xref: /linux/block/bio.c (revision 1b1391b9c4bfadcaeb89a87edf6c3520dd349e35)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_write_stream = 0;
255 	bio->bi_status = 0;
256 	bio->bi_iter.bi_sector = 0;
257 	bio->bi_iter.bi_size = 0;
258 	bio->bi_iter.bi_idx = 0;
259 	bio->bi_iter.bi_bvec_done = 0;
260 	bio->bi_end_io = NULL;
261 	bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 	bio->bi_blkg = NULL;
264 	bio->issue_time_ns = 0;
265 	if (bdev)
266 		bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 	bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 	bio->bi_crypt_context = NULL;
273 #endif
274 #ifdef CONFIG_BLK_DEV_INTEGRITY
275 	bio->bi_integrity = NULL;
276 #endif
277 	bio->bi_vcnt = 0;
278 
279 	atomic_set(&bio->__bi_remaining, 1);
280 	atomic_set(&bio->__bi_cnt, 1);
281 	bio->bi_cookie = BLK_QC_T_NONE;
282 
283 	bio->bi_max_vecs = max_vecs;
284 	bio->bi_io_vec = table;
285 	bio->bi_pool = NULL;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  * @bdev:	block device to use the bio for
293  * @opf:	operation and flags for bio
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 	bio->bi_bdev = bdev;
307 	if (bio->bi_bdev)
308 		bio_associate_blkg(bio);
309 	bio->bi_opf = opf;
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (bio->bi_status && !parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the parent bio of @bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 /**
350  * bio_chain_and_submit - submit a bio after chaining it to another one
351  * @prev: bio to chain and submit
352  * @new: bio to chain to
353  *
354  * If @prev is non-NULL, chain it to @new and submit it.
355  *
356  * Return: @new.
357  */
bio_chain_and_submit(struct bio * prev,struct bio * new)358 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
359 {
360 	if (prev) {
361 		bio_chain(prev, new);
362 		submit_bio(prev);
363 	}
364 	return new;
365 }
366 
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)367 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369 {
370 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371 }
372 EXPORT_SYMBOL_GPL(blk_next_bio);
373 
bio_alloc_rescue(struct work_struct * work)374 static void bio_alloc_rescue(struct work_struct *work)
375 {
376 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377 	struct bio *bio;
378 
379 	while (1) {
380 		spin_lock(&bs->rescue_lock);
381 		bio = bio_list_pop(&bs->rescue_list);
382 		spin_unlock(&bs->rescue_lock);
383 
384 		if (!bio)
385 			break;
386 
387 		submit_bio_noacct(bio);
388 	}
389 }
390 
punt_bios_to_rescuer(struct bio_set * bs)391 static void punt_bios_to_rescuer(struct bio_set *bs)
392 {
393 	struct bio_list punt, nopunt;
394 	struct bio *bio;
395 
396 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
397 		return;
398 	/*
399 	 * In order to guarantee forward progress we must punt only bios that
400 	 * were allocated from this bio_set; otherwise, if there was a bio on
401 	 * there for a stacking driver higher up in the stack, processing it
402 	 * could require allocating bios from this bio_set, and doing that from
403 	 * our own rescuer would be bad.
404 	 *
405 	 * Since bio lists are singly linked, pop them all instead of trying to
406 	 * remove from the middle of the list:
407 	 */
408 
409 	bio_list_init(&punt);
410 	bio_list_init(&nopunt);
411 
412 	while ((bio = bio_list_pop(&current->bio_list[0])))
413 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 	current->bio_list[0] = nopunt;
415 
416 	bio_list_init(&nopunt);
417 	while ((bio = bio_list_pop(&current->bio_list[1])))
418 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 	current->bio_list[1] = nopunt;
420 
421 	spin_lock(&bs->rescue_lock);
422 	bio_list_merge(&bs->rescue_list, &punt);
423 	spin_unlock(&bs->rescue_lock);
424 
425 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
426 }
427 
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)428 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429 {
430 	unsigned long flags;
431 
432 	/* cache->free_list must be empty */
433 	if (WARN_ON_ONCE(cache->free_list))
434 		return;
435 
436 	local_irq_save(flags);
437 	cache->free_list = cache->free_list_irq;
438 	cache->free_list_irq = NULL;
439 	cache->nr += cache->nr_irq;
440 	cache->nr_irq = 0;
441 	local_irq_restore(flags);
442 }
443 
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)444 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
445 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
446 		struct bio_set *bs)
447 {
448 	struct bio_alloc_cache *cache;
449 	struct bio *bio;
450 
451 	cache = per_cpu_ptr(bs->cache, get_cpu());
452 	if (!cache->free_list) {
453 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454 			bio_alloc_irq_cache_splice(cache);
455 		if (!cache->free_list) {
456 			put_cpu();
457 			return NULL;
458 		}
459 	}
460 	bio = cache->free_list;
461 	cache->free_list = bio->bi_next;
462 	cache->nr--;
463 	put_cpu();
464 
465 	if (nr_vecs)
466 		bio_init_inline(bio, bdev, nr_vecs, opf);
467 	else
468 		bio_init(bio, bdev, NULL, nr_vecs, opf);
469 	bio->bi_pool = bs;
470 	return bio;
471 }
472 
473 /**
474  * bio_alloc_bioset - allocate a bio for I/O
475  * @bdev:	block device to allocate the bio for (can be %NULL)
476  * @nr_vecs:	number of bvecs to pre-allocate
477  * @opf:	operation and flags for bio
478  * @gfp_mask:   the GFP_* mask given to the slab allocator
479  * @bs:		the bio_set to allocate from.
480  *
481  * Allocate a bio from the mempools in @bs.
482  *
483  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
484  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
485  * callers must never allocate more than 1 bio at a time from the general pool.
486  * Callers that need to allocate more than 1 bio must always submit the
487  * previously allocated bio for IO before attempting to allocate a new one.
488  * Failure to do so can cause deadlocks under memory pressure.
489  *
490  * Note that when running under submit_bio_noacct() (i.e. any block driver),
491  * bios are not submitted until after you return - see the code in
492  * submit_bio_noacct() that converts recursion into iteration, to prevent
493  * stack overflows.
494  *
495  * This would normally mean allocating multiple bios under submit_bio_noacct()
496  * would be susceptible to deadlocks, but we have
497  * deadlock avoidance code that resubmits any blocked bios from a rescuer
498  * thread.
499  *
500  * However, we do not guarantee forward progress for allocations from other
501  * mempools. Doing multiple allocations from the same mempool under
502  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
503  * for per bio allocations.
504  *
505  * Returns: Pointer to new bio on success, NULL on failure.
506  */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)507 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
508 			     blk_opf_t opf, gfp_t gfp_mask,
509 			     struct bio_set *bs)
510 {
511 	gfp_t saved_gfp = gfp_mask;
512 	struct bio *bio;
513 	void *p;
514 
515 	/* should not use nobvec bioset for nr_vecs > 0 */
516 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
517 		return NULL;
518 
519 	if (opf & REQ_ALLOC_CACHE) {
520 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
521 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
522 						     gfp_mask, bs);
523 			if (bio)
524 				return bio;
525 			/*
526 			 * No cached bio available, bio returned below marked with
527 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
528 			 */
529 		} else {
530 			opf &= ~REQ_ALLOC_CACHE;
531 		}
532 	}
533 
534 	/*
535 	 * submit_bio_noacct() converts recursion to iteration; this means if
536 	 * we're running beneath it, any bios we allocate and submit will not be
537 	 * submitted (and thus freed) until after we return.
538 	 *
539 	 * This exposes us to a potential deadlock if we allocate multiple bios
540 	 * from the same bio_set() while running underneath submit_bio_noacct().
541 	 * If we were to allocate multiple bios (say a stacking block driver
542 	 * that was splitting bios), we would deadlock if we exhausted the
543 	 * mempool's reserve.
544 	 *
545 	 * We solve this, and guarantee forward progress, with a rescuer
546 	 * workqueue per bio_set. If we go to allocate and there are bios on
547 	 * current->bio_list, we first try the allocation without
548 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
549 	 * blocking to the rescuer workqueue before we retry with the original
550 	 * gfp_flags.
551 	 */
552 	if (current->bio_list &&
553 	    (!bio_list_empty(&current->bio_list[0]) ||
554 	     !bio_list_empty(&current->bio_list[1])) &&
555 	    bs->rescue_workqueue)
556 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
557 
558 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
559 	if (!p && gfp_mask != saved_gfp) {
560 		punt_bios_to_rescuer(bs);
561 		gfp_mask = saved_gfp;
562 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
563 	}
564 	if (unlikely(!p))
565 		return NULL;
566 	if (!mempool_is_saturated(&bs->bio_pool))
567 		opf &= ~REQ_ALLOC_CACHE;
568 
569 	bio = p + bs->front_pad;
570 	if (nr_vecs > BIO_INLINE_VECS) {
571 		struct bio_vec *bvl = NULL;
572 
573 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
574 		if (!bvl && gfp_mask != saved_gfp) {
575 			punt_bios_to_rescuer(bs);
576 			gfp_mask = saved_gfp;
577 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
578 		}
579 		if (unlikely(!bvl))
580 			goto err_free;
581 
582 		bio_init(bio, bdev, bvl, nr_vecs, opf);
583 	} else if (nr_vecs) {
584 		bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
585 	} else {
586 		bio_init(bio, bdev, NULL, 0, opf);
587 	}
588 
589 	bio->bi_pool = bs;
590 	return bio;
591 
592 err_free:
593 	mempool_free(p, &bs->bio_pool);
594 	return NULL;
595 }
596 EXPORT_SYMBOL(bio_alloc_bioset);
597 
598 /**
599  * bio_kmalloc - kmalloc a bio
600  * @nr_vecs:	number of bio_vecs to allocate
601  * @gfp_mask:   the GFP_* mask given to the slab allocator
602  *
603  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
604  * using bio_init() before use.  To free a bio returned from this function use
605  * kfree() after calling bio_uninit().  A bio returned from this function can
606  * be reused by calling bio_uninit() before calling bio_init() again.
607  *
608  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
609  * function are not backed by a mempool can fail.  Do not use this function
610  * for allocations in the file system I/O path.
611  *
612  * Returns: Pointer to new bio on success, NULL on failure.
613  */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)614 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
615 {
616 	struct bio *bio;
617 
618 	if (nr_vecs > BIO_MAX_INLINE_VECS)
619 		return NULL;
620 	return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
621 			gfp_mask);
622 }
623 EXPORT_SYMBOL(bio_kmalloc);
624 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)625 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
626 {
627 	struct bio_vec bv;
628 	struct bvec_iter iter;
629 
630 	__bio_for_each_segment(bv, bio, iter, start)
631 		memzero_bvec(&bv);
632 }
633 EXPORT_SYMBOL(zero_fill_bio_iter);
634 
635 /**
636  * bio_truncate - truncate the bio to small size of @new_size
637  * @bio:	the bio to be truncated
638  * @new_size:	new size for truncating the bio
639  *
640  * Description:
641  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
642  *   REQ_OP_READ, zero the truncated part. This function should only
643  *   be used for handling corner cases, such as bio eod.
644  */
bio_truncate(struct bio * bio,unsigned new_size)645 static void bio_truncate(struct bio *bio, unsigned new_size)
646 {
647 	struct bio_vec bv;
648 	struct bvec_iter iter;
649 	unsigned int done = 0;
650 	bool truncated = false;
651 
652 	if (new_size >= bio->bi_iter.bi_size)
653 		return;
654 
655 	if (bio_op(bio) != REQ_OP_READ)
656 		goto exit;
657 
658 	bio_for_each_segment(bv, bio, iter) {
659 		if (done + bv.bv_len > new_size) {
660 			size_t offset;
661 
662 			if (!truncated)
663 				offset = new_size - done;
664 			else
665 				offset = 0;
666 			memzero_page(bv.bv_page, bv.bv_offset + offset,
667 				  bv.bv_len - offset);
668 			truncated = true;
669 		}
670 		done += bv.bv_len;
671 	}
672 
673  exit:
674 	/*
675 	 * Don't touch bvec table here and make it really immutable, since
676 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
677 	 * in its .end_bio() callback.
678 	 *
679 	 * It is enough to truncate bio by updating .bi_size since we can make
680 	 * correct bvec with the updated .bi_size for drivers.
681 	 */
682 	bio->bi_iter.bi_size = new_size;
683 }
684 
685 /**
686  * guard_bio_eod - truncate a BIO to fit the block device
687  * @bio:	bio to truncate
688  *
689  * This allows us to do IO even on the odd last sectors of a device, even if the
690  * block size is some multiple of the physical sector size.
691  *
692  * We'll just truncate the bio to the size of the device, and clear the end of
693  * the buffer head manually.  Truly out-of-range accesses will turn into actual
694  * I/O errors, this only handles the "we need to be able to do I/O at the final
695  * sector" case.
696  */
guard_bio_eod(struct bio * bio)697 void guard_bio_eod(struct bio *bio)
698 {
699 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
700 
701 	if (!maxsector)
702 		return;
703 
704 	/*
705 	 * If the *whole* IO is past the end of the device,
706 	 * let it through, and the IO layer will turn it into
707 	 * an EIO.
708 	 */
709 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
710 		return;
711 
712 	maxsector -= bio->bi_iter.bi_sector;
713 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
714 		return;
715 
716 	bio_truncate(bio, maxsector << 9);
717 }
718 
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)719 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
720 				   unsigned int nr)
721 {
722 	unsigned int i = 0;
723 	struct bio *bio;
724 
725 	while ((bio = cache->free_list) != NULL) {
726 		cache->free_list = bio->bi_next;
727 		cache->nr--;
728 		bio_free(bio);
729 		if (++i == nr)
730 			break;
731 	}
732 	return i;
733 }
734 
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)735 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
736 				  unsigned int nr)
737 {
738 	nr -= __bio_alloc_cache_prune(cache, nr);
739 	if (!READ_ONCE(cache->free_list)) {
740 		bio_alloc_irq_cache_splice(cache);
741 		__bio_alloc_cache_prune(cache, nr);
742 	}
743 }
744 
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)745 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
746 {
747 	struct bio_set *bs;
748 
749 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
750 	if (bs->cache) {
751 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
752 
753 		bio_alloc_cache_prune(cache, -1U);
754 	}
755 	return 0;
756 }
757 
bio_alloc_cache_destroy(struct bio_set * bs)758 static void bio_alloc_cache_destroy(struct bio_set *bs)
759 {
760 	int cpu;
761 
762 	if (!bs->cache)
763 		return;
764 
765 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
766 	for_each_possible_cpu(cpu) {
767 		struct bio_alloc_cache *cache;
768 
769 		cache = per_cpu_ptr(bs->cache, cpu);
770 		bio_alloc_cache_prune(cache, -1U);
771 	}
772 	free_percpu(bs->cache);
773 	bs->cache = NULL;
774 }
775 
bio_put_percpu_cache(struct bio * bio)776 static inline void bio_put_percpu_cache(struct bio *bio)
777 {
778 	struct bio_alloc_cache *cache;
779 
780 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
781 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
782 		goto out_free;
783 
784 	if (in_task()) {
785 		bio_uninit(bio);
786 		bio->bi_next = cache->free_list;
787 		/* Not necessary but helps not to iopoll already freed bios */
788 		bio->bi_bdev = NULL;
789 		cache->free_list = bio;
790 		cache->nr++;
791 	} else if (in_hardirq()) {
792 		lockdep_assert_irqs_disabled();
793 
794 		bio_uninit(bio);
795 		bio->bi_next = cache->free_list_irq;
796 		cache->free_list_irq = bio;
797 		cache->nr_irq++;
798 	} else {
799 		goto out_free;
800 	}
801 	put_cpu();
802 	return;
803 out_free:
804 	put_cpu();
805 	bio_free(bio);
806 }
807 
808 /**
809  * bio_put - release a reference to a bio
810  * @bio:   bio to release reference to
811  *
812  * Description:
813  *   Put a reference to a &struct bio, either one you have gotten with
814  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
815  **/
bio_put(struct bio * bio)816 void bio_put(struct bio *bio)
817 {
818 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
819 		BUG_ON(!atomic_read(&bio->__bi_cnt));
820 		if (!atomic_dec_and_test(&bio->__bi_cnt))
821 			return;
822 	}
823 	if (bio->bi_opf & REQ_ALLOC_CACHE)
824 		bio_put_percpu_cache(bio);
825 	else
826 		bio_free(bio);
827 }
828 EXPORT_SYMBOL(bio_put);
829 
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)830 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
831 {
832 	bio_set_flag(bio, BIO_CLONED);
833 	bio->bi_ioprio = bio_src->bi_ioprio;
834 	bio->bi_write_hint = bio_src->bi_write_hint;
835 	bio->bi_write_stream = bio_src->bi_write_stream;
836 	bio->bi_iter = bio_src->bi_iter;
837 
838 	if (bio->bi_bdev) {
839 		if (bio->bi_bdev == bio_src->bi_bdev &&
840 		    bio_flagged(bio_src, BIO_REMAPPED))
841 			bio_set_flag(bio, BIO_REMAPPED);
842 		bio_clone_blkg_association(bio, bio_src);
843 	}
844 
845 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
846 		return -ENOMEM;
847 	if (bio_integrity(bio_src) &&
848 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
849 		return -ENOMEM;
850 	return 0;
851 }
852 
853 /**
854  * bio_alloc_clone - clone a bio that shares the original bio's biovec
855  * @bdev: block_device to clone onto
856  * @bio_src: bio to clone from
857  * @gfp: allocation priority
858  * @bs: bio_set to allocate from
859  *
860  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
861  * bio, but not the actual data it points to.
862  *
863  * The caller must ensure that the return bio is not freed before @bio_src.
864  */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)865 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
866 		gfp_t gfp, struct bio_set *bs)
867 {
868 	struct bio *bio;
869 
870 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
871 	if (!bio)
872 		return NULL;
873 
874 	if (__bio_clone(bio, bio_src, gfp) < 0) {
875 		bio_put(bio);
876 		return NULL;
877 	}
878 	bio->bi_io_vec = bio_src->bi_io_vec;
879 
880 	return bio;
881 }
882 EXPORT_SYMBOL(bio_alloc_clone);
883 
884 /**
885  * bio_init_clone - clone a bio that shares the original bio's biovec
886  * @bdev: block_device to clone onto
887  * @bio: bio to clone into
888  * @bio_src: bio to clone from
889  * @gfp: allocation priority
890  *
891  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
892  * The caller owns the returned bio, but not the actual data it points to.
893  *
894  * The caller must ensure that @bio_src is not freed before @bio.
895  */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)896 int bio_init_clone(struct block_device *bdev, struct bio *bio,
897 		struct bio *bio_src, gfp_t gfp)
898 {
899 	int ret;
900 
901 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
902 	ret = __bio_clone(bio, bio_src, gfp);
903 	if (ret)
904 		bio_uninit(bio);
905 	return ret;
906 }
907 EXPORT_SYMBOL(bio_init_clone);
908 
909 /**
910  * bio_full - check if the bio is full
911  * @bio:	bio to check
912  * @len:	length of one segment to be added
913  *
914  * Return true if @bio is full and one segment with @len bytes can't be
915  * added to the bio, otherwise return false
916  */
bio_full(struct bio * bio,unsigned len)917 static inline bool bio_full(struct bio *bio, unsigned len)
918 {
919 	if (bio->bi_vcnt >= bio->bi_max_vecs)
920 		return true;
921 	if (bio->bi_iter.bi_size > UINT_MAX - len)
922 		return true;
923 	return false;
924 }
925 
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)926 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
927 		unsigned int len, unsigned int off)
928 {
929 	size_t bv_end = bv->bv_offset + bv->bv_len;
930 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
931 	phys_addr_t page_addr = page_to_phys(page);
932 
933 	if (vec_end_addr + 1 != page_addr + off)
934 		return false;
935 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
936 		return false;
937 
938 	if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
939 		if (IS_ENABLED(CONFIG_KMSAN))
940 			return false;
941 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
942 			return false;
943 	}
944 
945 	bv->bv_len += len;
946 	return true;
947 }
948 
949 /*
950  * Try to merge a page into a segment, while obeying the hardware segment
951  * size limit.
952  *
953  * This is kept around for the integrity metadata, which is still tries
954  * to build the initial bio to the hardware limit and doesn't have proper
955  * helpers to split.  Hopefully this will go away soon.
956  */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)957 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
958 		struct page *page, unsigned len, unsigned offset)
959 {
960 	unsigned long mask = queue_segment_boundary(q);
961 	phys_addr_t addr1 = bvec_phys(bv);
962 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
963 
964 	if ((addr1 | mask) != (addr2 | mask))
965 		return false;
966 	if (len > queue_max_segment_size(q) - bv->bv_len)
967 		return false;
968 	return bvec_try_merge_page(bv, page, len, offset);
969 }
970 
971 /**
972  * __bio_add_page - add page(s) to a bio in a new segment
973  * @bio: destination bio
974  * @page: start page to add
975  * @len: length of the data to add, may cross pages
976  * @off: offset of the data relative to @page, may cross pages
977  *
978  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
979  * that @bio has space for another bvec.
980  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)981 void __bio_add_page(struct bio *bio, struct page *page,
982 		unsigned int len, unsigned int off)
983 {
984 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
985 	WARN_ON_ONCE(bio_full(bio, len));
986 
987 	if (is_pci_p2pdma_page(page))
988 		bio->bi_opf |= REQ_NOMERGE;
989 
990 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
991 	bio->bi_iter.bi_size += len;
992 	bio->bi_vcnt++;
993 }
994 EXPORT_SYMBOL_GPL(__bio_add_page);
995 
996 /**
997  * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
998  * @bio: destination bio
999  * @vaddr: data to add
1000  * @len: length of the data to add, may cross pages
1001  *
1002  * Add the data at @vaddr to @bio.  The caller must have ensure a segment
1003  * is available for the added data.  No merging into an existing segment
1004  * will be performed.
1005  */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1006 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1007 {
1008 	__bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1009 }
1010 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1011 
1012 /**
1013  *	bio_add_page	-	attempt to add page(s) to bio
1014  *	@bio: destination bio
1015  *	@page: start page to add
1016  *	@len: vec entry length, may cross pages
1017  *	@offset: vec entry offset relative to @page, may cross pages
1018  *
1019  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1020  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1021  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1022 int bio_add_page(struct bio *bio, struct page *page,
1023 		 unsigned int len, unsigned int offset)
1024 {
1025 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1026 		return 0;
1027 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1028 		return 0;
1029 
1030 	if (bio->bi_vcnt > 0) {
1031 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1032 
1033 		if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1034 			return 0;
1035 
1036 		if (bvec_try_merge_page(bv, page, len, offset)) {
1037 			bio->bi_iter.bi_size += len;
1038 			return len;
1039 		}
1040 	}
1041 
1042 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1043 		return 0;
1044 	__bio_add_page(bio, page, len, offset);
1045 	return len;
1046 }
1047 EXPORT_SYMBOL(bio_add_page);
1048 
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1049 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1050 			  size_t off)
1051 {
1052 	unsigned long nr = off / PAGE_SIZE;
1053 
1054 	WARN_ON_ONCE(len > UINT_MAX);
1055 	__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1056 }
1057 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1058 
1059 /**
1060  * bio_add_folio - Attempt to add part of a folio to a bio.
1061  * @bio: BIO to add to.
1062  * @folio: Folio to add.
1063  * @len: How many bytes from the folio to add.
1064  * @off: First byte in this folio to add.
1065  *
1066  * Filesystems that use folios can call this function instead of calling
1067  * bio_add_page() for each page in the folio.  If @off is bigger than
1068  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1069  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1070  *
1071  * Return: Whether the addition was successful.
1072  */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1073 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1074 		   size_t off)
1075 {
1076 	unsigned long nr = off / PAGE_SIZE;
1077 
1078 	if (len > UINT_MAX)
1079 		return false;
1080 	return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1081 }
1082 EXPORT_SYMBOL(bio_add_folio);
1083 
1084 /**
1085  * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1086  * @bio: destination bio
1087  * @vaddr: vmalloc address to add
1088  * @len: total length in bytes of the data to add
1089  *
1090  * Add data starting at @vaddr to @bio and return how many bytes were added.
1091  * This may be less than the amount originally asked.  Returns 0 if no data
1092  * could be added to @bio.
1093  *
1094  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1095  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1096  * the completion handler.
1097  */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1098 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1099 {
1100 	unsigned int offset = offset_in_page(vaddr);
1101 
1102 	len = min(len, PAGE_SIZE - offset);
1103 	if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1104 		return 0;
1105 	if (op_is_write(bio_op(bio)))
1106 		flush_kernel_vmap_range(vaddr, len);
1107 	return len;
1108 }
1109 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1110 
1111 /**
1112  * bio_add_vmalloc - add a vmalloc region to a bio
1113  * @bio: destination bio
1114  * @vaddr: vmalloc address to add
1115  * @len: total length in bytes of the data to add
1116  *
1117  * Add data starting at @vaddr to @bio.  Return %true on success or %false if
1118  * @bio does not have enough space for the payload.
1119  *
1120  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1121  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1122  * the completion handler.
1123  */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1124 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1125 {
1126 	do {
1127 		unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1128 
1129 		if (!added)
1130 			return false;
1131 		vaddr += added;
1132 		len -= added;
1133 	} while (len);
1134 
1135 	return true;
1136 }
1137 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1138 
__bio_release_pages(struct bio * bio,bool mark_dirty)1139 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1140 {
1141 	struct folio_iter fi;
1142 
1143 	bio_for_each_folio_all(fi, bio) {
1144 		size_t nr_pages;
1145 
1146 		if (mark_dirty) {
1147 			folio_lock(fi.folio);
1148 			folio_mark_dirty(fi.folio);
1149 			folio_unlock(fi.folio);
1150 		}
1151 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1152 			   fi.offset / PAGE_SIZE + 1;
1153 		unpin_user_folio(fi.folio, nr_pages);
1154 	}
1155 }
1156 EXPORT_SYMBOL_GPL(__bio_release_pages);
1157 
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1158 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1159 {
1160 	WARN_ON_ONCE(bio->bi_max_vecs);
1161 
1162 	bio->bi_vcnt = iter->nr_segs;
1163 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1164 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1165 	bio->bi_iter.bi_size = iov_iter_count(iter);
1166 	bio_set_flag(bio, BIO_CLONED);
1167 }
1168 
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1169 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1170 					 struct page **pages, unsigned int i,
1171 					 struct folio *folio, size_t left,
1172 					 size_t offset)
1173 {
1174 	size_t bytes = left;
1175 	size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1176 	unsigned int j;
1177 
1178 	/*
1179 	 * We might COW a single page in the middle of
1180 	 * a large folio, so we have to check that all
1181 	 * pages belong to the same folio.
1182 	 */
1183 	bytes -= contig_sz;
1184 	for (j = i + 1; j < i + *num_pages; j++) {
1185 		size_t next = min_t(size_t, PAGE_SIZE, bytes);
1186 
1187 		if (page_folio(pages[j]) != folio ||
1188 		    pages[j] != pages[j - 1] + 1) {
1189 			break;
1190 		}
1191 		contig_sz += next;
1192 		bytes -= next;
1193 	}
1194 	*num_pages = j - i;
1195 
1196 	return contig_sz;
1197 }
1198 
1199 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1200 
1201 /**
1202  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1203  * @bio: bio to add pages to
1204  * @iter: iov iterator describing the region to be mapped
1205  *
1206  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1207  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1208  * For a multi-segment *iter, this function only adds pages from the next
1209  * non-empty segment of the iov iterator.
1210  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1211 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1212 {
1213 	iov_iter_extraction_t extraction_flags = 0;
1214 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1215 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1216 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1217 	struct page **pages = (struct page **)bv;
1218 	ssize_t size;
1219 	unsigned int num_pages, i = 0;
1220 	size_t offset, folio_offset, left, len;
1221 	int ret = 0;
1222 
1223 	/*
1224 	 * Move page array up in the allocated memory for the bio vecs as far as
1225 	 * possible so that we can start filling biovecs from the beginning
1226 	 * without overwriting the temporary page array.
1227 	 */
1228 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1229 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1230 
1231 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1232 		extraction_flags |= ITER_ALLOW_P2PDMA;
1233 
1234 	size = iov_iter_extract_pages(iter, &pages,
1235 				      UINT_MAX - bio->bi_iter.bi_size,
1236 				      nr_pages, extraction_flags, &offset);
1237 	if (unlikely(size <= 0))
1238 		return size ? size : -EFAULT;
1239 
1240 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1241 	for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1242 		struct page *page = pages[i];
1243 		struct folio *folio = page_folio(page);
1244 		unsigned int old_vcnt = bio->bi_vcnt;
1245 
1246 		folio_offset = ((size_t)folio_page_idx(folio, page) <<
1247 			       PAGE_SHIFT) + offset;
1248 
1249 		len = min(folio_size(folio) - folio_offset, left);
1250 
1251 		num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1252 
1253 		if (num_pages > 1)
1254 			len = get_contig_folio_len(&num_pages, pages, i,
1255 						   folio, left, offset);
1256 
1257 		if (!bio_add_folio(bio, folio, len, folio_offset)) {
1258 			WARN_ON_ONCE(1);
1259 			ret = -EINVAL;
1260 			goto out;
1261 		}
1262 
1263 		if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1264 			/*
1265 			 * We're adding another fragment of a page that already
1266 			 * was part of the last segment.  Undo our pin as the
1267 			 * page was pinned when an earlier fragment of it was
1268 			 * added to the bio and __bio_release_pages expects a
1269 			 * single pin per page.
1270 			 */
1271 			if (offset && bio->bi_vcnt == old_vcnt)
1272 				unpin_user_folio(folio, 1);
1273 		}
1274 		offset = 0;
1275 	}
1276 
1277 	iov_iter_revert(iter, left);
1278 out:
1279 	while (i < nr_pages)
1280 		bio_release_page(bio, pages[i++]);
1281 
1282 	return ret;
1283 }
1284 
1285 /*
1286  * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1287  * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1288  * for the next iteration.
1289  */
bio_iov_iter_align_down(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1290 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1291 			    unsigned len_align_mask)
1292 {
1293 	size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1294 
1295 	if (!nbytes)
1296 		return 0;
1297 
1298 	iov_iter_revert(iter, nbytes);
1299 	bio->bi_iter.bi_size -= nbytes;
1300 	do {
1301 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1302 
1303 		if (nbytes < bv->bv_len) {
1304 			bv->bv_len -= nbytes;
1305 			break;
1306 		}
1307 
1308 		bio_release_page(bio, bv->bv_page);
1309 		bio->bi_vcnt--;
1310 		nbytes -= bv->bv_len;
1311 	} while (nbytes);
1312 
1313 	if (!bio->bi_vcnt)
1314 		return -EFAULT;
1315 	return 0;
1316 }
1317 
1318 /**
1319  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1320  * @bio: bio to add pages to
1321  * @iter: iov iterator describing the region to be added
1322  * @len_align_mask: the mask to align the total size to, 0 for any length
1323  *
1324  * This takes either an iterator pointing to user memory, or one pointing to
1325  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1326  * map them into the kernel. On IO completion, the caller should put those
1327  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1328  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1329  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1330  * completed by a call to ->ki_complete() or returns with an error other than
1331  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1332  * on IO completion. If it isn't, then pages should be released.
1333  *
1334  * The function tries, but does not guarantee, to pin as many pages as
1335  * fit into the bio, or are requested in @iter, whatever is smaller. If
1336  * MM encounters an error pinning the requested pages, it stops. Error
1337  * is returned only if 0 pages could be pinned.
1338  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1339 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1340 			   unsigned len_align_mask)
1341 {
1342 	int ret = 0;
1343 
1344 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1345 		return -EIO;
1346 
1347 	if (iov_iter_is_bvec(iter)) {
1348 		bio_iov_bvec_set(bio, iter);
1349 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1350 		return 0;
1351 	}
1352 
1353 	if (iov_iter_extract_will_pin(iter))
1354 		bio_set_flag(bio, BIO_PAGE_PINNED);
1355 	do {
1356 		ret = __bio_iov_iter_get_pages(bio, iter);
1357 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1358 
1359 	if (bio->bi_vcnt)
1360 		return bio_iov_iter_align_down(bio, iter, len_align_mask);
1361 	return ret;
1362 }
1363 
submit_bio_wait_endio(struct bio * bio)1364 static void submit_bio_wait_endio(struct bio *bio)
1365 {
1366 	complete(bio->bi_private);
1367 }
1368 
1369 /**
1370  * submit_bio_wait - submit a bio, and wait until it completes
1371  * @bio: The &struct bio which describes the I/O
1372  *
1373  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1374  * bio_endio() on failure.
1375  *
1376  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1377  * result in bio reference to be consumed. The caller must drop the reference
1378  * on his own.
1379  */
submit_bio_wait(struct bio * bio)1380 int submit_bio_wait(struct bio *bio)
1381 {
1382 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1383 			bio->bi_bdev->bd_disk->lockdep_map);
1384 
1385 	bio->bi_private = &done;
1386 	bio->bi_end_io = submit_bio_wait_endio;
1387 	bio->bi_opf |= REQ_SYNC;
1388 	submit_bio(bio);
1389 	blk_wait_io(&done);
1390 
1391 	return blk_status_to_errno(bio->bi_status);
1392 }
1393 EXPORT_SYMBOL(submit_bio_wait);
1394 
1395 /**
1396  * bdev_rw_virt - synchronously read into / write from kernel mapping
1397  * @bdev:	block device to access
1398  * @sector:	sector to access
1399  * @data:	data to read/write
1400  * @len:	length in byte to read/write
1401  * @op:		operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1402  *
1403  * Performs synchronous I/O to @bdev for @data/@len.  @data must be in
1404  * the kernel direct mapping and not a vmalloc address.
1405  */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1406 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1407 		size_t len, enum req_op op)
1408 {
1409 	struct bio_vec bv;
1410 	struct bio bio;
1411 	int error;
1412 
1413 	if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1414 		return -EIO;
1415 
1416 	bio_init(&bio, bdev, &bv, 1, op);
1417 	bio.bi_iter.bi_sector = sector;
1418 	bio_add_virt_nofail(&bio, data, len);
1419 	error = submit_bio_wait(&bio);
1420 	bio_uninit(&bio);
1421 	return error;
1422 }
1423 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1424 
bio_wait_end_io(struct bio * bio)1425 static void bio_wait_end_io(struct bio *bio)
1426 {
1427 	complete(bio->bi_private);
1428 	bio_put(bio);
1429 }
1430 
1431 /*
1432  * bio_await_chain - ends @bio and waits for every chained bio to complete
1433  */
bio_await_chain(struct bio * bio)1434 void bio_await_chain(struct bio *bio)
1435 {
1436 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1437 			bio->bi_bdev->bd_disk->lockdep_map);
1438 
1439 	bio->bi_private = &done;
1440 	bio->bi_end_io = bio_wait_end_io;
1441 	bio_endio(bio);
1442 	blk_wait_io(&done);
1443 }
1444 
__bio_advance(struct bio * bio,unsigned bytes)1445 void __bio_advance(struct bio *bio, unsigned bytes)
1446 {
1447 	if (bio_integrity(bio))
1448 		bio_integrity_advance(bio, bytes);
1449 
1450 	bio_crypt_advance(bio, bytes);
1451 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1452 }
1453 EXPORT_SYMBOL(__bio_advance);
1454 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1455 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1456 			struct bio *src, struct bvec_iter *src_iter)
1457 {
1458 	while (src_iter->bi_size && dst_iter->bi_size) {
1459 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1460 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1461 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1462 		void *src_buf = bvec_kmap_local(&src_bv);
1463 		void *dst_buf = bvec_kmap_local(&dst_bv);
1464 
1465 		memcpy(dst_buf, src_buf, bytes);
1466 
1467 		kunmap_local(dst_buf);
1468 		kunmap_local(src_buf);
1469 
1470 		bio_advance_iter_single(src, src_iter, bytes);
1471 		bio_advance_iter_single(dst, dst_iter, bytes);
1472 	}
1473 }
1474 EXPORT_SYMBOL(bio_copy_data_iter);
1475 
1476 /**
1477  * bio_copy_data - copy contents of data buffers from one bio to another
1478  * @src: source bio
1479  * @dst: destination bio
1480  *
1481  * Stops when it reaches the end of either @src or @dst - that is, copies
1482  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1483  */
bio_copy_data(struct bio * dst,struct bio * src)1484 void bio_copy_data(struct bio *dst, struct bio *src)
1485 {
1486 	struct bvec_iter src_iter = src->bi_iter;
1487 	struct bvec_iter dst_iter = dst->bi_iter;
1488 
1489 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1490 }
1491 EXPORT_SYMBOL(bio_copy_data);
1492 
bio_free_pages(struct bio * bio)1493 void bio_free_pages(struct bio *bio)
1494 {
1495 	struct bio_vec *bvec;
1496 	struct bvec_iter_all iter_all;
1497 
1498 	bio_for_each_segment_all(bvec, bio, iter_all)
1499 		__free_page(bvec->bv_page);
1500 }
1501 EXPORT_SYMBOL(bio_free_pages);
1502 
1503 /*
1504  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1505  * for performing direct-IO in BIOs.
1506  *
1507  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1508  * because the required locks are not interrupt-safe.  So what we can do is to
1509  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1510  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1511  * in process context.
1512  *
1513  * Note that this code is very hard to test under normal circumstances because
1514  * direct-io pins the pages with get_user_pages().  This makes
1515  * is_page_cache_freeable return false, and the VM will not clean the pages.
1516  * But other code (eg, flusher threads) could clean the pages if they are mapped
1517  * pagecache.
1518  *
1519  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1520  * deferred bio dirtying paths.
1521  */
1522 
1523 /*
1524  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1525  */
bio_set_pages_dirty(struct bio * bio)1526 void bio_set_pages_dirty(struct bio *bio)
1527 {
1528 	struct folio_iter fi;
1529 
1530 	bio_for_each_folio_all(fi, bio) {
1531 		folio_lock(fi.folio);
1532 		folio_mark_dirty(fi.folio);
1533 		folio_unlock(fi.folio);
1534 	}
1535 }
1536 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1537 
1538 /*
1539  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1540  * If they are, then fine.  If, however, some pages are clean then they must
1541  * have been written out during the direct-IO read.  So we take another ref on
1542  * the BIO and re-dirty the pages in process context.
1543  *
1544  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1545  * here on.  It will unpin each page and will run one bio_put() against the
1546  * BIO.
1547  */
1548 
1549 static void bio_dirty_fn(struct work_struct *work);
1550 
1551 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1552 static DEFINE_SPINLOCK(bio_dirty_lock);
1553 static struct bio *bio_dirty_list;
1554 
1555 /*
1556  * This runs in process context
1557  */
bio_dirty_fn(struct work_struct * work)1558 static void bio_dirty_fn(struct work_struct *work)
1559 {
1560 	struct bio *bio, *next;
1561 
1562 	spin_lock_irq(&bio_dirty_lock);
1563 	next = bio_dirty_list;
1564 	bio_dirty_list = NULL;
1565 	spin_unlock_irq(&bio_dirty_lock);
1566 
1567 	while ((bio = next) != NULL) {
1568 		next = bio->bi_private;
1569 
1570 		bio_release_pages(bio, true);
1571 		bio_put(bio);
1572 	}
1573 }
1574 
bio_check_pages_dirty(struct bio * bio)1575 void bio_check_pages_dirty(struct bio *bio)
1576 {
1577 	struct folio_iter fi;
1578 	unsigned long flags;
1579 
1580 	bio_for_each_folio_all(fi, bio) {
1581 		if (!folio_test_dirty(fi.folio))
1582 			goto defer;
1583 	}
1584 
1585 	bio_release_pages(bio, false);
1586 	bio_put(bio);
1587 	return;
1588 defer:
1589 	spin_lock_irqsave(&bio_dirty_lock, flags);
1590 	bio->bi_private = bio_dirty_list;
1591 	bio_dirty_list = bio;
1592 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1593 	schedule_work(&bio_dirty_work);
1594 }
1595 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1596 
bio_remaining_done(struct bio * bio)1597 static inline bool bio_remaining_done(struct bio *bio)
1598 {
1599 	/*
1600 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1601 	 * we always end io on the first invocation.
1602 	 */
1603 	if (!bio_flagged(bio, BIO_CHAIN))
1604 		return true;
1605 
1606 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1607 
1608 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1609 		bio_clear_flag(bio, BIO_CHAIN);
1610 		return true;
1611 	}
1612 
1613 	return false;
1614 }
1615 
1616 /**
1617  * bio_endio - end I/O on a bio
1618  * @bio:	bio
1619  *
1620  * Description:
1621  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1622  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1623  *   bio unless they own it and thus know that it has an end_io function.
1624  *
1625  *   bio_endio() can be called several times on a bio that has been chained
1626  *   using bio_chain().  The ->bi_end_io() function will only be called the
1627  *   last time.
1628  **/
bio_endio(struct bio * bio)1629 void bio_endio(struct bio *bio)
1630 {
1631 again:
1632 	if (!bio_remaining_done(bio))
1633 		return;
1634 	if (!bio_integrity_endio(bio))
1635 		return;
1636 
1637 	blk_zone_bio_endio(bio);
1638 
1639 	rq_qos_done_bio(bio);
1640 
1641 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1642 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1643 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1644 	}
1645 
1646 	/*
1647 	 * Need to have a real endio function for chained bios, otherwise
1648 	 * various corner cases will break (like stacking block devices that
1649 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1650 	 * recursion and blowing the stack. Tail call optimization would
1651 	 * handle this, but compiling with frame pointers also disables
1652 	 * gcc's sibling call optimization.
1653 	 */
1654 	if (bio->bi_end_io == bio_chain_endio) {
1655 		bio = __bio_chain_endio(bio);
1656 		goto again;
1657 	}
1658 
1659 #ifdef CONFIG_BLK_CGROUP
1660 	/*
1661 	 * Release cgroup info.  We shouldn't have to do this here, but quite
1662 	 * a few callers of bio_init fail to call bio_uninit, so we cover up
1663 	 * for that here at least for now.
1664 	 */
1665 	if (bio->bi_blkg) {
1666 		blkg_put(bio->bi_blkg);
1667 		bio->bi_blkg = NULL;
1668 	}
1669 #endif
1670 
1671 	if (bio->bi_end_io)
1672 		bio->bi_end_io(bio);
1673 }
1674 EXPORT_SYMBOL(bio_endio);
1675 
1676 /**
1677  * bio_split - split a bio
1678  * @bio:	bio to split
1679  * @sectors:	number of sectors to split from the front of @bio
1680  * @gfp:	gfp mask
1681  * @bs:		bio set to allocate from
1682  *
1683  * Allocates and returns a new bio which represents @sectors from the start of
1684  * @bio, and updates @bio to represent the remaining sectors.
1685  *
1686  * Unless this is a discard request the newly allocated bio will point
1687  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1688  * neither @bio nor @bs are freed before the split bio.
1689  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1690 struct bio *bio_split(struct bio *bio, int sectors,
1691 		      gfp_t gfp, struct bio_set *bs)
1692 {
1693 	struct bio *split;
1694 
1695 	if (WARN_ON_ONCE(sectors <= 0))
1696 		return ERR_PTR(-EINVAL);
1697 	if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1698 		return ERR_PTR(-EINVAL);
1699 
1700 	/* Zone append commands cannot be split */
1701 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1702 		return ERR_PTR(-EINVAL);
1703 
1704 	/* atomic writes cannot be split */
1705 	if (bio->bi_opf & REQ_ATOMIC)
1706 		return ERR_PTR(-EINVAL);
1707 
1708 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1709 	if (!split)
1710 		return ERR_PTR(-ENOMEM);
1711 
1712 	split->bi_iter.bi_size = sectors << 9;
1713 
1714 	if (bio_integrity(split))
1715 		bio_integrity_trim(split);
1716 
1717 	bio_advance(bio, split->bi_iter.bi_size);
1718 
1719 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1720 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1721 
1722 	return split;
1723 }
1724 EXPORT_SYMBOL(bio_split);
1725 
1726 /**
1727  * bio_trim - trim a bio
1728  * @bio:	bio to trim
1729  * @offset:	number of sectors to trim from the front of @bio
1730  * @size:	size we want to trim @bio to, in sectors
1731  *
1732  * This function is typically used for bios that are cloned and submitted
1733  * to the underlying device in parts.
1734  */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1735 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1736 {
1737 	/* We should never trim an atomic write */
1738 	if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1739 		return;
1740 
1741 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1742 			 offset + size > bio_sectors(bio)))
1743 		return;
1744 
1745 	size <<= 9;
1746 	if (offset == 0 && size == bio->bi_iter.bi_size)
1747 		return;
1748 
1749 	bio_advance(bio, offset << 9);
1750 	bio->bi_iter.bi_size = size;
1751 
1752 	if (bio_integrity(bio))
1753 		bio_integrity_trim(bio);
1754 }
1755 EXPORT_SYMBOL_GPL(bio_trim);
1756 
1757 /*
1758  * create memory pools for biovec's in a bio_set.
1759  * use the global biovec slabs created for general use.
1760  */
biovec_init_pool(mempool_t * pool,int pool_entries)1761 int biovec_init_pool(mempool_t *pool, int pool_entries)
1762 {
1763 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1764 
1765 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1766 }
1767 
1768 /*
1769  * bioset_exit - exit a bioset initialized with bioset_init()
1770  *
1771  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1772  * kzalloc()).
1773  */
bioset_exit(struct bio_set * bs)1774 void bioset_exit(struct bio_set *bs)
1775 {
1776 	bio_alloc_cache_destroy(bs);
1777 	if (bs->rescue_workqueue)
1778 		destroy_workqueue(bs->rescue_workqueue);
1779 	bs->rescue_workqueue = NULL;
1780 
1781 	mempool_exit(&bs->bio_pool);
1782 	mempool_exit(&bs->bvec_pool);
1783 
1784 	if (bs->bio_slab)
1785 		bio_put_slab(bs);
1786 	bs->bio_slab = NULL;
1787 }
1788 EXPORT_SYMBOL(bioset_exit);
1789 
1790 /**
1791  * bioset_init - Initialize a bio_set
1792  * @bs:		pool to initialize
1793  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1794  * @front_pad:	Number of bytes to allocate in front of the returned bio
1795  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1796  *              and %BIOSET_NEED_RESCUER
1797  *
1798  * Description:
1799  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1800  *    to ask for a number of bytes to be allocated in front of the bio.
1801  *    Front pad allocation is useful for embedding the bio inside
1802  *    another structure, to avoid allocating extra data to go with the bio.
1803  *    Note that the bio must be embedded at the END of that structure always,
1804  *    or things will break badly.
1805  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1806  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1807  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1808  *    to dispatch queued requests when the mempool runs out of space.
1809  *
1810  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1811 int bioset_init(struct bio_set *bs,
1812 		unsigned int pool_size,
1813 		unsigned int front_pad,
1814 		int flags)
1815 {
1816 	bs->front_pad = front_pad;
1817 	if (flags & BIOSET_NEED_BVECS)
1818 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1819 	else
1820 		bs->back_pad = 0;
1821 
1822 	spin_lock_init(&bs->rescue_lock);
1823 	bio_list_init(&bs->rescue_list);
1824 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1825 
1826 	bs->bio_slab = bio_find_or_create_slab(bs);
1827 	if (!bs->bio_slab)
1828 		return -ENOMEM;
1829 
1830 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1831 		goto bad;
1832 
1833 	if ((flags & BIOSET_NEED_BVECS) &&
1834 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1835 		goto bad;
1836 
1837 	if (flags & BIOSET_NEED_RESCUER) {
1838 		bs->rescue_workqueue = alloc_workqueue("bioset",
1839 							WQ_MEM_RECLAIM, 0);
1840 		if (!bs->rescue_workqueue)
1841 			goto bad;
1842 	}
1843 	if (flags & BIOSET_PERCPU_CACHE) {
1844 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1845 		if (!bs->cache)
1846 			goto bad;
1847 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1848 	}
1849 
1850 	return 0;
1851 bad:
1852 	bioset_exit(bs);
1853 	return -ENOMEM;
1854 }
1855 EXPORT_SYMBOL(bioset_init);
1856 
init_bio(void)1857 static int __init init_bio(void)
1858 {
1859 	int i;
1860 
1861 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1862 
1863 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1864 		struct biovec_slab *bvs = bvec_slabs + i;
1865 
1866 		bvs->slab = kmem_cache_create(bvs->name,
1867 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1868 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1869 	}
1870 
1871 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1872 					bio_cpu_dead);
1873 
1874 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1875 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1876 		panic("bio: can't allocate bios\n");
1877 
1878 	return 0;
1879 }
1880 subsys_initcall(init_bio);
1881