xref: /linux/kernel/bpf/helpers.c (revision d9104cec3e8fe4b458b74709853231385779001f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28 
29 #include "../../lib/kstrtox.h"
30 
31 /* If kernel subsystem is allowing eBPF programs to call this function,
32  * inside its own verifier_ops->get_func_proto() callback it should return
33  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
34  *
35  * Different map implementations will rely on rcu in map methods
36  * lookup/update/delete, therefore eBPF programs must run under rcu lock
37  * if program is allowed to access maps, so check rcu_read_lock_held() or
38  * rcu_read_lock_trace_held() in all three functions.
39  */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)40 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
41 {
42 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
43 		     !rcu_read_lock_bh_held());
44 	return (unsigned long) map->ops->map_lookup_elem(map, key);
45 }
46 
47 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
48 	.func		= bpf_map_lookup_elem,
49 	.gpl_only	= false,
50 	.pkt_access	= true,
51 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
52 	.arg1_type	= ARG_CONST_MAP_PTR,
53 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
54 };
55 
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)56 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
57 	   void *, value, u64, flags)
58 {
59 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
60 		     !rcu_read_lock_bh_held());
61 	return map->ops->map_update_elem(map, key, value, flags);
62 }
63 
64 const struct bpf_func_proto bpf_map_update_elem_proto = {
65 	.func		= bpf_map_update_elem,
66 	.gpl_only	= false,
67 	.pkt_access	= true,
68 	.ret_type	= RET_INTEGER,
69 	.arg1_type	= ARG_CONST_MAP_PTR,
70 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
71 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
72 	.arg4_type	= ARG_ANYTHING,
73 };
74 
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)75 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
76 {
77 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
78 		     !rcu_read_lock_bh_held());
79 	return map->ops->map_delete_elem(map, key);
80 }
81 
82 const struct bpf_func_proto bpf_map_delete_elem_proto = {
83 	.func		= bpf_map_delete_elem,
84 	.gpl_only	= false,
85 	.pkt_access	= true,
86 	.ret_type	= RET_INTEGER,
87 	.arg1_type	= ARG_CONST_MAP_PTR,
88 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
89 };
90 
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)91 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
92 {
93 	return map->ops->map_push_elem(map, value, flags);
94 }
95 
96 const struct bpf_func_proto bpf_map_push_elem_proto = {
97 	.func		= bpf_map_push_elem,
98 	.gpl_only	= false,
99 	.pkt_access	= true,
100 	.ret_type	= RET_INTEGER,
101 	.arg1_type	= ARG_CONST_MAP_PTR,
102 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
103 	.arg3_type	= ARG_ANYTHING,
104 };
105 
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)106 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
107 {
108 	return map->ops->map_pop_elem(map, value);
109 }
110 
111 const struct bpf_func_proto bpf_map_pop_elem_proto = {
112 	.func		= bpf_map_pop_elem,
113 	.gpl_only	= false,
114 	.ret_type	= RET_INTEGER,
115 	.arg1_type	= ARG_CONST_MAP_PTR,
116 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
117 };
118 
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)119 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
120 {
121 	return map->ops->map_peek_elem(map, value);
122 }
123 
124 const struct bpf_func_proto bpf_map_peek_elem_proto = {
125 	.func		= bpf_map_peek_elem,
126 	.gpl_only	= false,
127 	.ret_type	= RET_INTEGER,
128 	.arg1_type	= ARG_CONST_MAP_PTR,
129 	.arg2_type	= ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
130 };
131 
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)132 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
133 {
134 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
135 		     !rcu_read_lock_bh_held());
136 	return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137 }
138 
139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140 	.func		= bpf_map_lookup_percpu_elem,
141 	.gpl_only	= false,
142 	.pkt_access	= true,
143 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
144 	.arg1_type	= ARG_CONST_MAP_PTR,
145 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
146 	.arg3_type	= ARG_ANYTHING,
147 };
148 
149 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150 	.func		= bpf_user_rnd_u32,
151 	.gpl_only	= false,
152 	.ret_type	= RET_INTEGER,
153 };
154 
BPF_CALL_0(bpf_get_smp_processor_id)155 BPF_CALL_0(bpf_get_smp_processor_id)
156 {
157 	return smp_processor_id();
158 }
159 
160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161 	.func		= bpf_get_smp_processor_id,
162 	.gpl_only	= false,
163 	.ret_type	= RET_INTEGER,
164 	.allow_fastcall	= true,
165 };
166 
BPF_CALL_0(bpf_get_numa_node_id)167 BPF_CALL_0(bpf_get_numa_node_id)
168 {
169 	return numa_node_id();
170 }
171 
172 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173 	.func		= bpf_get_numa_node_id,
174 	.gpl_only	= false,
175 	.ret_type	= RET_INTEGER,
176 };
177 
BPF_CALL_0(bpf_ktime_get_ns)178 BPF_CALL_0(bpf_ktime_get_ns)
179 {
180 	/* NMI safe access to clock monotonic */
181 	return ktime_get_mono_fast_ns();
182 }
183 
184 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185 	.func		= bpf_ktime_get_ns,
186 	.gpl_only	= false,
187 	.ret_type	= RET_INTEGER,
188 };
189 
BPF_CALL_0(bpf_ktime_get_boot_ns)190 BPF_CALL_0(bpf_ktime_get_boot_ns)
191 {
192 	/* NMI safe access to clock boottime */
193 	return ktime_get_boot_fast_ns();
194 }
195 
196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197 	.func		= bpf_ktime_get_boot_ns,
198 	.gpl_only	= false,
199 	.ret_type	= RET_INTEGER,
200 };
201 
BPF_CALL_0(bpf_ktime_get_coarse_ns)202 BPF_CALL_0(bpf_ktime_get_coarse_ns)
203 {
204 	return ktime_get_coarse_ns();
205 }
206 
207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208 	.func		= bpf_ktime_get_coarse_ns,
209 	.gpl_only	= false,
210 	.ret_type	= RET_INTEGER,
211 };
212 
BPF_CALL_0(bpf_ktime_get_tai_ns)213 BPF_CALL_0(bpf_ktime_get_tai_ns)
214 {
215 	/* NMI safe access to clock tai */
216 	return ktime_get_tai_fast_ns();
217 }
218 
219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220 	.func		= bpf_ktime_get_tai_ns,
221 	.gpl_only	= false,
222 	.ret_type	= RET_INTEGER,
223 };
224 
BPF_CALL_0(bpf_get_current_pid_tgid)225 BPF_CALL_0(bpf_get_current_pid_tgid)
226 {
227 	struct task_struct *task = current;
228 
229 	if (unlikely(!task))
230 		return -EINVAL;
231 
232 	return (u64) task->tgid << 32 | task->pid;
233 }
234 
235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236 	.func		= bpf_get_current_pid_tgid,
237 	.gpl_only	= false,
238 	.ret_type	= RET_INTEGER,
239 };
240 
BPF_CALL_0(bpf_get_current_uid_gid)241 BPF_CALL_0(bpf_get_current_uid_gid)
242 {
243 	struct task_struct *task = current;
244 	kuid_t uid;
245 	kgid_t gid;
246 
247 	if (unlikely(!task))
248 		return -EINVAL;
249 
250 	current_uid_gid(&uid, &gid);
251 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
252 		     from_kuid(&init_user_ns, uid);
253 }
254 
255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256 	.func		= bpf_get_current_uid_gid,
257 	.gpl_only	= false,
258 	.ret_type	= RET_INTEGER,
259 };
260 
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262 {
263 	struct task_struct *task = current;
264 
265 	if (unlikely(!task))
266 		goto err_clear;
267 
268 	/* Verifier guarantees that size > 0 */
269 	strscpy_pad(buf, task->comm, size);
270 	return 0;
271 err_clear:
272 	memset(buf, 0, size);
273 	return -EINVAL;
274 }
275 
276 const struct bpf_func_proto bpf_get_current_comm_proto = {
277 	.func		= bpf_get_current_comm,
278 	.gpl_only	= false,
279 	.ret_type	= RET_INTEGER,
280 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
281 	.arg2_type	= ARG_CONST_SIZE,
282 };
283 
284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285 
__bpf_spin_lock(struct bpf_spin_lock * lock)286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287 {
288 	arch_spinlock_t *l = (void *)lock;
289 	union {
290 		__u32 val;
291 		arch_spinlock_t lock;
292 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293 
294 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297 	preempt_disable();
298 	arch_spin_lock(l);
299 }
300 
__bpf_spin_unlock(struct bpf_spin_lock * lock)301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302 {
303 	arch_spinlock_t *l = (void *)lock;
304 
305 	arch_spin_unlock(l);
306 	preempt_enable();
307 }
308 
309 #else
310 
__bpf_spin_lock(struct bpf_spin_lock * lock)311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312 {
313 	atomic_t *l = (void *)lock;
314 
315 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316 	do {
317 		atomic_cond_read_relaxed(l, !VAL);
318 	} while (atomic_xchg(l, 1));
319 }
320 
__bpf_spin_unlock(struct bpf_spin_lock * lock)321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322 {
323 	atomic_t *l = (void *)lock;
324 
325 	atomic_set_release(l, 0);
326 }
327 
328 #endif
329 
330 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331 
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333 {
334 	unsigned long flags;
335 
336 	local_irq_save(flags);
337 	__bpf_spin_lock(lock);
338 	__this_cpu_write(irqsave_flags, flags);
339 }
340 
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342 {
343 	__bpf_spin_lock_irqsave(lock);
344 	return 0;
345 }
346 
347 const struct bpf_func_proto bpf_spin_lock_proto = {
348 	.func		= bpf_spin_lock,
349 	.gpl_only	= false,
350 	.ret_type	= RET_VOID,
351 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
352 	.arg1_btf_id    = BPF_PTR_POISON,
353 };
354 
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356 {
357 	unsigned long flags;
358 
359 	flags = __this_cpu_read(irqsave_flags);
360 	__bpf_spin_unlock(lock);
361 	local_irq_restore(flags);
362 }
363 
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365 {
366 	__bpf_spin_unlock_irqrestore(lock);
367 	return 0;
368 }
369 
370 const struct bpf_func_proto bpf_spin_unlock_proto = {
371 	.func		= bpf_spin_unlock,
372 	.gpl_only	= false,
373 	.ret_type	= RET_VOID,
374 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
375 	.arg1_btf_id    = BPF_PTR_POISON,
376 };
377 
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379 			   bool lock_src)
380 {
381 	struct bpf_spin_lock *lock;
382 
383 	if (lock_src)
384 		lock = src + map->record->spin_lock_off;
385 	else
386 		lock = dst + map->record->spin_lock_off;
387 	preempt_disable();
388 	__bpf_spin_lock_irqsave(lock);
389 	copy_map_value(map, dst, src);
390 	__bpf_spin_unlock_irqrestore(lock);
391 	preempt_enable();
392 }
393 
BPF_CALL_0(bpf_jiffies64)394 BPF_CALL_0(bpf_jiffies64)
395 {
396 	return get_jiffies_64();
397 }
398 
399 const struct bpf_func_proto bpf_jiffies64_proto = {
400 	.func		= bpf_jiffies64,
401 	.gpl_only	= false,
402 	.ret_type	= RET_INTEGER,
403 };
404 
405 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)406 BPF_CALL_0(bpf_get_current_cgroup_id)
407 {
408 	struct cgroup *cgrp;
409 	u64 cgrp_id;
410 
411 	rcu_read_lock();
412 	cgrp = task_dfl_cgroup(current);
413 	cgrp_id = cgroup_id(cgrp);
414 	rcu_read_unlock();
415 
416 	return cgrp_id;
417 }
418 
419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420 	.func		= bpf_get_current_cgroup_id,
421 	.gpl_only	= false,
422 	.ret_type	= RET_INTEGER,
423 };
424 
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426 {
427 	struct cgroup *cgrp;
428 	struct cgroup *ancestor;
429 	u64 cgrp_id;
430 
431 	rcu_read_lock();
432 	cgrp = task_dfl_cgroup(current);
433 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
434 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435 	rcu_read_unlock();
436 
437 	return cgrp_id;
438 }
439 
440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441 	.func		= bpf_get_current_ancestor_cgroup_id,
442 	.gpl_only	= false,
443 	.ret_type	= RET_INTEGER,
444 	.arg1_type	= ARG_ANYTHING,
445 };
446 #endif /* CONFIG_CGROUPS */
447 
448 #define BPF_STRTOX_BASE_MASK 0x1F
449 
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451 			  unsigned long long *res, bool *is_negative)
452 {
453 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454 	const char *cur_buf = buf;
455 	size_t cur_len = buf_len;
456 	unsigned int consumed;
457 	size_t val_len;
458 	char str[64];
459 
460 	if (!buf || !buf_len || !res || !is_negative)
461 		return -EINVAL;
462 
463 	if (base != 0 && base != 8 && base != 10 && base != 16)
464 		return -EINVAL;
465 
466 	if (flags & ~BPF_STRTOX_BASE_MASK)
467 		return -EINVAL;
468 
469 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
470 		++cur_buf;
471 
472 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473 	if (*is_negative)
474 		++cur_buf;
475 
476 	consumed = cur_buf - buf;
477 	cur_len -= consumed;
478 	if (!cur_len)
479 		return -EINVAL;
480 
481 	cur_len = min(cur_len, sizeof(str) - 1);
482 	memcpy(str, cur_buf, cur_len);
483 	str[cur_len] = '\0';
484 	cur_buf = str;
485 
486 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487 	val_len = _parse_integer(cur_buf, base, res);
488 
489 	if (val_len & KSTRTOX_OVERFLOW)
490 		return -ERANGE;
491 
492 	if (val_len == 0)
493 		return -EINVAL;
494 
495 	cur_buf += val_len;
496 	consumed += cur_buf - str;
497 
498 	return consumed;
499 }
500 
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502 			 long long *res)
503 {
504 	unsigned long long _res;
505 	bool is_negative;
506 	int err;
507 
508 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509 	if (err < 0)
510 		return err;
511 	if (is_negative) {
512 		if ((long long)-_res > 0)
513 			return -ERANGE;
514 		*res = -_res;
515 	} else {
516 		if ((long long)_res < 0)
517 			return -ERANGE;
518 		*res = _res;
519 	}
520 	return err;
521 }
522 
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524 	   s64 *, res)
525 {
526 	long long _res;
527 	int err;
528 
529 	*res = 0;
530 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
531 	if (err < 0)
532 		return err;
533 	*res = _res;
534 	return err;
535 }
536 
537 const struct bpf_func_proto bpf_strtol_proto = {
538 	.func		= bpf_strtol,
539 	.gpl_only	= false,
540 	.ret_type	= RET_INTEGER,
541 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
542 	.arg2_type	= ARG_CONST_SIZE,
543 	.arg3_type	= ARG_ANYTHING,
544 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545 	.arg4_size	= sizeof(s64),
546 };
547 
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549 	   u64 *, res)
550 {
551 	unsigned long long _res;
552 	bool is_negative;
553 	int err;
554 
555 	*res = 0;
556 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557 	if (err < 0)
558 		return err;
559 	if (is_negative)
560 		return -EINVAL;
561 	*res = _res;
562 	return err;
563 }
564 
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 	.func		= bpf_strtoul,
567 	.gpl_only	= false,
568 	.ret_type	= RET_INTEGER,
569 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
570 	.arg2_type	= ARG_CONST_SIZE,
571 	.arg3_type	= ARG_ANYTHING,
572 	.arg4_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 	.arg4_size	= sizeof(u64),
574 };
575 
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 	return strncmp(s1, s2, s1_sz);
579 }
580 
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 	.func		= bpf_strncmp,
583 	.gpl_only	= false,
584 	.ret_type	= RET_INTEGER,
585 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
586 	.arg2_type	= ARG_CONST_SIZE,
587 	.arg3_type	= ARG_PTR_TO_CONST_STR,
588 };
589 
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 	   struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 	struct task_struct *task = current;
594 	struct pid_namespace *pidns;
595 	int err = -EINVAL;
596 
597 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 		goto clear;
599 
600 	if (unlikely((u64)(dev_t)dev != dev))
601 		goto clear;
602 
603 	if (unlikely(!task))
604 		goto clear;
605 
606 	pidns = task_active_pid_ns(task);
607 	if (unlikely(!pidns)) {
608 		err = -ENOENT;
609 		goto clear;
610 	}
611 
612 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 		goto clear;
614 
615 	nsdata->pid = task_pid_nr_ns(task, pidns);
616 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 	return 0;
618 clear:
619 	memset((void *)nsdata, 0, (size_t) size);
620 	return err;
621 }
622 
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 	.func		= bpf_get_ns_current_pid_tgid,
625 	.gpl_only	= false,
626 	.ret_type	= RET_INTEGER,
627 	.arg1_type	= ARG_ANYTHING,
628 	.arg2_type	= ARG_ANYTHING,
629 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
630 	.arg4_type      = ARG_CONST_SIZE,
631 };
632 
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 	.func		= bpf_get_raw_cpu_id,
635 	.gpl_only	= false,
636 	.ret_type	= RET_INTEGER,
637 };
638 
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 	   u64, flags, void *, data, u64, size)
641 {
642 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 		return -EINVAL;
644 
645 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647 
648 const struct bpf_func_proto bpf_event_output_data_proto =  {
649 	.func		= bpf_event_output_data,
650 	.gpl_only       = true,
651 	.ret_type       = RET_INTEGER,
652 	.arg1_type      = ARG_PTR_TO_CTX,
653 	.arg2_type      = ARG_CONST_MAP_PTR,
654 	.arg3_type      = ARG_ANYTHING,
655 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
656 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
657 };
658 
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 	   const void __user *, user_ptr)
661 {
662 	int ret = copy_from_user(dst, user_ptr, size);
663 
664 	if (unlikely(ret)) {
665 		memset(dst, 0, size);
666 		ret = -EFAULT;
667 	}
668 
669 	return ret;
670 }
671 
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 	.func		= bpf_copy_from_user,
674 	.gpl_only	= false,
675 	.might_sleep	= true,
676 	.ret_type	= RET_INTEGER,
677 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
678 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
679 	.arg3_type	= ARG_ANYTHING,
680 };
681 
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 	int ret;
686 
687 	/* flags is not used yet */
688 	if (unlikely(flags))
689 		return -EINVAL;
690 
691 	if (unlikely(!size))
692 		return 0;
693 
694 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 	if (ret == size)
696 		return 0;
697 
698 	memset(dst, 0, size);
699 	/* Return -EFAULT for partial read */
700 	return ret < 0 ? ret : -EFAULT;
701 }
702 
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 	.func		= bpf_copy_from_user_task,
705 	.gpl_only	= true,
706 	.might_sleep	= true,
707 	.ret_type	= RET_INTEGER,
708 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
709 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
710 	.arg3_type	= ARG_ANYTHING,
711 	.arg4_type	= ARG_PTR_TO_BTF_ID,
712 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 	.arg5_type	= ARG_ANYTHING
714 };
715 
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 	if (cpu >= nr_cpu_ids)
719 		return (unsigned long)NULL;
720 
721 	return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722 }
723 
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 	.func		= bpf_per_cpu_ptr,
726 	.gpl_only	= false,
727 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
729 	.arg2_type	= ARG_ANYTHING,
730 };
731 
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 	return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735 }
736 
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 	.func		= bpf_this_cpu_ptr,
739 	.gpl_only	= false,
740 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743 
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 		size_t bufsz)
746 {
747 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
748 
749 	buf[0] = 0;
750 
751 	switch (fmt_ptype) {
752 	case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 		fallthrough;
757 #endif
758 	case 'k':
759 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 	case 'u':
761 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 	}
763 
764 	return -EINVAL;
765 }
766 
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL	3
769 
770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772 
bpf_try_get_buffers(struct bpf_bprintf_buffers ** bufs)773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774 {
775 	int nest_level;
776 
777 	preempt_disable();
778 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780 		this_cpu_dec(bpf_bprintf_nest_level);
781 		preempt_enable();
782 		return -EBUSY;
783 	}
784 	*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785 
786 	return 0;
787 }
788 
bpf_put_buffers(void)789 void bpf_put_buffers(void)
790 {
791 	if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 		return;
793 	this_cpu_dec(bpf_bprintf_nest_level);
794 	preempt_enable();
795 }
796 
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 	if (!data->bin_args && !data->buf)
800 		return;
801 	bpf_put_buffers();
802 }
803 
804 /*
805  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806  *
807  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808  *
809  * This can be used in two ways:
810  * - Format string verification only: when data->get_bin_args is false
811  * - Arguments preparation: in addition to the above verification, it writes in
812  *   data->bin_args a binary representation of arguments usable by bstr_printf
813  *   where pointers from BPF have been sanitized.
814  *
815  * In argument preparation mode, if 0 is returned, safe temporary buffers are
816  * allocated and bpf_bprintf_cleanup should be called to free them after use.
817  */
bpf_bprintf_prepare(const char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 			u32 num_args, struct bpf_bprintf_data *data)
820 {
821 	bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 	struct bpf_bprintf_buffers *buffers = NULL;
824 	size_t sizeof_cur_arg, sizeof_cur_ip;
825 	int err, i, num_spec = 0;
826 	u64 cur_arg;
827 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828 
829 	fmt_end = strnchr(fmt, fmt_size, 0);
830 	if (!fmt_end)
831 		return -EINVAL;
832 	fmt_size = fmt_end - fmt;
833 
834 	if (get_buffers && bpf_try_get_buffers(&buffers))
835 		return -EBUSY;
836 
837 	if (data->get_bin_args) {
838 		if (num_args)
839 			tmp_buf = buffers->bin_args;
840 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 		data->bin_args = (u32 *)tmp_buf;
842 	}
843 
844 	if (data->get_buf)
845 		data->buf = buffers->buf;
846 
847 	for (i = 0; i < fmt_size; i++) {
848 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 			err = -EINVAL;
850 			goto out;
851 		}
852 
853 		if (fmt[i] != '%')
854 			continue;
855 
856 		if (fmt[i + 1] == '%') {
857 			i++;
858 			continue;
859 		}
860 
861 		if (num_spec >= num_args) {
862 			err = -EINVAL;
863 			goto out;
864 		}
865 
866 		/* The string is zero-terminated so if fmt[i] != 0, we can
867 		 * always access fmt[i + 1], in the worst case it will be a 0
868 		 */
869 		i++;
870 
871 		/* skip optional "[0 +-][num]" width formatting field */
872 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
873 		       fmt[i] == ' ')
874 			i++;
875 		if (fmt[i] >= '1' && fmt[i] <= '9') {
876 			i++;
877 			while (fmt[i] >= '0' && fmt[i] <= '9')
878 				i++;
879 		}
880 
881 		if (fmt[i] == 'p') {
882 			sizeof_cur_arg = sizeof(long);
883 
884 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 			    ispunct(fmt[i + 1])) {
886 				if (tmp_buf)
887 					cur_arg = raw_args[num_spec];
888 				goto nocopy_fmt;
889 			}
890 
891 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 			    fmt[i + 2] == 's') {
893 				fmt_ptype = fmt[i + 1];
894 				i += 2;
895 				goto fmt_str;
896 			}
897 
898 			if (fmt[i + 1] == 'K' ||
899 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 			    fmt[i + 1] == 'S') {
901 				if (tmp_buf)
902 					cur_arg = raw_args[num_spec];
903 				i++;
904 				goto nocopy_fmt;
905 			}
906 
907 			if (fmt[i + 1] == 'B') {
908 				if (tmp_buf)  {
909 					err = snprintf(tmp_buf,
910 						       (tmp_buf_end - tmp_buf),
911 						       "%pB",
912 						       (void *)(long)raw_args[num_spec]);
913 					tmp_buf += (err + 1);
914 				}
915 
916 				i++;
917 				num_spec++;
918 				continue;
919 			}
920 
921 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 				err = -EINVAL;
925 				goto out;
926 			}
927 
928 			i += 2;
929 			if (!tmp_buf)
930 				goto nocopy_fmt;
931 
932 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 				err = -ENOSPC;
935 				goto out;
936 			}
937 
938 			unsafe_ptr = (char *)(long)raw_args[num_spec];
939 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 						       sizeof_cur_ip);
941 			if (err < 0)
942 				memset(cur_ip, 0, sizeof_cur_ip);
943 
944 			/* hack: bstr_printf expects IP addresses to be
945 			 * pre-formatted as strings, ironically, the easiest way
946 			 * to do that is to call snprintf.
947 			 */
948 			ip_spec[2] = fmt[i - 1];
949 			ip_spec[3] = fmt[i];
950 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 				       ip_spec, &cur_ip);
952 
953 			tmp_buf += err + 1;
954 			num_spec++;
955 
956 			continue;
957 		} else if (fmt[i] == 's') {
958 			fmt_ptype = fmt[i];
959 fmt_str:
960 			if (fmt[i + 1] != 0 &&
961 			    !isspace(fmt[i + 1]) &&
962 			    !ispunct(fmt[i + 1])) {
963 				err = -EINVAL;
964 				goto out;
965 			}
966 
967 			if (!tmp_buf)
968 				goto nocopy_fmt;
969 
970 			if (tmp_buf_end == tmp_buf) {
971 				err = -ENOSPC;
972 				goto out;
973 			}
974 
975 			unsafe_ptr = (char *)(long)raw_args[num_spec];
976 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 						    fmt_ptype,
978 						    tmp_buf_end - tmp_buf);
979 			if (err < 0) {
980 				tmp_buf[0] = '\0';
981 				err = 1;
982 			}
983 
984 			tmp_buf += err;
985 			num_spec++;
986 
987 			continue;
988 		} else if (fmt[i] == 'c') {
989 			if (!tmp_buf)
990 				goto nocopy_fmt;
991 
992 			if (tmp_buf_end == tmp_buf) {
993 				err = -ENOSPC;
994 				goto out;
995 			}
996 
997 			*tmp_buf = raw_args[num_spec];
998 			tmp_buf++;
999 			num_spec++;
1000 
1001 			continue;
1002 		}
1003 
1004 		sizeof_cur_arg = sizeof(int);
1005 
1006 		if (fmt[i] == 'l') {
1007 			sizeof_cur_arg = sizeof(long);
1008 			i++;
1009 		}
1010 		if (fmt[i] == 'l') {
1011 			sizeof_cur_arg = sizeof(long long);
1012 			i++;
1013 		}
1014 
1015 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 		    fmt[i] != 'x' && fmt[i] != 'X') {
1017 			err = -EINVAL;
1018 			goto out;
1019 		}
1020 
1021 		if (tmp_buf)
1022 			cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 		if (tmp_buf) {
1025 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 				err = -ENOSPC;
1028 				goto out;
1029 			}
1030 
1031 			if (sizeof_cur_arg == 8) {
1032 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 			} else {
1035 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 			}
1037 			tmp_buf += sizeof_cur_arg;
1038 		}
1039 		num_spec++;
1040 	}
1041 
1042 	err = 0;
1043 out:
1044 	if (err)
1045 		bpf_bprintf_cleanup(data);
1046 	return err;
1047 }
1048 
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 	   const void *, args, u32, data_len)
1051 {
1052 	struct bpf_bprintf_data data = {
1053 		.get_bin_args	= true,
1054 	};
1055 	int err, num_args;
1056 
1057 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 	    (data_len && !args))
1059 		return -EINVAL;
1060 	num_args = data_len / 8;
1061 
1062 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 	 * can safely give an unbounded size.
1064 	 */
1065 	err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 	if (err < 0)
1067 		return err;
1068 
1069 	err = bstr_printf(str, str_size, fmt, data.bin_args);
1070 
1071 	bpf_bprintf_cleanup(&data);
1072 
1073 	return err + 1;
1074 }
1075 
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 	.func		= bpf_snprintf,
1078 	.gpl_only	= true,
1079 	.ret_type	= RET_INTEGER,
1080 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1081 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1082 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1083 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1085 };
1086 
1087 struct bpf_async_cb {
1088 	struct bpf_map *map;
1089 	struct bpf_prog *prog;
1090 	void __rcu *callback_fn;
1091 	void *value;
1092 	union {
1093 		struct rcu_head rcu;
1094 		struct work_struct delete_work;
1095 	};
1096 	u64 flags;
1097 };
1098 
1099 /* BPF map elements can contain 'struct bpf_timer'.
1100  * Such map owns all of its BPF timers.
1101  * 'struct bpf_timer' is allocated as part of map element allocation
1102  * and it's zero initialized.
1103  * That space is used to keep 'struct bpf_async_kern'.
1104  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1105  * remembers 'struct bpf_map *' pointer it's part of.
1106  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1107  * bpf_timer_start() arms the timer.
1108  * If user space reference to a map goes to zero at this point
1109  * ops->map_release_uref callback is responsible for cancelling the timers,
1110  * freeing their memory, and decrementing prog's refcnts.
1111  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1112  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1113  * freeing the timers when inner map is replaced or deleted by user space.
1114  */
1115 struct bpf_hrtimer {
1116 	struct bpf_async_cb cb;
1117 	struct hrtimer timer;
1118 	atomic_t cancelling;
1119 };
1120 
1121 struct bpf_work {
1122 	struct bpf_async_cb cb;
1123 	struct work_struct work;
1124 	struct work_struct delete_work;
1125 };
1126 
1127 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1128 struct bpf_async_kern {
1129 	union {
1130 		struct bpf_async_cb *cb;
1131 		struct bpf_hrtimer *timer;
1132 		struct bpf_work *work;
1133 	};
1134 	/* bpf_spin_lock is used here instead of spinlock_t to make
1135 	 * sure that it always fits into space reserved by struct bpf_timer
1136 	 * regardless of LOCKDEP and spinlock debug flags.
1137 	 */
1138 	struct bpf_spin_lock lock;
1139 } __attribute__((aligned(8)));
1140 
1141 enum bpf_async_type {
1142 	BPF_ASYNC_TYPE_TIMER = 0,
1143 	BPF_ASYNC_TYPE_WQ,
1144 };
1145 
1146 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1147 
bpf_timer_cb(struct hrtimer * hrtimer)1148 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1149 {
1150 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1151 	struct bpf_map *map = t->cb.map;
1152 	void *value = t->cb.value;
1153 	bpf_callback_t callback_fn;
1154 	void *key;
1155 	u32 idx;
1156 
1157 	BTF_TYPE_EMIT(struct bpf_timer);
1158 	callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1159 	if (!callback_fn)
1160 		goto out;
1161 
1162 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1163 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1164 	 * Remember the timer this callback is servicing to prevent
1165 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1166 	 * bpf_map_delete_elem() on the same timer.
1167 	 */
1168 	this_cpu_write(hrtimer_running, t);
1169 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1170 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1171 
1172 		/* compute the key */
1173 		idx = ((char *)value - array->value) / array->elem_size;
1174 		key = &idx;
1175 	} else { /* hash or lru */
1176 		key = value - round_up(map->key_size, 8);
1177 	}
1178 
1179 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1180 	/* The verifier checked that return value is zero. */
1181 
1182 	this_cpu_write(hrtimer_running, NULL);
1183 out:
1184 	return HRTIMER_NORESTART;
1185 }
1186 
bpf_wq_work(struct work_struct * work)1187 static void bpf_wq_work(struct work_struct *work)
1188 {
1189 	struct bpf_work *w = container_of(work, struct bpf_work, work);
1190 	struct bpf_async_cb *cb = &w->cb;
1191 	struct bpf_map *map = cb->map;
1192 	bpf_callback_t callback_fn;
1193 	void *value = cb->value;
1194 	void *key;
1195 	u32 idx;
1196 
1197 	BTF_TYPE_EMIT(struct bpf_wq);
1198 
1199 	callback_fn = READ_ONCE(cb->callback_fn);
1200 	if (!callback_fn)
1201 		return;
1202 
1203 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1204 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1205 
1206 		/* compute the key */
1207 		idx = ((char *)value - array->value) / array->elem_size;
1208 		key = &idx;
1209 	} else { /* hash or lru */
1210 		key = value - round_up(map->key_size, 8);
1211 	}
1212 
1213         rcu_read_lock_trace();
1214         migrate_disable();
1215 
1216 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1217 
1218 	migrate_enable();
1219 	rcu_read_unlock_trace();
1220 }
1221 
bpf_wq_delete_work(struct work_struct * work)1222 static void bpf_wq_delete_work(struct work_struct *work)
1223 {
1224 	struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1225 
1226 	cancel_work_sync(&w->work);
1227 
1228 	kfree_rcu(w, cb.rcu);
1229 }
1230 
bpf_timer_delete_work(struct work_struct * work)1231 static void bpf_timer_delete_work(struct work_struct *work)
1232 {
1233 	struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1234 
1235 	/* Cancel the timer and wait for callback to complete if it was running.
1236 	 * If hrtimer_cancel() can be safely called it's safe to call
1237 	 * kfree_rcu(t) right after for both preallocated and non-preallocated
1238 	 * maps.  The async->cb = NULL was already done and no code path can see
1239 	 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1240 	 * bpf_timer_cancel_and_free will have been cancelled.
1241 	 */
1242 	hrtimer_cancel(&t->timer);
1243 	kfree_rcu(t, cb.rcu);
1244 }
1245 
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1246 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1247 			    enum bpf_async_type type)
1248 {
1249 	struct bpf_async_cb *cb;
1250 	struct bpf_hrtimer *t;
1251 	struct bpf_work *w;
1252 	clockid_t clockid;
1253 	size_t size;
1254 	int ret = 0;
1255 
1256 	if (in_nmi())
1257 		return -EOPNOTSUPP;
1258 
1259 	switch (type) {
1260 	case BPF_ASYNC_TYPE_TIMER:
1261 		size = sizeof(struct bpf_hrtimer);
1262 		break;
1263 	case BPF_ASYNC_TYPE_WQ:
1264 		size = sizeof(struct bpf_work);
1265 		break;
1266 	default:
1267 		return -EINVAL;
1268 	}
1269 
1270 	__bpf_spin_lock_irqsave(&async->lock);
1271 	t = async->timer;
1272 	if (t) {
1273 		ret = -EBUSY;
1274 		goto out;
1275 	}
1276 
1277 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1278 	cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1279 	if (!cb) {
1280 		ret = -ENOMEM;
1281 		goto out;
1282 	}
1283 
1284 	switch (type) {
1285 	case BPF_ASYNC_TYPE_TIMER:
1286 		clockid = flags & (MAX_CLOCKS - 1);
1287 		t = (struct bpf_hrtimer *)cb;
1288 
1289 		atomic_set(&t->cancelling, 0);
1290 		INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1291 		hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1292 		cb->value = (void *)async - map->record->timer_off;
1293 		break;
1294 	case BPF_ASYNC_TYPE_WQ:
1295 		w = (struct bpf_work *)cb;
1296 
1297 		INIT_WORK(&w->work, bpf_wq_work);
1298 		INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1299 		cb->value = (void *)async - map->record->wq_off;
1300 		break;
1301 	}
1302 	cb->map = map;
1303 	cb->prog = NULL;
1304 	cb->flags = flags;
1305 	rcu_assign_pointer(cb->callback_fn, NULL);
1306 
1307 	WRITE_ONCE(async->cb, cb);
1308 	/* Guarantee the order between async->cb and map->usercnt. So
1309 	 * when there are concurrent uref release and bpf timer init, either
1310 	 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1311 	 * timer or atomic64_read() below returns a zero usercnt.
1312 	 */
1313 	smp_mb();
1314 	if (!atomic64_read(&map->usercnt)) {
1315 		/* maps with timers must be either held by user space
1316 		 * or pinned in bpffs.
1317 		 */
1318 		WRITE_ONCE(async->cb, NULL);
1319 		kfree(cb);
1320 		ret = -EPERM;
1321 	}
1322 out:
1323 	__bpf_spin_unlock_irqrestore(&async->lock);
1324 	return ret;
1325 }
1326 
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1327 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1328 	   u64, flags)
1329 {
1330 	clock_t clockid = flags & (MAX_CLOCKS - 1);
1331 
1332 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1333 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1334 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1335 
1336 	if (flags >= MAX_CLOCKS ||
1337 	    /* similar to timerfd except _ALARM variants are not supported */
1338 	    (clockid != CLOCK_MONOTONIC &&
1339 	     clockid != CLOCK_REALTIME &&
1340 	     clockid != CLOCK_BOOTTIME))
1341 		return -EINVAL;
1342 
1343 	return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1344 }
1345 
1346 static const struct bpf_func_proto bpf_timer_init_proto = {
1347 	.func		= bpf_timer_init,
1348 	.gpl_only	= true,
1349 	.ret_type	= RET_INTEGER,
1350 	.arg1_type	= ARG_PTR_TO_TIMER,
1351 	.arg2_type	= ARG_CONST_MAP_PTR,
1352 	.arg3_type	= ARG_ANYTHING,
1353 };
1354 
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1355 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1356 				    struct bpf_prog_aux *aux, unsigned int flags,
1357 				    enum bpf_async_type type)
1358 {
1359 	struct bpf_prog *prev, *prog = aux->prog;
1360 	struct bpf_async_cb *cb;
1361 	int ret = 0;
1362 
1363 	if (in_nmi())
1364 		return -EOPNOTSUPP;
1365 	__bpf_spin_lock_irqsave(&async->lock);
1366 	cb = async->cb;
1367 	if (!cb) {
1368 		ret = -EINVAL;
1369 		goto out;
1370 	}
1371 	if (!atomic64_read(&cb->map->usercnt)) {
1372 		/* maps with timers must be either held by user space
1373 		 * or pinned in bpffs. Otherwise timer might still be
1374 		 * running even when bpf prog is detached and user space
1375 		 * is gone, since map_release_uref won't ever be called.
1376 		 */
1377 		ret = -EPERM;
1378 		goto out;
1379 	}
1380 	prev = cb->prog;
1381 	if (prev != prog) {
1382 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1383 		 * can pick different callback_fn-s within the same prog.
1384 		 */
1385 		prog = bpf_prog_inc_not_zero(prog);
1386 		if (IS_ERR(prog)) {
1387 			ret = PTR_ERR(prog);
1388 			goto out;
1389 		}
1390 		if (prev)
1391 			/* Drop prev prog refcnt when swapping with new prog */
1392 			bpf_prog_put(prev);
1393 		cb->prog = prog;
1394 	}
1395 	rcu_assign_pointer(cb->callback_fn, callback_fn);
1396 out:
1397 	__bpf_spin_unlock_irqrestore(&async->lock);
1398 	return ret;
1399 }
1400 
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1401 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1402 	   struct bpf_prog_aux *, aux)
1403 {
1404 	return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1405 }
1406 
1407 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1408 	.func		= bpf_timer_set_callback,
1409 	.gpl_only	= true,
1410 	.ret_type	= RET_INTEGER,
1411 	.arg1_type	= ARG_PTR_TO_TIMER,
1412 	.arg2_type	= ARG_PTR_TO_FUNC,
1413 };
1414 
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1415 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1416 {
1417 	struct bpf_hrtimer *t;
1418 	int ret = 0;
1419 	enum hrtimer_mode mode;
1420 
1421 	if (in_nmi())
1422 		return -EOPNOTSUPP;
1423 	if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1424 		return -EINVAL;
1425 	__bpf_spin_lock_irqsave(&timer->lock);
1426 	t = timer->timer;
1427 	if (!t || !t->cb.prog) {
1428 		ret = -EINVAL;
1429 		goto out;
1430 	}
1431 
1432 	if (flags & BPF_F_TIMER_ABS)
1433 		mode = HRTIMER_MODE_ABS_SOFT;
1434 	else
1435 		mode = HRTIMER_MODE_REL_SOFT;
1436 
1437 	if (flags & BPF_F_TIMER_CPU_PIN)
1438 		mode |= HRTIMER_MODE_PINNED;
1439 
1440 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1441 out:
1442 	__bpf_spin_unlock_irqrestore(&timer->lock);
1443 	return ret;
1444 }
1445 
1446 static const struct bpf_func_proto bpf_timer_start_proto = {
1447 	.func		= bpf_timer_start,
1448 	.gpl_only	= true,
1449 	.ret_type	= RET_INTEGER,
1450 	.arg1_type	= ARG_PTR_TO_TIMER,
1451 	.arg2_type	= ARG_ANYTHING,
1452 	.arg3_type	= ARG_ANYTHING,
1453 };
1454 
drop_prog_refcnt(struct bpf_async_cb * async)1455 static void drop_prog_refcnt(struct bpf_async_cb *async)
1456 {
1457 	struct bpf_prog *prog = async->prog;
1458 
1459 	if (prog) {
1460 		bpf_prog_put(prog);
1461 		async->prog = NULL;
1462 		rcu_assign_pointer(async->callback_fn, NULL);
1463 	}
1464 }
1465 
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1466 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1467 {
1468 	struct bpf_hrtimer *t, *cur_t;
1469 	bool inc = false;
1470 	int ret = 0;
1471 
1472 	if (in_nmi())
1473 		return -EOPNOTSUPP;
1474 	rcu_read_lock();
1475 	__bpf_spin_lock_irqsave(&timer->lock);
1476 	t = timer->timer;
1477 	if (!t) {
1478 		ret = -EINVAL;
1479 		goto out;
1480 	}
1481 
1482 	cur_t = this_cpu_read(hrtimer_running);
1483 	if (cur_t == t) {
1484 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1485 		 * its own timer the hrtimer_cancel() will deadlock
1486 		 * since it waits for callback_fn to finish.
1487 		 */
1488 		ret = -EDEADLK;
1489 		goto out;
1490 	}
1491 
1492 	/* Only account in-flight cancellations when invoked from a timer
1493 	 * callback, since we want to avoid waiting only if other _callbacks_
1494 	 * are waiting on us, to avoid introducing lockups. Non-callback paths
1495 	 * are ok, since nobody would synchronously wait for their completion.
1496 	 */
1497 	if (!cur_t)
1498 		goto drop;
1499 	atomic_inc(&t->cancelling);
1500 	/* Need full barrier after relaxed atomic_inc */
1501 	smp_mb__after_atomic();
1502 	inc = true;
1503 	if (atomic_read(&cur_t->cancelling)) {
1504 		/* We're cancelling timer t, while some other timer callback is
1505 		 * attempting to cancel us. In such a case, it might be possible
1506 		 * that timer t belongs to the other callback, or some other
1507 		 * callback waiting upon it (creating transitive dependencies
1508 		 * upon us), and we will enter a deadlock if we continue
1509 		 * cancelling and waiting for it synchronously, since it might
1510 		 * do the same. Bail!
1511 		 */
1512 		ret = -EDEADLK;
1513 		goto out;
1514 	}
1515 drop:
1516 	drop_prog_refcnt(&t->cb);
1517 out:
1518 	__bpf_spin_unlock_irqrestore(&timer->lock);
1519 	/* Cancel the timer and wait for associated callback to finish
1520 	 * if it was running.
1521 	 */
1522 	ret = ret ?: hrtimer_cancel(&t->timer);
1523 	if (inc)
1524 		atomic_dec(&t->cancelling);
1525 	rcu_read_unlock();
1526 	return ret;
1527 }
1528 
1529 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1530 	.func		= bpf_timer_cancel,
1531 	.gpl_only	= true,
1532 	.ret_type	= RET_INTEGER,
1533 	.arg1_type	= ARG_PTR_TO_TIMER,
1534 };
1535 
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1536 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1537 {
1538 	struct bpf_async_cb *cb;
1539 
1540 	/* Performance optimization: read async->cb without lock first. */
1541 	if (!READ_ONCE(async->cb))
1542 		return NULL;
1543 
1544 	__bpf_spin_lock_irqsave(&async->lock);
1545 	/* re-read it under lock */
1546 	cb = async->cb;
1547 	if (!cb)
1548 		goto out;
1549 	drop_prog_refcnt(cb);
1550 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1551 	 * this timer, since it won't be initialized.
1552 	 */
1553 	WRITE_ONCE(async->cb, NULL);
1554 out:
1555 	__bpf_spin_unlock_irqrestore(&async->lock);
1556 	return cb;
1557 }
1558 
1559 /* This function is called by map_delete/update_elem for individual element and
1560  * by ops->map_release_uref when the user space reference to a map reaches zero.
1561  */
bpf_timer_cancel_and_free(void * val)1562 void bpf_timer_cancel_and_free(void *val)
1563 {
1564 	struct bpf_hrtimer *t;
1565 
1566 	t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1567 
1568 	if (!t)
1569 		return;
1570 	/* We check that bpf_map_delete/update_elem() was called from timer
1571 	 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1572 	 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1573 	 * just return -1). Though callback_fn is still running on this cpu it's
1574 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1575 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1576 	 * since async->cb = NULL was already done. The timer will be
1577 	 * effectively cancelled because bpf_timer_cb() will return
1578 	 * HRTIMER_NORESTART.
1579 	 *
1580 	 * However, it is possible the timer callback_fn calling us armed the
1581 	 * timer _before_ calling us, such that failing to cancel it here will
1582 	 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1583 	 * Therefore, we _need_ to cancel any outstanding timers before we do
1584 	 * kfree_rcu, even though no more timers can be armed.
1585 	 *
1586 	 * Moreover, we need to schedule work even if timer does not belong to
1587 	 * the calling callback_fn, as on two different CPUs, we can end up in a
1588 	 * situation where both sides run in parallel, try to cancel one
1589 	 * another, and we end up waiting on both sides in hrtimer_cancel
1590 	 * without making forward progress, since timer1 depends on time2
1591 	 * callback to finish, and vice versa.
1592 	 *
1593 	 *  CPU 1 (timer1_cb)			CPU 2 (timer2_cb)
1594 	 *  bpf_timer_cancel_and_free(timer2)	bpf_timer_cancel_and_free(timer1)
1595 	 *
1596 	 * To avoid these issues, punt to workqueue context when we are in a
1597 	 * timer callback.
1598 	 */
1599 	if (this_cpu_read(hrtimer_running)) {
1600 		queue_work(system_unbound_wq, &t->cb.delete_work);
1601 		return;
1602 	}
1603 
1604 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1605 		/* If the timer is running on other CPU, also use a kworker to
1606 		 * wait for the completion of the timer instead of trying to
1607 		 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1608 		 * completion.
1609 		 */
1610 		if (hrtimer_try_to_cancel(&t->timer) >= 0)
1611 			kfree_rcu(t, cb.rcu);
1612 		else
1613 			queue_work(system_unbound_wq, &t->cb.delete_work);
1614 	} else {
1615 		bpf_timer_delete_work(&t->cb.delete_work);
1616 	}
1617 }
1618 
1619 /* This function is called by map_delete/update_elem for individual element and
1620  * by ops->map_release_uref when the user space reference to a map reaches zero.
1621  */
bpf_wq_cancel_and_free(void * val)1622 void bpf_wq_cancel_and_free(void *val)
1623 {
1624 	struct bpf_work *work;
1625 
1626 	BTF_TYPE_EMIT(struct bpf_wq);
1627 
1628 	work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1629 	if (!work)
1630 		return;
1631 	/* Trigger cancel of the sleepable work, but *do not* wait for
1632 	 * it to finish if it was running as we might not be in a
1633 	 * sleepable context.
1634 	 * kfree will be called once the work has finished.
1635 	 */
1636 	schedule_work(&work->delete_work);
1637 }
1638 
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1639 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1640 {
1641 	unsigned long *kptr = dst;
1642 
1643 	/* This helper may be inlined by verifier. */
1644 	return xchg(kptr, (unsigned long)ptr);
1645 }
1646 
1647 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1648  * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1649  * denote type that verifier will determine.
1650  */
1651 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1652 	.func         = bpf_kptr_xchg,
1653 	.gpl_only     = false,
1654 	.ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1655 	.ret_btf_id   = BPF_PTR_POISON,
1656 	.arg1_type    = ARG_KPTR_XCHG_DEST,
1657 	.arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1658 	.arg2_btf_id  = BPF_PTR_POISON,
1659 };
1660 
1661 /* Since the upper 8 bits of dynptr->size is reserved, the
1662  * maximum supported size is 2^24 - 1.
1663  */
1664 #define DYNPTR_MAX_SIZE	((1UL << 24) - 1)
1665 #define DYNPTR_TYPE_SHIFT	28
1666 #define DYNPTR_SIZE_MASK	0xFFFFFF
1667 #define DYNPTR_RDONLY_BIT	BIT(31)
1668 
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1669 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1670 {
1671 	return ptr->size & DYNPTR_RDONLY_BIT;
1672 }
1673 
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1674 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1675 {
1676 	ptr->size |= DYNPTR_RDONLY_BIT;
1677 }
1678 
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1679 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1680 {
1681 	ptr->size |= type << DYNPTR_TYPE_SHIFT;
1682 }
1683 
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1684 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1685 {
1686 	return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1687 }
1688 
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1689 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1690 {
1691 	return ptr->size & DYNPTR_SIZE_MASK;
1692 }
1693 
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1694 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1695 {
1696 	u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1697 
1698 	ptr->size = new_size | metadata;
1699 }
1700 
bpf_dynptr_check_size(u32 size)1701 int bpf_dynptr_check_size(u32 size)
1702 {
1703 	return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1704 }
1705 
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1706 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1707 		     enum bpf_dynptr_type type, u32 offset, u32 size)
1708 {
1709 	ptr->data = data;
1710 	ptr->offset = offset;
1711 	ptr->size = size;
1712 	bpf_dynptr_set_type(ptr, type);
1713 }
1714 
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1715 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1716 {
1717 	memset(ptr, 0, sizeof(*ptr));
1718 }
1719 
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1720 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1721 {
1722 	int err;
1723 
1724 	BTF_TYPE_EMIT(struct bpf_dynptr);
1725 
1726 	err = bpf_dynptr_check_size(size);
1727 	if (err)
1728 		goto error;
1729 
1730 	/* flags is currently unsupported */
1731 	if (flags) {
1732 		err = -EINVAL;
1733 		goto error;
1734 	}
1735 
1736 	bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1737 
1738 	return 0;
1739 
1740 error:
1741 	bpf_dynptr_set_null(ptr);
1742 	return err;
1743 }
1744 
1745 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1746 	.func		= bpf_dynptr_from_mem,
1747 	.gpl_only	= false,
1748 	.ret_type	= RET_INTEGER,
1749 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1750 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1751 	.arg3_type	= ARG_ANYTHING,
1752 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1753 };
1754 
__bpf_dynptr_read(void * dst,u32 len,const struct bpf_dynptr_kern * src,u32 offset,u64 flags)1755 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1756 			     u32 offset, u64 flags)
1757 {
1758 	enum bpf_dynptr_type type;
1759 	int err;
1760 
1761 	if (!src->data || flags)
1762 		return -EINVAL;
1763 
1764 	err = bpf_dynptr_check_off_len(src, offset, len);
1765 	if (err)
1766 		return err;
1767 
1768 	type = bpf_dynptr_get_type(src);
1769 
1770 	switch (type) {
1771 	case BPF_DYNPTR_TYPE_LOCAL:
1772 	case BPF_DYNPTR_TYPE_RINGBUF:
1773 		/* Source and destination may possibly overlap, hence use memmove to
1774 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1775 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1776 		 */
1777 		memmove(dst, src->data + src->offset + offset, len);
1778 		return 0;
1779 	case BPF_DYNPTR_TYPE_SKB:
1780 		return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1781 	case BPF_DYNPTR_TYPE_XDP:
1782 		return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1783 	default:
1784 		WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1785 		return -EFAULT;
1786 	}
1787 }
1788 
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1789 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1790 	   u32, offset, u64, flags)
1791 {
1792 	return __bpf_dynptr_read(dst, len, src, offset, flags);
1793 }
1794 
1795 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1796 	.func		= bpf_dynptr_read,
1797 	.gpl_only	= false,
1798 	.ret_type	= RET_INTEGER,
1799 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1800 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1801 	.arg3_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1802 	.arg4_type	= ARG_ANYTHING,
1803 	.arg5_type	= ARG_ANYTHING,
1804 };
1805 
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u32 offset,void * src,u32 len,u64 flags)1806 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1807 		       u32 len, u64 flags)
1808 {
1809 	enum bpf_dynptr_type type;
1810 	int err;
1811 
1812 	if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1813 		return -EINVAL;
1814 
1815 	err = bpf_dynptr_check_off_len(dst, offset, len);
1816 	if (err)
1817 		return err;
1818 
1819 	type = bpf_dynptr_get_type(dst);
1820 
1821 	switch (type) {
1822 	case BPF_DYNPTR_TYPE_LOCAL:
1823 	case BPF_DYNPTR_TYPE_RINGBUF:
1824 		if (flags)
1825 			return -EINVAL;
1826 		/* Source and destination may possibly overlap, hence use memmove to
1827 		 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1828 		 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1829 		 */
1830 		memmove(dst->data + dst->offset + offset, src, len);
1831 		return 0;
1832 	case BPF_DYNPTR_TYPE_SKB:
1833 		return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1834 					     flags);
1835 	case BPF_DYNPTR_TYPE_XDP:
1836 		if (flags)
1837 			return -EINVAL;
1838 		return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1839 	default:
1840 		WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1841 		return -EFAULT;
1842 	}
1843 }
1844 
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1845 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1846 	   u32, len, u64, flags)
1847 {
1848 	return __bpf_dynptr_write(dst, offset, src, len, flags);
1849 }
1850 
1851 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1852 	.func		= bpf_dynptr_write,
1853 	.gpl_only	= false,
1854 	.ret_type	= RET_INTEGER,
1855 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1856 	.arg2_type	= ARG_ANYTHING,
1857 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1858 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1859 	.arg5_type	= ARG_ANYTHING,
1860 };
1861 
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1862 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1863 {
1864 	enum bpf_dynptr_type type;
1865 	int err;
1866 
1867 	if (!ptr->data)
1868 		return 0;
1869 
1870 	err = bpf_dynptr_check_off_len(ptr, offset, len);
1871 	if (err)
1872 		return 0;
1873 
1874 	if (__bpf_dynptr_is_rdonly(ptr))
1875 		return 0;
1876 
1877 	type = bpf_dynptr_get_type(ptr);
1878 
1879 	switch (type) {
1880 	case BPF_DYNPTR_TYPE_LOCAL:
1881 	case BPF_DYNPTR_TYPE_RINGBUF:
1882 		return (unsigned long)(ptr->data + ptr->offset + offset);
1883 	case BPF_DYNPTR_TYPE_SKB:
1884 	case BPF_DYNPTR_TYPE_XDP:
1885 		/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1886 		return 0;
1887 	default:
1888 		WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1889 		return 0;
1890 	}
1891 }
1892 
1893 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1894 	.func		= bpf_dynptr_data,
1895 	.gpl_only	= false,
1896 	.ret_type	= RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1897 	.arg1_type	= ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1898 	.arg2_type	= ARG_ANYTHING,
1899 	.arg3_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
1900 };
1901 
1902 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1903 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1904 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1905 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1906 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1907 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1908 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1909 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1910 const struct bpf_func_proto bpf_send_signal_proto __weak;
1911 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1912 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1913 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1914 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1915 
1916 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1917 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1918 {
1919 	switch (func_id) {
1920 	case BPF_FUNC_map_lookup_elem:
1921 		return &bpf_map_lookup_elem_proto;
1922 	case BPF_FUNC_map_update_elem:
1923 		return &bpf_map_update_elem_proto;
1924 	case BPF_FUNC_map_delete_elem:
1925 		return &bpf_map_delete_elem_proto;
1926 	case BPF_FUNC_map_push_elem:
1927 		return &bpf_map_push_elem_proto;
1928 	case BPF_FUNC_map_pop_elem:
1929 		return &bpf_map_pop_elem_proto;
1930 	case BPF_FUNC_map_peek_elem:
1931 		return &bpf_map_peek_elem_proto;
1932 	case BPF_FUNC_map_lookup_percpu_elem:
1933 		return &bpf_map_lookup_percpu_elem_proto;
1934 	case BPF_FUNC_get_prandom_u32:
1935 		return &bpf_get_prandom_u32_proto;
1936 	case BPF_FUNC_get_smp_processor_id:
1937 		return &bpf_get_raw_smp_processor_id_proto;
1938 	case BPF_FUNC_get_numa_node_id:
1939 		return &bpf_get_numa_node_id_proto;
1940 	case BPF_FUNC_tail_call:
1941 		return &bpf_tail_call_proto;
1942 	case BPF_FUNC_ktime_get_ns:
1943 		return &bpf_ktime_get_ns_proto;
1944 	case BPF_FUNC_ktime_get_boot_ns:
1945 		return &bpf_ktime_get_boot_ns_proto;
1946 	case BPF_FUNC_ktime_get_tai_ns:
1947 		return &bpf_ktime_get_tai_ns_proto;
1948 	case BPF_FUNC_ringbuf_output:
1949 		return &bpf_ringbuf_output_proto;
1950 	case BPF_FUNC_ringbuf_reserve:
1951 		return &bpf_ringbuf_reserve_proto;
1952 	case BPF_FUNC_ringbuf_submit:
1953 		return &bpf_ringbuf_submit_proto;
1954 	case BPF_FUNC_ringbuf_discard:
1955 		return &bpf_ringbuf_discard_proto;
1956 	case BPF_FUNC_ringbuf_query:
1957 		return &bpf_ringbuf_query_proto;
1958 	case BPF_FUNC_strncmp:
1959 		return &bpf_strncmp_proto;
1960 	case BPF_FUNC_strtol:
1961 		return &bpf_strtol_proto;
1962 	case BPF_FUNC_strtoul:
1963 		return &bpf_strtoul_proto;
1964 	case BPF_FUNC_get_current_pid_tgid:
1965 		return &bpf_get_current_pid_tgid_proto;
1966 	case BPF_FUNC_get_ns_current_pid_tgid:
1967 		return &bpf_get_ns_current_pid_tgid_proto;
1968 	case BPF_FUNC_get_current_uid_gid:
1969 		return &bpf_get_current_uid_gid_proto;
1970 	default:
1971 		break;
1972 	}
1973 
1974 	if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1975 		return NULL;
1976 
1977 	switch (func_id) {
1978 	case BPF_FUNC_spin_lock:
1979 		return &bpf_spin_lock_proto;
1980 	case BPF_FUNC_spin_unlock:
1981 		return &bpf_spin_unlock_proto;
1982 	case BPF_FUNC_jiffies64:
1983 		return &bpf_jiffies64_proto;
1984 	case BPF_FUNC_per_cpu_ptr:
1985 		return &bpf_per_cpu_ptr_proto;
1986 	case BPF_FUNC_this_cpu_ptr:
1987 		return &bpf_this_cpu_ptr_proto;
1988 	case BPF_FUNC_timer_init:
1989 		return &bpf_timer_init_proto;
1990 	case BPF_FUNC_timer_set_callback:
1991 		return &bpf_timer_set_callback_proto;
1992 	case BPF_FUNC_timer_start:
1993 		return &bpf_timer_start_proto;
1994 	case BPF_FUNC_timer_cancel:
1995 		return &bpf_timer_cancel_proto;
1996 	case BPF_FUNC_kptr_xchg:
1997 		return &bpf_kptr_xchg_proto;
1998 	case BPF_FUNC_for_each_map_elem:
1999 		return &bpf_for_each_map_elem_proto;
2000 	case BPF_FUNC_loop:
2001 		return &bpf_loop_proto;
2002 	case BPF_FUNC_user_ringbuf_drain:
2003 		return &bpf_user_ringbuf_drain_proto;
2004 	case BPF_FUNC_ringbuf_reserve_dynptr:
2005 		return &bpf_ringbuf_reserve_dynptr_proto;
2006 	case BPF_FUNC_ringbuf_submit_dynptr:
2007 		return &bpf_ringbuf_submit_dynptr_proto;
2008 	case BPF_FUNC_ringbuf_discard_dynptr:
2009 		return &bpf_ringbuf_discard_dynptr_proto;
2010 	case BPF_FUNC_dynptr_from_mem:
2011 		return &bpf_dynptr_from_mem_proto;
2012 	case BPF_FUNC_dynptr_read:
2013 		return &bpf_dynptr_read_proto;
2014 	case BPF_FUNC_dynptr_write:
2015 		return &bpf_dynptr_write_proto;
2016 	case BPF_FUNC_dynptr_data:
2017 		return &bpf_dynptr_data_proto;
2018 #ifdef CONFIG_CGROUPS
2019 	case BPF_FUNC_cgrp_storage_get:
2020 		return &bpf_cgrp_storage_get_proto;
2021 	case BPF_FUNC_cgrp_storage_delete:
2022 		return &bpf_cgrp_storage_delete_proto;
2023 	case BPF_FUNC_get_current_cgroup_id:
2024 		return &bpf_get_current_cgroup_id_proto;
2025 	case BPF_FUNC_get_current_ancestor_cgroup_id:
2026 		return &bpf_get_current_ancestor_cgroup_id_proto;
2027 	case BPF_FUNC_current_task_under_cgroup:
2028 		return &bpf_current_task_under_cgroup_proto;
2029 #endif
2030 #ifdef CONFIG_CGROUP_NET_CLASSID
2031 	case BPF_FUNC_get_cgroup_classid:
2032 		return &bpf_get_cgroup_classid_curr_proto;
2033 #endif
2034 	case BPF_FUNC_task_storage_get:
2035 		if (bpf_prog_check_recur(prog))
2036 			return &bpf_task_storage_get_recur_proto;
2037 		return &bpf_task_storage_get_proto;
2038 	case BPF_FUNC_task_storage_delete:
2039 		if (bpf_prog_check_recur(prog))
2040 			return &bpf_task_storage_delete_recur_proto;
2041 		return &bpf_task_storage_delete_proto;
2042 	default:
2043 		break;
2044 	}
2045 
2046 	if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2047 		return NULL;
2048 
2049 	switch (func_id) {
2050 	case BPF_FUNC_trace_printk:
2051 		return bpf_get_trace_printk_proto();
2052 	case BPF_FUNC_get_current_task:
2053 		return &bpf_get_current_task_proto;
2054 	case BPF_FUNC_get_current_task_btf:
2055 		return &bpf_get_current_task_btf_proto;
2056 	case BPF_FUNC_get_current_comm:
2057 		return &bpf_get_current_comm_proto;
2058 	case BPF_FUNC_probe_read_user:
2059 		return &bpf_probe_read_user_proto;
2060 	case BPF_FUNC_probe_read_kernel:
2061 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2062 		       NULL : &bpf_probe_read_kernel_proto;
2063 	case BPF_FUNC_probe_read_user_str:
2064 		return &bpf_probe_read_user_str_proto;
2065 	case BPF_FUNC_probe_read_kernel_str:
2066 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2067 		       NULL : &bpf_probe_read_kernel_str_proto;
2068 	case BPF_FUNC_copy_from_user:
2069 		return &bpf_copy_from_user_proto;
2070 	case BPF_FUNC_copy_from_user_task:
2071 		return &bpf_copy_from_user_task_proto;
2072 	case BPF_FUNC_snprintf_btf:
2073 		return &bpf_snprintf_btf_proto;
2074 	case BPF_FUNC_snprintf:
2075 		return &bpf_snprintf_proto;
2076 	case BPF_FUNC_task_pt_regs:
2077 		return &bpf_task_pt_regs_proto;
2078 	case BPF_FUNC_trace_vprintk:
2079 		return bpf_get_trace_vprintk_proto();
2080 	case BPF_FUNC_perf_event_read_value:
2081 		return bpf_get_perf_event_read_value_proto();
2082 	case BPF_FUNC_perf_event_read:
2083 		return &bpf_perf_event_read_proto;
2084 	case BPF_FUNC_send_signal:
2085 		return &bpf_send_signal_proto;
2086 	case BPF_FUNC_send_signal_thread:
2087 		return &bpf_send_signal_thread_proto;
2088 	case BPF_FUNC_get_task_stack:
2089 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2090 				       : &bpf_get_task_stack_proto;
2091 	case BPF_FUNC_get_branch_snapshot:
2092 		return &bpf_get_branch_snapshot_proto;
2093 	case BPF_FUNC_find_vma:
2094 		return &bpf_find_vma_proto;
2095 	default:
2096 		return NULL;
2097 	}
2098 }
2099 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2100 
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2101 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2102 			struct bpf_spin_lock *spin_lock)
2103 {
2104 	struct list_head *head = list_head, *orig_head = list_head;
2105 
2106 	BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2107 	BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2108 
2109 	/* Do the actual list draining outside the lock to not hold the lock for
2110 	 * too long, and also prevent deadlocks if tracing programs end up
2111 	 * executing on entry/exit of functions called inside the critical
2112 	 * section, and end up doing map ops that call bpf_list_head_free for
2113 	 * the same map value again.
2114 	 */
2115 	__bpf_spin_lock_irqsave(spin_lock);
2116 	if (!head->next || list_empty(head))
2117 		goto unlock;
2118 	head = head->next;
2119 unlock:
2120 	INIT_LIST_HEAD(orig_head);
2121 	__bpf_spin_unlock_irqrestore(spin_lock);
2122 
2123 	while (head != orig_head) {
2124 		void *obj = head;
2125 
2126 		obj -= field->graph_root.node_offset;
2127 		head = head->next;
2128 		/* The contained type can also have resources, including a
2129 		 * bpf_list_head which needs to be freed.
2130 		 */
2131 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2132 	}
2133 }
2134 
2135 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2136  * 'rb_node *', so field name of rb_node within containing struct is not
2137  * needed.
2138  *
2139  * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2140  * graph_root.node_offset, it's not necessary to know field name
2141  * or type of node struct
2142  */
2143 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2144 	for (pos = rb_first_postorder(root); \
2145 	    pos && ({ n = rb_next_postorder(pos); 1; }); \
2146 	    pos = n)
2147 
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2148 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2149 		      struct bpf_spin_lock *spin_lock)
2150 {
2151 	struct rb_root_cached orig_root, *root = rb_root;
2152 	struct rb_node *pos, *n;
2153 	void *obj;
2154 
2155 	BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2156 	BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2157 
2158 	__bpf_spin_lock_irqsave(spin_lock);
2159 	orig_root = *root;
2160 	*root = RB_ROOT_CACHED;
2161 	__bpf_spin_unlock_irqrestore(spin_lock);
2162 
2163 	bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2164 		obj = pos;
2165 		obj -= field->graph_root.node_offset;
2166 
2167 
2168 		__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2169 	}
2170 }
2171 
2172 __bpf_kfunc_start_defs();
2173 
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2174 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2175 {
2176 	struct btf_struct_meta *meta = meta__ign;
2177 	u64 size = local_type_id__k;
2178 	void *p;
2179 
2180 	p = bpf_mem_alloc(&bpf_global_ma, size);
2181 	if (!p)
2182 		return NULL;
2183 	if (meta)
2184 		bpf_obj_init(meta->record, p);
2185 	return p;
2186 }
2187 
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2188 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2189 {
2190 	u64 size = local_type_id__k;
2191 
2192 	/* The verifier has ensured that meta__ign must be NULL */
2193 	return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2194 }
2195 
2196 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2197 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2198 {
2199 	struct bpf_mem_alloc *ma;
2200 
2201 	if (rec && rec->refcount_off >= 0 &&
2202 	    !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2203 		/* Object is refcounted and refcount_dec didn't result in 0
2204 		 * refcount. Return without freeing the object
2205 		 */
2206 		return;
2207 	}
2208 
2209 	if (rec)
2210 		bpf_obj_free_fields(rec, p);
2211 
2212 	if (percpu)
2213 		ma = &bpf_global_percpu_ma;
2214 	else
2215 		ma = &bpf_global_ma;
2216 	bpf_mem_free_rcu(ma, p);
2217 }
2218 
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2219 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2220 {
2221 	struct btf_struct_meta *meta = meta__ign;
2222 	void *p = p__alloc;
2223 
2224 	__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2225 }
2226 
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2227 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2228 {
2229 	/* The verifier has ensured that meta__ign must be NULL */
2230 	bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2231 }
2232 
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2233 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2234 {
2235 	struct btf_struct_meta *meta = meta__ign;
2236 	struct bpf_refcount *ref;
2237 
2238 	/* Could just cast directly to refcount_t *, but need some code using
2239 	 * bpf_refcount type so that it is emitted in vmlinux BTF
2240 	 */
2241 	ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2242 	if (!refcount_inc_not_zero((refcount_t *)ref))
2243 		return NULL;
2244 
2245 	/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2246 	 * in verifier.c
2247 	 */
2248 	return (void *)p__refcounted_kptr;
2249 }
2250 
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2251 static int __bpf_list_add(struct bpf_list_node_kern *node,
2252 			  struct bpf_list_head *head,
2253 			  bool tail, struct btf_record *rec, u64 off)
2254 {
2255 	struct list_head *n = &node->list_head, *h = (void *)head;
2256 
2257 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2258 	 * called on its fields, so init here
2259 	 */
2260 	if (unlikely(!h->next))
2261 		INIT_LIST_HEAD(h);
2262 
2263 	/* node->owner != NULL implies !list_empty(n), no need to separately
2264 	 * check the latter
2265 	 */
2266 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2267 		/* Only called from BPF prog, no need to migrate_disable */
2268 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2269 		return -EINVAL;
2270 	}
2271 
2272 	tail ? list_add_tail(n, h) : list_add(n, h);
2273 	WRITE_ONCE(node->owner, head);
2274 
2275 	return 0;
2276 }
2277 
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2278 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2279 					 struct bpf_list_node *node,
2280 					 void *meta__ign, u64 off)
2281 {
2282 	struct bpf_list_node_kern *n = (void *)node;
2283 	struct btf_struct_meta *meta = meta__ign;
2284 
2285 	return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2286 }
2287 
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2288 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2289 					struct bpf_list_node *node,
2290 					void *meta__ign, u64 off)
2291 {
2292 	struct bpf_list_node_kern *n = (void *)node;
2293 	struct btf_struct_meta *meta = meta__ign;
2294 
2295 	return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2296 }
2297 
__bpf_list_del(struct bpf_list_head * head,bool tail)2298 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2299 {
2300 	struct list_head *n, *h = (void *)head;
2301 	struct bpf_list_node_kern *node;
2302 
2303 	/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2304 	 * called on its fields, so init here
2305 	 */
2306 	if (unlikely(!h->next))
2307 		INIT_LIST_HEAD(h);
2308 	if (list_empty(h))
2309 		return NULL;
2310 
2311 	n = tail ? h->prev : h->next;
2312 	node = container_of(n, struct bpf_list_node_kern, list_head);
2313 	if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2314 		return NULL;
2315 
2316 	list_del_init(n);
2317 	WRITE_ONCE(node->owner, NULL);
2318 	return (struct bpf_list_node *)n;
2319 }
2320 
bpf_list_pop_front(struct bpf_list_head * head)2321 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2322 {
2323 	return __bpf_list_del(head, false);
2324 }
2325 
bpf_list_pop_back(struct bpf_list_head * head)2326 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2327 {
2328 	return __bpf_list_del(head, true);
2329 }
2330 
bpf_list_front(struct bpf_list_head * head)2331 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2332 {
2333 	struct list_head *h = (struct list_head *)head;
2334 
2335 	if (list_empty(h) || unlikely(!h->next))
2336 		return NULL;
2337 
2338 	return (struct bpf_list_node *)h->next;
2339 }
2340 
bpf_list_back(struct bpf_list_head * head)2341 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2342 {
2343 	struct list_head *h = (struct list_head *)head;
2344 
2345 	if (list_empty(h) || unlikely(!h->next))
2346 		return NULL;
2347 
2348 	return (struct bpf_list_node *)h->prev;
2349 }
2350 
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2351 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2352 						  struct bpf_rb_node *node)
2353 {
2354 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2355 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2356 	struct rb_node *n = &node_internal->rb_node;
2357 
2358 	/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2359 	 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2360 	 */
2361 	if (READ_ONCE(node_internal->owner) != root)
2362 		return NULL;
2363 
2364 	rb_erase_cached(n, r);
2365 	RB_CLEAR_NODE(n);
2366 	WRITE_ONCE(node_internal->owner, NULL);
2367 	return (struct bpf_rb_node *)n;
2368 }
2369 
2370 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2371  * program
2372  */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2373 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2374 			    struct bpf_rb_node_kern *node,
2375 			    void *less, struct btf_record *rec, u64 off)
2376 {
2377 	struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2378 	struct rb_node *parent = NULL, *n = &node->rb_node;
2379 	bpf_callback_t cb = (bpf_callback_t)less;
2380 	bool leftmost = true;
2381 
2382 	/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2383 	 * check the latter
2384 	 */
2385 	if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2386 		/* Only called from BPF prog, no need to migrate_disable */
2387 		__bpf_obj_drop_impl((void *)n - off, rec, false);
2388 		return -EINVAL;
2389 	}
2390 
2391 	while (*link) {
2392 		parent = *link;
2393 		if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2394 			link = &parent->rb_left;
2395 		} else {
2396 			link = &parent->rb_right;
2397 			leftmost = false;
2398 		}
2399 	}
2400 
2401 	rb_link_node(n, parent, link);
2402 	rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2403 	WRITE_ONCE(node->owner, root);
2404 	return 0;
2405 }
2406 
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2407 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2408 				    bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2409 				    void *meta__ign, u64 off)
2410 {
2411 	struct btf_struct_meta *meta = meta__ign;
2412 	struct bpf_rb_node_kern *n = (void *)node;
2413 
2414 	return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2415 }
2416 
bpf_rbtree_first(struct bpf_rb_root * root)2417 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2418 {
2419 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2420 
2421 	return (struct bpf_rb_node *)rb_first_cached(r);
2422 }
2423 
bpf_rbtree_root(struct bpf_rb_root * root)2424 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2425 {
2426 	struct rb_root_cached *r = (struct rb_root_cached *)root;
2427 
2428 	return (struct bpf_rb_node *)r->rb_root.rb_node;
2429 }
2430 
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2431 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2432 {
2433 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2434 
2435 	if (READ_ONCE(node_internal->owner) != root)
2436 		return NULL;
2437 
2438 	return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2439 }
2440 
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2441 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2442 {
2443 	struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2444 
2445 	if (READ_ONCE(node_internal->owner) != root)
2446 		return NULL;
2447 
2448 	return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2449 }
2450 
2451 /**
2452  * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2453  * kfunc which is not stored in a map as a kptr, must be released by calling
2454  * bpf_task_release().
2455  * @p: The task on which a reference is being acquired.
2456  */
bpf_task_acquire(struct task_struct * p)2457 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2458 {
2459 	if (refcount_inc_not_zero(&p->rcu_users))
2460 		return p;
2461 	return NULL;
2462 }
2463 
2464 /**
2465  * bpf_task_release - Release the reference acquired on a task.
2466  * @p: The task on which a reference is being released.
2467  */
bpf_task_release(struct task_struct * p)2468 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2469 {
2470 	put_task_struct_rcu_user(p);
2471 }
2472 
bpf_task_release_dtor(void * p)2473 __bpf_kfunc void bpf_task_release_dtor(void *p)
2474 {
2475 	put_task_struct_rcu_user(p);
2476 }
2477 CFI_NOSEAL(bpf_task_release_dtor);
2478 
2479 #ifdef CONFIG_CGROUPS
2480 /**
2481  * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2482  * this kfunc which is not stored in a map as a kptr, must be released by
2483  * calling bpf_cgroup_release().
2484  * @cgrp: The cgroup on which a reference is being acquired.
2485  */
bpf_cgroup_acquire(struct cgroup * cgrp)2486 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2487 {
2488 	return cgroup_tryget(cgrp) ? cgrp : NULL;
2489 }
2490 
2491 /**
2492  * bpf_cgroup_release - Release the reference acquired on a cgroup.
2493  * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2494  * not be freed until the current grace period has ended, even if its refcount
2495  * drops to 0.
2496  * @cgrp: The cgroup on which a reference is being released.
2497  */
bpf_cgroup_release(struct cgroup * cgrp)2498 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2499 {
2500 	cgroup_put(cgrp);
2501 }
2502 
bpf_cgroup_release_dtor(void * cgrp)2503 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2504 {
2505 	cgroup_put(cgrp);
2506 }
2507 CFI_NOSEAL(bpf_cgroup_release_dtor);
2508 
2509 /**
2510  * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2511  * array. A cgroup returned by this kfunc which is not subsequently stored in a
2512  * map, must be released by calling bpf_cgroup_release().
2513  * @cgrp: The cgroup for which we're performing a lookup.
2514  * @level: The level of ancestor to look up.
2515  */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2516 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2517 {
2518 	struct cgroup *ancestor;
2519 
2520 	if (level > cgrp->level || level < 0)
2521 		return NULL;
2522 
2523 	/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2524 	ancestor = cgrp->ancestors[level];
2525 	if (!cgroup_tryget(ancestor))
2526 		return NULL;
2527 	return ancestor;
2528 }
2529 
2530 /**
2531  * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2532  * kfunc which is not subsequently stored in a map, must be released by calling
2533  * bpf_cgroup_release().
2534  * @cgid: cgroup id.
2535  */
bpf_cgroup_from_id(u64 cgid)2536 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2537 {
2538 	struct cgroup *cgrp;
2539 
2540 	cgrp = cgroup_get_from_id(cgid);
2541 	if (IS_ERR(cgrp))
2542 		return NULL;
2543 	return cgrp;
2544 }
2545 
2546 /**
2547  * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2548  * task's membership of cgroup ancestry.
2549  * @task: the task to be tested
2550  * @ancestor: possible ancestor of @task's cgroup
2551  *
2552  * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2553  * It follows all the same rules as cgroup_is_descendant, and only applies
2554  * to the default hierarchy.
2555  */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2556 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2557 				       struct cgroup *ancestor)
2558 {
2559 	long ret;
2560 
2561 	rcu_read_lock();
2562 	ret = task_under_cgroup_hierarchy(task, ancestor);
2563 	rcu_read_unlock();
2564 	return ret;
2565 }
2566 
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2567 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2568 {
2569 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2570 	struct cgroup *cgrp;
2571 
2572 	if (unlikely(idx >= array->map.max_entries))
2573 		return -E2BIG;
2574 
2575 	cgrp = READ_ONCE(array->ptrs[idx]);
2576 	if (unlikely(!cgrp))
2577 		return -EAGAIN;
2578 
2579 	return task_under_cgroup_hierarchy(current, cgrp);
2580 }
2581 
2582 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2583 	.func           = bpf_current_task_under_cgroup,
2584 	.gpl_only       = false,
2585 	.ret_type       = RET_INTEGER,
2586 	.arg1_type      = ARG_CONST_MAP_PTR,
2587 	.arg2_type      = ARG_ANYTHING,
2588 };
2589 
2590 /**
2591  * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2592  * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2593  * hierarchy ID.
2594  * @task: The target task
2595  * @hierarchy_id: The ID of a cgroup1 hierarchy
2596  *
2597  * On success, the cgroup is returen. On failure, NULL is returned.
2598  */
2599 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2600 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2601 {
2602 	struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2603 
2604 	if (IS_ERR(cgrp))
2605 		return NULL;
2606 	return cgrp;
2607 }
2608 #endif /* CONFIG_CGROUPS */
2609 
2610 /**
2611  * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2612  * in the root pid namespace idr. If a task is returned, it must either be
2613  * stored in a map, or released with bpf_task_release().
2614  * @pid: The pid of the task being looked up.
2615  */
bpf_task_from_pid(s32 pid)2616 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2617 {
2618 	struct task_struct *p;
2619 
2620 	rcu_read_lock();
2621 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2622 	if (p)
2623 		p = bpf_task_acquire(p);
2624 	rcu_read_unlock();
2625 
2626 	return p;
2627 }
2628 
2629 /**
2630  * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2631  * in the pid namespace of the current task. If a task is returned, it must
2632  * either be stored in a map, or released with bpf_task_release().
2633  * @vpid: The vpid of the task being looked up.
2634  */
bpf_task_from_vpid(s32 vpid)2635 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2636 {
2637 	struct task_struct *p;
2638 
2639 	rcu_read_lock();
2640 	p = find_task_by_vpid(vpid);
2641 	if (p)
2642 		p = bpf_task_acquire(p);
2643 	rcu_read_unlock();
2644 
2645 	return p;
2646 }
2647 
2648 /**
2649  * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2650  * @p: The dynptr whose data slice to retrieve
2651  * @offset: Offset into the dynptr
2652  * @buffer__opt: User-provided buffer to copy contents into.  May be NULL
2653  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2654  *               length of the requested slice. This must be a constant.
2655  *
2656  * For non-skb and non-xdp type dynptrs, there is no difference between
2657  * bpf_dynptr_slice and bpf_dynptr_data.
2658  *
2659  *  If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2660  *
2661  * If the intention is to write to the data slice, please use
2662  * bpf_dynptr_slice_rdwr.
2663  *
2664  * The user must check that the returned pointer is not null before using it.
2665  *
2666  * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2667  * does not change the underlying packet data pointers, so a call to
2668  * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2669  * the bpf program.
2670  *
2671  * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2672  * data slice (can be either direct pointer to the data or a pointer to the user
2673  * provided buffer, with its contents containing the data, if unable to obtain
2674  * direct pointer)
2675  */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2676 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2677 				   void *buffer__opt, u32 buffer__szk)
2678 {
2679 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2680 	enum bpf_dynptr_type type;
2681 	u32 len = buffer__szk;
2682 	int err;
2683 
2684 	if (!ptr->data)
2685 		return NULL;
2686 
2687 	err = bpf_dynptr_check_off_len(ptr, offset, len);
2688 	if (err)
2689 		return NULL;
2690 
2691 	type = bpf_dynptr_get_type(ptr);
2692 
2693 	switch (type) {
2694 	case BPF_DYNPTR_TYPE_LOCAL:
2695 	case BPF_DYNPTR_TYPE_RINGBUF:
2696 		return ptr->data + ptr->offset + offset;
2697 	case BPF_DYNPTR_TYPE_SKB:
2698 		if (buffer__opt)
2699 			return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2700 		else
2701 			return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2702 	case BPF_DYNPTR_TYPE_XDP:
2703 	{
2704 		void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2705 		if (!IS_ERR_OR_NULL(xdp_ptr))
2706 			return xdp_ptr;
2707 
2708 		if (!buffer__opt)
2709 			return NULL;
2710 		bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2711 		return buffer__opt;
2712 	}
2713 	default:
2714 		WARN_ONCE(true, "unknown dynptr type %d\n", type);
2715 		return NULL;
2716 	}
2717 }
2718 
2719 /**
2720  * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2721  * @p: The dynptr whose data slice to retrieve
2722  * @offset: Offset into the dynptr
2723  * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2724  * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2725  *               length of the requested slice. This must be a constant.
2726  *
2727  * For non-skb and non-xdp type dynptrs, there is no difference between
2728  * bpf_dynptr_slice and bpf_dynptr_data.
2729  *
2730  * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2731  *
2732  * The returned pointer is writable and may point to either directly the dynptr
2733  * data at the requested offset or to the buffer if unable to obtain a direct
2734  * data pointer to (example: the requested slice is to the paged area of an skb
2735  * packet). In the case where the returned pointer is to the buffer, the user
2736  * is responsible for persisting writes through calling bpf_dynptr_write(). This
2737  * usually looks something like this pattern:
2738  *
2739  * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2740  * if (!eth)
2741  *	return TC_ACT_SHOT;
2742  *
2743  * // mutate eth header //
2744  *
2745  * if (eth == buffer)
2746  *	bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2747  *
2748  * Please note that, as in the example above, the user must check that the
2749  * returned pointer is not null before using it.
2750  *
2751  * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2752  * does not change the underlying packet data pointers, so a call to
2753  * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2754  * the bpf program.
2755  *
2756  * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2757  * data slice (can be either direct pointer to the data or a pointer to the user
2758  * provided buffer, with its contents containing the data, if unable to obtain
2759  * direct pointer)
2760  */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2761 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2762 					void *buffer__opt, u32 buffer__szk)
2763 {
2764 	const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2765 
2766 	if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2767 		return NULL;
2768 
2769 	/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2770 	 *
2771 	 * For skb-type dynptrs, it is safe to write into the returned pointer
2772 	 * if the bpf program allows skb data writes. There are two possibilities
2773 	 * that may occur when calling bpf_dynptr_slice_rdwr:
2774 	 *
2775 	 * 1) The requested slice is in the head of the skb. In this case, the
2776 	 * returned pointer is directly to skb data, and if the skb is cloned, the
2777 	 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2778 	 * The pointer can be directly written into.
2779 	 *
2780 	 * 2) Some portion of the requested slice is in the paged buffer area.
2781 	 * In this case, the requested data will be copied out into the buffer
2782 	 * and the returned pointer will be a pointer to the buffer. The skb
2783 	 * will not be pulled. To persist the write, the user will need to call
2784 	 * bpf_dynptr_write(), which will pull the skb and commit the write.
2785 	 *
2786 	 * Similarly for xdp programs, if the requested slice is not across xdp
2787 	 * fragments, then a direct pointer will be returned, otherwise the data
2788 	 * will be copied out into the buffer and the user will need to call
2789 	 * bpf_dynptr_write() to commit changes.
2790 	 */
2791 	return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2792 }
2793 
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2794 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2795 {
2796 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2797 	u32 size;
2798 
2799 	if (!ptr->data || start > end)
2800 		return -EINVAL;
2801 
2802 	size = __bpf_dynptr_size(ptr);
2803 
2804 	if (start > size || end > size)
2805 		return -ERANGE;
2806 
2807 	ptr->offset += start;
2808 	bpf_dynptr_set_size(ptr, end - start);
2809 
2810 	return 0;
2811 }
2812 
bpf_dynptr_is_null(const struct bpf_dynptr * p)2813 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2814 {
2815 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2816 
2817 	return !ptr->data;
2818 }
2819 
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2820 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2821 {
2822 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2823 
2824 	if (!ptr->data)
2825 		return false;
2826 
2827 	return __bpf_dynptr_is_rdonly(ptr);
2828 }
2829 
bpf_dynptr_size(const struct bpf_dynptr * p)2830 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2831 {
2832 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2833 
2834 	if (!ptr->data)
2835 		return -EINVAL;
2836 
2837 	return __bpf_dynptr_size(ptr);
2838 }
2839 
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2840 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2841 				 struct bpf_dynptr *clone__uninit)
2842 {
2843 	struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2844 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2845 
2846 	if (!ptr->data) {
2847 		bpf_dynptr_set_null(clone);
2848 		return -EINVAL;
2849 	}
2850 
2851 	*clone = *ptr;
2852 
2853 	return 0;
2854 }
2855 
2856 /**
2857  * bpf_dynptr_copy() - Copy data from one dynptr to another.
2858  * @dst_ptr: Destination dynptr - where data should be copied to
2859  * @dst_off: Offset into the destination dynptr
2860  * @src_ptr: Source dynptr - where data should be copied from
2861  * @src_off: Offset into the source dynptr
2862  * @size: Length of the data to copy from source to destination
2863  *
2864  * Copies data from source dynptr to destination dynptr.
2865  * Returns 0 on success; negative error, otherwise.
2866  */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u32 dst_off,struct bpf_dynptr * src_ptr,u32 src_off,u32 size)2867 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2868 				struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2869 {
2870 	struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2871 	struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2872 	void *src_slice, *dst_slice;
2873 	char buf[256];
2874 	u32 off;
2875 
2876 	src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2877 	dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2878 
2879 	if (src_slice && dst_slice) {
2880 		memmove(dst_slice, src_slice, size);
2881 		return 0;
2882 	}
2883 
2884 	if (src_slice)
2885 		return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2886 
2887 	if (dst_slice)
2888 		return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2889 
2890 	if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2891 	    bpf_dynptr_check_off_len(src, src_off, size))
2892 		return -E2BIG;
2893 
2894 	off = 0;
2895 	while (off < size) {
2896 		u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2897 		int err;
2898 
2899 		err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2900 		if (err)
2901 			return err;
2902 		err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2903 		if (err)
2904 			return err;
2905 
2906 		off += chunk_sz;
2907 	}
2908 	return 0;
2909 }
2910 
2911 /**
2912  * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2913  * @p: Destination dynptr - where data will be filled
2914  * @offset: Offset into the dynptr to start filling from
2915  * @size: Number of bytes to fill
2916  * @val: Constant byte to fill the memory with
2917  *
2918  * Fills the @size bytes of the memory area pointed to by @p
2919  * at @offset with the constant byte @val.
2920  * Returns 0 on success; negative error, otherwise.
2921  */
bpf_dynptr_memset(struct bpf_dynptr * p,u32 offset,u32 size,u8 val)2922  __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u32 offset, u32 size, u8 val)
2923  {
2924 	struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2925 	u32 chunk_sz, write_off;
2926 	char buf[256];
2927 	void* slice;
2928 	int err;
2929 
2930 	slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2931 	if (likely(slice)) {
2932 		memset(slice, val, size);
2933 		return 0;
2934 	}
2935 
2936 	if (__bpf_dynptr_is_rdonly(ptr))
2937 		return -EINVAL;
2938 
2939 	err = bpf_dynptr_check_off_len(ptr, offset, size);
2940 	if (err)
2941 		return err;
2942 
2943 	/* Non-linear data under the dynptr, write from a local buffer */
2944 	chunk_sz = min_t(u32, sizeof(buf), size);
2945 	memset(buf, val, chunk_sz);
2946 
2947 	for (write_off = 0; write_off < size; write_off += chunk_sz) {
2948 		chunk_sz = min_t(u32, sizeof(buf), size - write_off);
2949 		err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
2950 		if (err)
2951 			return err;
2952 	}
2953 
2954 	return 0;
2955 }
2956 
bpf_cast_to_kern_ctx(void * obj)2957 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2958 {
2959 	return obj;
2960 }
2961 
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2962 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2963 {
2964 	return (void *)obj__ign;
2965 }
2966 
bpf_rcu_read_lock(void)2967 __bpf_kfunc void bpf_rcu_read_lock(void)
2968 {
2969 	rcu_read_lock();
2970 }
2971 
bpf_rcu_read_unlock(void)2972 __bpf_kfunc void bpf_rcu_read_unlock(void)
2973 {
2974 	rcu_read_unlock();
2975 }
2976 
2977 struct bpf_throw_ctx {
2978 	struct bpf_prog_aux *aux;
2979 	u64 sp;
2980 	u64 bp;
2981 	int cnt;
2982 };
2983 
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2984 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2985 {
2986 	struct bpf_throw_ctx *ctx = cookie;
2987 	struct bpf_prog *prog;
2988 
2989 	/*
2990 	 * The RCU read lock is held to safely traverse the latch tree, but we
2991 	 * don't need its protection when accessing the prog, since it has an
2992 	 * active stack frame on the current stack trace, and won't disappear.
2993 	 */
2994 	rcu_read_lock();
2995 	prog = bpf_prog_ksym_find(ip);
2996 	rcu_read_unlock();
2997 	if (!prog)
2998 		return !ctx->cnt;
2999 	ctx->cnt++;
3000 	if (bpf_is_subprog(prog))
3001 		return true;
3002 	ctx->aux = prog->aux;
3003 	ctx->sp = sp;
3004 	ctx->bp = bp;
3005 	return false;
3006 }
3007 
bpf_throw(u64 cookie)3008 __bpf_kfunc void bpf_throw(u64 cookie)
3009 {
3010 	struct bpf_throw_ctx ctx = {};
3011 
3012 	arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3013 	WARN_ON_ONCE(!ctx.aux);
3014 	if (ctx.aux)
3015 		WARN_ON_ONCE(!ctx.aux->exception_boundary);
3016 	WARN_ON_ONCE(!ctx.bp);
3017 	WARN_ON_ONCE(!ctx.cnt);
3018 	/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3019 	 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3020 	 * which skips compiler generated instrumentation to do the same.
3021 	 */
3022 	kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3023 	ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3024 	WARN(1, "A call to BPF exception callback should never return\n");
3025 }
3026 
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)3027 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3028 {
3029 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3030 	struct bpf_map *map = p__map;
3031 
3032 	BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3033 	BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3034 
3035 	if (flags)
3036 		return -EINVAL;
3037 
3038 	return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3039 }
3040 
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)3041 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3042 {
3043 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3044 	struct bpf_work *w;
3045 
3046 	if (in_nmi())
3047 		return -EOPNOTSUPP;
3048 	if (flags)
3049 		return -EINVAL;
3050 	w = READ_ONCE(async->work);
3051 	if (!w || !READ_ONCE(w->cb.prog))
3052 		return -EINVAL;
3053 
3054 	schedule_work(&w->work);
3055 	return 0;
3056 }
3057 
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3058 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3059 					 int (callback_fn)(void *map, int *key, void *value),
3060 					 unsigned int flags,
3061 					 void *aux__prog)
3062 {
3063 	struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3064 	struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3065 
3066 	if (flags)
3067 		return -EINVAL;
3068 
3069 	return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3070 }
3071 
bpf_preempt_disable(void)3072 __bpf_kfunc void bpf_preempt_disable(void)
3073 {
3074 	preempt_disable();
3075 }
3076 
bpf_preempt_enable(void)3077 __bpf_kfunc void bpf_preempt_enable(void)
3078 {
3079 	preempt_enable();
3080 }
3081 
3082 struct bpf_iter_bits {
3083 	__u64 __opaque[2];
3084 } __aligned(8);
3085 
3086 #define BITS_ITER_NR_WORDS_MAX 511
3087 
3088 struct bpf_iter_bits_kern {
3089 	union {
3090 		__u64 *bits;
3091 		__u64 bits_copy;
3092 	};
3093 	int nr_bits;
3094 	int bit;
3095 } __aligned(8);
3096 
3097 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3098  * a u64 pointer and an unsigned long pointer to find_next_bit() will
3099  * return the same result, as both point to the same 8-byte area.
3100  *
3101  * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3102  * pointer also makes no difference. This is because the first iterated
3103  * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3104  * long is composed of bits 32-63 of the u64.
3105  *
3106  * However, for 32-bit big-endian hosts, this is not the case. The first
3107  * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3108  * ulong values within the u64.
3109  */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3110 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3111 {
3112 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3113 	unsigned int i;
3114 
3115 	for (i = 0; i < nr; i++)
3116 		bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3117 #endif
3118 }
3119 
3120 /**
3121  * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3122  * @it: The new bpf_iter_bits to be created
3123  * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3124  * @nr_words: The size of the specified memory area, measured in 8-byte units.
3125  * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3126  * further reduced by the BPF memory allocator implementation.
3127  *
3128  * This function initializes a new bpf_iter_bits structure for iterating over
3129  * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3130  * copies the data of the memory area to the newly created bpf_iter_bits @it for
3131  * subsequent iteration operations.
3132  *
3133  * On success, 0 is returned. On failure, ERR is returned.
3134  */
3135 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3136 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3137 {
3138 	struct bpf_iter_bits_kern *kit = (void *)it;
3139 	u32 nr_bytes = nr_words * sizeof(u64);
3140 	u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3141 	int err;
3142 
3143 	BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3144 	BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3145 		     __alignof__(struct bpf_iter_bits));
3146 
3147 	kit->nr_bits = 0;
3148 	kit->bits_copy = 0;
3149 	kit->bit = -1;
3150 
3151 	if (!unsafe_ptr__ign || !nr_words)
3152 		return -EINVAL;
3153 	if (nr_words > BITS_ITER_NR_WORDS_MAX)
3154 		return -E2BIG;
3155 
3156 	/* Optimization for u64 mask */
3157 	if (nr_bits == 64) {
3158 		err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3159 		if (err)
3160 			return -EFAULT;
3161 
3162 		swap_ulong_in_u64(&kit->bits_copy, nr_words);
3163 
3164 		kit->nr_bits = nr_bits;
3165 		return 0;
3166 	}
3167 
3168 	if (bpf_mem_alloc_check_size(false, nr_bytes))
3169 		return -E2BIG;
3170 
3171 	/* Fallback to memalloc */
3172 	kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3173 	if (!kit->bits)
3174 		return -ENOMEM;
3175 
3176 	err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3177 	if (err) {
3178 		bpf_mem_free(&bpf_global_ma, kit->bits);
3179 		return err;
3180 	}
3181 
3182 	swap_ulong_in_u64(kit->bits, nr_words);
3183 
3184 	kit->nr_bits = nr_bits;
3185 	return 0;
3186 }
3187 
3188 /**
3189  * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3190  * @it: The bpf_iter_bits to be checked
3191  *
3192  * This function returns a pointer to a number representing the value of the
3193  * next bit in the bits.
3194  *
3195  * If there are no further bits available, it returns NULL.
3196  */
bpf_iter_bits_next(struct bpf_iter_bits * it)3197 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3198 {
3199 	struct bpf_iter_bits_kern *kit = (void *)it;
3200 	int bit = kit->bit, nr_bits = kit->nr_bits;
3201 	const void *bits;
3202 
3203 	if (!nr_bits || bit >= nr_bits)
3204 		return NULL;
3205 
3206 	bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3207 	bit = find_next_bit(bits, nr_bits, bit + 1);
3208 	if (bit >= nr_bits) {
3209 		kit->bit = bit;
3210 		return NULL;
3211 	}
3212 
3213 	kit->bit = bit;
3214 	return &kit->bit;
3215 }
3216 
3217 /**
3218  * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3219  * @it: The bpf_iter_bits to be destroyed
3220  *
3221  * Destroy the resource associated with the bpf_iter_bits.
3222  */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3223 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3224 {
3225 	struct bpf_iter_bits_kern *kit = (void *)it;
3226 
3227 	if (kit->nr_bits <= 64)
3228 		return;
3229 	bpf_mem_free(&bpf_global_ma, kit->bits);
3230 }
3231 
3232 /**
3233  * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3234  * @dst:             Destination address, in kernel space.  This buffer must be
3235  *                   at least @dst__sz bytes long.
3236  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3237  * @unsafe_ptr__ign: Source address, in user space.
3238  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3239  *
3240  * Copies a NUL-terminated string from userspace to BPF space. If user string is
3241  * too long this will still ensure zero termination in the dst buffer unless
3242  * buffer size is 0.
3243  *
3244  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3245  * memset all of @dst on failure.
3246  */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3247 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3248 {
3249 	int ret;
3250 
3251 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3252 		return -EINVAL;
3253 
3254 	if (unlikely(!dst__sz))
3255 		return 0;
3256 
3257 	ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3258 	if (ret < 0) {
3259 		if (flags & BPF_F_PAD_ZEROS)
3260 			memset((char *)dst, 0, dst__sz);
3261 
3262 		return ret;
3263 	}
3264 
3265 	if (flags & BPF_F_PAD_ZEROS)
3266 		memset((char *)dst + ret, 0, dst__sz - ret);
3267 	else
3268 		((char *)dst)[ret] = '\0';
3269 
3270 	return ret + 1;
3271 }
3272 
3273 /**
3274  * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3275  * @dst:             Destination address, in kernel space.  This buffer must be
3276  *                   at least @dst__sz bytes long.
3277  * @dst__sz:         Maximum number of bytes to copy, includes the trailing NUL.
3278  * @unsafe_ptr__ign: Source address in the task's address space.
3279  * @tsk:             The task whose address space will be used
3280  * @flags:           The only supported flag is BPF_F_PAD_ZEROS
3281  *
3282  * Copies a NUL terminated string from a task's address space to @dst__sz
3283  * buffer. If user string is too long this will still ensure zero termination
3284  * in the @dst__sz buffer unless buffer size is 0.
3285  *
3286  * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3287  * and memset all of @dst__sz on failure.
3288  *
3289  * Return: The number of copied bytes on success including the NUL terminator.
3290  * A negative error code on failure.
3291  */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3292 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3293 					    const void __user *unsafe_ptr__ign,
3294 					    struct task_struct *tsk, u64 flags)
3295 {
3296 	int ret;
3297 
3298 	if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3299 		return -EINVAL;
3300 
3301 	if (unlikely(dst__sz == 0))
3302 		return 0;
3303 
3304 	ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3305 	if (ret < 0) {
3306 		if (flags & BPF_F_PAD_ZEROS)
3307 			memset(dst, 0, dst__sz);
3308 		return ret;
3309 	}
3310 
3311 	if (flags & BPF_F_PAD_ZEROS)
3312 		memset(dst + ret, 0, dst__sz - ret);
3313 
3314 	return ret + 1;
3315 }
3316 
3317 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3318  * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3319  * unsigned long always points to 8-byte region on stack, the kernel may only
3320  * read and write the 4-bytes on 32-bit.
3321  */
bpf_local_irq_save(unsigned long * flags__irq_flag)3322 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3323 {
3324 	local_irq_save(*flags__irq_flag);
3325 }
3326 
bpf_local_irq_restore(unsigned long * flags__irq_flag)3327 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3328 {
3329 	local_irq_restore(*flags__irq_flag);
3330 }
3331 
__bpf_trap(void)3332 __bpf_kfunc void __bpf_trap(void)
3333 {
3334 }
3335 
3336 /*
3337  * Kfuncs for string operations.
3338  *
3339  * Since strings are not necessarily %NUL-terminated, we cannot directly call
3340  * in-kernel implementations. Instead, we open-code the implementations using
3341  * __get_kernel_nofault instead of plain dereference to make them safe.
3342  */
3343 
3344 /**
3345  * bpf_strcmp - Compare two strings
3346  * @s1__ign: One string
3347  * @s2__ign: Another string
3348  *
3349  * Return:
3350  * * %0       - Strings are equal
3351  * * %-1      - @s1__ign is smaller
3352  * * %1       - @s2__ign is smaller
3353  * * %-EFAULT - Cannot read one of the strings
3354  * * %-E2BIG  - One of strings is too large
3355  * * %-ERANGE - One of strings is outside of kernel address space
3356  */
bpf_strcmp(const char * s1__ign,const char * s2__ign)3357 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3358 {
3359 	char c1, c2;
3360 	int i;
3361 
3362 	if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3363 	    !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3364 		return -ERANGE;
3365 	}
3366 
3367 	guard(pagefault)();
3368 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3369 		__get_kernel_nofault(&c1, s1__ign, char, err_out);
3370 		__get_kernel_nofault(&c2, s2__ign, char, err_out);
3371 		if (c1 != c2)
3372 			return c1 < c2 ? -1 : 1;
3373 		if (c1 == '\0')
3374 			return 0;
3375 		s1__ign++;
3376 		s2__ign++;
3377 	}
3378 	return -E2BIG;
3379 err_out:
3380 	return -EFAULT;
3381 }
3382 
3383 /**
3384  * bpf_strnchr - Find a character in a length limited string
3385  * @s__ign: The string to be searched
3386  * @count: The number of characters to be searched
3387  * @c: The character to search for
3388  *
3389  * Note that the %NUL-terminator is considered part of the string, and can
3390  * be searched for.
3391  *
3392  * Return:
3393  * * >=0      - Index of the first occurrence of @c within @s__ign
3394  * * %-ENOENT - @c not found in the first @count characters of @s__ign
3395  * * %-EFAULT - Cannot read @s__ign
3396  * * %-E2BIG  - @s__ign is too large
3397  * * %-ERANGE - @s__ign is outside of kernel address space
3398  */
bpf_strnchr(const char * s__ign,size_t count,char c)3399 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3400 {
3401 	char sc;
3402 	int i;
3403 
3404 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3405 		return -ERANGE;
3406 
3407 	guard(pagefault)();
3408 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3409 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3410 		if (sc == c)
3411 			return i;
3412 		if (sc == '\0')
3413 			return -ENOENT;
3414 		s__ign++;
3415 	}
3416 	return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3417 err_out:
3418 	return -EFAULT;
3419 }
3420 
3421 /**
3422  * bpf_strchr - Find the first occurrence of a character in a string
3423  * @s__ign: The string to be searched
3424  * @c: The character to search for
3425  *
3426  * Note that the %NUL-terminator is considered part of the string, and can
3427  * be searched for.
3428  *
3429  * Return:
3430  * * >=0      - The index of the first occurrence of @c within @s__ign
3431  * * %-ENOENT - @c not found in @s__ign
3432  * * %-EFAULT - Cannot read @s__ign
3433  * * %-E2BIG  - @s__ign is too large
3434  * * %-ERANGE - @s__ign is outside of kernel address space
3435  */
bpf_strchr(const char * s__ign,char c)3436 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3437 {
3438 	return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3439 }
3440 
3441 /**
3442  * bpf_strchrnul - Find and return a character in a string, or end of string
3443  * @s__ign: The string to be searched
3444  * @c: The character to search for
3445  *
3446  * Return:
3447  * * >=0      - Index of the first occurrence of @c within @s__ign or index of
3448  *              the null byte at the end of @s__ign when @c is not found
3449  * * %-EFAULT - Cannot read @s__ign
3450  * * %-E2BIG  - @s__ign is too large
3451  * * %-ERANGE - @s__ign is outside of kernel address space
3452  */
bpf_strchrnul(const char * s__ign,char c)3453 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3454 {
3455 	char sc;
3456 	int i;
3457 
3458 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3459 		return -ERANGE;
3460 
3461 	guard(pagefault)();
3462 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3463 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3464 		if (sc == '\0' || sc == c)
3465 			return i;
3466 		s__ign++;
3467 	}
3468 	return -E2BIG;
3469 err_out:
3470 	return -EFAULT;
3471 }
3472 
3473 /**
3474  * bpf_strrchr - Find the last occurrence of a character in a string
3475  * @s__ign: The string to be searched
3476  * @c: The character to search for
3477  *
3478  * Return:
3479  * * >=0      - Index of the last occurrence of @c within @s__ign
3480  * * %-ENOENT - @c not found in @s__ign
3481  * * %-EFAULT - Cannot read @s__ign
3482  * * %-E2BIG  - @s__ign is too large
3483  * * %-ERANGE - @s__ign is outside of kernel address space
3484  */
bpf_strrchr(const char * s__ign,int c)3485 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3486 {
3487 	char sc;
3488 	int i, last = -ENOENT;
3489 
3490 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3491 		return -ERANGE;
3492 
3493 	guard(pagefault)();
3494 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3495 		__get_kernel_nofault(&sc, s__ign, char, err_out);
3496 		if (sc == c)
3497 			last = i;
3498 		if (sc == '\0')
3499 			return last;
3500 		s__ign++;
3501 	}
3502 	return -E2BIG;
3503 err_out:
3504 	return -EFAULT;
3505 }
3506 
3507 /**
3508  * bpf_strnlen - Calculate the length of a length-limited string
3509  * @s__ign: The string
3510  * @count: The maximum number of characters to count
3511  *
3512  * Return:
3513  * * >=0      - The length of @s__ign
3514  * * %-EFAULT - Cannot read @s__ign
3515  * * %-E2BIG  - @s__ign is too large
3516  * * %-ERANGE - @s__ign is outside of kernel address space
3517  */
bpf_strnlen(const char * s__ign,size_t count)3518 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3519 {
3520 	char c;
3521 	int i;
3522 
3523 	if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3524 		return -ERANGE;
3525 
3526 	guard(pagefault)();
3527 	for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3528 		__get_kernel_nofault(&c, s__ign, char, err_out);
3529 		if (c == '\0')
3530 			return i;
3531 		s__ign++;
3532 	}
3533 	return i == XATTR_SIZE_MAX ? -E2BIG : i;
3534 err_out:
3535 	return -EFAULT;
3536 }
3537 
3538 /**
3539  * bpf_strlen - Calculate the length of a string
3540  * @s__ign: The string
3541  *
3542  * Return:
3543  * * >=0      - The length of @s__ign
3544  * * %-EFAULT - Cannot read @s__ign
3545  * * %-E2BIG  - @s__ign is too large
3546  * * %-ERANGE - @s__ign is outside of kernel address space
3547  */
bpf_strlen(const char * s__ign)3548 __bpf_kfunc int bpf_strlen(const char *s__ign)
3549 {
3550 	return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3551 }
3552 
3553 /**
3554  * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3555  *              only contains letters in @accept__ign
3556  * @s__ign: The string to be searched
3557  * @accept__ign: The string to search for
3558  *
3559  * Return:
3560  * * >=0      - The length of the initial substring of @s__ign which only
3561  *              contains letters from @accept__ign
3562  * * %-EFAULT - Cannot read one of the strings
3563  * * %-E2BIG  - One of the strings is too large
3564  * * %-ERANGE - One of the strings is outside of kernel address space
3565  */
bpf_strspn(const char * s__ign,const char * accept__ign)3566 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3567 {
3568 	char cs, ca;
3569 	int i, j;
3570 
3571 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3572 	    !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3573 		return -ERANGE;
3574 	}
3575 
3576 	guard(pagefault)();
3577 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3578 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3579 		if (cs == '\0')
3580 			return i;
3581 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3582 			__get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3583 			if (cs == ca || ca == '\0')
3584 				break;
3585 		}
3586 		if (j == XATTR_SIZE_MAX)
3587 			return -E2BIG;
3588 		if (ca == '\0')
3589 			return i;
3590 		s__ign++;
3591 	}
3592 	return -E2BIG;
3593 err_out:
3594 	return -EFAULT;
3595 }
3596 
3597 /**
3598  * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3599  *               does not contain letters in @reject__ign
3600  * @s__ign: The string to be searched
3601  * @reject__ign: The string to search for
3602  *
3603  * Return:
3604  * * >=0      - The length of the initial substring of @s__ign which does not
3605  *              contain letters from @reject__ign
3606  * * %-EFAULT - Cannot read one of the strings
3607  * * %-E2BIG  - One of the strings is too large
3608  * * %-ERANGE - One of the strings is outside of kernel address space
3609  */
bpf_strcspn(const char * s__ign,const char * reject__ign)3610 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3611 {
3612 	char cs, cr;
3613 	int i, j;
3614 
3615 	if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3616 	    !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3617 		return -ERANGE;
3618 	}
3619 
3620 	guard(pagefault)();
3621 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3622 		__get_kernel_nofault(&cs, s__ign, char, err_out);
3623 		if (cs == '\0')
3624 			return i;
3625 		for (j = 0; j < XATTR_SIZE_MAX; j++) {
3626 			__get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3627 			if (cs == cr || cr == '\0')
3628 				break;
3629 		}
3630 		if (j == XATTR_SIZE_MAX)
3631 			return -E2BIG;
3632 		if (cr != '\0')
3633 			return i;
3634 		s__ign++;
3635 	}
3636 	return -E2BIG;
3637 err_out:
3638 	return -EFAULT;
3639 }
3640 
3641 /**
3642  * bpf_strnstr - Find the first substring in a length-limited string
3643  * @s1__ign: The string to be searched
3644  * @s2__ign: The string to search for
3645  * @len: the maximum number of characters to search
3646  *
3647  * Return:
3648  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3649  *              within the first @len characters of @s1__ign
3650  * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3651  * * %-EFAULT - Cannot read one of the strings
3652  * * %-E2BIG  - One of the strings is too large
3653  * * %-ERANGE - One of the strings is outside of kernel address space
3654  */
bpf_strnstr(const char * s1__ign,const char * s2__ign,size_t len)3655 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len)
3656 {
3657 	char c1, c2;
3658 	int i, j;
3659 
3660 	if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3661 	    !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3662 		return -ERANGE;
3663 	}
3664 
3665 	guard(pagefault)();
3666 	for (i = 0; i < XATTR_SIZE_MAX; i++) {
3667 		for (j = 0; i + j < len && j < XATTR_SIZE_MAX; j++) {
3668 			__get_kernel_nofault(&c2, s2__ign + j, char, err_out);
3669 			if (c2 == '\0')
3670 				return i;
3671 			__get_kernel_nofault(&c1, s1__ign + j, char, err_out);
3672 			if (c1 == '\0')
3673 				return -ENOENT;
3674 			if (c1 != c2)
3675 				break;
3676 		}
3677 		if (j == XATTR_SIZE_MAX)
3678 			return -E2BIG;
3679 		if (i + j == len)
3680 			return -ENOENT;
3681 		s1__ign++;
3682 	}
3683 	return -E2BIG;
3684 err_out:
3685 	return -EFAULT;
3686 }
3687 
3688 /**
3689  * bpf_strstr - Find the first substring in a string
3690  * @s1__ign: The string to be searched
3691  * @s2__ign: The string to search for
3692  *
3693  * Return:
3694  * * >=0      - Index of the first character of the first occurrence of @s2__ign
3695  *              within @s1__ign
3696  * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3697  * * %-EFAULT - Cannot read one of the strings
3698  * * %-E2BIG  - One of the strings is too large
3699  * * %-ERANGE - One of the strings is outside of kernel address space
3700  */
bpf_strstr(const char * s1__ign,const char * s2__ign)3701 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3702 {
3703 	return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX);
3704 }
3705 
3706 __bpf_kfunc_end_defs();
3707 
3708 BTF_KFUNCS_START(generic_btf_ids)
3709 #ifdef CONFIG_CRASH_DUMP
3710 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3711 #endif
3712 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3713 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3714 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3715 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3716 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3717 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3718 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3719 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3720 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3721 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
3722 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
3723 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3724 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3725 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3726 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3727 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3728 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
3729 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
3730 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
3731 
3732 #ifdef CONFIG_CGROUPS
3733 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3734 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3735 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3736 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3737 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3738 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3739 #endif
3740 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3741 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
3742 BTF_ID_FLAGS(func, bpf_throw)
3743 #ifdef CONFIG_BPF_EVENTS
3744 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
3745 #endif
3746 BTF_KFUNCS_END(generic_btf_ids)
3747 
3748 static const struct btf_kfunc_id_set generic_kfunc_set = {
3749 	.owner = THIS_MODULE,
3750 	.set   = &generic_btf_ids,
3751 };
3752 
3753 
3754 BTF_ID_LIST(generic_dtor_ids)
3755 BTF_ID(struct, task_struct)
3756 BTF_ID(func, bpf_task_release_dtor)
3757 #ifdef CONFIG_CGROUPS
3758 BTF_ID(struct, cgroup)
3759 BTF_ID(func, bpf_cgroup_release_dtor)
3760 #endif
3761 
3762 BTF_KFUNCS_START(common_btf_ids)
3763 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
3764 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
3765 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3766 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3767 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3768 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3769 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3770 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3771 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3772 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3773 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3774 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3775 #ifdef CONFIG_CGROUPS
3776 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3777 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3778 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3779 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3780 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3781 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3782 #endif
3783 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3784 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3785 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3786 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3787 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3788 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3789 BTF_ID_FLAGS(func, bpf_dynptr_size)
3790 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3791 BTF_ID_FLAGS(func, bpf_dynptr_copy)
3792 BTF_ID_FLAGS(func, bpf_dynptr_memset)
3793 #ifdef CONFIG_NET
3794 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3795 #endif
3796 BTF_ID_FLAGS(func, bpf_wq_init)
3797 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3798 BTF_ID_FLAGS(func, bpf_wq_start)
3799 BTF_ID_FLAGS(func, bpf_preempt_disable)
3800 BTF_ID_FLAGS(func, bpf_preempt_enable)
3801 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3802 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3803 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3804 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3805 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
3806 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
3807 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
3808 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3809 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3810 BTF_ID_FLAGS(func, bpf_local_irq_save)
3811 BTF_ID_FLAGS(func, bpf_local_irq_restore)
3812 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
3813 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
3814 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
3815 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
3816 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
3817 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
3818 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3819 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3820 #ifdef CONFIG_DMA_SHARED_BUFFER
3821 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
3822 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3823 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3824 #endif
3825 BTF_ID_FLAGS(func, __bpf_trap)
3826 BTF_ID_FLAGS(func, bpf_strcmp);
3827 BTF_ID_FLAGS(func, bpf_strchr);
3828 BTF_ID_FLAGS(func, bpf_strchrnul);
3829 BTF_ID_FLAGS(func, bpf_strnchr);
3830 BTF_ID_FLAGS(func, bpf_strrchr);
3831 BTF_ID_FLAGS(func, bpf_strlen);
3832 BTF_ID_FLAGS(func, bpf_strnlen);
3833 BTF_ID_FLAGS(func, bpf_strspn);
3834 BTF_ID_FLAGS(func, bpf_strcspn);
3835 BTF_ID_FLAGS(func, bpf_strstr);
3836 BTF_ID_FLAGS(func, bpf_strnstr);
3837 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
3838 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
3839 #endif
3840 BTF_ID_FLAGS(func, bpf_stream_vprintk, KF_TRUSTED_ARGS)
3841 BTF_KFUNCS_END(common_btf_ids)
3842 
3843 static const struct btf_kfunc_id_set common_kfunc_set = {
3844 	.owner = THIS_MODULE,
3845 	.set   = &common_btf_ids,
3846 };
3847 
kfunc_init(void)3848 static int __init kfunc_init(void)
3849 {
3850 	int ret;
3851 	const struct btf_id_dtor_kfunc generic_dtors[] = {
3852 		{
3853 			.btf_id       = generic_dtor_ids[0],
3854 			.kfunc_btf_id = generic_dtor_ids[1]
3855 		},
3856 #ifdef CONFIG_CGROUPS
3857 		{
3858 			.btf_id       = generic_dtor_ids[2],
3859 			.kfunc_btf_id = generic_dtor_ids[3]
3860 		},
3861 #endif
3862 	};
3863 
3864 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3865 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3866 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3867 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3868 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3869 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3870 	ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3871 						  ARRAY_SIZE(generic_dtors),
3872 						  THIS_MODULE);
3873 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3874 }
3875 
3876 late_initcall(kfunc_init);
3877 
3878 /* Get a pointer to dynptr data up to len bytes for read only access. If
3879  * the dynptr doesn't have continuous data up to len bytes, return NULL.
3880  */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3881 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3882 {
3883 	const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3884 
3885 	return bpf_dynptr_slice(p, 0, NULL, len);
3886 }
3887 
3888 /* Get a pointer to dynptr data up to len bytes for read write access. If
3889  * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3890  * is read only, return NULL.
3891  */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3892 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3893 {
3894 	if (__bpf_dynptr_is_rdonly(ptr))
3895 		return NULL;
3896 	return (void *)__bpf_dynptr_data(ptr, len);
3897 }
3898