1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12
13 #define BIO_MAX_VECS 256U
14 #define BIO_MAX_INLINE_VECS UIO_MAXIOV
15
16 struct queue_limits;
17
bio_max_segs(unsigned int nr_segs)18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 return min(nr_segs, BIO_MAX_VECS);
21 }
22
23 #define bio_iter_iovec(bio, iter) \
24 bvec_iter_bvec((bio)->bi_io_vec, (iter))
25
26 #define bio_iter_page(bio, iter) \
27 bvec_iter_page((bio)->bi_io_vec, (iter))
28 #define bio_iter_len(bio, iter) \
29 bvec_iter_len((bio)->bi_io_vec, (iter))
30 #define bio_iter_offset(bio, iter) \
31 bvec_iter_offset((bio)->bi_io_vec, (iter))
32
33 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
34 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
35 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
36
37 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
38 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
39
40 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
41 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
42
43 /*
44 * Return the data direction, READ or WRITE.
45 */
46 #define bio_data_dir(bio) \
47 (op_is_write(bio_op(bio)) ? WRITE : READ)
48
bio_flagged(const struct bio * bio,unsigned int bit)49 static inline bool bio_flagged(const struct bio *bio, unsigned int bit)
50 {
51 return bio->bi_flags & (1U << bit);
52 }
53
bio_set_flag(struct bio * bio,unsigned int bit)54 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
55 {
56 bio->bi_flags |= (1U << bit);
57 }
58
bio_clear_flag(struct bio * bio,unsigned int bit)59 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
60 {
61 bio->bi_flags &= ~(1U << bit);
62 }
63
64 /*
65 * Check whether this bio carries any data or not. A NULL bio is allowed.
66 */
bio_has_data(struct bio * bio)67 static inline bool bio_has_data(struct bio *bio)
68 {
69 if (bio &&
70 bio->bi_iter.bi_size &&
71 bio_op(bio) != REQ_OP_DISCARD &&
72 bio_op(bio) != REQ_OP_SECURE_ERASE &&
73 bio_op(bio) != REQ_OP_WRITE_ZEROES)
74 return true;
75
76 return false;
77 }
78
bio_no_advance_iter(const struct bio * bio)79 static inline bool bio_no_advance_iter(const struct bio *bio)
80 {
81 return bio_op(bio) == REQ_OP_DISCARD ||
82 bio_op(bio) == REQ_OP_SECURE_ERASE ||
83 bio_op(bio) == REQ_OP_WRITE_ZEROES;
84 }
85
bio_data(struct bio * bio)86 static inline void *bio_data(struct bio *bio)
87 {
88 if (bio_has_data(bio))
89 return page_address(bio_page(bio)) + bio_offset(bio);
90
91 return NULL;
92 }
93
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)94 static inline bool bio_next_segment(const struct bio *bio,
95 struct bvec_iter_all *iter)
96 {
97 if (iter->idx >= bio->bi_vcnt)
98 return false;
99
100 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
101 return true;
102 }
103
104 /*
105 * drivers should _never_ use the all version - the bio may have been split
106 * before it got to the driver and the driver won't own all of it
107 */
108 #define bio_for_each_segment_all(bvl, bio, iter) \
109 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
110
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)111 static inline void bio_advance_iter(const struct bio *bio,
112 struct bvec_iter *iter, unsigned int bytes)
113 {
114 iter->bi_sector += bytes >> 9;
115
116 if (bio_no_advance_iter(bio))
117 iter->bi_size -= bytes;
118 else
119 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
120 /* TODO: It is reasonable to complete bio with error here. */
121 }
122
123 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)124 static inline void bio_advance_iter_single(const struct bio *bio,
125 struct bvec_iter *iter,
126 unsigned int bytes)
127 {
128 iter->bi_sector += bytes >> 9;
129
130 if (bio_no_advance_iter(bio))
131 iter->bi_size -= bytes;
132 else
133 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
134 }
135
136 void __bio_advance(struct bio *, unsigned bytes);
137
138 /**
139 * bio_advance - increment/complete a bio by some number of bytes
140 * @bio: bio to advance
141 * @nbytes: number of bytes to complete
142 *
143 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
144 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
145 * be updated on the last bvec as well.
146 *
147 * @bio will then represent the remaining, uncompleted portion of the io.
148 */
bio_advance(struct bio * bio,unsigned int nbytes)149 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
150 {
151 if (nbytes == bio->bi_iter.bi_size) {
152 bio->bi_iter.bi_size = 0;
153 return;
154 }
155 __bio_advance(bio, nbytes);
156 }
157
158 #define __bio_for_each_segment(bvl, bio, iter, start) \
159 for (iter = (start); \
160 (iter).bi_size && \
161 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
162 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
163
164 #define bio_for_each_segment(bvl, bio, iter) \
165 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
166
167 #define __bio_for_each_bvec(bvl, bio, iter, start) \
168 for (iter = (start); \
169 (iter).bi_size && \
170 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
171 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
172
173 /* iterate over multi-page bvec */
174 #define bio_for_each_bvec(bvl, bio, iter) \
175 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
176
177 /*
178 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
179 * same reasons as bio_for_each_segment_all().
180 */
181 #define bio_for_each_bvec_all(bvl, bio, i) \
182 for (i = 0, bvl = bio_first_bvec_all(bio); \
183 i < (bio)->bi_vcnt; i++, bvl++)
184
185 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
186
bio_segments(struct bio * bio)187 static inline unsigned bio_segments(struct bio *bio)
188 {
189 unsigned segs = 0;
190 struct bio_vec bv;
191 struct bvec_iter iter;
192
193 /*
194 * We special case discard/write same/write zeroes, because they
195 * interpret bi_size differently:
196 */
197
198 switch (bio_op(bio)) {
199 case REQ_OP_DISCARD:
200 case REQ_OP_SECURE_ERASE:
201 case REQ_OP_WRITE_ZEROES:
202 return 0;
203 default:
204 break;
205 }
206
207 bio_for_each_segment(bv, bio, iter)
208 segs++;
209
210 return segs;
211 }
212
213 /*
214 * get a reference to a bio, so it won't disappear. the intended use is
215 * something like:
216 *
217 * bio_get(bio);
218 * submit_bio(rw, bio);
219 * if (bio->bi_flags ...)
220 * do_something
221 * bio_put(bio);
222 *
223 * without the bio_get(), it could potentially complete I/O before submit_bio
224 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
225 * runs
226 */
bio_get(struct bio * bio)227 static inline void bio_get(struct bio *bio)
228 {
229 bio->bi_flags |= (1 << BIO_REFFED);
230 smp_mb__before_atomic();
231 atomic_inc(&bio->__bi_cnt);
232 }
233
bio_cnt_set(struct bio * bio,unsigned int count)234 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
235 {
236 if (count != 1) {
237 bio->bi_flags |= (1 << BIO_REFFED);
238 smp_mb();
239 }
240 atomic_set(&bio->__bi_cnt, count);
241 }
242
bio_first_bvec_all(struct bio * bio)243 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
244 {
245 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
246 return bio->bi_io_vec;
247 }
248
bio_first_page_all(struct bio * bio)249 static inline struct page *bio_first_page_all(struct bio *bio)
250 {
251 return bio_first_bvec_all(bio)->bv_page;
252 }
253
bio_first_folio_all(struct bio * bio)254 static inline struct folio *bio_first_folio_all(struct bio *bio)
255 {
256 return page_folio(bio_first_page_all(bio));
257 }
258
bio_last_bvec_all(struct bio * bio)259 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
260 {
261 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
262 return &bio->bi_io_vec[bio->bi_vcnt - 1];
263 }
264
265 /**
266 * struct folio_iter - State for iterating all folios in a bio.
267 * @folio: The current folio we're iterating. NULL after the last folio.
268 * @offset: The byte offset within the current folio.
269 * @length: The number of bytes in this iteration (will not cross folio
270 * boundary).
271 */
272 struct folio_iter {
273 struct folio *folio;
274 size_t offset;
275 size_t length;
276 /* private: for use by the iterator */
277 struct folio *_next;
278 size_t _seg_count;
279 int _i;
280 };
281
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)282 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
283 int i)
284 {
285 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
286
287 if (unlikely(i >= bio->bi_vcnt)) {
288 fi->folio = NULL;
289 return;
290 }
291
292 fi->folio = page_folio(bvec->bv_page);
293 fi->offset = bvec->bv_offset +
294 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
295 fi->_seg_count = bvec->bv_len;
296 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
297 fi->_next = folio_next(fi->folio);
298 fi->_i = i;
299 }
300
bio_next_folio(struct folio_iter * fi,struct bio * bio)301 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
302 {
303 fi->_seg_count -= fi->length;
304 if (fi->_seg_count) {
305 fi->folio = fi->_next;
306 fi->offset = 0;
307 fi->length = min(folio_size(fi->folio), fi->_seg_count);
308 fi->_next = folio_next(fi->folio);
309 } else {
310 bio_first_folio(fi, bio, fi->_i + 1);
311 }
312 }
313
314 /**
315 * bio_for_each_folio_all - Iterate over each folio in a bio.
316 * @fi: struct folio_iter which is updated for each folio.
317 * @bio: struct bio to iterate over.
318 */
319 #define bio_for_each_folio_all(fi, bio) \
320 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
321
322 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
323 extern struct bio *bio_split(struct bio *bio, int sectors,
324 gfp_t gfp, struct bio_set *bs);
325 int bio_split_io_at(struct bio *bio, const struct queue_limits *lim,
326 unsigned *segs, unsigned max_bytes, unsigned len_align);
327 u8 bio_seg_gap(struct request_queue *q, struct bio *prev, struct bio *next,
328 u8 gaps_bit);
329
330 /**
331 * bio_next_split - get next @sectors from a bio, splitting if necessary
332 * @bio: bio to split
333 * @sectors: number of sectors to split from the front of @bio
334 * @gfp: gfp mask
335 * @bs: bio set to allocate from
336 *
337 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
338 * than @sectors, returns the original bio unchanged.
339 */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)340 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
341 gfp_t gfp, struct bio_set *bs)
342 {
343 if (sectors >= bio_sectors(bio))
344 return bio;
345
346 return bio_split(bio, sectors, gfp, bs);
347 }
348
349 enum {
350 BIOSET_NEED_BVECS = BIT(0),
351 BIOSET_NEED_RESCUER = BIT(1),
352 BIOSET_PERCPU_CACHE = BIT(2),
353 };
354 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
355 extern void bioset_exit(struct bio_set *);
356 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
357
358 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
359 blk_opf_t opf, gfp_t gfp_mask,
360 struct bio_set *bs);
361 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
362 extern void bio_put(struct bio *);
363
364 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
365 gfp_t gfp, struct bio_set *bs);
366 int bio_init_clone(struct block_device *bdev, struct bio *bio,
367 struct bio *bio_src, gfp_t gfp);
368
369 extern struct bio_set fs_bio_set;
370
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)371 static inline struct bio *bio_alloc(struct block_device *bdev,
372 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
373 {
374 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
375 }
376
377 void submit_bio(struct bio *bio);
378
379 extern void bio_endio(struct bio *);
380
bio_io_error(struct bio * bio)381 static inline void bio_io_error(struct bio *bio)
382 {
383 bio->bi_status = BLK_STS_IOERR;
384 bio_endio(bio);
385 }
386
bio_wouldblock_error(struct bio * bio)387 static inline void bio_wouldblock_error(struct bio *bio)
388 {
389 bio_set_flag(bio, BIO_QUIET);
390 bio->bi_status = BLK_STS_AGAIN;
391 bio_endio(bio);
392 }
393
394 /*
395 * Calculate number of bvec segments that should be allocated to fit data
396 * pointed by @iter. If @iter is backed by bvec it's going to be reused
397 * instead of allocating a new one.
398 */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)399 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
400 {
401 if (iov_iter_is_bvec(iter))
402 return 0;
403 return iov_iter_npages(iter, max_segs);
404 }
405
406 struct request_queue;
407
408 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
409 unsigned short max_vecs, blk_opf_t opf);
bio_init_inline(struct bio * bio,struct block_device * bdev,unsigned short max_vecs,blk_opf_t opf)410 static inline void bio_init_inline(struct bio *bio, struct block_device *bdev,
411 unsigned short max_vecs, blk_opf_t opf)
412 {
413 bio_init(bio, bdev, bio_inline_vecs(bio), max_vecs, opf);
414 }
415 extern void bio_uninit(struct bio *);
416 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
417 void bio_chain(struct bio *, struct bio *);
418
419 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
420 unsigned off);
421 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
422 size_t len, size_t off);
423 void __bio_add_page(struct bio *bio, struct page *page,
424 unsigned int len, unsigned int off);
425 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
426 size_t off);
427 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len);
428
429 /**
430 * bio_add_max_vecs - number of bio_vecs needed to add data to a bio
431 * @kaddr: kernel virtual address to add
432 * @len: length in bytes to add
433 *
434 * Calculate how many bio_vecs need to be allocated to add the kernel virtual
435 * address range in [@kaddr:@len] in the worse case.
436 */
bio_add_max_vecs(void * kaddr,unsigned int len)437 static inline unsigned int bio_add_max_vecs(void *kaddr, unsigned int len)
438 {
439 if (is_vmalloc_addr(kaddr))
440 return DIV_ROUND_UP(offset_in_page(kaddr) + len, PAGE_SIZE);
441 return 1;
442 }
443
444 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len);
445 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len);
446
447 int submit_bio_wait(struct bio *bio);
448 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
449 size_t len, enum req_op op);
450
451 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter,
452 unsigned len_align_mask);
453
454 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
455 void __bio_release_pages(struct bio *bio, bool mark_dirty);
456 extern void bio_set_pages_dirty(struct bio *bio);
457 extern void bio_check_pages_dirty(struct bio *bio);
458
459 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
460 struct bio *src, struct bvec_iter *src_iter);
461 extern void bio_copy_data(struct bio *dst, struct bio *src);
462 extern void bio_free_pages(struct bio *bio);
463 void guard_bio_eod(struct bio *bio);
464 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
465
zero_fill_bio(struct bio * bio)466 static inline void zero_fill_bio(struct bio *bio)
467 {
468 zero_fill_bio_iter(bio, bio->bi_iter);
469 }
470
bio_release_pages(struct bio * bio,bool mark_dirty)471 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
472 {
473 if (bio_flagged(bio, BIO_PAGE_PINNED))
474 __bio_release_pages(bio, mark_dirty);
475 }
476
477 #define bio_dev(bio) \
478 disk_devt((bio)->bi_bdev->bd_disk)
479
480 #ifdef CONFIG_BLK_CGROUP
481 void bio_associate_blkg(struct bio *bio);
482 void bio_associate_blkg_from_css(struct bio *bio,
483 struct cgroup_subsys_state *css);
484 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
485 void blkcg_punt_bio_submit(struct bio *bio);
486 #else /* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)487 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)488 static inline void bio_associate_blkg_from_css(struct bio *bio,
489 struct cgroup_subsys_state *css)
490 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)491 static inline void bio_clone_blkg_association(struct bio *dst,
492 struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)493 static inline void blkcg_punt_bio_submit(struct bio *bio)
494 {
495 submit_bio(bio);
496 }
497 #endif /* CONFIG_BLK_CGROUP */
498
bio_set_dev(struct bio * bio,struct block_device * bdev)499 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
500 {
501 bio_clear_flag(bio, BIO_REMAPPED);
502 if (bio->bi_bdev != bdev)
503 bio_clear_flag(bio, BIO_BPS_THROTTLED);
504 bio->bi_bdev = bdev;
505 bio_associate_blkg(bio);
506 }
507
508 /*
509 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
510 *
511 * A bio_list anchors a singly-linked list of bios chained through the bi_next
512 * member of the bio. The bio_list also caches the last list member to allow
513 * fast access to the tail.
514 */
515 struct bio_list {
516 struct bio *head;
517 struct bio *tail;
518 };
519
bio_list_empty(const struct bio_list * bl)520 static inline int bio_list_empty(const struct bio_list *bl)
521 {
522 return bl->head == NULL;
523 }
524
bio_list_init(struct bio_list * bl)525 static inline void bio_list_init(struct bio_list *bl)
526 {
527 bl->head = bl->tail = NULL;
528 }
529
530 #define BIO_EMPTY_LIST { NULL, NULL }
531
532 #define bio_list_for_each(bio, bl) \
533 for (bio = (bl)->head; bio; bio = bio->bi_next)
534
bio_list_size(const struct bio_list * bl)535 static inline unsigned bio_list_size(const struct bio_list *bl)
536 {
537 unsigned sz = 0;
538 struct bio *bio;
539
540 bio_list_for_each(bio, bl)
541 sz++;
542
543 return sz;
544 }
545
bio_list_add(struct bio_list * bl,struct bio * bio)546 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
547 {
548 bio->bi_next = NULL;
549
550 if (bl->tail)
551 bl->tail->bi_next = bio;
552 else
553 bl->head = bio;
554
555 bl->tail = bio;
556 }
557
bio_list_add_head(struct bio_list * bl,struct bio * bio)558 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
559 {
560 bio->bi_next = bl->head;
561
562 bl->head = bio;
563
564 if (!bl->tail)
565 bl->tail = bio;
566 }
567
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)568 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
569 {
570 if (!bl2->head)
571 return;
572
573 if (bl->tail)
574 bl->tail->bi_next = bl2->head;
575 else
576 bl->head = bl2->head;
577
578 bl->tail = bl2->tail;
579 }
580
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)581 static inline void bio_list_merge_init(struct bio_list *bl,
582 struct bio_list *bl2)
583 {
584 bio_list_merge(bl, bl2);
585 bio_list_init(bl2);
586 }
587
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)588 static inline void bio_list_merge_head(struct bio_list *bl,
589 struct bio_list *bl2)
590 {
591 if (!bl2->head)
592 return;
593
594 if (bl->head)
595 bl2->tail->bi_next = bl->head;
596 else
597 bl->tail = bl2->tail;
598
599 bl->head = bl2->head;
600 }
601
bio_list_peek(struct bio_list * bl)602 static inline struct bio *bio_list_peek(struct bio_list *bl)
603 {
604 return bl->head;
605 }
606
bio_list_pop(struct bio_list * bl)607 static inline struct bio *bio_list_pop(struct bio_list *bl)
608 {
609 struct bio *bio = bl->head;
610
611 if (bio) {
612 bl->head = bl->head->bi_next;
613 if (!bl->head)
614 bl->tail = NULL;
615
616 bio->bi_next = NULL;
617 }
618
619 return bio;
620 }
621
bio_list_get(struct bio_list * bl)622 static inline struct bio *bio_list_get(struct bio_list *bl)
623 {
624 struct bio *bio = bl->head;
625
626 bl->head = bl->tail = NULL;
627
628 return bio;
629 }
630
631 /*
632 * Increment chain count for the bio. Make sure the CHAIN flag update
633 * is visible before the raised count.
634 */
bio_inc_remaining(struct bio * bio)635 static inline void bio_inc_remaining(struct bio *bio)
636 {
637 bio_set_flag(bio, BIO_CHAIN);
638 smp_mb__before_atomic();
639 atomic_inc(&bio->__bi_remaining);
640 }
641
642 /*
643 * bio_set is used to allow other portions of the IO system to
644 * allocate their own private memory pools for bio and iovec structures.
645 * These memory pools in turn all allocate from the bio_slab
646 * and the bvec_slabs[].
647 */
648 #define BIO_POOL_SIZE 2
649
650 struct bio_set {
651 struct kmem_cache *bio_slab;
652 unsigned int front_pad;
653
654 /*
655 * per-cpu bio alloc cache
656 */
657 struct bio_alloc_cache __percpu *cache;
658
659 mempool_t bio_pool;
660 mempool_t bvec_pool;
661
662 unsigned int back_pad;
663 /*
664 * Deadlock avoidance for stacking block drivers: see comments in
665 * bio_alloc_bioset() for details
666 */
667 spinlock_t rescue_lock;
668 struct bio_list rescue_list;
669 struct work_struct rescue_work;
670 struct workqueue_struct *rescue_workqueue;
671
672 /*
673 * Hot un-plug notifier for the per-cpu cache, if used
674 */
675 struct hlist_node cpuhp_dead;
676 };
677
bioset_initialized(struct bio_set * bs)678 static inline bool bioset_initialized(struct bio_set *bs)
679 {
680 return bs->bio_slab != NULL;
681 }
682
683 /*
684 * Mark a bio as polled. Note that for async polled IO, the caller must
685 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
686 * We cannot block waiting for requests on polled IO, as those completions
687 * must be found by the caller. This is different than IRQ driven IO, where
688 * it's safe to wait for IO to complete.
689 */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)690 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
691 {
692 bio->bi_opf |= REQ_POLLED;
693 if (kiocb->ki_flags & IOCB_NOWAIT)
694 bio->bi_opf |= REQ_NOWAIT;
695 }
696
bio_clear_polled(struct bio * bio)697 static inline void bio_clear_polled(struct bio *bio)
698 {
699 bio->bi_opf &= ~REQ_POLLED;
700 }
701
702 /**
703 * bio_is_zone_append - is this a zone append bio?
704 * @bio: bio to check
705 *
706 * Check if @bio is a zone append operation. Core block layer code and end_io
707 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
708 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
709 * it is not natively supported.
710 */
bio_is_zone_append(struct bio * bio)711 static inline bool bio_is_zone_append(struct bio *bio)
712 {
713 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
714 return false;
715 return bio_op(bio) == REQ_OP_ZONE_APPEND ||
716 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
717 }
718
719 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
720 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
721 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
722
723 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
724 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
725
726 #endif /* __LINUX_BIO_H */
727