xref: /linux/arch/powerpc/kernel/fadump.c (revision 5f5c9952b33cb4e8d25c70ef29f7a45cd26b6a9b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 #include <asm/prom.h>
37 
38 /*
39  * The CPU who acquired the lock to trigger the fadump crash should
40  * wait for other CPUs to enter.
41  *
42  * The timeout is in milliseconds.
43  */
44 #define CRASH_TIMEOUT		500
45 
46 static struct fw_dump fw_dump;
47 
48 static void __init fadump_reserve_crash_area(u64 base);
49 
50 #ifndef CONFIG_PRESERVE_FA_DUMP
51 
52 static struct kobject *fadump_kobj;
53 
54 static atomic_t cpus_in_fadump;
55 static DEFINE_MUTEX(fadump_mutex);
56 
57 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
58 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
59 				 sizeof(struct fadump_memory_range))
60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61 static struct fadump_mrange_info
62 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63 
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65 
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68 
69 /*
70  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71  *
72  * This function initializes CMA area from fadump reserved memory.
73  * The total size of fadump reserved memory covers for boot memory size
74  * + cpu data size + hpte size and metadata.
75  * Initialize only the area equivalent to boot memory size for CMA use.
76  * The remaining portion of fadump reserved memory will be not given
77  * to CMA and pages for those will stay reserved. boot memory size is
78  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79  * But for some reason even if it fails we still have the memory reservation
80  * with us and we can still continue doing fadump.
81  */
fadump_cma_init(void)82 void __init fadump_cma_init(void)
83 {
84 	unsigned long long base, size, end;
85 	int rc;
86 
87 	if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
88 			fw_dump.dump_active)
89 		return;
90 	/*
91 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 	 */
93 	if (fw_dump.nocma || !fw_dump.boot_memory_size)
94 		return;
95 
96 	/*
97 	 * [base, end) should be reserved during early init in
98 	 * fadump_reserve_mem(). No need to check this here as
99 	 * cma_init_reserved_mem() already checks for overlap.
100 	 * Here we give the aligned chunk of this reserved memory to CMA.
101 	 */
102 	base = fw_dump.reserve_dump_area_start;
103 	size = fw_dump.boot_memory_size;
104 	end = base + size;
105 
106 	base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
107 	end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
108 	size = end - base;
109 
110 	if (end <= base) {
111 		pr_warn("%s: Too less memory to give to CMA\n", __func__);
112 		return;
113 	}
114 
115 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
116 	if (rc) {
117 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
118 		/*
119 		 * Though the CMA init has failed we still have memory
120 		 * reservation with us. The reserved memory will be
121 		 * blocked from production system usage.  Hence return 1,
122 		 * so that we can continue with fadump.
123 		 */
124 		return;
125 	}
126 
127 	/*
128 	 *  If CMA activation fails, keep the pages reserved, instead of
129 	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
130 	 */
131 	cma_reserve_pages_on_error(fadump_cma);
132 
133 	/*
134 	 * So we now have successfully initialized cma area for fadump.
135 	 */
136 	pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
137 		"bytes of memory reserved for firmware-assisted dump\n",
138 		cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
139 		fw_dump.reserve_dump_area_start,
140 		fw_dump.boot_memory_size >> 20);
141 	return;
142 }
143 #endif /* CONFIG_CMA */
144 
145 /*
146  * Additional parameters meant for capture kernel are placed in a dedicated area.
147  * If this is capture kernel boot, append these parameters to bootargs.
148  */
fadump_append_bootargs(void)149 void __init fadump_append_bootargs(void)
150 {
151 	char *append_args;
152 	size_t len;
153 
154 	if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
155 		return;
156 
157 	if (fw_dump.param_area < fw_dump.boot_mem_top) {
158 		if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
159 			pr_warn("WARNING: Can't use additional parameters area!\n");
160 			fw_dump.param_area = 0;
161 			return;
162 		}
163 	}
164 
165 	append_args = (char *)fw_dump.param_area;
166 	len = strlen(boot_command_line);
167 
168 	/*
169 	 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
170 	 * to cmdline size and proceed anyway.
171 	 */
172 	if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
173 		pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
174 
175 	pr_debug("Cmdline: %s\n", boot_command_line);
176 	snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
177 	pr_info("Updated cmdline: %s\n", boot_command_line);
178 }
179 
180 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)181 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
182 				      int depth, void *data)
183 {
184 	if (depth == 0) {
185 		early_init_dt_scan_reserved_ranges(node);
186 		return 0;
187 	}
188 
189 	if (depth != 1)
190 		return 0;
191 
192 	if (strcmp(uname, "rtas") == 0) {
193 		rtas_fadump_dt_scan(&fw_dump, node);
194 		return 1;
195 	}
196 
197 	if (strcmp(uname, "ibm,opal") == 0) {
198 		opal_fadump_dt_scan(&fw_dump, node);
199 		return 1;
200 	}
201 
202 	return 0;
203 }
204 
205 /*
206  * If fadump is registered, check if the memory provided
207  * falls within boot memory area and reserved memory area.
208  */
is_fadump_memory_area(u64 addr,unsigned long size)209 int is_fadump_memory_area(u64 addr, unsigned long size)
210 {
211 	u64 d_start, d_end;
212 
213 	if (!fw_dump.dump_registered)
214 		return 0;
215 
216 	if (!size)
217 		return 0;
218 
219 	d_start = fw_dump.reserve_dump_area_start;
220 	d_end = d_start + fw_dump.reserve_dump_area_size;
221 	if (((addr + size) > d_start) && (addr <= d_end))
222 		return 1;
223 
224 	return (addr <= fw_dump.boot_mem_top);
225 }
226 
should_fadump_crash(void)227 int should_fadump_crash(void)
228 {
229 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
230 		return 0;
231 	return 1;
232 }
233 
is_fadump_active(void)234 int is_fadump_active(void)
235 {
236 	return fw_dump.dump_active;
237 }
238 
239 /*
240  * Returns true, if there are no holes in memory area between d_start to d_end,
241  * false otherwise.
242  */
is_fadump_mem_area_contiguous(u64 d_start,u64 d_end)243 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
244 {
245 	phys_addr_t reg_start, reg_end;
246 	bool ret = false;
247 	u64 i, start, end;
248 
249 	for_each_mem_range(i, &reg_start, &reg_end) {
250 		start = max_t(u64, d_start, reg_start);
251 		end = min_t(u64, d_end, reg_end);
252 		if (d_start < end) {
253 			/* Memory hole from d_start to start */
254 			if (start > d_start)
255 				break;
256 
257 			if (end == d_end) {
258 				ret = true;
259 				break;
260 			}
261 
262 			d_start = end + 1;
263 		}
264 	}
265 
266 	return ret;
267 }
268 
269 /*
270  * Returns true, if there are no holes in reserved memory area,
271  * false otherwise.
272  */
is_fadump_reserved_mem_contiguous(void)273 bool is_fadump_reserved_mem_contiguous(void)
274 {
275 	u64 d_start, d_end;
276 
277 	d_start	= fw_dump.reserve_dump_area_start;
278 	d_end	= d_start + fw_dump.reserve_dump_area_size;
279 	return is_fadump_mem_area_contiguous(d_start, d_end);
280 }
281 
282 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)283 static void __init fadump_show_config(void)
284 {
285 	int i;
286 
287 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
288 			(fw_dump.fadump_supported ? "present" : "no support"));
289 
290 	if (!fw_dump.fadump_supported)
291 		return;
292 
293 	pr_debug("Fadump enabled    : %s\n", str_yes_no(fw_dump.fadump_enabled));
294 	pr_debug("Dump Active       : %s\n", str_yes_no(fw_dump.dump_active));
295 	pr_debug("Dump section sizes:\n");
296 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
297 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
298 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
299 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
300 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
301 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
302 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
303 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
304 	}
305 }
306 
307 /**
308  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
309  *
310  * Function to find the largest memory size we need to reserve during early
311  * boot process. This will be the size of the memory that is required for a
312  * kernel to boot successfully.
313  *
314  * This function has been taken from phyp-assisted dump feature implementation.
315  *
316  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
317  *
318  * TODO: Come up with better approach to find out more accurate memory size
319  * that is required for a kernel to boot successfully.
320  *
321  */
fadump_calculate_reserve_size(void)322 static __init u64 fadump_calculate_reserve_size(void)
323 {
324 	u64 base, size, bootmem_min;
325 	int ret;
326 
327 	if (fw_dump.reserve_bootvar)
328 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
329 
330 	/*
331 	 * Check if the size is specified through crashkernel= cmdline
332 	 * option. If yes, then use that but ignore base as fadump reserves
333 	 * memory at a predefined offset.
334 	 */
335 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
336 				&size, &base, NULL, NULL);
337 	if (ret == 0 && size > 0) {
338 		unsigned long max_size;
339 
340 		if (fw_dump.reserve_bootvar)
341 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
342 
343 		fw_dump.reserve_bootvar = (unsigned long)size;
344 
345 		/*
346 		 * Adjust if the boot memory size specified is above
347 		 * the upper limit.
348 		 */
349 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
350 		if (fw_dump.reserve_bootvar > max_size) {
351 			fw_dump.reserve_bootvar = max_size;
352 			pr_info("Adjusted boot memory size to %luMB\n",
353 				(fw_dump.reserve_bootvar >> 20));
354 		}
355 
356 		return fw_dump.reserve_bootvar;
357 	} else if (fw_dump.reserve_bootvar) {
358 		/*
359 		 * 'fadump_reserve_mem=' is being used to reserve memory
360 		 * for firmware-assisted dump.
361 		 */
362 		return fw_dump.reserve_bootvar;
363 	}
364 
365 	/* divide by 20 to get 5% of value */
366 	size = memblock_phys_mem_size() / 20;
367 
368 	/* round it down in multiples of 256 */
369 	size = size & ~0x0FFFFFFFUL;
370 
371 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
372 	if (memory_limit && size > memory_limit)
373 		size = memory_limit;
374 
375 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
376 	return (size > bootmem_min ? size : bootmem_min);
377 }
378 
379 /*
380  * Calculate the total memory size required to be reserved for
381  * firmware-assisted dump registration.
382  */
get_fadump_area_size(void)383 static unsigned long __init get_fadump_area_size(void)
384 {
385 	unsigned long size = 0;
386 
387 	size += fw_dump.cpu_state_data_size;
388 	size += fw_dump.hpte_region_size;
389 	/*
390 	 * Account for pagesize alignment of boot memory area destination address.
391 	 * This faciliates in mmap reading of first kernel's memory.
392 	 */
393 	size = PAGE_ALIGN(size);
394 	size += fw_dump.boot_memory_size;
395 	size += sizeof(struct fadump_crash_info_header);
396 
397 	/* This is to hold kernel metadata on platforms that support it */
398 	size += (fw_dump.ops->fadump_get_metadata_size ?
399 		 fw_dump.ops->fadump_get_metadata_size() : 0);
400 	return size;
401 }
402 
add_boot_mem_region(unsigned long rstart,unsigned long rsize)403 static int __init add_boot_mem_region(unsigned long rstart,
404 				      unsigned long rsize)
405 {
406 	int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
407 	int i = fw_dump.boot_mem_regs_cnt++;
408 
409 	if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
410 		fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
411 		return 0;
412 	}
413 
414 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
415 		 i, rstart, (rstart + rsize));
416 	fw_dump.boot_mem_addr[i] = rstart;
417 	fw_dump.boot_mem_sz[i] = rsize;
418 	return 1;
419 }
420 
421 /*
422  * Firmware usually has a hard limit on the data it can copy per region.
423  * Honour that by splitting a memory range into multiple regions.
424  */
add_boot_mem_regions(unsigned long mstart,unsigned long msize)425 static int __init add_boot_mem_regions(unsigned long mstart,
426 				       unsigned long msize)
427 {
428 	unsigned long rstart, rsize, max_size;
429 	int ret = 1;
430 
431 	rstart = mstart;
432 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
433 	while (msize) {
434 		if (msize > max_size)
435 			rsize = max_size;
436 		else
437 			rsize = msize;
438 
439 		ret = add_boot_mem_region(rstart, rsize);
440 		if (!ret)
441 			break;
442 
443 		msize -= rsize;
444 		rstart += rsize;
445 	}
446 
447 	return ret;
448 }
449 
fadump_get_boot_mem_regions(void)450 static int __init fadump_get_boot_mem_regions(void)
451 {
452 	unsigned long size, cur_size, hole_size, last_end;
453 	unsigned long mem_size = fw_dump.boot_memory_size;
454 	phys_addr_t reg_start, reg_end;
455 	int ret = 1;
456 	u64 i;
457 
458 	fw_dump.boot_mem_regs_cnt = 0;
459 
460 	last_end = 0;
461 	hole_size = 0;
462 	cur_size = 0;
463 	for_each_mem_range(i, &reg_start, &reg_end) {
464 		size = reg_end - reg_start;
465 		hole_size += (reg_start - last_end);
466 
467 		if ((cur_size + size) >= mem_size) {
468 			size = (mem_size - cur_size);
469 			ret = add_boot_mem_regions(reg_start, size);
470 			break;
471 		}
472 
473 		mem_size -= size;
474 		cur_size += size;
475 		ret = add_boot_mem_regions(reg_start, size);
476 		if (!ret)
477 			break;
478 
479 		last_end = reg_end;
480 	}
481 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
482 
483 	return ret;
484 }
485 
486 /*
487  * Returns true, if the given range overlaps with reserved memory ranges
488  * starting at idx. Also, updates idx to index of overlapping memory range
489  * with the given memory range.
490  * False, otherwise.
491  */
overlaps_reserved_ranges(u64 base,u64 end,int * idx)492 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
493 {
494 	bool ret = false;
495 	int i;
496 
497 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
498 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
499 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
500 
501 		if (end <= rbase)
502 			break;
503 
504 		if ((end > rbase) &&  (base < rend)) {
505 			*idx = i;
506 			ret = true;
507 			break;
508 		}
509 	}
510 
511 	return ret;
512 }
513 
514 /*
515  * Locate a suitable memory area to reserve memory for FADump. While at it,
516  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
517  */
fadump_locate_reserve_mem(u64 base,u64 size)518 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
519 {
520 	struct fadump_memory_range *mrngs;
521 	phys_addr_t mstart, mend;
522 	int idx = 0;
523 	u64 i, ret = 0;
524 
525 	mrngs = reserved_mrange_info.mem_ranges;
526 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
527 				&mstart, &mend, NULL) {
528 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
529 			 i, mstart, mend, base);
530 
531 		if (mstart > base)
532 			base = PAGE_ALIGN(mstart);
533 
534 		while ((mend > base) && ((mend - base) >= size)) {
535 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
536 				ret = base;
537 				goto out;
538 			}
539 
540 			base = mrngs[idx].base + mrngs[idx].size;
541 			base = PAGE_ALIGN(base);
542 		}
543 	}
544 
545 out:
546 	return ret;
547 }
548 
fadump_reserve_mem(void)549 int __init fadump_reserve_mem(void)
550 {
551 	u64 base, size, mem_boundary, bootmem_min;
552 	int ret = 1;
553 
554 	if (!fw_dump.fadump_enabled)
555 		return 0;
556 
557 	if (!fw_dump.fadump_supported) {
558 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
559 		goto error_out;
560 	}
561 
562 	/*
563 	 * Initialize boot memory size
564 	 * If dump is active then we have already calculated the size during
565 	 * first kernel.
566 	 */
567 	if (!fw_dump.dump_active) {
568 		fw_dump.boot_memory_size =
569 			PAGE_ALIGN(fadump_calculate_reserve_size());
570 
571 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
572 		if (fw_dump.boot_memory_size < bootmem_min) {
573 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
574 			       fw_dump.boot_memory_size, bootmem_min);
575 			goto error_out;
576 		}
577 
578 		if (!fadump_get_boot_mem_regions()) {
579 			pr_err("Too many holes in boot memory area to enable fadump\n");
580 			goto error_out;
581 		}
582 	}
583 
584 	if (memory_limit)
585 		mem_boundary = memory_limit;
586 	else
587 		mem_boundary = memblock_end_of_DRAM();
588 
589 	base = fw_dump.boot_mem_top;
590 	size = get_fadump_area_size();
591 	fw_dump.reserve_dump_area_size = size;
592 	if (fw_dump.dump_active) {
593 		pr_info("Firmware-assisted dump is active.\n");
594 
595 #ifdef CONFIG_HUGETLB_PAGE
596 		/*
597 		 * FADump capture kernel doesn't care much about hugepages.
598 		 * In fact, handling hugepages in capture kernel is asking for
599 		 * trouble. So, disable HugeTLB support when fadump is active.
600 		 */
601 		hugetlb_disabled = true;
602 #endif
603 		/*
604 		 * If last boot has crashed then reserve all the memory
605 		 * above boot memory size so that we don't touch it until
606 		 * dump is written to disk by userspace tool. This memory
607 		 * can be released for general use by invalidating fadump.
608 		 */
609 		fadump_reserve_crash_area(base);
610 
611 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
612 		pr_debug("Reserve dump area start address: 0x%lx\n",
613 			 fw_dump.reserve_dump_area_start);
614 	} else {
615 		/*
616 		 * Reserve memory at an offset closer to bottom of the RAM to
617 		 * minimize the impact of memory hot-remove operation.
618 		 */
619 		base = fadump_locate_reserve_mem(base, size);
620 
621 		if (!base || (base + size > mem_boundary)) {
622 			pr_err("Failed to find memory chunk for reservation!\n");
623 			goto error_out;
624 		}
625 		fw_dump.reserve_dump_area_start = base;
626 
627 		/*
628 		 * Calculate the kernel metadata address and register it with
629 		 * f/w if the platform supports.
630 		 */
631 		if (fw_dump.ops->fadump_setup_metadata &&
632 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
633 			goto error_out;
634 
635 		if (memblock_reserve(base, size)) {
636 			pr_err("Failed to reserve memory!\n");
637 			goto error_out;
638 		}
639 
640 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
641 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
642 	}
643 
644 	return ret;
645 error_out:
646 	fw_dump.fadump_enabled = 0;
647 	fw_dump.reserve_dump_area_size = 0;
648 	return 0;
649 }
650 
651 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)652 static int __init early_fadump_param(char *p)
653 {
654 	if (!p)
655 		return 1;
656 
657 	if (strncmp(p, "on", 2) == 0)
658 		fw_dump.fadump_enabled = 1;
659 	else if (strncmp(p, "off", 3) == 0)
660 		fw_dump.fadump_enabled = 0;
661 	else if (strncmp(p, "nocma", 5) == 0) {
662 		fw_dump.fadump_enabled = 1;
663 		fw_dump.nocma = 1;
664 	}
665 
666 	return 0;
667 }
668 early_param("fadump", early_fadump_param);
669 
670 /*
671  * Look for fadump_reserve_mem= cmdline option
672  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
673  *       the sooner 'crashkernel=' parameter is accustomed to.
674  */
early_fadump_reserve_mem(char * p)675 static int __init early_fadump_reserve_mem(char *p)
676 {
677 	if (p)
678 		fw_dump.reserve_bootvar = memparse(p, &p);
679 	return 0;
680 }
681 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
682 
crash_fadump(struct pt_regs * regs,const char * str)683 void crash_fadump(struct pt_regs *regs, const char *str)
684 {
685 	unsigned int msecs;
686 	struct fadump_crash_info_header *fdh = NULL;
687 	int old_cpu, this_cpu;
688 	/* Do not include first CPU */
689 	unsigned int ncpus = num_online_cpus() - 1;
690 
691 	if (!should_fadump_crash())
692 		return;
693 
694 	/*
695 	 * old_cpu == -1 means this is the first CPU which has come here,
696 	 * go ahead and trigger fadump.
697 	 *
698 	 * old_cpu != -1 means some other CPU has already on its way
699 	 * to trigger fadump, just keep looping here.
700 	 */
701 	this_cpu = smp_processor_id();
702 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
703 
704 	if (old_cpu != -1) {
705 		atomic_inc(&cpus_in_fadump);
706 
707 		/*
708 		 * We can't loop here indefinitely. Wait as long as fadump
709 		 * is in force. If we race with fadump un-registration this
710 		 * loop will break and then we go down to normal panic path
711 		 * and reboot. If fadump is in force the first crashing
712 		 * cpu will definitely trigger fadump.
713 		 */
714 		while (fw_dump.dump_registered)
715 			cpu_relax();
716 		return;
717 	}
718 
719 	fdh = __va(fw_dump.fadumphdr_addr);
720 	fdh->crashing_cpu = crashing_cpu;
721 	crash_save_vmcoreinfo();
722 
723 	if (regs)
724 		fdh->regs = *regs;
725 	else
726 		ppc_save_regs(&fdh->regs);
727 
728 	fdh->cpu_mask = *cpu_online_mask;
729 
730 	/*
731 	 * If we came in via system reset, wait a while for the secondary
732 	 * CPUs to enter.
733 	 */
734 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
735 		msecs = CRASH_TIMEOUT;
736 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
737 			mdelay(1);
738 	}
739 
740 	fw_dump.ops->fadump_trigger(fdh, str);
741 }
742 
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)743 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
744 {
745 	struct elf_prstatus prstatus;
746 
747 	memset(&prstatus, 0, sizeof(prstatus));
748 	/*
749 	 * FIXME: How do i get PID? Do I really need it?
750 	 * prstatus.pr_pid = ????
751 	 */
752 	elf_core_copy_regs(&prstatus.pr_reg, regs);
753 	buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
754 			      &prstatus, sizeof(prstatus));
755 	return buf;
756 }
757 
fadump_update_elfcore_header(char * bufp)758 void __init fadump_update_elfcore_header(char *bufp)
759 {
760 	struct elf_phdr *phdr;
761 
762 	bufp += sizeof(struct elfhdr);
763 
764 	/* First note is a place holder for cpu notes info. */
765 	phdr = (struct elf_phdr *)bufp;
766 
767 	if (phdr->p_type == PT_NOTE) {
768 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
769 		phdr->p_offset	= phdr->p_paddr;
770 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
771 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
772 	}
773 	return;
774 }
775 
fadump_alloc_buffer(unsigned long size)776 static void *__init fadump_alloc_buffer(unsigned long size)
777 {
778 	unsigned long count, i;
779 	struct page *page;
780 	void *vaddr;
781 
782 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
783 	if (!vaddr)
784 		return NULL;
785 
786 	count = PAGE_ALIGN(size) / PAGE_SIZE;
787 	page = virt_to_page(vaddr);
788 	for (i = 0; i < count; i++)
789 		mark_page_reserved(page + i);
790 	return vaddr;
791 }
792 
fadump_free_buffer(unsigned long vaddr,unsigned long size)793 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
794 {
795 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
796 }
797 
fadump_setup_cpu_notes_buf(u32 num_cpus)798 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
799 {
800 	/* Allocate buffer to hold cpu crash notes. */
801 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
802 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
803 	fw_dump.cpu_notes_buf_vaddr =
804 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
805 	if (!fw_dump.cpu_notes_buf_vaddr) {
806 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
807 		       fw_dump.cpu_notes_buf_size);
808 		return -ENOMEM;
809 	}
810 
811 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
812 		 fw_dump.cpu_notes_buf_size,
813 		 fw_dump.cpu_notes_buf_vaddr);
814 	return 0;
815 }
816 
fadump_free_cpu_notes_buf(void)817 void fadump_free_cpu_notes_buf(void)
818 {
819 	if (!fw_dump.cpu_notes_buf_vaddr)
820 		return;
821 
822 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
823 			   fw_dump.cpu_notes_buf_size);
824 	fw_dump.cpu_notes_buf_vaddr = 0;
825 	fw_dump.cpu_notes_buf_size = 0;
826 }
827 
fadump_free_mem_ranges(struct fadump_mrange_info * mrange_info)828 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
829 {
830 	if (mrange_info->is_static) {
831 		mrange_info->mem_range_cnt = 0;
832 		return;
833 	}
834 
835 	kfree(mrange_info->mem_ranges);
836 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
837 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
838 }
839 
840 /*
841  * Allocate or reallocate mem_ranges array in incremental units
842  * of PAGE_SIZE.
843  */
fadump_alloc_mem_ranges(struct fadump_mrange_info * mrange_info)844 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
845 {
846 	struct fadump_memory_range *new_array;
847 	u64 new_size;
848 
849 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
850 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
851 		 new_size, mrange_info->name);
852 
853 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
854 	if (new_array == NULL) {
855 		pr_err("Insufficient memory for setting up %s memory ranges\n",
856 		       mrange_info->name);
857 		fadump_free_mem_ranges(mrange_info);
858 		return -ENOMEM;
859 	}
860 
861 	mrange_info->mem_ranges = new_array;
862 	mrange_info->mem_ranges_sz = new_size;
863 	mrange_info->max_mem_ranges = (new_size /
864 				       sizeof(struct fadump_memory_range));
865 	return 0;
866 }
fadump_add_mem_range(struct fadump_mrange_info * mrange_info,u64 base,u64 end)867 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
868 				       u64 base, u64 end)
869 {
870 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
871 	bool is_adjacent = false;
872 	u64 start, size;
873 
874 	if (base == end)
875 		return 0;
876 
877 	/*
878 	 * Fold adjacent memory ranges to bring down the memory ranges/
879 	 * PT_LOAD segments count.
880 	 */
881 	if (mrange_info->mem_range_cnt) {
882 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
883 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
884 
885 		/*
886 		 * Boot memory area needs separate PT_LOAD segment(s) as it
887 		 * is moved to a different location at the time of crash.
888 		 * So, fold only if the region is not boot memory area.
889 		 */
890 		if ((start + size) == base && start >= fw_dump.boot_mem_top)
891 			is_adjacent = true;
892 	}
893 	if (!is_adjacent) {
894 		/* resize the array on reaching the limit */
895 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
896 			int ret;
897 
898 			if (mrange_info->is_static) {
899 				pr_err("Reached array size limit for %s memory ranges\n",
900 				       mrange_info->name);
901 				return -ENOSPC;
902 			}
903 
904 			ret = fadump_alloc_mem_ranges(mrange_info);
905 			if (ret)
906 				return ret;
907 
908 			/* Update to the new resized array */
909 			mem_ranges = mrange_info->mem_ranges;
910 		}
911 
912 		start = base;
913 		mem_ranges[mrange_info->mem_range_cnt].base = start;
914 		mrange_info->mem_range_cnt++;
915 	}
916 
917 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
918 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
919 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
920 		 start, end - 1, (end - start));
921 	return 0;
922 }
923 
fadump_init_elfcore_header(char * bufp)924 static int fadump_init_elfcore_header(char *bufp)
925 {
926 	struct elfhdr *elf;
927 
928 	elf = (struct elfhdr *) bufp;
929 	bufp += sizeof(struct elfhdr);
930 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
931 	elf->e_ident[EI_CLASS] = ELF_CLASS;
932 	elf->e_ident[EI_DATA] = ELF_DATA;
933 	elf->e_ident[EI_VERSION] = EV_CURRENT;
934 	elf->e_ident[EI_OSABI] = ELF_OSABI;
935 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
936 	elf->e_type = ET_CORE;
937 	elf->e_machine = ELF_ARCH;
938 	elf->e_version = EV_CURRENT;
939 	elf->e_entry = 0;
940 	elf->e_phoff = sizeof(struct elfhdr);
941 	elf->e_shoff = 0;
942 
943 	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
944 		elf->e_flags = 2;
945 	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
946 		elf->e_flags = 1;
947 	else
948 		elf->e_flags = 0;
949 
950 	elf->e_ehsize = sizeof(struct elfhdr);
951 	elf->e_phentsize = sizeof(struct elf_phdr);
952 	elf->e_phnum = 0;
953 	elf->e_shentsize = 0;
954 	elf->e_shnum = 0;
955 	elf->e_shstrndx = 0;
956 
957 	return 0;
958 }
959 
960 /*
961  * If the given physical address falls within the boot memory region then
962  * return the relocated address that points to the dump region reserved
963  * for saving initial boot memory contents.
964  */
fadump_relocate(unsigned long paddr)965 static inline unsigned long fadump_relocate(unsigned long paddr)
966 {
967 	unsigned long raddr, rstart, rend, rlast, hole_size;
968 	int i;
969 
970 	hole_size = 0;
971 	rlast = 0;
972 	raddr = paddr;
973 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
974 		rstart = fw_dump.boot_mem_addr[i];
975 		rend = rstart + fw_dump.boot_mem_sz[i];
976 		hole_size += (rstart - rlast);
977 
978 		if (paddr >= rstart && paddr < rend) {
979 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
980 			break;
981 		}
982 
983 		rlast = rend;
984 	}
985 
986 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
987 	return raddr;
988 }
989 
populate_elf_pt_load(struct elf_phdr * phdr,u64 start,u64 size,unsigned long long offset)990 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
991 			     u64 size, unsigned long long offset)
992 {
993 	phdr->p_align	= 0;
994 	phdr->p_memsz	= size;
995 	phdr->p_filesz	= size;
996 	phdr->p_paddr	= start;
997 	phdr->p_offset	= offset;
998 	phdr->p_type	= PT_LOAD;
999 	phdr->p_flags	= PF_R|PF_W|PF_X;
1000 	phdr->p_vaddr	= (unsigned long)__va(start);
1001 }
1002 
fadump_populate_elfcorehdr(struct fadump_crash_info_header * fdh)1003 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1004 {
1005 	char *bufp;
1006 	struct elfhdr *elf;
1007 	struct elf_phdr *phdr;
1008 	u64 boot_mem_dest_offset;
1009 	unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1010 
1011 	bufp = (char *) fw_dump.elfcorehdr_addr;
1012 	fadump_init_elfcore_header(bufp);
1013 	elf = (struct elfhdr *)bufp;
1014 	bufp += sizeof(struct elfhdr);
1015 
1016 	/*
1017 	 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1018 	 * The notes info will be populated later by platform-specific code.
1019 	 * Hence, this PT_NOTE will always be the first ELF note.
1020 	 *
1021 	 * NOTE: Any new ELF note addition should be placed after this note.
1022 	 */
1023 	phdr = (struct elf_phdr *)bufp;
1024 	bufp += sizeof(struct elf_phdr);
1025 	phdr->p_type = PT_NOTE;
1026 	phdr->p_flags	= 0;
1027 	phdr->p_vaddr	= 0;
1028 	phdr->p_align	= 0;
1029 	phdr->p_offset	= 0;
1030 	phdr->p_paddr	= 0;
1031 	phdr->p_filesz	= 0;
1032 	phdr->p_memsz	= 0;
1033 	/* Increment number of program headers. */
1034 	(elf->e_phnum)++;
1035 
1036 	/* setup ELF PT_NOTE for vmcoreinfo */
1037 	phdr = (struct elf_phdr *)bufp;
1038 	bufp += sizeof(struct elf_phdr);
1039 	phdr->p_type	= PT_NOTE;
1040 	phdr->p_flags	= 0;
1041 	phdr->p_vaddr	= 0;
1042 	phdr->p_align	= 0;
1043 	phdr->p_paddr	= phdr->p_offset = fdh->vmcoreinfo_raddr;
1044 	phdr->p_memsz	= phdr->p_filesz = fdh->vmcoreinfo_size;
1045 	/* Increment number of program headers. */
1046 	(elf->e_phnum)++;
1047 
1048 	/*
1049 	 * Setup PT_LOAD sections. first include boot memory regions
1050 	 * and then add rest of the memory regions.
1051 	 */
1052 	boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1053 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1054 		phdr = (struct elf_phdr *)bufp;
1055 		bufp += sizeof(struct elf_phdr);
1056 		populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1057 				     fw_dump.boot_mem_sz[i],
1058 				     boot_mem_dest_offset);
1059 		/* Increment number of program headers. */
1060 		(elf->e_phnum)++;
1061 		boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1062 	}
1063 
1064 	/* Memory reserved for fadump in first kernel */
1065 	ra_start = fw_dump.reserve_dump_area_start;
1066 	ra_size = get_fadump_area_size();
1067 	ra_end = ra_start + ra_size;
1068 
1069 	phdr = (struct elf_phdr *)bufp;
1070 	for_each_mem_range(i, &mstart, &mend) {
1071 		/* Boot memory regions already added, skip them now */
1072 		if (mstart < fw_dump.boot_mem_top) {
1073 			if (mend > fw_dump.boot_mem_top)
1074 				mstart = fw_dump.boot_mem_top;
1075 			else
1076 				continue;
1077 		}
1078 
1079 		/* Handle memblock regions overlaps with fadump reserved area */
1080 		if ((ra_start < mend) && (ra_end > mstart)) {
1081 			if ((mstart < ra_start) && (mend > ra_end)) {
1082 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1083 				/* Increment number of program headers. */
1084 				(elf->e_phnum)++;
1085 				bufp += sizeof(struct elf_phdr);
1086 				phdr = (struct elf_phdr *)bufp;
1087 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1088 			} else if (mstart < ra_start) {
1089 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1090 			} else if (ra_end < mend) {
1091 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1092 			}
1093 		} else {
1094 		/* No overlap with fadump reserved memory region */
1095 			populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1096 		}
1097 
1098 		/* Increment number of program headers. */
1099 		(elf->e_phnum)++;
1100 		bufp += sizeof(struct elf_phdr);
1101 		phdr = (struct elf_phdr *) bufp;
1102 	}
1103 }
1104 
init_fadump_header(unsigned long addr)1105 static unsigned long init_fadump_header(unsigned long addr)
1106 {
1107 	struct fadump_crash_info_header *fdh;
1108 
1109 	if (!addr)
1110 		return 0;
1111 
1112 	fdh = __va(addr);
1113 	addr += sizeof(struct fadump_crash_info_header);
1114 
1115 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1116 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1117 	fdh->version = FADUMP_HEADER_VERSION;
1118 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1119 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1120 
1121 	/*
1122 	 * The physical address and size of vmcoreinfo are required in the
1123 	 * second kernel to prepare elfcorehdr.
1124 	 */
1125 	fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1126 	fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1127 
1128 
1129 	fdh->pt_regs_sz = sizeof(struct pt_regs);
1130 	/*
1131 	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1132 	 * register data is processed while exporting the vmcore.
1133 	 */
1134 	fdh->cpu_mask = *cpu_possible_mask;
1135 	fdh->cpu_mask_sz = sizeof(struct cpumask);
1136 
1137 	return addr;
1138 }
1139 
register_fadump(void)1140 static int register_fadump(void)
1141 {
1142 	unsigned long addr;
1143 
1144 	/*
1145 	 * If no memory is reserved then we can not register for firmware-
1146 	 * assisted dump.
1147 	 */
1148 	if (!fw_dump.reserve_dump_area_size)
1149 		return -ENODEV;
1150 
1151 	addr = fw_dump.fadumphdr_addr;
1152 
1153 	/* Initialize fadump crash info header. */
1154 	addr = init_fadump_header(addr);
1155 
1156 	/* register the future kernel dump with firmware. */
1157 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1158 	return fw_dump.ops->fadump_register(&fw_dump);
1159 }
1160 
fadump_cleanup(void)1161 void fadump_cleanup(void)
1162 {
1163 	if (!fw_dump.fadump_supported)
1164 		return;
1165 
1166 	/* Invalidate the registration only if dump is active. */
1167 	if (fw_dump.dump_active) {
1168 		pr_debug("Invalidating firmware-assisted dump registration\n");
1169 		fw_dump.ops->fadump_invalidate(&fw_dump);
1170 	} else if (fw_dump.dump_registered) {
1171 		/* Un-register Firmware-assisted dump if it was registered. */
1172 		fw_dump.ops->fadump_unregister(&fw_dump);
1173 	}
1174 
1175 	if (fw_dump.ops->fadump_cleanup)
1176 		fw_dump.ops->fadump_cleanup(&fw_dump);
1177 }
1178 
fadump_free_reserved_memory(unsigned long start_pfn,unsigned long end_pfn)1179 static void fadump_free_reserved_memory(unsigned long start_pfn,
1180 					unsigned long end_pfn)
1181 {
1182 	unsigned long pfn;
1183 	unsigned long time_limit = jiffies + HZ;
1184 
1185 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1186 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1187 
1188 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1189 		free_reserved_page(pfn_to_page(pfn));
1190 
1191 		if (time_after(jiffies, time_limit)) {
1192 			cond_resched();
1193 			time_limit = jiffies + HZ;
1194 		}
1195 	}
1196 }
1197 
1198 /*
1199  * Skip memory holes and free memory that was actually reserved.
1200  */
fadump_release_reserved_area(u64 start,u64 end)1201 static void fadump_release_reserved_area(u64 start, u64 end)
1202 {
1203 	unsigned long reg_spfn, reg_epfn;
1204 	u64 tstart, tend, spfn, epfn;
1205 	int i;
1206 
1207 	spfn = PHYS_PFN(start);
1208 	epfn = PHYS_PFN(end);
1209 
1210 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1211 		tstart = max_t(u64, spfn, reg_spfn);
1212 		tend   = min_t(u64, epfn, reg_epfn);
1213 
1214 		if (tstart < tend) {
1215 			fadump_free_reserved_memory(tstart, tend);
1216 
1217 			if (tend == epfn)
1218 				break;
1219 
1220 			spfn = tend;
1221 		}
1222 	}
1223 }
1224 
1225 /*
1226  * Sort the mem ranges in-place and merge adjacent ranges
1227  * to minimize the memory ranges count.
1228  */
sort_and_merge_mem_ranges(struct fadump_mrange_info * mrange_info)1229 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1230 {
1231 	struct fadump_memory_range *mem_ranges;
1232 	u64 base, size;
1233 	int i, j, idx;
1234 
1235 	if (!reserved_mrange_info.mem_range_cnt)
1236 		return;
1237 
1238 	/* Sort the memory ranges */
1239 	mem_ranges = mrange_info->mem_ranges;
1240 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1241 		idx = i;
1242 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1243 			if (mem_ranges[idx].base > mem_ranges[j].base)
1244 				idx = j;
1245 		}
1246 		if (idx != i)
1247 			swap(mem_ranges[idx], mem_ranges[i]);
1248 	}
1249 
1250 	/* Merge adjacent reserved ranges */
1251 	idx = 0;
1252 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1253 		base = mem_ranges[i-1].base;
1254 		size = mem_ranges[i-1].size;
1255 		if (mem_ranges[i].base == (base + size))
1256 			mem_ranges[idx].size += mem_ranges[i].size;
1257 		else {
1258 			idx++;
1259 			if (i == idx)
1260 				continue;
1261 
1262 			mem_ranges[idx] = mem_ranges[i];
1263 		}
1264 	}
1265 	mrange_info->mem_range_cnt = idx + 1;
1266 }
1267 
1268 /*
1269  * Scan reserved-ranges to consider them while reserving/releasing
1270  * memory for FADump.
1271  */
early_init_dt_scan_reserved_ranges(unsigned long node)1272 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1273 {
1274 	const __be32 *prop;
1275 	int len, ret = -1;
1276 	unsigned long i;
1277 
1278 	/* reserved-ranges already scanned */
1279 	if (reserved_mrange_info.mem_range_cnt != 0)
1280 		return;
1281 
1282 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1283 	if (!prop)
1284 		return;
1285 
1286 	/*
1287 	 * Each reserved range is an (address,size) pair, 2 cells each,
1288 	 * totalling 4 cells per range.
1289 	 */
1290 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1291 		u64 base, size;
1292 
1293 		base = of_read_number(prop + (i * 4) + 0, 2);
1294 		size = of_read_number(prop + (i * 4) + 2, 2);
1295 
1296 		if (size) {
1297 			ret = fadump_add_mem_range(&reserved_mrange_info,
1298 						   base, base + size);
1299 			if (ret < 0) {
1300 				pr_warn("some reserved ranges are ignored!\n");
1301 				break;
1302 			}
1303 		}
1304 	}
1305 
1306 	/* Compact reserved ranges */
1307 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1308 }
1309 
1310 /*
1311  * Release the memory that was reserved during early boot to preserve the
1312  * crash'ed kernel's memory contents except reserved dump area (permanent
1313  * reservation) and reserved ranges used by F/W. The released memory will
1314  * be available for general use.
1315  */
fadump_release_memory(u64 begin,u64 end)1316 static void fadump_release_memory(u64 begin, u64 end)
1317 {
1318 	u64 ra_start, ra_end, tstart;
1319 	int i, ret;
1320 
1321 	ra_start = fw_dump.reserve_dump_area_start;
1322 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1323 
1324 	/*
1325 	 * If reserved ranges array limit is hit, overwrite the last reserved
1326 	 * memory range with reserved dump area to ensure it is excluded from
1327 	 * the memory being released (reused for next FADump registration).
1328 	 */
1329 	if (reserved_mrange_info.mem_range_cnt ==
1330 	    reserved_mrange_info.max_mem_ranges)
1331 		reserved_mrange_info.mem_range_cnt--;
1332 
1333 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1334 	if (ret != 0)
1335 		return;
1336 
1337 	/* Get the reserved ranges list in order first. */
1338 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1339 
1340 	/* Exclude reserved ranges and release remaining memory */
1341 	tstart = begin;
1342 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1343 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1344 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1345 
1346 		if (tstart >= ra_end)
1347 			continue;
1348 
1349 		if (tstart < ra_start)
1350 			fadump_release_reserved_area(tstart, ra_start);
1351 		tstart = ra_end;
1352 	}
1353 
1354 	if (tstart < end)
1355 		fadump_release_reserved_area(tstart, end);
1356 }
1357 
fadump_free_elfcorehdr_buf(void)1358 static void fadump_free_elfcorehdr_buf(void)
1359 {
1360 	if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1361 		return;
1362 
1363 	/*
1364 	 * Before freeing the memory of `elfcorehdr`, reset the global
1365 	 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1366 	 * invalid memory.
1367 	 */
1368 	elfcorehdr_addr = ELFCORE_ADDR_ERR;
1369 	fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1370 	fw_dump.elfcorehdr_addr = 0;
1371 	fw_dump.elfcorehdr_size = 0;
1372 }
1373 
fadump_invalidate_release_mem(void)1374 static void fadump_invalidate_release_mem(void)
1375 {
1376 	scoped_guard(mutex, &fadump_mutex) {
1377 		if (!fw_dump.dump_active)
1378 			return;
1379 		fadump_cleanup();
1380 	}
1381 
1382 	fadump_free_elfcorehdr_buf();
1383 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1384 	fadump_free_cpu_notes_buf();
1385 
1386 	/*
1387 	 * Setup kernel metadata and initialize the kernel dump
1388 	 * memory structure for FADump re-registration.
1389 	 */
1390 	if (fw_dump.ops->fadump_setup_metadata &&
1391 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1392 		pr_warn("Failed to setup kernel metadata!\n");
1393 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1394 }
1395 
release_mem_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1396 static ssize_t release_mem_store(struct kobject *kobj,
1397 				 struct kobj_attribute *attr,
1398 				 const char *buf, size_t count)
1399 {
1400 	int input = -1;
1401 
1402 	if (!fw_dump.dump_active)
1403 		return -EPERM;
1404 
1405 	if (kstrtoint(buf, 0, &input))
1406 		return -EINVAL;
1407 
1408 	if (input == 1) {
1409 		/*
1410 		 * Take away the '/proc/vmcore'. We are releasing the dump
1411 		 * memory, hence it will not be valid anymore.
1412 		 */
1413 #ifdef CONFIG_PROC_VMCORE
1414 		vmcore_cleanup();
1415 #endif
1416 		fadump_invalidate_release_mem();
1417 
1418 	} else
1419 		return -EINVAL;
1420 	return count;
1421 }
1422 
1423 /* Release the reserved memory and disable the FADump */
unregister_fadump(void)1424 static void __init unregister_fadump(void)
1425 {
1426 	fadump_cleanup();
1427 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1428 			      fw_dump.reserve_dump_area_size);
1429 	fw_dump.fadump_enabled = 0;
1430 	kobject_put(fadump_kobj);
1431 }
1432 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1433 static ssize_t enabled_show(struct kobject *kobj,
1434 			    struct kobj_attribute *attr,
1435 			    char *buf)
1436 {
1437 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1438 }
1439 
1440 /*
1441  * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1442  * to usersapce that fadump re-registration is not required on memory
1443  * hotplug events.
1444  */
hotplug_ready_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1445 static ssize_t hotplug_ready_show(struct kobject *kobj,
1446 				      struct kobj_attribute *attr,
1447 				      char *buf)
1448 {
1449 	return sprintf(buf, "%d\n", 1);
1450 }
1451 
mem_reserved_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1452 static ssize_t mem_reserved_show(struct kobject *kobj,
1453 				 struct kobj_attribute *attr,
1454 				 char *buf)
1455 {
1456 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1457 }
1458 
registered_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1459 static ssize_t registered_show(struct kobject *kobj,
1460 			       struct kobj_attribute *attr,
1461 			       char *buf)
1462 {
1463 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1464 }
1465 
bootargs_append_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1466 static ssize_t bootargs_append_show(struct kobject *kobj,
1467 				   struct kobj_attribute *attr,
1468 				   char *buf)
1469 {
1470 	return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1471 }
1472 
bootargs_append_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1473 static ssize_t bootargs_append_store(struct kobject *kobj,
1474 				   struct kobj_attribute *attr,
1475 				   const char *buf, size_t count)
1476 {
1477 	char *params;
1478 
1479 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1480 		return -EPERM;
1481 
1482 	if (count >= COMMAND_LINE_SIZE)
1483 		return -EINVAL;
1484 
1485 	/*
1486 	 * Fail here instead of handling this scenario with
1487 	 * some silly workaround in capture kernel.
1488 	 */
1489 	if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1490 		pr_err("Appending parameters exceeds cmdline size!\n");
1491 		return -ENOSPC;
1492 	}
1493 
1494 	params = __va(fw_dump.param_area);
1495 	strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1496 	/* Remove newline character at the end. */
1497 	if (params[count-1] == '\n')
1498 		params[count-1] = '\0';
1499 
1500 	return count;
1501 }
1502 
registered_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1503 static ssize_t registered_store(struct kobject *kobj,
1504 				struct kobj_attribute *attr,
1505 				const char *buf, size_t count)
1506 {
1507 	int ret = 0;
1508 	int input = -1;
1509 
1510 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1511 		return -EPERM;
1512 
1513 	if (kstrtoint(buf, 0, &input))
1514 		return -EINVAL;
1515 
1516 	mutex_lock(&fadump_mutex);
1517 
1518 	switch (input) {
1519 	case 0:
1520 		if (fw_dump.dump_registered == 0) {
1521 			goto unlock_out;
1522 		}
1523 
1524 		/* Un-register Firmware-assisted dump */
1525 		pr_debug("Un-register firmware-assisted dump\n");
1526 		fw_dump.ops->fadump_unregister(&fw_dump);
1527 		break;
1528 	case 1:
1529 		if (fw_dump.dump_registered == 1) {
1530 			/* Un-register Firmware-assisted dump */
1531 			fw_dump.ops->fadump_unregister(&fw_dump);
1532 		}
1533 		/* Register Firmware-assisted dump */
1534 		ret = register_fadump();
1535 		break;
1536 	default:
1537 		ret = -EINVAL;
1538 		break;
1539 	}
1540 
1541 unlock_out:
1542 	mutex_unlock(&fadump_mutex);
1543 	return ret < 0 ? ret : count;
1544 }
1545 
fadump_region_show(struct seq_file * m,void * private)1546 static int fadump_region_show(struct seq_file *m, void *private)
1547 {
1548 	if (!fw_dump.fadump_enabled)
1549 		return 0;
1550 
1551 	mutex_lock(&fadump_mutex);
1552 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1553 	mutex_unlock(&fadump_mutex);
1554 	return 0;
1555 }
1556 
1557 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1558 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1559 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1560 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1561 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1562 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1563 
1564 static struct attribute *fadump_attrs[] = {
1565 	&enable_attr.attr,
1566 	&register_attr.attr,
1567 	&mem_reserved_attr.attr,
1568 	&hotplug_ready_attr.attr,
1569 	NULL,
1570 };
1571 
1572 ATTRIBUTE_GROUPS(fadump);
1573 
1574 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1575 
fadump_init_files(void)1576 static void __init fadump_init_files(void)
1577 {
1578 	int rc = 0;
1579 
1580 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1581 	if (!fadump_kobj) {
1582 		pr_err("failed to create fadump kobject\n");
1583 		return;
1584 	}
1585 
1586 	if (fw_dump.param_area) {
1587 		rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1588 		if (rc)
1589 			pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1590 	}
1591 
1592 	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1593 			    &fadump_region_fops);
1594 
1595 	if (fw_dump.dump_active) {
1596 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1597 		if (rc)
1598 			pr_err("unable to create release_mem sysfs file (%d)\n",
1599 			       rc);
1600 	}
1601 
1602 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1603 	if (rc) {
1604 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1605 		       rc);
1606 		unregister_fadump();
1607 		return;
1608 	}
1609 
1610 	/*
1611 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1612 	 * create symlink at old location to maintain backward compatibility.
1613 	 *
1614 	 *      - fadump_enabled -> fadump/enabled
1615 	 *      - fadump_registered -> fadump/registered
1616 	 *      - fadump_release_mem -> fadump/release_mem
1617 	 */
1618 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1619 						  "enabled", "fadump_enabled");
1620 	if (rc) {
1621 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1622 		return;
1623 	}
1624 
1625 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1626 						  "registered",
1627 						  "fadump_registered");
1628 	if (rc) {
1629 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1630 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1631 		return;
1632 	}
1633 
1634 	if (fw_dump.dump_active) {
1635 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1636 							  fadump_kobj,
1637 							  "release_mem",
1638 							  "fadump_release_mem");
1639 		if (rc)
1640 			pr_err("unable to create fadump_release_mem symlink (%d)",
1641 			       rc);
1642 	}
1643 	return;
1644 }
1645 
fadump_setup_elfcorehdr_buf(void)1646 static int __init fadump_setup_elfcorehdr_buf(void)
1647 {
1648 	int elf_phdr_cnt;
1649 	unsigned long elfcorehdr_size;
1650 
1651 	/*
1652 	 * Program header for CPU notes comes first, followed by one for
1653 	 * vmcoreinfo, and the remaining program headers correspond to
1654 	 * memory regions.
1655 	 */
1656 	elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1657 	elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1658 	elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1659 
1660 	fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1661 	if (!fw_dump.elfcorehdr_addr) {
1662 		pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1663 		       elfcorehdr_size);
1664 		return -ENOMEM;
1665 	}
1666 	fw_dump.elfcorehdr_size = elfcorehdr_size;
1667 	return 0;
1668 }
1669 
1670 /*
1671  * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1672  *
1673  * It checks the magic number, endianness, and size of non-primitive type
1674  * members of fadump header to ensure safe dump collection.
1675  */
is_fadump_header_compatible(struct fadump_crash_info_header * fdh)1676 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1677 {
1678 	if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1679 		pr_err("Old magic number, can't process the dump.\n");
1680 		return false;
1681 	}
1682 
1683 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1684 		if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1685 			pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1686 		else
1687 			pr_err("Fadump header is corrupted.\n");
1688 
1689 		return false;
1690 	}
1691 
1692 	/*
1693 	 * Dump collection is not safe if the size of non-primitive type members
1694 	 * of the fadump header do not match between crashed and fadump kernel.
1695 	 */
1696 	if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1697 	    fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1698 		pr_err("Fadump header size mismatch.\n");
1699 		return false;
1700 	}
1701 
1702 	return true;
1703 }
1704 
fadump_process(void)1705 static void __init fadump_process(void)
1706 {
1707 	struct fadump_crash_info_header *fdh;
1708 
1709 	fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1710 	if (!fdh) {
1711 		pr_err("Crash info header is empty.\n");
1712 		goto err_out;
1713 	}
1714 
1715 	/* Avoid processing the dump if fadump header isn't compatible */
1716 	if (!is_fadump_header_compatible(fdh))
1717 		goto err_out;
1718 
1719 	/* Allocate buffer for elfcorehdr */
1720 	if (fadump_setup_elfcorehdr_buf())
1721 		goto err_out;
1722 
1723 	fadump_populate_elfcorehdr(fdh);
1724 
1725 	/* Let platform update the CPU notes in elfcorehdr */
1726 	if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1727 		goto err_out;
1728 
1729 	/*
1730 	 * elfcorehdr is now ready to be exported.
1731 	 *
1732 	 * set elfcorehdr_addr so that vmcore module will export the
1733 	 * elfcorehdr through '/proc/vmcore'.
1734 	 */
1735 	elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1736 	return;
1737 
1738 err_out:
1739 	fadump_invalidate_release_mem();
1740 }
1741 
1742 /*
1743  * Reserve memory to store additional parameters to be passed
1744  * for fadump/capture kernel.
1745  */
fadump_setup_param_area(void)1746 void __init fadump_setup_param_area(void)
1747 {
1748 	phys_addr_t range_start, range_end;
1749 
1750 	if (!fw_dump.param_area_supported || fw_dump.dump_active)
1751 		return;
1752 
1753 	/* This memory can't be used by PFW or bootloader as it is shared across kernels */
1754 	if (early_radix_enabled()) {
1755 		/*
1756 		 * Anywhere in the upper half should be good enough as all memory
1757 		 * is accessible in real mode.
1758 		 */
1759 		range_start = memblock_end_of_DRAM() / 2;
1760 		range_end = memblock_end_of_DRAM();
1761 	} else {
1762 		/*
1763 		 * Memory range for passing additional parameters for HASH MMU
1764 		 * must meet the following conditions:
1765 		 * 1. The first memory block size must be higher than the
1766 		 *    minimum RMA (MIN_RMA) size. Bootloader can use memory
1767 		 *    upto RMA size. So it should be avoided.
1768 		 * 2. The range should be between MIN_RMA and RMA size (ppc64_rma_size)
1769 		 * 3. It must not overlap with the fadump reserved area.
1770 		 */
1771 		if (ppc64_rma_size < MIN_RMA*1024*1024)
1772 			return;
1773 
1774 		range_start = MIN_RMA * 1024 * 1024;
1775 		range_end = min(ppc64_rma_size, fw_dump.boot_mem_top);
1776 	}
1777 
1778 	fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1779 						       COMMAND_LINE_SIZE,
1780 						       range_start,
1781 						       range_end);
1782 	if (!fw_dump.param_area) {
1783 		pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1784 		return;
1785 	}
1786 
1787 	memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1788 }
1789 
1790 /*
1791  * Prepare for firmware-assisted dump.
1792  */
setup_fadump(void)1793 int __init setup_fadump(void)
1794 {
1795 	if (!fw_dump.fadump_supported)
1796 		return 0;
1797 
1798 	fadump_init_files();
1799 	fadump_show_config();
1800 
1801 	if (!fw_dump.fadump_enabled)
1802 		return 1;
1803 
1804 	/*
1805 	 * If dump data is available then see if it is valid and prepare for
1806 	 * saving it to the disk.
1807 	 */
1808 	if (fw_dump.dump_active) {
1809 		fadump_process();
1810 	}
1811 	/* Initialize the kernel dump memory structure and register with f/w */
1812 	else if (fw_dump.reserve_dump_area_size) {
1813 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1814 		register_fadump();
1815 	}
1816 
1817 	/*
1818 	 * In case of panic, fadump is triggered via ppc_panic_event()
1819 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1820 	 * lets panic() function take crash friendly path before panic
1821 	 * notifiers are invoked.
1822 	 */
1823 	crash_kexec_post_notifiers = true;
1824 
1825 	return 1;
1826 }
1827 /*
1828  * Use subsys_initcall_sync() here because there is dependency with
1829  * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1830  * is done before registering with f/w.
1831  */
1832 subsys_initcall_sync(setup_fadump);
1833 #else /* !CONFIG_PRESERVE_FA_DUMP */
1834 
1835 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)1836 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1837 				      int depth, void *data)
1838 {
1839 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1840 		return 0;
1841 
1842 	opal_fadump_dt_scan(&fw_dump, node);
1843 	return 1;
1844 }
1845 
1846 /*
1847  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1848  * preserve crash data. The subsequent memory preserving kernel boot
1849  * is likely to process this crash data.
1850  */
fadump_reserve_mem(void)1851 int __init fadump_reserve_mem(void)
1852 {
1853 	if (fw_dump.dump_active) {
1854 		/*
1855 		 * If last boot has crashed then reserve all the memory
1856 		 * above boot memory to preserve crash data.
1857 		 */
1858 		pr_info("Preserving crash data for processing in next boot.\n");
1859 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1860 	} else
1861 		pr_debug("FADump-aware kernel..\n");
1862 
1863 	return 1;
1864 }
1865 #endif /* CONFIG_PRESERVE_FA_DUMP */
1866 
1867 /* Preserve everything above the base address */
fadump_reserve_crash_area(u64 base)1868 static void __init fadump_reserve_crash_area(u64 base)
1869 {
1870 	u64 i, mstart, mend, msize;
1871 
1872 	for_each_mem_range(i, &mstart, &mend) {
1873 		msize  = mend - mstart;
1874 
1875 		if ((mstart + msize) < base)
1876 			continue;
1877 
1878 		if (mstart < base) {
1879 			msize -= (base - mstart);
1880 			mstart = base;
1881 		}
1882 
1883 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1884 			(msize >> 20), mstart);
1885 		memblock_reserve(mstart, msize);
1886 	}
1887 }
1888