xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_crtc.c (revision c1ead4b4dfe0f643cfc66571ca7d2fa332eddd35)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25 
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36 
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40 
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
43 
44 #define	CONVERT_S3_15(val) \
45 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46 
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 	struct msm_drm_private *priv = crtc->dev->dev_private;
50 
51 	return to_dpu_kms(priv->kms);
52 }
53 
get_encoder_from_crtc(struct drm_crtc * crtc)54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
55 {
56 	struct drm_device *dev = crtc->dev;
57 	struct drm_encoder *encoder;
58 
59 	drm_for_each_encoder(encoder, dev)
60 		if (encoder->crtc == crtc)
61 			return encoder;
62 
63 	return NULL;
64 }
65 
dpu_crtc_parse_crc_source(const char * src_name)66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
67 {
68 	if (!src_name ||
69 	    !strcmp(src_name, "none"))
70 		return DPU_CRTC_CRC_SOURCE_NONE;
71 	if (!strcmp(src_name, "auto") ||
72 	    !strcmp(src_name, "lm"))
73 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
74 	if (!strcmp(src_name, "encoder"))
75 		return DPU_CRTC_CRC_SOURCE_ENCODER;
76 
77 	return DPU_CRTC_CRC_SOURCE_INVALID;
78 }
79 
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
81 		const char *src_name, size_t *values_cnt)
82 {
83 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
84 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
85 
86 	if (source < 0) {
87 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
88 		return -EINVAL;
89 	}
90 
91 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
92 		*values_cnt = crtc_state->num_mixers;
93 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
94 		struct drm_encoder *drm_enc;
95 
96 		*values_cnt = 0;
97 
98 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
99 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
100 	}
101 
102 	return 0;
103 }
104 
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
106 {
107 	struct dpu_crtc_mixer *m;
108 	int i;
109 
110 	for (i = 0; i < crtc_state->num_mixers; ++i) {
111 		m = &crtc_state->mixers[i];
112 
113 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
114 			continue;
115 
116 		/* Calculate MISR over 1 frame */
117 		m->hw_lm->ops.setup_misr(m->hw_lm);
118 	}
119 }
120 
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
122 {
123 	struct drm_encoder *drm_enc;
124 
125 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
126 		dpu_encoder_setup_misr(drm_enc);
127 }
128 
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
130 {
131 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
132 	enum dpu_crtc_crc_source current_source;
133 	struct dpu_crtc_state *crtc_state;
134 	struct drm_device *drm_dev = crtc->dev;
135 
136 	bool was_enabled;
137 	bool enable = false;
138 	int ret = 0;
139 
140 	if (source < 0) {
141 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
142 		return -EINVAL;
143 	}
144 
145 	ret = drm_modeset_lock(&crtc->mutex, NULL);
146 
147 	if (ret)
148 		return ret;
149 
150 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
151 	crtc_state = to_dpu_crtc_state(crtc->state);
152 
153 	spin_lock_irq(&drm_dev->event_lock);
154 	current_source = crtc_state->crc_source;
155 	spin_unlock_irq(&drm_dev->event_lock);
156 
157 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
158 
159 	if (!was_enabled && enable) {
160 		ret = drm_crtc_vblank_get(crtc);
161 
162 		if (ret)
163 			goto cleanup;
164 
165 	} else if (was_enabled && !enable) {
166 		drm_crtc_vblank_put(crtc);
167 	}
168 
169 	spin_lock_irq(&drm_dev->event_lock);
170 	crtc_state->crc_source = source;
171 	spin_unlock_irq(&drm_dev->event_lock);
172 
173 	crtc_state->crc_frame_skip_count = 0;
174 
175 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
176 		dpu_crtc_setup_lm_misr(crtc_state);
177 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
178 		dpu_crtc_setup_encoder_misr(crtc);
179 	else
180 		ret = -EINVAL;
181 
182 cleanup:
183 	drm_modeset_unlock(&crtc->mutex);
184 
185 	return ret;
186 }
187 
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
189 {
190 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
191 	if (!encoder) {
192 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
193 		return 0;
194 	}
195 
196 	return dpu_encoder_get_vsync_count(encoder);
197 }
198 
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
200 		struct dpu_crtc_state *crtc_state)
201 {
202 	struct dpu_crtc_mixer *m;
203 	u32 crcs[CRTC_DUAL_MIXERS];
204 
205 	int rc = 0;
206 	int i;
207 
208 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
209 
210 	for (i = 0; i < crtc_state->num_mixers; ++i) {
211 
212 		m = &crtc_state->mixers[i];
213 
214 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
215 			continue;
216 
217 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
218 
219 		if (rc) {
220 			if (rc != -ENODATA)
221 				DRM_DEBUG_DRIVER("MISR read failed\n");
222 			return rc;
223 		}
224 	}
225 
226 	return drm_crtc_add_crc_entry(crtc, true,
227 			drm_crtc_accurate_vblank_count(crtc), crcs);
228 }
229 
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
231 {
232 	struct drm_encoder *drm_enc;
233 	int rc, pos = 0;
234 	u32 crcs[INTF_MAX];
235 
236 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
237 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
238 		if (rc < 0) {
239 			if (rc != -ENODATA)
240 				DRM_DEBUG_DRIVER("MISR read failed\n");
241 
242 			return rc;
243 		}
244 
245 		pos += rc;
246 	}
247 
248 	return drm_crtc_add_crc_entry(crtc, true,
249 			drm_crtc_accurate_vblank_count(crtc), crcs);
250 }
251 
dpu_crtc_get_crc(struct drm_crtc * crtc)252 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
253 {
254 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
255 
256 	/* Skip first 2 frames in case of "uncooked" CRCs */
257 	if (crtc_state->crc_frame_skip_count < 2) {
258 		crtc_state->crc_frame_skip_count++;
259 		return 0;
260 	}
261 
262 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
263 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
264 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
265 		return dpu_crtc_get_encoder_crc(crtc);
266 
267 	return -EINVAL;
268 }
269 
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
271 					   bool in_vblank_irq,
272 					   int *vpos, int *hpos,
273 					   ktime_t *stime, ktime_t *etime,
274 					   const struct drm_display_mode *mode)
275 {
276 	unsigned int pipe = crtc->index;
277 	struct drm_encoder *encoder;
278 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
279 
280 	encoder = get_encoder_from_crtc(crtc);
281 	if (!encoder) {
282 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
283 		return false;
284 	}
285 
286 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
287 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
288 
289 	/*
290 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
291 	 * the end of VFP. Translate the porch values relative to the line
292 	 * counter positions.
293 	 */
294 
295 	vactive_start = vsw + vbp + 1;
296 	vactive_end = vactive_start + mode->crtc_vdisplay;
297 
298 	/* last scan line before VSYNC */
299 	vfp_end = mode->crtc_vtotal;
300 
301 	if (stime)
302 		*stime = ktime_get();
303 
304 	line = dpu_encoder_get_linecount(encoder);
305 
306 	if (line < vactive_start)
307 		line -= vactive_start;
308 	else if (line > vactive_end)
309 		line = line - vfp_end - vactive_start;
310 	else
311 		line -= vactive_start;
312 
313 	*vpos = line;
314 	*hpos = 0;
315 
316 	if (etime)
317 		*etime = ktime_get();
318 
319 	return true;
320 }
321 
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,const struct msm_format * format,const struct dpu_mdss_version * mdss_ver)322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
323 				      struct dpu_plane_state *pstate,
324 				      const struct msm_format *format,
325 				      const struct dpu_mdss_version *mdss_ver)
326 {
327 	struct dpu_hw_mixer *lm = mixer->hw_lm;
328 	u32 blend_op;
329 	u32 fg_alpha, bg_alpha, max_alpha;
330 
331 	if (mdss_ver->core_major_ver < 12) {
332 		max_alpha = 0xff;
333 		fg_alpha = pstate->base.alpha >> 8;
334 	} else {
335 		max_alpha = 0x3ff;
336 		fg_alpha = pstate->base.alpha >> 6;
337 	}
338 	bg_alpha = max_alpha - fg_alpha;
339 
340 	/* default to opaque blending */
341 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
342 	    !format->alpha_enable) {
343 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
344 			DPU_BLEND_BG_ALPHA_BG_CONST;
345 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
346 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
348 		if (fg_alpha != max_alpha) {
349 			bg_alpha = fg_alpha;
350 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
351 				    DPU_BLEND_BG_INV_MOD_ALPHA;
352 		} else {
353 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
354 		}
355 	} else {
356 		/* coverage blending */
357 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
358 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
359 		if (fg_alpha != max_alpha) {
360 			bg_alpha = fg_alpha;
361 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
362 				    DPU_BLEND_FG_INV_MOD_ALPHA |
363 				    DPU_BLEND_BG_MOD_ALPHA |
364 				    DPU_BLEND_BG_INV_MOD_ALPHA;
365 		} else {
366 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
367 		}
368 	}
369 
370 	lm->ops.setup_blend_config(lm, pstate->stage,
371 				fg_alpha, bg_alpha, blend_op);
372 
373 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
374 		  &format->pixel_format, format->alpha_enable, blend_op);
375 }
376 
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)377 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
378 {
379 	struct dpu_crtc_state *crtc_state;
380 	int lm_idx;
381 
382 	crtc_state = to_dpu_crtc_state(crtc->state);
383 
384 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
385 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
386 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
387 		struct dpu_hw_mixer_cfg cfg;
388 
389 		if (!lm_roi || !drm_rect_visible(lm_roi))
390 			continue;
391 
392 		cfg.out_width = drm_rect_width(lm_roi);
393 		cfg.out_height = drm_rect_height(lm_roi);
394 		cfg.right_mixer = lm_idx & 0x1;
395 		cfg.flags = 0;
396 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
397 	}
398 }
399 
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 num_mixers,enum dpu_stage stage,const struct msm_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)400 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
401 				       struct drm_plane *plane,
402 				       struct dpu_crtc_mixer *mixer,
403 				       u32 num_mixers,
404 				       enum dpu_stage stage,
405 				       const struct msm_format *format,
406 				       uint64_t modifier,
407 				       struct dpu_sw_pipe *pipe,
408 				       unsigned int stage_idx,
409 				       struct dpu_hw_stage_cfg *stage_cfg
410 				      )
411 {
412 	u32 lm_idx;
413 	enum dpu_sspp sspp_idx;
414 	struct drm_plane_state *state;
415 
416 	sspp_idx = pipe->sspp->idx;
417 
418 	state = plane->state;
419 
420 	trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
421 				   state, to_dpu_plane_state(state), stage_idx,
422 				   format->pixel_format,
423 				   modifier);
424 
425 	DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
426 			 crtc->base.id,
427 			 stage,
428 			 plane->base.id,
429 			 sspp_idx - SSPP_NONE,
430 			 state->fb ? state->fb->base.id : -1,
431 			 pipe->multirect_index);
432 
433 	stage_cfg->stage[stage][stage_idx] = sspp_idx;
434 	stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
435 
436 	/* blend config update */
437 	for (lm_idx = 0; lm_idx < num_mixers; lm_idx++)
438 		mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
439 }
440 
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)441 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
442 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
443 	struct dpu_hw_stage_cfg *stage_cfg)
444 {
445 	struct drm_plane *plane;
446 	struct drm_framebuffer *fb;
447 	struct drm_plane_state *state;
448 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
449 	struct dpu_plane_state *pstate = NULL;
450 	const struct msm_format *format;
451 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
452 	u32 lm_idx;
453 	bool bg_alpha_enable = false;
454 	DECLARE_BITMAP(active_fetch, SSPP_MAX);
455 	DECLARE_BITMAP(active_pipes, SSPP_MAX);
456 
457 	memset(active_fetch, 0, sizeof(active_fetch));
458 	memset(active_pipes, 0, sizeof(active_pipes));
459 	drm_atomic_crtc_for_each_plane(plane, crtc) {
460 		state = plane->state;
461 		if (!state)
462 			continue;
463 
464 		if (!state->visible)
465 			continue;
466 
467 		pstate = to_dpu_plane_state(state);
468 		fb = state->fb;
469 
470 		format = msm_framebuffer_format(pstate->base.fb);
471 
472 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
473 			bg_alpha_enable = true;
474 
475 		set_bit(pstate->pipe.sspp->idx, active_fetch);
476 		set_bit(pstate->pipe.sspp->idx, active_pipes);
477 		_dpu_crtc_blend_setup_pipe(crtc, plane,
478 					   mixer, cstate->num_mixers,
479 					   pstate->stage,
480 					   format, fb ? fb->modifier : 0,
481 					   &pstate->pipe, 0, stage_cfg);
482 
483 		if (pstate->r_pipe.sspp) {
484 			set_bit(pstate->r_pipe.sspp->idx, active_fetch);
485 			set_bit(pstate->r_pipe.sspp->idx, active_pipes);
486 			_dpu_crtc_blend_setup_pipe(crtc, plane,
487 						   mixer, cstate->num_mixers,
488 						   pstate->stage,
489 						   format, fb ? fb->modifier : 0,
490 						   &pstate->r_pipe, 1, stage_cfg);
491 		}
492 
493 		/* blend config update */
494 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
495 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format,
496 						  ctl->mdss_ver);
497 
498 			if (bg_alpha_enable && !format->alpha_enable)
499 				mixer[lm_idx].mixer_op_mode = 0;
500 			else
501 				mixer[lm_idx].mixer_op_mode |=
502 						1 << pstate->stage;
503 		}
504 	}
505 
506 	if (ctl->ops.set_active_fetch_pipes)
507 		ctl->ops.set_active_fetch_pipes(ctl, active_fetch);
508 
509 	if (ctl->ops.set_active_pipes)
510 		ctl->ops.set_active_pipes(ctl, active_pipes);
511 
512 	_dpu_crtc_program_lm_output_roi(crtc);
513 }
514 
515 /**
516  * _dpu_crtc_blend_setup - configure crtc mixers
517  * @crtc: Pointer to drm crtc structure
518  */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)519 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
520 {
521 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
522 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
523 	struct dpu_crtc_mixer *mixer = cstate->mixers;
524 	struct dpu_hw_ctl *ctl;
525 	struct dpu_hw_mixer *lm;
526 	struct dpu_hw_stage_cfg stage_cfg;
527 	DECLARE_BITMAP(active_lms, LM_MAX);
528 	int i;
529 
530 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
531 
532 	for (i = 0; i < cstate->num_mixers; i++) {
533 		mixer[i].mixer_op_mode = 0;
534 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
535 			mixer[i].lm_ctl->ops.clear_all_blendstages(
536 					mixer[i].lm_ctl);
537 		if (mixer[i].lm_ctl->ops.set_active_fetch_pipes)
538 			mixer[i].lm_ctl->ops.set_active_fetch_pipes(mixer[i].lm_ctl, NULL);
539 		if (mixer[i].lm_ctl->ops.set_active_pipes)
540 			mixer[i].lm_ctl->ops.set_active_pipes(mixer[i].lm_ctl, NULL);
541 
542 		if (mixer[i].hw_lm->ops.clear_all_blendstages)
543 			mixer[i].hw_lm->ops.clear_all_blendstages(mixer[i].hw_lm);
544 	}
545 
546 	/* initialize stage cfg */
547 	memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
548 	memset(active_lms, 0, sizeof(active_lms));
549 
550 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
551 
552 	for (i = 0; i < cstate->num_mixers; i++) {
553 		ctl = mixer[i].lm_ctl;
554 		lm = mixer[i].hw_lm;
555 
556 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
557 
558 		/* stage config flush mask */
559 		ctl->ops.update_pending_flush_mixer(ctl,
560 			mixer[i].hw_lm->idx);
561 
562 		set_bit(lm->idx, active_lms);
563 		if (ctl->ops.set_active_lms)
564 			ctl->ops.set_active_lms(ctl, active_lms);
565 
566 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
567 			mixer[i].hw_lm->idx - LM_0,
568 			mixer[i].mixer_op_mode,
569 			ctl->idx - CTL_0);
570 
571 		if (ctl->ops.setup_blendstage)
572 			ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
573 						  &stage_cfg);
574 
575 		if (lm->ops.setup_blendstage)
576 			lm->ops.setup_blendstage(lm, mixer[i].hw_lm->idx,
577 						 &stage_cfg);
578 	}
579 }
580 
581 /**
582  *  _dpu_crtc_complete_flip - signal pending page_flip events
583  * Any pending vblank events are added to the vblank_event_list
584  * so that the next vblank interrupt shall signal them.
585  * However PAGE_FLIP events are not handled through the vblank_event_list.
586  * This API signals any pending PAGE_FLIP events requested through
587  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
588  * @crtc: Pointer to drm crtc structure
589  */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)590 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
591 {
592 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
593 	struct drm_device *dev = crtc->dev;
594 	unsigned long flags;
595 
596 	spin_lock_irqsave(&dev->event_lock, flags);
597 	if (dpu_crtc->event) {
598 		DRM_DEBUG_VBL("%s: send event: %p\n", dpu_crtc->name,
599 			      dpu_crtc->event);
600 		trace_dpu_crtc_complete_flip(DRMID(crtc));
601 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
602 		dpu_crtc->event = NULL;
603 	}
604 	spin_unlock_irqrestore(&dev->event_lock, flags);
605 }
606 
607 /**
608  * dpu_crtc_get_intf_mode - get interface mode of the given crtc
609  * @crtc: Pointert to crtc
610  */
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)611 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
612 {
613 	struct drm_encoder *encoder;
614 
615 	/*
616 	 * TODO: This function is called from dpu debugfs and as part of atomic
617 	 * check. When called from debugfs, the crtc->mutex must be held to
618 	 * read crtc->state. However reading crtc->state from atomic check isn't
619 	 * allowed (unless you have a good reason, a big comment, and a deep
620 	 * understanding of how the atomic/modeset locks work (<- and this is
621 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
622 	 * really we need to figure out a better way to track our operating mode
623 	 */
624 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
625 
626 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
627 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
628 		return dpu_encoder_get_intf_mode(encoder);
629 
630 	return INTF_MODE_NONE;
631 }
632 
633 /**
634  * dpu_crtc_vblank_callback - called on vblank irq, issues completion events
635  * @crtc: Pointer to drm crtc object
636  */
dpu_crtc_vblank_callback(struct drm_crtc * crtc)637 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
638 {
639 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
640 
641 	/* keep statistics on vblank callback - with auto reset via debugfs */
642 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
643 		dpu_crtc->vblank_cb_time = ktime_get();
644 	else
645 		dpu_crtc->vblank_cb_count++;
646 
647 	dpu_crtc_get_crc(crtc);
648 
649 	drm_crtc_handle_vblank(crtc);
650 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
651 }
652 
dpu_crtc_frame_event_work(struct kthread_work * work)653 static void dpu_crtc_frame_event_work(struct kthread_work *work)
654 {
655 	struct dpu_crtc_frame_event *fevent = container_of(work,
656 			struct dpu_crtc_frame_event, work);
657 	struct drm_crtc *crtc = fevent->crtc;
658 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
659 	unsigned long flags;
660 	bool frame_done = false;
661 
662 	DPU_ATRACE_BEGIN("crtc_frame_event");
663 
664 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
665 			ktime_to_ns(fevent->ts));
666 
667 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
668 				| DPU_ENCODER_FRAME_EVENT_ERROR
669 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
670 
671 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
672 			/* ignore vblank when not pending */
673 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
674 			/* release bandwidth and other resources */
675 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
676 							fevent->event);
677 			dpu_core_perf_crtc_release_bw(crtc);
678 		} else {
679 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
680 								fevent->event);
681 		}
682 
683 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
684 					| DPU_ENCODER_FRAME_EVENT_ERROR))
685 			frame_done = true;
686 	}
687 
688 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
689 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
690 				crtc->base.id, ktime_to_ns(fevent->ts));
691 
692 	if (frame_done)
693 		complete_all(&dpu_crtc->frame_done_comp);
694 
695 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
696 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
697 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
698 	DPU_ATRACE_END("crtc_frame_event");
699 }
700 
701 /**
702  * dpu_crtc_frame_event_cb - crtc frame event callback API
703  * @crtc: Pointer to crtc
704  * @event: Event to process
705  *
706  * Encoder may call this for different events from different context - IRQ,
707  * user thread, commit_thread, etc. Each event should be carefully reviewed and
708  * should be processed in proper task context to avoid schedulin delay or
709  * properly manage the irq context's bottom half processing.
710  */
dpu_crtc_frame_event_cb(struct drm_crtc * crtc,u32 event)711 void dpu_crtc_frame_event_cb(struct drm_crtc *crtc, u32 event)
712 {
713 	struct dpu_crtc *dpu_crtc;
714 	struct msm_drm_private *priv;
715 	struct dpu_crtc_frame_event *fevent;
716 	unsigned long flags;
717 	u32 crtc_id;
718 
719 	/* Nothing to do on idle event */
720 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
721 		return;
722 
723 	dpu_crtc = to_dpu_crtc(crtc);
724 	priv = crtc->dev->dev_private;
725 	crtc_id = drm_crtc_index(crtc);
726 
727 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
728 
729 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
730 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
731 			struct dpu_crtc_frame_event, list);
732 	if (fevent)
733 		list_del_init(&fevent->list);
734 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
735 
736 	if (!fevent) {
737 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
738 		return;
739 	}
740 
741 	fevent->event = event;
742 	fevent->crtc = crtc;
743 	fevent->ts = ktime_get();
744 	kthread_queue_work(priv->kms->event_thread[crtc_id].worker, &fevent->work);
745 }
746 
747 /**
748  * dpu_crtc_complete_commit - callback signalling completion of current commit
749  * @crtc: Pointer to drm crtc object
750  */
dpu_crtc_complete_commit(struct drm_crtc * crtc)751 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
752 {
753 	trace_dpu_crtc_complete_commit(DRMID(crtc));
754 	dpu_core_perf_crtc_update(crtc, 0);
755 	_dpu_crtc_complete_flip(crtc);
756 }
757 
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)758 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
759 		struct drm_crtc_state *state)
760 {
761 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
762 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
763 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
764 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
765 	int i;
766 
767 	/* if we cannot merge 2 LMs (no 3d mux) better to fail earlier
768 	 * before even checking the width after the split
769 	 */
770 	if (!dpu_kms->catalog->caps->has_3d_merge &&
771 	    adj_mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
772 		return -E2BIG;
773 
774 	for (i = 0; i < cstate->num_mixers; i++) {
775 		struct drm_rect *r = &cstate->lm_bounds[i];
776 		r->x1 = crtc_split_width * i;
777 		r->y1 = 0;
778 		r->x2 = r->x1 + crtc_split_width;
779 		r->y2 = adj_mode->vdisplay;
780 
781 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
782 
783 		if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
784 			return -E2BIG;
785 	}
786 
787 	return 0;
788 }
789 
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)790 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
791 		struct dpu_hw_pcc_cfg *cfg)
792 {
793 	struct drm_color_ctm *ctm;
794 
795 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
796 
797 	ctm = (struct drm_color_ctm *)state->ctm->data;
798 
799 	if (!ctm)
800 		return;
801 
802 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
803 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
804 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
805 
806 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
807 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
808 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
809 
810 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
811 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
812 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
813 }
814 
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)815 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
816 {
817 	struct drm_crtc_state *state = crtc->state;
818 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
819 	struct dpu_crtc_mixer *mixer = cstate->mixers;
820 	struct dpu_hw_pcc_cfg cfg;
821 	struct dpu_hw_ctl *ctl;
822 	struct dpu_hw_dspp *dspp;
823 	int i;
824 
825 
826 	if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
827 		return;
828 
829 	for (i = 0; i < cstate->num_mixers; i++) {
830 		ctl = mixer[i].lm_ctl;
831 		dspp = mixer[i].hw_dspp;
832 
833 		if (!dspp || !dspp->ops.setup_pcc)
834 			continue;
835 
836 		if (!state->ctm) {
837 			dspp->ops.setup_pcc(dspp, NULL);
838 		} else {
839 			_dpu_crtc_get_pcc_coeff(state, &cfg);
840 			dspp->ops.setup_pcc(dspp, &cfg);
841 		}
842 
843 		/* stage config flush mask */
844 		ctl->ops.update_pending_flush_dspp(ctl,
845 			mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
846 	}
847 }
848 
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)849 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
850 		struct drm_atomic_state *state)
851 {
852 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
853 	struct drm_encoder *encoder;
854 
855 	if (!crtc->state->enable) {
856 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
857 				crtc->base.id, crtc->state->enable);
858 		return;
859 	}
860 
861 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
862 
863 	_dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
864 
865 	/* encoder will trigger pending mask now */
866 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
867 		dpu_encoder_trigger_kickoff_pending(encoder);
868 
869 	/*
870 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
871 	 * it means we are trying to flush a CRTC whose state is disabled:
872 	 * nothing else needs to be done.
873 	 */
874 	if (unlikely(!cstate->num_mixers))
875 		return;
876 
877 	_dpu_crtc_blend_setup(crtc);
878 
879 	_dpu_crtc_setup_cp_blocks(crtc);
880 
881 	/*
882 	 * PP_DONE irq is only used by command mode for now.
883 	 * It is better to request pending before FLUSH and START trigger
884 	 * to make sure no pp_done irq missed.
885 	 * This is safe because no pp_done will happen before SW trigger
886 	 * in command mode.
887 	 */
888 }
889 
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)890 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
891 		struct drm_atomic_state *state)
892 {
893 	struct dpu_crtc *dpu_crtc;
894 	struct drm_device *dev;
895 	struct drm_plane *plane;
896 	struct msm_drm_private *priv;
897 	unsigned long flags;
898 	struct dpu_crtc_state *cstate;
899 
900 	if (!crtc->state->enable) {
901 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
902 				crtc->base.id, crtc->state->enable);
903 		return;
904 	}
905 
906 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
907 
908 	dpu_crtc = to_dpu_crtc(crtc);
909 	cstate = to_dpu_crtc_state(crtc->state);
910 	dev = crtc->dev;
911 	priv = dev->dev_private;
912 
913 	if (crtc->index >= ARRAY_SIZE(priv->kms->event_thread)) {
914 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
915 		return;
916 	}
917 
918 	WARN_ON(dpu_crtc->event);
919 	spin_lock_irqsave(&dev->event_lock, flags);
920 	dpu_crtc->event = crtc->state->event;
921 	crtc->state->event = NULL;
922 	spin_unlock_irqrestore(&dev->event_lock, flags);
923 
924 	/*
925 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
926 	 * it means we are trying to flush a CRTC whose state is disabled:
927 	 * nothing else needs to be done.
928 	 */
929 	if (unlikely(!cstate->num_mixers))
930 		return;
931 
932 	/* update performance setting before crtc kickoff */
933 	dpu_core_perf_crtc_update(crtc, 1);
934 
935 	/*
936 	 * Final plane updates: Give each plane a chance to complete all
937 	 *                      required writes/flushing before crtc's "flush
938 	 *                      everything" call below.
939 	 */
940 	drm_atomic_crtc_for_each_plane(plane, crtc) {
941 		if (dpu_crtc->smmu_state.transition_error)
942 			dpu_plane_set_error(plane, true);
943 		dpu_plane_flush(plane);
944 	}
945 
946 	/* Kickoff will be scheduled by outer layer */
947 }
948 
949 /**
950  * dpu_crtc_destroy_state - state destroy hook
951  * @crtc: drm CRTC
952  * @state: CRTC state object to release
953  */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)954 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
955 		struct drm_crtc_state *state)
956 {
957 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
958 
959 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
960 
961 	__drm_atomic_helper_crtc_destroy_state(state);
962 
963 	kfree(cstate);
964 }
965 
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)966 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
967 {
968 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
969 	int ret, rc = 0;
970 
971 	if (!atomic_read(&dpu_crtc->frame_pending)) {
972 		DRM_DEBUG_ATOMIC("no frames pending\n");
973 		return 0;
974 	}
975 
976 	DPU_ATRACE_BEGIN("frame done completion wait");
977 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
978 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
979 	if (!ret) {
980 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
981 		rc = -ETIMEDOUT;
982 	}
983 	DPU_ATRACE_END("frame done completion wait");
984 
985 	return rc;
986 }
987 
dpu_crtc_kickoff_clone_mode(struct drm_crtc * crtc)988 static int dpu_crtc_kickoff_clone_mode(struct drm_crtc *crtc)
989 {
990 	struct drm_encoder *encoder;
991 	struct drm_encoder *rt_encoder = NULL, *wb_encoder = NULL;
992 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
993 
994 	/* Find encoder for real time display */
995 	drm_for_each_encoder_mask(encoder, crtc->dev,
996 				  crtc->state->encoder_mask) {
997 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
998 			wb_encoder = encoder;
999 		else
1000 			rt_encoder = encoder;
1001 	}
1002 
1003 	if (!rt_encoder || !wb_encoder) {
1004 		DRM_DEBUG_ATOMIC("real time or wb encoder not found\n");
1005 		return -EINVAL;
1006 	}
1007 
1008 	dpu_encoder_prepare_for_kickoff(wb_encoder);
1009 	dpu_encoder_prepare_for_kickoff(rt_encoder);
1010 
1011 	dpu_vbif_clear_errors(dpu_kms);
1012 
1013 	/*
1014 	 * Kickoff real time encoder last as it's the encoder that
1015 	 * will do the flush
1016 	 */
1017 	dpu_encoder_kickoff(wb_encoder);
1018 	dpu_encoder_kickoff(rt_encoder);
1019 
1020 	/* Don't start frame done timers until the kickoffs have finished */
1021 	dpu_encoder_start_frame_done_timer(wb_encoder);
1022 	dpu_encoder_start_frame_done_timer(rt_encoder);
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * dpu_crtc_commit_kickoff - trigger kickoff of the commit for this crtc
1029  * @crtc: Pointer to drm crtc object
1030  */
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)1031 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
1032 {
1033 	struct drm_encoder *encoder;
1034 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1035 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1036 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1037 
1038 	/*
1039 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
1040 	 * it means we are trying to start a CRTC whose state is disabled:
1041 	 * nothing else needs to be done.
1042 	 */
1043 	if (unlikely(!cstate->num_mixers))
1044 		return;
1045 
1046 	DPU_ATRACE_BEGIN("crtc_commit");
1047 
1048 	drm_for_each_encoder_mask(encoder, crtc->dev,
1049 			crtc->state->encoder_mask) {
1050 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
1051 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
1052 			goto end;
1053 		}
1054 	}
1055 
1056 	if (drm_crtc_in_clone_mode(crtc->state)) {
1057 		if (dpu_crtc_kickoff_clone_mode(crtc))
1058 			goto end;
1059 	} else {
1060 		/*
1061 		 * Encoder will flush/start now, unless it has a tx pending.
1062 		 * If so, it may delay and flush at an irq event (e.g. ppdone)
1063 		 */
1064 		drm_for_each_encoder_mask(encoder, crtc->dev,
1065 				crtc->state->encoder_mask)
1066 			dpu_encoder_prepare_for_kickoff(encoder);
1067 
1068 		dpu_vbif_clear_errors(dpu_kms);
1069 
1070 		drm_for_each_encoder_mask(encoder, crtc->dev,
1071 				crtc->state->encoder_mask) {
1072 			dpu_encoder_kickoff(encoder);
1073 			dpu_encoder_start_frame_done_timer(encoder);
1074 		}
1075 	}
1076 
1077 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
1078 		/* acquire bandwidth and other resources */
1079 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
1080 	} else
1081 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
1082 
1083 	dpu_crtc->play_count++;
1084 
1085 	reinit_completion(&dpu_crtc->frame_done_comp);
1086 
1087 end:
1088 	DPU_ATRACE_END("crtc_commit");
1089 }
1090 
dpu_crtc_reset(struct drm_crtc * crtc)1091 static void dpu_crtc_reset(struct drm_crtc *crtc)
1092 {
1093 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
1094 
1095 	if (crtc->state)
1096 		dpu_crtc_destroy_state(crtc, crtc->state);
1097 
1098 	if (cstate)
1099 		__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1100 	else
1101 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1102 }
1103 
1104 /**
1105  * dpu_crtc_duplicate_state - state duplicate hook
1106  * @crtc: Pointer to drm crtc structure
1107  */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1108 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1109 {
1110 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1111 
1112 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1113 	if (!cstate) {
1114 		DPU_ERROR("failed to allocate state\n");
1115 		return NULL;
1116 	}
1117 
1118 	/* duplicate base helper */
1119 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1120 
1121 	return &cstate->base;
1122 }
1123 
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1124 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1125 					const struct drm_crtc_state *state)
1126 {
1127 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1128 	int i;
1129 
1130 	for (i = 0; i < cstate->num_mixers; i++) {
1131 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1132 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1133 		if (cstate->mixers[i].hw_dspp)
1134 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1135 	}
1136 }
1137 
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1138 static void dpu_crtc_disable(struct drm_crtc *crtc,
1139 			     struct drm_atomic_state *state)
1140 {
1141 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1142 									      crtc);
1143 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1144 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1145 	struct drm_encoder *encoder;
1146 	unsigned long flags;
1147 	bool release_bandwidth = false;
1148 
1149 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1150 
1151 	/* If disable is triggered while in self refresh mode,
1152 	 * reset the encoder software state so that in enable
1153 	 * it won't trigger a warn while assigning crtc.
1154 	 */
1155 	if (old_crtc_state->self_refresh_active) {
1156 		drm_for_each_encoder_mask(encoder, crtc->dev,
1157 					old_crtc_state->encoder_mask) {
1158 			dpu_encoder_assign_crtc(encoder, NULL);
1159 		}
1160 		return;
1161 	}
1162 
1163 	/* Disable/save vblank irq handling */
1164 	drm_crtc_vblank_off(crtc);
1165 
1166 	drm_for_each_encoder_mask(encoder, crtc->dev,
1167 				  old_crtc_state->encoder_mask) {
1168 		/* in video mode, we hold an extra bandwidth reference
1169 		 * as we cannot drop bandwidth at frame-done if any
1170 		 * crtc is being used in video mode.
1171 		 */
1172 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1173 			release_bandwidth = true;
1174 
1175 		/*
1176 		 * If disable is triggered during psr active(e.g: screen dim in PSR),
1177 		 * we will need encoder->crtc connection to process the device sleep &
1178 		 * preserve it during psr sequence.
1179 		 */
1180 		if (!crtc->state->self_refresh_active)
1181 			dpu_encoder_assign_crtc(encoder, NULL);
1182 	}
1183 
1184 	/* wait for frame_event_done completion */
1185 	if (_dpu_crtc_wait_for_frame_done(crtc))
1186 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1187 				crtc->base.id,
1188 				atomic_read(&dpu_crtc->frame_pending));
1189 
1190 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1191 	dpu_crtc->enabled = false;
1192 
1193 	if (atomic_read(&dpu_crtc->frame_pending)) {
1194 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1195 				     atomic_read(&dpu_crtc->frame_pending));
1196 		if (release_bandwidth)
1197 			dpu_core_perf_crtc_release_bw(crtc);
1198 		atomic_set(&dpu_crtc->frame_pending, 0);
1199 	}
1200 
1201 	dpu_core_perf_crtc_update(crtc, 0);
1202 
1203 	/* disable clk & bw control until clk & bw properties are set */
1204 	cstate->bw_control = false;
1205 	cstate->bw_split_vote = false;
1206 
1207 	if (crtc->state->event && !crtc->state->active) {
1208 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1209 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1210 		crtc->state->event = NULL;
1211 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1212 	}
1213 
1214 	pm_runtime_put_sync(crtc->dev->dev);
1215 }
1216 
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1217 static void dpu_crtc_enable(struct drm_crtc *crtc,
1218 		struct drm_atomic_state *state)
1219 {
1220 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1221 	struct drm_encoder *encoder;
1222 	bool request_bandwidth = false;
1223 	struct drm_crtc_state *old_crtc_state;
1224 
1225 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1226 
1227 	pm_runtime_get_sync(crtc->dev->dev);
1228 
1229 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1230 
1231 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1232 		/* in video mode, we hold an extra bandwidth reference
1233 		 * as we cannot drop bandwidth at frame-done if any
1234 		 * crtc is being used in video mode.
1235 		 */
1236 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1237 			request_bandwidth = true;
1238 	}
1239 
1240 	if (request_bandwidth)
1241 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1242 
1243 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1244 	dpu_crtc->enabled = true;
1245 
1246 	if (!old_crtc_state->self_refresh_active) {
1247 		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1248 			dpu_encoder_assign_crtc(encoder, crtc);
1249 	}
1250 
1251 	/* Enable/restore vblank irq handling */
1252 	drm_crtc_vblank_on(crtc);
1253 }
1254 
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1255 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1256 {
1257 	struct drm_crtc *crtc = cstate->crtc;
1258 	struct drm_encoder *encoder;
1259 
1260 	if (cstate->self_refresh_active)
1261 		return true;
1262 
1263 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1264 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1265 			return true;
1266 		}
1267 	}
1268 
1269 	return false;
1270 }
1271 
dpu_crtc_reassign_planes(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1272 static int dpu_crtc_reassign_planes(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
1273 {
1274 	int total_planes = crtc->dev->mode_config.num_total_plane;
1275 	struct drm_atomic_state *state = crtc_state->state;
1276 	struct dpu_global_state *global_state;
1277 	struct drm_plane_state **states;
1278 	struct drm_plane *plane;
1279 	int ret;
1280 
1281 	global_state = dpu_kms_get_global_state(crtc_state->state);
1282 	if (IS_ERR(global_state))
1283 		return PTR_ERR(global_state);
1284 
1285 	dpu_rm_release_all_sspp(global_state, crtc);
1286 
1287 	if (!crtc_state->enable)
1288 		return 0;
1289 
1290 	states = kcalloc(total_planes, sizeof(*states), GFP_KERNEL);
1291 	if (!states)
1292 		return -ENOMEM;
1293 
1294 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1295 		struct drm_plane_state *plane_state =
1296 			drm_atomic_get_plane_state(state, plane);
1297 
1298 		if (IS_ERR(plane_state)) {
1299 			ret = PTR_ERR(plane_state);
1300 			goto done;
1301 		}
1302 
1303 		states[plane_state->normalized_zpos] = plane_state;
1304 	}
1305 
1306 	ret = dpu_assign_plane_resources(global_state, state, crtc, states, total_planes);
1307 
1308 done:
1309 	kfree(states);
1310 	return ret;
1311 }
1312 
1313 #define MAX_CHANNELS_PER_CRTC 2
1314 #define MAX_HDISPLAY_SPLIT 1080
1315 
dpu_crtc_get_topology(struct drm_crtc * crtc,struct dpu_kms * dpu_kms,struct drm_crtc_state * crtc_state)1316 static struct msm_display_topology dpu_crtc_get_topology(
1317 		struct drm_crtc *crtc,
1318 		struct dpu_kms *dpu_kms,
1319 		struct drm_crtc_state *crtc_state)
1320 {
1321 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
1322 	struct msm_display_topology topology = {0};
1323 	struct drm_encoder *drm_enc;
1324 
1325 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc_state->encoder_mask)
1326 		dpu_encoder_update_topology(drm_enc, &topology, crtc_state->state,
1327 					    &crtc_state->adjusted_mode);
1328 
1329 	topology.cwb_enabled = drm_crtc_in_clone_mode(crtc_state);
1330 
1331 	/*
1332 	 * Datapath topology selection
1333 	 *
1334 	 * Dual display
1335 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
1336 	 *
1337 	 * Single display
1338 	 * 1 LM, 1 INTF
1339 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
1340 	 *
1341 	 * If DSC is enabled, use 2 LMs for 2:2:1 topology
1342 	 *
1343 	 * Add dspps to the reservation requirements if ctm is requested
1344 	 *
1345 	 * Only hardcode num_lm to 2 for cases where num_intf == 2 and CWB is not
1346 	 * enabled. This is because in cases where CWB is enabled, num_intf will
1347 	 * count both the WB and real-time phys encoders.
1348 	 *
1349 	 * For non-DSC CWB usecases, have the num_lm be decided by the
1350 	 * (mode->hdisplay > MAX_HDISPLAY_SPLIT) check.
1351 	 */
1352 
1353 	if (topology.num_intf == 2 && !topology.cwb_enabled)
1354 		topology.num_lm = 2;
1355 	else if (topology.num_dsc == 2)
1356 		topology.num_lm = 2;
1357 	else if (dpu_kms->catalog->caps->has_3d_merge)
1358 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
1359 	else
1360 		topology.num_lm = 1;
1361 
1362 	if (crtc_state->ctm)
1363 		topology.num_dspp = topology.num_lm;
1364 
1365 	return topology;
1366 }
1367 
dpu_crtc_assign_resources(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1368 static int dpu_crtc_assign_resources(struct drm_crtc *crtc,
1369 				     struct drm_crtc_state *crtc_state)
1370 {
1371 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_CRTC];
1372 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_CRTC];
1373 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_CRTC];
1374 	int i, num_lm, num_ctl, num_dspp;
1375 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1376 	struct dpu_global_state *global_state;
1377 	struct dpu_crtc_state *cstate;
1378 	struct msm_display_topology topology;
1379 	int ret;
1380 
1381 	/*
1382 	 * Release and Allocate resources on every modeset
1383 	 */
1384 	global_state = dpu_kms_get_global_state(crtc_state->state);
1385 	if (IS_ERR(global_state))
1386 		return PTR_ERR(global_state);
1387 
1388 	dpu_rm_release(global_state, crtc);
1389 
1390 	if (!crtc_state->enable)
1391 		return 0;
1392 
1393 	topology = dpu_crtc_get_topology(crtc, dpu_kms, crtc_state);
1394 	ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
1395 			     crtc_state->crtc, &topology);
1396 	if (ret)
1397 		return ret;
1398 
1399 	cstate = to_dpu_crtc_state(crtc_state);
1400 
1401 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1402 						crtc_state->crtc,
1403 						DPU_HW_BLK_CTL, hw_ctl,
1404 						ARRAY_SIZE(hw_ctl));
1405 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1406 					       crtc_state->crtc,
1407 					       DPU_HW_BLK_LM, hw_lm,
1408 					       ARRAY_SIZE(hw_lm));
1409 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1410 						 crtc_state->crtc,
1411 						 DPU_HW_BLK_DSPP, hw_dspp,
1412 						 ARRAY_SIZE(hw_dspp));
1413 
1414 	for (i = 0; i < num_lm; i++) {
1415 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1416 
1417 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1418 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1419 		if (i < num_dspp)
1420 			cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1421 	}
1422 
1423 	cstate->num_mixers = num_lm;
1424 
1425 	return 0;
1426 }
1427 
1428 /**
1429  * dpu_crtc_check_mode_changed: check if full modeset is required
1430  * @old_crtc_state:	Previous CRTC state
1431  * @new_crtc_state:	Corresponding CRTC state to be checked
1432  *
1433  * Check if the changes in the object properties demand full mode set.
1434  */
dpu_crtc_check_mode_changed(struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)1435 int dpu_crtc_check_mode_changed(struct drm_crtc_state *old_crtc_state,
1436 				struct drm_crtc_state *new_crtc_state)
1437 {
1438 	struct drm_encoder *drm_enc;
1439 	struct drm_crtc *crtc = new_crtc_state->crtc;
1440 	bool clone_mode_enabled = drm_crtc_in_clone_mode(old_crtc_state);
1441 	bool clone_mode_requested = drm_crtc_in_clone_mode(new_crtc_state);
1442 
1443 	DRM_DEBUG_ATOMIC("%d\n", crtc->base.id);
1444 
1445 	/* there might be cases where encoder needs a modeset too */
1446 	drm_for_each_encoder_mask(drm_enc, crtc->dev, new_crtc_state->encoder_mask) {
1447 		if (dpu_encoder_needs_modeset(drm_enc, new_crtc_state->state))
1448 			new_crtc_state->mode_changed = true;
1449 	}
1450 
1451 	if ((clone_mode_requested && !clone_mode_enabled) ||
1452 	    (!clone_mode_requested && clone_mode_enabled))
1453 		new_crtc_state->mode_changed = true;
1454 
1455 	return 0;
1456 }
1457 
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1458 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1459 		struct drm_atomic_state *state)
1460 {
1461 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1462 									  crtc);
1463 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1464 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1465 
1466 	const struct drm_plane_state *pstate;
1467 	struct drm_plane *plane;
1468 
1469 	int rc = 0;
1470 
1471 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1472 
1473 	/* don't reallocate resources if only ACTIVE has beeen changed */
1474 	if (crtc_state->mode_changed || crtc_state->connectors_changed) {
1475 		rc = dpu_crtc_assign_resources(crtc, crtc_state);
1476 		if (rc < 0)
1477 			return rc;
1478 	}
1479 
1480 	if (dpu_use_virtual_planes &&
1481 	    (crtc_state->planes_changed || crtc_state->zpos_changed)) {
1482 		rc = dpu_crtc_reassign_planes(crtc, crtc_state);
1483 		if (rc < 0)
1484 			return rc;
1485 	}
1486 
1487 	if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1488 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1489 				crtc->base.id, crtc_state->enable,
1490 				crtc_state->active);
1491 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1492 		return 0;
1493 	}
1494 
1495 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1496 
1497 	if (cstate->num_mixers) {
1498 		rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1499 		if (rc)
1500 			return rc;
1501 	}
1502 
1503 	/* FIXME: move this to dpu_plane_atomic_check? */
1504 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1505 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1506 
1507 		if (IS_ERR_OR_NULL(pstate)) {
1508 			rc = PTR_ERR(pstate);
1509 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1510 					dpu_crtc->name, plane->base.id, rc);
1511 			return rc;
1512 		}
1513 
1514 		if (!pstate->visible)
1515 			continue;
1516 
1517 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1518 	}
1519 
1520 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1521 
1522 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1523 	if (rc) {
1524 		DPU_ERROR("crtc%d failed performance check %d\n",
1525 				crtc->base.id, rc);
1526 		return rc;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
dpu_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1532 static enum drm_mode_status dpu_crtc_mode_valid(struct drm_crtc *crtc,
1533 						const struct drm_display_mode *mode)
1534 {
1535 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1536 	u64 adjusted_mode_clk;
1537 
1538 	/* if there is no 3d_mux block we cannot merge LMs so we cannot
1539 	 * split the large layer into 2 LMs, filter out such modes
1540 	 */
1541 	if (!dpu_kms->catalog->caps->has_3d_merge &&
1542 	    mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
1543 		return MODE_BAD_HVALUE;
1544 
1545 	adjusted_mode_clk = dpu_core_perf_adjusted_mode_clk(mode->clock,
1546 							    dpu_kms->perf.perf_cfg);
1547 
1548 	/*
1549 	 * The given mode, adjusted for the perf clock factor, should not exceed
1550 	 * the max core clock rate
1551 	 */
1552 	if (dpu_kms->perf.max_core_clk_rate < adjusted_mode_clk * 1000)
1553 		return MODE_CLOCK_HIGH;
1554 
1555 	/*
1556 	 * max crtc width is equal to the max mixer width * 2 and max height is 4K
1557 	 */
1558 	return drm_mode_validate_size(mode,
1559 				      2 * dpu_kms->catalog->caps->max_mixer_width,
1560 				      4096);
1561 }
1562 
1563 /**
1564  * dpu_crtc_vblank - enable or disable vblanks for this crtc
1565  * @crtc: Pointer to drm crtc object
1566  * @en: true to enable vblanks, false to disable
1567  */
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1568 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1569 {
1570 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1571 	struct drm_encoder *enc;
1572 
1573 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1574 
1575 	/*
1576 	 * Normally we would iterate through encoder_mask in crtc state to find
1577 	 * attached encoders. In this case, we might be disabling vblank _after_
1578 	 * encoder_mask has been cleared.
1579 	 *
1580 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1581 	 * disable (which is also after encoder_mask is cleared). So instead of
1582 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1583 	 * currently assigned to our crtc.
1584 	 *
1585 	 * Note also that this function cannot be called while crtc is disabled
1586 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1587 	 * about the assigned crtcs being inconsistent with the current state
1588 	 * (which means no need to worry about modeset locks).
1589 	 */
1590 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1591 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1592 					     dpu_crtc);
1593 
1594 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1601 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1602 {
1603 	struct dpu_crtc *dpu_crtc;
1604 	struct dpu_plane_state *pstate = NULL;
1605 	struct dpu_crtc_mixer *m;
1606 
1607 	struct drm_crtc *crtc;
1608 	struct drm_plane *plane;
1609 	struct drm_display_mode *mode;
1610 	struct drm_framebuffer *fb;
1611 	struct drm_plane_state *state;
1612 	struct dpu_crtc_state *cstate;
1613 
1614 	int i, out_width;
1615 
1616 	dpu_crtc = s->private;
1617 	crtc = &dpu_crtc->base;
1618 
1619 	drm_modeset_lock_all(crtc->dev);
1620 	cstate = to_dpu_crtc_state(crtc->state);
1621 
1622 	mode = &crtc->state->adjusted_mode;
1623 	out_width = mode->hdisplay / cstate->num_mixers;
1624 
1625 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1626 				mode->hdisplay, mode->vdisplay);
1627 
1628 	seq_puts(s, "\n");
1629 
1630 	for (i = 0; i < cstate->num_mixers; ++i) {
1631 		m = &cstate->mixers[i];
1632 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1633 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1634 			out_width, mode->vdisplay);
1635 	}
1636 
1637 	seq_puts(s, "\n");
1638 
1639 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1640 		pstate = to_dpu_plane_state(plane->state);
1641 		state = plane->state;
1642 
1643 		if (!pstate || !state)
1644 			continue;
1645 
1646 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1647 			pstate->stage);
1648 
1649 		if (plane->state->fb) {
1650 			fb = plane->state->fb;
1651 
1652 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1653 				fb->base.id, (char *) &fb->format->format,
1654 				fb->width, fb->height);
1655 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1656 				seq_printf(s, "cpp[%d]:%u ",
1657 						i, fb->format->cpp[i]);
1658 			seq_puts(s, "\n\t");
1659 
1660 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1661 			seq_puts(s, "\n");
1662 
1663 			seq_puts(s, "\t");
1664 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1665 				seq_printf(s, "pitches[%d]:%8u ", i,
1666 							fb->pitches[i]);
1667 			seq_puts(s, "\n");
1668 
1669 			seq_puts(s, "\t");
1670 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1671 				seq_printf(s, "offsets[%d]:%8u ", i,
1672 							fb->offsets[i]);
1673 			seq_puts(s, "\n");
1674 		}
1675 
1676 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1677 			state->src_x, state->src_y, state->src_w, state->src_h);
1678 
1679 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1680 			state->crtc_x, state->crtc_y, state->crtc_w,
1681 			state->crtc_h);
1682 		seq_printf(s, "\tsspp[0]:%s\n",
1683 			   pstate->pipe.sspp->cap->name);
1684 		seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n",
1685 			pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1686 		if (pstate->r_pipe.sspp) {
1687 			seq_printf(s, "\tsspp[1]:%s\n",
1688 				   pstate->r_pipe.sspp->cap->name);
1689 			seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n",
1690 				   pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index);
1691 		}
1692 
1693 		seq_puts(s, "\n");
1694 	}
1695 	if (dpu_crtc->vblank_cb_count) {
1696 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1697 		s64 diff_ms = ktime_to_ms(diff);
1698 		s64 fps = diff_ms ? div_s64(
1699 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1700 
1701 		seq_printf(s,
1702 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1703 				fps, dpu_crtc->vblank_cb_count,
1704 				ktime_to_ms(diff), dpu_crtc->play_count);
1705 
1706 		/* reset time & count for next measurement */
1707 		dpu_crtc->vblank_cb_count = 0;
1708 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1709 	}
1710 
1711 	drm_modeset_unlock_all(crtc->dev);
1712 
1713 	return 0;
1714 }
1715 
1716 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1717 
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1718 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1719 {
1720 	struct drm_crtc *crtc = s->private;
1721 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1722 
1723 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1724 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1725 	seq_printf(s, "core_clk_rate: %llu\n",
1726 			dpu_crtc->cur_perf.core_clk_rate);
1727 	seq_printf(s, "bw_ctl: %uk\n",
1728 		   (u32)DIV_ROUND_UP_ULL(dpu_crtc->cur_perf.bw_ctl, 1000));
1729 	seq_printf(s, "max_per_pipe_ib: %u\n",
1730 				dpu_crtc->cur_perf.max_per_pipe_ib);
1731 
1732 	return 0;
1733 }
1734 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1735 
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1736 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1737 {
1738 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1739 
1740 	debugfs_create_file("status", 0400,
1741 			crtc->debugfs_entry,
1742 			dpu_crtc, &_dpu_debugfs_status_fops);
1743 	debugfs_create_file("state", 0600,
1744 			crtc->debugfs_entry,
1745 			&dpu_crtc->base,
1746 			&dpu_crtc_debugfs_state_fops);
1747 
1748 	return 0;
1749 }
1750 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1751 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1752 {
1753 	return 0;
1754 }
1755 #endif /* CONFIG_DEBUG_FS */
1756 
dpu_crtc_late_register(struct drm_crtc * crtc)1757 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1758 {
1759 	return _dpu_crtc_init_debugfs(crtc);
1760 }
1761 
1762 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1763 	.set_config = drm_atomic_helper_set_config,
1764 	.page_flip = drm_atomic_helper_page_flip,
1765 	.reset = dpu_crtc_reset,
1766 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1767 	.atomic_destroy_state = dpu_crtc_destroy_state,
1768 	.atomic_print_state = dpu_crtc_atomic_print_state,
1769 	.late_register = dpu_crtc_late_register,
1770 	.verify_crc_source = dpu_crtc_verify_crc_source,
1771 	.set_crc_source = dpu_crtc_set_crc_source,
1772 	.enable_vblank  = msm_crtc_enable_vblank,
1773 	.disable_vblank = msm_crtc_disable_vblank,
1774 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1775 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1776 };
1777 
1778 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1779 	.atomic_disable = dpu_crtc_disable,
1780 	.atomic_enable = dpu_crtc_enable,
1781 	.atomic_check = dpu_crtc_atomic_check,
1782 	.atomic_begin = dpu_crtc_atomic_begin,
1783 	.atomic_flush = dpu_crtc_atomic_flush,
1784 	.mode_valid = dpu_crtc_mode_valid,
1785 	.get_scanout_position = dpu_crtc_get_scanout_position,
1786 };
1787 
1788 /**
1789  * dpu_crtc_init - create a new crtc object
1790  * @dev: dpu device
1791  * @plane: base plane
1792  * @cursor: cursor plane
1793  * @return: new crtc object or error
1794  *
1795  * initialize CRTC
1796  */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1797 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1798 				struct drm_plane *cursor)
1799 {
1800 	struct msm_drm_private *priv = dev->dev_private;
1801 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1802 	struct drm_crtc *crtc = NULL;
1803 	struct dpu_crtc *dpu_crtc;
1804 	int i, ret;
1805 
1806 	dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base,
1807 					       plane, cursor,
1808 					       &dpu_crtc_funcs,
1809 					       NULL);
1810 
1811 	if (IS_ERR(dpu_crtc))
1812 		return ERR_CAST(dpu_crtc);
1813 
1814 	crtc = &dpu_crtc->base;
1815 	crtc->dev = dev;
1816 
1817 	spin_lock_init(&dpu_crtc->spin_lock);
1818 	atomic_set(&dpu_crtc->frame_pending, 0);
1819 
1820 	init_completion(&dpu_crtc->frame_done_comp);
1821 
1822 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1823 
1824 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1825 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1826 		list_add(&dpu_crtc->frame_events[i].list,
1827 				&dpu_crtc->frame_event_list);
1828 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1829 				dpu_crtc_frame_event_work);
1830 	}
1831 
1832 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1833 
1834 	if (dpu_kms->catalog->dspp_count)
1835 		drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1836 
1837 	/* save user friendly CRTC name for later */
1838 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1839 
1840 	/* initialize event handling */
1841 	spin_lock_init(&dpu_crtc->event_lock);
1842 
1843 	ret = drm_self_refresh_helper_init(crtc);
1844 	if (ret) {
1845 		DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1846 			crtc->name, ret);
1847 		return ERR_PTR(ret);
1848 	}
1849 
1850 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1851 	return crtc;
1852 }
1853