1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26 #include <linux/bpf_verifier.h>
27 #include <linux/uaccess.h>
28
29 #include "../../lib/kstrtox.h"
30
31 /* If kernel subsystem is allowing eBPF programs to call this function,
32 * inside its own verifier_ops->get_func_proto() callback it should return
33 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
34 *
35 * Different map implementations will rely on rcu in map methods
36 * lookup/update/delete, therefore eBPF programs must run under rcu lock
37 * if program is allowed to access maps, so check rcu_read_lock_held() or
38 * rcu_read_lock_trace_held() in all three functions.
39 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)40 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
41 {
42 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
43 !rcu_read_lock_bh_held());
44 return (unsigned long) map->ops->map_lookup_elem(map, key);
45 }
46
47 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
48 .func = bpf_map_lookup_elem,
49 .gpl_only = false,
50 .pkt_access = true,
51 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
52 .arg1_type = ARG_CONST_MAP_PTR,
53 .arg2_type = ARG_PTR_TO_MAP_KEY,
54 };
55
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)56 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
57 void *, value, u64, flags)
58 {
59 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
60 !rcu_read_lock_bh_held());
61 return map->ops->map_update_elem(map, key, value, flags);
62 }
63
64 const struct bpf_func_proto bpf_map_update_elem_proto = {
65 .func = bpf_map_update_elem,
66 .gpl_only = false,
67 .pkt_access = true,
68 .ret_type = RET_INTEGER,
69 .arg1_type = ARG_CONST_MAP_PTR,
70 .arg2_type = ARG_PTR_TO_MAP_KEY,
71 .arg3_type = ARG_PTR_TO_MAP_VALUE,
72 .arg4_type = ARG_ANYTHING,
73 };
74
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)75 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
76 {
77 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
78 !rcu_read_lock_bh_held());
79 return map->ops->map_delete_elem(map, key);
80 }
81
82 const struct bpf_func_proto bpf_map_delete_elem_proto = {
83 .func = bpf_map_delete_elem,
84 .gpl_only = false,
85 .pkt_access = true,
86 .ret_type = RET_INTEGER,
87 .arg1_type = ARG_CONST_MAP_PTR,
88 .arg2_type = ARG_PTR_TO_MAP_KEY,
89 };
90
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)91 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
92 {
93 return map->ops->map_push_elem(map, value, flags);
94 }
95
96 const struct bpf_func_proto bpf_map_push_elem_proto = {
97 .func = bpf_map_push_elem,
98 .gpl_only = false,
99 .pkt_access = true,
100 .ret_type = RET_INTEGER,
101 .arg1_type = ARG_CONST_MAP_PTR,
102 .arg2_type = ARG_PTR_TO_MAP_VALUE,
103 .arg3_type = ARG_ANYTHING,
104 };
105
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)106 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
107 {
108 return map->ops->map_pop_elem(map, value);
109 }
110
111 const struct bpf_func_proto bpf_map_pop_elem_proto = {
112 .func = bpf_map_pop_elem,
113 .gpl_only = false,
114 .ret_type = RET_INTEGER,
115 .arg1_type = ARG_CONST_MAP_PTR,
116 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
117 };
118
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)119 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
120 {
121 return map->ops->map_peek_elem(map, value);
122 }
123
124 const struct bpf_func_proto bpf_map_peek_elem_proto = {
125 .func = bpf_map_peek_elem,
126 .gpl_only = false,
127 .ret_type = RET_INTEGER,
128 .arg1_type = ARG_CONST_MAP_PTR,
129 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
130 };
131
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)132 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
133 {
134 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
135 !rcu_read_lock_bh_held());
136 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137 }
138
139 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140 .func = bpf_map_lookup_percpu_elem,
141 .gpl_only = false,
142 .pkt_access = true,
143 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
144 .arg1_type = ARG_CONST_MAP_PTR,
145 .arg2_type = ARG_PTR_TO_MAP_KEY,
146 .arg3_type = ARG_ANYTHING,
147 };
148
149 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150 .func = bpf_user_rnd_u32,
151 .gpl_only = false,
152 .ret_type = RET_INTEGER,
153 };
154
BPF_CALL_0(bpf_get_smp_processor_id)155 BPF_CALL_0(bpf_get_smp_processor_id)
156 {
157 return smp_processor_id();
158 }
159
160 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161 .func = bpf_get_smp_processor_id,
162 .gpl_only = false,
163 .ret_type = RET_INTEGER,
164 .allow_fastcall = true,
165 };
166
BPF_CALL_0(bpf_get_numa_node_id)167 BPF_CALL_0(bpf_get_numa_node_id)
168 {
169 return numa_node_id();
170 }
171
172 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173 .func = bpf_get_numa_node_id,
174 .gpl_only = false,
175 .ret_type = RET_INTEGER,
176 };
177
BPF_CALL_0(bpf_ktime_get_ns)178 BPF_CALL_0(bpf_ktime_get_ns)
179 {
180 /* NMI safe access to clock monotonic */
181 return ktime_get_mono_fast_ns();
182 }
183
184 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185 .func = bpf_ktime_get_ns,
186 .gpl_only = false,
187 .ret_type = RET_INTEGER,
188 };
189
BPF_CALL_0(bpf_ktime_get_boot_ns)190 BPF_CALL_0(bpf_ktime_get_boot_ns)
191 {
192 /* NMI safe access to clock boottime */
193 return ktime_get_boot_fast_ns();
194 }
195
196 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197 .func = bpf_ktime_get_boot_ns,
198 .gpl_only = false,
199 .ret_type = RET_INTEGER,
200 };
201
BPF_CALL_0(bpf_ktime_get_coarse_ns)202 BPF_CALL_0(bpf_ktime_get_coarse_ns)
203 {
204 return ktime_get_coarse_ns();
205 }
206
207 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208 .func = bpf_ktime_get_coarse_ns,
209 .gpl_only = false,
210 .ret_type = RET_INTEGER,
211 };
212
BPF_CALL_0(bpf_ktime_get_tai_ns)213 BPF_CALL_0(bpf_ktime_get_tai_ns)
214 {
215 /* NMI safe access to clock tai */
216 return ktime_get_tai_fast_ns();
217 }
218
219 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220 .func = bpf_ktime_get_tai_ns,
221 .gpl_only = false,
222 .ret_type = RET_INTEGER,
223 };
224
BPF_CALL_0(bpf_get_current_pid_tgid)225 BPF_CALL_0(bpf_get_current_pid_tgid)
226 {
227 struct task_struct *task = current;
228
229 if (unlikely(!task))
230 return -EINVAL;
231
232 return (u64) task->tgid << 32 | task->pid;
233 }
234
235 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236 .func = bpf_get_current_pid_tgid,
237 .gpl_only = false,
238 .ret_type = RET_INTEGER,
239 };
240
BPF_CALL_0(bpf_get_current_uid_gid)241 BPF_CALL_0(bpf_get_current_uid_gid)
242 {
243 struct task_struct *task = current;
244 kuid_t uid;
245 kgid_t gid;
246
247 if (unlikely(!task))
248 return -EINVAL;
249
250 current_uid_gid(&uid, &gid);
251 return (u64) from_kgid(&init_user_ns, gid) << 32 |
252 from_kuid(&init_user_ns, uid);
253 }
254
255 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256 .func = bpf_get_current_uid_gid,
257 .gpl_only = false,
258 .ret_type = RET_INTEGER,
259 };
260
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)261 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262 {
263 struct task_struct *task = current;
264
265 if (unlikely(!task))
266 goto err_clear;
267
268 /* Verifier guarantees that size > 0 */
269 strscpy_pad(buf, task->comm, size);
270 return 0;
271 err_clear:
272 memset(buf, 0, size);
273 return -EINVAL;
274 }
275
276 const struct bpf_func_proto bpf_get_current_comm_proto = {
277 .func = bpf_get_current_comm,
278 .gpl_only = false,
279 .ret_type = RET_INTEGER,
280 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
281 .arg2_type = ARG_CONST_SIZE,
282 };
283
284 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285
__bpf_spin_lock(struct bpf_spin_lock * lock)286 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287 {
288 arch_spinlock_t *l = (void *)lock;
289 union {
290 __u32 val;
291 arch_spinlock_t lock;
292 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293
294 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297 preempt_disable();
298 arch_spin_lock(l);
299 }
300
__bpf_spin_unlock(struct bpf_spin_lock * lock)301 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302 {
303 arch_spinlock_t *l = (void *)lock;
304
305 arch_spin_unlock(l);
306 preempt_enable();
307 }
308
309 #else
310
__bpf_spin_lock(struct bpf_spin_lock * lock)311 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312 {
313 atomic_t *l = (void *)lock;
314
315 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316 do {
317 atomic_cond_read_relaxed(l, !VAL);
318 } while (atomic_xchg(l, 1));
319 }
320
__bpf_spin_unlock(struct bpf_spin_lock * lock)321 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322 {
323 atomic_t *l = (void *)lock;
324
325 atomic_set_release(l, 0);
326 }
327
328 #endif
329
330 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)332 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333 {
334 unsigned long flags;
335
336 local_irq_save(flags);
337 __bpf_spin_lock(lock);
338 __this_cpu_write(irqsave_flags, flags);
339 }
340
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)341 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342 {
343 __bpf_spin_lock_irqsave(lock);
344 return 0;
345 }
346
347 const struct bpf_func_proto bpf_spin_lock_proto = {
348 .func = bpf_spin_lock,
349 .gpl_only = false,
350 .ret_type = RET_VOID,
351 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
352 .arg1_btf_id = BPF_PTR_POISON,
353 };
354
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)355 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356 {
357 unsigned long flags;
358
359 flags = __this_cpu_read(irqsave_flags);
360 __bpf_spin_unlock(lock);
361 local_irq_restore(flags);
362 }
363
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)364 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365 {
366 __bpf_spin_unlock_irqrestore(lock);
367 return 0;
368 }
369
370 const struct bpf_func_proto bpf_spin_unlock_proto = {
371 .func = bpf_spin_unlock,
372 .gpl_only = false,
373 .ret_type = RET_VOID,
374 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
375 .arg1_btf_id = BPF_PTR_POISON,
376 };
377
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)378 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379 bool lock_src)
380 {
381 struct bpf_spin_lock *lock;
382
383 if (lock_src)
384 lock = src + map->record->spin_lock_off;
385 else
386 lock = dst + map->record->spin_lock_off;
387 preempt_disable();
388 __bpf_spin_lock_irqsave(lock);
389 copy_map_value(map, dst, src);
390 __bpf_spin_unlock_irqrestore(lock);
391 preempt_enable();
392 }
393
BPF_CALL_0(bpf_jiffies64)394 BPF_CALL_0(bpf_jiffies64)
395 {
396 return get_jiffies_64();
397 }
398
399 const struct bpf_func_proto bpf_jiffies64_proto = {
400 .func = bpf_jiffies64,
401 .gpl_only = false,
402 .ret_type = RET_INTEGER,
403 };
404
405 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)406 BPF_CALL_0(bpf_get_current_cgroup_id)
407 {
408 struct cgroup *cgrp;
409 u64 cgrp_id;
410
411 rcu_read_lock();
412 cgrp = task_dfl_cgroup(current);
413 cgrp_id = cgroup_id(cgrp);
414 rcu_read_unlock();
415
416 return cgrp_id;
417 }
418
419 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420 .func = bpf_get_current_cgroup_id,
421 .gpl_only = false,
422 .ret_type = RET_INTEGER,
423 };
424
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)425 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426 {
427 struct cgroup *cgrp;
428 struct cgroup *ancestor;
429 u64 cgrp_id;
430
431 rcu_read_lock();
432 cgrp = task_dfl_cgroup(current);
433 ancestor = cgroup_ancestor(cgrp, ancestor_level);
434 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435 rcu_read_unlock();
436
437 return cgrp_id;
438 }
439
440 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441 .func = bpf_get_current_ancestor_cgroup_id,
442 .gpl_only = false,
443 .ret_type = RET_INTEGER,
444 .arg1_type = ARG_ANYTHING,
445 };
446 #endif /* CONFIG_CGROUPS */
447
448 #define BPF_STRTOX_BASE_MASK 0x1F
449
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)450 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451 unsigned long long *res, bool *is_negative)
452 {
453 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454 const char *cur_buf = buf;
455 size_t cur_len = buf_len;
456 unsigned int consumed;
457 size_t val_len;
458 char str[64];
459
460 if (!buf || !buf_len || !res || !is_negative)
461 return -EINVAL;
462
463 if (base != 0 && base != 8 && base != 10 && base != 16)
464 return -EINVAL;
465
466 if (flags & ~BPF_STRTOX_BASE_MASK)
467 return -EINVAL;
468
469 while (cur_buf < buf + buf_len && isspace(*cur_buf))
470 ++cur_buf;
471
472 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473 if (*is_negative)
474 ++cur_buf;
475
476 consumed = cur_buf - buf;
477 cur_len -= consumed;
478 if (!cur_len)
479 return -EINVAL;
480
481 cur_len = min(cur_len, sizeof(str) - 1);
482 memcpy(str, cur_buf, cur_len);
483 str[cur_len] = '\0';
484 cur_buf = str;
485
486 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487 val_len = _parse_integer(cur_buf, base, res);
488
489 if (val_len & KSTRTOX_OVERFLOW)
490 return -ERANGE;
491
492 if (val_len == 0)
493 return -EINVAL;
494
495 cur_buf += val_len;
496 consumed += cur_buf - str;
497
498 return consumed;
499 }
500
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)501 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502 long long *res)
503 {
504 unsigned long long _res;
505 bool is_negative;
506 int err;
507
508 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509 if (err < 0)
510 return err;
511 if (is_negative) {
512 if ((long long)-_res > 0)
513 return -ERANGE;
514 *res = -_res;
515 } else {
516 if ((long long)_res < 0)
517 return -ERANGE;
518 *res = _res;
519 }
520 return err;
521 }
522
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)523 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524 s64 *, res)
525 {
526 long long _res;
527 int err;
528
529 *res = 0;
530 err = __bpf_strtoll(buf, buf_len, flags, &_res);
531 if (err < 0)
532 return err;
533 *res = _res;
534 return err;
535 }
536
537 const struct bpf_func_proto bpf_strtol_proto = {
538 .func = bpf_strtol,
539 .gpl_only = false,
540 .ret_type = RET_INTEGER,
541 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
542 .arg2_type = ARG_CONST_SIZE,
543 .arg3_type = ARG_ANYTHING,
544 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545 .arg4_size = sizeof(s64),
546 };
547
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)548 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549 u64 *, res)
550 {
551 unsigned long long _res;
552 bool is_negative;
553 int err;
554
555 *res = 0;
556 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557 if (err < 0)
558 return err;
559 if (is_negative)
560 return -EINVAL;
561 *res = _res;
562 return err;
563 }
564
565 const struct bpf_func_proto bpf_strtoul_proto = {
566 .func = bpf_strtoul,
567 .gpl_only = false,
568 .ret_type = RET_INTEGER,
569 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
570 .arg2_type = ARG_CONST_SIZE,
571 .arg3_type = ARG_ANYTHING,
572 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573 .arg4_size = sizeof(u64),
574 };
575
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)576 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577 {
578 return strncmp(s1, s2, s1_sz);
579 }
580
581 static const struct bpf_func_proto bpf_strncmp_proto = {
582 .func = bpf_strncmp,
583 .gpl_only = false,
584 .ret_type = RET_INTEGER,
585 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
586 .arg2_type = ARG_CONST_SIZE,
587 .arg3_type = ARG_PTR_TO_CONST_STR,
588 };
589
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)590 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591 struct bpf_pidns_info *, nsdata, u32, size)
592 {
593 struct task_struct *task = current;
594 struct pid_namespace *pidns;
595 int err = -EINVAL;
596
597 if (unlikely(size != sizeof(struct bpf_pidns_info)))
598 goto clear;
599
600 if (unlikely((u64)(dev_t)dev != dev))
601 goto clear;
602
603 if (unlikely(!task))
604 goto clear;
605
606 pidns = task_active_pid_ns(task);
607 if (unlikely(!pidns)) {
608 err = -ENOENT;
609 goto clear;
610 }
611
612 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613 goto clear;
614
615 nsdata->pid = task_pid_nr_ns(task, pidns);
616 nsdata->tgid = task_tgid_nr_ns(task, pidns);
617 return 0;
618 clear:
619 memset((void *)nsdata, 0, (size_t) size);
620 return err;
621 }
622
623 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624 .func = bpf_get_ns_current_pid_tgid,
625 .gpl_only = false,
626 .ret_type = RET_INTEGER,
627 .arg1_type = ARG_ANYTHING,
628 .arg2_type = ARG_ANYTHING,
629 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
630 .arg4_type = ARG_CONST_SIZE,
631 };
632
633 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634 .func = bpf_get_raw_cpu_id,
635 .gpl_only = false,
636 .ret_type = RET_INTEGER,
637 };
638
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)639 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640 u64, flags, void *, data, u64, size)
641 {
642 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643 return -EINVAL;
644
645 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646 }
647
648 const struct bpf_func_proto bpf_event_output_data_proto = {
649 .func = bpf_event_output_data,
650 .gpl_only = true,
651 .ret_type = RET_INTEGER,
652 .arg1_type = ARG_PTR_TO_CTX,
653 .arg2_type = ARG_CONST_MAP_PTR,
654 .arg3_type = ARG_ANYTHING,
655 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
656 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
657 };
658
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)659 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660 const void __user *, user_ptr)
661 {
662 int ret = copy_from_user(dst, user_ptr, size);
663
664 if (unlikely(ret)) {
665 memset(dst, 0, size);
666 ret = -EFAULT;
667 }
668
669 return ret;
670 }
671
672 const struct bpf_func_proto bpf_copy_from_user_proto = {
673 .func = bpf_copy_from_user,
674 .gpl_only = false,
675 .might_sleep = true,
676 .ret_type = RET_INTEGER,
677 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
678 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
679 .arg3_type = ARG_ANYTHING,
680 };
681
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)682 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684 {
685 int ret;
686
687 /* flags is not used yet */
688 if (unlikely(flags))
689 return -EINVAL;
690
691 if (unlikely(!size))
692 return 0;
693
694 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695 if (ret == size)
696 return 0;
697
698 memset(dst, 0, size);
699 /* Return -EFAULT for partial read */
700 return ret < 0 ? ret : -EFAULT;
701 }
702
703 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704 .func = bpf_copy_from_user_task,
705 .gpl_only = true,
706 .might_sleep = true,
707 .ret_type = RET_INTEGER,
708 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
709 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
710 .arg3_type = ARG_ANYTHING,
711 .arg4_type = ARG_PTR_TO_BTF_ID,
712 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713 .arg5_type = ARG_ANYTHING
714 };
715
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)716 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717 {
718 if (cpu >= nr_cpu_ids)
719 return (unsigned long)NULL;
720
721 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722 }
723
724 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725 .func = bpf_per_cpu_ptr,
726 .gpl_only = false,
727 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
729 .arg2_type = ARG_ANYTHING,
730 };
731
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)732 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733 {
734 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735 }
736
737 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738 .func = bpf_this_cpu_ptr,
739 .gpl_only = false,
740 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
742 };
743
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)744 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745 size_t bufsz)
746 {
747 void __user *user_ptr = (__force void __user *)unsafe_ptr;
748
749 buf[0] = 0;
750
751 switch (fmt_ptype) {
752 case 's':
753 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754 if ((unsigned long)unsafe_ptr < TASK_SIZE)
755 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756 fallthrough;
757 #endif
758 case 'k':
759 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760 case 'u':
761 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762 }
763
764 return -EINVAL;
765 }
766
767 /* Support executing three nested bprintf helper calls on a given CPU */
768 #define MAX_BPRINTF_NEST_LEVEL 3
769
770 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772
bpf_try_get_buffers(struct bpf_bprintf_buffers ** bufs)773 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774 {
775 int nest_level;
776
777 preempt_disable();
778 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780 this_cpu_dec(bpf_bprintf_nest_level);
781 preempt_enable();
782 return -EBUSY;
783 }
784 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785
786 return 0;
787 }
788
bpf_put_buffers(void)789 void bpf_put_buffers(void)
790 {
791 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792 return;
793 this_cpu_dec(bpf_bprintf_nest_level);
794 preempt_enable();
795 }
796
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798 {
799 if (!data->bin_args && !data->buf)
800 return;
801 bpf_put_buffers();
802 }
803
804 /*
805 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806 *
807 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
808 *
809 * This can be used in two ways:
810 * - Format string verification only: when data->get_bin_args is false
811 * - Arguments preparation: in addition to the above verification, it writes in
812 * data->bin_args a binary representation of arguments usable by bstr_printf
813 * where pointers from BPF have been sanitized.
814 *
815 * In argument preparation mode, if 0 is returned, safe temporary buffers are
816 * allocated and bpf_bprintf_cleanup should be called to free them after use.
817 */
bpf_bprintf_prepare(const char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)818 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819 u32 num_args, struct bpf_bprintf_data *data)
820 {
821 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823 struct bpf_bprintf_buffers *buffers = NULL;
824 size_t sizeof_cur_arg, sizeof_cur_ip;
825 int err, i, num_spec = 0;
826 u64 cur_arg;
827 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828
829 fmt_end = strnchr(fmt, fmt_size, 0);
830 if (!fmt_end)
831 return -EINVAL;
832 fmt_size = fmt_end - fmt;
833
834 if (get_buffers && bpf_try_get_buffers(&buffers))
835 return -EBUSY;
836
837 if (data->get_bin_args) {
838 if (num_args)
839 tmp_buf = buffers->bin_args;
840 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841 data->bin_args = (u32 *)tmp_buf;
842 }
843
844 if (data->get_buf)
845 data->buf = buffers->buf;
846
847 for (i = 0; i < fmt_size; i++) {
848 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849 err = -EINVAL;
850 goto out;
851 }
852
853 if (fmt[i] != '%')
854 continue;
855
856 if (fmt[i + 1] == '%') {
857 i++;
858 continue;
859 }
860
861 if (num_spec >= num_args) {
862 err = -EINVAL;
863 goto out;
864 }
865
866 /* The string is zero-terminated so if fmt[i] != 0, we can
867 * always access fmt[i + 1], in the worst case it will be a 0
868 */
869 i++;
870
871 /* skip optional "[0 +-][num]" width formatting field */
872 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
873 fmt[i] == ' ')
874 i++;
875 if (fmt[i] >= '1' && fmt[i] <= '9') {
876 i++;
877 while (fmt[i] >= '0' && fmt[i] <= '9')
878 i++;
879 }
880
881 if (fmt[i] == 'p') {
882 sizeof_cur_arg = sizeof(long);
883
884 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885 ispunct(fmt[i + 1])) {
886 if (tmp_buf)
887 cur_arg = raw_args[num_spec];
888 goto nocopy_fmt;
889 }
890
891 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892 fmt[i + 2] == 's') {
893 fmt_ptype = fmt[i + 1];
894 i += 2;
895 goto fmt_str;
896 }
897
898 if (fmt[i + 1] == 'K' ||
899 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900 fmt[i + 1] == 'S') {
901 if (tmp_buf)
902 cur_arg = raw_args[num_spec];
903 i++;
904 goto nocopy_fmt;
905 }
906
907 if (fmt[i + 1] == 'B') {
908 if (tmp_buf) {
909 err = snprintf(tmp_buf,
910 (tmp_buf_end - tmp_buf),
911 "%pB",
912 (void *)(long)raw_args[num_spec]);
913 tmp_buf += (err + 1);
914 }
915
916 i++;
917 num_spec++;
918 continue;
919 }
920
921 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924 err = -EINVAL;
925 goto out;
926 }
927
928 i += 2;
929 if (!tmp_buf)
930 goto nocopy_fmt;
931
932 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934 err = -ENOSPC;
935 goto out;
936 }
937
938 unsafe_ptr = (char *)(long)raw_args[num_spec];
939 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940 sizeof_cur_ip);
941 if (err < 0)
942 memset(cur_ip, 0, sizeof_cur_ip);
943
944 /* hack: bstr_printf expects IP addresses to be
945 * pre-formatted as strings, ironically, the easiest way
946 * to do that is to call snprintf.
947 */
948 ip_spec[2] = fmt[i - 1];
949 ip_spec[3] = fmt[i];
950 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951 ip_spec, &cur_ip);
952
953 tmp_buf += err + 1;
954 num_spec++;
955
956 continue;
957 } else if (fmt[i] == 's') {
958 fmt_ptype = fmt[i];
959 fmt_str:
960 if (fmt[i + 1] != 0 &&
961 !isspace(fmt[i + 1]) &&
962 !ispunct(fmt[i + 1])) {
963 err = -EINVAL;
964 goto out;
965 }
966
967 if (!tmp_buf)
968 goto nocopy_fmt;
969
970 if (tmp_buf_end == tmp_buf) {
971 err = -ENOSPC;
972 goto out;
973 }
974
975 unsafe_ptr = (char *)(long)raw_args[num_spec];
976 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977 fmt_ptype,
978 tmp_buf_end - tmp_buf);
979 if (err < 0) {
980 tmp_buf[0] = '\0';
981 err = 1;
982 }
983
984 tmp_buf += err;
985 num_spec++;
986
987 continue;
988 } else if (fmt[i] == 'c') {
989 if (!tmp_buf)
990 goto nocopy_fmt;
991
992 if (tmp_buf_end == tmp_buf) {
993 err = -ENOSPC;
994 goto out;
995 }
996
997 *tmp_buf = raw_args[num_spec];
998 tmp_buf++;
999 num_spec++;
1000
1001 continue;
1002 }
1003
1004 sizeof_cur_arg = sizeof(int);
1005
1006 if (fmt[i] == 'l') {
1007 sizeof_cur_arg = sizeof(long);
1008 i++;
1009 }
1010 if (fmt[i] == 'l') {
1011 sizeof_cur_arg = sizeof(long long);
1012 i++;
1013 }
1014
1015 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016 fmt[i] != 'x' && fmt[i] != 'X') {
1017 err = -EINVAL;
1018 goto out;
1019 }
1020
1021 if (tmp_buf)
1022 cur_arg = raw_args[num_spec];
1023 nocopy_fmt:
1024 if (tmp_buf) {
1025 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027 err = -ENOSPC;
1028 goto out;
1029 }
1030
1031 if (sizeof_cur_arg == 8) {
1032 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034 } else {
1035 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1036 }
1037 tmp_buf += sizeof_cur_arg;
1038 }
1039 num_spec++;
1040 }
1041
1042 err = 0;
1043 out:
1044 if (err)
1045 bpf_bprintf_cleanup(data);
1046 return err;
1047 }
1048
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1049 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050 const void *, args, u32, data_len)
1051 {
1052 struct bpf_bprintf_data data = {
1053 .get_bin_args = true,
1054 };
1055 int err, num_args;
1056
1057 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058 (data_len && !args))
1059 return -EINVAL;
1060 num_args = data_len / 8;
1061
1062 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063 * can safely give an unbounded size.
1064 */
1065 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066 if (err < 0)
1067 return err;
1068
1069 err = bstr_printf(str, str_size, fmt, data.bin_args);
1070
1071 bpf_bprintf_cleanup(&data);
1072
1073 return err + 1;
1074 }
1075
1076 const struct bpf_func_proto bpf_snprintf_proto = {
1077 .func = bpf_snprintf,
1078 .gpl_only = true,
1079 .ret_type = RET_INTEGER,
1080 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1081 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1082 .arg3_type = ARG_PTR_TO_CONST_STR,
1083 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1085 };
1086
1087 struct bpf_async_cb {
1088 struct bpf_map *map;
1089 struct bpf_prog *prog;
1090 void __rcu *callback_fn;
1091 void *value;
1092 union {
1093 struct rcu_head rcu;
1094 struct work_struct delete_work;
1095 };
1096 u64 flags;
1097 };
1098
1099 /* BPF map elements can contain 'struct bpf_timer'.
1100 * Such map owns all of its BPF timers.
1101 * 'struct bpf_timer' is allocated as part of map element allocation
1102 * and it's zero initialized.
1103 * That space is used to keep 'struct bpf_async_kern'.
1104 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1105 * remembers 'struct bpf_map *' pointer it's part of.
1106 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1107 * bpf_timer_start() arms the timer.
1108 * If user space reference to a map goes to zero at this point
1109 * ops->map_release_uref callback is responsible for cancelling the timers,
1110 * freeing their memory, and decrementing prog's refcnts.
1111 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1112 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1113 * freeing the timers when inner map is replaced or deleted by user space.
1114 */
1115 struct bpf_hrtimer {
1116 struct bpf_async_cb cb;
1117 struct hrtimer timer;
1118 atomic_t cancelling;
1119 };
1120
1121 struct bpf_work {
1122 struct bpf_async_cb cb;
1123 struct work_struct work;
1124 struct work_struct delete_work;
1125 };
1126
1127 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1128 struct bpf_async_kern {
1129 union {
1130 struct bpf_async_cb *cb;
1131 struct bpf_hrtimer *timer;
1132 struct bpf_work *work;
1133 };
1134 /* bpf_spin_lock is used here instead of spinlock_t to make
1135 * sure that it always fits into space reserved by struct bpf_timer
1136 * regardless of LOCKDEP and spinlock debug flags.
1137 */
1138 struct bpf_spin_lock lock;
1139 } __attribute__((aligned(8)));
1140
1141 enum bpf_async_type {
1142 BPF_ASYNC_TYPE_TIMER = 0,
1143 BPF_ASYNC_TYPE_WQ,
1144 };
1145
1146 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1147
bpf_timer_cb(struct hrtimer * hrtimer)1148 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1149 {
1150 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1151 struct bpf_map *map = t->cb.map;
1152 void *value = t->cb.value;
1153 bpf_callback_t callback_fn;
1154 void *key;
1155 u32 idx;
1156
1157 BTF_TYPE_EMIT(struct bpf_timer);
1158 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1159 if (!callback_fn)
1160 goto out;
1161
1162 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1163 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1164 * Remember the timer this callback is servicing to prevent
1165 * deadlock if callback_fn() calls bpf_timer_cancel() or
1166 * bpf_map_delete_elem() on the same timer.
1167 */
1168 this_cpu_write(hrtimer_running, t);
1169 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1170 struct bpf_array *array = container_of(map, struct bpf_array, map);
1171
1172 /* compute the key */
1173 idx = ((char *)value - array->value) / array->elem_size;
1174 key = &idx;
1175 } else { /* hash or lru */
1176 key = value - round_up(map->key_size, 8);
1177 }
1178
1179 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1180 /* The verifier checked that return value is zero. */
1181
1182 this_cpu_write(hrtimer_running, NULL);
1183 out:
1184 return HRTIMER_NORESTART;
1185 }
1186
bpf_wq_work(struct work_struct * work)1187 static void bpf_wq_work(struct work_struct *work)
1188 {
1189 struct bpf_work *w = container_of(work, struct bpf_work, work);
1190 struct bpf_async_cb *cb = &w->cb;
1191 struct bpf_map *map = cb->map;
1192 bpf_callback_t callback_fn;
1193 void *value = cb->value;
1194 void *key;
1195 u32 idx;
1196
1197 BTF_TYPE_EMIT(struct bpf_wq);
1198
1199 callback_fn = READ_ONCE(cb->callback_fn);
1200 if (!callback_fn)
1201 return;
1202
1203 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1204 struct bpf_array *array = container_of(map, struct bpf_array, map);
1205
1206 /* compute the key */
1207 idx = ((char *)value - array->value) / array->elem_size;
1208 key = &idx;
1209 } else { /* hash or lru */
1210 key = value - round_up(map->key_size, 8);
1211 }
1212
1213 rcu_read_lock_trace();
1214 migrate_disable();
1215
1216 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1217
1218 migrate_enable();
1219 rcu_read_unlock_trace();
1220 }
1221
bpf_wq_delete_work(struct work_struct * work)1222 static void bpf_wq_delete_work(struct work_struct *work)
1223 {
1224 struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1225
1226 cancel_work_sync(&w->work);
1227
1228 kfree_rcu(w, cb.rcu);
1229 }
1230
bpf_timer_delete_work(struct work_struct * work)1231 static void bpf_timer_delete_work(struct work_struct *work)
1232 {
1233 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1234
1235 /* Cancel the timer and wait for callback to complete if it was running.
1236 * If hrtimer_cancel() can be safely called it's safe to call
1237 * kfree_rcu(t) right after for both preallocated and non-preallocated
1238 * maps. The async->cb = NULL was already done and no code path can see
1239 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1240 * bpf_timer_cancel_and_free will have been cancelled.
1241 */
1242 hrtimer_cancel(&t->timer);
1243 kfree_rcu(t, cb.rcu);
1244 }
1245
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1246 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1247 enum bpf_async_type type)
1248 {
1249 struct bpf_async_cb *cb;
1250 struct bpf_hrtimer *t;
1251 struct bpf_work *w;
1252 clockid_t clockid;
1253 size_t size;
1254 int ret = 0;
1255
1256 if (in_nmi())
1257 return -EOPNOTSUPP;
1258
1259 switch (type) {
1260 case BPF_ASYNC_TYPE_TIMER:
1261 size = sizeof(struct bpf_hrtimer);
1262 break;
1263 case BPF_ASYNC_TYPE_WQ:
1264 size = sizeof(struct bpf_work);
1265 break;
1266 default:
1267 return -EINVAL;
1268 }
1269
1270 __bpf_spin_lock_irqsave(&async->lock);
1271 t = async->timer;
1272 if (t) {
1273 ret = -EBUSY;
1274 goto out;
1275 }
1276
1277 /* allocate hrtimer via map_kmalloc to use memcg accounting */
1278 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
1279 if (!cb) {
1280 ret = -ENOMEM;
1281 goto out;
1282 }
1283
1284 switch (type) {
1285 case BPF_ASYNC_TYPE_TIMER:
1286 clockid = flags & (MAX_CLOCKS - 1);
1287 t = (struct bpf_hrtimer *)cb;
1288
1289 atomic_set(&t->cancelling, 0);
1290 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1291 hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1292 cb->value = (void *)async - map->record->timer_off;
1293 break;
1294 case BPF_ASYNC_TYPE_WQ:
1295 w = (struct bpf_work *)cb;
1296
1297 INIT_WORK(&w->work, bpf_wq_work);
1298 INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1299 cb->value = (void *)async - map->record->wq_off;
1300 break;
1301 }
1302 cb->map = map;
1303 cb->prog = NULL;
1304 cb->flags = flags;
1305 rcu_assign_pointer(cb->callback_fn, NULL);
1306
1307 WRITE_ONCE(async->cb, cb);
1308 /* Guarantee the order between async->cb and map->usercnt. So
1309 * when there are concurrent uref release and bpf timer init, either
1310 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1311 * timer or atomic64_read() below returns a zero usercnt.
1312 */
1313 smp_mb();
1314 if (!atomic64_read(&map->usercnt)) {
1315 /* maps with timers must be either held by user space
1316 * or pinned in bpffs.
1317 */
1318 WRITE_ONCE(async->cb, NULL);
1319 kfree(cb);
1320 ret = -EPERM;
1321 }
1322 out:
1323 __bpf_spin_unlock_irqrestore(&async->lock);
1324 return ret;
1325 }
1326
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1327 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1328 u64, flags)
1329 {
1330 clock_t clockid = flags & (MAX_CLOCKS - 1);
1331
1332 BUILD_BUG_ON(MAX_CLOCKS != 16);
1333 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1334 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1335
1336 if (flags >= MAX_CLOCKS ||
1337 /* similar to timerfd except _ALARM variants are not supported */
1338 (clockid != CLOCK_MONOTONIC &&
1339 clockid != CLOCK_REALTIME &&
1340 clockid != CLOCK_BOOTTIME))
1341 return -EINVAL;
1342
1343 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1344 }
1345
1346 static const struct bpf_func_proto bpf_timer_init_proto = {
1347 .func = bpf_timer_init,
1348 .gpl_only = true,
1349 .ret_type = RET_INTEGER,
1350 .arg1_type = ARG_PTR_TO_TIMER,
1351 .arg2_type = ARG_CONST_MAP_PTR,
1352 .arg3_type = ARG_ANYTHING,
1353 };
1354
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1355 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1356 struct bpf_prog_aux *aux, unsigned int flags,
1357 enum bpf_async_type type)
1358 {
1359 struct bpf_prog *prev, *prog = aux->prog;
1360 struct bpf_async_cb *cb;
1361 int ret = 0;
1362
1363 if (in_nmi())
1364 return -EOPNOTSUPP;
1365 __bpf_spin_lock_irqsave(&async->lock);
1366 cb = async->cb;
1367 if (!cb) {
1368 ret = -EINVAL;
1369 goto out;
1370 }
1371 if (!atomic64_read(&cb->map->usercnt)) {
1372 /* maps with timers must be either held by user space
1373 * or pinned in bpffs. Otherwise timer might still be
1374 * running even when bpf prog is detached and user space
1375 * is gone, since map_release_uref won't ever be called.
1376 */
1377 ret = -EPERM;
1378 goto out;
1379 }
1380 prev = cb->prog;
1381 if (prev != prog) {
1382 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1383 * can pick different callback_fn-s within the same prog.
1384 */
1385 prog = bpf_prog_inc_not_zero(prog);
1386 if (IS_ERR(prog)) {
1387 ret = PTR_ERR(prog);
1388 goto out;
1389 }
1390 if (prev)
1391 /* Drop prev prog refcnt when swapping with new prog */
1392 bpf_prog_put(prev);
1393 cb->prog = prog;
1394 }
1395 rcu_assign_pointer(cb->callback_fn, callback_fn);
1396 out:
1397 __bpf_spin_unlock_irqrestore(&async->lock);
1398 return ret;
1399 }
1400
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1401 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1402 struct bpf_prog_aux *, aux)
1403 {
1404 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1405 }
1406
1407 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1408 .func = bpf_timer_set_callback,
1409 .gpl_only = true,
1410 .ret_type = RET_INTEGER,
1411 .arg1_type = ARG_PTR_TO_TIMER,
1412 .arg2_type = ARG_PTR_TO_FUNC,
1413 };
1414
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1415 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1416 {
1417 struct bpf_hrtimer *t;
1418 int ret = 0;
1419 enum hrtimer_mode mode;
1420
1421 if (in_nmi())
1422 return -EOPNOTSUPP;
1423 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1424 return -EINVAL;
1425 __bpf_spin_lock_irqsave(&timer->lock);
1426 t = timer->timer;
1427 if (!t || !t->cb.prog) {
1428 ret = -EINVAL;
1429 goto out;
1430 }
1431
1432 if (flags & BPF_F_TIMER_ABS)
1433 mode = HRTIMER_MODE_ABS_SOFT;
1434 else
1435 mode = HRTIMER_MODE_REL_SOFT;
1436
1437 if (flags & BPF_F_TIMER_CPU_PIN)
1438 mode |= HRTIMER_MODE_PINNED;
1439
1440 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1441 out:
1442 __bpf_spin_unlock_irqrestore(&timer->lock);
1443 return ret;
1444 }
1445
1446 static const struct bpf_func_proto bpf_timer_start_proto = {
1447 .func = bpf_timer_start,
1448 .gpl_only = true,
1449 .ret_type = RET_INTEGER,
1450 .arg1_type = ARG_PTR_TO_TIMER,
1451 .arg2_type = ARG_ANYTHING,
1452 .arg3_type = ARG_ANYTHING,
1453 };
1454
drop_prog_refcnt(struct bpf_async_cb * async)1455 static void drop_prog_refcnt(struct bpf_async_cb *async)
1456 {
1457 struct bpf_prog *prog = async->prog;
1458
1459 if (prog) {
1460 bpf_prog_put(prog);
1461 async->prog = NULL;
1462 rcu_assign_pointer(async->callback_fn, NULL);
1463 }
1464 }
1465
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1466 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1467 {
1468 struct bpf_hrtimer *t, *cur_t;
1469 bool inc = false;
1470 int ret = 0;
1471
1472 if (in_nmi())
1473 return -EOPNOTSUPP;
1474 rcu_read_lock();
1475 __bpf_spin_lock_irqsave(&timer->lock);
1476 t = timer->timer;
1477 if (!t) {
1478 ret = -EINVAL;
1479 goto out;
1480 }
1481
1482 cur_t = this_cpu_read(hrtimer_running);
1483 if (cur_t == t) {
1484 /* If bpf callback_fn is trying to bpf_timer_cancel()
1485 * its own timer the hrtimer_cancel() will deadlock
1486 * since it waits for callback_fn to finish.
1487 */
1488 ret = -EDEADLK;
1489 goto out;
1490 }
1491
1492 /* Only account in-flight cancellations when invoked from a timer
1493 * callback, since we want to avoid waiting only if other _callbacks_
1494 * are waiting on us, to avoid introducing lockups. Non-callback paths
1495 * are ok, since nobody would synchronously wait for their completion.
1496 */
1497 if (!cur_t)
1498 goto drop;
1499 atomic_inc(&t->cancelling);
1500 /* Need full barrier after relaxed atomic_inc */
1501 smp_mb__after_atomic();
1502 inc = true;
1503 if (atomic_read(&cur_t->cancelling)) {
1504 /* We're cancelling timer t, while some other timer callback is
1505 * attempting to cancel us. In such a case, it might be possible
1506 * that timer t belongs to the other callback, or some other
1507 * callback waiting upon it (creating transitive dependencies
1508 * upon us), and we will enter a deadlock if we continue
1509 * cancelling and waiting for it synchronously, since it might
1510 * do the same. Bail!
1511 */
1512 ret = -EDEADLK;
1513 goto out;
1514 }
1515 drop:
1516 drop_prog_refcnt(&t->cb);
1517 out:
1518 __bpf_spin_unlock_irqrestore(&timer->lock);
1519 /* Cancel the timer and wait for associated callback to finish
1520 * if it was running.
1521 */
1522 ret = ret ?: hrtimer_cancel(&t->timer);
1523 if (inc)
1524 atomic_dec(&t->cancelling);
1525 rcu_read_unlock();
1526 return ret;
1527 }
1528
1529 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1530 .func = bpf_timer_cancel,
1531 .gpl_only = true,
1532 .ret_type = RET_INTEGER,
1533 .arg1_type = ARG_PTR_TO_TIMER,
1534 };
1535
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1536 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1537 {
1538 struct bpf_async_cb *cb;
1539
1540 /* Performance optimization: read async->cb without lock first. */
1541 if (!READ_ONCE(async->cb))
1542 return NULL;
1543
1544 __bpf_spin_lock_irqsave(&async->lock);
1545 /* re-read it under lock */
1546 cb = async->cb;
1547 if (!cb)
1548 goto out;
1549 drop_prog_refcnt(cb);
1550 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1551 * this timer, since it won't be initialized.
1552 */
1553 WRITE_ONCE(async->cb, NULL);
1554 out:
1555 __bpf_spin_unlock_irqrestore(&async->lock);
1556 return cb;
1557 }
1558
1559 /* This function is called by map_delete/update_elem for individual element and
1560 * by ops->map_release_uref when the user space reference to a map reaches zero.
1561 */
bpf_timer_cancel_and_free(void * val)1562 void bpf_timer_cancel_and_free(void *val)
1563 {
1564 struct bpf_hrtimer *t;
1565
1566 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1567
1568 if (!t)
1569 return;
1570 /* We check that bpf_map_delete/update_elem() was called from timer
1571 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1572 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1573 * just return -1). Though callback_fn is still running on this cpu it's
1574 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1575 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1576 * since async->cb = NULL was already done. The timer will be
1577 * effectively cancelled because bpf_timer_cb() will return
1578 * HRTIMER_NORESTART.
1579 *
1580 * However, it is possible the timer callback_fn calling us armed the
1581 * timer _before_ calling us, such that failing to cancel it here will
1582 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1583 * Therefore, we _need_ to cancel any outstanding timers before we do
1584 * kfree_rcu, even though no more timers can be armed.
1585 *
1586 * Moreover, we need to schedule work even if timer does not belong to
1587 * the calling callback_fn, as on two different CPUs, we can end up in a
1588 * situation where both sides run in parallel, try to cancel one
1589 * another, and we end up waiting on both sides in hrtimer_cancel
1590 * without making forward progress, since timer1 depends on time2
1591 * callback to finish, and vice versa.
1592 *
1593 * CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1594 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1595 *
1596 * To avoid these issues, punt to workqueue context when we are in a
1597 * timer callback.
1598 */
1599 if (this_cpu_read(hrtimer_running)) {
1600 queue_work(system_unbound_wq, &t->cb.delete_work);
1601 return;
1602 }
1603
1604 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1605 /* If the timer is running on other CPU, also use a kworker to
1606 * wait for the completion of the timer instead of trying to
1607 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1608 * completion.
1609 */
1610 if (hrtimer_try_to_cancel(&t->timer) >= 0)
1611 kfree_rcu(t, cb.rcu);
1612 else
1613 queue_work(system_unbound_wq, &t->cb.delete_work);
1614 } else {
1615 bpf_timer_delete_work(&t->cb.delete_work);
1616 }
1617 }
1618
1619 /* This function is called by map_delete/update_elem for individual element and
1620 * by ops->map_release_uref when the user space reference to a map reaches zero.
1621 */
bpf_wq_cancel_and_free(void * val)1622 void bpf_wq_cancel_and_free(void *val)
1623 {
1624 struct bpf_work *work;
1625
1626 BTF_TYPE_EMIT(struct bpf_wq);
1627
1628 work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1629 if (!work)
1630 return;
1631 /* Trigger cancel of the sleepable work, but *do not* wait for
1632 * it to finish if it was running as we might not be in a
1633 * sleepable context.
1634 * kfree will be called once the work has finished.
1635 */
1636 schedule_work(&work->delete_work);
1637 }
1638
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1639 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1640 {
1641 unsigned long *kptr = dst;
1642
1643 /* This helper may be inlined by verifier. */
1644 return xchg(kptr, (unsigned long)ptr);
1645 }
1646
1647 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1648 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1649 * denote type that verifier will determine.
1650 */
1651 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1652 .func = bpf_kptr_xchg,
1653 .gpl_only = false,
1654 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1655 .ret_btf_id = BPF_PTR_POISON,
1656 .arg1_type = ARG_KPTR_XCHG_DEST,
1657 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1658 .arg2_btf_id = BPF_PTR_POISON,
1659 };
1660
1661 /* Since the upper 8 bits of dynptr->size is reserved, the
1662 * maximum supported size is 2^24 - 1.
1663 */
1664 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1665 #define DYNPTR_TYPE_SHIFT 28
1666 #define DYNPTR_SIZE_MASK 0xFFFFFF
1667 #define DYNPTR_RDONLY_BIT BIT(31)
1668
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1669 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1670 {
1671 return ptr->size & DYNPTR_RDONLY_BIT;
1672 }
1673
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1674 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1675 {
1676 ptr->size |= DYNPTR_RDONLY_BIT;
1677 }
1678
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1679 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1680 {
1681 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1682 }
1683
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1684 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1685 {
1686 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1687 }
1688
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1689 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1690 {
1691 return ptr->size & DYNPTR_SIZE_MASK;
1692 }
1693
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1694 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1695 {
1696 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1697
1698 ptr->size = new_size | metadata;
1699 }
1700
bpf_dynptr_check_size(u32 size)1701 int bpf_dynptr_check_size(u32 size)
1702 {
1703 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1704 }
1705
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1706 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1707 enum bpf_dynptr_type type, u32 offset, u32 size)
1708 {
1709 ptr->data = data;
1710 ptr->offset = offset;
1711 ptr->size = size;
1712 bpf_dynptr_set_type(ptr, type);
1713 }
1714
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1715 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1716 {
1717 memset(ptr, 0, sizeof(*ptr));
1718 }
1719
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1720 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1721 {
1722 int err;
1723
1724 BTF_TYPE_EMIT(struct bpf_dynptr);
1725
1726 err = bpf_dynptr_check_size(size);
1727 if (err)
1728 goto error;
1729
1730 /* flags is currently unsupported */
1731 if (flags) {
1732 err = -EINVAL;
1733 goto error;
1734 }
1735
1736 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1737
1738 return 0;
1739
1740 error:
1741 bpf_dynptr_set_null(ptr);
1742 return err;
1743 }
1744
1745 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1746 .func = bpf_dynptr_from_mem,
1747 .gpl_only = false,
1748 .ret_type = RET_INTEGER,
1749 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1750 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1751 .arg3_type = ARG_ANYTHING,
1752 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1753 };
1754
__bpf_dynptr_read(void * dst,u32 len,const struct bpf_dynptr_kern * src,u32 offset,u64 flags)1755 static int __bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr_kern *src,
1756 u32 offset, u64 flags)
1757 {
1758 enum bpf_dynptr_type type;
1759 int err;
1760
1761 if (!src->data || flags)
1762 return -EINVAL;
1763
1764 err = bpf_dynptr_check_off_len(src, offset, len);
1765 if (err)
1766 return err;
1767
1768 type = bpf_dynptr_get_type(src);
1769
1770 switch (type) {
1771 case BPF_DYNPTR_TYPE_LOCAL:
1772 case BPF_DYNPTR_TYPE_RINGBUF:
1773 /* Source and destination may possibly overlap, hence use memmove to
1774 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1775 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1776 */
1777 memmove(dst, src->data + src->offset + offset, len);
1778 return 0;
1779 case BPF_DYNPTR_TYPE_SKB:
1780 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1781 case BPF_DYNPTR_TYPE_XDP:
1782 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1783 default:
1784 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1785 return -EFAULT;
1786 }
1787 }
1788
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1789 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1790 u32, offset, u64, flags)
1791 {
1792 return __bpf_dynptr_read(dst, len, src, offset, flags);
1793 }
1794
1795 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1796 .func = bpf_dynptr_read,
1797 .gpl_only = false,
1798 .ret_type = RET_INTEGER,
1799 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1800 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1801 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1802 .arg4_type = ARG_ANYTHING,
1803 .arg5_type = ARG_ANYTHING,
1804 };
1805
__bpf_dynptr_write(const struct bpf_dynptr_kern * dst,u32 offset,void * src,u32 len,u64 flags)1806 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u32 offset, void *src,
1807 u32 len, u64 flags)
1808 {
1809 enum bpf_dynptr_type type;
1810 int err;
1811
1812 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1813 return -EINVAL;
1814
1815 err = bpf_dynptr_check_off_len(dst, offset, len);
1816 if (err)
1817 return err;
1818
1819 type = bpf_dynptr_get_type(dst);
1820
1821 switch (type) {
1822 case BPF_DYNPTR_TYPE_LOCAL:
1823 case BPF_DYNPTR_TYPE_RINGBUF:
1824 if (flags)
1825 return -EINVAL;
1826 /* Source and destination may possibly overlap, hence use memmove to
1827 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1828 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1829 */
1830 memmove(dst->data + dst->offset + offset, src, len);
1831 return 0;
1832 case BPF_DYNPTR_TYPE_SKB:
1833 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1834 flags);
1835 case BPF_DYNPTR_TYPE_XDP:
1836 if (flags)
1837 return -EINVAL;
1838 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1839 default:
1840 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1841 return -EFAULT;
1842 }
1843 }
1844
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1845 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1846 u32, len, u64, flags)
1847 {
1848 return __bpf_dynptr_write(dst, offset, src, len, flags);
1849 }
1850
1851 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1852 .func = bpf_dynptr_write,
1853 .gpl_only = false,
1854 .ret_type = RET_INTEGER,
1855 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1856 .arg2_type = ARG_ANYTHING,
1857 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1858 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1859 .arg5_type = ARG_ANYTHING,
1860 };
1861
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1862 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1863 {
1864 enum bpf_dynptr_type type;
1865 int err;
1866
1867 if (!ptr->data)
1868 return 0;
1869
1870 err = bpf_dynptr_check_off_len(ptr, offset, len);
1871 if (err)
1872 return 0;
1873
1874 if (__bpf_dynptr_is_rdonly(ptr))
1875 return 0;
1876
1877 type = bpf_dynptr_get_type(ptr);
1878
1879 switch (type) {
1880 case BPF_DYNPTR_TYPE_LOCAL:
1881 case BPF_DYNPTR_TYPE_RINGBUF:
1882 return (unsigned long)(ptr->data + ptr->offset + offset);
1883 case BPF_DYNPTR_TYPE_SKB:
1884 case BPF_DYNPTR_TYPE_XDP:
1885 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1886 return 0;
1887 default:
1888 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1889 return 0;
1890 }
1891 }
1892
1893 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1894 .func = bpf_dynptr_data,
1895 .gpl_only = false,
1896 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1897 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1898 .arg2_type = ARG_ANYTHING,
1899 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1900 };
1901
1902 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1903 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1904 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1905 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1906 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1907 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1908 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1909 const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1910 const struct bpf_func_proto bpf_send_signal_proto __weak;
1911 const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1912 const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1913 const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1914 const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1915
1916 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1917 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1918 {
1919 switch (func_id) {
1920 case BPF_FUNC_map_lookup_elem:
1921 return &bpf_map_lookup_elem_proto;
1922 case BPF_FUNC_map_update_elem:
1923 return &bpf_map_update_elem_proto;
1924 case BPF_FUNC_map_delete_elem:
1925 return &bpf_map_delete_elem_proto;
1926 case BPF_FUNC_map_push_elem:
1927 return &bpf_map_push_elem_proto;
1928 case BPF_FUNC_map_pop_elem:
1929 return &bpf_map_pop_elem_proto;
1930 case BPF_FUNC_map_peek_elem:
1931 return &bpf_map_peek_elem_proto;
1932 case BPF_FUNC_map_lookup_percpu_elem:
1933 return &bpf_map_lookup_percpu_elem_proto;
1934 case BPF_FUNC_get_prandom_u32:
1935 return &bpf_get_prandom_u32_proto;
1936 case BPF_FUNC_get_smp_processor_id:
1937 return &bpf_get_raw_smp_processor_id_proto;
1938 case BPF_FUNC_get_numa_node_id:
1939 return &bpf_get_numa_node_id_proto;
1940 case BPF_FUNC_tail_call:
1941 return &bpf_tail_call_proto;
1942 case BPF_FUNC_ktime_get_ns:
1943 return &bpf_ktime_get_ns_proto;
1944 case BPF_FUNC_ktime_get_boot_ns:
1945 return &bpf_ktime_get_boot_ns_proto;
1946 case BPF_FUNC_ktime_get_tai_ns:
1947 return &bpf_ktime_get_tai_ns_proto;
1948 case BPF_FUNC_ringbuf_output:
1949 return &bpf_ringbuf_output_proto;
1950 case BPF_FUNC_ringbuf_reserve:
1951 return &bpf_ringbuf_reserve_proto;
1952 case BPF_FUNC_ringbuf_submit:
1953 return &bpf_ringbuf_submit_proto;
1954 case BPF_FUNC_ringbuf_discard:
1955 return &bpf_ringbuf_discard_proto;
1956 case BPF_FUNC_ringbuf_query:
1957 return &bpf_ringbuf_query_proto;
1958 case BPF_FUNC_strncmp:
1959 return &bpf_strncmp_proto;
1960 case BPF_FUNC_strtol:
1961 return &bpf_strtol_proto;
1962 case BPF_FUNC_strtoul:
1963 return &bpf_strtoul_proto;
1964 case BPF_FUNC_get_current_pid_tgid:
1965 return &bpf_get_current_pid_tgid_proto;
1966 case BPF_FUNC_get_ns_current_pid_tgid:
1967 return &bpf_get_ns_current_pid_tgid_proto;
1968 case BPF_FUNC_get_current_uid_gid:
1969 return &bpf_get_current_uid_gid_proto;
1970 default:
1971 break;
1972 }
1973
1974 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1975 return NULL;
1976
1977 switch (func_id) {
1978 case BPF_FUNC_spin_lock:
1979 return &bpf_spin_lock_proto;
1980 case BPF_FUNC_spin_unlock:
1981 return &bpf_spin_unlock_proto;
1982 case BPF_FUNC_jiffies64:
1983 return &bpf_jiffies64_proto;
1984 case BPF_FUNC_per_cpu_ptr:
1985 return &bpf_per_cpu_ptr_proto;
1986 case BPF_FUNC_this_cpu_ptr:
1987 return &bpf_this_cpu_ptr_proto;
1988 case BPF_FUNC_timer_init:
1989 return &bpf_timer_init_proto;
1990 case BPF_FUNC_timer_set_callback:
1991 return &bpf_timer_set_callback_proto;
1992 case BPF_FUNC_timer_start:
1993 return &bpf_timer_start_proto;
1994 case BPF_FUNC_timer_cancel:
1995 return &bpf_timer_cancel_proto;
1996 case BPF_FUNC_kptr_xchg:
1997 return &bpf_kptr_xchg_proto;
1998 case BPF_FUNC_for_each_map_elem:
1999 return &bpf_for_each_map_elem_proto;
2000 case BPF_FUNC_loop:
2001 return &bpf_loop_proto;
2002 case BPF_FUNC_user_ringbuf_drain:
2003 return &bpf_user_ringbuf_drain_proto;
2004 case BPF_FUNC_ringbuf_reserve_dynptr:
2005 return &bpf_ringbuf_reserve_dynptr_proto;
2006 case BPF_FUNC_ringbuf_submit_dynptr:
2007 return &bpf_ringbuf_submit_dynptr_proto;
2008 case BPF_FUNC_ringbuf_discard_dynptr:
2009 return &bpf_ringbuf_discard_dynptr_proto;
2010 case BPF_FUNC_dynptr_from_mem:
2011 return &bpf_dynptr_from_mem_proto;
2012 case BPF_FUNC_dynptr_read:
2013 return &bpf_dynptr_read_proto;
2014 case BPF_FUNC_dynptr_write:
2015 return &bpf_dynptr_write_proto;
2016 case BPF_FUNC_dynptr_data:
2017 return &bpf_dynptr_data_proto;
2018 #ifdef CONFIG_CGROUPS
2019 case BPF_FUNC_cgrp_storage_get:
2020 return &bpf_cgrp_storage_get_proto;
2021 case BPF_FUNC_cgrp_storage_delete:
2022 return &bpf_cgrp_storage_delete_proto;
2023 case BPF_FUNC_get_current_cgroup_id:
2024 return &bpf_get_current_cgroup_id_proto;
2025 case BPF_FUNC_get_current_ancestor_cgroup_id:
2026 return &bpf_get_current_ancestor_cgroup_id_proto;
2027 case BPF_FUNC_current_task_under_cgroup:
2028 return &bpf_current_task_under_cgroup_proto;
2029 #endif
2030 #ifdef CONFIG_CGROUP_NET_CLASSID
2031 case BPF_FUNC_get_cgroup_classid:
2032 return &bpf_get_cgroup_classid_curr_proto;
2033 #endif
2034 case BPF_FUNC_task_storage_get:
2035 if (bpf_prog_check_recur(prog))
2036 return &bpf_task_storage_get_recur_proto;
2037 return &bpf_task_storage_get_proto;
2038 case BPF_FUNC_task_storage_delete:
2039 if (bpf_prog_check_recur(prog))
2040 return &bpf_task_storage_delete_recur_proto;
2041 return &bpf_task_storage_delete_proto;
2042 default:
2043 break;
2044 }
2045
2046 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2047 return NULL;
2048
2049 switch (func_id) {
2050 case BPF_FUNC_trace_printk:
2051 return bpf_get_trace_printk_proto();
2052 case BPF_FUNC_get_current_task:
2053 return &bpf_get_current_task_proto;
2054 case BPF_FUNC_get_current_task_btf:
2055 return &bpf_get_current_task_btf_proto;
2056 case BPF_FUNC_get_current_comm:
2057 return &bpf_get_current_comm_proto;
2058 case BPF_FUNC_probe_read_user:
2059 return &bpf_probe_read_user_proto;
2060 case BPF_FUNC_probe_read_kernel:
2061 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2062 NULL : &bpf_probe_read_kernel_proto;
2063 case BPF_FUNC_probe_read_user_str:
2064 return &bpf_probe_read_user_str_proto;
2065 case BPF_FUNC_probe_read_kernel_str:
2066 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2067 NULL : &bpf_probe_read_kernel_str_proto;
2068 case BPF_FUNC_copy_from_user:
2069 return &bpf_copy_from_user_proto;
2070 case BPF_FUNC_copy_from_user_task:
2071 return &bpf_copy_from_user_task_proto;
2072 case BPF_FUNC_snprintf_btf:
2073 return &bpf_snprintf_btf_proto;
2074 case BPF_FUNC_snprintf:
2075 return &bpf_snprintf_proto;
2076 case BPF_FUNC_task_pt_regs:
2077 return &bpf_task_pt_regs_proto;
2078 case BPF_FUNC_trace_vprintk:
2079 return bpf_get_trace_vprintk_proto();
2080 case BPF_FUNC_perf_event_read_value:
2081 return bpf_get_perf_event_read_value_proto();
2082 case BPF_FUNC_perf_event_read:
2083 return &bpf_perf_event_read_proto;
2084 case BPF_FUNC_send_signal:
2085 return &bpf_send_signal_proto;
2086 case BPF_FUNC_send_signal_thread:
2087 return &bpf_send_signal_thread_proto;
2088 case BPF_FUNC_get_task_stack:
2089 return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2090 : &bpf_get_task_stack_proto;
2091 case BPF_FUNC_get_branch_snapshot:
2092 return &bpf_get_branch_snapshot_proto;
2093 case BPF_FUNC_find_vma:
2094 return &bpf_find_vma_proto;
2095 default:
2096 return NULL;
2097 }
2098 }
2099 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2100
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2101 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2102 struct bpf_spin_lock *spin_lock)
2103 {
2104 struct list_head *head = list_head, *orig_head = list_head;
2105
2106 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2107 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2108
2109 /* Do the actual list draining outside the lock to not hold the lock for
2110 * too long, and also prevent deadlocks if tracing programs end up
2111 * executing on entry/exit of functions called inside the critical
2112 * section, and end up doing map ops that call bpf_list_head_free for
2113 * the same map value again.
2114 */
2115 __bpf_spin_lock_irqsave(spin_lock);
2116 if (!head->next || list_empty(head))
2117 goto unlock;
2118 head = head->next;
2119 unlock:
2120 INIT_LIST_HEAD(orig_head);
2121 __bpf_spin_unlock_irqrestore(spin_lock);
2122
2123 while (head != orig_head) {
2124 void *obj = head;
2125
2126 obj -= field->graph_root.node_offset;
2127 head = head->next;
2128 /* The contained type can also have resources, including a
2129 * bpf_list_head which needs to be freed.
2130 */
2131 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2132 }
2133 }
2134
2135 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2136 * 'rb_node *', so field name of rb_node within containing struct is not
2137 * needed.
2138 *
2139 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2140 * graph_root.node_offset, it's not necessary to know field name
2141 * or type of node struct
2142 */
2143 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2144 for (pos = rb_first_postorder(root); \
2145 pos && ({ n = rb_next_postorder(pos); 1; }); \
2146 pos = n)
2147
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2148 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2149 struct bpf_spin_lock *spin_lock)
2150 {
2151 struct rb_root_cached orig_root, *root = rb_root;
2152 struct rb_node *pos, *n;
2153 void *obj;
2154
2155 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2156 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2157
2158 __bpf_spin_lock_irqsave(spin_lock);
2159 orig_root = *root;
2160 *root = RB_ROOT_CACHED;
2161 __bpf_spin_unlock_irqrestore(spin_lock);
2162
2163 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2164 obj = pos;
2165 obj -= field->graph_root.node_offset;
2166
2167
2168 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2169 }
2170 }
2171
2172 __bpf_kfunc_start_defs();
2173
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2174 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2175 {
2176 struct btf_struct_meta *meta = meta__ign;
2177 u64 size = local_type_id__k;
2178 void *p;
2179
2180 p = bpf_mem_alloc(&bpf_global_ma, size);
2181 if (!p)
2182 return NULL;
2183 if (meta)
2184 bpf_obj_init(meta->record, p);
2185 return p;
2186 }
2187
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2188 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2189 {
2190 u64 size = local_type_id__k;
2191
2192 /* The verifier has ensured that meta__ign must be NULL */
2193 return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2194 }
2195
2196 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2197 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2198 {
2199 struct bpf_mem_alloc *ma;
2200
2201 if (rec && rec->refcount_off >= 0 &&
2202 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2203 /* Object is refcounted and refcount_dec didn't result in 0
2204 * refcount. Return without freeing the object
2205 */
2206 return;
2207 }
2208
2209 if (rec)
2210 bpf_obj_free_fields(rec, p);
2211
2212 if (percpu)
2213 ma = &bpf_global_percpu_ma;
2214 else
2215 ma = &bpf_global_ma;
2216 bpf_mem_free_rcu(ma, p);
2217 }
2218
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2219 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2220 {
2221 struct btf_struct_meta *meta = meta__ign;
2222 void *p = p__alloc;
2223
2224 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2225 }
2226
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2227 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2228 {
2229 /* The verifier has ensured that meta__ign must be NULL */
2230 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2231 }
2232
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2233 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2234 {
2235 struct btf_struct_meta *meta = meta__ign;
2236 struct bpf_refcount *ref;
2237
2238 /* Could just cast directly to refcount_t *, but need some code using
2239 * bpf_refcount type so that it is emitted in vmlinux BTF
2240 */
2241 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2242 if (!refcount_inc_not_zero((refcount_t *)ref))
2243 return NULL;
2244
2245 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2246 * in verifier.c
2247 */
2248 return (void *)p__refcounted_kptr;
2249 }
2250
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2251 static int __bpf_list_add(struct bpf_list_node_kern *node,
2252 struct bpf_list_head *head,
2253 bool tail, struct btf_record *rec, u64 off)
2254 {
2255 struct list_head *n = &node->list_head, *h = (void *)head;
2256
2257 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2258 * called on its fields, so init here
2259 */
2260 if (unlikely(!h->next))
2261 INIT_LIST_HEAD(h);
2262
2263 /* node->owner != NULL implies !list_empty(n), no need to separately
2264 * check the latter
2265 */
2266 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2267 /* Only called from BPF prog, no need to migrate_disable */
2268 __bpf_obj_drop_impl((void *)n - off, rec, false);
2269 return -EINVAL;
2270 }
2271
2272 tail ? list_add_tail(n, h) : list_add(n, h);
2273 WRITE_ONCE(node->owner, head);
2274
2275 return 0;
2276 }
2277
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2278 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2279 struct bpf_list_node *node,
2280 void *meta__ign, u64 off)
2281 {
2282 struct bpf_list_node_kern *n = (void *)node;
2283 struct btf_struct_meta *meta = meta__ign;
2284
2285 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2286 }
2287
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2288 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2289 struct bpf_list_node *node,
2290 void *meta__ign, u64 off)
2291 {
2292 struct bpf_list_node_kern *n = (void *)node;
2293 struct btf_struct_meta *meta = meta__ign;
2294
2295 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2296 }
2297
__bpf_list_del(struct bpf_list_head * head,bool tail)2298 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2299 {
2300 struct list_head *n, *h = (void *)head;
2301 struct bpf_list_node_kern *node;
2302
2303 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2304 * called on its fields, so init here
2305 */
2306 if (unlikely(!h->next))
2307 INIT_LIST_HEAD(h);
2308 if (list_empty(h))
2309 return NULL;
2310
2311 n = tail ? h->prev : h->next;
2312 node = container_of(n, struct bpf_list_node_kern, list_head);
2313 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2314 return NULL;
2315
2316 list_del_init(n);
2317 WRITE_ONCE(node->owner, NULL);
2318 return (struct bpf_list_node *)n;
2319 }
2320
bpf_list_pop_front(struct bpf_list_head * head)2321 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2322 {
2323 return __bpf_list_del(head, false);
2324 }
2325
bpf_list_pop_back(struct bpf_list_head * head)2326 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2327 {
2328 return __bpf_list_del(head, true);
2329 }
2330
bpf_list_front(struct bpf_list_head * head)2331 __bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2332 {
2333 struct list_head *h = (struct list_head *)head;
2334
2335 if (list_empty(h) || unlikely(!h->next))
2336 return NULL;
2337
2338 return (struct bpf_list_node *)h->next;
2339 }
2340
bpf_list_back(struct bpf_list_head * head)2341 __bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2342 {
2343 struct list_head *h = (struct list_head *)head;
2344
2345 if (list_empty(h) || unlikely(!h->next))
2346 return NULL;
2347
2348 return (struct bpf_list_node *)h->prev;
2349 }
2350
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2351 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2352 struct bpf_rb_node *node)
2353 {
2354 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2355 struct rb_root_cached *r = (struct rb_root_cached *)root;
2356 struct rb_node *n = &node_internal->rb_node;
2357
2358 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2359 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2360 */
2361 if (READ_ONCE(node_internal->owner) != root)
2362 return NULL;
2363
2364 rb_erase_cached(n, r);
2365 RB_CLEAR_NODE(n);
2366 WRITE_ONCE(node_internal->owner, NULL);
2367 return (struct bpf_rb_node *)n;
2368 }
2369
2370 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2371 * program
2372 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2373 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2374 struct bpf_rb_node_kern *node,
2375 void *less, struct btf_record *rec, u64 off)
2376 {
2377 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2378 struct rb_node *parent = NULL, *n = &node->rb_node;
2379 bpf_callback_t cb = (bpf_callback_t)less;
2380 bool leftmost = true;
2381
2382 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2383 * check the latter
2384 */
2385 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2386 /* Only called from BPF prog, no need to migrate_disable */
2387 __bpf_obj_drop_impl((void *)n - off, rec, false);
2388 return -EINVAL;
2389 }
2390
2391 while (*link) {
2392 parent = *link;
2393 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2394 link = &parent->rb_left;
2395 } else {
2396 link = &parent->rb_right;
2397 leftmost = false;
2398 }
2399 }
2400
2401 rb_link_node(n, parent, link);
2402 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2403 WRITE_ONCE(node->owner, root);
2404 return 0;
2405 }
2406
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2407 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2408 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2409 void *meta__ign, u64 off)
2410 {
2411 struct btf_struct_meta *meta = meta__ign;
2412 struct bpf_rb_node_kern *n = (void *)node;
2413
2414 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2415 }
2416
bpf_rbtree_first(struct bpf_rb_root * root)2417 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2418 {
2419 struct rb_root_cached *r = (struct rb_root_cached *)root;
2420
2421 return (struct bpf_rb_node *)rb_first_cached(r);
2422 }
2423
bpf_rbtree_root(struct bpf_rb_root * root)2424 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2425 {
2426 struct rb_root_cached *r = (struct rb_root_cached *)root;
2427
2428 return (struct bpf_rb_node *)r->rb_root.rb_node;
2429 }
2430
bpf_rbtree_left(struct bpf_rb_root * root,struct bpf_rb_node * node)2431 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2432 {
2433 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2434
2435 if (READ_ONCE(node_internal->owner) != root)
2436 return NULL;
2437
2438 return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2439 }
2440
bpf_rbtree_right(struct bpf_rb_root * root,struct bpf_rb_node * node)2441 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2442 {
2443 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2444
2445 if (READ_ONCE(node_internal->owner) != root)
2446 return NULL;
2447
2448 return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2449 }
2450
2451 /**
2452 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2453 * kfunc which is not stored in a map as a kptr, must be released by calling
2454 * bpf_task_release().
2455 * @p: The task on which a reference is being acquired.
2456 */
bpf_task_acquire(struct task_struct * p)2457 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2458 {
2459 if (refcount_inc_not_zero(&p->rcu_users))
2460 return p;
2461 return NULL;
2462 }
2463
2464 /**
2465 * bpf_task_release - Release the reference acquired on a task.
2466 * @p: The task on which a reference is being released.
2467 */
bpf_task_release(struct task_struct * p)2468 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2469 {
2470 put_task_struct_rcu_user(p);
2471 }
2472
bpf_task_release_dtor(void * p)2473 __bpf_kfunc void bpf_task_release_dtor(void *p)
2474 {
2475 put_task_struct_rcu_user(p);
2476 }
2477 CFI_NOSEAL(bpf_task_release_dtor);
2478
2479 #ifdef CONFIG_CGROUPS
2480 /**
2481 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2482 * this kfunc which is not stored in a map as a kptr, must be released by
2483 * calling bpf_cgroup_release().
2484 * @cgrp: The cgroup on which a reference is being acquired.
2485 */
bpf_cgroup_acquire(struct cgroup * cgrp)2486 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2487 {
2488 return cgroup_tryget(cgrp) ? cgrp : NULL;
2489 }
2490
2491 /**
2492 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2493 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2494 * not be freed until the current grace period has ended, even if its refcount
2495 * drops to 0.
2496 * @cgrp: The cgroup on which a reference is being released.
2497 */
bpf_cgroup_release(struct cgroup * cgrp)2498 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2499 {
2500 cgroup_put(cgrp);
2501 }
2502
bpf_cgroup_release_dtor(void * cgrp)2503 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2504 {
2505 cgroup_put(cgrp);
2506 }
2507 CFI_NOSEAL(bpf_cgroup_release_dtor);
2508
2509 /**
2510 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2511 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2512 * map, must be released by calling bpf_cgroup_release().
2513 * @cgrp: The cgroup for which we're performing a lookup.
2514 * @level: The level of ancestor to look up.
2515 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2516 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2517 {
2518 struct cgroup *ancestor;
2519
2520 if (level > cgrp->level || level < 0)
2521 return NULL;
2522
2523 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2524 ancestor = cgrp->ancestors[level];
2525 if (!cgroup_tryget(ancestor))
2526 return NULL;
2527 return ancestor;
2528 }
2529
2530 /**
2531 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2532 * kfunc which is not subsequently stored in a map, must be released by calling
2533 * bpf_cgroup_release().
2534 * @cgid: cgroup id.
2535 */
bpf_cgroup_from_id(u64 cgid)2536 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2537 {
2538 struct cgroup *cgrp;
2539
2540 cgrp = cgroup_get_from_id(cgid);
2541 if (IS_ERR(cgrp))
2542 return NULL;
2543 return cgrp;
2544 }
2545
2546 /**
2547 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2548 * task's membership of cgroup ancestry.
2549 * @task: the task to be tested
2550 * @ancestor: possible ancestor of @task's cgroup
2551 *
2552 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2553 * It follows all the same rules as cgroup_is_descendant, and only applies
2554 * to the default hierarchy.
2555 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2556 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2557 struct cgroup *ancestor)
2558 {
2559 long ret;
2560
2561 rcu_read_lock();
2562 ret = task_under_cgroup_hierarchy(task, ancestor);
2563 rcu_read_unlock();
2564 return ret;
2565 }
2566
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2567 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2568 {
2569 struct bpf_array *array = container_of(map, struct bpf_array, map);
2570 struct cgroup *cgrp;
2571
2572 if (unlikely(idx >= array->map.max_entries))
2573 return -E2BIG;
2574
2575 cgrp = READ_ONCE(array->ptrs[idx]);
2576 if (unlikely(!cgrp))
2577 return -EAGAIN;
2578
2579 return task_under_cgroup_hierarchy(current, cgrp);
2580 }
2581
2582 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2583 .func = bpf_current_task_under_cgroup,
2584 .gpl_only = false,
2585 .ret_type = RET_INTEGER,
2586 .arg1_type = ARG_CONST_MAP_PTR,
2587 .arg2_type = ARG_ANYTHING,
2588 };
2589
2590 /**
2591 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2592 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2593 * hierarchy ID.
2594 * @task: The target task
2595 * @hierarchy_id: The ID of a cgroup1 hierarchy
2596 *
2597 * On success, the cgroup is returen. On failure, NULL is returned.
2598 */
2599 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2600 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2601 {
2602 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2603
2604 if (IS_ERR(cgrp))
2605 return NULL;
2606 return cgrp;
2607 }
2608 #endif /* CONFIG_CGROUPS */
2609
2610 /**
2611 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2612 * in the root pid namespace idr. If a task is returned, it must either be
2613 * stored in a map, or released with bpf_task_release().
2614 * @pid: The pid of the task being looked up.
2615 */
bpf_task_from_pid(s32 pid)2616 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2617 {
2618 struct task_struct *p;
2619
2620 rcu_read_lock();
2621 p = find_task_by_pid_ns(pid, &init_pid_ns);
2622 if (p)
2623 p = bpf_task_acquire(p);
2624 rcu_read_unlock();
2625
2626 return p;
2627 }
2628
2629 /**
2630 * bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2631 * in the pid namespace of the current task. If a task is returned, it must
2632 * either be stored in a map, or released with bpf_task_release().
2633 * @vpid: The vpid of the task being looked up.
2634 */
bpf_task_from_vpid(s32 vpid)2635 __bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2636 {
2637 struct task_struct *p;
2638
2639 rcu_read_lock();
2640 p = find_task_by_vpid(vpid);
2641 if (p)
2642 p = bpf_task_acquire(p);
2643 rcu_read_unlock();
2644
2645 return p;
2646 }
2647
2648 /**
2649 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2650 * @p: The dynptr whose data slice to retrieve
2651 * @offset: Offset into the dynptr
2652 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2653 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2654 * length of the requested slice. This must be a constant.
2655 *
2656 * For non-skb and non-xdp type dynptrs, there is no difference between
2657 * bpf_dynptr_slice and bpf_dynptr_data.
2658 *
2659 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2660 *
2661 * If the intention is to write to the data slice, please use
2662 * bpf_dynptr_slice_rdwr.
2663 *
2664 * The user must check that the returned pointer is not null before using it.
2665 *
2666 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2667 * does not change the underlying packet data pointers, so a call to
2668 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2669 * the bpf program.
2670 *
2671 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2672 * data slice (can be either direct pointer to the data or a pointer to the user
2673 * provided buffer, with its contents containing the data, if unable to obtain
2674 * direct pointer)
2675 */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2676 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2677 void *buffer__opt, u32 buffer__szk)
2678 {
2679 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2680 enum bpf_dynptr_type type;
2681 u32 len = buffer__szk;
2682 int err;
2683
2684 if (!ptr->data)
2685 return NULL;
2686
2687 err = bpf_dynptr_check_off_len(ptr, offset, len);
2688 if (err)
2689 return NULL;
2690
2691 type = bpf_dynptr_get_type(ptr);
2692
2693 switch (type) {
2694 case BPF_DYNPTR_TYPE_LOCAL:
2695 case BPF_DYNPTR_TYPE_RINGBUF:
2696 return ptr->data + ptr->offset + offset;
2697 case BPF_DYNPTR_TYPE_SKB:
2698 if (buffer__opt)
2699 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2700 else
2701 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2702 case BPF_DYNPTR_TYPE_XDP:
2703 {
2704 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2705 if (!IS_ERR_OR_NULL(xdp_ptr))
2706 return xdp_ptr;
2707
2708 if (!buffer__opt)
2709 return NULL;
2710 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2711 return buffer__opt;
2712 }
2713 default:
2714 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2715 return NULL;
2716 }
2717 }
2718
2719 /**
2720 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2721 * @p: The dynptr whose data slice to retrieve
2722 * @offset: Offset into the dynptr
2723 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2724 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2725 * length of the requested slice. This must be a constant.
2726 *
2727 * For non-skb and non-xdp type dynptrs, there is no difference between
2728 * bpf_dynptr_slice and bpf_dynptr_data.
2729 *
2730 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2731 *
2732 * The returned pointer is writable and may point to either directly the dynptr
2733 * data at the requested offset or to the buffer if unable to obtain a direct
2734 * data pointer to (example: the requested slice is to the paged area of an skb
2735 * packet). In the case where the returned pointer is to the buffer, the user
2736 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2737 * usually looks something like this pattern:
2738 *
2739 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2740 * if (!eth)
2741 * return TC_ACT_SHOT;
2742 *
2743 * // mutate eth header //
2744 *
2745 * if (eth == buffer)
2746 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2747 *
2748 * Please note that, as in the example above, the user must check that the
2749 * returned pointer is not null before using it.
2750 *
2751 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2752 * does not change the underlying packet data pointers, so a call to
2753 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2754 * the bpf program.
2755 *
2756 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2757 * data slice (can be either direct pointer to the data or a pointer to the user
2758 * provided buffer, with its contents containing the data, if unable to obtain
2759 * direct pointer)
2760 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2761 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2762 void *buffer__opt, u32 buffer__szk)
2763 {
2764 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2765
2766 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2767 return NULL;
2768
2769 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2770 *
2771 * For skb-type dynptrs, it is safe to write into the returned pointer
2772 * if the bpf program allows skb data writes. There are two possibilities
2773 * that may occur when calling bpf_dynptr_slice_rdwr:
2774 *
2775 * 1) The requested slice is in the head of the skb. In this case, the
2776 * returned pointer is directly to skb data, and if the skb is cloned, the
2777 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2778 * The pointer can be directly written into.
2779 *
2780 * 2) Some portion of the requested slice is in the paged buffer area.
2781 * In this case, the requested data will be copied out into the buffer
2782 * and the returned pointer will be a pointer to the buffer. The skb
2783 * will not be pulled. To persist the write, the user will need to call
2784 * bpf_dynptr_write(), which will pull the skb and commit the write.
2785 *
2786 * Similarly for xdp programs, if the requested slice is not across xdp
2787 * fragments, then a direct pointer will be returned, otherwise the data
2788 * will be copied out into the buffer and the user will need to call
2789 * bpf_dynptr_write() to commit changes.
2790 */
2791 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2792 }
2793
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2794 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2795 {
2796 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2797 u32 size;
2798
2799 if (!ptr->data || start > end)
2800 return -EINVAL;
2801
2802 size = __bpf_dynptr_size(ptr);
2803
2804 if (start > size || end > size)
2805 return -ERANGE;
2806
2807 ptr->offset += start;
2808 bpf_dynptr_set_size(ptr, end - start);
2809
2810 return 0;
2811 }
2812
bpf_dynptr_is_null(const struct bpf_dynptr * p)2813 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2814 {
2815 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2816
2817 return !ptr->data;
2818 }
2819
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2820 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2821 {
2822 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2823
2824 if (!ptr->data)
2825 return false;
2826
2827 return __bpf_dynptr_is_rdonly(ptr);
2828 }
2829
bpf_dynptr_size(const struct bpf_dynptr * p)2830 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2831 {
2832 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2833
2834 if (!ptr->data)
2835 return -EINVAL;
2836
2837 return __bpf_dynptr_size(ptr);
2838 }
2839
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2840 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2841 struct bpf_dynptr *clone__uninit)
2842 {
2843 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2844 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2845
2846 if (!ptr->data) {
2847 bpf_dynptr_set_null(clone);
2848 return -EINVAL;
2849 }
2850
2851 *clone = *ptr;
2852
2853 return 0;
2854 }
2855
2856 /**
2857 * bpf_dynptr_copy() - Copy data from one dynptr to another.
2858 * @dst_ptr: Destination dynptr - where data should be copied to
2859 * @dst_off: Offset into the destination dynptr
2860 * @src_ptr: Source dynptr - where data should be copied from
2861 * @src_off: Offset into the source dynptr
2862 * @size: Length of the data to copy from source to destination
2863 *
2864 * Copies data from source dynptr to destination dynptr.
2865 * Returns 0 on success; negative error, otherwise.
2866 */
bpf_dynptr_copy(struct bpf_dynptr * dst_ptr,u32 dst_off,struct bpf_dynptr * src_ptr,u32 src_off,u32 size)2867 __bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u32 dst_off,
2868 struct bpf_dynptr *src_ptr, u32 src_off, u32 size)
2869 {
2870 struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2871 struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2872 void *src_slice, *dst_slice;
2873 char buf[256];
2874 u32 off;
2875
2876 src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2877 dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2878
2879 if (src_slice && dst_slice) {
2880 memmove(dst_slice, src_slice, size);
2881 return 0;
2882 }
2883
2884 if (src_slice)
2885 return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2886
2887 if (dst_slice)
2888 return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2889
2890 if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2891 bpf_dynptr_check_off_len(src, src_off, size))
2892 return -E2BIG;
2893
2894 off = 0;
2895 while (off < size) {
2896 u32 chunk_sz = min_t(u32, sizeof(buf), size - off);
2897 int err;
2898
2899 err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2900 if (err)
2901 return err;
2902 err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2903 if (err)
2904 return err;
2905
2906 off += chunk_sz;
2907 }
2908 return 0;
2909 }
2910
2911 /**
2912 * bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2913 * @p: Destination dynptr - where data will be filled
2914 * @offset: Offset into the dynptr to start filling from
2915 * @size: Number of bytes to fill
2916 * @val: Constant byte to fill the memory with
2917 *
2918 * Fills the @size bytes of the memory area pointed to by @p
2919 * at @offset with the constant byte @val.
2920 * Returns 0 on success; negative error, otherwise.
2921 */
bpf_dynptr_memset(struct bpf_dynptr * p,u32 offset,u32 size,u8 val)2922 __bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u32 offset, u32 size, u8 val)
2923 {
2924 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2925 u32 chunk_sz, write_off;
2926 char buf[256];
2927 void* slice;
2928 int err;
2929
2930 slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2931 if (likely(slice)) {
2932 memset(slice, val, size);
2933 return 0;
2934 }
2935
2936 if (__bpf_dynptr_is_rdonly(ptr))
2937 return -EINVAL;
2938
2939 err = bpf_dynptr_check_off_len(ptr, offset, size);
2940 if (err)
2941 return err;
2942
2943 /* Non-linear data under the dynptr, write from a local buffer */
2944 chunk_sz = min_t(u32, sizeof(buf), size);
2945 memset(buf, val, chunk_sz);
2946
2947 for (write_off = 0; write_off < size; write_off += chunk_sz) {
2948 chunk_sz = min_t(u32, sizeof(buf), size - write_off);
2949 err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
2950 if (err)
2951 return err;
2952 }
2953
2954 return 0;
2955 }
2956
bpf_cast_to_kern_ctx(void * obj)2957 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2958 {
2959 return obj;
2960 }
2961
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2962 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2963 {
2964 return (void *)obj__ign;
2965 }
2966
bpf_rcu_read_lock(void)2967 __bpf_kfunc void bpf_rcu_read_lock(void)
2968 {
2969 rcu_read_lock();
2970 }
2971
bpf_rcu_read_unlock(void)2972 __bpf_kfunc void bpf_rcu_read_unlock(void)
2973 {
2974 rcu_read_unlock();
2975 }
2976
2977 struct bpf_throw_ctx {
2978 struct bpf_prog_aux *aux;
2979 u64 sp;
2980 u64 bp;
2981 int cnt;
2982 };
2983
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2984 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2985 {
2986 struct bpf_throw_ctx *ctx = cookie;
2987 struct bpf_prog *prog;
2988
2989 /*
2990 * The RCU read lock is held to safely traverse the latch tree, but we
2991 * don't need its protection when accessing the prog, since it has an
2992 * active stack frame on the current stack trace, and won't disappear.
2993 */
2994 rcu_read_lock();
2995 prog = bpf_prog_ksym_find(ip);
2996 rcu_read_unlock();
2997 if (!prog)
2998 return !ctx->cnt;
2999 ctx->cnt++;
3000 if (bpf_is_subprog(prog))
3001 return true;
3002 ctx->aux = prog->aux;
3003 ctx->sp = sp;
3004 ctx->bp = bp;
3005 return false;
3006 }
3007
bpf_throw(u64 cookie)3008 __bpf_kfunc void bpf_throw(u64 cookie)
3009 {
3010 struct bpf_throw_ctx ctx = {};
3011
3012 arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3013 WARN_ON_ONCE(!ctx.aux);
3014 if (ctx.aux)
3015 WARN_ON_ONCE(!ctx.aux->exception_boundary);
3016 WARN_ON_ONCE(!ctx.bp);
3017 WARN_ON_ONCE(!ctx.cnt);
3018 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3019 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
3020 * which skips compiler generated instrumentation to do the same.
3021 */
3022 kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3023 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3024 WARN(1, "A call to BPF exception callback should never return\n");
3025 }
3026
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)3027 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3028 {
3029 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3030 struct bpf_map *map = p__map;
3031
3032 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3033 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3034
3035 if (flags)
3036 return -EINVAL;
3037
3038 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3039 }
3040
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)3041 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3042 {
3043 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3044 struct bpf_work *w;
3045
3046 if (in_nmi())
3047 return -EOPNOTSUPP;
3048 if (flags)
3049 return -EINVAL;
3050 w = READ_ONCE(async->work);
3051 if (!w || !READ_ONCE(w->cb.prog))
3052 return -EINVAL;
3053
3054 schedule_work(&w->work);
3055 return 0;
3056 }
3057
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__prog)3058 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3059 int (callback_fn)(void *map, int *key, void *value),
3060 unsigned int flags,
3061 void *aux__prog)
3062 {
3063 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3064 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3065
3066 if (flags)
3067 return -EINVAL;
3068
3069 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3070 }
3071
bpf_preempt_disable(void)3072 __bpf_kfunc void bpf_preempt_disable(void)
3073 {
3074 preempt_disable();
3075 }
3076
bpf_preempt_enable(void)3077 __bpf_kfunc void bpf_preempt_enable(void)
3078 {
3079 preempt_enable();
3080 }
3081
3082 struct bpf_iter_bits {
3083 __u64 __opaque[2];
3084 } __aligned(8);
3085
3086 #define BITS_ITER_NR_WORDS_MAX 511
3087
3088 struct bpf_iter_bits_kern {
3089 union {
3090 __u64 *bits;
3091 __u64 bits_copy;
3092 };
3093 int nr_bits;
3094 int bit;
3095 } __aligned(8);
3096
3097 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3098 * a u64 pointer and an unsigned long pointer to find_next_bit() will
3099 * return the same result, as both point to the same 8-byte area.
3100 *
3101 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3102 * pointer also makes no difference. This is because the first iterated
3103 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3104 * long is composed of bits 32-63 of the u64.
3105 *
3106 * However, for 32-bit big-endian hosts, this is not the case. The first
3107 * iterated unsigned long will be bits 32-63 of the u64, so swap these two
3108 * ulong values within the u64.
3109 */
swap_ulong_in_u64(u64 * bits,unsigned int nr)3110 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3111 {
3112 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3113 unsigned int i;
3114
3115 for (i = 0; i < nr; i++)
3116 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3117 #endif
3118 }
3119
3120 /**
3121 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3122 * @it: The new bpf_iter_bits to be created
3123 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3124 * @nr_words: The size of the specified memory area, measured in 8-byte units.
3125 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3126 * further reduced by the BPF memory allocator implementation.
3127 *
3128 * This function initializes a new bpf_iter_bits structure for iterating over
3129 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3130 * copies the data of the memory area to the newly created bpf_iter_bits @it for
3131 * subsequent iteration operations.
3132 *
3133 * On success, 0 is returned. On failure, ERR is returned.
3134 */
3135 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)3136 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3137 {
3138 struct bpf_iter_bits_kern *kit = (void *)it;
3139 u32 nr_bytes = nr_words * sizeof(u64);
3140 u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3141 int err;
3142
3143 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3144 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3145 __alignof__(struct bpf_iter_bits));
3146
3147 kit->nr_bits = 0;
3148 kit->bits_copy = 0;
3149 kit->bit = -1;
3150
3151 if (!unsafe_ptr__ign || !nr_words)
3152 return -EINVAL;
3153 if (nr_words > BITS_ITER_NR_WORDS_MAX)
3154 return -E2BIG;
3155
3156 /* Optimization for u64 mask */
3157 if (nr_bits == 64) {
3158 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3159 if (err)
3160 return -EFAULT;
3161
3162 swap_ulong_in_u64(&kit->bits_copy, nr_words);
3163
3164 kit->nr_bits = nr_bits;
3165 return 0;
3166 }
3167
3168 if (bpf_mem_alloc_check_size(false, nr_bytes))
3169 return -E2BIG;
3170
3171 /* Fallback to memalloc */
3172 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3173 if (!kit->bits)
3174 return -ENOMEM;
3175
3176 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3177 if (err) {
3178 bpf_mem_free(&bpf_global_ma, kit->bits);
3179 return err;
3180 }
3181
3182 swap_ulong_in_u64(kit->bits, nr_words);
3183
3184 kit->nr_bits = nr_bits;
3185 return 0;
3186 }
3187
3188 /**
3189 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3190 * @it: The bpf_iter_bits to be checked
3191 *
3192 * This function returns a pointer to a number representing the value of the
3193 * next bit in the bits.
3194 *
3195 * If there are no further bits available, it returns NULL.
3196 */
bpf_iter_bits_next(struct bpf_iter_bits * it)3197 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3198 {
3199 struct bpf_iter_bits_kern *kit = (void *)it;
3200 int bit = kit->bit, nr_bits = kit->nr_bits;
3201 const void *bits;
3202
3203 if (!nr_bits || bit >= nr_bits)
3204 return NULL;
3205
3206 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3207 bit = find_next_bit(bits, nr_bits, bit + 1);
3208 if (bit >= nr_bits) {
3209 kit->bit = bit;
3210 return NULL;
3211 }
3212
3213 kit->bit = bit;
3214 return &kit->bit;
3215 }
3216
3217 /**
3218 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3219 * @it: The bpf_iter_bits to be destroyed
3220 *
3221 * Destroy the resource associated with the bpf_iter_bits.
3222 */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3223 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3224 {
3225 struct bpf_iter_bits_kern *kit = (void *)it;
3226
3227 if (kit->nr_bits <= 64)
3228 return;
3229 bpf_mem_free(&bpf_global_ma, kit->bits);
3230 }
3231
3232 /**
3233 * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3234 * @dst: Destination address, in kernel space. This buffer must be
3235 * at least @dst__sz bytes long.
3236 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3237 * @unsafe_ptr__ign: Source address, in user space.
3238 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3239 *
3240 * Copies a NUL-terminated string from userspace to BPF space. If user string is
3241 * too long this will still ensure zero termination in the dst buffer unless
3242 * buffer size is 0.
3243 *
3244 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3245 * memset all of @dst on failure.
3246 */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3247 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3248 {
3249 int ret;
3250
3251 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3252 return -EINVAL;
3253
3254 if (unlikely(!dst__sz))
3255 return 0;
3256
3257 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3258 if (ret < 0) {
3259 if (flags & BPF_F_PAD_ZEROS)
3260 memset((char *)dst, 0, dst__sz);
3261
3262 return ret;
3263 }
3264
3265 if (flags & BPF_F_PAD_ZEROS)
3266 memset((char *)dst + ret, 0, dst__sz - ret);
3267 else
3268 ((char *)dst)[ret] = '\0';
3269
3270 return ret + 1;
3271 }
3272
3273 /**
3274 * bpf_copy_from_user_task_str() - Copy a string from an task's address space
3275 * @dst: Destination address, in kernel space. This buffer must be
3276 * at least @dst__sz bytes long.
3277 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3278 * @unsafe_ptr__ign: Source address in the task's address space.
3279 * @tsk: The task whose address space will be used
3280 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3281 *
3282 * Copies a NUL terminated string from a task's address space to @dst__sz
3283 * buffer. If user string is too long this will still ensure zero termination
3284 * in the @dst__sz buffer unless buffer size is 0.
3285 *
3286 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3287 * and memset all of @dst__sz on failure.
3288 *
3289 * Return: The number of copied bytes on success including the NUL terminator.
3290 * A negative error code on failure.
3291 */
bpf_copy_from_user_task_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,struct task_struct * tsk,u64 flags)3292 __bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3293 const void __user *unsafe_ptr__ign,
3294 struct task_struct *tsk, u64 flags)
3295 {
3296 int ret;
3297
3298 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3299 return -EINVAL;
3300
3301 if (unlikely(dst__sz == 0))
3302 return 0;
3303
3304 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3305 if (ret < 0) {
3306 if (flags & BPF_F_PAD_ZEROS)
3307 memset(dst, 0, dst__sz);
3308 return ret;
3309 }
3310
3311 if (flags & BPF_F_PAD_ZEROS)
3312 memset(dst + ret, 0, dst__sz - ret);
3313
3314 return ret + 1;
3315 }
3316
3317 /* Keep unsinged long in prototype so that kfunc is usable when emitted to
3318 * vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3319 * unsigned long always points to 8-byte region on stack, the kernel may only
3320 * read and write the 4-bytes on 32-bit.
3321 */
bpf_local_irq_save(unsigned long * flags__irq_flag)3322 __bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3323 {
3324 local_irq_save(*flags__irq_flag);
3325 }
3326
bpf_local_irq_restore(unsigned long * flags__irq_flag)3327 __bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3328 {
3329 local_irq_restore(*flags__irq_flag);
3330 }
3331
__bpf_trap(void)3332 __bpf_kfunc void __bpf_trap(void)
3333 {
3334 }
3335
3336 /*
3337 * Kfuncs for string operations.
3338 *
3339 * Since strings are not necessarily %NUL-terminated, we cannot directly call
3340 * in-kernel implementations. Instead, we open-code the implementations using
3341 * __get_kernel_nofault instead of plain dereference to make them safe.
3342 */
3343
3344 /**
3345 * bpf_strcmp - Compare two strings
3346 * @s1__ign: One string
3347 * @s2__ign: Another string
3348 *
3349 * Return:
3350 * * %0 - Strings are equal
3351 * * %-1 - @s1__ign is smaller
3352 * * %1 - @s2__ign is smaller
3353 * * %-EFAULT - Cannot read one of the strings
3354 * * %-E2BIG - One of strings is too large
3355 * * %-ERANGE - One of strings is outside of kernel address space
3356 */
bpf_strcmp(const char * s1__ign,const char * s2__ign)3357 __bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3358 {
3359 char c1, c2;
3360 int i;
3361
3362 if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3363 !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3364 return -ERANGE;
3365 }
3366
3367 guard(pagefault)();
3368 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3369 __get_kernel_nofault(&c1, s1__ign, char, err_out);
3370 __get_kernel_nofault(&c2, s2__ign, char, err_out);
3371 if (c1 != c2)
3372 return c1 < c2 ? -1 : 1;
3373 if (c1 == '\0')
3374 return 0;
3375 s1__ign++;
3376 s2__ign++;
3377 }
3378 return -E2BIG;
3379 err_out:
3380 return -EFAULT;
3381 }
3382
3383 /**
3384 * bpf_strnchr - Find a character in a length limited string
3385 * @s__ign: The string to be searched
3386 * @count: The number of characters to be searched
3387 * @c: The character to search for
3388 *
3389 * Note that the %NUL-terminator is considered part of the string, and can
3390 * be searched for.
3391 *
3392 * Return:
3393 * * >=0 - Index of the first occurrence of @c within @s__ign
3394 * * %-ENOENT - @c not found in the first @count characters of @s__ign
3395 * * %-EFAULT - Cannot read @s__ign
3396 * * %-E2BIG - @s__ign is too large
3397 * * %-ERANGE - @s__ign is outside of kernel address space
3398 */
bpf_strnchr(const char * s__ign,size_t count,char c)3399 __bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3400 {
3401 char sc;
3402 int i;
3403
3404 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3405 return -ERANGE;
3406
3407 guard(pagefault)();
3408 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3409 __get_kernel_nofault(&sc, s__ign, char, err_out);
3410 if (sc == c)
3411 return i;
3412 if (sc == '\0')
3413 return -ENOENT;
3414 s__ign++;
3415 }
3416 return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3417 err_out:
3418 return -EFAULT;
3419 }
3420
3421 /**
3422 * bpf_strchr - Find the first occurrence of a character in a string
3423 * @s__ign: The string to be searched
3424 * @c: The character to search for
3425 *
3426 * Note that the %NUL-terminator is considered part of the string, and can
3427 * be searched for.
3428 *
3429 * Return:
3430 * * >=0 - The index of the first occurrence of @c within @s__ign
3431 * * %-ENOENT - @c not found in @s__ign
3432 * * %-EFAULT - Cannot read @s__ign
3433 * * %-E2BIG - @s__ign is too large
3434 * * %-ERANGE - @s__ign is outside of kernel address space
3435 */
bpf_strchr(const char * s__ign,char c)3436 __bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3437 {
3438 return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3439 }
3440
3441 /**
3442 * bpf_strchrnul - Find and return a character in a string, or end of string
3443 * @s__ign: The string to be searched
3444 * @c: The character to search for
3445 *
3446 * Return:
3447 * * >=0 - Index of the first occurrence of @c within @s__ign or index of
3448 * the null byte at the end of @s__ign when @c is not found
3449 * * %-EFAULT - Cannot read @s__ign
3450 * * %-E2BIG - @s__ign is too large
3451 * * %-ERANGE - @s__ign is outside of kernel address space
3452 */
bpf_strchrnul(const char * s__ign,char c)3453 __bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3454 {
3455 char sc;
3456 int i;
3457
3458 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3459 return -ERANGE;
3460
3461 guard(pagefault)();
3462 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3463 __get_kernel_nofault(&sc, s__ign, char, err_out);
3464 if (sc == '\0' || sc == c)
3465 return i;
3466 s__ign++;
3467 }
3468 return -E2BIG;
3469 err_out:
3470 return -EFAULT;
3471 }
3472
3473 /**
3474 * bpf_strrchr - Find the last occurrence of a character in a string
3475 * @s__ign: The string to be searched
3476 * @c: The character to search for
3477 *
3478 * Return:
3479 * * >=0 - Index of the last occurrence of @c within @s__ign
3480 * * %-ENOENT - @c not found in @s__ign
3481 * * %-EFAULT - Cannot read @s__ign
3482 * * %-E2BIG - @s__ign is too large
3483 * * %-ERANGE - @s__ign is outside of kernel address space
3484 */
bpf_strrchr(const char * s__ign,int c)3485 __bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3486 {
3487 char sc;
3488 int i, last = -ENOENT;
3489
3490 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3491 return -ERANGE;
3492
3493 guard(pagefault)();
3494 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3495 __get_kernel_nofault(&sc, s__ign, char, err_out);
3496 if (sc == c)
3497 last = i;
3498 if (sc == '\0')
3499 return last;
3500 s__ign++;
3501 }
3502 return -E2BIG;
3503 err_out:
3504 return -EFAULT;
3505 }
3506
3507 /**
3508 * bpf_strnlen - Calculate the length of a length-limited string
3509 * @s__ign: The string
3510 * @count: The maximum number of characters to count
3511 *
3512 * Return:
3513 * * >=0 - The length of @s__ign
3514 * * %-EFAULT - Cannot read @s__ign
3515 * * %-E2BIG - @s__ign is too large
3516 * * %-ERANGE - @s__ign is outside of kernel address space
3517 */
bpf_strnlen(const char * s__ign,size_t count)3518 __bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3519 {
3520 char c;
3521 int i;
3522
3523 if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3524 return -ERANGE;
3525
3526 guard(pagefault)();
3527 for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3528 __get_kernel_nofault(&c, s__ign, char, err_out);
3529 if (c == '\0')
3530 return i;
3531 s__ign++;
3532 }
3533 return i == XATTR_SIZE_MAX ? -E2BIG : i;
3534 err_out:
3535 return -EFAULT;
3536 }
3537
3538 /**
3539 * bpf_strlen - Calculate the length of a string
3540 * @s__ign: The string
3541 *
3542 * Return:
3543 * * >=0 - The length of @s__ign
3544 * * %-EFAULT - Cannot read @s__ign
3545 * * %-E2BIG - @s__ign is too large
3546 * * %-ERANGE - @s__ign is outside of kernel address space
3547 */
bpf_strlen(const char * s__ign)3548 __bpf_kfunc int bpf_strlen(const char *s__ign)
3549 {
3550 return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3551 }
3552
3553 /**
3554 * bpf_strspn - Calculate the length of the initial substring of @s__ign which
3555 * only contains letters in @accept__ign
3556 * @s__ign: The string to be searched
3557 * @accept__ign: The string to search for
3558 *
3559 * Return:
3560 * * >=0 - The length of the initial substring of @s__ign which only
3561 * contains letters from @accept__ign
3562 * * %-EFAULT - Cannot read one of the strings
3563 * * %-E2BIG - One of the strings is too large
3564 * * %-ERANGE - One of the strings is outside of kernel address space
3565 */
bpf_strspn(const char * s__ign,const char * accept__ign)3566 __bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3567 {
3568 char cs, ca;
3569 int i, j;
3570
3571 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3572 !copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3573 return -ERANGE;
3574 }
3575
3576 guard(pagefault)();
3577 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3578 __get_kernel_nofault(&cs, s__ign, char, err_out);
3579 if (cs == '\0')
3580 return i;
3581 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3582 __get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3583 if (cs == ca || ca == '\0')
3584 break;
3585 }
3586 if (j == XATTR_SIZE_MAX)
3587 return -E2BIG;
3588 if (ca == '\0')
3589 return i;
3590 s__ign++;
3591 }
3592 return -E2BIG;
3593 err_out:
3594 return -EFAULT;
3595 }
3596
3597 /**
3598 * bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3599 * does not contain letters in @reject__ign
3600 * @s__ign: The string to be searched
3601 * @reject__ign: The string to search for
3602 *
3603 * Return:
3604 * * >=0 - The length of the initial substring of @s__ign which does not
3605 * contain letters from @reject__ign
3606 * * %-EFAULT - Cannot read one of the strings
3607 * * %-E2BIG - One of the strings is too large
3608 * * %-ERANGE - One of the strings is outside of kernel address space
3609 */
bpf_strcspn(const char * s__ign,const char * reject__ign)3610 __bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3611 {
3612 char cs, cr;
3613 int i, j;
3614
3615 if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3616 !copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3617 return -ERANGE;
3618 }
3619
3620 guard(pagefault)();
3621 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3622 __get_kernel_nofault(&cs, s__ign, char, err_out);
3623 if (cs == '\0')
3624 return i;
3625 for (j = 0; j < XATTR_SIZE_MAX; j++) {
3626 __get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3627 if (cs == cr || cr == '\0')
3628 break;
3629 }
3630 if (j == XATTR_SIZE_MAX)
3631 return -E2BIG;
3632 if (cr != '\0')
3633 return i;
3634 s__ign++;
3635 }
3636 return -E2BIG;
3637 err_out:
3638 return -EFAULT;
3639 }
3640
3641 /**
3642 * bpf_strnstr - Find the first substring in a length-limited string
3643 * @s1__ign: The string to be searched
3644 * @s2__ign: The string to search for
3645 * @len: the maximum number of characters to search
3646 *
3647 * Return:
3648 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3649 * within the first @len characters of @s1__ign
3650 * * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3651 * * %-EFAULT - Cannot read one of the strings
3652 * * %-E2BIG - One of the strings is too large
3653 * * %-ERANGE - One of the strings is outside of kernel address space
3654 */
bpf_strnstr(const char * s1__ign,const char * s2__ign,size_t len)3655 __bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign, size_t len)
3656 {
3657 char c1, c2;
3658 int i, j;
3659
3660 if (!copy_from_kernel_nofault_allowed(s1__ign, 1) ||
3661 !copy_from_kernel_nofault_allowed(s2__ign, 1)) {
3662 return -ERANGE;
3663 }
3664
3665 guard(pagefault)();
3666 for (i = 0; i < XATTR_SIZE_MAX; i++) {
3667 for (j = 0; i + j < len && j < XATTR_SIZE_MAX; j++) {
3668 __get_kernel_nofault(&c2, s2__ign + j, char, err_out);
3669 if (c2 == '\0')
3670 return i;
3671 __get_kernel_nofault(&c1, s1__ign + j, char, err_out);
3672 if (c1 == '\0')
3673 return -ENOENT;
3674 if (c1 != c2)
3675 break;
3676 }
3677 if (j == XATTR_SIZE_MAX)
3678 return -E2BIG;
3679 if (i + j == len)
3680 return -ENOENT;
3681 s1__ign++;
3682 }
3683 return -E2BIG;
3684 err_out:
3685 return -EFAULT;
3686 }
3687
3688 /**
3689 * bpf_strstr - Find the first substring in a string
3690 * @s1__ign: The string to be searched
3691 * @s2__ign: The string to search for
3692 *
3693 * Return:
3694 * * >=0 - Index of the first character of the first occurrence of @s2__ign
3695 * within @s1__ign
3696 * * %-ENOENT - @s2__ign is not a substring of @s1__ign
3697 * * %-EFAULT - Cannot read one of the strings
3698 * * %-E2BIG - One of the strings is too large
3699 * * %-ERANGE - One of the strings is outside of kernel address space
3700 */
bpf_strstr(const char * s1__ign,const char * s2__ign)3701 __bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3702 {
3703 return bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX);
3704 }
3705
3706 __bpf_kfunc_end_defs();
3707
3708 BTF_KFUNCS_START(generic_btf_ids)
3709 #ifdef CONFIG_CRASH_DUMP
3710 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3711 #endif
3712 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3713 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3714 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3715 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3716 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3717 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3718 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3719 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3720 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3721 BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
3722 BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
3723 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3724 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3725 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3726 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3727 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3728 BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
3729 BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
3730 BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
3731
3732 #ifdef CONFIG_CGROUPS
3733 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3734 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3735 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3736 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3737 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3738 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3739 #endif
3740 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3741 BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
3742 BTF_ID_FLAGS(func, bpf_throw)
3743 #ifdef CONFIG_BPF_EVENTS
3744 BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
3745 #endif
3746 BTF_KFUNCS_END(generic_btf_ids)
3747
3748 static const struct btf_kfunc_id_set generic_kfunc_set = {
3749 .owner = THIS_MODULE,
3750 .set = &generic_btf_ids,
3751 };
3752
3753
3754 BTF_ID_LIST(generic_dtor_ids)
3755 BTF_ID(struct, task_struct)
3756 BTF_ID(func, bpf_task_release_dtor)
3757 #ifdef CONFIG_CGROUPS
3758 BTF_ID(struct, cgroup)
3759 BTF_ID(func, bpf_cgroup_release_dtor)
3760 #endif
3761
3762 BTF_KFUNCS_START(common_btf_ids)
3763 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
3764 BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
3765 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3766 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3767 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3768 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3769 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3770 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3771 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3772 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3773 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3774 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3775 #ifdef CONFIG_CGROUPS
3776 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3777 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3778 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3779 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3780 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3781 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3782 #endif
3783 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3784 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3785 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3786 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3787 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3788 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3789 BTF_ID_FLAGS(func, bpf_dynptr_size)
3790 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3791 BTF_ID_FLAGS(func, bpf_dynptr_copy)
3792 BTF_ID_FLAGS(func, bpf_dynptr_memset)
3793 #ifdef CONFIG_NET
3794 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3795 #endif
3796 BTF_ID_FLAGS(func, bpf_wq_init)
3797 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3798 BTF_ID_FLAGS(func, bpf_wq_start)
3799 BTF_ID_FLAGS(func, bpf_preempt_disable)
3800 BTF_ID_FLAGS(func, bpf_preempt_enable)
3801 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3802 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3803 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3804 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3805 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
3806 BTF_ID_FLAGS(func, bpf_get_kmem_cache)
3807 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
3808 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3809 BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3810 BTF_ID_FLAGS(func, bpf_local_irq_save)
3811 BTF_ID_FLAGS(func, bpf_local_irq_restore)
3812 BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
3813 BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
3814 BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
3815 BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
3816 BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
3817 BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
3818 BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3819 BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
3820 #ifdef CONFIG_DMA_SHARED_BUFFER
3821 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
3822 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3823 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3824 #endif
3825 BTF_ID_FLAGS(func, __bpf_trap)
3826 BTF_ID_FLAGS(func, bpf_strcmp);
3827 BTF_ID_FLAGS(func, bpf_strchr);
3828 BTF_ID_FLAGS(func, bpf_strchrnul);
3829 BTF_ID_FLAGS(func, bpf_strnchr);
3830 BTF_ID_FLAGS(func, bpf_strrchr);
3831 BTF_ID_FLAGS(func, bpf_strlen);
3832 BTF_ID_FLAGS(func, bpf_strnlen);
3833 BTF_ID_FLAGS(func, bpf_strspn);
3834 BTF_ID_FLAGS(func, bpf_strcspn);
3835 BTF_ID_FLAGS(func, bpf_strstr);
3836 BTF_ID_FLAGS(func, bpf_strnstr);
3837 #if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
3838 BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
3839 #endif
3840 BTF_ID_FLAGS(func, bpf_stream_vprintk, KF_TRUSTED_ARGS)
3841 BTF_KFUNCS_END(common_btf_ids)
3842
3843 static const struct btf_kfunc_id_set common_kfunc_set = {
3844 .owner = THIS_MODULE,
3845 .set = &common_btf_ids,
3846 };
3847
kfunc_init(void)3848 static int __init kfunc_init(void)
3849 {
3850 int ret;
3851 const struct btf_id_dtor_kfunc generic_dtors[] = {
3852 {
3853 .btf_id = generic_dtor_ids[0],
3854 .kfunc_btf_id = generic_dtor_ids[1]
3855 },
3856 #ifdef CONFIG_CGROUPS
3857 {
3858 .btf_id = generic_dtor_ids[2],
3859 .kfunc_btf_id = generic_dtor_ids[3]
3860 },
3861 #endif
3862 };
3863
3864 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3865 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3866 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3867 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3868 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3869 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3870 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3871 ARRAY_SIZE(generic_dtors),
3872 THIS_MODULE);
3873 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3874 }
3875
3876 late_initcall(kfunc_init);
3877
3878 /* Get a pointer to dynptr data up to len bytes for read only access. If
3879 * the dynptr doesn't have continuous data up to len bytes, return NULL.
3880 */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3881 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3882 {
3883 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3884
3885 return bpf_dynptr_slice(p, 0, NULL, len);
3886 }
3887
3888 /* Get a pointer to dynptr data up to len bytes for read write access. If
3889 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3890 * is read only, return NULL.
3891 */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3892 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3893 {
3894 if (__bpf_dynptr_is_rdonly(ptr))
3895 return NULL;
3896 return (void *)__bpf_dynptr_data(ptr, len);
3897 }
3898