1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12
13 #define BIO_MAX_VECS 256U
14
15 struct queue_limits;
16
bio_max_segs(unsigned int nr_segs)17 static inline unsigned int bio_max_segs(unsigned int nr_segs)
18 {
19 return min(nr_segs, BIO_MAX_VECS);
20 }
21
22 #define bio_iter_iovec(bio, iter) \
23 bvec_iter_bvec((bio)->bi_io_vec, (iter))
24
25 #define bio_iter_page(bio, iter) \
26 bvec_iter_page((bio)->bi_io_vec, (iter))
27 #define bio_iter_len(bio, iter) \
28 bvec_iter_len((bio)->bi_io_vec, (iter))
29 #define bio_iter_offset(bio, iter) \
30 bvec_iter_offset((bio)->bi_io_vec, (iter))
31
32 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
33 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
34 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
35
36 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
37 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
38
39 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
40 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
41
42 /*
43 * Return the data direction, READ or WRITE.
44 */
45 #define bio_data_dir(bio) \
46 (op_is_write(bio_op(bio)) ? WRITE : READ)
47
48 /*
49 * Check whether this bio carries any data or not. A NULL bio is allowed.
50 */
bio_has_data(struct bio * bio)51 static inline bool bio_has_data(struct bio *bio)
52 {
53 if (bio &&
54 bio->bi_iter.bi_size &&
55 bio_op(bio) != REQ_OP_DISCARD &&
56 bio_op(bio) != REQ_OP_SECURE_ERASE &&
57 bio_op(bio) != REQ_OP_WRITE_ZEROES)
58 return true;
59
60 return false;
61 }
62
bio_no_advance_iter(const struct bio * bio)63 static inline bool bio_no_advance_iter(const struct bio *bio)
64 {
65 return bio_op(bio) == REQ_OP_DISCARD ||
66 bio_op(bio) == REQ_OP_SECURE_ERASE ||
67 bio_op(bio) == REQ_OP_WRITE_ZEROES;
68 }
69
bio_data(struct bio * bio)70 static inline void *bio_data(struct bio *bio)
71 {
72 if (bio_has_data(bio))
73 return page_address(bio_page(bio)) + bio_offset(bio);
74
75 return NULL;
76 }
77
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)78 static inline bool bio_next_segment(const struct bio *bio,
79 struct bvec_iter_all *iter)
80 {
81 if (iter->idx >= bio->bi_vcnt)
82 return false;
83
84 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
85 return true;
86 }
87
88 /*
89 * drivers should _never_ use the all version - the bio may have been split
90 * before it got to the driver and the driver won't own all of it
91 */
92 #define bio_for_each_segment_all(bvl, bio, iter) \
93 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
94
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)95 static inline void bio_advance_iter(const struct bio *bio,
96 struct bvec_iter *iter, unsigned int bytes)
97 {
98 iter->bi_sector += bytes >> 9;
99
100 if (bio_no_advance_iter(bio))
101 iter->bi_size -= bytes;
102 else
103 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
104 /* TODO: It is reasonable to complete bio with error here. */
105 }
106
107 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)108 static inline void bio_advance_iter_single(const struct bio *bio,
109 struct bvec_iter *iter,
110 unsigned int bytes)
111 {
112 iter->bi_sector += bytes >> 9;
113
114 if (bio_no_advance_iter(bio))
115 iter->bi_size -= bytes;
116 else
117 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
118 }
119
120 void __bio_advance(struct bio *, unsigned bytes);
121
122 /**
123 * bio_advance - increment/complete a bio by some number of bytes
124 * @bio: bio to advance
125 * @nbytes: number of bytes to complete
126 *
127 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
128 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
129 * be updated on the last bvec as well.
130 *
131 * @bio will then represent the remaining, uncompleted portion of the io.
132 */
bio_advance(struct bio * bio,unsigned int nbytes)133 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
134 {
135 if (nbytes == bio->bi_iter.bi_size) {
136 bio->bi_iter.bi_size = 0;
137 return;
138 }
139 __bio_advance(bio, nbytes);
140 }
141
142 #define __bio_for_each_segment(bvl, bio, iter, start) \
143 for (iter = (start); \
144 (iter).bi_size && \
145 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
146 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
147
148 #define bio_for_each_segment(bvl, bio, iter) \
149 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
150
151 #define __bio_for_each_bvec(bvl, bio, iter, start) \
152 for (iter = (start); \
153 (iter).bi_size && \
154 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
155 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
156
157 /* iterate over multi-page bvec */
158 #define bio_for_each_bvec(bvl, bio, iter) \
159 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
160
161 /*
162 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
163 * same reasons as bio_for_each_segment_all().
164 */
165 #define bio_for_each_bvec_all(bvl, bio, i) \
166 for (i = 0, bvl = bio_first_bvec_all(bio); \
167 i < (bio)->bi_vcnt; i++, bvl++)
168
169 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
170
bio_segments(struct bio * bio)171 static inline unsigned bio_segments(struct bio *bio)
172 {
173 unsigned segs = 0;
174 struct bio_vec bv;
175 struct bvec_iter iter;
176
177 /*
178 * We special case discard/write same/write zeroes, because they
179 * interpret bi_size differently:
180 */
181
182 switch (bio_op(bio)) {
183 case REQ_OP_DISCARD:
184 case REQ_OP_SECURE_ERASE:
185 case REQ_OP_WRITE_ZEROES:
186 return 0;
187 default:
188 break;
189 }
190
191 bio_for_each_segment(bv, bio, iter)
192 segs++;
193
194 return segs;
195 }
196
197 /*
198 * get a reference to a bio, so it won't disappear. the intended use is
199 * something like:
200 *
201 * bio_get(bio);
202 * submit_bio(rw, bio);
203 * if (bio->bi_flags ...)
204 * do_something
205 * bio_put(bio);
206 *
207 * without the bio_get(), it could potentially complete I/O before submit_bio
208 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
209 * runs
210 */
bio_get(struct bio * bio)211 static inline void bio_get(struct bio *bio)
212 {
213 bio->bi_flags |= (1 << BIO_REFFED);
214 smp_mb__before_atomic();
215 atomic_inc(&bio->__bi_cnt);
216 }
217
bio_cnt_set(struct bio * bio,unsigned int count)218 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
219 {
220 if (count != 1) {
221 bio->bi_flags |= (1 << BIO_REFFED);
222 smp_mb();
223 }
224 atomic_set(&bio->__bi_cnt, count);
225 }
226
bio_flagged(struct bio * bio,unsigned int bit)227 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
228 {
229 return bio->bi_flags & (1U << bit);
230 }
231
bio_set_flag(struct bio * bio,unsigned int bit)232 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
233 {
234 bio->bi_flags |= (1U << bit);
235 }
236
bio_clear_flag(struct bio * bio,unsigned int bit)237 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
238 {
239 bio->bi_flags &= ~(1U << bit);
240 }
241
bio_first_bvec_all(struct bio * bio)242 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
243 {
244 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
245 return bio->bi_io_vec;
246 }
247
bio_first_page_all(struct bio * bio)248 static inline struct page *bio_first_page_all(struct bio *bio)
249 {
250 return bio_first_bvec_all(bio)->bv_page;
251 }
252
bio_first_folio_all(struct bio * bio)253 static inline struct folio *bio_first_folio_all(struct bio *bio)
254 {
255 return page_folio(bio_first_page_all(bio));
256 }
257
bio_last_bvec_all(struct bio * bio)258 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
259 {
260 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
261 return &bio->bi_io_vec[bio->bi_vcnt - 1];
262 }
263
264 /**
265 * struct folio_iter - State for iterating all folios in a bio.
266 * @folio: The current folio we're iterating. NULL after the last folio.
267 * @offset: The byte offset within the current folio.
268 * @length: The number of bytes in this iteration (will not cross folio
269 * boundary).
270 */
271 struct folio_iter {
272 struct folio *folio;
273 size_t offset;
274 size_t length;
275 /* private: for use by the iterator */
276 struct folio *_next;
277 size_t _seg_count;
278 int _i;
279 };
280
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)281 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
282 int i)
283 {
284 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
285
286 if (unlikely(i >= bio->bi_vcnt)) {
287 fi->folio = NULL;
288 return;
289 }
290
291 fi->folio = page_folio(bvec->bv_page);
292 fi->offset = bvec->bv_offset +
293 PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
294 fi->_seg_count = bvec->bv_len;
295 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
296 fi->_next = folio_next(fi->folio);
297 fi->_i = i;
298 }
299
bio_next_folio(struct folio_iter * fi,struct bio * bio)300 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
301 {
302 fi->_seg_count -= fi->length;
303 if (fi->_seg_count) {
304 fi->folio = fi->_next;
305 fi->offset = 0;
306 fi->length = min(folio_size(fi->folio), fi->_seg_count);
307 fi->_next = folio_next(fi->folio);
308 } else {
309 bio_first_folio(fi, bio, fi->_i + 1);
310 }
311 }
312
313 /**
314 * bio_for_each_folio_all - Iterate over each folio in a bio.
315 * @fi: struct folio_iter which is updated for each folio.
316 * @bio: struct bio to iterate over.
317 */
318 #define bio_for_each_folio_all(fi, bio) \
319 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
320
321 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
322 extern struct bio *bio_split(struct bio *bio, int sectors,
323 gfp_t gfp, struct bio_set *bs);
324 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
325 unsigned *segs, unsigned max_bytes);
326
327 /**
328 * bio_next_split - get next @sectors from a bio, splitting if necessary
329 * @bio: bio to split
330 * @sectors: number of sectors to split from the front of @bio
331 * @gfp: gfp mask
332 * @bs: bio set to allocate from
333 *
334 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
335 * than @sectors, returns the original bio unchanged.
336 */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)337 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
338 gfp_t gfp, struct bio_set *bs)
339 {
340 if (sectors >= bio_sectors(bio))
341 return bio;
342
343 return bio_split(bio, sectors, gfp, bs);
344 }
345
346 enum {
347 BIOSET_NEED_BVECS = BIT(0),
348 BIOSET_NEED_RESCUER = BIT(1),
349 BIOSET_PERCPU_CACHE = BIT(2),
350 };
351 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
352 extern void bioset_exit(struct bio_set *);
353 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
354
355 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
356 blk_opf_t opf, gfp_t gfp_mask,
357 struct bio_set *bs);
358 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
359 extern void bio_put(struct bio *);
360
361 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
362 gfp_t gfp, struct bio_set *bs);
363 int bio_init_clone(struct block_device *bdev, struct bio *bio,
364 struct bio *bio_src, gfp_t gfp);
365
366 extern struct bio_set fs_bio_set;
367
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)368 static inline struct bio *bio_alloc(struct block_device *bdev,
369 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
370 {
371 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
372 }
373
374 void submit_bio(struct bio *bio);
375
376 extern void bio_endio(struct bio *);
377
bio_io_error(struct bio * bio)378 static inline void bio_io_error(struct bio *bio)
379 {
380 bio->bi_status = BLK_STS_IOERR;
381 bio_endio(bio);
382 }
383
bio_wouldblock_error(struct bio * bio)384 static inline void bio_wouldblock_error(struct bio *bio)
385 {
386 bio_set_flag(bio, BIO_QUIET);
387 bio->bi_status = BLK_STS_AGAIN;
388 bio_endio(bio);
389 }
390
391 /*
392 * Calculate number of bvec segments that should be allocated to fit data
393 * pointed by @iter. If @iter is backed by bvec it's going to be reused
394 * instead of allocating a new one.
395 */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)396 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
397 {
398 if (iov_iter_is_bvec(iter))
399 return 0;
400 return iov_iter_npages(iter, max_segs);
401 }
402
403 struct request_queue;
404
405 extern int submit_bio_wait(struct bio *bio);
406 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
407 unsigned short max_vecs, blk_opf_t opf);
408 extern void bio_uninit(struct bio *);
409 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
410 void bio_chain(struct bio *, struct bio *);
411
412 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
413 unsigned off);
414 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
415 size_t len, size_t off);
416 void __bio_add_page(struct bio *bio, struct page *page,
417 unsigned int len, unsigned int off);
418 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
419 size_t off);
420 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
421 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter);
422 void __bio_release_pages(struct bio *bio, bool mark_dirty);
423 extern void bio_set_pages_dirty(struct bio *bio);
424 extern void bio_check_pages_dirty(struct bio *bio);
425
426 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
427 struct bio *src, struct bvec_iter *src_iter);
428 extern void bio_copy_data(struct bio *dst, struct bio *src);
429 extern void bio_free_pages(struct bio *bio);
430 void guard_bio_eod(struct bio *bio);
431 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
432
zero_fill_bio(struct bio * bio)433 static inline void zero_fill_bio(struct bio *bio)
434 {
435 zero_fill_bio_iter(bio, bio->bi_iter);
436 }
437
bio_release_pages(struct bio * bio,bool mark_dirty)438 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
439 {
440 if (bio_flagged(bio, BIO_PAGE_PINNED))
441 __bio_release_pages(bio, mark_dirty);
442 }
443
444 #define bio_dev(bio) \
445 disk_devt((bio)->bi_bdev->bd_disk)
446
447 #ifdef CONFIG_BLK_CGROUP
448 void bio_associate_blkg(struct bio *bio);
449 void bio_associate_blkg_from_css(struct bio *bio,
450 struct cgroup_subsys_state *css);
451 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
452 void blkcg_punt_bio_submit(struct bio *bio);
453 #else /* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)454 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)455 static inline void bio_associate_blkg_from_css(struct bio *bio,
456 struct cgroup_subsys_state *css)
457 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)458 static inline void bio_clone_blkg_association(struct bio *dst,
459 struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)460 static inline void blkcg_punt_bio_submit(struct bio *bio)
461 {
462 submit_bio(bio);
463 }
464 #endif /* CONFIG_BLK_CGROUP */
465
bio_set_dev(struct bio * bio,struct block_device * bdev)466 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
467 {
468 bio_clear_flag(bio, BIO_REMAPPED);
469 if (bio->bi_bdev != bdev)
470 bio_clear_flag(bio, BIO_BPS_THROTTLED);
471 bio->bi_bdev = bdev;
472 bio_associate_blkg(bio);
473 }
474
475 /*
476 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
477 *
478 * A bio_list anchors a singly-linked list of bios chained through the bi_next
479 * member of the bio. The bio_list also caches the last list member to allow
480 * fast access to the tail.
481 */
482 struct bio_list {
483 struct bio *head;
484 struct bio *tail;
485 };
486
bio_list_empty(const struct bio_list * bl)487 static inline int bio_list_empty(const struct bio_list *bl)
488 {
489 return bl->head == NULL;
490 }
491
bio_list_init(struct bio_list * bl)492 static inline void bio_list_init(struct bio_list *bl)
493 {
494 bl->head = bl->tail = NULL;
495 }
496
497 #define BIO_EMPTY_LIST { NULL, NULL }
498
499 #define bio_list_for_each(bio, bl) \
500 for (bio = (bl)->head; bio; bio = bio->bi_next)
501
bio_list_size(const struct bio_list * bl)502 static inline unsigned bio_list_size(const struct bio_list *bl)
503 {
504 unsigned sz = 0;
505 struct bio *bio;
506
507 bio_list_for_each(bio, bl)
508 sz++;
509
510 return sz;
511 }
512
bio_list_add(struct bio_list * bl,struct bio * bio)513 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
514 {
515 bio->bi_next = NULL;
516
517 if (bl->tail)
518 bl->tail->bi_next = bio;
519 else
520 bl->head = bio;
521
522 bl->tail = bio;
523 }
524
bio_list_add_head(struct bio_list * bl,struct bio * bio)525 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
526 {
527 bio->bi_next = bl->head;
528
529 bl->head = bio;
530
531 if (!bl->tail)
532 bl->tail = bio;
533 }
534
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)535 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
536 {
537 if (!bl2->head)
538 return;
539
540 if (bl->tail)
541 bl->tail->bi_next = bl2->head;
542 else
543 bl->head = bl2->head;
544
545 bl->tail = bl2->tail;
546 }
547
bio_list_merge_init(struct bio_list * bl,struct bio_list * bl2)548 static inline void bio_list_merge_init(struct bio_list *bl,
549 struct bio_list *bl2)
550 {
551 bio_list_merge(bl, bl2);
552 bio_list_init(bl2);
553 }
554
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)555 static inline void bio_list_merge_head(struct bio_list *bl,
556 struct bio_list *bl2)
557 {
558 if (!bl2->head)
559 return;
560
561 if (bl->head)
562 bl2->tail->bi_next = bl->head;
563 else
564 bl->tail = bl2->tail;
565
566 bl->head = bl2->head;
567 }
568
bio_list_peek(struct bio_list * bl)569 static inline struct bio *bio_list_peek(struct bio_list *bl)
570 {
571 return bl->head;
572 }
573
bio_list_pop(struct bio_list * bl)574 static inline struct bio *bio_list_pop(struct bio_list *bl)
575 {
576 struct bio *bio = bl->head;
577
578 if (bio) {
579 bl->head = bl->head->bi_next;
580 if (!bl->head)
581 bl->tail = NULL;
582
583 bio->bi_next = NULL;
584 }
585
586 return bio;
587 }
588
bio_list_get(struct bio_list * bl)589 static inline struct bio *bio_list_get(struct bio_list *bl)
590 {
591 struct bio *bio = bl->head;
592
593 bl->head = bl->tail = NULL;
594
595 return bio;
596 }
597
598 /*
599 * Increment chain count for the bio. Make sure the CHAIN flag update
600 * is visible before the raised count.
601 */
bio_inc_remaining(struct bio * bio)602 static inline void bio_inc_remaining(struct bio *bio)
603 {
604 bio_set_flag(bio, BIO_CHAIN);
605 smp_mb__before_atomic();
606 atomic_inc(&bio->__bi_remaining);
607 }
608
609 /*
610 * bio_set is used to allow other portions of the IO system to
611 * allocate their own private memory pools for bio and iovec structures.
612 * These memory pools in turn all allocate from the bio_slab
613 * and the bvec_slabs[].
614 */
615 #define BIO_POOL_SIZE 2
616
617 struct bio_set {
618 struct kmem_cache *bio_slab;
619 unsigned int front_pad;
620
621 /*
622 * per-cpu bio alloc cache
623 */
624 struct bio_alloc_cache __percpu *cache;
625
626 mempool_t bio_pool;
627 mempool_t bvec_pool;
628 #if defined(CONFIG_BLK_DEV_INTEGRITY)
629 mempool_t bio_integrity_pool;
630 mempool_t bvec_integrity_pool;
631 #endif
632
633 unsigned int back_pad;
634 /*
635 * Deadlock avoidance for stacking block drivers: see comments in
636 * bio_alloc_bioset() for details
637 */
638 spinlock_t rescue_lock;
639 struct bio_list rescue_list;
640 struct work_struct rescue_work;
641 struct workqueue_struct *rescue_workqueue;
642
643 /*
644 * Hot un-plug notifier for the per-cpu cache, if used
645 */
646 struct hlist_node cpuhp_dead;
647 };
648
bioset_initialized(struct bio_set * bs)649 static inline bool bioset_initialized(struct bio_set *bs)
650 {
651 return bs->bio_slab != NULL;
652 }
653
654 /*
655 * Mark a bio as polled. Note that for async polled IO, the caller must
656 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
657 * We cannot block waiting for requests on polled IO, as those completions
658 * must be found by the caller. This is different than IRQ driven IO, where
659 * it's safe to wait for IO to complete.
660 */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)661 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
662 {
663 bio->bi_opf |= REQ_POLLED;
664 if (kiocb->ki_flags & IOCB_NOWAIT)
665 bio->bi_opf |= REQ_NOWAIT;
666 }
667
bio_clear_polled(struct bio * bio)668 static inline void bio_clear_polled(struct bio *bio)
669 {
670 bio->bi_opf &= ~REQ_POLLED;
671 }
672
673 /**
674 * bio_is_zone_append - is this a zone append bio?
675 * @bio: bio to check
676 *
677 * Check if @bio is a zone append operation. Core block layer code and end_io
678 * handlers must use this instead of an open coded REQ_OP_ZONE_APPEND check
679 * because the block layer can rewrite REQ_OP_ZONE_APPEND to REQ_OP_WRITE if
680 * it is not natively supported.
681 */
bio_is_zone_append(struct bio * bio)682 static inline bool bio_is_zone_append(struct bio *bio)
683 {
684 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED))
685 return false;
686 return bio_op(bio) == REQ_OP_ZONE_APPEND ||
687 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
688 }
689
690 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
691 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
692 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new);
693
694 struct bio *blk_alloc_discard_bio(struct block_device *bdev,
695 sector_t *sector, sector_t *nr_sects, gfp_t gfp_mask);
696
697 #endif /* __LINUX_BIO_H */
698