1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
29
30 struct bio_alloc_cache {
31 struct bio *free_list;
32 struct bio *free_list_irq;
33 unsigned int nr;
34 unsigned int nr_irq;
35 };
36
37 static struct biovec_slab {
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
58 case 129 ... BIO_MAX_VECS:
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64 }
65
66 /*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72
73 /*
74 * Our slab pool management
75 */
76 struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89 if (!bslab)
90 return NULL;
91
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 if (!bslab->slab)
97 goto fail_alloc_slab;
98
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
101
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
104
105 kmem_cache_destroy(bslab->slab);
106
107 fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110 }
111
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
121
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
128 mutex_unlock(&bio_slab_lock);
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
133 }
134
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 struct bio_slab *bslab = NULL;
138 unsigned int slab_size = bs_bio_slab_size(bs);
139
140 mutex_lock(&bio_slab_lock);
141
142 bslab = xa_load(&bio_slabs, slab_size);
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 xa_erase(&bio_slabs, slab_size);
154
155 kmem_cache_destroy(bslab->slab);
156 kfree(bslab);
157
158 out:
159 mutex_unlock(&bio_slab_lock);
160 }
161
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166 if (nr_vecs == BIO_MAX_VECS)
167 mempool_free(bv, pool);
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171
172 /*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
184 {
185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187 if (WARN_ON_ONCE(!bvs))
188 return NULL;
189
190 /*
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
193 */
194 *nr_vecs = bvs->nr_vecs;
195
196 /*
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 */
201 if (*nr_vecs < BIO_MAX_VECS) {
202 struct bio_vec *bvl;
203
204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 return bvl;
207 *nr_vecs = BIO_MAX_VECS;
208 }
209
210 return mempool_alloc(pool, gfp_mask);
211 }
212
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220 #endif
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
223
224 bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 struct bio_set *bs = bio->bi_pool;
231 void *p = bio;
232
233 WARN_ON_ONCE(!bs);
234
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239
240 /*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 unsigned short max_vecs, blk_opf_t opf)
247 {
248 bio->bi_next = NULL;
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
253 bio->bi_write_hint = 0;
254 bio->bi_write_stream = 0;
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->issue_time_ns = 0;
265 if (bdev)
266 bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 bio->bi_crypt_context = NULL;
273 #endif
274 #ifdef CONFIG_BLK_DEV_INTEGRITY
275 bio->bi_integrity = NULL;
276 #endif
277 bio->bi_vcnt = 0;
278
279 atomic_set(&bio->__bi_remaining, 1);
280 atomic_set(&bio->__bi_cnt, 1);
281 bio->bi_cookie = BLK_QC_T_NONE;
282
283 bio->bi_max_vecs = max_vecs;
284 bio->bi_io_vec = table;
285 bio->bi_pool = NULL;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 * @bdev: block device to use the bio for
293 * @opf: operation and flags for bio
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302 {
303 bio_uninit(bio);
304 memset(bio, 0, BIO_RESET_BYTES);
305 atomic_set(&bio->__bi_remaining, 1);
306 bio->bi_bdev = bdev;
307 if (bio->bi_bdev)
308 bio_associate_blkg(bio);
309 bio->bi_opf = opf;
310 }
311 EXPORT_SYMBOL(bio_reset);
312
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (bio->bi_status && !parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the parent bio of @bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
349 /**
350 * bio_chain_and_submit - submit a bio after chaining it to another one
351 * @prev: bio to chain and submit
352 * @new: bio to chain to
353 *
354 * If @prev is non-NULL, chain it to @new and submit it.
355 *
356 * Return: @new.
357 */
bio_chain_and_submit(struct bio * prev,struct bio * new)358 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
359 {
360 if (prev) {
361 bio_chain(prev, new);
362 submit_bio(prev);
363 }
364 return new;
365 }
366
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)367 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369 {
370 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371 }
372 EXPORT_SYMBOL_GPL(blk_next_bio);
373
bio_alloc_rescue(struct work_struct * work)374 static void bio_alloc_rescue(struct work_struct *work)
375 {
376 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377 struct bio *bio;
378
379 while (1) {
380 spin_lock(&bs->rescue_lock);
381 bio = bio_list_pop(&bs->rescue_list);
382 spin_unlock(&bs->rescue_lock);
383
384 if (!bio)
385 break;
386
387 submit_bio_noacct(bio);
388 }
389 }
390
punt_bios_to_rescuer(struct bio_set * bs)391 static void punt_bios_to_rescuer(struct bio_set *bs)
392 {
393 struct bio_list punt, nopunt;
394 struct bio *bio;
395
396 if (WARN_ON_ONCE(!bs->rescue_workqueue))
397 return;
398 /*
399 * In order to guarantee forward progress we must punt only bios that
400 * were allocated from this bio_set; otherwise, if there was a bio on
401 * there for a stacking driver higher up in the stack, processing it
402 * could require allocating bios from this bio_set, and doing that from
403 * our own rescuer would be bad.
404 *
405 * Since bio lists are singly linked, pop them all instead of trying to
406 * remove from the middle of the list:
407 */
408
409 bio_list_init(&punt);
410 bio_list_init(&nopunt);
411
412 while ((bio = bio_list_pop(¤t->bio_list[0])))
413 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 current->bio_list[0] = nopunt;
415
416 bio_list_init(&nopunt);
417 while ((bio = bio_list_pop(¤t->bio_list[1])))
418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 current->bio_list[1] = nopunt;
420
421 spin_lock(&bs->rescue_lock);
422 bio_list_merge(&bs->rescue_list, &punt);
423 spin_unlock(&bs->rescue_lock);
424
425 queue_work(bs->rescue_workqueue, &bs->rescue_work);
426 }
427
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)428 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429 {
430 unsigned long flags;
431
432 /* cache->free_list must be empty */
433 if (WARN_ON_ONCE(cache->free_list))
434 return;
435
436 local_irq_save(flags);
437 cache->free_list = cache->free_list_irq;
438 cache->free_list_irq = NULL;
439 cache->nr += cache->nr_irq;
440 cache->nr_irq = 0;
441 local_irq_restore(flags);
442 }
443
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)444 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
445 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
446 struct bio_set *bs)
447 {
448 struct bio_alloc_cache *cache;
449 struct bio *bio;
450
451 cache = per_cpu_ptr(bs->cache, get_cpu());
452 if (!cache->free_list) {
453 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454 bio_alloc_irq_cache_splice(cache);
455 if (!cache->free_list) {
456 put_cpu();
457 return NULL;
458 }
459 }
460 bio = cache->free_list;
461 cache->free_list = bio->bi_next;
462 cache->nr--;
463 put_cpu();
464
465 if (nr_vecs)
466 bio_init_inline(bio, bdev, nr_vecs, opf);
467 else
468 bio_init(bio, bdev, NULL, nr_vecs, opf);
469 bio->bi_pool = bs;
470 return bio;
471 }
472
473 /**
474 * bio_alloc_bioset - allocate a bio for I/O
475 * @bdev: block device to allocate the bio for (can be %NULL)
476 * @nr_vecs: number of bvecs to pre-allocate
477 * @opf: operation and flags for bio
478 * @gfp_mask: the GFP_* mask given to the slab allocator
479 * @bs: the bio_set to allocate from.
480 *
481 * Allocate a bio from the mempools in @bs.
482 *
483 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
484 * allocate a bio. This is due to the mempool guarantees. To make this work,
485 * callers must never allocate more than 1 bio at a time from the general pool.
486 * Callers that need to allocate more than 1 bio must always submit the
487 * previously allocated bio for IO before attempting to allocate a new one.
488 * Failure to do so can cause deadlocks under memory pressure.
489 *
490 * Note that when running under submit_bio_noacct() (i.e. any block driver),
491 * bios are not submitted until after you return - see the code in
492 * submit_bio_noacct() that converts recursion into iteration, to prevent
493 * stack overflows.
494 *
495 * This would normally mean allocating multiple bios under submit_bio_noacct()
496 * would be susceptible to deadlocks, but we have
497 * deadlock avoidance code that resubmits any blocked bios from a rescuer
498 * thread.
499 *
500 * However, we do not guarantee forward progress for allocations from other
501 * mempools. Doing multiple allocations from the same mempool under
502 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
503 * for per bio allocations.
504 *
505 * Returns: Pointer to new bio on success, NULL on failure.
506 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)507 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
508 blk_opf_t opf, gfp_t gfp_mask,
509 struct bio_set *bs)
510 {
511 gfp_t saved_gfp = gfp_mask;
512 struct bio *bio;
513 void *p;
514
515 /* should not use nobvec bioset for nr_vecs > 0 */
516 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
517 return NULL;
518
519 if (opf & REQ_ALLOC_CACHE) {
520 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
521 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
522 gfp_mask, bs);
523 if (bio)
524 return bio;
525 /*
526 * No cached bio available, bio returned below marked with
527 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
528 */
529 } else {
530 opf &= ~REQ_ALLOC_CACHE;
531 }
532 }
533
534 /*
535 * submit_bio_noacct() converts recursion to iteration; this means if
536 * we're running beneath it, any bios we allocate and submit will not be
537 * submitted (and thus freed) until after we return.
538 *
539 * This exposes us to a potential deadlock if we allocate multiple bios
540 * from the same bio_set() while running underneath submit_bio_noacct().
541 * If we were to allocate multiple bios (say a stacking block driver
542 * that was splitting bios), we would deadlock if we exhausted the
543 * mempool's reserve.
544 *
545 * We solve this, and guarantee forward progress, with a rescuer
546 * workqueue per bio_set. If we go to allocate and there are bios on
547 * current->bio_list, we first try the allocation without
548 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
549 * blocking to the rescuer workqueue before we retry with the original
550 * gfp_flags.
551 */
552 if (current->bio_list &&
553 (!bio_list_empty(¤t->bio_list[0]) ||
554 !bio_list_empty(¤t->bio_list[1])) &&
555 bs->rescue_workqueue)
556 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
557
558 p = mempool_alloc(&bs->bio_pool, gfp_mask);
559 if (!p && gfp_mask != saved_gfp) {
560 punt_bios_to_rescuer(bs);
561 gfp_mask = saved_gfp;
562 p = mempool_alloc(&bs->bio_pool, gfp_mask);
563 }
564 if (unlikely(!p))
565 return NULL;
566 if (!mempool_is_saturated(&bs->bio_pool))
567 opf &= ~REQ_ALLOC_CACHE;
568
569 bio = p + bs->front_pad;
570 if (nr_vecs > BIO_INLINE_VECS) {
571 struct bio_vec *bvl = NULL;
572
573 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
574 if (!bvl && gfp_mask != saved_gfp) {
575 punt_bios_to_rescuer(bs);
576 gfp_mask = saved_gfp;
577 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
578 }
579 if (unlikely(!bvl))
580 goto err_free;
581
582 bio_init(bio, bdev, bvl, nr_vecs, opf);
583 } else if (nr_vecs) {
584 bio_init_inline(bio, bdev, BIO_INLINE_VECS, opf);
585 } else {
586 bio_init(bio, bdev, NULL, 0, opf);
587 }
588
589 bio->bi_pool = bs;
590 return bio;
591
592 err_free:
593 mempool_free(p, &bs->bio_pool);
594 return NULL;
595 }
596 EXPORT_SYMBOL(bio_alloc_bioset);
597
598 /**
599 * bio_kmalloc - kmalloc a bio
600 * @nr_vecs: number of bio_vecs to allocate
601 * @gfp_mask: the GFP_* mask given to the slab allocator
602 *
603 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
604 * using bio_init() before use. To free a bio returned from this function use
605 * kfree() after calling bio_uninit(). A bio returned from this function can
606 * be reused by calling bio_uninit() before calling bio_init() again.
607 *
608 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
609 * function are not backed by a mempool can fail. Do not use this function
610 * for allocations in the file system I/O path.
611 *
612 * Returns: Pointer to new bio on success, NULL on failure.
613 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)614 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
615 {
616 struct bio *bio;
617
618 if (nr_vecs > BIO_MAX_INLINE_VECS)
619 return NULL;
620 return kmalloc(sizeof(*bio) + nr_vecs * sizeof(struct bio_vec),
621 gfp_mask);
622 }
623 EXPORT_SYMBOL(bio_kmalloc);
624
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)625 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
626 {
627 struct bio_vec bv;
628 struct bvec_iter iter;
629
630 __bio_for_each_segment(bv, bio, iter, start)
631 memzero_bvec(&bv);
632 }
633 EXPORT_SYMBOL(zero_fill_bio_iter);
634
635 /**
636 * bio_truncate - truncate the bio to small size of @new_size
637 * @bio: the bio to be truncated
638 * @new_size: new size for truncating the bio
639 *
640 * Description:
641 * Truncate the bio to new size of @new_size. If bio_op(bio) is
642 * REQ_OP_READ, zero the truncated part. This function should only
643 * be used for handling corner cases, such as bio eod.
644 */
bio_truncate(struct bio * bio,unsigned new_size)645 static void bio_truncate(struct bio *bio, unsigned new_size)
646 {
647 struct bio_vec bv;
648 struct bvec_iter iter;
649 unsigned int done = 0;
650 bool truncated = false;
651
652 if (new_size >= bio->bi_iter.bi_size)
653 return;
654
655 if (bio_op(bio) != REQ_OP_READ)
656 goto exit;
657
658 bio_for_each_segment(bv, bio, iter) {
659 if (done + bv.bv_len > new_size) {
660 size_t offset;
661
662 if (!truncated)
663 offset = new_size - done;
664 else
665 offset = 0;
666 memzero_page(bv.bv_page, bv.bv_offset + offset,
667 bv.bv_len - offset);
668 truncated = true;
669 }
670 done += bv.bv_len;
671 }
672
673 exit:
674 /*
675 * Don't touch bvec table here and make it really immutable, since
676 * fs bio user has to retrieve all pages via bio_for_each_segment_all
677 * in its .end_bio() callback.
678 *
679 * It is enough to truncate bio by updating .bi_size since we can make
680 * correct bvec with the updated .bi_size for drivers.
681 */
682 bio->bi_iter.bi_size = new_size;
683 }
684
685 /**
686 * guard_bio_eod - truncate a BIO to fit the block device
687 * @bio: bio to truncate
688 *
689 * This allows us to do IO even on the odd last sectors of a device, even if the
690 * block size is some multiple of the physical sector size.
691 *
692 * We'll just truncate the bio to the size of the device, and clear the end of
693 * the buffer head manually. Truly out-of-range accesses will turn into actual
694 * I/O errors, this only handles the "we need to be able to do I/O at the final
695 * sector" case.
696 */
guard_bio_eod(struct bio * bio)697 void guard_bio_eod(struct bio *bio)
698 {
699 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
700
701 if (!maxsector)
702 return;
703
704 /*
705 * If the *whole* IO is past the end of the device,
706 * let it through, and the IO layer will turn it into
707 * an EIO.
708 */
709 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
710 return;
711
712 maxsector -= bio->bi_iter.bi_sector;
713 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
714 return;
715
716 bio_truncate(bio, maxsector << 9);
717 }
718
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)719 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
720 unsigned int nr)
721 {
722 unsigned int i = 0;
723 struct bio *bio;
724
725 while ((bio = cache->free_list) != NULL) {
726 cache->free_list = bio->bi_next;
727 cache->nr--;
728 bio_free(bio);
729 if (++i == nr)
730 break;
731 }
732 return i;
733 }
734
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)735 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
736 unsigned int nr)
737 {
738 nr -= __bio_alloc_cache_prune(cache, nr);
739 if (!READ_ONCE(cache->free_list)) {
740 bio_alloc_irq_cache_splice(cache);
741 __bio_alloc_cache_prune(cache, nr);
742 }
743 }
744
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)745 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
746 {
747 struct bio_set *bs;
748
749 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
750 if (bs->cache) {
751 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
752
753 bio_alloc_cache_prune(cache, -1U);
754 }
755 return 0;
756 }
757
bio_alloc_cache_destroy(struct bio_set * bs)758 static void bio_alloc_cache_destroy(struct bio_set *bs)
759 {
760 int cpu;
761
762 if (!bs->cache)
763 return;
764
765 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
766 for_each_possible_cpu(cpu) {
767 struct bio_alloc_cache *cache;
768
769 cache = per_cpu_ptr(bs->cache, cpu);
770 bio_alloc_cache_prune(cache, -1U);
771 }
772 free_percpu(bs->cache);
773 bs->cache = NULL;
774 }
775
bio_put_percpu_cache(struct bio * bio)776 static inline void bio_put_percpu_cache(struct bio *bio)
777 {
778 struct bio_alloc_cache *cache;
779
780 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
781 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
782 goto out_free;
783
784 if (in_task()) {
785 bio_uninit(bio);
786 bio->bi_next = cache->free_list;
787 /* Not necessary but helps not to iopoll already freed bios */
788 bio->bi_bdev = NULL;
789 cache->free_list = bio;
790 cache->nr++;
791 } else if (in_hardirq()) {
792 lockdep_assert_irqs_disabled();
793
794 bio_uninit(bio);
795 bio->bi_next = cache->free_list_irq;
796 cache->free_list_irq = bio;
797 cache->nr_irq++;
798 } else {
799 goto out_free;
800 }
801 put_cpu();
802 return;
803 out_free:
804 put_cpu();
805 bio_free(bio);
806 }
807
808 /**
809 * bio_put - release a reference to a bio
810 * @bio: bio to release reference to
811 *
812 * Description:
813 * Put a reference to a &struct bio, either one you have gotten with
814 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
815 **/
bio_put(struct bio * bio)816 void bio_put(struct bio *bio)
817 {
818 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
819 BUG_ON(!atomic_read(&bio->__bi_cnt));
820 if (!atomic_dec_and_test(&bio->__bi_cnt))
821 return;
822 }
823 if (bio->bi_opf & REQ_ALLOC_CACHE)
824 bio_put_percpu_cache(bio);
825 else
826 bio_free(bio);
827 }
828 EXPORT_SYMBOL(bio_put);
829
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)830 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
831 {
832 bio_set_flag(bio, BIO_CLONED);
833 bio->bi_ioprio = bio_src->bi_ioprio;
834 bio->bi_write_hint = bio_src->bi_write_hint;
835 bio->bi_write_stream = bio_src->bi_write_stream;
836 bio->bi_iter = bio_src->bi_iter;
837
838 if (bio->bi_bdev) {
839 if (bio->bi_bdev == bio_src->bi_bdev &&
840 bio_flagged(bio_src, BIO_REMAPPED))
841 bio_set_flag(bio, BIO_REMAPPED);
842 bio_clone_blkg_association(bio, bio_src);
843 }
844
845 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
846 return -ENOMEM;
847 if (bio_integrity(bio_src) &&
848 bio_integrity_clone(bio, bio_src, gfp) < 0)
849 return -ENOMEM;
850 return 0;
851 }
852
853 /**
854 * bio_alloc_clone - clone a bio that shares the original bio's biovec
855 * @bdev: block_device to clone onto
856 * @bio_src: bio to clone from
857 * @gfp: allocation priority
858 * @bs: bio_set to allocate from
859 *
860 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
861 * bio, but not the actual data it points to.
862 *
863 * The caller must ensure that the return bio is not freed before @bio_src.
864 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)865 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
866 gfp_t gfp, struct bio_set *bs)
867 {
868 struct bio *bio;
869
870 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
871 if (!bio)
872 return NULL;
873
874 if (__bio_clone(bio, bio_src, gfp) < 0) {
875 bio_put(bio);
876 return NULL;
877 }
878 bio->bi_io_vec = bio_src->bi_io_vec;
879
880 return bio;
881 }
882 EXPORT_SYMBOL(bio_alloc_clone);
883
884 /**
885 * bio_init_clone - clone a bio that shares the original bio's biovec
886 * @bdev: block_device to clone onto
887 * @bio: bio to clone into
888 * @bio_src: bio to clone from
889 * @gfp: allocation priority
890 *
891 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
892 * The caller owns the returned bio, but not the actual data it points to.
893 *
894 * The caller must ensure that @bio_src is not freed before @bio.
895 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)896 int bio_init_clone(struct block_device *bdev, struct bio *bio,
897 struct bio *bio_src, gfp_t gfp)
898 {
899 int ret;
900
901 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
902 ret = __bio_clone(bio, bio_src, gfp);
903 if (ret)
904 bio_uninit(bio);
905 return ret;
906 }
907 EXPORT_SYMBOL(bio_init_clone);
908
909 /**
910 * bio_full - check if the bio is full
911 * @bio: bio to check
912 * @len: length of one segment to be added
913 *
914 * Return true if @bio is full and one segment with @len bytes can't be
915 * added to the bio, otherwise return false
916 */
bio_full(struct bio * bio,unsigned len)917 static inline bool bio_full(struct bio *bio, unsigned len)
918 {
919 if (bio->bi_vcnt >= bio->bi_max_vecs)
920 return true;
921 if (bio->bi_iter.bi_size > UINT_MAX - len)
922 return true;
923 return false;
924 }
925
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)926 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
927 unsigned int len, unsigned int off)
928 {
929 size_t bv_end = bv->bv_offset + bv->bv_len;
930 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
931 phys_addr_t page_addr = page_to_phys(page);
932
933 if (vec_end_addr + 1 != page_addr + off)
934 return false;
935 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
936 return false;
937
938 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
939 if (IS_ENABLED(CONFIG_KMSAN))
940 return false;
941 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
942 return false;
943 }
944
945 bv->bv_len += len;
946 return true;
947 }
948
949 /*
950 * Try to merge a page into a segment, while obeying the hardware segment
951 * size limit.
952 *
953 * This is kept around for the integrity metadata, which is still tries
954 * to build the initial bio to the hardware limit and doesn't have proper
955 * helpers to split. Hopefully this will go away soon.
956 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)957 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
958 struct page *page, unsigned len, unsigned offset)
959 {
960 unsigned long mask = queue_segment_boundary(q);
961 phys_addr_t addr1 = bvec_phys(bv);
962 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
963
964 if ((addr1 | mask) != (addr2 | mask))
965 return false;
966 if (len > queue_max_segment_size(q) - bv->bv_len)
967 return false;
968 return bvec_try_merge_page(bv, page, len, offset);
969 }
970
971 /**
972 * __bio_add_page - add page(s) to a bio in a new segment
973 * @bio: destination bio
974 * @page: start page to add
975 * @len: length of the data to add, may cross pages
976 * @off: offset of the data relative to @page, may cross pages
977 *
978 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
979 * that @bio has space for another bvec.
980 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)981 void __bio_add_page(struct bio *bio, struct page *page,
982 unsigned int len, unsigned int off)
983 {
984 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
985 WARN_ON_ONCE(bio_full(bio, len));
986
987 if (is_pci_p2pdma_page(page))
988 bio->bi_opf |= REQ_NOMERGE;
989
990 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
991 bio->bi_iter.bi_size += len;
992 bio->bi_vcnt++;
993 }
994 EXPORT_SYMBOL_GPL(__bio_add_page);
995
996 /**
997 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
998 * @bio: destination bio
999 * @vaddr: data to add
1000 * @len: length of the data to add, may cross pages
1001 *
1002 * Add the data at @vaddr to @bio. The caller must have ensure a segment
1003 * is available for the added data. No merging into an existing segment
1004 * will be performed.
1005 */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1006 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1007 {
1008 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1009 }
1010 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1011
1012 /**
1013 * bio_add_page - attempt to add page(s) to bio
1014 * @bio: destination bio
1015 * @page: start page to add
1016 * @len: vec entry length, may cross pages
1017 * @offset: vec entry offset relative to @page, may cross pages
1018 *
1019 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1020 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1021 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1022 int bio_add_page(struct bio *bio, struct page *page,
1023 unsigned int len, unsigned int offset)
1024 {
1025 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1026 return 0;
1027 if (bio->bi_iter.bi_size > UINT_MAX - len)
1028 return 0;
1029
1030 if (bio->bi_vcnt > 0) {
1031 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1032
1033 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1034 return 0;
1035
1036 if (bvec_try_merge_page(bv, page, len, offset)) {
1037 bio->bi_iter.bi_size += len;
1038 return len;
1039 }
1040 }
1041
1042 if (bio->bi_vcnt >= bio->bi_max_vecs)
1043 return 0;
1044 __bio_add_page(bio, page, len, offset);
1045 return len;
1046 }
1047 EXPORT_SYMBOL(bio_add_page);
1048
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1049 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1050 size_t off)
1051 {
1052 unsigned long nr = off / PAGE_SIZE;
1053
1054 WARN_ON_ONCE(len > UINT_MAX);
1055 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1056 }
1057 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1058
1059 /**
1060 * bio_add_folio - Attempt to add part of a folio to a bio.
1061 * @bio: BIO to add to.
1062 * @folio: Folio to add.
1063 * @len: How many bytes from the folio to add.
1064 * @off: First byte in this folio to add.
1065 *
1066 * Filesystems that use folios can call this function instead of calling
1067 * bio_add_page() for each page in the folio. If @off is bigger than
1068 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1069 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1070 *
1071 * Return: Whether the addition was successful.
1072 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1073 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1074 size_t off)
1075 {
1076 unsigned long nr = off / PAGE_SIZE;
1077
1078 if (len > UINT_MAX)
1079 return false;
1080 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1081 }
1082 EXPORT_SYMBOL(bio_add_folio);
1083
1084 /**
1085 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1086 * @bio: destination bio
1087 * @vaddr: vmalloc address to add
1088 * @len: total length in bytes of the data to add
1089 *
1090 * Add data starting at @vaddr to @bio and return how many bytes were added.
1091 * This may be less than the amount originally asked. Returns 0 if no data
1092 * could be added to @bio.
1093 *
1094 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1095 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1096 * the completion handler.
1097 */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1098 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1099 {
1100 unsigned int offset = offset_in_page(vaddr);
1101
1102 len = min(len, PAGE_SIZE - offset);
1103 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1104 return 0;
1105 if (op_is_write(bio_op(bio)))
1106 flush_kernel_vmap_range(vaddr, len);
1107 return len;
1108 }
1109 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1110
1111 /**
1112 * bio_add_vmalloc - add a vmalloc region to a bio
1113 * @bio: destination bio
1114 * @vaddr: vmalloc address to add
1115 * @len: total length in bytes of the data to add
1116 *
1117 * Add data starting at @vaddr to @bio. Return %true on success or %false if
1118 * @bio does not have enough space for the payload.
1119 *
1120 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1121 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1122 * the completion handler.
1123 */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1124 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1125 {
1126 do {
1127 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1128
1129 if (!added)
1130 return false;
1131 vaddr += added;
1132 len -= added;
1133 } while (len);
1134
1135 return true;
1136 }
1137 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1138
__bio_release_pages(struct bio * bio,bool mark_dirty)1139 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1140 {
1141 struct folio_iter fi;
1142
1143 bio_for_each_folio_all(fi, bio) {
1144 size_t nr_pages;
1145
1146 if (mark_dirty) {
1147 folio_lock(fi.folio);
1148 folio_mark_dirty(fi.folio);
1149 folio_unlock(fi.folio);
1150 }
1151 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1152 fi.offset / PAGE_SIZE + 1;
1153 unpin_user_folio(fi.folio, nr_pages);
1154 }
1155 }
1156 EXPORT_SYMBOL_GPL(__bio_release_pages);
1157
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1158 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1159 {
1160 WARN_ON_ONCE(bio->bi_max_vecs);
1161
1162 bio->bi_vcnt = iter->nr_segs;
1163 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1164 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1165 bio->bi_iter.bi_size = iov_iter_count(iter);
1166 bio_set_flag(bio, BIO_CLONED);
1167 }
1168
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1169 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1170 struct page **pages, unsigned int i,
1171 struct folio *folio, size_t left,
1172 size_t offset)
1173 {
1174 size_t bytes = left;
1175 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1176 unsigned int j;
1177
1178 /*
1179 * We might COW a single page in the middle of
1180 * a large folio, so we have to check that all
1181 * pages belong to the same folio.
1182 */
1183 bytes -= contig_sz;
1184 for (j = i + 1; j < i + *num_pages; j++) {
1185 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1186
1187 if (page_folio(pages[j]) != folio ||
1188 pages[j] != pages[j - 1] + 1) {
1189 break;
1190 }
1191 contig_sz += next;
1192 bytes -= next;
1193 }
1194 *num_pages = j - i;
1195
1196 return contig_sz;
1197 }
1198
1199 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1200
1201 /**
1202 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1203 * @bio: bio to add pages to
1204 * @iter: iov iterator describing the region to be mapped
1205 *
1206 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1207 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1208 * For a multi-segment *iter, this function only adds pages from the next
1209 * non-empty segment of the iov iterator.
1210 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1211 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1212 {
1213 iov_iter_extraction_t extraction_flags = 0;
1214 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1215 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1216 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1217 struct page **pages = (struct page **)bv;
1218 ssize_t size;
1219 unsigned int num_pages, i = 0;
1220 size_t offset, folio_offset, left, len;
1221 int ret = 0;
1222
1223 /*
1224 * Move page array up in the allocated memory for the bio vecs as far as
1225 * possible so that we can start filling biovecs from the beginning
1226 * without overwriting the temporary page array.
1227 */
1228 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1229 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1230
1231 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1232 extraction_flags |= ITER_ALLOW_P2PDMA;
1233
1234 size = iov_iter_extract_pages(iter, &pages,
1235 UINT_MAX - bio->bi_iter.bi_size,
1236 nr_pages, extraction_flags, &offset);
1237 if (unlikely(size <= 0))
1238 return size ? size : -EFAULT;
1239
1240 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1241 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1242 struct page *page = pages[i];
1243 struct folio *folio = page_folio(page);
1244 unsigned int old_vcnt = bio->bi_vcnt;
1245
1246 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1247 PAGE_SHIFT) + offset;
1248
1249 len = min(folio_size(folio) - folio_offset, left);
1250
1251 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1252
1253 if (num_pages > 1)
1254 len = get_contig_folio_len(&num_pages, pages, i,
1255 folio, left, offset);
1256
1257 if (!bio_add_folio(bio, folio, len, folio_offset)) {
1258 WARN_ON_ONCE(1);
1259 ret = -EINVAL;
1260 goto out;
1261 }
1262
1263 if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1264 /*
1265 * We're adding another fragment of a page that already
1266 * was part of the last segment. Undo our pin as the
1267 * page was pinned when an earlier fragment of it was
1268 * added to the bio and __bio_release_pages expects a
1269 * single pin per page.
1270 */
1271 if (offset && bio->bi_vcnt == old_vcnt)
1272 unpin_user_folio(folio, 1);
1273 }
1274 offset = 0;
1275 }
1276
1277 iov_iter_revert(iter, left);
1278 out:
1279 while (i < nr_pages)
1280 bio_release_page(bio, pages[i++]);
1281
1282 return ret;
1283 }
1284
1285 /*
1286 * Aligns the bio size to the len_align_mask, releasing excessive bio vecs that
1287 * __bio_iov_iter_get_pages may have inserted, and reverts the trimmed length
1288 * for the next iteration.
1289 */
bio_iov_iter_align_down(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1290 static int bio_iov_iter_align_down(struct bio *bio, struct iov_iter *iter,
1291 unsigned len_align_mask)
1292 {
1293 size_t nbytes = bio->bi_iter.bi_size & len_align_mask;
1294
1295 if (!nbytes)
1296 return 0;
1297
1298 iov_iter_revert(iter, nbytes);
1299 bio->bi_iter.bi_size -= nbytes;
1300 do {
1301 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1302
1303 if (nbytes < bv->bv_len) {
1304 bv->bv_len -= nbytes;
1305 break;
1306 }
1307
1308 bio_release_page(bio, bv->bv_page);
1309 bio->bi_vcnt--;
1310 nbytes -= bv->bv_len;
1311 } while (nbytes);
1312
1313 if (!bio->bi_vcnt)
1314 return -EFAULT;
1315 return 0;
1316 }
1317
1318 /**
1319 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1320 * @bio: bio to add pages to
1321 * @iter: iov iterator describing the region to be added
1322 * @len_align_mask: the mask to align the total size to, 0 for any length
1323 *
1324 * This takes either an iterator pointing to user memory, or one pointing to
1325 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1326 * map them into the kernel. On IO completion, the caller should put those
1327 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1328 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1329 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1330 * completed by a call to ->ki_complete() or returns with an error other than
1331 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1332 * on IO completion. If it isn't, then pages should be released.
1333 *
1334 * The function tries, but does not guarantee, to pin as many pages as
1335 * fit into the bio, or are requested in @iter, whatever is smaller. If
1336 * MM encounters an error pinning the requested pages, it stops. Error
1337 * is returned only if 0 pages could be pinned.
1338 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter,unsigned len_align_mask)1339 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
1340 unsigned len_align_mask)
1341 {
1342 int ret = 0;
1343
1344 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1345 return -EIO;
1346
1347 if (iov_iter_is_bvec(iter)) {
1348 bio_iov_bvec_set(bio, iter);
1349 iov_iter_advance(iter, bio->bi_iter.bi_size);
1350 return 0;
1351 }
1352
1353 if (iov_iter_extract_will_pin(iter))
1354 bio_set_flag(bio, BIO_PAGE_PINNED);
1355 do {
1356 ret = __bio_iov_iter_get_pages(bio, iter);
1357 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1358
1359 if (bio->bi_vcnt)
1360 return bio_iov_iter_align_down(bio, iter, len_align_mask);
1361 return ret;
1362 }
1363
submit_bio_wait_endio(struct bio * bio)1364 static void submit_bio_wait_endio(struct bio *bio)
1365 {
1366 complete(bio->bi_private);
1367 }
1368
1369 /**
1370 * submit_bio_wait - submit a bio, and wait until it completes
1371 * @bio: The &struct bio which describes the I/O
1372 *
1373 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1374 * bio_endio() on failure.
1375 *
1376 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1377 * result in bio reference to be consumed. The caller must drop the reference
1378 * on his own.
1379 */
submit_bio_wait(struct bio * bio)1380 int submit_bio_wait(struct bio *bio)
1381 {
1382 DECLARE_COMPLETION_ONSTACK_MAP(done,
1383 bio->bi_bdev->bd_disk->lockdep_map);
1384
1385 bio->bi_private = &done;
1386 bio->bi_end_io = submit_bio_wait_endio;
1387 bio->bi_opf |= REQ_SYNC;
1388 submit_bio(bio);
1389 blk_wait_io(&done);
1390
1391 return blk_status_to_errno(bio->bi_status);
1392 }
1393 EXPORT_SYMBOL(submit_bio_wait);
1394
1395 /**
1396 * bdev_rw_virt - synchronously read into / write from kernel mapping
1397 * @bdev: block device to access
1398 * @sector: sector to access
1399 * @data: data to read/write
1400 * @len: length in byte to read/write
1401 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1402 *
1403 * Performs synchronous I/O to @bdev for @data/@len. @data must be in
1404 * the kernel direct mapping and not a vmalloc address.
1405 */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1406 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1407 size_t len, enum req_op op)
1408 {
1409 struct bio_vec bv;
1410 struct bio bio;
1411 int error;
1412
1413 if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1414 return -EIO;
1415
1416 bio_init(&bio, bdev, &bv, 1, op);
1417 bio.bi_iter.bi_sector = sector;
1418 bio_add_virt_nofail(&bio, data, len);
1419 error = submit_bio_wait(&bio);
1420 bio_uninit(&bio);
1421 return error;
1422 }
1423 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1424
bio_wait_end_io(struct bio * bio)1425 static void bio_wait_end_io(struct bio *bio)
1426 {
1427 complete(bio->bi_private);
1428 bio_put(bio);
1429 }
1430
1431 /*
1432 * bio_await_chain - ends @bio and waits for every chained bio to complete
1433 */
bio_await_chain(struct bio * bio)1434 void bio_await_chain(struct bio *bio)
1435 {
1436 DECLARE_COMPLETION_ONSTACK_MAP(done,
1437 bio->bi_bdev->bd_disk->lockdep_map);
1438
1439 bio->bi_private = &done;
1440 bio->bi_end_io = bio_wait_end_io;
1441 bio_endio(bio);
1442 blk_wait_io(&done);
1443 }
1444
__bio_advance(struct bio * bio,unsigned bytes)1445 void __bio_advance(struct bio *bio, unsigned bytes)
1446 {
1447 if (bio_integrity(bio))
1448 bio_integrity_advance(bio, bytes);
1449
1450 bio_crypt_advance(bio, bytes);
1451 bio_advance_iter(bio, &bio->bi_iter, bytes);
1452 }
1453 EXPORT_SYMBOL(__bio_advance);
1454
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1455 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1456 struct bio *src, struct bvec_iter *src_iter)
1457 {
1458 while (src_iter->bi_size && dst_iter->bi_size) {
1459 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1460 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1461 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1462 void *src_buf = bvec_kmap_local(&src_bv);
1463 void *dst_buf = bvec_kmap_local(&dst_bv);
1464
1465 memcpy(dst_buf, src_buf, bytes);
1466
1467 kunmap_local(dst_buf);
1468 kunmap_local(src_buf);
1469
1470 bio_advance_iter_single(src, src_iter, bytes);
1471 bio_advance_iter_single(dst, dst_iter, bytes);
1472 }
1473 }
1474 EXPORT_SYMBOL(bio_copy_data_iter);
1475
1476 /**
1477 * bio_copy_data - copy contents of data buffers from one bio to another
1478 * @src: source bio
1479 * @dst: destination bio
1480 *
1481 * Stops when it reaches the end of either @src or @dst - that is, copies
1482 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1483 */
bio_copy_data(struct bio * dst,struct bio * src)1484 void bio_copy_data(struct bio *dst, struct bio *src)
1485 {
1486 struct bvec_iter src_iter = src->bi_iter;
1487 struct bvec_iter dst_iter = dst->bi_iter;
1488
1489 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1490 }
1491 EXPORT_SYMBOL(bio_copy_data);
1492
bio_free_pages(struct bio * bio)1493 void bio_free_pages(struct bio *bio)
1494 {
1495 struct bio_vec *bvec;
1496 struct bvec_iter_all iter_all;
1497
1498 bio_for_each_segment_all(bvec, bio, iter_all)
1499 __free_page(bvec->bv_page);
1500 }
1501 EXPORT_SYMBOL(bio_free_pages);
1502
1503 /*
1504 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1505 * for performing direct-IO in BIOs.
1506 *
1507 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1508 * because the required locks are not interrupt-safe. So what we can do is to
1509 * mark the pages dirty _before_ performing IO. And in interrupt context,
1510 * check that the pages are still dirty. If so, fine. If not, redirty them
1511 * in process context.
1512 *
1513 * Note that this code is very hard to test under normal circumstances because
1514 * direct-io pins the pages with get_user_pages(). This makes
1515 * is_page_cache_freeable return false, and the VM will not clean the pages.
1516 * But other code (eg, flusher threads) could clean the pages if they are mapped
1517 * pagecache.
1518 *
1519 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1520 * deferred bio dirtying paths.
1521 */
1522
1523 /*
1524 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1525 */
bio_set_pages_dirty(struct bio * bio)1526 void bio_set_pages_dirty(struct bio *bio)
1527 {
1528 struct folio_iter fi;
1529
1530 bio_for_each_folio_all(fi, bio) {
1531 folio_lock(fi.folio);
1532 folio_mark_dirty(fi.folio);
1533 folio_unlock(fi.folio);
1534 }
1535 }
1536 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1537
1538 /*
1539 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1540 * If they are, then fine. If, however, some pages are clean then they must
1541 * have been written out during the direct-IO read. So we take another ref on
1542 * the BIO and re-dirty the pages in process context.
1543 *
1544 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1545 * here on. It will unpin each page and will run one bio_put() against the
1546 * BIO.
1547 */
1548
1549 static void bio_dirty_fn(struct work_struct *work);
1550
1551 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1552 static DEFINE_SPINLOCK(bio_dirty_lock);
1553 static struct bio *bio_dirty_list;
1554
1555 /*
1556 * This runs in process context
1557 */
bio_dirty_fn(struct work_struct * work)1558 static void bio_dirty_fn(struct work_struct *work)
1559 {
1560 struct bio *bio, *next;
1561
1562 spin_lock_irq(&bio_dirty_lock);
1563 next = bio_dirty_list;
1564 bio_dirty_list = NULL;
1565 spin_unlock_irq(&bio_dirty_lock);
1566
1567 while ((bio = next) != NULL) {
1568 next = bio->bi_private;
1569
1570 bio_release_pages(bio, true);
1571 bio_put(bio);
1572 }
1573 }
1574
bio_check_pages_dirty(struct bio * bio)1575 void bio_check_pages_dirty(struct bio *bio)
1576 {
1577 struct folio_iter fi;
1578 unsigned long flags;
1579
1580 bio_for_each_folio_all(fi, bio) {
1581 if (!folio_test_dirty(fi.folio))
1582 goto defer;
1583 }
1584
1585 bio_release_pages(bio, false);
1586 bio_put(bio);
1587 return;
1588 defer:
1589 spin_lock_irqsave(&bio_dirty_lock, flags);
1590 bio->bi_private = bio_dirty_list;
1591 bio_dirty_list = bio;
1592 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1593 schedule_work(&bio_dirty_work);
1594 }
1595 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1596
bio_remaining_done(struct bio * bio)1597 static inline bool bio_remaining_done(struct bio *bio)
1598 {
1599 /*
1600 * If we're not chaining, then ->__bi_remaining is always 1 and
1601 * we always end io on the first invocation.
1602 */
1603 if (!bio_flagged(bio, BIO_CHAIN))
1604 return true;
1605
1606 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1607
1608 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1609 bio_clear_flag(bio, BIO_CHAIN);
1610 return true;
1611 }
1612
1613 return false;
1614 }
1615
1616 /**
1617 * bio_endio - end I/O on a bio
1618 * @bio: bio
1619 *
1620 * Description:
1621 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1622 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1623 * bio unless they own it and thus know that it has an end_io function.
1624 *
1625 * bio_endio() can be called several times on a bio that has been chained
1626 * using bio_chain(). The ->bi_end_io() function will only be called the
1627 * last time.
1628 **/
bio_endio(struct bio * bio)1629 void bio_endio(struct bio *bio)
1630 {
1631 again:
1632 if (!bio_remaining_done(bio))
1633 return;
1634 if (!bio_integrity_endio(bio))
1635 return;
1636
1637 blk_zone_bio_endio(bio);
1638
1639 rq_qos_done_bio(bio);
1640
1641 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1642 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1643 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1644 }
1645
1646 /*
1647 * Need to have a real endio function for chained bios, otherwise
1648 * various corner cases will break (like stacking block devices that
1649 * save/restore bi_end_io) - however, we want to avoid unbounded
1650 * recursion and blowing the stack. Tail call optimization would
1651 * handle this, but compiling with frame pointers also disables
1652 * gcc's sibling call optimization.
1653 */
1654 if (bio->bi_end_io == bio_chain_endio) {
1655 bio = __bio_chain_endio(bio);
1656 goto again;
1657 }
1658
1659 #ifdef CONFIG_BLK_CGROUP
1660 /*
1661 * Release cgroup info. We shouldn't have to do this here, but quite
1662 * a few callers of bio_init fail to call bio_uninit, so we cover up
1663 * for that here at least for now.
1664 */
1665 if (bio->bi_blkg) {
1666 blkg_put(bio->bi_blkg);
1667 bio->bi_blkg = NULL;
1668 }
1669 #endif
1670
1671 if (bio->bi_end_io)
1672 bio->bi_end_io(bio);
1673 }
1674 EXPORT_SYMBOL(bio_endio);
1675
1676 /**
1677 * bio_split - split a bio
1678 * @bio: bio to split
1679 * @sectors: number of sectors to split from the front of @bio
1680 * @gfp: gfp mask
1681 * @bs: bio set to allocate from
1682 *
1683 * Allocates and returns a new bio which represents @sectors from the start of
1684 * @bio, and updates @bio to represent the remaining sectors.
1685 *
1686 * Unless this is a discard request the newly allocated bio will point
1687 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1688 * neither @bio nor @bs are freed before the split bio.
1689 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1690 struct bio *bio_split(struct bio *bio, int sectors,
1691 gfp_t gfp, struct bio_set *bs)
1692 {
1693 struct bio *split;
1694
1695 if (WARN_ON_ONCE(sectors <= 0))
1696 return ERR_PTR(-EINVAL);
1697 if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1698 return ERR_PTR(-EINVAL);
1699
1700 /* Zone append commands cannot be split */
1701 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1702 return ERR_PTR(-EINVAL);
1703
1704 /* atomic writes cannot be split */
1705 if (bio->bi_opf & REQ_ATOMIC)
1706 return ERR_PTR(-EINVAL);
1707
1708 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1709 if (!split)
1710 return ERR_PTR(-ENOMEM);
1711
1712 split->bi_iter.bi_size = sectors << 9;
1713
1714 if (bio_integrity(split))
1715 bio_integrity_trim(split);
1716
1717 bio_advance(bio, split->bi_iter.bi_size);
1718
1719 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1720 bio_set_flag(split, BIO_TRACE_COMPLETION);
1721
1722 return split;
1723 }
1724 EXPORT_SYMBOL(bio_split);
1725
1726 /**
1727 * bio_trim - trim a bio
1728 * @bio: bio to trim
1729 * @offset: number of sectors to trim from the front of @bio
1730 * @size: size we want to trim @bio to, in sectors
1731 *
1732 * This function is typically used for bios that are cloned and submitted
1733 * to the underlying device in parts.
1734 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1735 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1736 {
1737 /* We should never trim an atomic write */
1738 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1739 return;
1740
1741 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1742 offset + size > bio_sectors(bio)))
1743 return;
1744
1745 size <<= 9;
1746 if (offset == 0 && size == bio->bi_iter.bi_size)
1747 return;
1748
1749 bio_advance(bio, offset << 9);
1750 bio->bi_iter.bi_size = size;
1751
1752 if (bio_integrity(bio))
1753 bio_integrity_trim(bio);
1754 }
1755 EXPORT_SYMBOL_GPL(bio_trim);
1756
1757 /*
1758 * create memory pools for biovec's in a bio_set.
1759 * use the global biovec slabs created for general use.
1760 */
biovec_init_pool(mempool_t * pool,int pool_entries)1761 int biovec_init_pool(mempool_t *pool, int pool_entries)
1762 {
1763 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1764
1765 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1766 }
1767
1768 /*
1769 * bioset_exit - exit a bioset initialized with bioset_init()
1770 *
1771 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1772 * kzalloc()).
1773 */
bioset_exit(struct bio_set * bs)1774 void bioset_exit(struct bio_set *bs)
1775 {
1776 bio_alloc_cache_destroy(bs);
1777 if (bs->rescue_workqueue)
1778 destroy_workqueue(bs->rescue_workqueue);
1779 bs->rescue_workqueue = NULL;
1780
1781 mempool_exit(&bs->bio_pool);
1782 mempool_exit(&bs->bvec_pool);
1783
1784 if (bs->bio_slab)
1785 bio_put_slab(bs);
1786 bs->bio_slab = NULL;
1787 }
1788 EXPORT_SYMBOL(bioset_exit);
1789
1790 /**
1791 * bioset_init - Initialize a bio_set
1792 * @bs: pool to initialize
1793 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1794 * @front_pad: Number of bytes to allocate in front of the returned bio
1795 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1796 * and %BIOSET_NEED_RESCUER
1797 *
1798 * Description:
1799 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1800 * to ask for a number of bytes to be allocated in front of the bio.
1801 * Front pad allocation is useful for embedding the bio inside
1802 * another structure, to avoid allocating extra data to go with the bio.
1803 * Note that the bio must be embedded at the END of that structure always,
1804 * or things will break badly.
1805 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1806 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1807 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1808 * to dispatch queued requests when the mempool runs out of space.
1809 *
1810 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1811 int bioset_init(struct bio_set *bs,
1812 unsigned int pool_size,
1813 unsigned int front_pad,
1814 int flags)
1815 {
1816 bs->front_pad = front_pad;
1817 if (flags & BIOSET_NEED_BVECS)
1818 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1819 else
1820 bs->back_pad = 0;
1821
1822 spin_lock_init(&bs->rescue_lock);
1823 bio_list_init(&bs->rescue_list);
1824 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1825
1826 bs->bio_slab = bio_find_or_create_slab(bs);
1827 if (!bs->bio_slab)
1828 return -ENOMEM;
1829
1830 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1831 goto bad;
1832
1833 if ((flags & BIOSET_NEED_BVECS) &&
1834 biovec_init_pool(&bs->bvec_pool, pool_size))
1835 goto bad;
1836
1837 if (flags & BIOSET_NEED_RESCUER) {
1838 bs->rescue_workqueue = alloc_workqueue("bioset",
1839 WQ_MEM_RECLAIM, 0);
1840 if (!bs->rescue_workqueue)
1841 goto bad;
1842 }
1843 if (flags & BIOSET_PERCPU_CACHE) {
1844 bs->cache = alloc_percpu(struct bio_alloc_cache);
1845 if (!bs->cache)
1846 goto bad;
1847 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1848 }
1849
1850 return 0;
1851 bad:
1852 bioset_exit(bs);
1853 return -ENOMEM;
1854 }
1855 EXPORT_SYMBOL(bioset_init);
1856
init_bio(void)1857 static int __init init_bio(void)
1858 {
1859 int i;
1860
1861 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1862
1863 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1864 struct biovec_slab *bvs = bvec_slabs + i;
1865
1866 bvs->slab = kmem_cache_create(bvs->name,
1867 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1868 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1869 }
1870
1871 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1872 bio_cpu_dead);
1873
1874 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1875 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1876 panic("bio: can't allocate bios\n");
1877
1878 return 0;
1879 }
1880 subsys_initcall(init_bio);
1881