xref: /linux/drivers/iio/accel/bmc150-accel-core.c (revision 6cf62f0174de64e4161e301bb0ed52e198ce25dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
4  * Copyright (c) 2014, Intel Corporation.
5  */
6 
7 #include <linux/module.h>
8 #include <linux/i2c.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/acpi.h>
13 #include <linux/pm.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/property.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include "bmc150-accel.h"
27 
28 #define BMC150_ACCEL_REG_CHIP_ID		0x00
29 
30 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
31 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
32 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
33 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
34 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
35 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
36 
37 #define BMC150_ACCEL_REG_PMU_LPW		0x11
38 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
39 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
40 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
41 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
42 
43 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
44 
45 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
46 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
47 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
48 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
49 
50 /* Default BW: 125Hz */
51 #define BMC150_ACCEL_REG_PMU_BW		0x10
52 #define BMC150_ACCEL_DEF_BW			125
53 
54 #define BMC150_ACCEL_REG_RESET			0x14
55 #define BMC150_ACCEL_RESET_VAL			0xB6
56 
57 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
58 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE	BIT(2)
59 
60 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
61 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA	BIT(0)
62 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM	BIT(1)
63 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL	BIT(2)
64 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL	BIT(5)
65 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM	BIT(6)
66 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA	BIT(7)
67 
68 #define BMC150_ACCEL_REG_INT_MAP_2		0x1B
69 #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE	BIT(2)
70 
71 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
72 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
73 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
74 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
75 
76 #define BMC150_ACCEL_REG_INT_EN_0		0x16
77 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
78 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
80 
81 #define BMC150_ACCEL_REG_INT_EN_1		0x17
82 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
83 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
84 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
85 
86 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
87 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
88 #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL	BIT(2)
89 
90 #define BMC150_ACCEL_REG_INT_5			0x27
91 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
92 
93 #define BMC150_ACCEL_REG_INT_6			0x28
94 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
95 
96 /* Slope duration in terms of number of samples */
97 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
98 /* in terms of multiples of g's/LSB, based on range */
99 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
100 
101 #define BMC150_ACCEL_REG_XOUT_L		0x02
102 
103 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
104 
105 /* Sleep Duration values */
106 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
107 #define BMC150_ACCEL_SLEEP_1_MS		0x06
108 #define BMC150_ACCEL_SLEEP_2_MS		0x07
109 #define BMC150_ACCEL_SLEEP_4_MS		0x08
110 #define BMC150_ACCEL_SLEEP_6_MS		0x09
111 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
112 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
113 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
114 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
115 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
116 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
117 
118 #define BMC150_ACCEL_REG_TEMP			0x08
119 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
120 
121 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
122 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
123 
124 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
125 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
126 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
127 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
128 #define BMC150_ACCEL_FIFO_LENGTH		32
129 
130 enum bmc150_accel_axis {
131 	AXIS_X,
132 	AXIS_Y,
133 	AXIS_Z,
134 	AXIS_MAX,
135 };
136 
137 enum bmc150_power_modes {
138 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
139 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
140 	BMC150_ACCEL_SLEEP_MODE_LPM,
141 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
142 };
143 
144 struct bmc150_scale_info {
145 	int scale;
146 	u8 reg_range;
147 };
148 
149 struct bmc150_accel_chip_info {
150 	const char *name;
151 	u8 chip_id;
152 	const struct iio_chan_spec *channels;
153 	int num_channels;
154 	const struct bmc150_scale_info scale_table[4];
155 };
156 
157 static const struct {
158 	int val;
159 	int val2;
160 	u8 bw_bits;
161 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
162 				     {31, 260000, 0x09},
163 				     {62, 500000, 0x0A},
164 				     {125, 0, 0x0B},
165 				     {250, 0, 0x0C},
166 				     {500, 0, 0x0D},
167 				     {1000, 0, 0x0E},
168 				     {2000, 0, 0x0F} };
169 
170 static __maybe_unused const struct {
171 	int bw_bits;
172 	int msec;
173 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
174 				     {0x09, 32},
175 				     {0x0A, 16},
176 				     {0x0B, 8},
177 				     {0x0C, 4},
178 				     {0x0D, 2},
179 				     {0x0E, 1},
180 				     {0x0F, 1} };
181 
182 static const struct {
183 	int sleep_dur;
184 	u8 reg_value;
185 } bmc150_accel_sleep_value_table[] = { {0, 0},
186 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
187 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
188 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
189 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
190 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
191 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
192 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
193 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
194 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
195 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
196 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
197 
198 const struct regmap_config bmc150_regmap_conf = {
199 	.reg_bits = 8,
200 	.val_bits = 8,
201 	.max_register = 0x3f,
202 };
203 EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf, "IIO_BMC150");
204 
bmc150_accel_set_mode(struct bmc150_accel_data * data,enum bmc150_power_modes mode,int dur_us)205 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
206 				 enum bmc150_power_modes mode,
207 				 int dur_us)
208 {
209 	struct device *dev = regmap_get_device(data->regmap);
210 	int i;
211 	int ret;
212 	u8 lpw_bits;
213 	int dur_val = -1;
214 
215 	if (dur_us > 0) {
216 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
217 									 ++i) {
218 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
219 									dur_us)
220 				dur_val =
221 				bmc150_accel_sleep_value_table[i].reg_value;
222 		}
223 	} else {
224 		dur_val = 0;
225 	}
226 
227 	if (dur_val < 0)
228 		return -EINVAL;
229 
230 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
231 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
232 
233 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
234 
235 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
236 	if (ret < 0) {
237 		dev_err(dev, "Error writing reg_pmu_lpw\n");
238 		return ret;
239 	}
240 
241 	return 0;
242 }
243 
bmc150_accel_set_bw(struct bmc150_accel_data * data,int val,int val2)244 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
245 			       int val2)
246 {
247 	int i;
248 	int ret;
249 
250 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
251 		if (bmc150_accel_samp_freq_table[i].val == val &&
252 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
253 			ret = regmap_write(data->regmap,
254 				BMC150_ACCEL_REG_PMU_BW,
255 				bmc150_accel_samp_freq_table[i].bw_bits);
256 			if (ret < 0)
257 				return ret;
258 
259 			data->bw_bits =
260 				bmc150_accel_samp_freq_table[i].bw_bits;
261 			return 0;
262 		}
263 	}
264 
265 	return -EINVAL;
266 }
267 
bmc150_accel_update_slope(struct bmc150_accel_data * data)268 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
269 {
270 	struct device *dev = regmap_get_device(data->regmap);
271 	int ret;
272 
273 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
274 					data->slope_thres);
275 	if (ret < 0) {
276 		dev_err(dev, "Error writing reg_int_6\n");
277 		return ret;
278 	}
279 
280 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
281 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
282 	if (ret < 0) {
283 		dev_err(dev, "Error updating reg_int_5\n");
284 		return ret;
285 	}
286 
287 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
288 
289 	return ret;
290 }
291 
bmc150_accel_any_motion_setup(struct bmc150_accel_trigger * t,bool state)292 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
293 					 bool state)
294 {
295 	if (state)
296 		return bmc150_accel_update_slope(t->data);
297 
298 	return 0;
299 }
300 
bmc150_accel_get_bw(struct bmc150_accel_data * data,int * val,int * val2)301 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
302 			       int *val2)
303 {
304 	int i;
305 
306 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
307 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
308 			*val = bmc150_accel_samp_freq_table[i].val;
309 			*val2 = bmc150_accel_samp_freq_table[i].val2;
310 			return IIO_VAL_INT_PLUS_MICRO;
311 		}
312 	}
313 
314 	return -EINVAL;
315 }
316 
317 #ifdef CONFIG_PM
bmc150_accel_get_startup_times(struct bmc150_accel_data * data)318 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
319 {
320 	int i;
321 
322 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
323 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
324 			return bmc150_accel_sample_upd_time[i].msec;
325 	}
326 
327 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
328 }
329 
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)330 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
331 {
332 	struct device *dev = regmap_get_device(data->regmap);
333 	int ret;
334 
335 	if (on)
336 		ret = pm_runtime_resume_and_get(dev);
337 	else
338 		ret = pm_runtime_put_autosuspend(dev);
339 	if (ret < 0) {
340 		dev_err(dev,
341 			"Failed: %s for %d\n", __func__, on);
342 		return ret;
343 	}
344 
345 	return 0;
346 }
347 #else
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)348 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
349 {
350 	return 0;
351 }
352 #endif
353 
354 #ifdef CONFIG_ACPI
355 /*
356  * Support for getting accelerometer information from BOSC0200 ACPI nodes.
357  *
358  * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
359  * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
360  * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
361  * contains the mount-matrix for the sensor in the display and ROMK contains
362  * the mount-matrix for the sensor in the base. On devices using a single
363  * sensor there is a ROTM ACPI object which contains the mount-matrix.
364  *
365  * Here is an incomplete list of devices known to use 1 of these setups:
366  *
367  * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
368  * Lenovo Thinkpad Yoga 11e 3th gen
369  * Lenovo Thinkpad Yoga 11e 4th gen
370  *
371  * Tablets using a single accelerometer using ROTM for the mount-matrix:
372  * Chuwi Hi8 Pro (CWI513)
373  * Chuwi Vi8 Plus (CWI519)
374  * Chuwi Hi13
375  * Irbis TW90
376  * Jumper EZpad mini 3
377  * Onda V80 plus
378  * Predia Basic Tablet
379  */
bmc150_apply_bosc0200_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)380 static bool bmc150_apply_bosc0200_acpi_orientation(struct device *dev,
381 						   struct iio_mount_matrix *orientation)
382 {
383 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
384 	acpi_handle handle = ACPI_HANDLE(dev);
385 	char *name, *alt_name, *label;
386 
387 	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
388 		alt_name = "ROMK";
389 		label = "accel-base";
390 	} else {
391 		alt_name = "ROMS";
392 		label = "accel-display";
393 	}
394 
395 	if (acpi_has_method(handle, "ROTM")) {
396 		name = "ROTM";
397 	} else if (acpi_has_method(handle, alt_name)) {
398 		name = alt_name;
399 		indio_dev->label = label;
400 	} else {
401 		return false;
402 	}
403 
404 	return iio_read_acpi_mount_matrix(dev, orientation, name);
405 }
406 
bmc150_apply_dual250e_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)407 static bool bmc150_apply_dual250e_acpi_orientation(struct device *dev,
408 						   struct iio_mount_matrix *orientation)
409 {
410 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
411 
412 	if (strcmp(dev_name(dev), "i2c-DUAL250E:base") == 0)
413 		indio_dev->label = "accel-base";
414 	else
415 		indio_dev->label = "accel-display";
416 
417 	return false; /* DUAL250E fwnodes have no mount matrix info */
418 }
419 
bmc150_apply_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)420 static bool bmc150_apply_acpi_orientation(struct device *dev,
421 					  struct iio_mount_matrix *orientation)
422 {
423 	struct acpi_device *adev = ACPI_COMPANION(dev);
424 
425 	if (adev && acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
426 		return bmc150_apply_bosc0200_acpi_orientation(dev, orientation);
427 
428 	if (adev && acpi_dev_hid_uid_match(adev, "DUAL250E", NULL))
429 		return bmc150_apply_dual250e_acpi_orientation(dev, orientation);
430 
431 	return false;
432 }
433 #else
bmc150_apply_acpi_orientation(struct device * dev,struct iio_mount_matrix * orientation)434 static bool bmc150_apply_acpi_orientation(struct device *dev,
435 					  struct iio_mount_matrix *orientation)
436 {
437 	return false;
438 }
439 #endif
440 
441 struct bmc150_accel_interrupt_info {
442 	u8 map_reg;
443 	u8 map_bitmask;
444 	u8 en_reg;
445 	u8 en_bitmask;
446 };
447 
448 static const struct bmc150_accel_interrupt_info
449 bmc150_accel_interrupts_int1[BMC150_ACCEL_INTERRUPTS] = {
450 	{ /* data ready interrupt */
451 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
452 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA,
453 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
454 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
455 	},
456 	{  /* motion interrupt */
457 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
458 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE,
459 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
460 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
461 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
462 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
463 	},
464 	{ /* fifo watermark interrupt */
465 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
466 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM,
467 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
468 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
469 	},
470 };
471 
472 static const struct bmc150_accel_interrupt_info
473 bmc150_accel_interrupts_int2[BMC150_ACCEL_INTERRUPTS] = {
474 	{ /* data ready interrupt */
475 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
476 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA,
477 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
478 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
479 	},
480 	{  /* motion interrupt */
481 		.map_reg = BMC150_ACCEL_REG_INT_MAP_2,
482 		.map_bitmask = BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE,
483 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
484 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
485 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
486 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
487 	},
488 	{ /* fifo watermark interrupt */
489 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
490 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM,
491 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
492 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
493 	},
494 };
495 
bmc150_accel_interrupts_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data,int irq)496 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
497 					  struct bmc150_accel_data *data, int irq)
498 {
499 	const struct bmc150_accel_interrupt_info *irq_info = NULL;
500 	struct device *dev = regmap_get_device(data->regmap);
501 	int i;
502 
503 	/*
504 	 * For now we map all interrupts to the same output pin.
505 	 * However, some boards may have just INT2 (and not INT1) connected,
506 	 * so we try to detect which IRQ it is based on the interrupt-names.
507 	 * Without interrupt-names, we assume the irq belongs to INT1.
508 	 */
509 	irq_info = bmc150_accel_interrupts_int1;
510 	if (data->type == BOSCH_BMC156 ||
511 	    irq == fwnode_irq_get_byname(dev_fwnode(dev), "INT2"))
512 		irq_info = bmc150_accel_interrupts_int2;
513 
514 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
515 		data->interrupts[i].info = &irq_info[i];
516 }
517 
bmc150_accel_set_interrupt(struct bmc150_accel_data * data,int i,bool state)518 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
519 				      bool state)
520 {
521 	struct device *dev = regmap_get_device(data->regmap);
522 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
523 	const struct bmc150_accel_interrupt_info *info = intr->info;
524 	int ret;
525 
526 	/* We do not always have an IRQ */
527 	if (data->irq <= 0)
528 		return 0;
529 
530 	if (state) {
531 		if (atomic_inc_return(&intr->users) > 1)
532 			return 0;
533 	} else {
534 		if (atomic_dec_return(&intr->users) > 0)
535 			return 0;
536 	}
537 
538 	/*
539 	 * We will expect the enable and disable to do operation in reverse
540 	 * order. This will happen here anyway, as our resume operation uses
541 	 * sync mode runtime pm calls. The suspend operation will be delayed
542 	 * by autosuspend delay.
543 	 * So the disable operation will still happen in reverse order of
544 	 * enable operation. When runtime pm is disabled the mode is always on,
545 	 * so sequence doesn't matter.
546 	 */
547 	ret = bmc150_accel_set_power_state(data, state);
548 	if (ret < 0)
549 		return ret;
550 
551 	/* map the interrupt to the appropriate pins */
552 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
553 				 (state ? info->map_bitmask : 0));
554 	if (ret < 0) {
555 		dev_err(dev, "Error updating reg_int_map\n");
556 		goto out_fix_power_state;
557 	}
558 
559 	/* enable/disable the interrupt */
560 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
561 				 (state ? info->en_bitmask : 0));
562 	if (ret < 0) {
563 		dev_err(dev, "Error updating reg_int_en\n");
564 		goto out_fix_power_state;
565 	}
566 
567 	return 0;
568 
569 out_fix_power_state:
570 	bmc150_accel_set_power_state(data, false);
571 	return ret;
572 }
573 
bmc150_accel_set_scale(struct bmc150_accel_data * data,int val)574 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
575 {
576 	struct device *dev = regmap_get_device(data->regmap);
577 	int ret, i;
578 
579 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
580 		if (data->chip_info->scale_table[i].scale == val) {
581 			ret = regmap_write(data->regmap,
582 				     BMC150_ACCEL_REG_PMU_RANGE,
583 				     data->chip_info->scale_table[i].reg_range);
584 			if (ret < 0) {
585 				dev_err(dev, "Error writing pmu_range\n");
586 				return ret;
587 			}
588 
589 			data->range = data->chip_info->scale_table[i].reg_range;
590 			return 0;
591 		}
592 	}
593 
594 	return -EINVAL;
595 }
596 
bmc150_accel_get_temp(struct bmc150_accel_data * data,int * val)597 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
598 {
599 	struct device *dev = regmap_get_device(data->regmap);
600 	int ret;
601 	unsigned int value;
602 
603 	mutex_lock(&data->mutex);
604 
605 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
606 	if (ret < 0) {
607 		dev_err(dev, "Error reading reg_temp\n");
608 		mutex_unlock(&data->mutex);
609 		return ret;
610 	}
611 	*val = sign_extend32(value, 7);
612 
613 	mutex_unlock(&data->mutex);
614 
615 	return IIO_VAL_INT;
616 }
617 
bmc150_accel_get_axis(struct bmc150_accel_data * data,struct iio_chan_spec const * chan,int * val)618 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
619 				 struct iio_chan_spec const *chan,
620 				 int *val)
621 {
622 	struct device *dev = regmap_get_device(data->regmap);
623 	int ret;
624 	int axis = chan->scan_index;
625 	__le16 raw_val;
626 
627 	mutex_lock(&data->mutex);
628 	ret = bmc150_accel_set_power_state(data, true);
629 	if (ret < 0) {
630 		mutex_unlock(&data->mutex);
631 		return ret;
632 	}
633 
634 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
635 			       &raw_val, sizeof(raw_val));
636 	if (ret < 0) {
637 		dev_err(dev, "Error reading axis %d\n", axis);
638 		bmc150_accel_set_power_state(data, false);
639 		mutex_unlock(&data->mutex);
640 		return ret;
641 	}
642 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
643 			     chan->scan_type.realbits - 1);
644 	ret = bmc150_accel_set_power_state(data, false);
645 	mutex_unlock(&data->mutex);
646 	if (ret < 0)
647 		return ret;
648 
649 	return IIO_VAL_INT;
650 }
651 
bmc150_accel_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)652 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
653 				 struct iio_chan_spec const *chan,
654 				 int *val, int *val2, long mask)
655 {
656 	struct bmc150_accel_data *data = iio_priv(indio_dev);
657 	int ret;
658 
659 	switch (mask) {
660 	case IIO_CHAN_INFO_RAW:
661 		switch (chan->type) {
662 		case IIO_TEMP:
663 			return bmc150_accel_get_temp(data, val);
664 		case IIO_ACCEL:
665 			if (iio_buffer_enabled(indio_dev))
666 				return -EBUSY;
667 			else
668 				return bmc150_accel_get_axis(data, chan, val);
669 		default:
670 			return -EINVAL;
671 		}
672 	case IIO_CHAN_INFO_OFFSET:
673 		if (chan->type == IIO_TEMP) {
674 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
675 			return IIO_VAL_INT;
676 		} else {
677 			return -EINVAL;
678 		}
679 	case IIO_CHAN_INFO_SCALE:
680 		*val = 0;
681 		switch (chan->type) {
682 		case IIO_TEMP:
683 			*val2 = 500000;
684 			return IIO_VAL_INT_PLUS_MICRO;
685 		case IIO_ACCEL:
686 		{
687 			int i;
688 			const struct bmc150_scale_info *si;
689 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
690 
691 			for (i = 0; i < st_size; ++i) {
692 				si = &data->chip_info->scale_table[i];
693 				if (si->reg_range == data->range) {
694 					*val2 = si->scale;
695 					return IIO_VAL_INT_PLUS_MICRO;
696 				}
697 			}
698 			return -EINVAL;
699 		}
700 		default:
701 			return -EINVAL;
702 		}
703 	case IIO_CHAN_INFO_SAMP_FREQ:
704 		mutex_lock(&data->mutex);
705 		ret = bmc150_accel_get_bw(data, val, val2);
706 		mutex_unlock(&data->mutex);
707 		return ret;
708 	default:
709 		return -EINVAL;
710 	}
711 }
712 
bmc150_accel_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)713 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
714 				  struct iio_chan_spec const *chan,
715 				  int val, int val2, long mask)
716 {
717 	struct bmc150_accel_data *data = iio_priv(indio_dev);
718 	int ret;
719 
720 	switch (mask) {
721 	case IIO_CHAN_INFO_SAMP_FREQ:
722 		mutex_lock(&data->mutex);
723 		ret = bmc150_accel_set_bw(data, val, val2);
724 		mutex_unlock(&data->mutex);
725 		break;
726 	case IIO_CHAN_INFO_SCALE:
727 		if (val)
728 			return -EINVAL;
729 
730 		mutex_lock(&data->mutex);
731 		ret = bmc150_accel_set_scale(data, val2);
732 		mutex_unlock(&data->mutex);
733 		return ret;
734 	default:
735 		ret = -EINVAL;
736 	}
737 
738 	return ret;
739 }
740 
bmc150_accel_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)741 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
742 				   const struct iio_chan_spec *chan,
743 				   enum iio_event_type type,
744 				   enum iio_event_direction dir,
745 				   enum iio_event_info info,
746 				   int *val, int *val2)
747 {
748 	struct bmc150_accel_data *data = iio_priv(indio_dev);
749 
750 	*val2 = 0;
751 	switch (info) {
752 	case IIO_EV_INFO_VALUE:
753 		*val = data->slope_thres;
754 		break;
755 	case IIO_EV_INFO_PERIOD:
756 		*val = data->slope_dur;
757 		break;
758 	default:
759 		return -EINVAL;
760 	}
761 
762 	return IIO_VAL_INT;
763 }
764 
bmc150_accel_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)765 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
766 				    const struct iio_chan_spec *chan,
767 				    enum iio_event_type type,
768 				    enum iio_event_direction dir,
769 				    enum iio_event_info info,
770 				    int val, int val2)
771 {
772 	struct bmc150_accel_data *data = iio_priv(indio_dev);
773 
774 	if (data->ev_enable_state)
775 		return -EBUSY;
776 
777 	switch (info) {
778 	case IIO_EV_INFO_VALUE:
779 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
780 		break;
781 	case IIO_EV_INFO_PERIOD:
782 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
783 		break;
784 	default:
785 		return -EINVAL;
786 	}
787 
788 	return 0;
789 }
790 
bmc150_accel_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)791 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
792 					  const struct iio_chan_spec *chan,
793 					  enum iio_event_type type,
794 					  enum iio_event_direction dir)
795 {
796 	struct bmc150_accel_data *data = iio_priv(indio_dev);
797 
798 	return data->ev_enable_state;
799 }
800 
bmc150_accel_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,bool state)801 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
802 					   const struct iio_chan_spec *chan,
803 					   enum iio_event_type type,
804 					   enum iio_event_direction dir,
805 					   bool state)
806 {
807 	struct bmc150_accel_data *data = iio_priv(indio_dev);
808 	int ret;
809 
810 	if (state == data->ev_enable_state)
811 		return 0;
812 
813 	mutex_lock(&data->mutex);
814 
815 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
816 					 state);
817 	if (ret < 0) {
818 		mutex_unlock(&data->mutex);
819 		return ret;
820 	}
821 
822 	data->ev_enable_state = state;
823 	mutex_unlock(&data->mutex);
824 
825 	return 0;
826 }
827 
bmc150_accel_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)828 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
829 					 struct iio_trigger *trig)
830 {
831 	struct bmc150_accel_data *data = iio_priv(indio_dev);
832 	int i;
833 
834 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
835 		if (data->triggers[i].indio_trig == trig)
836 			return 0;
837 	}
838 
839 	return -EINVAL;
840 }
841 
bmc150_accel_get_fifo_watermark(struct device * dev,struct device_attribute * attr,char * buf)842 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
843 					       struct device_attribute *attr,
844 					       char *buf)
845 {
846 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
847 	struct bmc150_accel_data *data = iio_priv(indio_dev);
848 	int wm;
849 
850 	mutex_lock(&data->mutex);
851 	wm = data->watermark;
852 	mutex_unlock(&data->mutex);
853 
854 	return sprintf(buf, "%d\n", wm);
855 }
856 
bmc150_accel_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)857 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
858 					   struct device_attribute *attr,
859 					   char *buf)
860 {
861 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
862 	struct bmc150_accel_data *data = iio_priv(indio_dev);
863 	bool state;
864 
865 	mutex_lock(&data->mutex);
866 	state = data->fifo_mode;
867 	mutex_unlock(&data->mutex);
868 
869 	return sprintf(buf, "%d\n", state);
870 }
871 
872 static const struct iio_mount_matrix *
bmc150_accel_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)873 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
874 				const struct iio_chan_spec *chan)
875 {
876 	struct bmc150_accel_data *data = iio_priv(indio_dev);
877 
878 	return &data->orientation;
879 }
880 
881 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
882 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
883 	{ }
884 };
885 
886 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "1");
887 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max,
888 			     __stringify(BMC150_ACCEL_FIFO_LENGTH));
889 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
890 		       bmc150_accel_get_fifo_state, NULL, 0);
891 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
892 		       bmc150_accel_get_fifo_watermark, NULL, 0);
893 
894 static const struct iio_dev_attr *bmc150_accel_fifo_attributes[] = {
895 	&iio_dev_attr_hwfifo_watermark_min,
896 	&iio_dev_attr_hwfifo_watermark_max,
897 	&iio_dev_attr_hwfifo_watermark,
898 	&iio_dev_attr_hwfifo_enabled,
899 	NULL,
900 };
901 
bmc150_accel_set_watermark(struct iio_dev * indio_dev,unsigned val)902 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
903 {
904 	struct bmc150_accel_data *data = iio_priv(indio_dev);
905 
906 	if (val > BMC150_ACCEL_FIFO_LENGTH)
907 		val = BMC150_ACCEL_FIFO_LENGTH;
908 
909 	mutex_lock(&data->mutex);
910 	data->watermark = val;
911 	mutex_unlock(&data->mutex);
912 
913 	return 0;
914 }
915 
916 /*
917  * We must read at least one full frame in one burst, otherwise the rest of the
918  * frame data is discarded.
919  */
bmc150_accel_fifo_transfer(struct bmc150_accel_data * data,char * buffer,int samples)920 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
921 				      char *buffer, int samples)
922 {
923 	struct device *dev = regmap_get_device(data->regmap);
924 	int sample_length = 3 * 2;
925 	int ret;
926 	int total_length = samples * sample_length;
927 
928 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
929 			      buffer, total_length);
930 	if (ret)
931 		dev_err(dev,
932 			"Error transferring data from fifo: %d\n", ret);
933 
934 	return ret;
935 }
936 
__bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples,bool irq)937 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
938 				     unsigned samples, bool irq)
939 {
940 	struct bmc150_accel_data *data = iio_priv(indio_dev);
941 	struct device *dev = regmap_get_device(data->regmap);
942 	int ret, i;
943 	u8 count;
944 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
945 	int64_t tstamp;
946 	uint64_t sample_period;
947 	unsigned int val;
948 
949 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
950 	if (ret < 0) {
951 		dev_err(dev, "Error reading reg_fifo_status\n");
952 		return ret;
953 	}
954 
955 	count = val & 0x7F;
956 
957 	if (!count)
958 		return 0;
959 
960 	/*
961 	 * If we getting called from IRQ handler we know the stored timestamp is
962 	 * fairly accurate for the last stored sample. Otherwise, if we are
963 	 * called as a result of a read operation from userspace and hence
964 	 * before the watermark interrupt was triggered, take a timestamp
965 	 * now. We can fall anywhere in between two samples so the error in this
966 	 * case is at most one sample period.
967 	 */
968 	if (!irq) {
969 		data->old_timestamp = data->timestamp;
970 		data->timestamp = iio_get_time_ns(indio_dev);
971 	}
972 
973 	/*
974 	 * Approximate timestamps for each of the sample based on the sampling
975 	 * frequency, timestamp for last sample and number of samples.
976 	 *
977 	 * Note that we can't use the current bandwidth settings to compute the
978 	 * sample period because the sample rate varies with the device
979 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
980 	 * small variation adds when we store a large number of samples and
981 	 * creates significant jitter between the last and first samples in
982 	 * different batches (e.g. 32ms vs 21ms).
983 	 *
984 	 * To avoid this issue we compute the actual sample period ourselves
985 	 * based on the timestamp delta between the last two flush operations.
986 	 */
987 	sample_period = (data->timestamp - data->old_timestamp);
988 	do_div(sample_period, count);
989 	tstamp = data->timestamp - (count - 1) * sample_period;
990 
991 	if (samples && count > samples)
992 		count = samples;
993 
994 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
995 	if (ret)
996 		return ret;
997 
998 	/*
999 	 * Ideally we want the IIO core to handle the demux when running in fifo
1000 	 * mode but not when running in triggered buffer mode. Unfortunately
1001 	 * this does not seem to be possible, so stick with driver demux for
1002 	 * now.
1003 	 */
1004 	for (i = 0; i < count; i++) {
1005 		int j, bit;
1006 
1007 		j = 0;
1008 		iio_for_each_active_channel(indio_dev, bit)
1009 			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
1010 			       sizeof(data->scan.channels[0]));
1011 
1012 		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
1013 						   tstamp);
1014 
1015 		tstamp += sample_period;
1016 	}
1017 
1018 	return count;
1019 }
1020 
bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples)1021 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
1022 {
1023 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1024 	int ret;
1025 
1026 	mutex_lock(&data->mutex);
1027 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
1028 	mutex_unlock(&data->mutex);
1029 
1030 	return ret;
1031 }
1032 
1033 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1034 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1035 
1036 static struct attribute *bmc150_accel_attributes[] = {
1037 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1038 	NULL,
1039 };
1040 
1041 static const struct attribute_group bmc150_accel_attrs_group = {
1042 	.attrs = bmc150_accel_attributes,
1043 };
1044 
1045 static const struct iio_event_spec bmc150_accel_event = {
1046 		.type = IIO_EV_TYPE_ROC,
1047 		.dir = IIO_EV_DIR_EITHER,
1048 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
1049 				 BIT(IIO_EV_INFO_ENABLE) |
1050 				 BIT(IIO_EV_INFO_PERIOD)
1051 };
1052 
1053 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1054 	.type = IIO_ACCEL,						\
1055 	.modified = 1,							\
1056 	.channel2 = IIO_MOD_##_axis,					\
1057 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
1058 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
1059 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
1060 	.scan_index = AXIS_##_axis,					\
1061 	.scan_type = {							\
1062 		.sign = 's',						\
1063 		.realbits = (bits),					\
1064 		.storagebits = 16,					\
1065 		.shift = 16 - (bits),					\
1066 		.endianness = IIO_LE,					\
1067 	},								\
1068 	.ext_info = bmc150_accel_ext_info,				\
1069 	.event_spec = &bmc150_accel_event,				\
1070 	.num_event_specs = 1						\
1071 }
1072 
1073 #define BMC150_ACCEL_CHANNELS(bits) {					\
1074 	{								\
1075 		.type = IIO_TEMP,					\
1076 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1077 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1078 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1079 		.scan_index = -1,					\
1080 	},								\
1081 	BMC150_ACCEL_CHANNEL(X, bits),					\
1082 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1083 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1084 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1085 }
1086 
1087 static const struct iio_chan_spec bma222e_accel_channels[] =
1088 	BMC150_ACCEL_CHANNELS(8);
1089 static const struct iio_chan_spec bma250e_accel_channels[] =
1090 	BMC150_ACCEL_CHANNELS(10);
1091 static const struct iio_chan_spec bmc150_accel_channels[] =
1092 	BMC150_ACCEL_CHANNELS(12);
1093 static const struct iio_chan_spec bma280_accel_channels[] =
1094 	BMC150_ACCEL_CHANNELS(14);
1095 
1096 /*
1097  * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
1098  * over the amount of bits (see above). The scale table can be calculated using
1099  *     (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
1100  * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
1101  * Multiply 10^6 and round to get the values listed below.
1102  */
1103 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1104 	{
1105 		.name = "BMA222",
1106 		.chip_id = 0x03,
1107 		.channels = bma222e_accel_channels,
1108 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1109 		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
1110 				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1111 				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1112 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1113 	},
1114 	{
1115 		.name = "BMA222E",
1116 		.chip_id = 0xF8,
1117 		.channels = bma222e_accel_channels,
1118 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1119 		.scale_table = { {153229, BMC150_ACCEL_DEF_RANGE_2G},
1120 				 {306458, BMC150_ACCEL_DEF_RANGE_4G},
1121 				 {612916, BMC150_ACCEL_DEF_RANGE_8G},
1122 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1123 	},
1124 	{
1125 		.name = "BMA250E",
1126 		.chip_id = 0xF9,
1127 		.channels = bma250e_accel_channels,
1128 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1129 		.scale_table = { {38307, BMC150_ACCEL_DEF_RANGE_2G},
1130 				 {76614, BMC150_ACCEL_DEF_RANGE_4G},
1131 				 {153229, BMC150_ACCEL_DEF_RANGE_8G},
1132 				 {306458, BMC150_ACCEL_DEF_RANGE_16G} },
1133 	},
1134 	{
1135 		.name = "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
1136 		.chip_id = 0xFA,
1137 		.channels = bmc150_accel_channels,
1138 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1139 		.scale_table = { {9577, BMC150_ACCEL_DEF_RANGE_2G},
1140 				 {19154, BMC150_ACCEL_DEF_RANGE_4G},
1141 				 {38307, BMC150_ACCEL_DEF_RANGE_8G},
1142 				 {76614, BMC150_ACCEL_DEF_RANGE_16G} },
1143 	},
1144 	{
1145 		.name = "BMA280",
1146 		.chip_id = 0xFB,
1147 		.channels = bma280_accel_channels,
1148 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1149 		.scale_table = { {2394, BMC150_ACCEL_DEF_RANGE_2G},
1150 				 {4788, BMC150_ACCEL_DEF_RANGE_4G},
1151 				 {9577, BMC150_ACCEL_DEF_RANGE_8G},
1152 				 {19154, BMC150_ACCEL_DEF_RANGE_16G} },
1153 	},
1154 };
1155 
1156 static const struct iio_info bmc150_accel_info = {
1157 	.attrs			= &bmc150_accel_attrs_group,
1158 	.read_raw		= bmc150_accel_read_raw,
1159 	.write_raw		= bmc150_accel_write_raw,
1160 	.read_event_value	= bmc150_accel_read_event,
1161 	.write_event_value	= bmc150_accel_write_event,
1162 	.write_event_config	= bmc150_accel_write_event_config,
1163 	.read_event_config	= bmc150_accel_read_event_config,
1164 };
1165 
1166 static const struct iio_info bmc150_accel_info_fifo = {
1167 	.attrs			= &bmc150_accel_attrs_group,
1168 	.read_raw		= bmc150_accel_read_raw,
1169 	.write_raw		= bmc150_accel_write_raw,
1170 	.read_event_value	= bmc150_accel_read_event,
1171 	.write_event_value	= bmc150_accel_write_event,
1172 	.write_event_config	= bmc150_accel_write_event_config,
1173 	.read_event_config	= bmc150_accel_read_event_config,
1174 	.validate_trigger	= bmc150_accel_validate_trigger,
1175 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1176 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1177 };
1178 
1179 static const unsigned long bmc150_accel_scan_masks[] = {
1180 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1181 					0};
1182 
bmc150_accel_trigger_handler(int irq,void * p)1183 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1184 {
1185 	struct iio_poll_func *pf = p;
1186 	struct iio_dev *indio_dev = pf->indio_dev;
1187 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1188 	int ret;
1189 
1190 	mutex_lock(&data->mutex);
1191 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1192 			       data->buffer, AXIS_MAX * 2);
1193 	mutex_unlock(&data->mutex);
1194 	if (ret < 0)
1195 		goto err_read;
1196 
1197 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1198 					   pf->timestamp);
1199 err_read:
1200 	iio_trigger_notify_done(indio_dev->trig);
1201 
1202 	return IRQ_HANDLED;
1203 }
1204 
bmc150_accel_trig_reen(struct iio_trigger * trig)1205 static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1206 {
1207 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1208 	struct bmc150_accel_data *data = t->data;
1209 	struct device *dev = regmap_get_device(data->regmap);
1210 	int ret;
1211 
1212 	/* new data interrupts don't need ack */
1213 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1214 		return;
1215 
1216 	mutex_lock(&data->mutex);
1217 	/* clear any latched interrupt */
1218 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1219 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1220 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1221 	mutex_unlock(&data->mutex);
1222 	if (ret < 0)
1223 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1224 }
1225 
bmc150_accel_trigger_set_state(struct iio_trigger * trig,bool state)1226 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1227 					  bool state)
1228 {
1229 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1230 	struct bmc150_accel_data *data = t->data;
1231 	int ret;
1232 
1233 	mutex_lock(&data->mutex);
1234 
1235 	if (t->enabled == state) {
1236 		mutex_unlock(&data->mutex);
1237 		return 0;
1238 	}
1239 
1240 	if (t->setup) {
1241 		ret = t->setup(t, state);
1242 		if (ret < 0) {
1243 			mutex_unlock(&data->mutex);
1244 			return ret;
1245 		}
1246 	}
1247 
1248 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1249 	if (ret < 0) {
1250 		mutex_unlock(&data->mutex);
1251 		return ret;
1252 	}
1253 
1254 	t->enabled = state;
1255 
1256 	mutex_unlock(&data->mutex);
1257 
1258 	return ret;
1259 }
1260 
1261 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1262 	.set_trigger_state = bmc150_accel_trigger_set_state,
1263 	.reenable = bmc150_accel_trig_reen,
1264 };
1265 
bmc150_accel_handle_roc_event(struct iio_dev * indio_dev)1266 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1267 {
1268 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1269 	struct device *dev = regmap_get_device(data->regmap);
1270 	int dir;
1271 	int ret;
1272 	unsigned int val;
1273 
1274 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1275 	if (ret < 0) {
1276 		dev_err(dev, "Error reading reg_int_status_2\n");
1277 		return ret;
1278 	}
1279 
1280 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1281 		dir = IIO_EV_DIR_FALLING;
1282 	else
1283 		dir = IIO_EV_DIR_RISING;
1284 
1285 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1286 		iio_push_event(indio_dev,
1287 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1288 						  0,
1289 						  IIO_MOD_X,
1290 						  IIO_EV_TYPE_ROC,
1291 						  dir),
1292 			       data->timestamp);
1293 
1294 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1295 		iio_push_event(indio_dev,
1296 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1297 						  0,
1298 						  IIO_MOD_Y,
1299 						  IIO_EV_TYPE_ROC,
1300 						  dir),
1301 			       data->timestamp);
1302 
1303 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1304 		iio_push_event(indio_dev,
1305 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1306 						  0,
1307 						  IIO_MOD_Z,
1308 						  IIO_EV_TYPE_ROC,
1309 						  dir),
1310 			       data->timestamp);
1311 
1312 	return ret;
1313 }
1314 
bmc150_accel_irq_thread_handler(int irq,void * private)1315 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1316 {
1317 	struct iio_dev *indio_dev = private;
1318 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1319 	struct device *dev = regmap_get_device(data->regmap);
1320 	bool ack = false;
1321 	int ret;
1322 
1323 	mutex_lock(&data->mutex);
1324 
1325 	if (data->fifo_mode) {
1326 		ret = __bmc150_accel_fifo_flush(indio_dev,
1327 						BMC150_ACCEL_FIFO_LENGTH, true);
1328 		if (ret > 0)
1329 			ack = true;
1330 	}
1331 
1332 	if (data->ev_enable_state) {
1333 		ret = bmc150_accel_handle_roc_event(indio_dev);
1334 		if (ret > 0)
1335 			ack = true;
1336 	}
1337 
1338 	if (ack) {
1339 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1340 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1341 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1342 		if (ret)
1343 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1344 
1345 		ret = IRQ_HANDLED;
1346 	} else {
1347 		ret = IRQ_NONE;
1348 	}
1349 
1350 	mutex_unlock(&data->mutex);
1351 
1352 	return ret;
1353 }
1354 
bmc150_accel_irq_handler(int irq,void * private)1355 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1356 {
1357 	struct iio_dev *indio_dev = private;
1358 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1359 	bool ack = false;
1360 	int i;
1361 
1362 	data->old_timestamp = data->timestamp;
1363 	data->timestamp = iio_get_time_ns(indio_dev);
1364 
1365 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1366 		if (data->triggers[i].enabled) {
1367 			iio_trigger_poll(data->triggers[i].indio_trig);
1368 			ack = true;
1369 			break;
1370 		}
1371 	}
1372 
1373 	if (data->ev_enable_state || data->fifo_mode)
1374 		return IRQ_WAKE_THREAD;
1375 
1376 	if (ack)
1377 		return IRQ_HANDLED;
1378 
1379 	return IRQ_NONE;
1380 }
1381 
1382 static const struct {
1383 	int intr;
1384 	const char *name;
1385 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1386 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1387 	{
1388 		.intr = 0,
1389 		.name = "%s-dev%d",
1390 	},
1391 	{
1392 		.intr = 1,
1393 		.name = "%s-any-motion-dev%d",
1394 		.setup = bmc150_accel_any_motion_setup,
1395 	},
1396 };
1397 
bmc150_accel_unregister_triggers(struct bmc150_accel_data * data,int from)1398 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1399 					     int from)
1400 {
1401 	int i;
1402 
1403 	for (i = from; i >= 0; i--) {
1404 		if (data->triggers[i].indio_trig) {
1405 			iio_trigger_unregister(data->triggers[i].indio_trig);
1406 			data->triggers[i].indio_trig = NULL;
1407 		}
1408 	}
1409 }
1410 
bmc150_accel_triggers_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data)1411 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1412 				       struct bmc150_accel_data *data)
1413 {
1414 	struct device *dev = regmap_get_device(data->regmap);
1415 	int i, ret;
1416 
1417 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1418 		struct bmc150_accel_trigger *t = &data->triggers[i];
1419 
1420 		t->indio_trig = devm_iio_trigger_alloc(dev,
1421 						       bmc150_accel_triggers[i].name,
1422 						       indio_dev->name,
1423 						       iio_device_id(indio_dev));
1424 		if (!t->indio_trig) {
1425 			ret = -ENOMEM;
1426 			break;
1427 		}
1428 
1429 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1430 		t->intr = bmc150_accel_triggers[i].intr;
1431 		t->data = data;
1432 		t->setup = bmc150_accel_triggers[i].setup;
1433 		iio_trigger_set_drvdata(t->indio_trig, t);
1434 
1435 		ret = iio_trigger_register(t->indio_trig);
1436 		if (ret)
1437 			break;
1438 	}
1439 
1440 	if (ret)
1441 		bmc150_accel_unregister_triggers(data, i - 1);
1442 
1443 	return ret;
1444 }
1445 
1446 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1447 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1448 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1449 
bmc150_accel_fifo_set_mode(struct bmc150_accel_data * data)1450 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1451 {
1452 	struct device *dev = regmap_get_device(data->regmap);
1453 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1454 	int ret;
1455 
1456 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1457 	if (ret < 0) {
1458 		dev_err(dev, "Error writing reg_fifo_config1\n");
1459 		return ret;
1460 	}
1461 
1462 	if (!data->fifo_mode)
1463 		return 0;
1464 
1465 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1466 			   data->watermark);
1467 	if (ret < 0)
1468 		dev_err(dev, "Error writing reg_fifo_config0\n");
1469 
1470 	return ret;
1471 }
1472 
bmc150_accel_buffer_preenable(struct iio_dev * indio_dev)1473 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1474 {
1475 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1476 
1477 	return bmc150_accel_set_power_state(data, true);
1478 }
1479 
bmc150_accel_buffer_postenable(struct iio_dev * indio_dev)1480 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1481 {
1482 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1483 	int ret = 0;
1484 
1485 	if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
1486 		return 0;
1487 
1488 	mutex_lock(&data->mutex);
1489 
1490 	if (!data->watermark)
1491 		goto out;
1492 
1493 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1494 					 true);
1495 	if (ret)
1496 		goto out;
1497 
1498 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1499 
1500 	ret = bmc150_accel_fifo_set_mode(data);
1501 	if (ret) {
1502 		data->fifo_mode = 0;
1503 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1504 					   false);
1505 	}
1506 
1507 out:
1508 	mutex_unlock(&data->mutex);
1509 
1510 	return ret;
1511 }
1512 
bmc150_accel_buffer_predisable(struct iio_dev * indio_dev)1513 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1514 {
1515 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1516 
1517 	if (iio_device_get_current_mode(indio_dev) == INDIO_BUFFER_TRIGGERED)
1518 		return 0;
1519 
1520 	mutex_lock(&data->mutex);
1521 
1522 	if (!data->fifo_mode)
1523 		goto out;
1524 
1525 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1526 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1527 	data->fifo_mode = 0;
1528 	bmc150_accel_fifo_set_mode(data);
1529 
1530 out:
1531 	mutex_unlock(&data->mutex);
1532 
1533 	return 0;
1534 }
1535 
bmc150_accel_buffer_postdisable(struct iio_dev * indio_dev)1536 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1537 {
1538 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1539 
1540 	return bmc150_accel_set_power_state(data, false);
1541 }
1542 
1543 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1544 	.preenable = bmc150_accel_buffer_preenable,
1545 	.postenable = bmc150_accel_buffer_postenable,
1546 	.predisable = bmc150_accel_buffer_predisable,
1547 	.postdisable = bmc150_accel_buffer_postdisable,
1548 };
1549 
bmc150_accel_chip_init(struct bmc150_accel_data * data)1550 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1551 {
1552 	struct device *dev = regmap_get_device(data->regmap);
1553 	int ret, i;
1554 	unsigned int val;
1555 
1556 	/*
1557 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1558 	 * reset is required according to the data sheets of supported chips.
1559 	 */
1560 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1561 		     BMC150_ACCEL_RESET_VAL);
1562 	usleep_range(1800, 2500);
1563 
1564 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1565 	if (ret < 0) {
1566 		dev_err(dev, "Error: Reading chip id\n");
1567 		return ret;
1568 	}
1569 
1570 	dev_dbg(dev, "Chip Id %x\n", val);
1571 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1572 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1573 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1574 			break;
1575 		}
1576 	}
1577 
1578 	if (!data->chip_info) {
1579 		dev_err(dev, "Invalid chip %x\n", val);
1580 		return -ENODEV;
1581 	}
1582 
1583 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1584 	if (ret < 0)
1585 		return ret;
1586 
1587 	/* Set Bandwidth */
1588 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1589 	if (ret < 0)
1590 		return ret;
1591 
1592 	/* Set Default Range */
1593 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1594 			   BMC150_ACCEL_DEF_RANGE_4G);
1595 	if (ret < 0) {
1596 		dev_err(dev, "Error writing reg_pmu_range\n");
1597 		return ret;
1598 	}
1599 
1600 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1601 
1602 	/* Set default slope duration and thresholds */
1603 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1604 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1605 	ret = bmc150_accel_update_slope(data);
1606 	if (ret < 0)
1607 		return ret;
1608 
1609 	/* Set default as latched interrupts */
1610 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1611 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1612 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1613 	if (ret < 0) {
1614 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1615 		return ret;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
bmc150_accel_core_probe(struct device * dev,struct regmap * regmap,int irq,enum bmc150_type type,const char * name,bool block_supported)1621 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1622 			    enum bmc150_type type, const char *name,
1623 			    bool block_supported)
1624 {
1625 	const struct iio_dev_attr **fifo_attrs;
1626 	struct bmc150_accel_data *data;
1627 	struct iio_dev *indio_dev;
1628 	int ret;
1629 
1630 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1631 	if (!indio_dev)
1632 		return -ENOMEM;
1633 
1634 	data = iio_priv(indio_dev);
1635 	dev_set_drvdata(dev, indio_dev);
1636 
1637 	data->regmap = regmap;
1638 	data->type = type;
1639 
1640 	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1641 		ret = iio_read_mount_matrix(dev, &data->orientation);
1642 		if (ret)
1643 			return ret;
1644 	}
1645 
1646 	/*
1647 	 * VDD   is the analog and digital domain voltage supply
1648 	 * VDDIO is the digital I/O voltage supply
1649 	 */
1650 	data->regulators[0].supply = "vdd";
1651 	data->regulators[1].supply = "vddio";
1652 	ret = devm_regulator_bulk_get(dev,
1653 				      ARRAY_SIZE(data->regulators),
1654 				      data->regulators);
1655 	if (ret)
1656 		return dev_err_probe(dev, ret, "failed to get regulators\n");
1657 
1658 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1659 				    data->regulators);
1660 	if (ret) {
1661 		dev_err(dev, "failed to enable regulators: %d\n", ret);
1662 		return ret;
1663 	}
1664 	/*
1665 	 * 2ms or 3ms power-on time according to datasheets, let's better
1666 	 * be safe than sorry and set this delay to 5ms.
1667 	 */
1668 	msleep(5);
1669 
1670 	ret = bmc150_accel_chip_init(data);
1671 	if (ret < 0)
1672 		goto err_disable_regulators;
1673 
1674 	mutex_init(&data->mutex);
1675 
1676 	indio_dev->channels = data->chip_info->channels;
1677 	indio_dev->num_channels = data->chip_info->num_channels;
1678 	indio_dev->name = name ? name : data->chip_info->name;
1679 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1680 	indio_dev->modes = INDIO_DIRECT_MODE;
1681 	indio_dev->info = &bmc150_accel_info;
1682 
1683 	if (block_supported) {
1684 		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1685 		indio_dev->info = &bmc150_accel_info_fifo;
1686 		fifo_attrs = bmc150_accel_fifo_attributes;
1687 	} else {
1688 		fifo_attrs = NULL;
1689 	}
1690 
1691 	ret = iio_triggered_buffer_setup_ext(indio_dev,
1692 					     &iio_pollfunc_store_time,
1693 					     bmc150_accel_trigger_handler,
1694 					     IIO_BUFFER_DIRECTION_IN,
1695 					     &bmc150_accel_buffer_ops,
1696 					     fifo_attrs);
1697 	if (ret < 0) {
1698 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1699 		goto err_disable_regulators;
1700 	}
1701 
1702 	if (irq > 0) {
1703 		data->irq = irq;
1704 		ret = devm_request_threaded_irq(dev, irq,
1705 						bmc150_accel_irq_handler,
1706 						bmc150_accel_irq_thread_handler,
1707 						IRQF_TRIGGER_RISING,
1708 						"bmc150_accel_event",
1709 						indio_dev);
1710 		if (ret)
1711 			goto err_buffer_cleanup;
1712 
1713 		/*
1714 		 * Set latched mode interrupt. While certain interrupts are
1715 		 * non-latched regardless of this settings (e.g. new data) we
1716 		 * want to use latch mode when we can to prevent interrupt
1717 		 * flooding.
1718 		 */
1719 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1720 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1721 		if (ret < 0) {
1722 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1723 			goto err_buffer_cleanup;
1724 		}
1725 
1726 		bmc150_accel_interrupts_setup(indio_dev, data, irq);
1727 
1728 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1729 		if (ret)
1730 			goto err_buffer_cleanup;
1731 	}
1732 
1733 	ret = pm_runtime_set_active(dev);
1734 	if (ret)
1735 		goto err_trigger_unregister;
1736 
1737 	pm_runtime_enable(dev);
1738 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1739 	pm_runtime_use_autosuspend(dev);
1740 
1741 	ret = iio_device_register(indio_dev);
1742 	if (ret < 0) {
1743 		dev_err(dev, "Unable to register iio device\n");
1744 		goto err_pm_cleanup;
1745 	}
1746 
1747 	return 0;
1748 
1749 err_pm_cleanup:
1750 	pm_runtime_dont_use_autosuspend(dev);
1751 	pm_runtime_disable(dev);
1752 err_trigger_unregister:
1753 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1754 err_buffer_cleanup:
1755 	iio_triggered_buffer_cleanup(indio_dev);
1756 err_disable_regulators:
1757 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1758 			       data->regulators);
1759 
1760 	return ret;
1761 }
1762 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe, "IIO_BMC150");
1763 
bmc150_accel_core_remove(struct device * dev)1764 void bmc150_accel_core_remove(struct device *dev)
1765 {
1766 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1767 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1768 
1769 	iio_device_unregister(indio_dev);
1770 
1771 	pm_runtime_disable(dev);
1772 	pm_runtime_set_suspended(dev);
1773 
1774 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1775 
1776 	iio_triggered_buffer_cleanup(indio_dev);
1777 
1778 	mutex_lock(&data->mutex);
1779 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1780 	mutex_unlock(&data->mutex);
1781 
1782 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1783 			       data->regulators);
1784 }
1785 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove, "IIO_BMC150");
1786 
1787 #ifdef CONFIG_PM_SLEEP
bmc150_accel_suspend(struct device * dev)1788 static int bmc150_accel_suspend(struct device *dev)
1789 {
1790 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1791 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1792 
1793 	mutex_lock(&data->mutex);
1794 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1795 	mutex_unlock(&data->mutex);
1796 
1797 	return 0;
1798 }
1799 
bmc150_accel_resume(struct device * dev)1800 static int bmc150_accel_resume(struct device *dev)
1801 {
1802 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1803 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1804 
1805 	mutex_lock(&data->mutex);
1806 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1807 	bmc150_accel_fifo_set_mode(data);
1808 	mutex_unlock(&data->mutex);
1809 
1810 	if (data->resume_callback)
1811 		data->resume_callback(dev);
1812 
1813 	return 0;
1814 }
1815 #endif
1816 
1817 #ifdef CONFIG_PM
bmc150_accel_runtime_suspend(struct device * dev)1818 static int bmc150_accel_runtime_suspend(struct device *dev)
1819 {
1820 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1821 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1822 	int ret;
1823 
1824 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1825 	if (ret < 0)
1826 		return -EAGAIN;
1827 
1828 	return 0;
1829 }
1830 
bmc150_accel_runtime_resume(struct device * dev)1831 static int bmc150_accel_runtime_resume(struct device *dev)
1832 {
1833 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1834 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1835 	int ret;
1836 	int sleep_val;
1837 
1838 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1839 	if (ret < 0)
1840 		return ret;
1841 	ret = bmc150_accel_fifo_set_mode(data);
1842 	if (ret < 0)
1843 		return ret;
1844 
1845 	sleep_val = bmc150_accel_get_startup_times(data);
1846 	if (sleep_val < 20)
1847 		usleep_range(sleep_val * 1000, 20000);
1848 	else
1849 		msleep_interruptible(sleep_val);
1850 
1851 	return 0;
1852 }
1853 #endif
1854 
1855 const struct dev_pm_ops bmc150_accel_pm_ops = {
1856 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1857 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1858 			   bmc150_accel_runtime_resume, NULL)
1859 };
1860 EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops, "IIO_BMC150");
1861 
1862 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1863 MODULE_LICENSE("GPL v2");
1864 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1865