xref: /linux/include/linux/bio.h (revision 06103dccbbd29408255a409f6f98f7f02387dc93)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 
15 struct queue_limits;
16 
bio_max_segs(unsigned int nr_segs)17 static inline unsigned int bio_max_segs(unsigned int nr_segs)
18 {
19 	return min(nr_segs, BIO_MAX_VECS);
20 }
21 
22 #define bio_iter_iovec(bio, iter)				\
23 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
24 
25 #define bio_iter_page(bio, iter)				\
26 	bvec_iter_page((bio)->bi_io_vec, (iter))
27 #define bio_iter_len(bio, iter)					\
28 	bvec_iter_len((bio)->bi_io_vec, (iter))
29 #define bio_iter_offset(bio, iter)				\
30 	bvec_iter_offset((bio)->bi_io_vec, (iter))
31 
32 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
33 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
34 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
35 
36 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
37 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
38 
39 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
40 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
41 
42 /*
43  * Return the data direction, READ or WRITE.
44  */
45 #define bio_data_dir(bio) \
46 	(op_is_write(bio_op(bio)) ? WRITE : READ)
47 
48 /*
49  * Check whether this bio carries any data or not. A NULL bio is allowed.
50  */
bio_has_data(struct bio * bio)51 static inline bool bio_has_data(struct bio *bio)
52 {
53 	if (bio &&
54 	    bio->bi_iter.bi_size &&
55 	    bio_op(bio) != REQ_OP_DISCARD &&
56 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
57 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
58 		return true;
59 
60 	return false;
61 }
62 
bio_no_advance_iter(const struct bio * bio)63 static inline bool bio_no_advance_iter(const struct bio *bio)
64 {
65 	return bio_op(bio) == REQ_OP_DISCARD ||
66 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
67 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
68 }
69 
bio_data(struct bio * bio)70 static inline void *bio_data(struct bio *bio)
71 {
72 	if (bio_has_data(bio))
73 		return page_address(bio_page(bio)) + bio_offset(bio);
74 
75 	return NULL;
76 }
77 
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)78 static inline bool bio_next_segment(const struct bio *bio,
79 				    struct bvec_iter_all *iter)
80 {
81 	if (iter->idx >= bio->bi_vcnt)
82 		return false;
83 
84 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
85 	return true;
86 }
87 
88 /*
89  * drivers should _never_ use the all version - the bio may have been split
90  * before it got to the driver and the driver won't own all of it
91  */
92 #define bio_for_each_segment_all(bvl, bio, iter) \
93 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
94 
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)95 static inline void bio_advance_iter(const struct bio *bio,
96 				    struct bvec_iter *iter, unsigned int bytes)
97 {
98 	iter->bi_sector += bytes >> 9;
99 
100 	if (bio_no_advance_iter(bio))
101 		iter->bi_size -= bytes;
102 	else
103 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
104 		/* TODO: It is reasonable to complete bio with error here. */
105 }
106 
107 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)108 static inline void bio_advance_iter_single(const struct bio *bio,
109 					   struct bvec_iter *iter,
110 					   unsigned int bytes)
111 {
112 	iter->bi_sector += bytes >> 9;
113 
114 	if (bio_no_advance_iter(bio))
115 		iter->bi_size -= bytes;
116 	else
117 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
118 }
119 
120 void __bio_advance(struct bio *, unsigned bytes);
121 
122 /**
123  * bio_advance - increment/complete a bio by some number of bytes
124  * @bio:	bio to advance
125  * @nbytes:	number of bytes to complete
126  *
127  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
128  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
129  * be updated on the last bvec as well.
130  *
131  * @bio will then represent the remaining, uncompleted portion of the io.
132  */
bio_advance(struct bio * bio,unsigned int nbytes)133 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
134 {
135 	if (nbytes == bio->bi_iter.bi_size) {
136 		bio->bi_iter.bi_size = 0;
137 		return;
138 	}
139 	__bio_advance(bio, nbytes);
140 }
141 
142 #define __bio_for_each_segment(bvl, bio, iter, start)			\
143 	for (iter = (start);						\
144 	     (iter).bi_size &&						\
145 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
146 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
147 
148 #define bio_for_each_segment(bvl, bio, iter)				\
149 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
150 
151 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
152 	for (iter = (start);						\
153 	     (iter).bi_size &&						\
154 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
155 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
156 
157 /* iterate over multi-page bvec */
158 #define bio_for_each_bvec(bvl, bio, iter)			\
159 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
160 
161 /*
162  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
163  * same reasons as bio_for_each_segment_all().
164  */
165 #define bio_for_each_bvec_all(bvl, bio, i)		\
166 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
167 	     i < (bio)->bi_vcnt; i++, bvl++)
168 
169 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
170 
bio_segments(struct bio * bio)171 static inline unsigned bio_segments(struct bio *bio)
172 {
173 	unsigned segs = 0;
174 	struct bio_vec bv;
175 	struct bvec_iter iter;
176 
177 	/*
178 	 * We special case discard/write same/write zeroes, because they
179 	 * interpret bi_size differently:
180 	 */
181 
182 	switch (bio_op(bio)) {
183 	case REQ_OP_DISCARD:
184 	case REQ_OP_SECURE_ERASE:
185 	case REQ_OP_WRITE_ZEROES:
186 		return 0;
187 	default:
188 		break;
189 	}
190 
191 	bio_for_each_segment(bv, bio, iter)
192 		segs++;
193 
194 	return segs;
195 }
196 
197 /*
198  * get a reference to a bio, so it won't disappear. the intended use is
199  * something like:
200  *
201  * bio_get(bio);
202  * submit_bio(rw, bio);
203  * if (bio->bi_flags ...)
204  *	do_something
205  * bio_put(bio);
206  *
207  * without the bio_get(), it could potentially complete I/O before submit_bio
208  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
209  * runs
210  */
bio_get(struct bio * bio)211 static inline void bio_get(struct bio *bio)
212 {
213 	bio->bi_flags |= (1 << BIO_REFFED);
214 	smp_mb__before_atomic();
215 	atomic_inc(&bio->__bi_cnt);
216 }
217 
bio_cnt_set(struct bio * bio,unsigned int count)218 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
219 {
220 	if (count != 1) {
221 		bio->bi_flags |= (1 << BIO_REFFED);
222 		smp_mb();
223 	}
224 	atomic_set(&bio->__bi_cnt, count);
225 }
226 
bio_flagged(struct bio * bio,unsigned int bit)227 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
228 {
229 	return bio->bi_flags & (1U << bit);
230 }
231 
bio_set_flag(struct bio * bio,unsigned int bit)232 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
233 {
234 	bio->bi_flags |= (1U << bit);
235 }
236 
bio_clear_flag(struct bio * bio,unsigned int bit)237 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
238 {
239 	bio->bi_flags &= ~(1U << bit);
240 }
241 
bio_first_bvec_all(struct bio * bio)242 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
243 {
244 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
245 	return bio->bi_io_vec;
246 }
247 
bio_first_page_all(struct bio * bio)248 static inline struct page *bio_first_page_all(struct bio *bio)
249 {
250 	return bio_first_bvec_all(bio)->bv_page;
251 }
252 
bio_first_folio_all(struct bio * bio)253 static inline struct folio *bio_first_folio_all(struct bio *bio)
254 {
255 	return page_folio(bio_first_page_all(bio));
256 }
257 
bio_last_bvec_all(struct bio * bio)258 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
259 {
260 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
261 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
262 }
263 
264 /**
265  * struct folio_iter - State for iterating all folios in a bio.
266  * @folio: The current folio we're iterating.  NULL after the last folio.
267  * @offset: The byte offset within the current folio.
268  * @length: The number of bytes in this iteration (will not cross folio
269  *	boundary).
270  */
271 struct folio_iter {
272 	struct folio *folio;
273 	size_t offset;
274 	size_t length;
275 	/* private: for use by the iterator */
276 	struct folio *_next;
277 	size_t _seg_count;
278 	int _i;
279 };
280 
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)281 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
282 				   int i)
283 {
284 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
285 
286 	if (unlikely(i >= bio->bi_vcnt)) {
287 		fi->folio = NULL;
288 		return;
289 	}
290 
291 	fi->folio = page_folio(bvec->bv_page);
292 	fi->offset = bvec->bv_offset +
293 			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
294 	fi->_seg_count = bvec->bv_len;
295 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
296 	fi->_next = folio_next(fi->folio);
297 	fi->_i = i;
298 }
299 
bio_next_folio(struct folio_iter * fi,struct bio * bio)300 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
301 {
302 	fi->_seg_count -= fi->length;
303 	if (fi->_seg_count) {
304 		fi->folio = fi->_next;
305 		fi->offset = 0;
306 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
307 		fi->_next = folio_next(fi->folio);
308 	} else {
309 		bio_first_folio(fi, bio, fi->_i + 1);
310 	}
311 }
312 
313 /**
314  * bio_for_each_folio_all - Iterate over each folio in a bio.
315  * @fi: struct folio_iter which is updated for each folio.
316  * @bio: struct bio to iterate over.
317  */
318 #define bio_for_each_folio_all(fi, bio)				\
319 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
320 
321 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
322 extern struct bio *bio_split(struct bio *bio, int sectors,
323 			     gfp_t gfp, struct bio_set *bs);
324 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
325 		unsigned *segs, unsigned max_bytes);
326 
327 /**
328  * bio_next_split - get next @sectors from a bio, splitting if necessary
329  * @bio:	bio to split
330  * @sectors:	number of sectors to split from the front of @bio
331  * @gfp:	gfp mask
332  * @bs:		bio set to allocate from
333  *
334  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
335  * than @sectors, returns the original bio unchanged.
336  */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)337 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
338 					 gfp_t gfp, struct bio_set *bs)
339 {
340 	if (sectors >= bio_sectors(bio))
341 		return bio;
342 
343 	return bio_split(bio, sectors, gfp, bs);
344 }
345 
346 enum {
347 	BIOSET_NEED_BVECS = BIT(0),
348 	BIOSET_NEED_RESCUER = BIT(1),
349 	BIOSET_PERCPU_CACHE = BIT(2),
350 };
351 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
352 extern void bioset_exit(struct bio_set *);
353 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
354 
355 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
356 			     blk_opf_t opf, gfp_t gfp_mask,
357 			     struct bio_set *bs);
358 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
359 extern void bio_put(struct bio *);
360 
361 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
362 		gfp_t gfp, struct bio_set *bs);
363 int bio_init_clone(struct block_device *bdev, struct bio *bio,
364 		struct bio *bio_src, gfp_t gfp);
365 
366 extern struct bio_set fs_bio_set;
367 
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)368 static inline struct bio *bio_alloc(struct block_device *bdev,
369 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
370 {
371 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
372 }
373 
374 void submit_bio(struct bio *bio);
375 
376 extern void bio_endio(struct bio *);
377 
bio_io_error(struct bio * bio)378 static inline void bio_io_error(struct bio *bio)
379 {
380 	bio->bi_status = BLK_STS_IOERR;
381 	bio_endio(bio);
382 }
383 
bio_wouldblock_error(struct bio * bio)384 static inline void bio_wouldblock_error(struct bio *bio)
385 {
386 	bio_set_flag(bio, BIO_QUIET);
387 	bio->bi_status = BLK_STS_AGAIN;
388 	bio_endio(bio);
389 }
390 
391 /*
392  * Calculate number of bvec segments that should be allocated to fit data
393  * pointed by @iter. If @iter is backed by bvec it's going to be reused
394  * instead of allocating a new one.
395  */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)396 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
397 {
398 	if (iov_iter_is_bvec(iter))
399 		return 0;
400 	return iov_iter_npages(iter, max_segs);
401 }
402 
403 struct request_queue;
404 
405 extern int submit_bio_wait(struct bio *bio);
406 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
407 	      unsigned short max_vecs, blk_opf_t opf);
408 extern void bio_uninit(struct bio *);
409 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
410 void bio_chain(struct bio *, struct bio *);
411 
412 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
413 			      unsigned off);
414 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
415 				size_t len, size_t off);
416 void __bio_add_page(struct bio *bio, struct page *page,
417 		unsigned int len, unsigned int off);
418 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
419 			  size_t off);
420 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
421 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
422 void __bio_release_pages(struct bio *bio, bool mark_dirty);
423 extern void bio_set_pages_dirty(struct bio *bio);
424 extern void bio_check_pages_dirty(struct bio *bio);
425 
426 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
427 			       struct bio *src, struct bvec_iter *src_iter);
428 extern void bio_copy_data(struct bio *dst, struct bio *src);
429 extern void bio_free_pages(struct bio *bio);
430 void guard_bio_eod(struct bio *bio);
431 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
432 
zero_fill_bio(struct bio * bio)433 static inline void zero_fill_bio(struct bio *bio)
434 {
435 	zero_fill_bio_iter(bio, bio->bi_iter);
436 }
437 
bio_release_pages(struct bio * bio,bool mark_dirty)438 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
439 {
440 	if (bio_flagged(bio, BIO_PAGE_PINNED))
441 		__bio_release_pages(bio, mark_dirty);
442 }
443 
444 #define bio_dev(bio) \
445 	disk_devt((bio)->bi_bdev->bd_disk)
446 
447 #ifdef CONFIG_BLK_CGROUP
448 void bio_associate_blkg(struct bio *bio);
449 void bio_associate_blkg_from_css(struct bio *bio,
450 				 struct cgroup_subsys_state *css);
451 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
452 void blkcg_punt_bio_submit(struct bio *bio);
453 #else	/* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)454 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)455 static inline void bio_associate_blkg_from_css(struct bio *bio,
456 					       struct cgroup_subsys_state *css)
457 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)458 static inline void bio_clone_blkg_association(struct bio *dst,
459 					      struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)460 static inline void blkcg_punt_bio_submit(struct bio *bio)
461 {
462 	submit_bio(bio);
463 }
464 #endif	/* CONFIG_BLK_CGROUP */
465 
bio_set_dev(struct bio * bio,struct block_device * bdev)466 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
467 {
468 	bio_clear_flag(bio, BIO_REMAPPED);
469 	if (bio->bi_bdev != bdev)
470 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
471 	bio->bi_bdev = bdev;
472 	bio_associate_blkg(bio);
473 }
474 
475 /*
476  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
477  *
478  * A bio_list anchors a singly-linked list of bios chained through the bi_next
479  * member of the bio.  The bio_list also caches the last list member to allow
480  * fast access to the tail.
481  */
482 struct bio_list {
483 	struct bio *head;
484 	struct bio *tail;
485 };
486 
bio_list_empty(const struct bio_list * bl)487 static inline int bio_list_empty(const struct bio_list *bl)
488 {
489 	return bl->head == NULL;
490 }
491 
bio_list_init(struct bio_list * bl)492 static inline void bio_list_init(struct bio_list *bl)
493 {
494 	bl->head = bl->tail = NULL;
495 }
496 
497 #define BIO_EMPTY_LIST	{ NULL, NULL }
498 
499 #define bio_list_for_each(bio, bl) \
500 	for (bio = (bl)->head; bio; bio = bio->bi_next)
501 
bio_list_size(const struct bio_list * bl)502 static inline unsigned bio_list_size(const struct bio_list *bl)
503 {
504 	unsigned sz = 0;
505 	struct bio *bio;
506 
507 	bio_list_for_each(bio, bl)
508 		sz++;
509 
510 	return sz;
511 }
512 
bio_list_add(struct bio_list * bl,struct bio * bio)513 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
514 {
515 	bio->bi_next = NULL;
516 
517 	if (bl->tail)
518 		bl->tail->bi_next = bio;
519 	else
520 		bl->head = bio;
521 
522 	bl->tail = bio;
523 }
524 
bio_list_add_head(struct bio_list * bl,struct bio * bio)525 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
526 {
527 	bio->bi_next = bl->head;
528 
529 	bl->head = bio;
530 
531 	if (!bl->tail)
532 		bl->tail = bio;
533 }
534 
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)535 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
536 {
537 	if (!bl2->head)
538 		return;
539 
540 	if (bl->tail)
541 		bl->tail->bi_next = bl2->head;
542 	else
543 		bl->head = bl2->head;
544 
545 	bl->tail = bl2->tail;
546 }
547 
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)548 static inline void bio_list_merge_init(struct bio_list *bl,
549 		struct bio_list *bl2)
550 {
551 	bio_list_merge(bl, bl2);
552 	bio_list_init(bl2);
553 }
554 
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)555 static inline void bio_list_merge_head(struct bio_list *bl,
556 				       struct bio_list *bl2)
557 {
558 	if (!bl2->head)
559 		return;
560 
561 	if (bl->head)
562 		bl2->tail->bi_next = bl->head;
563 	else
564 		bl->tail = bl2->tail;
565 
566 	bl->head = bl2->head;
567 }
568 
bio_list_peek(struct bio_list * bl)569 static inline struct bio *bio_list_peek(struct bio_list *bl)
570 {
571 	return bl->head;
572 }
573 
bio_list_pop(struct bio_list * bl)574 static inline struct bio *bio_list_pop(struct bio_list *bl)
575 {
576 	struct bio *bio = bl->head;
577 
578 	if (bio) {
579 		bl->head = bl->head->bi_next;
580 		if (!bl->head)
581 			bl->tail = NULL;
582 
583 		bio->bi_next = NULL;
584 	}
585 
586 	return bio;
587 }
588 
bio_list_get(struct bio_list * bl)589 static inline struct bio *bio_list_get(struct bio_list *bl)
590 {
591 	struct bio *bio = bl->head;
592 
593 	bl->head = bl->tail = NULL;
594 
595 	return bio;
596 }
597 
598 /*
599  * Increment chain count for the bio. Make sure the CHAIN flag update
600  * is visible before the raised count.
601  */
bio_inc_remaining(struct bio * bio)602 static inline void bio_inc_remaining(struct bio *bio)
603 {
604 	bio_set_flag(bio, BIO_CHAIN);
605 	smp_mb__before_atomic();
606 	atomic_inc(&bio->__bi_remaining);
607 }
608 
609 /*
610  * bio_set is used to allow other portions of the IO system to
611  * allocate their own private memory pools for bio and iovec structures.
612  * These memory pools in turn all allocate from the bio_slab
613  * and the bvec_slabs[].
614  */
615 #define BIO_POOL_SIZE 2
616 
617 struct bio_set {
618 	struct kmem_cache *bio_slab;
619 	unsigned int front_pad;
620 
621 	/*
622 	 * per-cpu bio alloc cache
623 	 */
624 	struct bio_alloc_cache __percpu *cache;
625 
626 	mempool_t bio_pool;
627 	mempool_t bvec_pool;
628 #if defined(CONFIG_BLK_DEV_INTEGRITY)
629 	mempool_t bio_integrity_pool;
630 	mempool_t bvec_integrity_pool;
631 #endif
632 
633 	unsigned int back_pad;
634 	/*
635 	 * Deadlock avoidance for stacking block drivers: see comments in
636 	 * bio_alloc_bioset() for details
637 	 */
638 	spinlock_t		rescue_lock;
639 	struct bio_list		rescue_list;
640 	struct work_struct	rescue_work;
641 	struct workqueue_struct	*rescue_workqueue;
642 
643 	/*
644 	 * Hot un-plug notifier for the per-cpu cache, if used
645 	 */
646 	struct hlist_node cpuhp_dead;
647 };
648 
bioset_initialized(struct bio_set * bs)649 static inline bool bioset_initialized(struct bio_set *bs)
650 {
651 	return bs->bio_slab != NULL;
652 }
653 
654 /*
655  * Mark a bio as polled. Note that for async polled IO, the caller must
656  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
657  * We cannot block waiting for requests on polled IO, as those completions
658  * must be found by the caller. This is different than IRQ driven IO, where
659  * it's safe to wait for IO to complete.
660  */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)661 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
662 {
663 	bio->bi_opf |= REQ_POLLED;
664 	if (kiocb->ki_flags & IOCB_NOWAIT)
665 		bio->bi_opf |= REQ_NOWAIT;
666 }
667 
bio_clear_polled(struct bio * bio)668 static inline void bio_clear_polled(struct bio *bio)
669 {
670 	bio->bi_opf &= ~REQ_POLLED;
671 }
672 
673 /**
674  * bio_is_zone_append - is this a zone append bio?
675  * @bio:	bio to check
676  *
677  * Check if @bio is a zone append operation.  Core block layer code and end_io
678  * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
679  * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
680  * it is not natively supported.
681  */
bio_is_zone_append(struct bio * bio)682 static inline bool bio_is_zone_append(struct bio *bio)
683 {
684 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
685 		return false;
686 	return bio_op(bio) == REQ_OP_ZONE_APPEND ||
687 		bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
688 }
689 
690 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
691 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
692 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
693 
694 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
695 		sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
696 
697 #endif /* __LINUX_BIO_H */
698