
982 if (err < 0) {
983 tmp_buf[0] = '\0';
984 err = 1;
985 }
986
987 tmp_buf += err;
988 num_spec++;
989
990 continue;
991 } else if (fmt[i] == 'c') {
992 if (!tmp_buf)
993 goto nocopy_fmt;
994
995 if (tmp_buf_end == tmp_buf) {
996 err = -ENOSPC;
997 goto out;
998 }
999
1000 *tmp_buf = raw_args[num_spec];
1001 tmp_buf++;
1002 num_spec++;
1003
1004 continue;
1005 }
1006
1007 sizeof_cur_arg = sizeof(int);
1008
1009 if (fmt[i] == 'l') {
1010 sizeof_cur_arg = sizeof(long);
1011 i++;
1012 }
1013 if (fmt[i] == 'l') {
1014 sizeof_cur_arg = sizeof(long long);
1015 i++;
1016 }
1017
1018 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1019 fmt[i] != 'x' && fmt[i] != 'X') {
1020 err = -EINVAL;
1021 goto out;
1022 }
1023
1024 if (tmp_buf)
1025 cur_arg = raw_args[num_spec];
1026 nocopy_fmt:
1027 if (tmp_buf) {
1028 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1029 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1030 err = -ENOSPC;
1031 goto out;
1032 }
1033
1034 if (sizeof_cur_arg == 8) {
1035 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1036 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1037 } else {
1038 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1039 }
1040 tmp_buf += sizeof_cur_arg;
1041 }
1042 num_spec++;
1043 }
1044
1045 err = 0;
1046 out:
1047 if (err)
1048 bpf_bprintf_cleanup(data);
1049 return err;
1050 }
1051
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1052 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1053 const void *, args, u32, data_len)
1054 {
1055 struct bpf_bprintf_data data = {
1056 .get_bin_args = true,
1057 };
1058 int err, num_args;
1059
1060 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1061 (data_len && !args))
1062 return -EINVAL;
1063 num_args = data_len / 8;
1064
1065 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1066 * can safely give an unbounded size.
1067 */
1068 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1069 if (err < 0)
1070 return err;
1071
1072 err = bstr_printf(str, str_size, fmt, data.bin_args);
1073
1074 bpf_bprintf_cleanup(&data);
1075
1076 return err + 1;
1077 }
1078
1079 const struct bpf_func_proto bpf_snprintf_proto = {
1080 .func = bpf_snprintf,
1081 .gpl_only = true,
1082 .ret_type = RET_INTEGER,
1083 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1084 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1085 .arg3_type = ARG_PTR_TO_CONST_STR,
1086 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1087 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1088 };
1089
1090 struct bpf_async_cb {
1091 struct bpf_map *map;
1092 struct bpf_prog *prog;
1093 void __rcu *callback_fn;
1094 void *value;
1095 union {
1096 struct rcu_head rcu;
1097 struct work_struct delete_work;
1098 };
1099 u64 flags;
1100 };
1101
1102 /* BPF map elements can contain 'struct bpf_timer'.
1103 * Such map owns all of its BPF timers.
1104 * 'struct bpf_timer' is allocated as part of map element allocation
1105 * and it's zero initialized.
1106 * That space is used to keep 'struct bpf_async_kern'.
1107 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1108 * remembers 'struct bpf_map *' pointer it's part of.
1109 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1110 * bpf_timer_start() arms the timer.
1111 * If user space reference to a map goes to zero at this point
1112 * ops->map_release_uref callback is responsible for cancelling the timers,
1113 * freeing their memory, and decrementing prog's refcnts.
1114 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1115 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1116 * freeing the timers when inner map is replaced or deleted by user space.
1117 */
1118 struct bpf_hrtimer {
1119 struct bpf_async_cb cb;
1120 struct hrtimer timer;
1121 atomic_t cancelling;
1122 };
1123
1124 struct bpf_work {
1125 struct bpf_async_cb cb;
1126 struct work_struct work;
1127 struct work_struct delete_work;
1128 };
1129
1130 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1131 struct bpf_async_kern {
1132 union {
1133 struct bpf_async_cb *cb;
1134 struct bpf_hrtimer *timer;
1135 struct bpf_work *work;
1136 };
1137 /* bpf_spin_lock is used here instead of spinlock_t to make
1138 * sure that it always fits into space reserved by struct bpf_timer
1139 * regardless of LOCKDEP and spinlock debug flags.
1140 */
1141 struct bpf_spin_lock lock;
1142 } __attribute__((aligned(8)));
1143
1144 enum bpf_async_type {
1145 BPF_ASYNC_TYPE_TIMER = 0,
1146 BPF_ASYNC_TYPE_WQ,
1147 };
1148
1149 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1150
bpf_timer_cb(struct hrtimer * hrtimer)1151 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1152 {
1153 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1154 struct bpf_map *map = t->cb.map;
1155 void *value = t->cb.value;
1156 bpf_callback_t callback_fn;
1157 void *key;
1158 u32 idx;
1159
1160 BTF_TYPE_EMIT(struct bpf_timer);
1161 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1162 if (!callback_fn)
1163 goto out;
1164
1165 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1166 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1167 * Remember the timer this callback is servicing to prevent
1168 * deadlock if callback_fn() calls bpf_timer_cancel() or
1169 * bpf_map_delete_elem() on the same timer.
1170 */
1171 this_cpu_write(hrtimer_running, t);
1172 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1173 struct bpf_array *array = container_of(map, struct bpf_array, map);
1174
1175 /* compute the key */
1176 idx = ((char *)value - array->value) / array->elem_size;
1177 key = &idx;
1178 } else { /* hash or lru */
1179 key = value - round_up(map->key_size, 8);
1180 }
1181
1182 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1183 /* The verifier checked that return value is zero. */
1184
1185 this_cpu_write(hrtimer_running, NULL);
1186 out:
1187 return HRTIMER_NORESTART;
1188 }
1189
bpf_wq_work(struct work_struct * work)1190 static void bpf_wq_work(struct work_struct *work)
1191 {
1192 struct bpf_work *w = container_of(work, struct bpf_work, work);
1193 struct bpf_async_cb *cb = &w->cb;
1194 struct bpf_map *map = cb->map;
1195 bpf_callback_t callback_fn;
1196 void *value = cb->value;
1197 void *key;
1198 u32 idx;
1199
1200 BTF_TYPE_EMIT(struct bpf_wq);
1201
1202 callback_fn = READ_ONCE(cb->callback_fn);
1203 if (!callback_fn)
1204 return;
1205
1206 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1207 struct bpf_array *array = container_of(map, struct bpf_array, map);
1208
1209 /* compute the key */
1210 idx = ((char *)value - array->value) / array->elem_size;
1211 key = &idx;
1212 } else { /* hash or lru */
1213 key = value - round_up(map->key_size, 8);
1214 }
1215
1216 rcu_read_lock_trace();
1217 migrate_disable();
1218
1219 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1220
1221 migrate_enable();
1222 rcu_read_unlock_trace();
1223 }
1224
bpf_wq_delete_work(struct work_struct * work)1225 static void bpf_wq_delete_work(struct work_struct *work)
1226 {
1227 struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1228
1229 cancel_work_sync(&w->work);
1230
1231 kfree_rcu(w, cb.rcu);
1232 }
1233
bpf_timer_delete_work(struct work_struct * work)1234 static void bpf_timer_delete_work(struct work_struct *work)
1235 {
1236 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1237
1238 /* Cancel the timer and wait for callback to complete if it was running.
1239 * If hrtimer_cancel() can be safely called it's safe to call
1240 * kfree_rcu(t) right after for both preallocated and non-preallocated
1241 * maps. The async->cb = NULL was already done and no code path can see
1242 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1243 * bpf_timer_cancel_and_free will have been cancelled.
1244 */
1245 hrtimer_cancel(&t->timer);
1246 kfree_rcu(t, cb.rcu);
1247 }
1248
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1249 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1250 enum bpf_async_type type)
1251 {
1252 struct bpf_async_cb *cb;
1253 struct bpf_hrtimer *t;
1254 struct bpf_work *w;
1255 clockid_t clockid;
1256 size_t size;
1257 int ret = 0;
1258
1259 if (in_nmi())
1260 return -EOPNOTSUPP;
1261
1262 switch (type) {
1263 case BPF_ASYNC_TYPE_TIMER:
1264 size = sizeof(struct bpf_hrtimer);
1265 break;
1266 case BPF_ASYNC_TYPE_WQ:
1267 size = sizeof(struct bpf_work);
1268 break;
1269 default:
1270 return -EINVAL;
1271 }
1272
1273 __bpf_spin_lock_irqsave(&async->lock);
1274 t = async->timer;
1275 if (t) {
1276 ret = -EBUSY;
1277 goto out;
1278 }
1279
1280 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1281 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1282 if (!cb) {
1283 ret = -ENOMEM;
1284 goto out;
1285 }
1286
1287 switch (type) {
1288 case BPF_ASYNC_TYPE_TIMER:
1289 clockid = flags & (MAX_CLOCKS - 1);
1290 t = (struct bpf_hrtimer *)cb;
1291
1292 atomic_set(&t->cancelling, 0);
1293 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1294 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1295 cb->value = (void *)async - map->record->timer_off;
1296 break;
1297 case BPF_ASYNC_TYPE_WQ:
1298 w = (struct bpf_work *)cb;
1299
1300 INIT_WORK(&w->work, bpf_wq_work);
1301 INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1302 cb->value = (void *)async - map->record->wq_off;
1303 break;
1304 }
1305 cb->map = map;
1306 cb->prog = NULL;
1307 cb->flags = flags;
1308 rcu_assign_pointer(cb->callback_fn, NULL);
1309
1310 WRITE_ONCE(async->cb, cb);
1311 /* Guarantee the order between async->cb and map->usercnt. So
1312 * when there are concurrent uref release and bpf timer init, either
1313 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1314 * timer or atomic64_read() below returns a zero usercnt.
1315 */
1316 smp_mb();
1317 if (!atomic64_read(&map->usercnt)) {
1318 /* maps with timers must be either held by user space
1319 * or pinned in bpffs.
1320 */
1321 WRITE_ONCE(async->cb, NULL);
1322 kfree(cb);
1323 ret = -EPERM;
1324 }
1325 out:
1326 __bpf_spin_unlock_irqrestore(&async->lock);
1327 return ret;
1328 }
1329
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1330 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1331 u64, flags)
1332 {
1333 clock_t clockid = flags & (MAX_CLOCKS - 1);
1334
1335 BUILD_BUG_ON(MAX_CLOCKS != 16);
1336 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1337 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1338
1339 if (flags >= MAX_CLOCKS ||
1340 /* similar to timerfd except _ALARM variants are not supported */
1341 (clockid != CLOCK_MONOTONIC &&
1342 clockid != CLOCK_REALTIME &&
1343 clockid != CLOCK_BOOTTIME))
1344 return -EINVAL;
1345
1346 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1347 }
1348
1349 static const struct bpf_func_proto bpf_timer_init_proto = {
1350 .func = bpf_timer_init,
1351 .gpl_only = true,
1352 .ret_type = RET_INTEGER,
1353 .arg1_type = ARG_PTR_TO_TIMER,
1354 .arg2_type = ARG_CONST_MAP_PTR,
1355 .arg3_type = ARG_ANYTHING,
1356 };
1357
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1358 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1359 struct bpf_prog_aux *aux, unsigned int flags,
1360 enum bpf_async_type type)
1361 {
1362 struct bpf_prog *prev, *prog = aux->prog;
1363 struct bpf_async_cb *cb;
1364 int ret = 0;
1365
1366 if (in_nmi())
1367 return -EOPNOTSUPP;
1368 __bpf_spin_lock_irqsave(&async->lock);
1369 cb = async->cb;
1370 if (!cb) {
1371 ret = -EINVAL;
1372 goto out;
1373 }
1374 if (!atomic64_read(&cb->map->usercnt)) {
1375 /* maps with timers must be either held by user space
1376 * or pinned in bpffs. Otherwise timer might still be
1377 * running even when bpf prog is detached and user space
1378 * is gone, since map_release_uref won't ever be called.
1379 */
1380 ret = -EPERM;
1381 goto out;
1382 }
1383 prev = cb->prog;
1384 if (prev != prog) {
1385 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1386 * can pick different callback_fn-s within the same prog.
1387 */
1388 prog = bpf_prog_inc_not_zero(prog);
1389 if (IS_ERR(prog)) {
1390 ret = PTR_ERR(prog);
1391 goto out;
1392 }
1393 if (prev)
1394 /* Drop prev prog refcnt when swapping with new prog */
1395 bpf_prog_put(prev);
1396 cb->prog = prog;
1397 }
1398 rcu_assign_pointer(cb->callback_fn, callback_fn);
1399 out:
1400 __bpf_spin_unlock_irqrestore(&async->lock);
1401 return ret;
1402 }
1403
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1404 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1405 struct bpf_prog_aux *, aux)
1406 {
1407 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1408 }
1409
1410 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1411 .func = bpf_timer_set_callback,
1412 .gpl_only = true,
1413 .ret_type = RET_INTEGER,
1414 .arg1_type = ARG_PTR_TO_TIMER,
1415 .arg2_type = ARG_PTR_TO_FUNC,
1416 };
1417
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1418 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1419 {
1420 struct bpf_hrtimer *t;
1421 int ret = 0;
1422 enum hrtimer_mode mode;
1423
1424 if (in_nmi())
1425 return -EOPNOTSUPP;
1426 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1427 return -EINVAL;
1428 __bpf_spin_lock_irqsave(&timer->lock);
1429 t = timer->timer;
1430 if (!t || !t->cb.prog) {
1431 ret = -EINVAL;
1432 goto out;
1433 }
1434
1435 if (flags & BPF_F_TIMER_ABS)
1436 mode = HRTIMER_MODE_ABS_SOFT;
1437 else
1438 mode = HRTIMER_MODE_REL_SOFT;
1439
1440 if (flags & BPF_F_TIMER_CPU_PIN)
1441 mode |= HRTIMER_MODE_PINNED;
1442
1443 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1444 out:
1445 __bpf_spin_unlock_irqrestore(&timer->lock);
1446 return ret;
1447 }
1448
1449 static const struct bpf_func_proto bpf_timer_start_proto = {
1450 .func = bpf_timer_start,
1451 .gpl_only = true,
1452 .ret_type = RET_INTEGER,
1453 .arg1_type = ARG_PTR_TO_TIMER,
1454 .arg2_type = ARG_ANYTHING,
1455 .arg3_type = ARG_ANYTHING,
1456 };
1457
drop_prog_refcnt(struct bpf_async_cb * async)1458 static void drop_prog_refcnt(struct bpf_async_cb *async)
1459 {
1460 struct bpf_prog *prog = async->prog;
1461
1462 if (prog) {
1463 bpf_prog_put(prog);
1464 async->prog = NULL;
1465 rcu_assign_pointer(async->callback_fn, NULL);
1466 }
1467 }
1468
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1469 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1470 {
1471 struct bpf_hrtimer *t, *cur_t;
1472 bool inc = false;
1473 int ret = 0;
1474
1475 if (in_nmi())
1476 return -EOPNOTSUPP;
1477 rcu_read_lock();
1478 __bpf_spin_lock_irqsave(&timer->lock);
1479 t = timer->timer;
1480 if (!t) {
1481 ret = -EINVAL;
1482 goto out;
1483 }
1484
1485 cur_t = this_cpu_read(hrtimer_running);
1486 if (cur_t == t) {
1487 /* If bpf callback_fn is trying to bpf_timer_cancel()
1488 * its own timer the hrtimer_cancel() will deadlock
1489 * since it waits for callback_fn to finish.
1490 */
1491 ret = -EDEADLK;
1492 goto out;
1493 }
1494
1495 /* Only account in-flight cancellations when invoked from a timer
1496 * callback, since we want to avoid waiting only if other _callbacks_
1497 * are waiting on us, to avoid introducing lockups. Non-callback paths
1498 * are ok, since nobody would synchronously wait for their completion.
1499 */
1500 if (!cur_t)
1501 goto drop;
1502 atomic_inc(&t->cancelling);
1503 /* Need full barrier after relaxed atomic_inc */
1504 smp_mb__after_atomic();
1505 inc = true;
1506 if (atomic_read(&cur_t->cancelling)) {
1507 /* We're cancelling timer t, while some other timer callback is
1508 * attempting to cancel us. In such a case, it might be possible
1509 * that timer t belongs to the other callback, or some other
1510 * callback waiting upon it (creating transitive dependencies
1511 * upon us), and we will enter a deadlock if we continue
1512 * cancelling and waiting for it synchronously, since it might
1513 * do the same. Bail!
1514 */
1515 ret = -EDEADLK;
1516 goto out;
1517 }
1518 drop:
1519 drop_prog_refcnt(&t->cb);
1520 out:
1521 __bpf_spin_unlock_irqrestore(&timer->lock);
1522 /* Cancel the timer and wait for associated callback to finish
1523 * if it was running.
1524 */
1525 ret = ret ?: hrtimer_cancel(&t->timer);
1526 if (inc)
1527 atomic_dec(&t->cancelling);
1528 rcu_read_unlock();
1529 return ret;
1530 }
1531
1532 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1533 .func = bpf_timer_cancel,
1534 .gpl_only = true,
1535 .ret_type = RET_INTEGER,
1536 .arg1_type = ARG_PTR_TO_TIMER,
1537 };
1538
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1539 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1540 {
1541 struct bpf_async_cb *cb;
1542
1543 /* Performance optimization: read async->cb without lock first. */
1544 if (!READ_ONCE(async->cb))
1545 return NULL;
1546
1547 __bpf_spin_lock_irqsave(&async->lock);
1548 /* re-read it under lock */
1549 cb = async->cb;
1550 if (!cb)
1551 goto out;
1552 drop_prog_refcnt(cb);
1553 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1554 * this timer, since it won't be initialized.
1555 */
1556 WRITE_ONCE(async->cb, NULL);
1557 out:
1558 __bpf_spin_unlock_irqrestore(&async->lock);
1559 return cb;
1560 }
1561
1562 /* This function is called by map_delete/update_elem for individual element and
1563 * by ops->map_release_uref when the user space reference to a map reaches zero.
1564 */
bpf_timer_cancel_and_free(void * val)1565 void bpf_timer_cancel_and_free(void *val)
1566 {
1567 struct bpf_hrtimer *t;
1568
1569 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1570
1571 if (!t)
1572 return;
1573 /* We check that bpf_map_delete/update_elem() was called from timer
1574 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1575 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1576 * just return -1). Though callback_fn is still running on this cpu it's
1577 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1578 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1579 * since async->cb = NULL was already done. The timer will be
1580 * effectively cancelled because bpf_timer_cb() will return
1581 * HRTIMER_NORESTART.
1582 *
1583 * However, it is possible the timer callback_fn calling us armed the
1584 * timer _before_ calling us, such that failing to cancel it here will
1585 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1586 * Therefore, we _need_ to cancel any outstanding timers before we do
1587 * kfree_rcu, even though no more timers can be armed.
1588 *
1589 * Moreover, we need to schedule work even if timer does not belong to
1590 * the calling callback_fn, as on two different CPUs, we can end up in a
1591 * situation where both sides run in parallel, try to cancel one
1592 * another, and we end up waiting on both sides in hrtimer_cancel
1593 * without making forward progress, since timer1 depends on time2
1594 * callback to finish, and vice versa.
1595 *
1596 * CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1597 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1598 *
1599 * To avoid these issues, punt to workqueue context when we are in a
1600 * timer callback.
1601 */
1602 if (this_cpu_read(hrtimer_running)) {
1603 queue_work(system_unbound_wq, &t->cb.delete_work);
1604 return;
1605 }
1606
1607 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1608 /* If the timer is running on other CPU, also use a kworker to
1609 * wait for the completion of the timer instead of trying to
1610 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1611 * completion.
1612 */
1613 if (hrtimer_try_to_cancel(&t->timer) >= 0)
1614 kfree_rcu(t, cb.rcu);
1615 else
1616 queue_work(system_unbound_wq, &t->cb.delete_work);
1617 } else {
1618 bpf_timer_delete_work(&t->cb.delete_work);
1619 }
1620 }
1621
1622 /* This function is called by map_delete/update_elem for individual element and
1623 * by ops->map_release_uref when the user space reference to a map reaches zero.
1624 */
bpf_wq_cancel_and_free(void * val)1625 void bpf_wq_cancel_and_free(void *val)
1626 {
1627 struct bpf_work *work;
1628
1629 BTF_TYPE_EMIT(struct bpf_wq);
1630
1631 work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1632 if (!work)
1633 return;
1634 /* Trigger cancel of the sleepable work, but *do not* wait for
1635 * it to finish if it was running as we might not be in a
1636 * sleepable context.
1637 * kfree will be called once the work has finished.
1638 */
1639 schedule_work(&work->delete_work);
1640 }
1641
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1642 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1643 {
1644 unsigned long *kptr = dst;
1645
1646 /* This helper may be inlined by verifier. */
1647 return xchg(kptr, (unsigned long)ptr);
1648 }
1649
1650 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1651 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1652 * denote type that verifier will determine.
1653 */
1654 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1655 .func = bpf_kptr_xchg,
1656 .gpl_only = false,
1657 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1658 .ret_btf_id = BPF_PTR_POISON,
1659 .arg1_type = ARG_KPTR_XCHG_DEST,
1660 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1661 .arg2_btf_id = BPF_PTR_POISON,
1662 };
1663
1664 /* Since the upper 8 bits of dynptr->size is reserved, the
1665 * maximum supported size is 2^24 - 1.
1666 */
1667 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1668 #define DYNPTR_TYPE_SHIFT 28
1669 #define DYNPTR_SIZE_MASK 0xFFFFFF
1670 #define DYNPTR_RDONLY_BIT BIT(31)
1671
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1672 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1673 {
1674 return ptr->size & DYNPTR_RDONLY_BIT;
1675 }
1676
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1677 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1678 {
1679 ptr->size |= DYNPTR_RDONLY_BIT;
1680 }
1681
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1682 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1683 {
1684 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1685 }
1686
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1687 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1688 {
1689 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1690 }
1691
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1692 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1693 {
1694 return ptr->size & DYNPTR_SIZE_MASK;
1695 }
1696
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1697 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1698 {
1699 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1700
1701 ptr->size = new_size | metadata;
1702 }
1703
bpf_dynptr_check_size(u32 size)1704 int bpf_dynptr_check_size(u32 size)
1705 {
1706 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1707 }
1708
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1709 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1710 enum bpf_dynptr_type type, u32 offset, u32 size)
1711 {
1712 ptr->data = data;
1713 ptr->offset = offset;
1714 ptr->size = size;
1715 bpf_dynptr_set_type(ptr, type);
1716 }
1717
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1718 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1719 {
1720 memset(ptr, 0, sizeof(*ptr));
1721 }
1722
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1723 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1724 {
1725 int err;
1726
1727 BTF_TYPE_EMIT(struct bpf_dynptr);
1728
1729 err = bpf_dynptr_check_size(size);
1730 if (err)
1731 goto error;
1732
1733 /* flags is currently unsupported */
1734 if (flags) {
1735 err = -EINVAL;
1736 goto error;
1737 }
1738
1739 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1740
1741 return 0;
1742
1743 error:
1744 bpf_dynptr_set_null(ptr);
1745 return err;
1746 }
1747
1748 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1749 .func = bpf_dynptr_from_mem,
1750 .gpl_only = false,
1751 .ret_type = RET_INTEGER,
1752 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1753 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1754 .arg3_type = ARG_ANYTHING,
1755 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1756 };
1757
__bpf_dynptr_read(void * dst,u32 len,const struct bpf_dynptr_kern * src,u32 offset,u64 flags)1758 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1759 u32 offset, u64 flags)
1760 {
1761 enum bpf_dynptr_type type;
1762 int err;
1763
1764 if (!src->data || flags)
1765 return -EINVAL;
1766
1767 err = bpf_dynptr_check_off_len(src, offset, len);
1768 if (err)
1769 return err;
1770
1771 type = bpf_dynptr_get_type(src);
1772
1773 switch (type) {
1774 case BPF_DYNPTR_TYPE_LOCAL:
1775 case BPF_DYNPTR_TYPE_RINGBUF:
1776 /* Source and destination may possibly overlap, hence use memmove to
1777 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1778 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1779 */
1780 memmove(dst, src->data + src->offset + offset, len);
1781 return 0;
1782 case BPF_DYNPTR_TYPE_SKB:
1783 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1784 case BPF_DYNPTR_TYPE_XDP:
1785 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1786 default:
1787 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1788 return -EFAULT;
1789 }
1790 }
1791
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1792 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1793 u32, offset, u64, flags)
1794 {
1795 return __bpf_dynptr_read(dst, len, src, offset, flags);
1796 }
1797
1798 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1799 .func = bpf_dynptr_read,
1800 .gpl_only = false,
1801 .ret_type = RET_INTEGER,
1802 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1803 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1804 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1805 .arg4_type = ARG_ANYTHING,
1806 .arg5_type = ARG_ANYTHING,
1807 };
1808
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u32 offset,void * src,u32 len,u64 flags)1809 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1810 u32 len, u64 flags)
1811 {
1812 enum bpf_dynptr_type type;
1813 int err;
1814
1815 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1816 return -EINVAL;
1817
1818 err = bpf_dynptr_check_off_len(dst, offset, len);
1819 if (err)
1820 return err;
1821
1822 type = bpf_dynptr_get_type(dst);
1823
1824 switch (type) {
1825 case BPF_DYNPTR_TYPE_LOCAL:
1826 case BPF_DYNPTR_TYPE_RINGBUF:
1827 if (flags)
1828 return -EINVAL;
1829 /* Source and destination may possibly overlap, hence use memmove to
1830 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1831 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1832 */
1833 memmove(dst->data + dst->offset + offset, src, len);
1834 return 0;
1835 case BPF_DYNPTR_TYPE_SKB:
1836 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1837 flags);
1838 case BPF_DYNPTR_TYPE_XDP:
1839 if (flags)
1840 return -EINVAL;
1841 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1842 default:
1843 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1844 return -EFAULT;
1845 }
1846 }
1847
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1848 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1849 u32, len, u64, flags)
1850 {
1851 return __bpf_dynptr_write(dst, offset, src, len, flags);
1852 }
1853
1854 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1855 .func = bpf_dynptr_write,
1856 .gpl_only = false,
1857 .ret_type = RET_INTEGER,
1858 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1859 .arg2_type = ARG_ANYTHING,
1860 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1861 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1862 .arg5_type = ARG_ANYTHING,
1863 };
1864
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1865 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1866 {
1867 enum bpf_dynptr_type type;
1868 int err;
1869
1870 if (!ptr->data)
1871 return 0;
1872
1873 err = bpf_dynptr_check_off_len(ptr, offset, len);
1874 if (err)
1875 return 0;
1876
1877 if (__bpf_dynptr_is_rdonly(ptr))
1878 return 0;
1879
1880 type = bpf_dynptr_get_type(ptr);
1881
1882 switch (type) {
1883 case BPF_DYNPTR_TYPE_LOCAL:
1884 case BPF_DYNPTR_TYPE_RINGBUF:
1885 return (unsigned long)(ptr->data + ptr->offset + offset);
1886 case BPF_DYNPTR_TYPE_SKB:
1887 case BPF_DYNPTR_TYPE_XDP:
1888 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1889 return 0;
1890 default:
1891 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1892 return 0;
1893 }
1894 }
1895
1896 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1897 .func = bpf_dynptr_data,
1898 .gpl_only = false,
1899 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1900 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1901 .arg2_type = ARG_ANYTHING,
1902 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1903 };
1904
1905 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1906 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1907 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1908 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1909 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1910 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1911 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1912 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1913 const struct bpf_func_proto bpf_send_signal_proto __weak;
1914 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1915 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1916 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1917 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1918
1919 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1920 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1921 {
1922 switch (func_id) {
1923 case BPF_FUNC_map_lookup_elem:
1924 return &bpf_map_lookup_elem_proto;
1925 case BPF_FUNC_map_update_elem:
1926 return &bpf_map_update_elem_proto;
1927 case BPF_FUNC_map_delete_elem:
1928 return &bpf_map_delete_elem_proto;
1929 case BPF_FUNC_map_push_elem:
1930 return &bpf_map_push_elem_proto;
1931 case BPF_FUNC_map_pop_elem:
1932 return &bpf_map_pop_elem_proto;
1933 case BPF_FUNC_map_peek_elem:
1934 return &bpf_map_peek_elem_proto;
1935 case BPF_FUNC_map_lookup_percpu_elem:
1936 return &bpf_map_lookup_percpu_elem_proto;
1937 case BPF_FUNC_get_prandom_u32:
1938 return &bpf_get_prandom_u32_proto;
1939 case BPF_FUNC_get_smp_processor_id:
1940 return &bpf_get_raw_smp_processor_id_proto;
1941 case BPF_FUNC_get_numa_node_id:
1942 return &bpf_get_numa_node_id_proto;
1943 case BPF_FUNC_tail_call:
1944 return &bpf_tail_call_proto;
1945 case BPF_FUNC_ktime_get_ns:
1946 return &bpf_ktime_get_ns_proto;
1947 case BPF_FUNC_ktime_get_boot_ns:
1948 return &bpf_ktime_get_boot_ns_proto;
1949 case BPF_FUNC_ktime_get_tai_ns:
1950 return &bpf_ktime_get_tai_ns_proto;
1951 case BPF_FUNC_ringbuf_output:
1952 return &bpf_ringbuf_output_proto;
1953 case BPF_FUNC_ringbuf_reserve:
1954 return &bpf_ringbuf_reserve_proto;
1955 case BPF_FUNC_ringbuf_submit:
1956 return &bpf_ringbuf_submit_proto;
1957 case BPF_FUNC_ringbuf_discard:
1958 return &bpf_ringbuf_discard_proto;
1959 case BPF_FUNC_ringbuf_query:
1960 return &bpf_ringbuf_query_proto;
1961 case BPF_FUNC_strncmp:
1962 return &bpf_strncmp_proto;
1963 case BPF_FUNC_strtol:
1964 return &bpf_strtol_proto;
1965 case BPF_FUNC_strtoul:
1966 return &bpf_strtoul_proto;
1967 case BPF_FUNC_get_current_pid_tgid:
1968 return &bpf_get_current_pid_tgid_proto;
1969 case BPF_FUNC_get_ns_current_pid_tgid:
1970 return &bpf_get_ns_current_pid_tgid_proto;
1971 case BPF_FUNC_get_current_uid_gid:
1972 return &bpf_get_current_uid_gid_proto;
1973 default:
1974 break;
1975 }
1976
1977 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1978 return NULL;
1979
1980 switch (func_id) {
1981 case BPF_FUNC_spin_lock:
1982 return &bpf_spin_lock_proto;
1983 case BPF_FUNC_spin_unlock:
1984 return &bpf_spin_unlock_proto;
1985 case BPF_FUNC_jiffies64:
1986 return &bpf_jiffies64_proto;
1987 case BPF_FUNC_per_cpu_ptr:
1988 return &bpf_per_cpu_ptr_proto;
1989 case BPF_FUNC_this_cpu_ptr:
1990 return &bpf_this_cpu_ptr_proto;
1991 case BPF_FUNC_timer_init:
1992 return &bpf_timer_init_proto;
1993 case BPF_FUNC_timer_set_callback:
1994 return &bpf_timer_set_callback_proto;
1995 case BPF_FUNC_timer_start:
1996 return &bpf_timer_start_proto;
1997 case BPF_FUNC_timer_cancel:
1998 return &bpf_timer_cancel_proto;
1999 case BPF_FUNC_kptr_xchg:
2000 return &bpf_kptr_xchg_proto;
2001 case BPF_FUNC_for_each_map_elem:
2002 return &bpf_for_each_map_elem_proto;
2003 case BPF_FUNC_loop:
2004 return &bpf_loop_proto;
2005 case BPF_FUNC_user_ringbuf_drain:
2006 return &bpf_user_ringbuf_drain_proto;
2007 case BPF_FUNC_ringbuf_reserve_dynptr:
2008 return &bpf_ringbuf_reserve_dynptr_proto;
2009 case BPF_FUNC_ringbuf_submit_dynptr:
2010 return &bpf_ringbuf_submit_dynptr_proto;
2011 case BPF_FUNC_ringbuf_discard_dynptr:
2012 return &bpf_ringbuf_discard_dynptr_proto;
2013 case BPF_FUNC_dynptr_from_mem:
2014 return &bpf_dynptr_from_mem_proto;
2015 case BPF_FUNC_dynptr_read:
2016 return &bpf_dynptr_read_proto;
2017 case BPF_FUNC_dynptr_write:
2018 return &bpf_dynptr_write_proto;
2019 case BPF_FUNC_dynptr_data:
2020 return &bpf_dynptr_data_proto;
2021 #ifdef CONFIG_CGROUPS
2022 case BPF_FUNC_cgrp_storage_get:
2023 return &bpf_cgrp_storage_get_proto;
2024 case BPF_FUNC_cgrp_storage_delete:
2025 return &bpf_cgrp_storage_delete_proto;
2026 case BPF_FUNC_get_current_cgroup_id:
2027 return &bpf_get_current_cgroup_id_proto;
2028 case BPF_FUNC_get_current_ancestor_cgroup_id:
2029 return &bpf_get_current_ancestor_cgroup_id_proto;
2030 case BPF_FUNC_current_task_under_cgroup:
2031 return &bpf_current_task_under_cgroup_proto;
2032 #endif
2033 #ifdef CONFIG_CGROUP_NET_CLASSID
2034 case BPF_FUNC_get_cgroup_classid:
2035 return &bpf_get_cgroup_classid_curr_proto;
2036 #endif
2037 case BPF_FUNC_task_storage_get:
2038 if (bpf_prog_check_recur(prog))
2039 return &bpf_task_storage_get_recur_proto;
2040 return &bpf_task_storage_get_proto;
2041 case BPF_FUNC_task_storage_delete:
2042 if (bpf_prog_check_recur(prog))
2043 return &bpf_task_storage_delete_recur_proto;
2044 return &bpf_task_storage_delete_proto;
2045 default:
2046 break;
2047 }
2048
2049 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2050 return NULL;
2051
2052 switch (func_id) {
2053 case BPF_FUNC_trace_printk:
2054 return bpf_get_trace_printk_proto();
2055 case BPF_FUNC_get_current_task:
2056 return &bpf_get_current_task_proto;
2057 case BPF_FUNC_get_current_task_btf:
2058 return &bpf_get_current_task_btf_proto;
2059 case BPF_FUNC_get_current_comm:
2060 return &bpf_get_current_comm_proto;
2061 case BPF_FUNC_probe_read_user:
2062 return &bpf_probe_read_user_proto;
2063 case BPF_FUNC_probe_read_kernel:
2064 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2065 NULL : &bpf_probe_read_kernel_proto;
2066 case BPF_FUNC_probe_read_user_str:
2067 return &bpf_probe_read_user_str_proto;
2068 case BPF_FUNC_probe_read_kernel_str:
2069 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2070 NULL : &bpf_probe_read_kernel_str_proto;
2071 case BPF_FUNC_copy_from_user:
2072 return &bpf_copy_from_user_proto;
2073 case BPF_FUNC_copy_from_user_task:
2074 return &bpf_copy_from_user_task_proto;
2075 case BPF_FUNC_snprintf_btf:
2076 return &bpf_snprintf_btf_proto;
2077 case BPF_FUNC_snprintf:
2078 return &bpf_snprintf_proto;
2079 case BPF_FUNC_task_pt_regs:
2080 return &bpf_task_pt_regs_proto;
2081 case BPF_FUNC_trace_vprintk:
2082 return bpf_get_trace_vprintk_proto();
2083 case BPF_FUNC_perf_event_read_value:
2084 return bpf_get_perf_event_read_value_proto();
2085 case BPF_FUNC_perf_event_read:
2086 return &bpf_perf_event_read_proto;
2087 case BPF_FUNC_send_signal:
2088 return &bpf_send_signal_proto;
2089 case BPF_FUNC_send_signal_thread:
2090 return &bpf_send_signal_thread_proto;
2091 case BPF_FUNC_get_task_stack:
2092 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2093 : &bpf_get_task_stack_proto;
2094 case BPF_FUNC_get_branch_snapshot:
2095 return &bpf_get_branch_snapshot_proto;
2096 case BPF_FUNC_find_vma:
2097 return &bpf_find_vma_proto;
2098 default:
2099 return NULL;
2100 }
2101 }
2102 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2103
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2104 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2105 struct bpf_spin_lock *spin_lock)
2106 {
2107 struct list_head *head = list_head, *orig_head = list_head;
2108
2109 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2110 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2111
2112 /* Do the actual list draining outside the lock to not hold the lock for
2113 * too long, and also prevent deadlocks if tracing programs end up
2114 * executing on entry/exit of functions called inside the critical
2115 * section, and end up doing map ops that call bpf_list_head_free for
2116 * the same map value again.
2117 */
2118 __bpf_spin_lock_irqsave(spin_lock);
2119 if (!head->next || list_empty(head))
2120 goto unlock;
2121 head = head->next;
2122 unlock:
2123 INIT_LIST_HEAD(orig_head);
2124 __bpf_spin_unlock_irqrestore(spin_lock);
2125
2126 while (head != orig_head) {
2127 void *obj = head;
2128
2129 obj -= field->graph_root.node_offset;
2130 head = head->next;
2131 /* The contained type can also have resources, including a
2132 * bpf_list_head which needs to be freed.
2133 */
2134 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2135 }
2136 }
2137
2138 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2139 * 'rb_node *', so field name of rb_node within containing struct is not
2140 * needed.
2141 *
2142 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2143 * graph_root.node_offset, it's not necessary to know field name
2144 * or type of node struct
2145 */
2146 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2147 for (pos = rb_first_postorder(root); \
2148 pos && ({ n = rb_next_postorder(pos); 1; }); \
2149 pos = n)
2150
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2151 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2152 struct bpf_spin_lock *spin_lock)
2153 {
2154 struct rb_root_cached orig_root, *root = rb_root;
2155 struct rb_node *pos, *n;
2156 void *obj;
2157
2158 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2159 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2160
2161 __bpf_spin_lock_irqsave(spin_lock);
2162 orig_root = *root;
2163 *root = RB_ROOT_CACHED;
2164 __bpf_spin_unlock_irqrestore(spin_lock);
2165
2166 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2167 obj = pos;
2168 obj -= field->graph_root.node_offset;
2169
2170
2171 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2172 }
2173 }
2174
2175 __bpf_kfunc_start_defs();
2176
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2177 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2178 {
2179 struct btf_struct_meta *meta = meta__ign;
2180 u64 size = local_type_id__k;
2181 void *p;
2182
2183 p = bpf_mem_alloc(&bpf_global_ma, size);
2184 if (!p)
2185 return NULL;
2186 if (meta)
2187 bpf_obj_init(meta->record, p);
2188 return p;
2189 }
2190
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2191 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2192 {
2193 u64 size = local_type_id__k;
2194
2195 /* The verifier has ensured that meta__ign must be NULL */
2196 return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2197 }
2198
2199 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2200 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2201 {
2202 struct bpf_mem_alloc *ma;
2203
2204 if (rec && rec->refcount_off >= 0 &&
2205 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2206 /* Object is refcounted and refcount_dec didn't result in 0
2207 * refcount. Return without freeing the object
2208 */
2209 return;
2210 }
2211
2212 if (rec)
2213 bpf_obj_free_fields(rec, p);
2214
2215 if (percpu)
2216 ma = &bpf_global_percpu_ma;
2217 else
2218 ma = &bpf_global_ma;
2219 bpf_mem_free_rcu(ma, p);
2220 }
2221
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2222 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2223 {
2224 struct btf_struct_meta *meta = meta__ign;
2225 void *p = p__alloc;
2226
2227 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2228 }
2229
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2230 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2231 {
2232 /* The verifier has ensured that meta__ign must be NULL */
2233 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2234 }
2235
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2236 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2237 {
2238 struct btf_struct_meta *meta = meta__ign;
2239 struct bpf_refcount *ref;
2240
2241 /* Could just cast directly to refcount_t *, but need some code using
2242 * bpf_refcount type so that it is emitted in vmlinux BTF
2243 */
2244 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2245 if (!refcount_inc_not_zero((refcount_t *)ref))
2246 return NULL;
2247
2248 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2249 * in verifier.c
2250 */
2251 return (void *)p__refcounted_kptr;
2252 }
2253
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2254 static int __bpf_list_add(struct bpf_list_node_kern *node,
2255 struct bpf_list_head *head,
2256 bool tail, struct btf_record *rec, u64 off)
2257 {
2258 struct list_head *n = &node->list_head, *h = (void *)head;
2259
2260 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2261 * called on its fields, so init here
2262 */
2263 if (unlikely(!h->next))
2264 INIT_LIST_HEAD(h);
2265
2266 /* node->owner != NULL implies !list_empty(n), no need to separately
2267 * check the latter
2268 */
2269 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2270 /* Only called from BPF prog, no need to migrate_disable */
2271 __bpf_obj_drop_impl((void *)n - off, rec, false);
2272 return -EINVAL;
2273 }
2274
2275 tail ? list_add_tail(n, h) : list_add(n, h);
2276 WRITE_ONCE(node->owner, head);
2277
2278 return 0;
2279 }
2280
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2281 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2282 struct bpf_list_node *node,
2283 void *meta__ign, u64 off)
2284 {
2285 struct bpf_list_node_kern *n = (void *)node;
2286 struct btf_struct_meta *meta = meta__ign;
2287
2288 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2289 }
2290
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2291 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2292 struct bpf_list_node *node,
2293 void *meta__ign, u64 off)
2294 {
2295 struct bpf_list_node_kern *n = (void *)node;
2296 struct btf_struct_meta *meta = meta__ign;
2297
2298 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2299 }
2300
__bpf_list_del(struct bpf_list_head * head,bool tail)2301 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2302 {
2303 struct list_head *n, *h = (void *)head;
2304 struct bpf_list_node_kern *node;
2305
2306 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2307 * called on its fields, so init here
2308 */
2309 if (unlikely(!h->next))
2310 INIT_LIST_HEAD(h);
2311 if (list_empty(h))
2312 return NULL;
2313
2314 n = tail ? h->prev : h->next;
2315 node = container_of(n, struct bpf_list_node_kern, list_head);
2316 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2317 return NULL;
2318
2319 list_del_init(n);
2320 WRITE_ONCE(node->owner, NULL);
2321 return (struct bpf_list_node *)n;
2322 }
2323
bpf_list_pop_front(struct bpf_list_head * head)2324 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2325 {
2326 return __bpf_list_del(head, false);
2327 }
2328
bpf_list_pop_back(struct bpf_list_head * head)2329 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2330 {
2331 return __bpf_list_del(head, true);
2332 }
2333
bpf_list_front(struct bpf_list_head * head)2334 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2335 {
2336 struct list_head *h = (struct list_head *)head;
2337
2338 if (list_empty(h) || unlikely(!h->next))
2339 return NULL;
2340
2341 return (struct bpf_list_node *)h->next;
2342 }
2343
bpf_list_back(struct bpf_list_head * head)2344 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2345 {
2346 struct list_head *h = (struct list_head *)head;
2347
2348 if (list_empty(h) || unlikely(!h->next))
2349 return NULL;
2350
2351 return (struct bpf_list_node *)h->prev;
2352 }
2353
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2354 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2355 struct bpf_rb_node *node)
2356 {
2357 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2358 struct rb_root_cached *r = (struct rb_root_cached *)root;
2359 struct rb_node *n = &node_internal->rb_node;
2360
2361 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2362 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2363 */
2364 if (READ_ONCE(node_internal->owner) != root)
2365 return NULL;
2366
2367 rb_erase_cached(n, r);
2368 RB_CLEAR_NODE(n);
2369 WRITE_ONCE(node_internal->owner, NULL);
2370 return (struct bpf_rb_node *)n;
2371 }
2372
2373 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2374 * program
2375 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2376 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2377 struct bpf_rb_node_kern *node,
2378 void *less, struct btf_record *rec, u64 off)
2379 {
2380 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2381 struct rb_node *parent = NULL, *n = &node->rb_node;
2382 bpf_callback_t cb = (bpf_callback_t)less;
2383 bool leftmost = true;
2384
2385 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2386 * check the latter
2387 */
2388 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2389 /* Only called from BPF prog, no need to migrate_disable */
2390 __bpf_obj_drop_impl((void *)n - off, rec, false);
2391 return -EINVAL;
2392 }
2393
2394 while (*link) {
2395 parent = *link;
2396 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2397 link = &parent->rb_left;
2398 } else {
2399 link = &parent->rb_right;
2400 leftmost = false;
2401 }
2402 }
2403
2404 rb_link_node(n, parent, link);
2405 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2406 WRITE_ONCE(node->owner, root);
2407 return 0;
2408 }
2409
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2410 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2411 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2412 void *meta__ign, u64 off)
2413 {
2414 struct btf_struct_meta *meta = meta__ign;
2415 struct bpf_rb_node_kern *n = (void *)node;
2416
2417 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2418 }
2419
bpf_rbtree_first(struct bpf_rb_root * root)2420 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2421 {
2422 struct rb_root_cached *r = (struct rb_root_cached *)root;
2423
2424 return (struct bpf_rb_node *)rb_first_cached(r);
2425 }
2426
bpf_rbtree_root(struct bpf_rb_root * root)2427 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2428 {
2429 struct rb_root_cached *r = (struct rb_root_cached *)root;
2430
2431 return (struct bpf_rb_node *)r->rb_root.rb_node;
2432 }
2433
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2434 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2435 {
2436 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2437
2438 if (READ_ONCE(node_internal->owner) != root)
2439 return NULL;
2440
2441 return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2442 }
2443
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2444 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2445 {
2446 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2447
2448 if (READ_ONCE(node_internal->owner) != root)
2449 return NULL;
2450
2451 return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2452 }
2453
2454 /**
2455 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2456 * kfunc which is not stored in a map as a kptr, must be released by calling
2457 * bpf_task_release().
2458 * @p: The task on which a reference is being acquired.
2459 */
bpf_task_acquire(struct task_struct * p)2460 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2461 {
2462 if (refcount_inc_not_zero(&p->rcu_users))
2463 return p;
2464 return NULL;
2465 }
2466
2467 /**
2468 * bpf_task_release - Release the reference acquired on a task.
2469 * @p: The task on which a reference is being released.
2470 */
bpf_task_release(struct task_struct * p)2471 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2472 {
2473 put_task_struct_rcu_user(p);
2474 }
2475
bpf_task_release_dtor(void * p)2476 __bpf_kfunc void bpf_task_release_dtor(void *p)
2477 {
2478 put_task_struct_rcu_user(p);
2479 }
2480 CFI_NOSEAL(bpf_task_release_dtor);
2481
2482 #ifdef CONFIG_CGROUPS
2483 /**
2484 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2485 * this kfunc which is not stored in a map as a kptr, must be released by
2486 * calling bpf_cgroup_release().
2487 * @cgrp: The cgroup on which a reference is being acquired.
2488 */
bpf_cgroup_acquire(struct cgroup * cgrp)2489 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2490 {
2491 return cgroup_tryget(cgrp) ? cgrp : NULL;
2492 }
2493
2494 /**
2495 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2496 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2497 * not be freed until the current grace period has ended, even if its refcount
2498 * drops to 0.
2499 * @cgrp: The cgroup on which a reference is being released.
2500 */
bpf_cgroup_release(struct cgroup * cgrp)2501 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2502 {
2503 cgroup_put(cgrp);
2504 }
2505
bpf_cgroup_release_dtor(void * cgrp)2506 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2507 {
2508 cgroup_put(cgrp);
2509 }
2510 CFI_NOSEAL(bpf_cgroup_release_dtor);
2511
2512 /**
2513 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2514 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2515 * map, must be released by calling bpf_cgroup_release().
2516 * @cgrp: The cgroup for which we're performing a lookup.
2517 * @level: The level of ancestor to look up.
2518 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2519 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2520 {
2521 struct cgroup *ancestor;
2522
2523 if (level > cgrp->level || level < 0)
2524 return NULL;
2525
2526 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2527 ancestor = cgrp->ancestors[level];
2528 if (!cgroup_tryget(ancestor))
2529 return NULL;
2530 return ancestor;
2531 }
2532
2533 /**
2534 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2535 * kfunc which is not subsequently stored in a map, must be released by calling
2536 * bpf_cgroup_release().
2537 * @cgid: cgroup id.
2538 */
bpf_cgroup_from_id(u64 cgid)2539 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2540 {
2541 struct cgroup *cgrp;
2542
2543 cgrp = cgroup_get_from_id(cgid);
2544 if (IS_ERR(cgrp))
2545 return NULL;
2546 return cgrp;
2547 }
2548
2549 /**
2550 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2551 * task's membership of cgroup ancestry.
2552 * @task: the task to be tested
2553 * @ancestor: possible ancestor of @task's cgroup
2554 *
2555 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2556 * It follows all the same rules as cgroup_is_descendant, and only applies
2557 * to the default hierarchy.
2558 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2559 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2560 struct cgroup *ancestor)
2561 {
2562 long ret;
2563
2564 rcu_read_lock();
2565 ret = task_under_cgroup_hierarchy(task, ancestor);
2566 rcu_read_unlock();
2567 return ret;
2568 }
2569
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2570 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2571 {
2572 struct bpf_array *array = container_of(map, struct bpf_array, map);
2573 struct cgroup *cgrp;
2574
2575 if (unlikely(idx >= array->map.max_entries))
2576 return -E2BIG;
2577
2578 cgrp = READ_ONCE(array->ptrs[idx]);
2579 if (unlikely(!cgrp))
2580 return -EAGAIN;
2581
2582 return task_under_cgroup_hierarchy(current, cgrp);
2583 }
2584
2585 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2586 .func = bpf_current_task_under_cgroup,
2587 .gpl_only = false,
2588 .ret_type = RET_INTEGER,
2589 .arg1_type = ARG_CONST_MAP_PTR,
2590 .arg2_type = ARG_ANYTHING,
2591 };
2592
2593 /**
2594 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2595 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2596 * hierarchy ID.
2597 * @task: The target task
2598 * @hierarchy_id: The ID of a cgroup1 hierarchy
2599 *
2600 * On success, the cgroup is returen. On failure, NULL is returned.
2601 */
2602 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2603 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2604 {
2605 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2606
2607 if (IS_ERR(cgrp))
2608 return NULL;
2609 return cgrp;
2610 }
2611 #endif /* CONFIG_CGROUPS */
2612
2613 /**
2614 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2615 * in the root pid namespace idr. If a task is returned, it must either be
2616 * stored in a map, or released with bpf_task_release().
2617 * @pid: The pid of the task being looked up.
2618 */
bpf_task_from_pid(s32 pid)2619 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2620 {
2621 struct task_struct *p;
2622
2623 rcu_read_lock();
2624 p = find_task_by_pid_ns(pid, &init_pid_ns);
2625 if (p)
2626 p = bpf_task_acquire(p);
2627 rcu_read_unlock();
2628
2629 return p;
2630 }
2631
2632 /**
2633 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2634 * in the pid namespace of the current task. If a task is returned, it must
2635 * either be stored in a map, or released with bpf_task_release().
2636 * @vpid: The vpid of the task being looked up.
2637 */
bpf_task_from_vpid(s32 vpid)2638 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2639 {
2640 struct task_struct *p;
2641
2642 rcu_read_lock();
2643 p = find_task_by_vpid(vpid);
2644 if (p)
2645 p = bpf_task_acquire(p);
2646 rcu_read_unlock();
2647
2648 return p;
2649 }
2650
2651 /**
2652 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2653 * @p: The dynptr whose data slice to retrieve
2654 * @offset: Offset into the dynptr
2655 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2656 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2657 * length of the requested slice. This must be a constant.
2658 *
2659 * For non-skb and non-xdp type dynptrs, there is no difference between
2660 * bpf_dynptr_slice and bpf_dynptr_data.
2661 *
2662 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2663 *
2664 * If the intention is to write to the data slice, please use
2665 * bpf_dynptr_slice_rdwr.
2666 *
2667 * The user must check that the returned pointer is not null before using it.
2668 *
2669 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2670 * does not change the underlying packet data pointers, so a call to
2671 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2672 * the bpf program.
2673 *
2674 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2675 * data slice (can be either direct pointer to the data or a pointer to the user
2676 * provided buffer, with its contents containing the data, if unable to obtain
2677 * direct pointer)
2678 */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2679 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2680 void *buffer__opt, u32 buffer__szk)
2681 {
2682 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2683 enum bpf_dynptr_type type;
2684 u32 len = buffer__szk;
2685 int err;
2686
2687 if (!ptr->data)
2688 return NULL;
2689
2690 err = bpf_dynptr_check_off_len(ptr, offset, len);
2691 if (err)
2692 return NULL;
2693
2694 type = bpf_dynptr_get_type(ptr);
2695
2696 switch (type) {
2697 case BPF_DYNPTR_TYPE_LOCAL:
2698 case BPF_DYNPTR_TYPE_RINGBUF:
2699 return ptr->data + ptr->offset + offset;
2700 case BPF_DYNPTR_TYPE_SKB:
2701 if (buffer__opt)
2702 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2703 else
2704 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2705 case BPF_DYNPTR_TYPE_XDP:
2706 {
2707 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2708 if (!IS_ERR_OR_NULL(xdp_ptr))
2709 return xdp_ptr;
2710
2711 if (!buffer__opt)
2712 return NULL;
2713 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2714 return buffer__opt;
2715 }
2716 default:
2717 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2718 return NULL;
2719 }
2720 }
2721
2722 /**
2723 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2724 * @p: The dynptr whose data slice to retrieve
2725 * @offset: Offset into the dynptr
2726 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2727 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2728 * length of the requested slice. This must be a constant.
2729 *
2730 * For non-skb and non-xdp type dynptrs, there is no difference between
2731 * bpf_dynptr_slice and bpf_dynptr_data.
2732 *
2733 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2734 *
2735 * The returned pointer is writable and may point to either directly the dynptr
2736 * data at the requested offset or to the buffer if unable to obtain a direct
2737 * data pointer to (example: the requested slice is to the paged area of an skb
2738 * packet). In the case where the returned pointer is to the buffer, the user
2739 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2740 * usually looks something like this pattern:
2741 *
2742 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2743 * if (!eth)
2744 * return TC_ACT_SHOT;
2745 *
2746 * // mutate eth header //
2747 *
2748 * if (eth == buffer)
2749 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2750 *
2751 * Please note that, as in the example above, the user must check that the
2752 * returned pointer is not null before using it.
2753 *
2754 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2755 * does not change the underlying packet data pointers, so a call to
2756 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2757 * the bpf program.
2758 *
2759 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2760 * data slice (can be either direct pointer to the data or a pointer to the user
2761 * provided buffer, with its contents containing the data, if unable to obtain
2762 * direct pointer)
2763 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2764 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2765 void *buffer__opt, u32 buffer__szk)
2766 {
2767 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2768
2769 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2770 return NULL;
2771
2772 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2773 *
2774 * For skb-type dynptrs, it is safe to write into the returned pointer
2775 * if the bpf program allows skb data writes. There are two possibilities
2776 * that may occur when calling bpf_dynptr_slice_rdwr:
2777 *
2778 * 1) The requested slice is in the head of the skb. In this case, the
2779 * returned pointer is directly to skb data, and if the skb is cloned, the
2780 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2781 * The pointer can be directly written into.
2782 *
2783 * 2) Some portion of the requested slice is in the paged buffer area.
2784 * In this case, the requested data will be copied out into the buffer
2785 * and the returned pointer will be a pointer to the buffer. The skb
2786 * will not be pulled. To persist the write, the user will need to call
2787 * bpf_dynptr_write(), which will pull the skb and commit the write.
2788 *
2789 * Similarly for xdp programs, if the requested slice is not across xdp
2790 * fragments, then a direct pointer will be returned, otherwise the data
2791 * will be copied out into the buffer and the user will need to call
2792 * bpf_dynptr_write() to commit changes.
2793 */
2794 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2795 }
2796
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2797 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2798 {
2799 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2800 u32 size;
2801
2802 if (!ptr->data || start > end)
2803 return -EINVAL;
2804
2805 size = __bpf_dynptr_size(ptr);
2806
2807 if (start > size || end > size)
2808 return -ERANGE;
2809
2810 ptr->offset += start;
2811 bpf_dynptr_set_size(ptr, end - start);
2812
2813 return 0;
2814 }
2815
bpf_dynptr_is_null(const struct bpf_dynptr * p)2816 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2817 {
2818 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2819
2820 return !ptr->data;
2821 }
2822
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2823 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2824 {
2825 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2826
2827 if (!ptr->data)
2828 return false;
2829
2830 return __bpf_dynptr_is_rdonly(ptr);
2831 }
2832
bpf_dynptr_size(const struct bpf_dynptr * p)2833 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2834 {
2835 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2836
2837 if (!ptr->data)
2838 return -EINVAL;
2839
2840 return __bpf_dynptr_size(ptr);
2841 }
2842
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2843 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2844 struct bpf_dynptr *clone__uninit)
2845 {
2846 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2847 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2848
2849 if (!ptr->data) {
2850 bpf_dynptr_set_null(clone);
2851 return -EINVAL;
2852 }
2853
2854 *clone = *ptr;
2855
2856 return 0;
2857 }
2858
2859 /**
2860 * bpf_dynptr_copy() - Copy data from one dynptr to another.
2861 * @dst_ptr: Destination dynptr - where data should be copied to
2862 * @dst_off: Offset into the destination dynptr
2863 * @src_ptr: Source dynptr - where data should be copied from
2864 * @src_off: Offset into the source dynptr
2865 * @size: Length of the data to copy from source to destination
2866 *
2867 * Copies data from source dynptr to destination dynptr.
2868 * Returns 0 on success; negative error, otherwise.
2869 */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u32 dst_off,struct bpf_dynptr * src_ptr,u32 src_off,u32 size)2870 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2871 struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2872 {
2873 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2874 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2875 void *src_slice, *dst_slice;
2876 char buf[256];
2877 u32 off;
2878
2879 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2880 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2881
2882 if (src_slice && dst_slice) {
2883 memmove(dst_slice, src_slice, size);
2884 return 0;
2885 }
2886
2887 if (src_slice)
2888 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2889
2890 if (dst_slice)
2891 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2892
2893 if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2894 bpf_dynptr_check_off_len(src, src_off, size))
2895 return -E2BIG;
2896
2897 off = 0;
2898 while (off < size) {
2899 u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2900 int err;
2901
2902 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2903 if (err)
2904 return err;
2905 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2906 if (err)
2907 return err;
2908
2909 off += chunk_sz;
2910 }
2911 return 0;
2912 }
2913
bpf_cast_to_kern_ctx(void * obj)2914 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2915 {
2916 return obj;
2917 }
2918
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2919 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2920 {
2921 return (void *)obj__ign;
2922 }
2923
bpf_rcu_read_lock(void)2924 __bpf_kfunc void bpf_rcu_read_lock(void)
2925 {
2926 rcu_read_lock();
2927 }
2928
bpf_rcu_read_unlock(void)2929 __bpf_kfunc void bpf_rcu_read_unlock(void)
2930 {
2931 rcu_read_unlock();
2932 }
2933
2934 struct bpf_throw_ctx {
2935 struct bpf_prog_aux *aux;
2936 u64 sp;
2937 u64 bp;
2938 int cnt;
2939 };
2940
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2941 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2942 {
2943 struct bpf_throw_ctx *ctx = cookie;
2944 struct bpf_prog *prog;
2945
2946 if (!is_bpf_text_address(ip))
2947 return !ctx->cnt;
2948 prog = bpf_prog_ksym_find(ip);
2949 ctx->cnt++;
2950 if (bpf_is_subprog(prog))
2951 return true;
2952 ctx->aux = prog->aux;
2953 ctx->sp = sp;
2954 ctx->bp = bp;
2955 return false;
2956 }
2957
bpf_throw(u64 cookie)2958 __bpf_kfunc void bpf_throw(u64 cookie)
2959 {
2960 struct bpf_throw_ctx ctx = {};
2961
2962 arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2963 WARN_ON_ONCE(!ctx.aux);
2964 if (ctx.aux)
2965 WARN_ON_ONCE(!ctx.aux->exception_boundary);
2966 WARN_ON_ONCE(!ctx.bp);
2967 WARN_ON_ONCE(!ctx.cnt);
2968 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2969 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2970 * which skips compiler generated instrumentation to do the same.
2971 */
2972 kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2973 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2974 WARN(1, "A call to BPF exception callback should never return\n");
2975 }
2976
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)2977 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
2978 {
2979 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2980 struct bpf_map *map = p__map;
2981
2982 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
2983 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
2984
2985 if (flags)
2986 return -EINVAL;
2987
2988 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
2989 }
2990
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)2991 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
2992 {
2993 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2994 struct bpf_work *w;
2995
2996 if (in_nmi())
2997 return -EOPNOTSUPP;
2998 if (flags)
2999 return -EINVAL;
3000 w = READ_ONCE(async->work);
3001 if (!w || !READ_ONCE(w->cb.prog))
3002 return -EINVAL;
3003
3004 schedule_work(&w->work);
3005 return 0;
3006 }
3007
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3008 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3009 int (callback_fn)(void *map, int *key, void *value),
3010 unsigned int flags,
3011 void *aux__prog)
3012 {
3013 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3014 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3015
3016 if (flags)
3017 return -EINVAL;
3018
3019 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3020 }
3021
bpf_preempt_disable(void)3022 __bpf_kfunc void bpf_preempt_disable(void)
3023 {
3024 preempt_disable();
3025 }
3026
bpf_preempt_enable(void)3027 __bpf_kfunc void bpf_preempt_enable(void)
3028 {
3029 preempt_enable();
3030 }
3031
3032 struct bpf_iter_bits {
3033 __u64 __opaque[2];
3034 } __aligned(8);
3035
3036 #define BITS_ITER_NR_WORDS_MAX 511
3037
3038 struct bpf_iter_bits_kern {
3039 union {
3040 __u64 *bits;
3041 __u64 bits_copy;
3042 };
3043 int nr_bits;
3044 int bit;
3045 } __aligned(8);
3046
3047 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3048 * a u64 pointer and an unsigned long pointer to find_next_bit() will
3049 * return the same result, as both point to the same 8-byte area.
3050 *
3051 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3052 * pointer also makes no difference. This is because the first iterated
3053 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3054 * long is composed of bits 32-63 of the u64.
3055 *
3056 * However, for 32-bit big-endian hosts, this is not the case. The first
3057 * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3058 * ulong values within the u64.
3059 */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3060 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3061 {
3062 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3063 unsigned int i;
3064
3065 for (i = 0; i < nr; i++)
3066 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3067 #endif
3068 }
3069
3070 /**
3071 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3072 * @it: The new bpf_iter_bits to be created
3073 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3074 * @nr_words: The size of the specified memory area, measured in 8-byte units.
3075 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3076 * further reduced by the BPF memory allocator implementation.
3077 *
3078 * This function initializes a new bpf_iter_bits structure for iterating over
3079 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3080 * copies the data of the memory area to the newly created bpf_iter_bits @it for
3081 * subsequent iteration operations.
3082 *
3083 * On success, 0 is returned. On failure, ERR is returned.
3084 */
3085 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3086 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3087 {
3088 struct bpf_iter_bits_kern *kit = (void *)it;
3089 u32 nr_bytes = nr_words * sizeof(u64);
3090 u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3091 int err;
3092
3093 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3094 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3095 __alignof__(struct bpf_iter_bits));
3096
3097 kit->nr_bits = 0;
3098 kit->bits_copy = 0;
3099 kit->bit = -1;
3100
3101 if (!unsafe_ptr__ign || !nr_words)
3102 return -EINVAL;
3103 if (nr_words > BITS_ITER_NR_WORDS_MAX)
3104 return -E2BIG;
3105
3106 /* Optimization for u64 mask */
3107 if (nr_bits == 64) {
3108 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3109 if (err)
3110 return -EFAULT;
3111
3112 swap_ulong_in_u64(&kit->bits_copy, nr_words);
3113
3114 kit->nr_bits = nr_bits;
3115 return 0;
3116 }
3117
3118 if (bpf_mem_alloc_check_size(false, nr_bytes))
3119 return -E2BIG;
3120
3121 /* Fallback to memalloc */
3122 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3123 if (!kit->bits)
3124 return -ENOMEM;
3125
3126 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3127 if (err) {
3128 bpf_mem_free(&bpf_global_ma, kit->bits);
3129 return err;
3130 }
3131
3132 swap_ulong_in_u64(kit->bits, nr_words);
3133
3134 kit->nr_bits = nr_bits;
3135 return 0;
3136 }
3137
3138 /**
3139 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3140 * @it: The bpf_iter_bits to be checked
3141 *
3142 * This function returns a pointer to a number representing the value of the
3143 * next bit in the bits.
3144 *
3145 * If there are no further bits available, it returns NULL.
3146 */
bpf_iter_bits_next(struct bpf_iter_bits * it)3147 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3148 {
3149 struct bpf_iter_bits_kern *kit = (void *)it;
3150 int bit = kit->bit, nr_bits = kit->nr_bits;
3151 const void *bits;
3152
3153 if (!nr_bits || bit >= nr_bits)
3154 return NULL;
3155
3156 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3157 bit = find_next_bit(bits, nr_bits, bit + 1);
3158 if (bit >= nr_bits) {
3159 kit->bit = bit;
3160 return NULL;
3161 }
3162
3163 kit->bit = bit;
3164 return &kit->bit;
3165 }
3166
3167 /**
3168 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3169 * @it: The bpf_iter_bits to be destroyed
3170 *
3171 * Destroy the resource associated with the bpf_iter_bits.
3172 */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3173 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3174 {
3175 struct bpf_iter_bits_kern *kit = (void *)it;
3176
3177 if (kit->nr_bits <= 64)
3178 return;
3179 bpf_mem_free(&bpf_global_ma, kit->bits);
3180 }
3181
3182 /**
3183 * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3184 * @dst: Destination address, in kernel space. This buffer must be
3185 * at least @dst__sz bytes long.
3186 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3187 * @unsafe_ptr__ign: Source address, in user space.
3188 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3189 *
3190 * Copies a NUL-terminated string from userspace to BPF space. If user string is
3191 * too long this will still ensure zero termination in the dst buffer unless
3192 * buffer size is 0.
3193 *
3194 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3195 * memset all of @dst on failure.
3196 */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3197 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3198 {
3199 int ret;
3200
3201 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3202 return -EINVAL;
3203
3204 if (unlikely(!dst__sz))
3205 return 0;
3206
3207 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3208 if (ret < 0) {
3209 if (flags & BPF_F_PAD_ZEROS)
3210 memset((char *)dst, 0, dst__sz);
3211
3212 return ret;
3213 }
3214
3215 if (flags & BPF_F_PAD_ZEROS)
3216 memset((char *)dst + ret, 0, dst__sz - ret);
3217 else
3218 ((char *)dst)[ret] = '\0';
3219
3220 return ret + 1;
3221 }
3222
3223 /**
3224 * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3225 * @dst: Destination address, in kernel space. This buffer must be
3226 * at least @dst__sz bytes long.
3227 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3228 * @unsafe_ptr__ign: Source address in the task's address space.
3229 * @tsk: The task whose address space will be used
3230 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3231 *
3232 * Copies a NUL terminated string from a task's address space to @dst__sz
3233 * buffer. If user string is too long this will still ensure zero termination
3234 * in the @dst__sz buffer unless buffer size is 0.
3235 *
3236 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3237 * and memset all of @dst__sz on failure.
3238 *
3239 * Return: The number of copied bytes on success including the NUL terminator.
3240 * A negative error code on failure.
3241 */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3242 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3243 const void __user *unsafe_ptr__ign,
3244 struct task_struct *tsk, u64 flags)
3245 {
3246 int ret;
3247
3248 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3249 return -EINVAL;
3250
3251 if (unlikely(dst__sz == 0))
3252 return 0;
3253
3254 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3255 if (ret < 0) {
3256 if (flags & BPF_F_PAD_ZEROS)
3257 memset(dst, 0, dst__sz);
3258 return ret;
3259 }
3260
3261 if (flags & BPF_F_PAD_ZEROS)
3262 memset(dst + ret, 0, dst__sz - ret);
3263
3264 return ret + 1;
3265 }
3266
3267 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3268 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3269 * unsigned long always points to 8-byte region on stack, the kernel may only
3270 * read and write the 4-bytes on 32-bit.
3271 */
bpf_local_irq_save(unsigned long * flags__irq_flag)3272 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3273 {
3274 local_irq_save(*flags__irq_flag);
3275 }
3276
bpf_local_irq_restore(unsigned long * flags__irq_flag)3277 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3278 {
3279 local_irq_restore(*flags__irq_flag);
3280 }
3281
__bpf_trap(void)3282 __bpf_kfunc void __bpf_trap(void)
3283 {
3284 }
3285
3286 __bpf_kfunc_end_defs();
3287
3288 BTF_KFUNCS_START(generic_btf_ids)
3289 #ifdef CONFIG_CRASH_DUMP
3290 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3291 #endif
3292 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3293 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3294 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3295 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3296 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3297 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3298 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3299 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3300 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3301 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
3302 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
3303 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3304 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3305 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3306 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3307 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3308 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
3309 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
3310 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
3311
3312 #ifdef CONFIG_CGROUPS
3313 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3314 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3315 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3316 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3317 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3318 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3319 #endif
3320 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3321 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
3322 BTF_ID_FLAGS(func, bpf_throw)
3323 #ifdef CONFIG_BPF_EVENTS
3324 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
3325 #endif
3326 BTF_KFUNCS_END(generic_btf_ids)
3327
3328 static const struct btf_kfunc_id_set generic_kfunc_set = {
3329 .owner = THIS_MODULE,
3330 .set = &generic_btf_ids,
3331 };
3332
3333
3334 BTF_ID_LIST(generic_dtor_ids)
3335 BTF_ID(struct, task_struct)
3336 BTF_ID(func, bpf_task_release_dtor)
3337 #ifdef CONFIG_CGROUPS
3338 BTF_ID(struct, cgroup)
3339 BTF_ID(func, bpf_cgroup_release_dtor)
3340 #endif
3341
3342 BTF_KFUNCS_START(common_btf_ids)
3343 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
3344 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
3345 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3346 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3347 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3348 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3349 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3350 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3351 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3352 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3353 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3354 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3355 #ifdef CONFIG_CGROUPS
3356 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3357 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3358 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3359 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3360 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3361 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3362 #endif
3363 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3364 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3365 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3366 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3367 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3368 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3369 BTF_ID_FLAGS(func, bpf_dynptr_size)
3370 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3371 BTF_ID_FLAGS(func, bpf_dynptr_copy)
3372 #ifdef CONFIG_NET
3373 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3374 #endif
3375 BTF_ID_FLAGS(func, bpf_wq_init)
3376 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3377 BTF_ID_FLAGS(func, bpf_wq_start)
3378 BTF_ID_FLAGS(func, bpf_preempt_disable)
3379 BTF_ID_FLAGS(func, bpf_preempt_enable)
3380 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3381 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3382 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3383 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3384 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
3385 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
3386 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
3387 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3388 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3389 BTF_ID_FLAGS(func, bpf_local_irq_save)
3390 BTF_ID_FLAGS(func, bpf_local_irq_restore)
3391 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
3392 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
3393 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
3394 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
3395 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
3396 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
3397 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3398 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3399 #ifdef CONFIG_DMA_SHARED_BUFFER
3400 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
3401 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3402 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3403 #endif
3404 BTF_ID_FLAGS(func, __bpf_trap)
3405 #ifdef CONFIG_CGROUPS
3406 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
3407 #endif
3408 BTF_KFUNCS_END(common_btf_ids)
3409
3410 static const struct btf_kfunc_id_set common_kfunc_set = {
3411 .owner = THIS_MODULE,
3412 .set = &common_btf_ids,
3413 };
3414
kfunc_init(void)3415 static int __init kfunc_init(void)
3416 {
3417 int ret;
3418 const struct btf_id_dtor_kfunc generic_dtors[] = {
3419 {
3420 .btf_id = generic_dtor_ids[0],
3421 .kfunc_btf_id = generic_dtor_ids[1]
3422 },
3423 #ifdef CONFIG_CGROUPS
3424 {
3425 .btf_id = generic_dtor_ids[2],
3426 .kfunc_btf_id = generic_dtor_ids[3]
3427 },
3428 #endif
3429 };
3430
3431 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3432 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3433 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3434 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3435 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3436 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3437 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3438 ARRAY_SIZE(generic_dtors),
3439 THIS_MODULE);
3440 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3441 }
3442
3443 late_initcall(kfunc_init);
3444
3445 /* Get a pointer to dynptr data up to len bytes for read only access. If
3446 * the dynptr doesn't have continuous data up to len bytes, return NULL.
3447 */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3448 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3449 {
3450 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3451
3452 return bpf_dynptr_slice(p, 0, NULL, len);
3453 }
3454
3455 /* Get a pointer to dynptr data up to len bytes for read write access. If
3456 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3457 * is read only, return NULL.
3458 */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3459 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3460 {
3461 if (__bpf_dynptr_is_rdonly(ptr))
3462 return NULL;
3463 return (void *)__bpf_dynptr_data(ptr, len);
3464 }
3465