xref: /linux/block/bfq-iosched.c (revision 2988dfed8a5dc752921a5790b81c06e781af51ce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/ktime.h>
121 #include <linux/rbtree.h>
122 #include <linux/ioprio.h>
123 #include <linux/sbitmap.h>
124 #include <linux/delay.h>
125 #include <linux/backing-dev.h>
126 
127 #include <trace/events/block.h>
128 
129 #include "elevator.h"
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-sched.h"
133 #include "bfq-iosched.h"
134 #include "blk-wbt.h"
135 
136 #define BFQ_BFQQ_FNS(name)						\
137 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
138 {									\
139 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
140 }									\
141 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
142 {									\
143 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
144 }									\
145 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
146 {									\
147 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
148 }
149 
150 BFQ_BFQQ_FNS(just_created);
151 BFQ_BFQQ_FNS(busy);
152 BFQ_BFQQ_FNS(wait_request);
153 BFQ_BFQQ_FNS(non_blocking_wait_rq);
154 BFQ_BFQQ_FNS(fifo_expire);
155 BFQ_BFQQ_FNS(has_short_ttime);
156 BFQ_BFQQ_FNS(sync);
157 BFQ_BFQQ_FNS(IO_bound);
158 BFQ_BFQQ_FNS(in_large_burst);
159 BFQ_BFQQ_FNS(coop);
160 BFQ_BFQQ_FNS(split_coop);
161 BFQ_BFQQ_FNS(softrt_update);
162 #undef BFQ_BFQQ_FNS						\
163 
164 /* Expiration time of async (0) and sync (1) requests, in ns. */
165 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166 
167 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168 static const int bfq_back_max = 16 * 1024;
169 
170 /* Penalty of a backwards seek, in number of sectors. */
171 static const int bfq_back_penalty = 2;
172 
173 /* Idling period duration, in ns. */
174 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175 
176 /* Minimum number of assigned budgets for which stats are safe to compute. */
177 static const int bfq_stats_min_budgets = 194;
178 
179 /* Default maximum budget values, in sectors and number of requests. */
180 static const int bfq_default_max_budget = 16 * 1024;
181 
182 /*
183  * When a sync request is dispatched, the queue that contains that
184  * request, and all the ancestor entities of that queue, are charged
185  * with the number of sectors of the request. In contrast, if the
186  * request is async, then the queue and its ancestor entities are
187  * charged with the number of sectors of the request, multiplied by
188  * the factor below. This throttles the bandwidth for async I/O,
189  * w.r.t. to sync I/O, and it is done to counter the tendency of async
190  * writes to steal I/O throughput to reads.
191  *
192  * The current value of this parameter is the result of a tuning with
193  * several hardware and software configurations. We tried to find the
194  * lowest value for which writes do not cause noticeable problems to
195  * reads. In fact, the lower this parameter, the stabler I/O control,
196  * in the following respect.  The lower this parameter is, the less
197  * the bandwidth enjoyed by a group decreases
198  * - when the group does writes, w.r.t. to when it does reads;
199  * - when other groups do reads, w.r.t. to when they do writes.
200  */
201 static const int bfq_async_charge_factor = 3;
202 
203 /* Default timeout values, in jiffies, approximating CFQ defaults. */
204 const int bfq_timeout = HZ / 8;
205 
206 /*
207  * Time limit for merging (see comments in bfq_setup_cooperator). Set
208  * to the slowest value that, in our tests, proved to be effective in
209  * removing false positives, while not causing true positives to miss
210  * queue merging.
211  *
212  * As can be deduced from the low time limit below, queue merging, if
213  * successful, happens at the very beginning of the I/O of the involved
214  * cooperating processes, as a consequence of the arrival of the very
215  * first requests from each cooperator.  After that, there is very
216  * little chance to find cooperators.
217  */
218 static const unsigned long bfq_merge_time_limit = HZ/10;
219 
220 static struct kmem_cache *bfq_pool;
221 
222 /* Below this threshold (in ns), we consider thinktime immediate. */
223 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
224 
225 /* hw_tag detection: parallel requests threshold and min samples needed. */
226 #define BFQ_HW_QUEUE_THRESHOLD	3
227 #define BFQ_HW_QUEUE_SAMPLES	32
228 
229 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
230 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
231 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 	(get_sdist(last_pos, rq) >			\
233 	 BFQQ_SEEK_THR &&				\
234 	 (!blk_queue_nonrot(bfqd->queue) ||		\
235 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
236 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
237 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
238 /*
239  * Sync random I/O is likely to be confused with soft real-time I/O,
240  * because it is characterized by limited throughput and apparently
241  * isochronous arrival pattern. To avoid false positives, queues
242  * containing only random (seeky) I/O are prevented from being tagged
243  * as soft real-time.
244  */
245 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
246 
247 /* Min number of samples required to perform peak-rate update */
248 #define BFQ_RATE_MIN_SAMPLES	32
249 /* Min observation time interval required to perform a peak-rate update (ns) */
250 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
251 /* Target observation time interval for a peak-rate update (ns) */
252 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
253 
254 /*
255  * Shift used for peak-rate fixed precision calculations.
256  * With
257  * - the current shift: 16 positions
258  * - the current type used to store rate: u32
259  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261  * the range of rates that can be stored is
262  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264  * [15, 65G] sectors/sec
265  * Which, assuming a sector size of 512B, corresponds to a range of
266  * [7.5K, 33T] B/sec
267  */
268 #define BFQ_RATE_SHIFT		16
269 
270 /*
271  * When configured for computing the duration of the weight-raising
272  * for interactive queues automatically (see the comments at the
273  * beginning of this file), BFQ does it using the following formula:
274  * duration = (ref_rate / r) * ref_wr_duration,
275  * where r is the peak rate of the device, and ref_rate and
276  * ref_wr_duration are two reference parameters.  In particular,
277  * ref_rate is the peak rate of the reference storage device (see
278  * below), and ref_wr_duration is about the maximum time needed, with
279  * BFQ and while reading two files in parallel, to load typical large
280  * applications on the reference device (see the comments on
281  * max_service_from_wr below, for more details on how ref_wr_duration
282  * is obtained).  In practice, the slower/faster the device at hand
283  * is, the more/less it takes to load applications with respect to the
284  * reference device.  Accordingly, the longer/shorter BFQ grants
285  * weight raising to interactive applications.
286  *
287  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288  * depending on whether the device is rotational or non-rotational.
289  *
290  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291  * are the reference values for a rotational device, whereas
292  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293  * non-rotational device. The reference rates are not the actual peak
294  * rates of the devices used as a reference, but slightly lower
295  * values. The reason for using slightly lower values is that the
296  * peak-rate estimator tends to yield slightly lower values than the
297  * actual peak rate (it can yield the actual peak rate only if there
298  * is only one process doing I/O, and the process does sequential
299  * I/O).
300  *
301  * The reference peak rates are measured in sectors/usec, left-shifted
302  * by BFQ_RATE_SHIFT.
303  */
304 static int ref_rate[2] = {14000, 33000};
305 /*
306  * To improve readability, a conversion function is used to initialize
307  * the following array, which entails that the array can be
308  * initialized only in a function.
309  */
310 static int ref_wr_duration[2];
311 
312 /*
313  * BFQ uses the above-detailed, time-based weight-raising mechanism to
314  * privilege interactive tasks. This mechanism is vulnerable to the
315  * following false positives: I/O-bound applications that will go on
316  * doing I/O for much longer than the duration of weight
317  * raising. These applications have basically no benefit from being
318  * weight-raised at the beginning of their I/O. On the opposite end,
319  * while being weight-raised, these applications
320  * a) unjustly steal throughput to applications that may actually need
321  * low latency;
322  * b) make BFQ uselessly perform device idling; device idling results
323  * in loss of device throughput with most flash-based storage, and may
324  * increase latencies when used purposelessly.
325  *
326  * BFQ tries to reduce these problems, by adopting the following
327  * countermeasure. To introduce this countermeasure, we need first to
328  * finish explaining how the duration of weight-raising for
329  * interactive tasks is computed.
330  *
331  * For a bfq_queue deemed as interactive, the duration of weight
332  * raising is dynamically adjusted, as a function of the estimated
333  * peak rate of the device, so as to be equal to the time needed to
334  * execute the 'largest' interactive task we benchmarked so far. By
335  * largest task, we mean the task for which each involved process has
336  * to do more I/O than for any of the other tasks we benchmarked. This
337  * reference interactive task is the start-up of LibreOffice Writer,
338  * and in this task each process/bfq_queue needs to have at most ~110K
339  * sectors transferred.
340  *
341  * This last piece of information enables BFQ to reduce the actual
342  * duration of weight-raising for at least one class of I/O-bound
343  * applications: those doing sequential or quasi-sequential I/O. An
344  * example is file copy. In fact, once started, the main I/O-bound
345  * processes of these applications usually consume the above 110K
346  * sectors in much less time than the processes of an application that
347  * is starting, because these I/O-bound processes will greedily devote
348  * almost all their CPU cycles only to their target,
349  * throughput-friendly I/O operations. This is even more true if BFQ
350  * happens to be underestimating the device peak rate, and thus
351  * overestimating the duration of weight raising. But, according to
352  * our measurements, once transferred 110K sectors, these processes
353  * have no right to be weight-raised any longer.
354  *
355  * Basing on the last consideration, BFQ ends weight-raising for a
356  * bfq_queue if the latter happens to have received an amount of
357  * service at least equal to the following constant. The constant is
358  * set to slightly more than 110K, to have a minimum safety margin.
359  *
360  * This early ending of weight-raising reduces the amount of time
361  * during which interactive false positives cause the two problems
362  * described at the beginning of these comments.
363  */
364 static const unsigned long max_service_from_wr = 120000;
365 
366 /*
367  * Maximum time between the creation of two queues, for stable merge
368  * to be activated (in ms)
369  */
370 static const unsigned long bfq_activation_stable_merging = 600;
371 /*
372  * Minimum time to be waited before evaluating delayed stable merge (in ms)
373  */
374 static const unsigned long bfq_late_stable_merging = 600;
375 
376 #define RQ_BIC(rq)		((struct bfq_io_cq *)((rq)->elv.priv[0]))
377 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
378 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync,unsigned int actuator_idx)379 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync,
380 			      unsigned int actuator_idx)
381 {
382 	if (is_sync)
383 		return bic->bfqq[1][actuator_idx];
384 
385 	return bic->bfqq[0][actuator_idx];
386 }
387 
388 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
389 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync,unsigned int actuator_idx)390 void bic_set_bfqq(struct bfq_io_cq *bic,
391 		  struct bfq_queue *bfqq,
392 		  bool is_sync,
393 		  unsigned int actuator_idx)
394 {
395 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync][actuator_idx];
396 
397 	/*
398 	 * If bfqq != NULL, then a non-stable queue merge between
399 	 * bic->bfqq and bfqq is happening here. This causes troubles
400 	 * in the following case: bic->bfqq has also been scheduled
401 	 * for a possible stable merge with bic->stable_merge_bfqq,
402 	 * and bic->stable_merge_bfqq == bfqq happens to
403 	 * hold. Troubles occur because bfqq may then undergo a split,
404 	 * thereby becoming eligible for a stable merge. Yet, if
405 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
406 	 * would be stably merged with itself. To avoid this anomaly,
407 	 * we cancel the stable merge if
408 	 * bic->stable_merge_bfqq == bfqq.
409 	 */
410 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[actuator_idx];
411 
412 	/* Clear bic pointer if bfqq is detached from this bic */
413 	if (old_bfqq && old_bfqq->bic == bic)
414 		old_bfqq->bic = NULL;
415 
416 	if (is_sync)
417 		bic->bfqq[1][actuator_idx] = bfqq;
418 	else
419 		bic->bfqq[0][actuator_idx] = bfqq;
420 
421 	if (bfqq && bfqq_data->stable_merge_bfqq == bfqq) {
422 		/*
423 		 * Actually, these same instructions are executed also
424 		 * in bfq_setup_cooperator, in case of abort or actual
425 		 * execution of a stable merge. We could avoid
426 		 * repeating these instructions there too, but if we
427 		 * did so, we would nest even more complexity in this
428 		 * function.
429 		 */
430 		bfq_put_stable_ref(bfqq_data->stable_merge_bfqq);
431 
432 		bfqq_data->stable_merge_bfqq = NULL;
433 	}
434 }
435 
bic_to_bfqd(struct bfq_io_cq * bic)436 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
437 {
438 	return bic->icq.q->elevator->elevator_data;
439 }
440 
441 /**
442  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
443  * @icq: the iocontext queue.
444  */
icq_to_bic(struct io_cq * icq)445 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
446 {
447 	/* bic->icq is the first member, %NULL will convert to %NULL */
448 	return container_of(icq, struct bfq_io_cq, icq);
449 }
450 
451 /**
452  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
453  * @q: the request queue.
454  */
bfq_bic_lookup(struct request_queue * q)455 static struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q)
456 {
457 	if (!current->io_context)
458 		return NULL;
459 
460 	return icq_to_bic(ioc_lookup_icq(q));
461 }
462 
463 /*
464  * Scheduler run of queue, if there are requests pending and no one in the
465  * driver that will restart queueing.
466  */
bfq_schedule_dispatch(struct bfq_data * bfqd)467 void bfq_schedule_dispatch(struct bfq_data *bfqd)
468 {
469 	lockdep_assert_held(&bfqd->lock);
470 
471 	if (bfqd->queued != 0) {
472 		bfq_log(bfqd, "schedule dispatch");
473 		blk_mq_run_hw_queues(bfqd->queue, true);
474 	}
475 }
476 
477 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
478 
479 #define bfq_sample_valid(samples)	((samples) > 80)
480 
481 /*
482  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
483  * We choose the request that is closer to the head right now.  Distance
484  * behind the head is penalized and only allowed to a certain extent.
485  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)486 static struct request *bfq_choose_req(struct bfq_data *bfqd,
487 				      struct request *rq1,
488 				      struct request *rq2,
489 				      sector_t last)
490 {
491 	sector_t s1, s2, d1 = 0, d2 = 0;
492 	unsigned long back_max;
493 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
494 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
495 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
496 
497 	if (!rq1 || rq1 == rq2)
498 		return rq2;
499 	if (!rq2)
500 		return rq1;
501 
502 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
503 		return rq1;
504 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
505 		return rq2;
506 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
507 		return rq1;
508 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
509 		return rq2;
510 
511 	s1 = blk_rq_pos(rq1);
512 	s2 = blk_rq_pos(rq2);
513 
514 	/*
515 	 * By definition, 1KiB is 2 sectors.
516 	 */
517 	back_max = bfqd->bfq_back_max * 2;
518 
519 	/*
520 	 * Strict one way elevator _except_ in the case where we allow
521 	 * short backward seeks which are biased as twice the cost of a
522 	 * similar forward seek.
523 	 */
524 	if (s1 >= last)
525 		d1 = s1 - last;
526 	else if (s1 + back_max >= last)
527 		d1 = (last - s1) * bfqd->bfq_back_penalty;
528 	else
529 		wrap |= BFQ_RQ1_WRAP;
530 
531 	if (s2 >= last)
532 		d2 = s2 - last;
533 	else if (s2 + back_max >= last)
534 		d2 = (last - s2) * bfqd->bfq_back_penalty;
535 	else
536 		wrap |= BFQ_RQ2_WRAP;
537 
538 	/* Found required data */
539 
540 	/*
541 	 * By doing switch() on the bit mask "wrap" we avoid having to
542 	 * check two variables for all permutations: --> faster!
543 	 */
544 	switch (wrap) {
545 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
546 		if (d1 < d2)
547 			return rq1;
548 		else if (d2 < d1)
549 			return rq2;
550 
551 		if (s1 >= s2)
552 			return rq1;
553 		else
554 			return rq2;
555 
556 	case BFQ_RQ2_WRAP:
557 		return rq1;
558 	case BFQ_RQ1_WRAP:
559 		return rq2;
560 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
561 	default:
562 		/*
563 		 * Since both rqs are wrapped,
564 		 * start with the one that's further behind head
565 		 * (--> only *one* back seek required),
566 		 * since back seek takes more time than forward.
567 		 */
568 		if (s1 <= s2)
569 			return rq1;
570 		else
571 			return rq2;
572 	}
573 }
574 
575 #define BFQ_LIMIT_INLINE_DEPTH 16
576 
577 #ifdef CONFIG_BFQ_GROUP_IOSCHED
bfqq_request_over_limit(struct bfq_data * bfqd,struct bfq_io_cq * bic,blk_opf_t opf,unsigned int act_idx,int limit)578 static bool bfqq_request_over_limit(struct bfq_data *bfqd,
579 				    struct bfq_io_cq *bic, blk_opf_t opf,
580 				    unsigned int act_idx, int limit)
581 {
582 	struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH];
583 	struct bfq_entity **entities = inline_entities;
584 	int alloc_depth = BFQ_LIMIT_INLINE_DEPTH;
585 	struct bfq_sched_data *sched_data;
586 	struct bfq_entity *entity;
587 	struct bfq_queue *bfqq;
588 	unsigned long wsum;
589 	bool ret = false;
590 	int depth;
591 	int level;
592 
593 retry:
594 	spin_lock_irq(&bfqd->lock);
595 	bfqq = bic_to_bfqq(bic, op_is_sync(opf), act_idx);
596 	if (!bfqq)
597 		goto out;
598 
599 	entity = &bfqq->entity;
600 	if (!entity->on_st_or_in_serv)
601 		goto out;
602 
603 	/* +1 for bfqq entity, root cgroup not included */
604 	depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1;
605 	if (depth > alloc_depth) {
606 		spin_unlock_irq(&bfqd->lock);
607 		if (entities != inline_entities)
608 			kfree(entities);
609 		entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO);
610 		if (!entities)
611 			return false;
612 		alloc_depth = depth;
613 		goto retry;
614 	}
615 
616 	sched_data = entity->sched_data;
617 	/* Gather our ancestors as we need to traverse them in reverse order */
618 	level = 0;
619 	for_each_entity(entity) {
620 		/*
621 		 * If at some level entity is not even active, allow request
622 		 * queueing so that BFQ knows there's work to do and activate
623 		 * entities.
624 		 */
625 		if (!entity->on_st_or_in_serv)
626 			goto out;
627 		/* Uh, more parents than cgroup subsystem thinks? */
628 		if (WARN_ON_ONCE(level >= depth))
629 			break;
630 		entities[level++] = entity;
631 	}
632 	WARN_ON_ONCE(level != depth);
633 	for (level--; level >= 0; level--) {
634 		entity = entities[level];
635 		if (level > 0) {
636 			wsum = bfq_entity_service_tree(entity)->wsum;
637 		} else {
638 			int i;
639 			/*
640 			 * For bfqq itself we take into account service trees
641 			 * of all higher priority classes and multiply their
642 			 * weights so that low prio queue from higher class
643 			 * gets more requests than high prio queue from lower
644 			 * class.
645 			 */
646 			wsum = 0;
647 			for (i = 0; i <= bfqq->ioprio_class - 1; i++) {
648 				wsum = wsum * IOPRIO_BE_NR +
649 					sched_data->service_tree[i].wsum;
650 			}
651 		}
652 		if (!wsum)
653 			continue;
654 		limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum);
655 		if (entity->allocated >= limit) {
656 			bfq_log_bfqq(bfqq->bfqd, bfqq,
657 				"too many requests: allocated %d limit %d level %d",
658 				entity->allocated, limit, level);
659 			ret = true;
660 			break;
661 		}
662 	}
663 out:
664 	spin_unlock_irq(&bfqd->lock);
665 	if (entities != inline_entities)
666 		kfree(entities);
667 	return ret;
668 }
669 #else
bfqq_request_over_limit(struct bfq_data * bfqd,struct bfq_io_cq * bic,blk_opf_t opf,unsigned int act_idx,int limit)670 static bool bfqq_request_over_limit(struct bfq_data *bfqd,
671 				    struct bfq_io_cq *bic, blk_opf_t opf,
672 				    unsigned int act_idx, int limit)
673 {
674 	return false;
675 }
676 #endif
677 
678 /*
679  * Async I/O can easily starve sync I/O (both sync reads and sync
680  * writes), by consuming all tags. Similarly, storms of sync writes,
681  * such as those that sync(2) may trigger, can starve sync reads.
682  * Limit depths of async I/O and sync writes so as to counter both
683  * problems.
684  *
685  * Also if a bfq queue or its parent cgroup consume more tags than would be
686  * appropriate for their weight, we trim the available tag depth to 1. This
687  * avoids a situation where one cgroup can starve another cgroup from tags and
688  * thus block service differentiation among cgroups. Note that because the
689  * queue / cgroup already has many requests allocated and queued, this does not
690  * significantly affect service guarantees coming from the BFQ scheduling
691  * algorithm.
692  */
bfq_limit_depth(blk_opf_t opf,struct blk_mq_alloc_data * data)693 static void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
694 {
695 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
696 	struct bfq_io_cq *bic = bfq_bic_lookup(data->q);
697 	unsigned int limit, act_idx;
698 
699 	/* Sync reads have full depth available */
700 	if (op_is_sync(opf) && !op_is_write(opf))
701 		limit = data->q->nr_requests;
702 	else
703 		limit = bfqd->async_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)];
704 
705 	for (act_idx = 0; bic && act_idx < bfqd->num_actuators; act_idx++) {
706 		/* Fast path to check if bfqq is already allocated. */
707 		if (!bic_to_bfqq(bic, op_is_sync(opf), act_idx))
708 			continue;
709 
710 		/*
711 		 * Does queue (or any parent entity) exceed number of
712 		 * requests that should be available to it? Heavily
713 		 * limit depth so that it cannot consume more
714 		 * available requests and thus starve other entities.
715 		 */
716 		if (bfqq_request_over_limit(bfqd, bic, opf, act_idx, limit)) {
717 			limit = 1;
718 			break;
719 		}
720 	}
721 
722 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
723 		__func__, bfqd->wr_busy_queues, op_is_sync(opf), limit);
724 
725 	if (limit < data->q->nr_requests)
726 		data->shallow_depth = limit;
727 }
728 
729 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)730 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
731 		     sector_t sector, struct rb_node **ret_parent,
732 		     struct rb_node ***rb_link)
733 {
734 	struct rb_node **p, *parent;
735 	struct bfq_queue *bfqq = NULL;
736 
737 	parent = NULL;
738 	p = &root->rb_node;
739 	while (*p) {
740 		struct rb_node **n;
741 
742 		parent = *p;
743 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
744 
745 		/*
746 		 * Sort strictly based on sector. Smallest to the left,
747 		 * largest to the right.
748 		 */
749 		if (sector > blk_rq_pos(bfqq->next_rq))
750 			n = &(*p)->rb_right;
751 		else if (sector < blk_rq_pos(bfqq->next_rq))
752 			n = &(*p)->rb_left;
753 		else
754 			break;
755 		p = n;
756 		bfqq = NULL;
757 	}
758 
759 	*ret_parent = parent;
760 	if (rb_link)
761 		*rb_link = p;
762 
763 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
764 		(unsigned long long)sector,
765 		bfqq ? bfqq->pid : 0);
766 
767 	return bfqq;
768 }
769 
bfq_too_late_for_merging(struct bfq_queue * bfqq)770 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
771 {
772 	return bfqq->service_from_backlogged > 0 &&
773 		time_is_before_jiffies(bfqq->first_IO_time +
774 				       bfq_merge_time_limit);
775 }
776 
777 /*
778  * The following function is not marked as __cold because it is
779  * actually cold, but for the same performance goal described in the
780  * comments on the likely() at the beginning of
781  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
782  * execution time for the case where this function is not invoked, we
783  * had to add an unlikely() in each involved if().
784  */
785 void __cold
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)786 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
787 {
788 	struct rb_node **p, *parent;
789 	struct bfq_queue *__bfqq;
790 
791 	if (bfqq->pos_root) {
792 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
793 		bfqq->pos_root = NULL;
794 	}
795 
796 	/* oom_bfqq does not participate in queue merging */
797 	if (bfqq == &bfqd->oom_bfqq)
798 		return;
799 
800 	/*
801 	 * bfqq cannot be merged any longer (see comments in
802 	 * bfq_setup_cooperator): no point in adding bfqq into the
803 	 * position tree.
804 	 */
805 	if (bfq_too_late_for_merging(bfqq))
806 		return;
807 
808 	if (bfq_class_idle(bfqq))
809 		return;
810 	if (!bfqq->next_rq)
811 		return;
812 
813 	bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree;
814 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
815 			blk_rq_pos(bfqq->next_rq), &parent, &p);
816 	if (!__bfqq) {
817 		rb_link_node(&bfqq->pos_node, parent, p);
818 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
819 	} else
820 		bfqq->pos_root = NULL;
821 }
822 
823 /*
824  * The following function returns false either if every active queue
825  * must receive the same share of the throughput (symmetric scenario),
826  * or, as a special case, if bfqq must receive a share of the
827  * throughput lower than or equal to the share that every other active
828  * queue must receive.  If bfqq does sync I/O, then these are the only
829  * two cases where bfqq happens to be guaranteed its share of the
830  * throughput even if I/O dispatching is not plugged when bfqq remains
831  * temporarily empty (for more details, see the comments in the
832  * function bfq_better_to_idle()). For this reason, the return value
833  * of this function is used to check whether I/O-dispatch plugging can
834  * be avoided.
835  *
836  * The above first case (symmetric scenario) occurs when:
837  * 1) all active queues have the same weight,
838  * 2) all active queues belong to the same I/O-priority class,
839  * 3) all active groups at the same level in the groups tree have the same
840  *    weight,
841  * 4) all active groups at the same level in the groups tree have the same
842  *    number of children.
843  *
844  * Unfortunately, keeping the necessary state for evaluating exactly
845  * the last two symmetry sub-conditions above would be quite complex
846  * and time consuming. Therefore this function evaluates, instead,
847  * only the following stronger three sub-conditions, for which it is
848  * much easier to maintain the needed state:
849  * 1) all active queues have the same weight,
850  * 2) all active queues belong to the same I/O-priority class,
851  * 3) there is at most one active group.
852  * In particular, the last condition is always true if hierarchical
853  * support or the cgroups interface are not enabled, thus no state
854  * needs to be maintained in this case.
855  */
bfq_asymmetric_scenario(struct bfq_data * bfqd,struct bfq_queue * bfqq)856 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
857 				   struct bfq_queue *bfqq)
858 {
859 	bool smallest_weight = bfqq &&
860 		bfqq->weight_counter &&
861 		bfqq->weight_counter ==
862 		container_of(
863 			rb_first_cached(&bfqd->queue_weights_tree),
864 			struct bfq_weight_counter,
865 			weights_node);
866 
867 	/*
868 	 * For queue weights to differ, queue_weights_tree must contain
869 	 * at least two nodes.
870 	 */
871 	bool varied_queue_weights = !smallest_weight &&
872 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
873 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
874 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
875 
876 	bool multiple_classes_busy =
877 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
878 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
879 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
880 
881 	return varied_queue_weights || multiple_classes_busy
882 #ifdef CONFIG_BFQ_GROUP_IOSCHED
883 	       || bfqd->num_groups_with_pending_reqs > 1
884 #endif
885 		;
886 }
887 
888 /*
889  * If the weight-counter tree passed as input contains no counter for
890  * the weight of the input queue, then add that counter; otherwise just
891  * increment the existing counter.
892  *
893  * Note that weight-counter trees contain few nodes in mostly symmetric
894  * scenarios. For example, if all queues have the same weight, then the
895  * weight-counter tree for the queues may contain at most one node.
896  * This holds even if low_latency is on, because weight-raised queues
897  * are not inserted in the tree.
898  * In most scenarios, the rate at which nodes are created/destroyed
899  * should be low too.
900  */
bfq_weights_tree_add(struct bfq_queue * bfqq)901 void bfq_weights_tree_add(struct bfq_queue *bfqq)
902 {
903 	struct rb_root_cached *root = &bfqq->bfqd->queue_weights_tree;
904 	struct bfq_entity *entity = &bfqq->entity;
905 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
906 	bool leftmost = true;
907 
908 	/*
909 	 * Do not insert if the queue is already associated with a
910 	 * counter, which happens if:
911 	 *   1) a request arrival has caused the queue to become both
912 	 *      non-weight-raised, and hence change its weight, and
913 	 *      backlogged; in this respect, each of the two events
914 	 *      causes an invocation of this function,
915 	 *   2) this is the invocation of this function caused by the
916 	 *      second event. This second invocation is actually useless,
917 	 *      and we handle this fact by exiting immediately. More
918 	 *      efficient or clearer solutions might possibly be adopted.
919 	 */
920 	if (bfqq->weight_counter)
921 		return;
922 
923 	while (*new) {
924 		struct bfq_weight_counter *__counter = container_of(*new,
925 						struct bfq_weight_counter,
926 						weights_node);
927 		parent = *new;
928 
929 		if (entity->weight == __counter->weight) {
930 			bfqq->weight_counter = __counter;
931 			goto inc_counter;
932 		}
933 		if (entity->weight < __counter->weight)
934 			new = &((*new)->rb_left);
935 		else {
936 			new = &((*new)->rb_right);
937 			leftmost = false;
938 		}
939 	}
940 
941 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
942 				       GFP_ATOMIC);
943 
944 	/*
945 	 * In the unlucky event of an allocation failure, we just
946 	 * exit. This will cause the weight of queue to not be
947 	 * considered in bfq_asymmetric_scenario, which, in its turn,
948 	 * causes the scenario to be deemed wrongly symmetric in case
949 	 * bfqq's weight would have been the only weight making the
950 	 * scenario asymmetric.  On the bright side, no unbalance will
951 	 * however occur when bfqq becomes inactive again (the
952 	 * invocation of this function is triggered by an activation
953 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
954 	 * if !bfqq->weight_counter.
955 	 */
956 	if (unlikely(!bfqq->weight_counter))
957 		return;
958 
959 	bfqq->weight_counter->weight = entity->weight;
960 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
961 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
962 				leftmost);
963 
964 inc_counter:
965 	bfqq->weight_counter->num_active++;
966 	bfqq->ref++;
967 }
968 
969 /*
970  * Decrement the weight counter associated with the queue, and, if the
971  * counter reaches 0, remove the counter from the tree.
972  * See the comments to the function bfq_weights_tree_add() for considerations
973  * about overhead.
974  */
bfq_weights_tree_remove(struct bfq_queue * bfqq)975 void bfq_weights_tree_remove(struct bfq_queue *bfqq)
976 {
977 	struct rb_root_cached *root;
978 
979 	if (!bfqq->weight_counter)
980 		return;
981 
982 	root = &bfqq->bfqd->queue_weights_tree;
983 	bfqq->weight_counter->num_active--;
984 	if (bfqq->weight_counter->num_active > 0)
985 		goto reset_entity_pointer;
986 
987 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
988 	kfree(bfqq->weight_counter);
989 
990 reset_entity_pointer:
991 	bfqq->weight_counter = NULL;
992 	bfq_put_queue(bfqq);
993 }
994 
995 /*
996  * Return expired entry, or NULL to just start from scratch in rbtree.
997  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)998 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
999 				      struct request *last)
1000 {
1001 	struct request *rq;
1002 
1003 	if (bfq_bfqq_fifo_expire(bfqq))
1004 		return NULL;
1005 
1006 	bfq_mark_bfqq_fifo_expire(bfqq);
1007 
1008 	rq = rq_entry_fifo(bfqq->fifo.next);
1009 
1010 	if (rq == last || blk_time_get_ns() < rq->fifo_time)
1011 		return NULL;
1012 
1013 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
1014 	return rq;
1015 }
1016 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)1017 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
1018 					struct bfq_queue *bfqq,
1019 					struct request *last)
1020 {
1021 	struct rb_node *rbnext = rb_next(&last->rb_node);
1022 	struct rb_node *rbprev = rb_prev(&last->rb_node);
1023 	struct request *next, *prev = NULL;
1024 
1025 	/* Follow expired path, else get first next available. */
1026 	next = bfq_check_fifo(bfqq, last);
1027 	if (next)
1028 		return next;
1029 
1030 	if (rbprev)
1031 		prev = rb_entry_rq(rbprev);
1032 
1033 	if (rbnext)
1034 		next = rb_entry_rq(rbnext);
1035 	else {
1036 		rbnext = rb_first(&bfqq->sort_list);
1037 		if (rbnext && rbnext != &last->rb_node)
1038 			next = rb_entry_rq(rbnext);
1039 	}
1040 
1041 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
1042 }
1043 
1044 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)1045 static unsigned long bfq_serv_to_charge(struct request *rq,
1046 					struct bfq_queue *bfqq)
1047 {
1048 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
1049 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
1050 		return blk_rq_sectors(rq);
1051 
1052 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
1053 }
1054 
1055 /**
1056  * bfq_updated_next_req - update the queue after a new next_rq selection.
1057  * @bfqd: the device data the queue belongs to.
1058  * @bfqq: the queue to update.
1059  *
1060  * If the first request of a queue changes we make sure that the queue
1061  * has enough budget to serve at least its first request (if the
1062  * request has grown).  We do this because if the queue has not enough
1063  * budget for its first request, it has to go through two dispatch
1064  * rounds to actually get it dispatched.
1065  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)1066 static void bfq_updated_next_req(struct bfq_data *bfqd,
1067 				 struct bfq_queue *bfqq)
1068 {
1069 	struct bfq_entity *entity = &bfqq->entity;
1070 	struct request *next_rq = bfqq->next_rq;
1071 	unsigned long new_budget;
1072 
1073 	if (!next_rq)
1074 		return;
1075 
1076 	if (bfqq == bfqd->in_service_queue)
1077 		/*
1078 		 * In order not to break guarantees, budgets cannot be
1079 		 * changed after an entity has been selected.
1080 		 */
1081 		return;
1082 
1083 	new_budget = max_t(unsigned long,
1084 			   max_t(unsigned long, bfqq->max_budget,
1085 				 bfq_serv_to_charge(next_rq, bfqq)),
1086 			   entity->service);
1087 	if (entity->budget != new_budget) {
1088 		entity->budget = new_budget;
1089 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1090 					 new_budget);
1091 		bfq_requeue_bfqq(bfqd, bfqq, false);
1092 	}
1093 }
1094 
bfq_wr_duration(struct bfq_data * bfqd)1095 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1096 {
1097 	u64 dur;
1098 
1099 	dur = bfqd->rate_dur_prod;
1100 	do_div(dur, bfqd->peak_rate);
1101 
1102 	/*
1103 	 * Limit duration between 3 and 25 seconds. The upper limit
1104 	 * has been conservatively set after the following worst case:
1105 	 * on a QEMU/KVM virtual machine
1106 	 * - running in a slow PC
1107 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1108 	 * - serving a heavy I/O workload, such as the sequential reading
1109 	 *   of several files
1110 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1111 	 *
1112 	 * As for higher values than that accommodating the above bad
1113 	 * scenario, tests show that higher values would often yield
1114 	 * the opposite of the desired result, i.e., would worsen
1115 	 * responsiveness by allowing non-interactive applications to
1116 	 * preserve weight raising for too long.
1117 	 *
1118 	 * On the other end, lower values than 3 seconds make it
1119 	 * difficult for most interactive tasks to complete their jobs
1120 	 * before weight-raising finishes.
1121 	 */
1122 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1123 }
1124 
1125 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)1126 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1127 					  struct bfq_data *bfqd)
1128 {
1129 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1130 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1131 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1132 }
1133 
1134 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)1135 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1136 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1137 {
1138 	unsigned int old_wr_coeff = 1;
1139 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1140 	unsigned int a_idx = bfqq->actuator_idx;
1141 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
1142 
1143 	if (bfqq_data->saved_has_short_ttime)
1144 		bfq_mark_bfqq_has_short_ttime(bfqq);
1145 	else
1146 		bfq_clear_bfqq_has_short_ttime(bfqq);
1147 
1148 	if (bfqq_data->saved_IO_bound)
1149 		bfq_mark_bfqq_IO_bound(bfqq);
1150 	else
1151 		bfq_clear_bfqq_IO_bound(bfqq);
1152 
1153 	bfqq->last_serv_time_ns = bfqq_data->saved_last_serv_time_ns;
1154 	bfqq->inject_limit = bfqq_data->saved_inject_limit;
1155 	bfqq->decrease_time_jif = bfqq_data->saved_decrease_time_jif;
1156 
1157 	bfqq->entity.new_weight = bfqq_data->saved_weight;
1158 	bfqq->ttime = bfqq_data->saved_ttime;
1159 	bfqq->io_start_time = bfqq_data->saved_io_start_time;
1160 	bfqq->tot_idle_time = bfqq_data->saved_tot_idle_time;
1161 	/*
1162 	 * Restore weight coefficient only if low_latency is on
1163 	 */
1164 	if (bfqd->low_latency) {
1165 		old_wr_coeff = bfqq->wr_coeff;
1166 		bfqq->wr_coeff = bfqq_data->saved_wr_coeff;
1167 	}
1168 	bfqq->service_from_wr = bfqq_data->saved_service_from_wr;
1169 	bfqq->wr_start_at_switch_to_srt =
1170 		bfqq_data->saved_wr_start_at_switch_to_srt;
1171 	bfqq->last_wr_start_finish = bfqq_data->saved_last_wr_start_finish;
1172 	bfqq->wr_cur_max_time = bfqq_data->saved_wr_cur_max_time;
1173 
1174 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1175 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1176 				   bfqq->wr_cur_max_time))) {
1177 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1178 		    !bfq_bfqq_in_large_burst(bfqq) &&
1179 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1180 					     bfq_wr_duration(bfqd))) {
1181 			switch_back_to_interactive_wr(bfqq, bfqd);
1182 		} else {
1183 			bfqq->wr_coeff = 1;
1184 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1185 				     "resume state: switching off wr");
1186 		}
1187 	}
1188 
1189 	/* make sure weight will be updated, however we got here */
1190 	bfqq->entity.prio_changed = 1;
1191 
1192 	if (likely(!busy))
1193 		return;
1194 
1195 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1196 		bfqd->wr_busy_queues++;
1197 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1198 		bfqd->wr_busy_queues--;
1199 }
1200 
bfqq_process_refs(struct bfq_queue * bfqq)1201 static int bfqq_process_refs(struct bfq_queue *bfqq)
1202 {
1203 	return bfqq->ref - bfqq->entity.allocated -
1204 		bfqq->entity.on_st_or_in_serv -
1205 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1206 }
1207 
1208 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1209 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1210 {
1211 	struct bfq_queue *item;
1212 	struct hlist_node *n;
1213 
1214 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1215 		hlist_del_init(&item->burst_list_node);
1216 
1217 	/*
1218 	 * Start the creation of a new burst list only if there is no
1219 	 * active queue. See comments on the conditional invocation of
1220 	 * bfq_handle_burst().
1221 	 */
1222 	if (bfq_tot_busy_queues(bfqd) == 0) {
1223 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1224 		bfqd->burst_size = 1;
1225 	} else
1226 		bfqd->burst_size = 0;
1227 
1228 	bfqd->burst_parent_entity = bfqq->entity.parent;
1229 }
1230 
1231 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1232 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1233 {
1234 	/* Increment burst size to take into account also bfqq */
1235 	bfqd->burst_size++;
1236 
1237 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1238 		struct bfq_queue *pos, *bfqq_item;
1239 		struct hlist_node *n;
1240 
1241 		/*
1242 		 * Enough queues have been activated shortly after each
1243 		 * other to consider this burst as large.
1244 		 */
1245 		bfqd->large_burst = true;
1246 
1247 		/*
1248 		 * We can now mark all queues in the burst list as
1249 		 * belonging to a large burst.
1250 		 */
1251 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1252 				     burst_list_node)
1253 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1254 		bfq_mark_bfqq_in_large_burst(bfqq);
1255 
1256 		/*
1257 		 * From now on, and until the current burst finishes, any
1258 		 * new queue being activated shortly after the last queue
1259 		 * was inserted in the burst can be immediately marked as
1260 		 * belonging to a large burst. So the burst list is not
1261 		 * needed any more. Remove it.
1262 		 */
1263 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1264 					  burst_list_node)
1265 			hlist_del_init(&pos->burst_list_node);
1266 	} else /*
1267 		* Burst not yet large: add bfqq to the burst list. Do
1268 		* not increment the ref counter for bfqq, because bfqq
1269 		* is removed from the burst list before freeing bfqq
1270 		* in put_queue.
1271 		*/
1272 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1273 }
1274 
1275 /*
1276  * If many queues belonging to the same group happen to be created
1277  * shortly after each other, then the processes associated with these
1278  * queues have typically a common goal. In particular, bursts of queue
1279  * creations are usually caused by services or applications that spawn
1280  * many parallel threads/processes. Examples are systemd during boot,
1281  * or git grep. To help these processes get their job done as soon as
1282  * possible, it is usually better to not grant either weight-raising
1283  * or device idling to their queues, unless these queues must be
1284  * protected from the I/O flowing through other active queues.
1285  *
1286  * In this comment we describe, firstly, the reasons why this fact
1287  * holds, and, secondly, the next function, which implements the main
1288  * steps needed to properly mark these queues so that they can then be
1289  * treated in a different way.
1290  *
1291  * The above services or applications benefit mostly from a high
1292  * throughput: the quicker the requests of the activated queues are
1293  * cumulatively served, the sooner the target job of these queues gets
1294  * completed. As a consequence, weight-raising any of these queues,
1295  * which also implies idling the device for it, is almost always
1296  * counterproductive, unless there are other active queues to isolate
1297  * these new queues from. If there no other active queues, then
1298  * weight-raising these new queues just lowers throughput in most
1299  * cases.
1300  *
1301  * On the other hand, a burst of queue creations may be caused also by
1302  * the start of an application that does not consist of a lot of
1303  * parallel I/O-bound threads. In fact, with a complex application,
1304  * several short processes may need to be executed to start-up the
1305  * application. In this respect, to start an application as quickly as
1306  * possible, the best thing to do is in any case to privilege the I/O
1307  * related to the application with respect to all other
1308  * I/O. Therefore, the best strategy to start as quickly as possible
1309  * an application that causes a burst of queue creations is to
1310  * weight-raise all the queues created during the burst. This is the
1311  * exact opposite of the best strategy for the other type of bursts.
1312  *
1313  * In the end, to take the best action for each of the two cases, the
1314  * two types of bursts need to be distinguished. Fortunately, this
1315  * seems relatively easy, by looking at the sizes of the bursts. In
1316  * particular, we found a threshold such that only bursts with a
1317  * larger size than that threshold are apparently caused by
1318  * services or commands such as systemd or git grep. For brevity,
1319  * hereafter we call just 'large' these bursts. BFQ *does not*
1320  * weight-raise queues whose creation occurs in a large burst. In
1321  * addition, for each of these queues BFQ performs or does not perform
1322  * idling depending on which choice boosts the throughput more. The
1323  * exact choice depends on the device and request pattern at
1324  * hand.
1325  *
1326  * Unfortunately, false positives may occur while an interactive task
1327  * is starting (e.g., an application is being started). The
1328  * consequence is that the queues associated with the task do not
1329  * enjoy weight raising as expected. Fortunately these false positives
1330  * are very rare. They typically occur if some service happens to
1331  * start doing I/O exactly when the interactive task starts.
1332  *
1333  * Turning back to the next function, it is invoked only if there are
1334  * no active queues (apart from active queues that would belong to the
1335  * same, possible burst bfqq would belong to), and it implements all
1336  * the steps needed to detect the occurrence of a large burst and to
1337  * properly mark all the queues belonging to it (so that they can then
1338  * be treated in a different way). This goal is achieved by
1339  * maintaining a "burst list" that holds, temporarily, the queues that
1340  * belong to the burst in progress. The list is then used to mark
1341  * these queues as belonging to a large burst if the burst does become
1342  * large. The main steps are the following.
1343  *
1344  * . when the very first queue is created, the queue is inserted into the
1345  *   list (as it could be the first queue in a possible burst)
1346  *
1347  * . if the current burst has not yet become large, and a queue Q that does
1348  *   not yet belong to the burst is activated shortly after the last time
1349  *   at which a new queue entered the burst list, then the function appends
1350  *   Q to the burst list
1351  *
1352  * . if, as a consequence of the previous step, the burst size reaches
1353  *   the large-burst threshold, then
1354  *
1355  *     . all the queues in the burst list are marked as belonging to a
1356  *       large burst
1357  *
1358  *     . the burst list is deleted; in fact, the burst list already served
1359  *       its purpose (keeping temporarily track of the queues in a burst,
1360  *       so as to be able to mark them as belonging to a large burst in the
1361  *       previous sub-step), and now is not needed any more
1362  *
1363  *     . the device enters a large-burst mode
1364  *
1365  * . if a queue Q that does not belong to the burst is created while
1366  *   the device is in large-burst mode and shortly after the last time
1367  *   at which a queue either entered the burst list or was marked as
1368  *   belonging to the current large burst, then Q is immediately marked
1369  *   as belonging to a large burst.
1370  *
1371  * . if a queue Q that does not belong to the burst is created a while
1372  *   later, i.e., not shortly after, than the last time at which a queue
1373  *   either entered the burst list or was marked as belonging to the
1374  *   current large burst, then the current burst is deemed as finished and:
1375  *
1376  *        . the large-burst mode is reset if set
1377  *
1378  *        . the burst list is emptied
1379  *
1380  *        . Q is inserted in the burst list, as Q may be the first queue
1381  *          in a possible new burst (then the burst list contains just Q
1382  *          after this step).
1383  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1384 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1385 {
1386 	/*
1387 	 * If bfqq is already in the burst list or is part of a large
1388 	 * burst, or finally has just been split, then there is
1389 	 * nothing else to do.
1390 	 */
1391 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1392 	    bfq_bfqq_in_large_burst(bfqq) ||
1393 	    time_is_after_eq_jiffies(bfqq->split_time +
1394 				     msecs_to_jiffies(10)))
1395 		return;
1396 
1397 	/*
1398 	 * If bfqq's creation happens late enough, or bfqq belongs to
1399 	 * a different group than the burst group, then the current
1400 	 * burst is finished, and related data structures must be
1401 	 * reset.
1402 	 *
1403 	 * In this respect, consider the special case where bfqq is
1404 	 * the very first queue created after BFQ is selected for this
1405 	 * device. In this case, last_ins_in_burst and
1406 	 * burst_parent_entity are not yet significant when we get
1407 	 * here. But it is easy to verify that, whether or not the
1408 	 * following condition is true, bfqq will end up being
1409 	 * inserted into the burst list. In particular the list will
1410 	 * happen to contain only bfqq. And this is exactly what has
1411 	 * to happen, as bfqq may be the first queue of the first
1412 	 * burst.
1413 	 */
1414 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1415 	    bfqd->bfq_burst_interval) ||
1416 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1417 		bfqd->large_burst = false;
1418 		bfq_reset_burst_list(bfqd, bfqq);
1419 		goto end;
1420 	}
1421 
1422 	/*
1423 	 * If we get here, then bfqq is being activated shortly after the
1424 	 * last queue. So, if the current burst is also large, we can mark
1425 	 * bfqq as belonging to this large burst immediately.
1426 	 */
1427 	if (bfqd->large_burst) {
1428 		bfq_mark_bfqq_in_large_burst(bfqq);
1429 		goto end;
1430 	}
1431 
1432 	/*
1433 	 * If we get here, then a large-burst state has not yet been
1434 	 * reached, but bfqq is being activated shortly after the last
1435 	 * queue. Then we add bfqq to the burst.
1436 	 */
1437 	bfq_add_to_burst(bfqd, bfqq);
1438 end:
1439 	/*
1440 	 * At this point, bfqq either has been added to the current
1441 	 * burst or has caused the current burst to terminate and a
1442 	 * possible new burst to start. In particular, in the second
1443 	 * case, bfqq has become the first queue in the possible new
1444 	 * burst.  In both cases last_ins_in_burst needs to be moved
1445 	 * forward.
1446 	 */
1447 	bfqd->last_ins_in_burst = jiffies;
1448 }
1449 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1450 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1451 {
1452 	struct bfq_entity *entity = &bfqq->entity;
1453 
1454 	return entity->budget - entity->service;
1455 }
1456 
1457 /*
1458  * If enough samples have been computed, return the current max budget
1459  * stored in bfqd, which is dynamically updated according to the
1460  * estimated disk peak rate; otherwise return the default max budget
1461  */
bfq_max_budget(struct bfq_data * bfqd)1462 static int bfq_max_budget(struct bfq_data *bfqd)
1463 {
1464 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1465 		return bfq_default_max_budget;
1466 	else
1467 		return bfqd->bfq_max_budget;
1468 }
1469 
1470 /*
1471  * Return min budget, which is a fraction of the current or default
1472  * max budget (trying with 1/32)
1473  */
bfq_min_budget(struct bfq_data * bfqd)1474 static int bfq_min_budget(struct bfq_data *bfqd)
1475 {
1476 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1477 		return bfq_default_max_budget / 32;
1478 	else
1479 		return bfqd->bfq_max_budget / 32;
1480 }
1481 
1482 /*
1483  * The next function, invoked after the input queue bfqq switches from
1484  * idle to busy, updates the budget of bfqq. The function also tells
1485  * whether the in-service queue should be expired, by returning
1486  * true. The purpose of expiring the in-service queue is to give bfqq
1487  * the chance to possibly preempt the in-service queue, and the reason
1488  * for preempting the in-service queue is to achieve one of the two
1489  * goals below.
1490  *
1491  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1492  * expired because it has remained idle. In particular, bfqq may have
1493  * expired for one of the following two reasons:
1494  *
1495  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1496  *   and did not make it to issue a new request before its last
1497  *   request was served;
1498  *
1499  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1500  *   a new request before the expiration of the idling-time.
1501  *
1502  * Even if bfqq has expired for one of the above reasons, the process
1503  * associated with the queue may be however issuing requests greedily,
1504  * and thus be sensitive to the bandwidth it receives (bfqq may have
1505  * remained idle for other reasons: CPU high load, bfqq not enjoying
1506  * idling, I/O throttling somewhere in the path from the process to
1507  * the I/O scheduler, ...). But if, after every expiration for one of
1508  * the above two reasons, bfqq has to wait for the service of at least
1509  * one full budget of another queue before being served again, then
1510  * bfqq is likely to get a much lower bandwidth or resource time than
1511  * its reserved ones. To address this issue, two countermeasures need
1512  * to be taken.
1513  *
1514  * First, the budget and the timestamps of bfqq need to be updated in
1515  * a special way on bfqq reactivation: they need to be updated as if
1516  * bfqq did not remain idle and did not expire. In fact, if they are
1517  * computed as if bfqq expired and remained idle until reactivation,
1518  * then the process associated with bfqq is treated as if, instead of
1519  * being greedy, it stopped issuing requests when bfqq remained idle,
1520  * and restarts issuing requests only on this reactivation. In other
1521  * words, the scheduler does not help the process recover the "service
1522  * hole" between bfqq expiration and reactivation. As a consequence,
1523  * the process receives a lower bandwidth than its reserved one. In
1524  * contrast, to recover this hole, the budget must be updated as if
1525  * bfqq was not expired at all before this reactivation, i.e., it must
1526  * be set to the value of the remaining budget when bfqq was
1527  * expired. Along the same line, timestamps need to be assigned the
1528  * value they had the last time bfqq was selected for service, i.e.,
1529  * before last expiration. Thus timestamps need to be back-shifted
1530  * with respect to their normal computation (see [1] for more details
1531  * on this tricky aspect).
1532  *
1533  * Secondly, to allow the process to recover the hole, the in-service
1534  * queue must be expired too, to give bfqq the chance to preempt it
1535  * immediately. In fact, if bfqq has to wait for a full budget of the
1536  * in-service queue to be completed, then it may become impossible to
1537  * let the process recover the hole, even if the back-shifted
1538  * timestamps of bfqq are lower than those of the in-service queue. If
1539  * this happens for most or all of the holes, then the process may not
1540  * receive its reserved bandwidth. In this respect, it is worth noting
1541  * that, being the service of outstanding requests unpreemptible, a
1542  * little fraction of the holes may however be unrecoverable, thereby
1543  * causing a little loss of bandwidth.
1544  *
1545  * The last important point is detecting whether bfqq does need this
1546  * bandwidth recovery. In this respect, the next function deems the
1547  * process associated with bfqq greedy, and thus allows it to recover
1548  * the hole, if: 1) the process is waiting for the arrival of a new
1549  * request (which implies that bfqq expired for one of the above two
1550  * reasons), and 2) such a request has arrived soon. The first
1551  * condition is controlled through the flag non_blocking_wait_rq,
1552  * while the second through the flag arrived_in_time. If both
1553  * conditions hold, then the function computes the budget in the
1554  * above-described special way, and signals that the in-service queue
1555  * should be expired. Timestamp back-shifting is done later in
1556  * __bfq_activate_entity.
1557  *
1558  * 2. Reduce latency. Even if timestamps are not backshifted to let
1559  * the process associated with bfqq recover a service hole, bfqq may
1560  * however happen to have, after being (re)activated, a lower finish
1561  * timestamp than the in-service queue.	 That is, the next budget of
1562  * bfqq may have to be completed before the one of the in-service
1563  * queue. If this is the case, then preempting the in-service queue
1564  * allows this goal to be achieved, apart from the unpreemptible,
1565  * outstanding requests mentioned above.
1566  *
1567  * Unfortunately, regardless of which of the above two goals one wants
1568  * to achieve, service trees need first to be updated to know whether
1569  * the in-service queue must be preempted. To have service trees
1570  * correctly updated, the in-service queue must be expired and
1571  * rescheduled, and bfqq must be scheduled too. This is one of the
1572  * most costly operations (in future versions, the scheduling
1573  * mechanism may be re-designed in such a way to make it possible to
1574  * know whether preemption is needed without needing to update service
1575  * trees). In addition, queue preemptions almost always cause random
1576  * I/O, which may in turn cause loss of throughput. Finally, there may
1577  * even be no in-service queue when the next function is invoked (so,
1578  * no queue to compare timestamps with). Because of these facts, the
1579  * next function adopts the following simple scheme to avoid costly
1580  * operations, too frequent preemptions and too many dependencies on
1581  * the state of the scheduler: it requests the expiration of the
1582  * in-service queue (unconditionally) only for queues that need to
1583  * recover a hole. Then it delegates to other parts of the code the
1584  * responsibility of handling the above case 2.
1585  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time)1586 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1587 						struct bfq_queue *bfqq,
1588 						bool arrived_in_time)
1589 {
1590 	struct bfq_entity *entity = &bfqq->entity;
1591 
1592 	/*
1593 	 * In the next compound condition, we check also whether there
1594 	 * is some budget left, because otherwise there is no point in
1595 	 * trying to go on serving bfqq with this same budget: bfqq
1596 	 * would be expired immediately after being selected for
1597 	 * service. This would only cause useless overhead.
1598 	 */
1599 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1600 	    bfq_bfqq_budget_left(bfqq) > 0) {
1601 		/*
1602 		 * We do not clear the flag non_blocking_wait_rq here, as
1603 		 * the latter is used in bfq_activate_bfqq to signal
1604 		 * that timestamps need to be back-shifted (and is
1605 		 * cleared right after).
1606 		 */
1607 
1608 		/*
1609 		 * In next assignment we rely on that either
1610 		 * entity->service or entity->budget are not updated
1611 		 * on expiration if bfqq is empty (see
1612 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1613 		 * remain unchanged after such an expiration, and the
1614 		 * following statement therefore assigns to
1615 		 * entity->budget the remaining budget on such an
1616 		 * expiration.
1617 		 */
1618 		entity->budget = min_t(unsigned long,
1619 				       bfq_bfqq_budget_left(bfqq),
1620 				       bfqq->max_budget);
1621 
1622 		/*
1623 		 * At this point, we have used entity->service to get
1624 		 * the budget left (needed for updating
1625 		 * entity->budget). Thus we finally can, and have to,
1626 		 * reset entity->service. The latter must be reset
1627 		 * because bfqq would otherwise be charged again for
1628 		 * the service it has received during its previous
1629 		 * service slot(s).
1630 		 */
1631 		entity->service = 0;
1632 
1633 		return true;
1634 	}
1635 
1636 	/*
1637 	 * We can finally complete expiration, by setting service to 0.
1638 	 */
1639 	entity->service = 0;
1640 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1641 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1642 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1643 	return false;
1644 }
1645 
1646 /*
1647  * Return the farthest past time instant according to jiffies
1648  * macros.
1649  */
bfq_smallest_from_now(void)1650 static unsigned long bfq_smallest_from_now(void)
1651 {
1652 	return jiffies - MAX_JIFFY_OFFSET;
1653 }
1654 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1655 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1656 					     struct bfq_queue *bfqq,
1657 					     unsigned int old_wr_coeff,
1658 					     bool wr_or_deserves_wr,
1659 					     bool interactive,
1660 					     bool in_burst,
1661 					     bool soft_rt)
1662 {
1663 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1664 		/* start a weight-raising period */
1665 		if (interactive) {
1666 			bfqq->service_from_wr = 0;
1667 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1668 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1669 		} else {
1670 			/*
1671 			 * No interactive weight raising in progress
1672 			 * here: assign minus infinity to
1673 			 * wr_start_at_switch_to_srt, to make sure
1674 			 * that, at the end of the soft-real-time
1675 			 * weight raising periods that is starting
1676 			 * now, no interactive weight-raising period
1677 			 * may be wrongly considered as still in
1678 			 * progress (and thus actually started by
1679 			 * mistake).
1680 			 */
1681 			bfqq->wr_start_at_switch_to_srt =
1682 				bfq_smallest_from_now();
1683 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1684 				BFQ_SOFTRT_WEIGHT_FACTOR;
1685 			bfqq->wr_cur_max_time =
1686 				bfqd->bfq_wr_rt_max_time;
1687 		}
1688 
1689 		/*
1690 		 * If needed, further reduce budget to make sure it is
1691 		 * close to bfqq's backlog, so as to reduce the
1692 		 * scheduling-error component due to a too large
1693 		 * budget. Do not care about throughput consequences,
1694 		 * but only about latency. Finally, do not assign a
1695 		 * too small budget either, to avoid increasing
1696 		 * latency by causing too frequent expirations.
1697 		 */
1698 		bfqq->entity.budget = min_t(unsigned long,
1699 					    bfqq->entity.budget,
1700 					    2 * bfq_min_budget(bfqd));
1701 	} else if (old_wr_coeff > 1) {
1702 		if (interactive) { /* update wr coeff and duration */
1703 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1704 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1705 		} else if (in_burst)
1706 			bfqq->wr_coeff = 1;
1707 		else if (soft_rt) {
1708 			/*
1709 			 * The application is now or still meeting the
1710 			 * requirements for being deemed soft rt.  We
1711 			 * can then correctly and safely (re)charge
1712 			 * the weight-raising duration for the
1713 			 * application with the weight-raising
1714 			 * duration for soft rt applications.
1715 			 *
1716 			 * In particular, doing this recharge now, i.e.,
1717 			 * before the weight-raising period for the
1718 			 * application finishes, reduces the probability
1719 			 * of the following negative scenario:
1720 			 * 1) the weight of a soft rt application is
1721 			 *    raised at startup (as for any newly
1722 			 *    created application),
1723 			 * 2) since the application is not interactive,
1724 			 *    at a certain time weight-raising is
1725 			 *    stopped for the application,
1726 			 * 3) at that time the application happens to
1727 			 *    still have pending requests, and hence
1728 			 *    is destined to not have a chance to be
1729 			 *    deemed soft rt before these requests are
1730 			 *    completed (see the comments to the
1731 			 *    function bfq_bfqq_softrt_next_start()
1732 			 *    for details on soft rt detection),
1733 			 * 4) these pending requests experience a high
1734 			 *    latency because the application is not
1735 			 *    weight-raised while they are pending.
1736 			 */
1737 			if (bfqq->wr_cur_max_time !=
1738 				bfqd->bfq_wr_rt_max_time) {
1739 				bfqq->wr_start_at_switch_to_srt =
1740 					bfqq->last_wr_start_finish;
1741 
1742 				bfqq->wr_cur_max_time =
1743 					bfqd->bfq_wr_rt_max_time;
1744 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1745 					BFQ_SOFTRT_WEIGHT_FACTOR;
1746 			}
1747 			bfqq->last_wr_start_finish = jiffies;
1748 		}
1749 	}
1750 }
1751 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1752 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1753 					struct bfq_queue *bfqq)
1754 {
1755 	return bfqq->dispatched == 0 &&
1756 		time_is_before_jiffies(
1757 			bfqq->budget_timeout +
1758 			bfqd->bfq_wr_min_idle_time);
1759 }
1760 
1761 
1762 /*
1763  * Return true if bfqq is in a higher priority class, or has a higher
1764  * weight than the in-service queue.
1765  */
bfq_bfqq_higher_class_or_weight(struct bfq_queue * bfqq,struct bfq_queue * in_serv_bfqq)1766 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1767 					    struct bfq_queue *in_serv_bfqq)
1768 {
1769 	int bfqq_weight, in_serv_weight;
1770 
1771 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1772 		return true;
1773 
1774 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1775 		bfqq_weight = bfqq->entity.weight;
1776 		in_serv_weight = in_serv_bfqq->entity.weight;
1777 	} else {
1778 		if (bfqq->entity.parent)
1779 			bfqq_weight = bfqq->entity.parent->weight;
1780 		else
1781 			bfqq_weight = bfqq->entity.weight;
1782 		if (in_serv_bfqq->entity.parent)
1783 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1784 		else
1785 			in_serv_weight = in_serv_bfqq->entity.weight;
1786 	}
1787 
1788 	return bfqq_weight > in_serv_weight;
1789 }
1790 
1791 /*
1792  * Get the index of the actuator that will serve bio.
1793  */
bfq_actuator_index(struct bfq_data * bfqd,struct bio * bio)1794 static unsigned int bfq_actuator_index(struct bfq_data *bfqd, struct bio *bio)
1795 {
1796 	unsigned int i;
1797 	sector_t end;
1798 
1799 	/* no search needed if one or zero ranges present */
1800 	if (bfqd->num_actuators == 1)
1801 		return 0;
1802 
1803 	/* bio_end_sector(bio) gives the sector after the last one */
1804 	end = bio_end_sector(bio) - 1;
1805 
1806 	for (i = 0; i < bfqd->num_actuators; i++) {
1807 		if (end >= bfqd->sector[i] &&
1808 		    end < bfqd->sector[i] + bfqd->nr_sectors[i])
1809 			return i;
1810 	}
1811 
1812 	WARN_ONCE(true,
1813 		  "bfq_actuator_index: bio sector out of ranges: end=%llu\n",
1814 		  end);
1815 	return 0;
1816 }
1817 
1818 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1819 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1820 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1821 					     struct bfq_queue *bfqq,
1822 					     int old_wr_coeff,
1823 					     struct request *rq,
1824 					     bool *interactive)
1825 {
1826 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1827 		bfqq_wants_to_preempt,
1828 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1829 		/*
1830 		 * See the comments on
1831 		 * bfq_bfqq_update_budg_for_activation for
1832 		 * details on the usage of the next variable.
1833 		 */
1834 		arrived_in_time =  blk_time_get_ns() <=
1835 			bfqq->ttime.last_end_request +
1836 			bfqd->bfq_slice_idle * 3;
1837 	unsigned int act_idx = bfq_actuator_index(bfqd, rq->bio);
1838 	bool bfqq_non_merged_or_stably_merged =
1839 		bfqq->bic || RQ_BIC(rq)->bfqq_data[act_idx].stably_merged;
1840 
1841 	/*
1842 	 * bfqq deserves to be weight-raised if:
1843 	 * - it is sync,
1844 	 * - it does not belong to a large burst,
1845 	 * - it has been idle for enough time or is soft real-time,
1846 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1847 	 * - has a default weight (otherwise we assume the user wanted
1848 	 *   to control its weight explicitly)
1849 	 */
1850 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1851 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1852 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1853 		!in_burst &&
1854 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1855 		bfqq->dispatched == 0 &&
1856 		bfqq->entity.new_weight == 40;
1857 	*interactive = !in_burst && idle_for_long_time &&
1858 		bfqq->entity.new_weight == 40;
1859 	/*
1860 	 * Merged bfq_queues are kept out of weight-raising
1861 	 * (low-latency) mechanisms. The reason is that these queues
1862 	 * are usually created for non-interactive and
1863 	 * non-soft-real-time tasks. Yet this is not the case for
1864 	 * stably-merged queues. These queues are merged just because
1865 	 * they are created shortly after each other. So they may
1866 	 * easily serve the I/O of an interactive or soft-real time
1867 	 * application, if the application happens to spawn multiple
1868 	 * processes. So let also stably-merged queued enjoy weight
1869 	 * raising.
1870 	 */
1871 	wr_or_deserves_wr = bfqd->low_latency &&
1872 		(bfqq->wr_coeff > 1 ||
1873 		 (bfq_bfqq_sync(bfqq) && bfqq_non_merged_or_stably_merged &&
1874 		  (*interactive || soft_rt)));
1875 
1876 	/*
1877 	 * Using the last flag, update budget and check whether bfqq
1878 	 * may want to preempt the in-service queue.
1879 	 */
1880 	bfqq_wants_to_preempt =
1881 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1882 						    arrived_in_time);
1883 
1884 	/*
1885 	 * If bfqq happened to be activated in a burst, but has been
1886 	 * idle for much more than an interactive queue, then we
1887 	 * assume that, in the overall I/O initiated in the burst, the
1888 	 * I/O associated with bfqq is finished. So bfqq does not need
1889 	 * to be treated as a queue belonging to a burst
1890 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1891 	 * if set, and remove bfqq from the burst list if it's
1892 	 * there. We do not decrement burst_size, because the fact
1893 	 * that bfqq does not need to belong to the burst list any
1894 	 * more does not invalidate the fact that bfqq was created in
1895 	 * a burst.
1896 	 */
1897 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1898 	    idle_for_long_time &&
1899 	    time_is_before_jiffies(
1900 		    bfqq->budget_timeout +
1901 		    msecs_to_jiffies(10000))) {
1902 		hlist_del_init(&bfqq->burst_list_node);
1903 		bfq_clear_bfqq_in_large_burst(bfqq);
1904 	}
1905 
1906 	bfq_clear_bfqq_just_created(bfqq);
1907 
1908 	if (bfqd->low_latency) {
1909 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1910 			/* wraparound */
1911 			bfqq->split_time =
1912 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1913 
1914 		if (time_is_before_jiffies(bfqq->split_time +
1915 					   bfqd->bfq_wr_min_idle_time)) {
1916 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1917 							 old_wr_coeff,
1918 							 wr_or_deserves_wr,
1919 							 *interactive,
1920 							 in_burst,
1921 							 soft_rt);
1922 
1923 			if (old_wr_coeff != bfqq->wr_coeff)
1924 				bfqq->entity.prio_changed = 1;
1925 		}
1926 	}
1927 
1928 	bfqq->last_idle_bklogged = jiffies;
1929 	bfqq->service_from_backlogged = 0;
1930 	bfq_clear_bfqq_softrt_update(bfqq);
1931 
1932 	bfq_add_bfqq_busy(bfqq);
1933 
1934 	/*
1935 	 * Expire in-service queue if preemption may be needed for
1936 	 * guarantees or throughput. As for guarantees, we care
1937 	 * explicitly about two cases. The first is that bfqq has to
1938 	 * recover a service hole, as explained in the comments on
1939 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1940 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1941 	 * carry time-critical I/O, then bfqq's bandwidth is less
1942 	 * important than that of queues that carry time-critical I/O.
1943 	 * So, as a further constraint, we consider this case only if
1944 	 * bfqq is at least as weight-raised, i.e., at least as time
1945 	 * critical, as the in-service queue.
1946 	 *
1947 	 * The second case is that bfqq is in a higher priority class,
1948 	 * or has a higher weight than the in-service queue. If this
1949 	 * condition does not hold, we don't care because, even if
1950 	 * bfqq does not start to be served immediately, the resulting
1951 	 * delay for bfqq's I/O is however lower or much lower than
1952 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1953 	 *
1954 	 * In both cases, preemption is needed only if, according to
1955 	 * the timestamps of both bfqq and of the in-service queue,
1956 	 * bfqq actually is the next queue to serve. So, to reduce
1957 	 * useless preemptions, the return value of
1958 	 * next_queue_may_preempt() is considered in the next compound
1959 	 * condition too. Yet next_queue_may_preempt() just checks a
1960 	 * simple, necessary condition for bfqq to be the next queue
1961 	 * to serve. In fact, to evaluate a sufficient condition, the
1962 	 * timestamps of the in-service queue would need to be
1963 	 * updated, and this operation is quite costly (see the
1964 	 * comments on bfq_bfqq_update_budg_for_activation()).
1965 	 *
1966 	 * As for throughput, we ask bfq_better_to_idle() whether we
1967 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1968 	 * says no, then plugging is not needed any longer, either to
1969 	 * boost throughput or to perserve service guarantees. Then
1970 	 * the best option is to stop plugging I/O, as not doing so
1971 	 * would certainly lower throughput. We may end up in this
1972 	 * case if: (1) upon a dispatch attempt, we detected that it
1973 	 * was better to plug I/O dispatch, and to wait for a new
1974 	 * request to arrive for the currently in-service queue, but
1975 	 * (2) this switch of bfqq to busy changes the scenario.
1976 	 */
1977 	if (bfqd->in_service_queue &&
1978 	    ((bfqq_wants_to_preempt &&
1979 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1980 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1981 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1982 	    next_queue_may_preempt(bfqd))
1983 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1984 				false, BFQQE_PREEMPTED);
1985 }
1986 
bfq_reset_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)1987 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1988 				   struct bfq_queue *bfqq)
1989 {
1990 	/* invalidate baseline total service time */
1991 	bfqq->last_serv_time_ns = 0;
1992 
1993 	/*
1994 	 * Reset pointer in case we are waiting for
1995 	 * some request completion.
1996 	 */
1997 	bfqd->waited_rq = NULL;
1998 
1999 	/*
2000 	 * If bfqq has a short think time, then start by setting the
2001 	 * inject limit to 0 prudentially, because the service time of
2002 	 * an injected I/O request may be higher than the think time
2003 	 * of bfqq, and therefore, if one request was injected when
2004 	 * bfqq remains empty, this injected request might delay the
2005 	 * service of the next I/O request for bfqq significantly. In
2006 	 * case bfqq can actually tolerate some injection, then the
2007 	 * adaptive update will however raise the limit soon. This
2008 	 * lucky circumstance holds exactly because bfqq has a short
2009 	 * think time, and thus, after remaining empty, is likely to
2010 	 * get new I/O enqueued---and then completed---before being
2011 	 * expired. This is the very pattern that gives the
2012 	 * limit-update algorithm the chance to measure the effect of
2013 	 * injection on request service times, and then to update the
2014 	 * limit accordingly.
2015 	 *
2016 	 * However, in the following special case, the inject limit is
2017 	 * left to 1 even if the think time is short: bfqq's I/O is
2018 	 * synchronized with that of some other queue, i.e., bfqq may
2019 	 * receive new I/O only after the I/O of the other queue is
2020 	 * completed. Keeping the inject limit to 1 allows the
2021 	 * blocking I/O to be served while bfqq is in service. And
2022 	 * this is very convenient both for bfqq and for overall
2023 	 * throughput, as explained in detail in the comments in
2024 	 * bfq_update_has_short_ttime().
2025 	 *
2026 	 * On the opposite end, if bfqq has a long think time, then
2027 	 * start directly by 1, because:
2028 	 * a) on the bright side, keeping at most one request in
2029 	 * service in the drive is unlikely to cause any harm to the
2030 	 * latency of bfqq's requests, as the service time of a single
2031 	 * request is likely to be lower than the think time of bfqq;
2032 	 * b) on the downside, after becoming empty, bfqq is likely to
2033 	 * expire before getting its next request. With this request
2034 	 * arrival pattern, it is very hard to sample total service
2035 	 * times and update the inject limit accordingly (see comments
2036 	 * on bfq_update_inject_limit()). So the limit is likely to be
2037 	 * never, or at least seldom, updated.  As a consequence, by
2038 	 * setting the limit to 1, we avoid that no injection ever
2039 	 * occurs with bfqq. On the downside, this proactive step
2040 	 * further reduces chances to actually compute the baseline
2041 	 * total service time. Thus it reduces chances to execute the
2042 	 * limit-update algorithm and possibly raise the limit to more
2043 	 * than 1.
2044 	 */
2045 	if (bfq_bfqq_has_short_ttime(bfqq))
2046 		bfqq->inject_limit = 0;
2047 	else
2048 		bfqq->inject_limit = 1;
2049 
2050 	bfqq->decrease_time_jif = jiffies;
2051 }
2052 
bfq_update_io_intensity(struct bfq_queue * bfqq,u64 now_ns)2053 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
2054 {
2055 	u64 tot_io_time = now_ns - bfqq->io_start_time;
2056 
2057 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
2058 		bfqq->tot_idle_time +=
2059 			now_ns - bfqq->ttime.last_end_request;
2060 
2061 	if (unlikely(bfq_bfqq_just_created(bfqq)))
2062 		return;
2063 
2064 	/*
2065 	 * Must be busy for at least about 80% of the time to be
2066 	 * considered I/O bound.
2067 	 */
2068 	if (bfqq->tot_idle_time * 5 > tot_io_time)
2069 		bfq_clear_bfqq_IO_bound(bfqq);
2070 	else
2071 		bfq_mark_bfqq_IO_bound(bfqq);
2072 
2073 	/*
2074 	 * Keep an observation window of at most 200 ms in the past
2075 	 * from now.
2076 	 */
2077 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
2078 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
2079 		bfqq->tot_idle_time >>= 1;
2080 	}
2081 }
2082 
2083 /*
2084  * Detect whether bfqq's I/O seems synchronized with that of some
2085  * other queue, i.e., whether bfqq, after remaining empty, happens to
2086  * receive new I/O only right after some I/O request of the other
2087  * queue has been completed. We call waker queue the other queue, and
2088  * we assume, for simplicity, that bfqq may have at most one waker
2089  * queue.
2090  *
2091  * A remarkable throughput boost can be reached by unconditionally
2092  * injecting the I/O of the waker queue, every time a new
2093  * bfq_dispatch_request happens to be invoked while I/O is being
2094  * plugged for bfqq.  In addition to boosting throughput, this
2095  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
2096  * bfqq. Note that these same results may be achieved with the general
2097  * injection mechanism, but less effectively. For details on this
2098  * aspect, see the comments on the choice of the queue for injection
2099  * in bfq_select_queue().
2100  *
2101  * Turning back to the detection of a waker queue, a queue Q is deemed as a
2102  * waker queue for bfqq if, for three consecutive times, bfqq happens to become
2103  * non empty right after a request of Q has been completed within given
2104  * timeout. In this respect, even if bfqq is empty, we do not check for a waker
2105  * if it still has some in-flight I/O. In fact, in this case bfqq is actually
2106  * still being served by the drive, and may receive new I/O on the completion
2107  * of some of the in-flight requests. In particular, on the first time, Q is
2108  * tentatively set as a candidate waker queue, while on the third consecutive
2109  * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q
2110  * is a waker queue for bfqq. These detection steps are performed only if bfqq
2111  * has a long think time, so as to make it more likely that bfqq's I/O is
2112  * actually being blocked by a synchronization. This last filter, plus the
2113  * above three-times requirement and time limit for detection, make false
2114  * positives less likely.
2115  *
2116  * NOTE
2117  *
2118  * The sooner a waker queue is detected, the sooner throughput can be
2119  * boosted by injecting I/O from the waker queue. Fortunately,
2120  * detection is likely to be actually fast, for the following
2121  * reasons. While blocked by synchronization, bfqq has a long think
2122  * time. This implies that bfqq's inject limit is at least equal to 1
2123  * (see the comments in bfq_update_inject_limit()). So, thanks to
2124  * injection, the waker queue is likely to be served during the very
2125  * first I/O-plugging time interval for bfqq. This triggers the first
2126  * step of the detection mechanism. Thanks again to injection, the
2127  * candidate waker queue is then likely to be confirmed no later than
2128  * during the next I/O-plugging interval for bfqq.
2129  *
2130  * ISSUE
2131  *
2132  * On queue merging all waker information is lost.
2133  */
bfq_check_waker(struct bfq_data * bfqd,struct bfq_queue * bfqq,u64 now_ns)2134 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2135 			    u64 now_ns)
2136 {
2137 	char waker_name[MAX_BFQQ_NAME_LENGTH];
2138 
2139 	if (!bfqd->last_completed_rq_bfqq ||
2140 	    bfqd->last_completed_rq_bfqq == bfqq ||
2141 	    bfq_bfqq_has_short_ttime(bfqq) ||
2142 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
2143 	    bfqd->last_completed_rq_bfqq == &bfqd->oom_bfqq ||
2144 	    bfqq == &bfqd->oom_bfqq)
2145 		return;
2146 
2147 	/*
2148 	 * We reset waker detection logic also if too much time has passed
2149  	 * since the first detection. If wakeups are rare, pointless idling
2150 	 * doesn't hurt throughput that much. The condition below makes sure
2151 	 * we do not uselessly idle blocking waker in more than 1/64 cases.
2152 	 */
2153 	if (bfqd->last_completed_rq_bfqq !=
2154 	    bfqq->tentative_waker_bfqq ||
2155 	    now_ns > bfqq->waker_detection_started +
2156 					128 * (u64)bfqd->bfq_slice_idle) {
2157 		/*
2158 		 * First synchronization detected with a
2159 		 * candidate waker queue, or with a different
2160 		 * candidate waker queue from the current one.
2161 		 */
2162 		bfqq->tentative_waker_bfqq =
2163 			bfqd->last_completed_rq_bfqq;
2164 		bfqq->num_waker_detections = 1;
2165 		bfqq->waker_detection_started = now_ns;
2166 		bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name,
2167 			      MAX_BFQQ_NAME_LENGTH);
2168 		bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name);
2169 	} else /* Same tentative waker queue detected again */
2170 		bfqq->num_waker_detections++;
2171 
2172 	if (bfqq->num_waker_detections == 3) {
2173 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2174 		bfqq->tentative_waker_bfqq = NULL;
2175 		bfq_bfqq_name(bfqq->waker_bfqq, waker_name,
2176 			      MAX_BFQQ_NAME_LENGTH);
2177 		bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name);
2178 
2179 		/*
2180 		 * If the waker queue disappears, then
2181 		 * bfqq->waker_bfqq must be reset. To
2182 		 * this goal, we maintain in each
2183 		 * waker queue a list, woken_list, of
2184 		 * all the queues that reference the
2185 		 * waker queue through their
2186 		 * waker_bfqq pointer. When the waker
2187 		 * queue exits, the waker_bfqq pointer
2188 		 * of all the queues in the woken_list
2189 		 * is reset.
2190 		 *
2191 		 * In addition, if bfqq is already in
2192 		 * the woken_list of a waker queue,
2193 		 * then, before being inserted into
2194 		 * the woken_list of a new waker
2195 		 * queue, bfqq must be removed from
2196 		 * the woken_list of the old waker
2197 		 * queue.
2198 		 */
2199 		if (!hlist_unhashed(&bfqq->woken_list_node))
2200 			hlist_del_init(&bfqq->woken_list_node);
2201 		hlist_add_head(&bfqq->woken_list_node,
2202 			       &bfqd->last_completed_rq_bfqq->woken_list);
2203 	}
2204 }
2205 
bfq_add_request(struct request * rq)2206 static void bfq_add_request(struct request *rq)
2207 {
2208 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2209 	struct bfq_data *bfqd = bfqq->bfqd;
2210 	struct request *next_rq, *prev;
2211 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2212 	bool interactive = false;
2213 	u64 now_ns = blk_time_get_ns();
2214 
2215 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2216 	bfqq->queued[rq_is_sync(rq)]++;
2217 	/*
2218 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2219 	 * may be read without holding the lock in bfq_has_work().
2220 	 */
2221 	WRITE_ONCE(bfqd->queued, bfqd->queued + 1);
2222 
2223 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2224 		bfq_check_waker(bfqd, bfqq, now_ns);
2225 
2226 		/*
2227 		 * Periodically reset inject limit, to make sure that
2228 		 * the latter eventually drops in case workload
2229 		 * changes, see step (3) in the comments on
2230 		 * bfq_update_inject_limit().
2231 		 */
2232 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2233 					     msecs_to_jiffies(1000)))
2234 			bfq_reset_inject_limit(bfqd, bfqq);
2235 
2236 		/*
2237 		 * The following conditions must hold to setup a new
2238 		 * sampling of total service time, and then a new
2239 		 * update of the inject limit:
2240 		 * - bfqq is in service, because the total service
2241 		 *   time is evaluated only for the I/O requests of
2242 		 *   the queues in service;
2243 		 * - this is the right occasion to compute or to
2244 		 *   lower the baseline total service time, because
2245 		 *   there are actually no requests in the drive,
2246 		 *   or
2247 		 *   the baseline total service time is available, and
2248 		 *   this is the right occasion to compute the other
2249 		 *   quantity needed to update the inject limit, i.e.,
2250 		 *   the total service time caused by the amount of
2251 		 *   injection allowed by the current value of the
2252 		 *   limit. It is the right occasion because injection
2253 		 *   has actually been performed during the service
2254 		 *   hole, and there are still in-flight requests,
2255 		 *   which are very likely to be exactly the injected
2256 		 *   requests, or part of them;
2257 		 * - the minimum interval for sampling the total
2258 		 *   service time and updating the inject limit has
2259 		 *   elapsed.
2260 		 */
2261 		if (bfqq == bfqd->in_service_queue &&
2262 		    (bfqd->tot_rq_in_driver == 0 ||
2263 		     (bfqq->last_serv_time_ns > 0 &&
2264 		      bfqd->rqs_injected && bfqd->tot_rq_in_driver > 0)) &&
2265 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2266 					      msecs_to_jiffies(10))) {
2267 			bfqd->last_empty_occupied_ns = blk_time_get_ns();
2268 			/*
2269 			 * Start the state machine for measuring the
2270 			 * total service time of rq: setting
2271 			 * wait_dispatch will cause bfqd->waited_rq to
2272 			 * be set when rq will be dispatched.
2273 			 */
2274 			bfqd->wait_dispatch = true;
2275 			/*
2276 			 * If there is no I/O in service in the drive,
2277 			 * then possible injection occurred before the
2278 			 * arrival of rq will not affect the total
2279 			 * service time of rq. So the injection limit
2280 			 * must not be updated as a function of such
2281 			 * total service time, unless new injection
2282 			 * occurs before rq is completed. To have the
2283 			 * injection limit updated only in the latter
2284 			 * case, reset rqs_injected here (rqs_injected
2285 			 * will be set in case injection is performed
2286 			 * on bfqq before rq is completed).
2287 			 */
2288 			if (bfqd->tot_rq_in_driver == 0)
2289 				bfqd->rqs_injected = false;
2290 		}
2291 	}
2292 
2293 	if (bfq_bfqq_sync(bfqq))
2294 		bfq_update_io_intensity(bfqq, now_ns);
2295 
2296 	elv_rb_add(&bfqq->sort_list, rq);
2297 
2298 	/*
2299 	 * Check if this request is a better next-serve candidate.
2300 	 */
2301 	prev = bfqq->next_rq;
2302 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2303 	bfqq->next_rq = next_rq;
2304 
2305 	/*
2306 	 * Adjust priority tree position, if next_rq changes.
2307 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2308 	 */
2309 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2310 		bfq_pos_tree_add_move(bfqd, bfqq);
2311 
2312 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2313 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2314 						 rq, &interactive);
2315 	else {
2316 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2317 		    time_is_before_jiffies(
2318 				bfqq->last_wr_start_finish +
2319 				bfqd->bfq_wr_min_inter_arr_async)) {
2320 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2321 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2322 
2323 			bfqd->wr_busy_queues++;
2324 			bfqq->entity.prio_changed = 1;
2325 		}
2326 		if (prev != bfqq->next_rq)
2327 			bfq_updated_next_req(bfqd, bfqq);
2328 	}
2329 
2330 	/*
2331 	 * Assign jiffies to last_wr_start_finish in the following
2332 	 * cases:
2333 	 *
2334 	 * . if bfqq is not going to be weight-raised, because, for
2335 	 *   non weight-raised queues, last_wr_start_finish stores the
2336 	 *   arrival time of the last request; as of now, this piece
2337 	 *   of information is used only for deciding whether to
2338 	 *   weight-raise async queues
2339 	 *
2340 	 * . if bfqq is not weight-raised, because, if bfqq is now
2341 	 *   switching to weight-raised, then last_wr_start_finish
2342 	 *   stores the time when weight-raising starts
2343 	 *
2344 	 * . if bfqq is interactive, because, regardless of whether
2345 	 *   bfqq is currently weight-raised, the weight-raising
2346 	 *   period must start or restart (this case is considered
2347 	 *   separately because it is not detected by the above
2348 	 *   conditions, if bfqq is already weight-raised)
2349 	 *
2350 	 * last_wr_start_finish has to be updated also if bfqq is soft
2351 	 * real-time, because the weight-raising period is constantly
2352 	 * restarted on idle-to-busy transitions for these queues, but
2353 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2354 	 * needed.
2355 	 */
2356 	if (bfqd->low_latency &&
2357 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2358 		bfqq->last_wr_start_finish = jiffies;
2359 }
2360 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)2361 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2362 					  struct bio *bio,
2363 					  struct request_queue *q)
2364 {
2365 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2366 
2367 
2368 	if (bfqq)
2369 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2370 
2371 	return NULL;
2372 }
2373 
get_sdist(sector_t last_pos,struct request * rq)2374 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2375 {
2376 	if (last_pos)
2377 		return abs(blk_rq_pos(rq) - last_pos);
2378 
2379 	return 0;
2380 }
2381 
bfq_remove_request(struct request_queue * q,struct request * rq)2382 static void bfq_remove_request(struct request_queue *q,
2383 			       struct request *rq)
2384 {
2385 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2386 	struct bfq_data *bfqd = bfqq->bfqd;
2387 	const int sync = rq_is_sync(rq);
2388 
2389 	if (bfqq->next_rq == rq) {
2390 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2391 		bfq_updated_next_req(bfqd, bfqq);
2392 	}
2393 
2394 	if (rq->queuelist.prev != &rq->queuelist)
2395 		list_del_init(&rq->queuelist);
2396 	bfqq->queued[sync]--;
2397 	/*
2398 	 * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it
2399 	 * may be read without holding the lock in bfq_has_work().
2400 	 */
2401 	WRITE_ONCE(bfqd->queued, bfqd->queued - 1);
2402 	elv_rb_del(&bfqq->sort_list, rq);
2403 
2404 	elv_rqhash_del(q, rq);
2405 	if (q->last_merge == rq)
2406 		q->last_merge = NULL;
2407 
2408 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2409 		bfqq->next_rq = NULL;
2410 
2411 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2412 			bfq_del_bfqq_busy(bfqq, false);
2413 			/*
2414 			 * bfqq emptied. In normal operation, when
2415 			 * bfqq is empty, bfqq->entity.service and
2416 			 * bfqq->entity.budget must contain,
2417 			 * respectively, the service received and the
2418 			 * budget used last time bfqq emptied. These
2419 			 * facts do not hold in this case, as at least
2420 			 * this last removal occurred while bfqq is
2421 			 * not in service. To avoid inconsistencies,
2422 			 * reset both bfqq->entity.service and
2423 			 * bfqq->entity.budget, if bfqq has still a
2424 			 * process that may issue I/O requests to it.
2425 			 */
2426 			bfqq->entity.budget = bfqq->entity.service = 0;
2427 		}
2428 
2429 		/*
2430 		 * Remove queue from request-position tree as it is empty.
2431 		 */
2432 		if (bfqq->pos_root) {
2433 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2434 			bfqq->pos_root = NULL;
2435 		}
2436 	} else {
2437 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2438 		if (unlikely(!bfqd->nonrot_with_queueing))
2439 			bfq_pos_tree_add_move(bfqd, bfqq);
2440 	}
2441 
2442 	if (rq->cmd_flags & REQ_META)
2443 		bfqq->meta_pending--;
2444 
2445 }
2446 
bfq_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2447 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2448 		unsigned int nr_segs)
2449 {
2450 	struct bfq_data *bfqd = q->elevator->elevator_data;
2451 	struct bfq_io_cq *bic = bfq_bic_lookup(q);
2452 	struct request *free = NULL;
2453 	bool ret;
2454 
2455 	spin_lock_irq(&bfqd->lock);
2456 
2457 	if (bic) {
2458 		/*
2459 		 * Make sure cgroup info is uptodate for current process before
2460 		 * considering the merge.
2461 		 */
2462 		bfq_bic_update_cgroup(bic, bio);
2463 
2464 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf),
2465 					     bfq_actuator_index(bfqd, bio));
2466 	} else {
2467 		bfqd->bio_bfqq = NULL;
2468 	}
2469 	bfqd->bio_bic = bic;
2470 
2471 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2472 
2473 	spin_unlock_irq(&bfqd->lock);
2474 	if (free)
2475 		blk_mq_free_request(free);
2476 
2477 	return ret;
2478 }
2479 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)2480 static int bfq_request_merge(struct request_queue *q, struct request **req,
2481 			     struct bio *bio)
2482 {
2483 	struct bfq_data *bfqd = q->elevator->elevator_data;
2484 	struct request *__rq;
2485 
2486 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2487 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2488 		*req = __rq;
2489 
2490 		if (blk_discard_mergable(__rq))
2491 			return ELEVATOR_DISCARD_MERGE;
2492 		return ELEVATOR_FRONT_MERGE;
2493 	}
2494 
2495 	return ELEVATOR_NO_MERGE;
2496 }
2497 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)2498 static void bfq_request_merged(struct request_queue *q, struct request *req,
2499 			       enum elv_merge type)
2500 {
2501 	if (type == ELEVATOR_FRONT_MERGE &&
2502 	    rb_prev(&req->rb_node) &&
2503 	    blk_rq_pos(req) <
2504 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2505 				    struct request, rb_node))) {
2506 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2507 		struct bfq_data *bfqd;
2508 		struct request *prev, *next_rq;
2509 
2510 		if (!bfqq)
2511 			return;
2512 
2513 		bfqd = bfqq->bfqd;
2514 
2515 		/* Reposition request in its sort_list */
2516 		elv_rb_del(&bfqq->sort_list, req);
2517 		elv_rb_add(&bfqq->sort_list, req);
2518 
2519 		/* Choose next request to be served for bfqq */
2520 		prev = bfqq->next_rq;
2521 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2522 					 bfqd->last_position);
2523 		bfqq->next_rq = next_rq;
2524 		/*
2525 		 * If next_rq changes, update both the queue's budget to
2526 		 * fit the new request and the queue's position in its
2527 		 * rq_pos_tree.
2528 		 */
2529 		if (prev != bfqq->next_rq) {
2530 			bfq_updated_next_req(bfqd, bfqq);
2531 			/*
2532 			 * See comments on bfq_pos_tree_add_move() for
2533 			 * the unlikely().
2534 			 */
2535 			if (unlikely(!bfqd->nonrot_with_queueing))
2536 				bfq_pos_tree_add_move(bfqd, bfqq);
2537 		}
2538 	}
2539 }
2540 
2541 /*
2542  * This function is called to notify the scheduler that the requests
2543  * rq and 'next' have been merged, with 'next' going away.  BFQ
2544  * exploits this hook to address the following issue: if 'next' has a
2545  * fifo_time lower that rq, then the fifo_time of rq must be set to
2546  * the value of 'next', to not forget the greater age of 'next'.
2547  *
2548  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2549  * on that rq is picked from the hash table q->elevator->hash, which,
2550  * in its turn, is filled only with I/O requests present in
2551  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2552  * the function that fills this hash table (elv_rqhash_add) is called
2553  * only by bfq_insert_request.
2554  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)2555 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2556 				struct request *next)
2557 {
2558 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2559 		*next_bfqq = RQ_BFQQ(next);
2560 
2561 	if (!bfqq)
2562 		goto remove;
2563 
2564 	/*
2565 	 * If next and rq belong to the same bfq_queue and next is older
2566 	 * than rq, then reposition rq in the fifo (by substituting next
2567 	 * with rq). Otherwise, if next and rq belong to different
2568 	 * bfq_queues, never reposition rq: in fact, we would have to
2569 	 * reposition it with respect to next's position in its own fifo,
2570 	 * which would most certainly be too expensive with respect to
2571 	 * the benefits.
2572 	 */
2573 	if (bfqq == next_bfqq &&
2574 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2575 	    next->fifo_time < rq->fifo_time) {
2576 		list_del_init(&rq->queuelist);
2577 		list_replace_init(&next->queuelist, &rq->queuelist);
2578 		rq->fifo_time = next->fifo_time;
2579 	}
2580 
2581 	if (bfqq->next_rq == next)
2582 		bfqq->next_rq = rq;
2583 
2584 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2585 remove:
2586 	/* Merged request may be in the IO scheduler. Remove it. */
2587 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2588 		bfq_remove_request(next->q, next);
2589 		if (next_bfqq)
2590 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2591 						    next->cmd_flags);
2592 	}
2593 }
2594 
2595 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)2596 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2597 {
2598 	/*
2599 	 * If bfqq has been enjoying interactive weight-raising, then
2600 	 * reset soft_rt_next_start. We do it for the following
2601 	 * reason. bfqq may have been conveying the I/O needed to load
2602 	 * a soft real-time application. Such an application actually
2603 	 * exhibits a soft real-time I/O pattern after it finishes
2604 	 * loading, and finally starts doing its job. But, if bfqq has
2605 	 * been receiving a lot of bandwidth so far (likely to happen
2606 	 * on a fast device), then soft_rt_next_start now contains a
2607 	 * high value that. So, without this reset, bfqq would be
2608 	 * prevented from being possibly considered as soft_rt for a
2609 	 * very long time.
2610 	 */
2611 
2612 	if (bfqq->wr_cur_max_time !=
2613 	    bfqq->bfqd->bfq_wr_rt_max_time)
2614 		bfqq->soft_rt_next_start = jiffies;
2615 
2616 	if (bfq_bfqq_busy(bfqq))
2617 		bfqq->bfqd->wr_busy_queues--;
2618 	bfqq->wr_coeff = 1;
2619 	bfqq->wr_cur_max_time = 0;
2620 	bfqq->last_wr_start_finish = jiffies;
2621 	/*
2622 	 * Trigger a weight change on the next invocation of
2623 	 * __bfq_entity_update_weight_prio.
2624 	 */
2625 	bfqq->entity.prio_changed = 1;
2626 }
2627 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2628 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2629 			     struct bfq_group *bfqg)
2630 {
2631 	int i, j, k;
2632 
2633 	for (k = 0; k < bfqd->num_actuators; k++) {
2634 		for (i = 0; i < 2; i++)
2635 			for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2636 				if (bfqg->async_bfqq[i][j][k])
2637 					bfq_bfqq_end_wr(bfqg->async_bfqq[i][j][k]);
2638 		if (bfqg->async_idle_bfqq[k])
2639 			bfq_bfqq_end_wr(bfqg->async_idle_bfqq[k]);
2640 	}
2641 }
2642 
bfq_end_wr(struct bfq_data * bfqd)2643 static void bfq_end_wr(struct bfq_data *bfqd)
2644 {
2645 	struct bfq_queue *bfqq;
2646 	int i;
2647 
2648 	spin_lock_irq(&bfqd->lock);
2649 
2650 	for (i = 0; i < bfqd->num_actuators; i++) {
2651 		list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list)
2652 			bfq_bfqq_end_wr(bfqq);
2653 	}
2654 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2655 		bfq_bfqq_end_wr(bfqq);
2656 	bfq_end_wr_async(bfqd);
2657 
2658 	spin_unlock_irq(&bfqd->lock);
2659 }
2660 
bfq_io_struct_pos(void * io_struct,bool request)2661 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2662 {
2663 	if (request)
2664 		return blk_rq_pos(io_struct);
2665 	else
2666 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2667 }
2668 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2669 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2670 				  sector_t sector)
2671 {
2672 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2673 	       BFQQ_CLOSE_THR;
2674 }
2675 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2676 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2677 					 struct bfq_queue *bfqq,
2678 					 sector_t sector)
2679 {
2680 	struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree;
2681 	struct rb_node *parent, *node;
2682 	struct bfq_queue *__bfqq;
2683 
2684 	if (RB_EMPTY_ROOT(root))
2685 		return NULL;
2686 
2687 	/*
2688 	 * First, if we find a request starting at the end of the last
2689 	 * request, choose it.
2690 	 */
2691 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2692 	if (__bfqq)
2693 		return __bfqq;
2694 
2695 	/*
2696 	 * If the exact sector wasn't found, the parent of the NULL leaf
2697 	 * will contain the closest sector (rq_pos_tree sorted by
2698 	 * next_request position).
2699 	 */
2700 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2701 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2702 		return __bfqq;
2703 
2704 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2705 		node = rb_next(&__bfqq->pos_node);
2706 	else
2707 		node = rb_prev(&__bfqq->pos_node);
2708 	if (!node)
2709 		return NULL;
2710 
2711 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2712 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2713 		return __bfqq;
2714 
2715 	return NULL;
2716 }
2717 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2718 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2719 						   struct bfq_queue *cur_bfqq,
2720 						   sector_t sector)
2721 {
2722 	struct bfq_queue *bfqq;
2723 
2724 	/*
2725 	 * We shall notice if some of the queues are cooperating,
2726 	 * e.g., working closely on the same area of the device. In
2727 	 * that case, we can group them together and: 1) don't waste
2728 	 * time idling, and 2) serve the union of their requests in
2729 	 * the best possible order for throughput.
2730 	 */
2731 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2732 	if (!bfqq || bfqq == cur_bfqq)
2733 		return NULL;
2734 
2735 	return bfqq;
2736 }
2737 
2738 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2739 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2740 {
2741 	int process_refs, new_process_refs;
2742 	struct bfq_queue *__bfqq;
2743 
2744 	/*
2745 	 * If there are no process references on the new_bfqq, then it is
2746 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2747 	 * may have dropped their last reference (not just their last process
2748 	 * reference).
2749 	 */
2750 	if (!bfqq_process_refs(new_bfqq))
2751 		return NULL;
2752 
2753 	/* Avoid a circular list and skip interim queue merges. */
2754 	while ((__bfqq = new_bfqq->new_bfqq)) {
2755 		if (__bfqq == bfqq)
2756 			return NULL;
2757 		new_bfqq = __bfqq;
2758 	}
2759 
2760 	process_refs = bfqq_process_refs(bfqq);
2761 	new_process_refs = bfqq_process_refs(new_bfqq);
2762 	/*
2763 	 * If the process for the bfqq has gone away, there is no
2764 	 * sense in merging the queues.
2765 	 */
2766 	if (process_refs == 0 || new_process_refs == 0)
2767 		return NULL;
2768 
2769 	/*
2770 	 * Make sure merged queues belong to the same parent. Parents could
2771 	 * have changed since the time we decided the two queues are suitable
2772 	 * for merging.
2773 	 */
2774 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2775 		return NULL;
2776 
2777 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2778 		new_bfqq->pid);
2779 
2780 	/*
2781 	 * Merging is just a redirection: the requests of the process
2782 	 * owning one of the two queues are redirected to the other queue.
2783 	 * The latter queue, in its turn, is set as shared if this is the
2784 	 * first time that the requests of some process are redirected to
2785 	 * it.
2786 	 *
2787 	 * We redirect bfqq to new_bfqq and not the opposite, because
2788 	 * we are in the context of the process owning bfqq, thus we
2789 	 * have the io_cq of this process. So we can immediately
2790 	 * configure this io_cq to redirect the requests of the
2791 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2792 	 * not available any more (new_bfqq->bic == NULL).
2793 	 *
2794 	 * Anyway, even in case new_bfqq coincides with the in-service
2795 	 * queue, redirecting requests the in-service queue is the
2796 	 * best option, as we feed the in-service queue with new
2797 	 * requests close to the last request served and, by doing so,
2798 	 * are likely to increase the throughput.
2799 	 */
2800 	bfqq->new_bfqq = new_bfqq;
2801 	/*
2802 	 * The above assignment schedules the following redirections:
2803 	 * each time some I/O for bfqq arrives, the process that
2804 	 * generated that I/O is disassociated from bfqq and
2805 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2806 	 * in advance, adding the number of processes that are
2807 	 * expected to be associated with new_bfqq as they happen to
2808 	 * issue I/O.
2809 	 */
2810 	new_bfqq->ref += process_refs;
2811 	return new_bfqq;
2812 }
2813 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2814 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2815 					struct bfq_queue *new_bfqq)
2816 {
2817 	if (bfq_too_late_for_merging(new_bfqq))
2818 		return false;
2819 
2820 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2821 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2822 		return false;
2823 
2824 	/*
2825 	 * If either of the queues has already been detected as seeky,
2826 	 * then merging it with the other queue is unlikely to lead to
2827 	 * sequential I/O.
2828 	 */
2829 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2830 		return false;
2831 
2832 	/*
2833 	 * Interleaved I/O is known to be done by (some) applications
2834 	 * only for reads, so it does not make sense to merge async
2835 	 * queues.
2836 	 */
2837 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2838 		return false;
2839 
2840 	return true;
2841 }
2842 
2843 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2844 					     struct bfq_queue *bfqq);
2845 
2846 static struct bfq_queue *
bfq_setup_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_queue * stable_merge_bfqq,struct bfq_iocq_bfqq_data * bfqq_data)2847 bfq_setup_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2848 		       struct bfq_queue *stable_merge_bfqq,
2849 		       struct bfq_iocq_bfqq_data *bfqq_data)
2850 {
2851 	int proc_ref = min(bfqq_process_refs(bfqq),
2852 			   bfqq_process_refs(stable_merge_bfqq));
2853 	struct bfq_queue *new_bfqq = NULL;
2854 
2855 	bfqq_data->stable_merge_bfqq = NULL;
2856 	if (idling_boosts_thr_without_issues(bfqd, bfqq) || proc_ref == 0)
2857 		goto out;
2858 
2859 	/* next function will take at least one ref */
2860 	new_bfqq = bfq_setup_merge(bfqq, stable_merge_bfqq);
2861 
2862 	if (new_bfqq) {
2863 		bfqq_data->stably_merged = true;
2864 		if (new_bfqq->bic) {
2865 			unsigned int new_a_idx = new_bfqq->actuator_idx;
2866 			struct bfq_iocq_bfqq_data *new_bfqq_data =
2867 				&new_bfqq->bic->bfqq_data[new_a_idx];
2868 
2869 			new_bfqq_data->stably_merged = true;
2870 		}
2871 	}
2872 
2873 out:
2874 	/* deschedule stable merge, because done or aborted here */
2875 	bfq_put_stable_ref(stable_merge_bfqq);
2876 
2877 	return new_bfqq;
2878 }
2879 
2880 /*
2881  * Attempt to schedule a merge of bfqq with the currently in-service
2882  * queue or with a close queue among the scheduled queues.  Return
2883  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2884  * structure otherwise.
2885  *
2886  * The OOM queue is not allowed to participate to cooperation: in fact, since
2887  * the requests temporarily redirected to the OOM queue could be redirected
2888  * again to dedicated queues at any time, the state needed to correctly
2889  * handle merging with the OOM queue would be quite complex and expensive
2890  * to maintain. Besides, in such a critical condition as an out of memory,
2891  * the benefits of queue merging may be little relevant, or even negligible.
2892  *
2893  * WARNING: queue merging may impair fairness among non-weight raised
2894  * queues, for at least two reasons: 1) the original weight of a
2895  * merged queue may change during the merged state, 2) even being the
2896  * weight the same, a merged queue may be bloated with many more
2897  * requests than the ones produced by its originally-associated
2898  * process.
2899  */
2900 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request,struct bfq_io_cq * bic)2901 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2902 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2903 {
2904 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2905 	unsigned int a_idx = bfqq->actuator_idx;
2906 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
2907 
2908 	/* if a merge has already been setup, then proceed with that first */
2909 	new_bfqq = bfqq->new_bfqq;
2910 	if (new_bfqq) {
2911 		while (new_bfqq->new_bfqq)
2912 			new_bfqq = new_bfqq->new_bfqq;
2913 		return new_bfqq;
2914 	}
2915 
2916 	/*
2917 	 * Check delayed stable merge for rotational or non-queueing
2918 	 * devs. For this branch to be executed, bfqq must not be
2919 	 * currently merged with some other queue (i.e., bfqq->bic
2920 	 * must be non null). If we considered also merged queues,
2921 	 * then we should also check whether bfqq has already been
2922 	 * merged with bic->stable_merge_bfqq. But this would be
2923 	 * costly and complicated.
2924 	 */
2925 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2926 		/*
2927 		 * Make sure also that bfqq is sync, because
2928 		 * bic->stable_merge_bfqq may point to some queue (for
2929 		 * stable merging) also if bic is associated with a
2930 		 * sync queue, but this bfqq is async
2931 		 */
2932 		if (bfq_bfqq_sync(bfqq) && bfqq_data->stable_merge_bfqq &&
2933 		    !bfq_bfqq_just_created(bfqq) &&
2934 		    time_is_before_jiffies(bfqq->split_time +
2935 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2936 		    time_is_before_jiffies(bfqq->creation_time +
2937 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2938 			struct bfq_queue *stable_merge_bfqq =
2939 				bfqq_data->stable_merge_bfqq;
2940 
2941 			return bfq_setup_stable_merge(bfqd, bfqq,
2942 						      stable_merge_bfqq,
2943 						      bfqq_data);
2944 		}
2945 	}
2946 
2947 	/*
2948 	 * Do not perform queue merging if the device is non
2949 	 * rotational and performs internal queueing. In fact, such a
2950 	 * device reaches a high speed through internal parallelism
2951 	 * and pipelining. This means that, to reach a high
2952 	 * throughput, it must have many requests enqueued at the same
2953 	 * time. But, in this configuration, the internal scheduling
2954 	 * algorithm of the device does exactly the job of queue
2955 	 * merging: it reorders requests so as to obtain as much as
2956 	 * possible a sequential I/O pattern. As a consequence, with
2957 	 * the workload generated by processes doing interleaved I/O,
2958 	 * the throughput reached by the device is likely to be the
2959 	 * same, with and without queue merging.
2960 	 *
2961 	 * Disabling merging also provides a remarkable benefit in
2962 	 * terms of throughput. Merging tends to make many workloads
2963 	 * artificially more uneven, because of shared queues
2964 	 * remaining non empty for incomparably more time than
2965 	 * non-merged queues. This may accentuate workload
2966 	 * asymmetries. For example, if one of the queues in a set of
2967 	 * merged queues has a higher weight than a normal queue, then
2968 	 * the shared queue may inherit such a high weight and, by
2969 	 * staying almost always active, may force BFQ to perform I/O
2970 	 * plugging most of the time. This evidently makes it harder
2971 	 * for BFQ to let the device reach a high throughput.
2972 	 *
2973 	 * Finally, the likely() macro below is not used because one
2974 	 * of the two branches is more likely than the other, but to
2975 	 * have the code path after the following if() executed as
2976 	 * fast as possible for the case of a non rotational device
2977 	 * with queueing. We want it because this is the fastest kind
2978 	 * of device. On the opposite end, the likely() may lengthen
2979 	 * the execution time of BFQ for the case of slower devices
2980 	 * (rotational or at least without queueing). But in this case
2981 	 * the execution time of BFQ matters very little, if not at
2982 	 * all.
2983 	 */
2984 	if (likely(bfqd->nonrot_with_queueing))
2985 		return NULL;
2986 
2987 	/*
2988 	 * Prevent bfqq from being merged if it has been created too
2989 	 * long ago. The idea is that true cooperating processes, and
2990 	 * thus their associated bfq_queues, are supposed to be
2991 	 * created shortly after each other. This is the case, e.g.,
2992 	 * for KVM/QEMU and dump I/O threads. Basing on this
2993 	 * assumption, the following filtering greatly reduces the
2994 	 * probability that two non-cooperating processes, which just
2995 	 * happen to do close I/O for some short time interval, have
2996 	 * their queues merged by mistake.
2997 	 */
2998 	if (bfq_too_late_for_merging(bfqq))
2999 		return NULL;
3000 
3001 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
3002 		return NULL;
3003 
3004 	/* If there is only one backlogged queue, don't search. */
3005 	if (bfq_tot_busy_queues(bfqd) == 1)
3006 		return NULL;
3007 
3008 	in_service_bfqq = bfqd->in_service_queue;
3009 
3010 	if (in_service_bfqq && in_service_bfqq != bfqq &&
3011 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
3012 	    bfq_rq_close_to_sector(io_struct, request,
3013 				   bfqd->in_serv_last_pos) &&
3014 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
3015 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
3016 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
3017 		if (new_bfqq)
3018 			return new_bfqq;
3019 	}
3020 	/*
3021 	 * Check whether there is a cooperator among currently scheduled
3022 	 * queues. The only thing we need is that the bio/request is not
3023 	 * NULL, as we need it to establish whether a cooperator exists.
3024 	 */
3025 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
3026 			bfq_io_struct_pos(io_struct, request));
3027 
3028 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
3029 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
3030 		return bfq_setup_merge(bfqq, new_bfqq);
3031 
3032 	return NULL;
3033 }
3034 
bfq_bfqq_save_state(struct bfq_queue * bfqq)3035 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
3036 {
3037 	struct bfq_io_cq *bic = bfqq->bic;
3038 	unsigned int a_idx = bfqq->actuator_idx;
3039 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx];
3040 
3041 	/*
3042 	 * If !bfqq->bic, the queue is already shared or its requests
3043 	 * have already been redirected to a shared queue; both idle window
3044 	 * and weight raising state have already been saved. Do nothing.
3045 	 */
3046 	if (!bic)
3047 		return;
3048 
3049 	bfqq_data->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
3050 	bfqq_data->saved_inject_limit =	bfqq->inject_limit;
3051 	bfqq_data->saved_decrease_time_jif = bfqq->decrease_time_jif;
3052 
3053 	bfqq_data->saved_weight = bfqq->entity.orig_weight;
3054 	bfqq_data->saved_ttime = bfqq->ttime;
3055 	bfqq_data->saved_has_short_ttime =
3056 		bfq_bfqq_has_short_ttime(bfqq);
3057 	bfqq_data->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
3058 	bfqq_data->saved_io_start_time = bfqq->io_start_time;
3059 	bfqq_data->saved_tot_idle_time = bfqq->tot_idle_time;
3060 	bfqq_data->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
3061 	bfqq_data->was_in_burst_list =
3062 		!hlist_unhashed(&bfqq->burst_list_node);
3063 
3064 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
3065 		     !bfq_bfqq_in_large_burst(bfqq) &&
3066 		     bfqq->bfqd->low_latency)) {
3067 		/*
3068 		 * bfqq being merged right after being created: bfqq
3069 		 * would have deserved interactive weight raising, but
3070 		 * did not make it to be set in a weight-raised state,
3071 		 * because of this early merge.	Store directly the
3072 		 * weight-raising state that would have been assigned
3073 		 * to bfqq, so that to avoid that bfqq unjustly fails
3074 		 * to enjoy weight raising if split soon.
3075 		 */
3076 		bfqq_data->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
3077 		bfqq_data->saved_wr_start_at_switch_to_srt =
3078 			bfq_smallest_from_now();
3079 		bfqq_data->saved_wr_cur_max_time =
3080 			bfq_wr_duration(bfqq->bfqd);
3081 		bfqq_data->saved_last_wr_start_finish = jiffies;
3082 	} else {
3083 		bfqq_data->saved_wr_coeff = bfqq->wr_coeff;
3084 		bfqq_data->saved_wr_start_at_switch_to_srt =
3085 			bfqq->wr_start_at_switch_to_srt;
3086 		bfqq_data->saved_service_from_wr =
3087 			bfqq->service_from_wr;
3088 		bfqq_data->saved_last_wr_start_finish =
3089 			bfqq->last_wr_start_finish;
3090 		bfqq_data->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
3091 	}
3092 }
3093 
3094 
bfq_reassign_last_bfqq(struct bfq_queue * cur_bfqq,struct bfq_queue * new_bfqq)3095 void bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq,
3096 			    struct bfq_queue *new_bfqq)
3097 {
3098 	if (cur_bfqq->entity.parent &&
3099 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
3100 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
3101 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
3102 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
3103 }
3104 
bfq_release_process_ref(struct bfq_data * bfqd,struct bfq_queue * bfqq)3105 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3106 {
3107 	/*
3108 	 * To prevent bfqq's service guarantees from being violated,
3109 	 * bfqq may be left busy, i.e., queued for service, even if
3110 	 * empty (see comments in __bfq_bfqq_expire() for
3111 	 * details). But, if no process will send requests to bfqq any
3112 	 * longer, then there is no point in keeping bfqq queued for
3113 	 * service. In addition, keeping bfqq queued for service, but
3114 	 * with no process ref any longer, may have caused bfqq to be
3115 	 * freed when dequeued from service. But this is assumed to
3116 	 * never happen.
3117 	 */
3118 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
3119 	    bfqq != bfqd->in_service_queue)
3120 		bfq_del_bfqq_busy(bfqq, false);
3121 
3122 	bfq_reassign_last_bfqq(bfqq, NULL);
3123 
3124 	bfq_put_queue(bfqq);
3125 }
3126 
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq)3127 static struct bfq_queue *bfq_merge_bfqqs(struct bfq_data *bfqd,
3128 					 struct bfq_io_cq *bic,
3129 					 struct bfq_queue *bfqq)
3130 {
3131 	struct bfq_queue *new_bfqq = bfqq->new_bfqq;
3132 
3133 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
3134 		(unsigned long)new_bfqq->pid);
3135 	/* Save weight raising and idle window of the merged queues */
3136 	bfq_bfqq_save_state(bfqq);
3137 	bfq_bfqq_save_state(new_bfqq);
3138 	if (bfq_bfqq_IO_bound(bfqq))
3139 		bfq_mark_bfqq_IO_bound(new_bfqq);
3140 	bfq_clear_bfqq_IO_bound(bfqq);
3141 
3142 	/*
3143 	 * The processes associated with bfqq are cooperators of the
3144 	 * processes associated with new_bfqq. So, if bfqq has a
3145 	 * waker, then assume that all these processes will be happy
3146 	 * to let bfqq's waker freely inject I/O when they have no
3147 	 * I/O.
3148 	 */
3149 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3150 	    bfqq->waker_bfqq != new_bfqq) {
3151 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3152 		new_bfqq->tentative_waker_bfqq = NULL;
3153 
3154 		/*
3155 		 * If the waker queue disappears, then
3156 		 * new_bfqq->waker_bfqq must be reset. So insert
3157 		 * new_bfqq into the woken_list of the waker. See
3158 		 * bfq_check_waker for details.
3159 		 */
3160 		hlist_add_head(&new_bfqq->woken_list_node,
3161 			       &new_bfqq->waker_bfqq->woken_list);
3162 
3163 	}
3164 
3165 	/*
3166 	 * If bfqq is weight-raised, then let new_bfqq inherit
3167 	 * weight-raising. To reduce false positives, neglect the case
3168 	 * where bfqq has just been created, but has not yet made it
3169 	 * to be weight-raised (which may happen because EQM may merge
3170 	 * bfqq even before bfq_add_request is executed for the first
3171 	 * time for bfqq). Handling this case would however be very
3172 	 * easy, thanks to the flag just_created.
3173 	 */
3174 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3175 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3176 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3177 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3178 		new_bfqq->wr_start_at_switch_to_srt =
3179 			bfqq->wr_start_at_switch_to_srt;
3180 		if (bfq_bfqq_busy(new_bfqq))
3181 			bfqd->wr_busy_queues++;
3182 		new_bfqq->entity.prio_changed = 1;
3183 	}
3184 
3185 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3186 		bfqq->wr_coeff = 1;
3187 		bfqq->entity.prio_changed = 1;
3188 		if (bfq_bfqq_busy(bfqq))
3189 			bfqd->wr_busy_queues--;
3190 	}
3191 
3192 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3193 		     bfqd->wr_busy_queues);
3194 
3195 	/*
3196 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3197 	 */
3198 	bic_set_bfqq(bic, new_bfqq, true, bfqq->actuator_idx);
3199 	bfq_mark_bfqq_coop(new_bfqq);
3200 	/*
3201 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3202 	 * set new_bfqq->bic to NULL. bfqq either:
3203 	 * - does not belong to any bic any more, and hence bfqq->bic must
3204 	 *   be set to NULL, or
3205 	 * - is a queue whose owning bics have already been redirected to a
3206 	 *   different queue, hence the queue is destined to not belong to
3207 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3208 	 *   assignment causes no harm).
3209 	 */
3210 	new_bfqq->bic = NULL;
3211 	/*
3212 	 * If the queue is shared, the pid is the pid of one of the associated
3213 	 * processes. Which pid depends on the exact sequence of merge events
3214 	 * the queue underwent. So printing such a pid is useless and confusing
3215 	 * because it reports a random pid between those of the associated
3216 	 * processes.
3217 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3218 	 * a pid in logging messages.
3219 	 */
3220 	new_bfqq->pid = -1;
3221 	bfqq->bic = NULL;
3222 
3223 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3224 
3225 	bfq_release_process_ref(bfqd, bfqq);
3226 
3227 	return new_bfqq;
3228 }
3229 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)3230 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3231 				struct bio *bio)
3232 {
3233 	struct bfq_data *bfqd = q->elevator->elevator_data;
3234 	bool is_sync = op_is_sync(bio->bi_opf);
3235 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3236 
3237 	/*
3238 	 * Disallow merge of a sync bio into an async request.
3239 	 */
3240 	if (is_sync && !rq_is_sync(rq))
3241 		return false;
3242 
3243 	/*
3244 	 * Lookup the bfqq that this bio will be queued with. Allow
3245 	 * merge only if rq is queued there.
3246 	 */
3247 	if (!bfqq)
3248 		return false;
3249 
3250 	/*
3251 	 * We take advantage of this function to perform an early merge
3252 	 * of the queues of possible cooperating processes.
3253 	 */
3254 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3255 	if (new_bfqq) {
3256 		/*
3257 		 * bic still points to bfqq, then it has not yet been
3258 		 * redirected to some other bfq_queue, and a queue
3259 		 * merge between bfqq and new_bfqq can be safely
3260 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3261 		 * and bfqq can be put.
3262 		 */
3263 		while (bfqq != new_bfqq)
3264 			bfqq = bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq);
3265 
3266 		/*
3267 		 * Change also bqfd->bio_bfqq, as
3268 		 * bfqd->bio_bic now points to new_bfqq, and
3269 		 * this function may be invoked again (and then may
3270 		 * use again bqfd->bio_bfqq).
3271 		 */
3272 		bfqd->bio_bfqq = bfqq;
3273 	}
3274 
3275 	return bfqq == RQ_BFQQ(rq);
3276 }
3277 
3278 /*
3279  * Set the maximum time for the in-service queue to consume its
3280  * budget. This prevents seeky processes from lowering the throughput.
3281  * In practice, a time-slice service scheme is used with seeky
3282  * processes.
3283  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)3284 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3285 				   struct bfq_queue *bfqq)
3286 {
3287 	unsigned int timeout_coeff;
3288 
3289 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3290 		timeout_coeff = 1;
3291 	else
3292 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3293 
3294 	bfqd->last_budget_start = blk_time_get();
3295 
3296 	bfqq->budget_timeout = jiffies +
3297 		bfqd->bfq_timeout * timeout_coeff;
3298 }
3299 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)3300 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3301 				       struct bfq_queue *bfqq)
3302 {
3303 	if (bfqq) {
3304 		bfq_clear_bfqq_fifo_expire(bfqq);
3305 
3306 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3307 
3308 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3309 		    bfqq->wr_coeff > 1 &&
3310 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3311 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3312 			/*
3313 			 * For soft real-time queues, move the start
3314 			 * of the weight-raising period forward by the
3315 			 * time the queue has not received any
3316 			 * service. Otherwise, a relatively long
3317 			 * service delay is likely to cause the
3318 			 * weight-raising period of the queue to end,
3319 			 * because of the short duration of the
3320 			 * weight-raising period of a soft real-time
3321 			 * queue.  It is worth noting that this move
3322 			 * is not so dangerous for the other queues,
3323 			 * because soft real-time queues are not
3324 			 * greedy.
3325 			 *
3326 			 * To not add a further variable, we use the
3327 			 * overloaded field budget_timeout to
3328 			 * determine for how long the queue has not
3329 			 * received service, i.e., how much time has
3330 			 * elapsed since the queue expired. However,
3331 			 * this is a little imprecise, because
3332 			 * budget_timeout is set to jiffies if bfqq
3333 			 * not only expires, but also remains with no
3334 			 * request.
3335 			 */
3336 			if (time_after(bfqq->budget_timeout,
3337 				       bfqq->last_wr_start_finish))
3338 				bfqq->last_wr_start_finish +=
3339 					jiffies - bfqq->budget_timeout;
3340 			else
3341 				bfqq->last_wr_start_finish = jiffies;
3342 		}
3343 
3344 		bfq_set_budget_timeout(bfqd, bfqq);
3345 		bfq_log_bfqq(bfqd, bfqq,
3346 			     "set_in_service_queue, cur-budget = %d",
3347 			     bfqq->entity.budget);
3348 	}
3349 
3350 	bfqd->in_service_queue = bfqq;
3351 	bfqd->in_serv_last_pos = 0;
3352 }
3353 
3354 /*
3355  * Get and set a new queue for service.
3356  */
bfq_set_in_service_queue(struct bfq_data * bfqd)3357 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3358 {
3359 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3360 
3361 	__bfq_set_in_service_queue(bfqd, bfqq);
3362 	return bfqq;
3363 }
3364 
bfq_arm_slice_timer(struct bfq_data * bfqd)3365 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3366 {
3367 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3368 	u32 sl;
3369 
3370 	bfq_mark_bfqq_wait_request(bfqq);
3371 
3372 	/*
3373 	 * We don't want to idle for seeks, but we do want to allow
3374 	 * fair distribution of slice time for a process doing back-to-back
3375 	 * seeks. So allow a little bit of time for him to submit a new rq.
3376 	 */
3377 	sl = bfqd->bfq_slice_idle;
3378 	/*
3379 	 * Unless the queue is being weight-raised or the scenario is
3380 	 * asymmetric, grant only minimum idle time if the queue
3381 	 * is seeky. A long idling is preserved for a weight-raised
3382 	 * queue, or, more in general, in an asymmetric scenario,
3383 	 * because a long idling is needed for guaranteeing to a queue
3384 	 * its reserved share of the throughput (in particular, it is
3385 	 * needed if the queue has a higher weight than some other
3386 	 * queue).
3387 	 */
3388 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3389 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3390 		sl = min_t(u64, sl, BFQ_MIN_TT);
3391 	else if (bfqq->wr_coeff > 1)
3392 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3393 
3394 	bfqd->last_idling_start = blk_time_get();
3395 	bfqd->last_idling_start_jiffies = jiffies;
3396 
3397 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3398 		      HRTIMER_MODE_REL);
3399 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3400 }
3401 
3402 /*
3403  * In autotuning mode, max_budget is dynamically recomputed as the
3404  * amount of sectors transferred in timeout at the estimated peak
3405  * rate. This enables BFQ to utilize a full timeslice with a full
3406  * budget, even if the in-service queue is served at peak rate. And
3407  * this maximises throughput with sequential workloads.
3408  */
bfq_calc_max_budget(struct bfq_data * bfqd)3409 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3410 {
3411 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3412 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3413 }
3414 
3415 /*
3416  * Update parameters related to throughput and responsiveness, as a
3417  * function of the estimated peak rate. See comments on
3418  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3419  */
update_thr_responsiveness_params(struct bfq_data * bfqd)3420 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3421 {
3422 	if (bfqd->bfq_user_max_budget == 0) {
3423 		bfqd->bfq_max_budget =
3424 			bfq_calc_max_budget(bfqd);
3425 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3426 	}
3427 }
3428 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)3429 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3430 				       struct request *rq)
3431 {
3432 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3433 		bfqd->last_dispatch = bfqd->first_dispatch = blk_time_get_ns();
3434 		bfqd->peak_rate_samples = 1;
3435 		bfqd->sequential_samples = 0;
3436 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3437 			blk_rq_sectors(rq);
3438 	} else /* no new rq dispatched, just reset the number of samples */
3439 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3440 
3441 	bfq_log(bfqd,
3442 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3443 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3444 		bfqd->tot_sectors_dispatched);
3445 }
3446 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)3447 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3448 {
3449 	u32 rate, weight, divisor;
3450 
3451 	/*
3452 	 * For the convergence property to hold (see comments on
3453 	 * bfq_update_peak_rate()) and for the assessment to be
3454 	 * reliable, a minimum number of samples must be present, and
3455 	 * a minimum amount of time must have elapsed. If not so, do
3456 	 * not compute new rate. Just reset parameters, to get ready
3457 	 * for a new evaluation attempt.
3458 	 */
3459 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3460 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3461 		goto reset_computation;
3462 
3463 	/*
3464 	 * If a new request completion has occurred after last
3465 	 * dispatch, then, to approximate the rate at which requests
3466 	 * have been served by the device, it is more precise to
3467 	 * extend the observation interval to the last completion.
3468 	 */
3469 	bfqd->delta_from_first =
3470 		max_t(u64, bfqd->delta_from_first,
3471 		      bfqd->last_completion - bfqd->first_dispatch);
3472 
3473 	/*
3474 	 * Rate computed in sects/usec, and not sects/nsec, for
3475 	 * precision issues.
3476 	 */
3477 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3478 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3479 
3480 	/*
3481 	 * Peak rate not updated if:
3482 	 * - the percentage of sequential dispatches is below 3/4 of the
3483 	 *   total, and rate is below the current estimated peak rate
3484 	 * - rate is unreasonably high (> 20M sectors/sec)
3485 	 */
3486 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3487 	     rate <= bfqd->peak_rate) ||
3488 		rate > 20<<BFQ_RATE_SHIFT)
3489 		goto reset_computation;
3490 
3491 	/*
3492 	 * We have to update the peak rate, at last! To this purpose,
3493 	 * we use a low-pass filter. We compute the smoothing constant
3494 	 * of the filter as a function of the 'weight' of the new
3495 	 * measured rate.
3496 	 *
3497 	 * As can be seen in next formulas, we define this weight as a
3498 	 * quantity proportional to how sequential the workload is,
3499 	 * and to how long the observation time interval is.
3500 	 *
3501 	 * The weight runs from 0 to 8. The maximum value of the
3502 	 * weight, 8, yields the minimum value for the smoothing
3503 	 * constant. At this minimum value for the smoothing constant,
3504 	 * the measured rate contributes for half of the next value of
3505 	 * the estimated peak rate.
3506 	 *
3507 	 * So, the first step is to compute the weight as a function
3508 	 * of how sequential the workload is. Note that the weight
3509 	 * cannot reach 9, because bfqd->sequential_samples cannot
3510 	 * become equal to bfqd->peak_rate_samples, which, in its
3511 	 * turn, holds true because bfqd->sequential_samples is not
3512 	 * incremented for the first sample.
3513 	 */
3514 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3515 
3516 	/*
3517 	 * Second step: further refine the weight as a function of the
3518 	 * duration of the observation interval.
3519 	 */
3520 	weight = min_t(u32, 8,
3521 		       div_u64(weight * bfqd->delta_from_first,
3522 			       BFQ_RATE_REF_INTERVAL));
3523 
3524 	/*
3525 	 * Divisor ranging from 10, for minimum weight, to 2, for
3526 	 * maximum weight.
3527 	 */
3528 	divisor = 10 - weight;
3529 
3530 	/*
3531 	 * Finally, update peak rate:
3532 	 *
3533 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3534 	 */
3535 	bfqd->peak_rate *= divisor-1;
3536 	bfqd->peak_rate /= divisor;
3537 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3538 
3539 	bfqd->peak_rate += rate;
3540 
3541 	/*
3542 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3543 	 * the minimum representable values reported in the comments
3544 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3545 	 * divisions by zero where bfqd->peak_rate is used as a
3546 	 * divisor.
3547 	 */
3548 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3549 
3550 	update_thr_responsiveness_params(bfqd);
3551 
3552 reset_computation:
3553 	bfq_reset_rate_computation(bfqd, rq);
3554 }
3555 
3556 /*
3557  * Update the read/write peak rate (the main quantity used for
3558  * auto-tuning, see update_thr_responsiveness_params()).
3559  *
3560  * It is not trivial to estimate the peak rate (correctly): because of
3561  * the presence of sw and hw queues between the scheduler and the
3562  * device components that finally serve I/O requests, it is hard to
3563  * say exactly when a given dispatched request is served inside the
3564  * device, and for how long. As a consequence, it is hard to know
3565  * precisely at what rate a given set of requests is actually served
3566  * by the device.
3567  *
3568  * On the opposite end, the dispatch time of any request is trivially
3569  * available, and, from this piece of information, the "dispatch rate"
3570  * of requests can be immediately computed. So, the idea in the next
3571  * function is to use what is known, namely request dispatch times
3572  * (plus, when useful, request completion times), to estimate what is
3573  * unknown, namely in-device request service rate.
3574  *
3575  * The main issue is that, because of the above facts, the rate at
3576  * which a certain set of requests is dispatched over a certain time
3577  * interval can vary greatly with respect to the rate at which the
3578  * same requests are then served. But, since the size of any
3579  * intermediate queue is limited, and the service scheme is lossless
3580  * (no request is silently dropped), the following obvious convergence
3581  * property holds: the number of requests dispatched MUST become
3582  * closer and closer to the number of requests completed as the
3583  * observation interval grows. This is the key property used in
3584  * the next function to estimate the peak service rate as a function
3585  * of the observed dispatch rate. The function assumes to be invoked
3586  * on every request dispatch.
3587  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)3588 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3589 {
3590 	u64 now_ns = blk_time_get_ns();
3591 
3592 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3593 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3594 			bfqd->peak_rate_samples);
3595 		bfq_reset_rate_computation(bfqd, rq);
3596 		goto update_last_values; /* will add one sample */
3597 	}
3598 
3599 	/*
3600 	 * Device idle for very long: the observation interval lasting
3601 	 * up to this dispatch cannot be a valid observation interval
3602 	 * for computing a new peak rate (similarly to the late-
3603 	 * completion event in bfq_completed_request()). Go to
3604 	 * update_rate_and_reset to have the following three steps
3605 	 * taken:
3606 	 * - close the observation interval at the last (previous)
3607 	 *   request dispatch or completion
3608 	 * - compute rate, if possible, for that observation interval
3609 	 * - start a new observation interval with this dispatch
3610 	 */
3611 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3612 	    bfqd->tot_rq_in_driver == 0)
3613 		goto update_rate_and_reset;
3614 
3615 	/* Update sampling information */
3616 	bfqd->peak_rate_samples++;
3617 
3618 	if ((bfqd->tot_rq_in_driver > 0 ||
3619 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3620 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3621 		bfqd->sequential_samples++;
3622 
3623 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3624 
3625 	/* Reset max observed rq size every 32 dispatches */
3626 	if (likely(bfqd->peak_rate_samples % 32))
3627 		bfqd->last_rq_max_size =
3628 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3629 	else
3630 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3631 
3632 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3633 
3634 	/* Target observation interval not yet reached, go on sampling */
3635 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3636 		goto update_last_values;
3637 
3638 update_rate_and_reset:
3639 	bfq_update_rate_reset(bfqd, rq);
3640 update_last_values:
3641 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3642 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3643 		bfqd->in_serv_last_pos = bfqd->last_position;
3644 	bfqd->last_dispatch = now_ns;
3645 }
3646 
3647 /*
3648  * Remove request from internal lists.
3649  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)3650 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3651 {
3652 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3653 
3654 	/*
3655 	 * For consistency, the next instruction should have been
3656 	 * executed after removing the request from the queue and
3657 	 * dispatching it.  We execute instead this instruction before
3658 	 * bfq_remove_request() (and hence introduce a temporary
3659 	 * inconsistency), for efficiency.  In fact, should this
3660 	 * dispatch occur for a non in-service bfqq, this anticipated
3661 	 * increment prevents two counters related to bfqq->dispatched
3662 	 * from risking to be, first, uselessly decremented, and then
3663 	 * incremented again when the (new) value of bfqq->dispatched
3664 	 * happens to be taken into account.
3665 	 */
3666 	bfqq->dispatched++;
3667 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3668 
3669 	bfq_remove_request(q, rq);
3670 }
3671 
3672 /*
3673  * There is a case where idling does not have to be performed for
3674  * throughput concerns, but to preserve the throughput share of
3675  * the process associated with bfqq.
3676  *
3677  * To introduce this case, we can note that allowing the drive
3678  * to enqueue more than one request at a time, and hence
3679  * delegating de facto final scheduling decisions to the
3680  * drive's internal scheduler, entails loss of control on the
3681  * actual request service order. In particular, the critical
3682  * situation is when requests from different processes happen
3683  * to be present, at the same time, in the internal queue(s)
3684  * of the drive. In such a situation, the drive, by deciding
3685  * the service order of the internally-queued requests, does
3686  * determine also the actual throughput distribution among
3687  * these processes. But the drive typically has no notion or
3688  * concern about per-process throughput distribution, and
3689  * makes its decisions only on a per-request basis. Therefore,
3690  * the service distribution enforced by the drive's internal
3691  * scheduler is likely to coincide with the desired throughput
3692  * distribution only in a completely symmetric, or favorably
3693  * skewed scenario where:
3694  * (i-a) each of these processes must get the same throughput as
3695  *	 the others,
3696  * (i-b) in case (i-a) does not hold, it holds that the process
3697  *       associated with bfqq must receive a lower or equal
3698  *	 throughput than any of the other processes;
3699  * (ii)  the I/O of each process has the same properties, in
3700  *       terms of locality (sequential or random), direction
3701  *       (reads or writes), request sizes, greediness
3702  *       (from I/O-bound to sporadic), and so on;
3703 
3704  * In fact, in such a scenario, the drive tends to treat the requests
3705  * of each process in about the same way as the requests of the
3706  * others, and thus to provide each of these processes with about the
3707  * same throughput.  This is exactly the desired throughput
3708  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3709  * even more convenient distribution for (the process associated with)
3710  * bfqq.
3711  *
3712  * In contrast, in any asymmetric or unfavorable scenario, device
3713  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3714  * that bfqq receives its assigned fraction of the device throughput
3715  * (see [1] for details).
3716  *
3717  * The problem is that idling may significantly reduce throughput with
3718  * certain combinations of types of I/O and devices. An important
3719  * example is sync random I/O on flash storage with command
3720  * queueing. So, unless bfqq falls in cases where idling also boosts
3721  * throughput, it is important to check conditions (i-a), i(-b) and
3722  * (ii) accurately, so as to avoid idling when not strictly needed for
3723  * service guarantees.
3724  *
3725  * Unfortunately, it is extremely difficult to thoroughly check
3726  * condition (ii). And, in case there are active groups, it becomes
3727  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3728  * if there are active groups, then, for conditions (i-a) or (i-b) to
3729  * become false 'indirectly', it is enough that an active group
3730  * contains more active processes or sub-groups than some other active
3731  * group. More precisely, for conditions (i-a) or (i-b) to become
3732  * false because of such a group, it is not even necessary that the
3733  * group is (still) active: it is sufficient that, even if the group
3734  * has become inactive, some of its descendant processes still have
3735  * some request already dispatched but still waiting for
3736  * completion. In fact, requests have still to be guaranteed their
3737  * share of the throughput even after being dispatched. In this
3738  * respect, it is easy to show that, if a group frequently becomes
3739  * inactive while still having in-flight requests, and if, when this
3740  * happens, the group is not considered in the calculation of whether
3741  * the scenario is asymmetric, then the group may fail to be
3742  * guaranteed its fair share of the throughput (basically because
3743  * idling may not be performed for the descendant processes of the
3744  * group, but it had to be).  We address this issue with the following
3745  * bi-modal behavior, implemented in the function
3746  * bfq_asymmetric_scenario().
3747  *
3748  * If there are groups with requests waiting for completion
3749  * (as commented above, some of these groups may even be
3750  * already inactive), then the scenario is tagged as
3751  * asymmetric, conservatively, without checking any of the
3752  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3753  * This behavior matches also the fact that groups are created
3754  * exactly if controlling I/O is a primary concern (to
3755  * preserve bandwidth and latency guarantees).
3756  *
3757  * On the opposite end, if there are no groups with requests waiting
3758  * for completion, then only conditions (i-a) and (i-b) are actually
3759  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3760  * idling is not performed, regardless of whether condition (ii)
3761  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3762  * hold, then idling is allowed, and the device tends to be prevented
3763  * from queueing many requests, possibly of several processes. Since
3764  * there are no groups with requests waiting for completion, then, to
3765  * control conditions (i-a) and (i-b) it is enough to check just
3766  * whether all the queues with requests waiting for completion also
3767  * have the same weight.
3768  *
3769  * Not checking condition (ii) evidently exposes bfqq to the
3770  * risk of getting less throughput than its fair share.
3771  * However, for queues with the same weight, a further
3772  * mechanism, preemption, mitigates or even eliminates this
3773  * problem. And it does so without consequences on overall
3774  * throughput. This mechanism and its benefits are explained
3775  * in the next three paragraphs.
3776  *
3777  * Even if a queue, say Q, is expired when it remains idle, Q
3778  * can still preempt the new in-service queue if the next
3779  * request of Q arrives soon (see the comments on
3780  * bfq_bfqq_update_budg_for_activation). If all queues and
3781  * groups have the same weight, this form of preemption,
3782  * combined with the hole-recovery heuristic described in the
3783  * comments on function bfq_bfqq_update_budg_for_activation,
3784  * are enough to preserve a correct bandwidth distribution in
3785  * the mid term, even without idling. In fact, even if not
3786  * idling allows the internal queues of the device to contain
3787  * many requests, and thus to reorder requests, we can rather
3788  * safely assume that the internal scheduler still preserves a
3789  * minimum of mid-term fairness.
3790  *
3791  * More precisely, this preemption-based, idleless approach
3792  * provides fairness in terms of IOPS, and not sectors per
3793  * second. This can be seen with a simple example. Suppose
3794  * that there are two queues with the same weight, but that
3795  * the first queue receives requests of 8 sectors, while the
3796  * second queue receives requests of 1024 sectors. In
3797  * addition, suppose that each of the two queues contains at
3798  * most one request at a time, which implies that each queue
3799  * always remains idle after it is served. Finally, after
3800  * remaining idle, each queue receives very quickly a new
3801  * request. It follows that the two queues are served
3802  * alternatively, preempting each other if needed. This
3803  * implies that, although both queues have the same weight,
3804  * the queue with large requests receives a service that is
3805  * 1024/8 times as high as the service received by the other
3806  * queue.
3807  *
3808  * The motivation for using preemption instead of idling (for
3809  * queues with the same weight) is that, by not idling,
3810  * service guarantees are preserved (completely or at least in
3811  * part) without minimally sacrificing throughput. And, if
3812  * there is no active group, then the primary expectation for
3813  * this device is probably a high throughput.
3814  *
3815  * We are now left only with explaining the two sub-conditions in the
3816  * additional compound condition that is checked below for deciding
3817  * whether the scenario is asymmetric. To explain the first
3818  * sub-condition, we need to add that the function
3819  * bfq_asymmetric_scenario checks the weights of only
3820  * non-weight-raised queues, for efficiency reasons (see comments on
3821  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3822  * is checked explicitly here. More precisely, the compound condition
3823  * below takes into account also the fact that, even if bfqq is being
3824  * weight-raised, the scenario is still symmetric if all queues with
3825  * requests waiting for completion happen to be
3826  * weight-raised. Actually, we should be even more precise here, and
3827  * differentiate between interactive weight raising and soft real-time
3828  * weight raising.
3829  *
3830  * The second sub-condition checked in the compound condition is
3831  * whether there is a fair amount of already in-flight I/O not
3832  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3833  * following reason. The drive may decide to serve in-flight
3834  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3835  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3836  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3837  * basically uncontrolled amount of I/O from other queues may be
3838  * dispatched too, possibly causing the service of bfqq's I/O to be
3839  * delayed even longer in the drive. This problem gets more and more
3840  * serious as the speed and the queue depth of the drive grow,
3841  * because, as these two quantities grow, the probability to find no
3842  * queue busy but many requests in flight grows too. By contrast,
3843  * plugging I/O dispatching minimizes the delay induced by already
3844  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3845  * lose because of this delay.
3846  *
3847  * As a side note, it is worth considering that the above
3848  * device-idling countermeasures may however fail in the following
3849  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3850  * in a time period during which all symmetry sub-conditions hold, and
3851  * therefore the device is allowed to enqueue many requests, but at
3852  * some later point in time some sub-condition stops to hold, then it
3853  * may become impossible to make requests be served in the desired
3854  * order until all the requests already queued in the device have been
3855  * served. The last sub-condition commented above somewhat mitigates
3856  * this problem for weight-raised queues.
3857  *
3858  * However, as an additional mitigation for this problem, we preserve
3859  * plugging for a special symmetric case that may suddenly turn into
3860  * asymmetric: the case where only bfqq is busy. In this case, not
3861  * expiring bfqq does not cause any harm to any other queues in terms
3862  * of service guarantees. In contrast, it avoids the following unlucky
3863  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3864  * lower weight than bfqq becomes busy (or more queues), (3) the new
3865  * queue is served until a new request arrives for bfqq, (4) when bfqq
3866  * is finally served, there are so many requests of the new queue in
3867  * the drive that the pending requests for bfqq take a lot of time to
3868  * be served. In particular, event (2) may case even already
3869  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3870  * avoid this series of events, the scenario is preventively declared
3871  * as asymmetric also if bfqq is the only busy queues
3872  */
idling_needed_for_service_guarantees(struct bfq_data * bfqd,struct bfq_queue * bfqq)3873 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3874 						 struct bfq_queue *bfqq)
3875 {
3876 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3877 
3878 	/* No point in idling for bfqq if it won't get requests any longer */
3879 	if (unlikely(!bfqq_process_refs(bfqq)))
3880 		return false;
3881 
3882 	return (bfqq->wr_coeff > 1 &&
3883 		(bfqd->wr_busy_queues < tot_busy_queues ||
3884 		 bfqd->tot_rq_in_driver >= bfqq->dispatched + 4)) ||
3885 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3886 		tot_busy_queues == 1;
3887 }
3888 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3889 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3890 			      enum bfqq_expiration reason)
3891 {
3892 	/*
3893 	 * If this bfqq is shared between multiple processes, check
3894 	 * to make sure that those processes are still issuing I/Os
3895 	 * within the mean seek distance. If not, it may be time to
3896 	 * break the queues apart again.
3897 	 */
3898 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3899 		bfq_mark_bfqq_split_coop(bfqq);
3900 
3901 	/*
3902 	 * Consider queues with a higher finish virtual time than
3903 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3904 	 * true, then bfqq's bandwidth would be violated if an
3905 	 * uncontrolled amount of I/O from these queues were
3906 	 * dispatched while bfqq is waiting for its new I/O to
3907 	 * arrive. This is exactly what may happen if this is a forced
3908 	 * expiration caused by a preemption attempt, and if bfqq is
3909 	 * not re-scheduled. To prevent this from happening, re-queue
3910 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3911 	 * empty. By doing so, bfqq is granted to be served before the
3912 	 * above queues (provided that bfqq is of course eligible).
3913 	 */
3914 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3915 	    !(reason == BFQQE_PREEMPTED &&
3916 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3917 		if (bfqq->dispatched == 0)
3918 			/*
3919 			 * Overloading budget_timeout field to store
3920 			 * the time at which the queue remains with no
3921 			 * backlog and no outstanding request; used by
3922 			 * the weight-raising mechanism.
3923 			 */
3924 			bfqq->budget_timeout = jiffies;
3925 
3926 		bfq_del_bfqq_busy(bfqq, true);
3927 	} else {
3928 		bfq_requeue_bfqq(bfqd, bfqq, true);
3929 		/*
3930 		 * Resort priority tree of potential close cooperators.
3931 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3932 		 */
3933 		if (unlikely(!bfqd->nonrot_with_queueing &&
3934 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3935 			bfq_pos_tree_add_move(bfqd, bfqq);
3936 	}
3937 
3938 	/*
3939 	 * All in-service entities must have been properly deactivated
3940 	 * or requeued before executing the next function, which
3941 	 * resets all in-service entities as no more in service. This
3942 	 * may cause bfqq to be freed. If this happens, the next
3943 	 * function returns true.
3944 	 */
3945 	return __bfq_bfqd_reset_in_service(bfqd);
3946 }
3947 
3948 /**
3949  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3950  * @bfqd: device data.
3951  * @bfqq: queue to update.
3952  * @reason: reason for expiration.
3953  *
3954  * Handle the feedback on @bfqq budget at queue expiration.
3955  * See the body for detailed comments.
3956  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3957 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3958 				     struct bfq_queue *bfqq,
3959 				     enum bfqq_expiration reason)
3960 {
3961 	struct request *next_rq;
3962 	int budget, min_budget;
3963 
3964 	min_budget = bfq_min_budget(bfqd);
3965 
3966 	if (bfqq->wr_coeff == 1)
3967 		budget = bfqq->max_budget;
3968 	else /*
3969 	      * Use a constant, low budget for weight-raised queues,
3970 	      * to help achieve a low latency. Keep it slightly higher
3971 	      * than the minimum possible budget, to cause a little
3972 	      * bit fewer expirations.
3973 	      */
3974 		budget = 2 * min_budget;
3975 
3976 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3977 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3978 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3979 		budget, bfq_min_budget(bfqd));
3980 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3981 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3982 
3983 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3984 		switch (reason) {
3985 		/*
3986 		 * Caveat: in all the following cases we trade latency
3987 		 * for throughput.
3988 		 */
3989 		case BFQQE_TOO_IDLE:
3990 			/*
3991 			 * This is the only case where we may reduce
3992 			 * the budget: if there is no request of the
3993 			 * process still waiting for completion, then
3994 			 * we assume (tentatively) that the timer has
3995 			 * expired because the batch of requests of
3996 			 * the process could have been served with a
3997 			 * smaller budget.  Hence, betting that
3998 			 * process will behave in the same way when it
3999 			 * becomes backlogged again, we reduce its
4000 			 * next budget.  As long as we guess right,
4001 			 * this budget cut reduces the latency
4002 			 * experienced by the process.
4003 			 *
4004 			 * However, if there are still outstanding
4005 			 * requests, then the process may have not yet
4006 			 * issued its next request just because it is
4007 			 * still waiting for the completion of some of
4008 			 * the still outstanding ones.  So in this
4009 			 * subcase we do not reduce its budget, on the
4010 			 * contrary we increase it to possibly boost
4011 			 * the throughput, as discussed in the
4012 			 * comments to the BUDGET_TIMEOUT case.
4013 			 */
4014 			if (bfqq->dispatched > 0) /* still outstanding reqs */
4015 				budget = min(budget * 2, bfqd->bfq_max_budget);
4016 			else {
4017 				if (budget > 5 * min_budget)
4018 					budget -= 4 * min_budget;
4019 				else
4020 					budget = min_budget;
4021 			}
4022 			break;
4023 		case BFQQE_BUDGET_TIMEOUT:
4024 			/*
4025 			 * We double the budget here because it gives
4026 			 * the chance to boost the throughput if this
4027 			 * is not a seeky process (and has bumped into
4028 			 * this timeout because of, e.g., ZBR).
4029 			 */
4030 			budget = min(budget * 2, bfqd->bfq_max_budget);
4031 			break;
4032 		case BFQQE_BUDGET_EXHAUSTED:
4033 			/*
4034 			 * The process still has backlog, and did not
4035 			 * let either the budget timeout or the disk
4036 			 * idling timeout expire. Hence it is not
4037 			 * seeky, has a short thinktime and may be
4038 			 * happy with a higher budget too. So
4039 			 * definitely increase the budget of this good
4040 			 * candidate to boost the disk throughput.
4041 			 */
4042 			budget = min(budget * 4, bfqd->bfq_max_budget);
4043 			break;
4044 		case BFQQE_NO_MORE_REQUESTS:
4045 			/*
4046 			 * For queues that expire for this reason, it
4047 			 * is particularly important to keep the
4048 			 * budget close to the actual service they
4049 			 * need. Doing so reduces the timestamp
4050 			 * misalignment problem described in the
4051 			 * comments in the body of
4052 			 * __bfq_activate_entity. In fact, suppose
4053 			 * that a queue systematically expires for
4054 			 * BFQQE_NO_MORE_REQUESTS and presents a
4055 			 * new request in time to enjoy timestamp
4056 			 * back-shifting. The larger the budget of the
4057 			 * queue is with respect to the service the
4058 			 * queue actually requests in each service
4059 			 * slot, the more times the queue can be
4060 			 * reactivated with the same virtual finish
4061 			 * time. It follows that, even if this finish
4062 			 * time is pushed to the system virtual time
4063 			 * to reduce the consequent timestamp
4064 			 * misalignment, the queue unjustly enjoys for
4065 			 * many re-activations a lower finish time
4066 			 * than all newly activated queues.
4067 			 *
4068 			 * The service needed by bfqq is measured
4069 			 * quite precisely by bfqq->entity.service.
4070 			 * Since bfqq does not enjoy device idling,
4071 			 * bfqq->entity.service is equal to the number
4072 			 * of sectors that the process associated with
4073 			 * bfqq requested to read/write before waiting
4074 			 * for request completions, or blocking for
4075 			 * other reasons.
4076 			 */
4077 			budget = max_t(int, bfqq->entity.service, min_budget);
4078 			break;
4079 		default:
4080 			return;
4081 		}
4082 	} else if (!bfq_bfqq_sync(bfqq)) {
4083 		/*
4084 		 * Async queues get always the maximum possible
4085 		 * budget, as for them we do not care about latency
4086 		 * (in addition, their ability to dispatch is limited
4087 		 * by the charging factor).
4088 		 */
4089 		budget = bfqd->bfq_max_budget;
4090 	}
4091 
4092 	bfqq->max_budget = budget;
4093 
4094 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
4095 	    !bfqd->bfq_user_max_budget)
4096 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
4097 
4098 	/*
4099 	 * If there is still backlog, then assign a new budget, making
4100 	 * sure that it is large enough for the next request.  Since
4101 	 * the finish time of bfqq must be kept in sync with the
4102 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
4103 	 * update.
4104 	 *
4105 	 * If there is no backlog, then no need to update the budget;
4106 	 * it will be updated on the arrival of a new request.
4107 	 */
4108 	next_rq = bfqq->next_rq;
4109 	if (next_rq)
4110 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
4111 					    bfq_serv_to_charge(next_rq, bfqq));
4112 
4113 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
4114 			next_rq ? blk_rq_sectors(next_rq) : 0,
4115 			bfqq->entity.budget);
4116 }
4117 
4118 /*
4119  * Return true if the process associated with bfqq is "slow". The slow
4120  * flag is used, in addition to the budget timeout, to reduce the
4121  * amount of service provided to seeky processes, and thus reduce
4122  * their chances to lower the throughput. More details in the comments
4123  * on the function bfq_bfqq_expire().
4124  *
4125  * An important observation is in order: as discussed in the comments
4126  * on the function bfq_update_peak_rate(), with devices with internal
4127  * queues, it is hard if ever possible to know when and for how long
4128  * an I/O request is processed by the device (apart from the trivial
4129  * I/O pattern where a new request is dispatched only after the
4130  * previous one has been completed). This makes it hard to evaluate
4131  * the real rate at which the I/O requests of each bfq_queue are
4132  * served.  In fact, for an I/O scheduler like BFQ, serving a
4133  * bfq_queue means just dispatching its requests during its service
4134  * slot (i.e., until the budget of the queue is exhausted, or the
4135  * queue remains idle, or, finally, a timeout fires). But, during the
4136  * service slot of a bfq_queue, around 100 ms at most, the device may
4137  * be even still processing requests of bfq_queues served in previous
4138  * service slots. On the opposite end, the requests of the in-service
4139  * bfq_queue may be completed after the service slot of the queue
4140  * finishes.
4141  *
4142  * Anyway, unless more sophisticated solutions are used
4143  * (where possible), the sum of the sizes of the requests dispatched
4144  * during the service slot of a bfq_queue is probably the only
4145  * approximation available for the service received by the bfq_queue
4146  * during its service slot. And this sum is the quantity used in this
4147  * function to evaluate the I/O speed of a process.
4148  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,unsigned long * delta_ms)4149 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4150 				 bool compensate, unsigned long *delta_ms)
4151 {
4152 	ktime_t delta_ktime;
4153 	u32 delta_usecs;
4154 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4155 
4156 	if (!bfq_bfqq_sync(bfqq))
4157 		return false;
4158 
4159 	if (compensate)
4160 		delta_ktime = bfqd->last_idling_start;
4161 	else
4162 		delta_ktime = blk_time_get();
4163 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4164 	delta_usecs = ktime_to_us(delta_ktime);
4165 
4166 	/* don't use too short time intervals */
4167 	if (delta_usecs < 1000) {
4168 		if (blk_queue_nonrot(bfqd->queue))
4169 			 /*
4170 			  * give same worst-case guarantees as idling
4171 			  * for seeky
4172 			  */
4173 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4174 		else /* charge at least one seek */
4175 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4176 
4177 		return slow;
4178 	}
4179 
4180 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4181 
4182 	/*
4183 	 * Use only long (> 20ms) intervals to filter out excessive
4184 	 * spikes in service rate estimation.
4185 	 */
4186 	if (delta_usecs > 20000) {
4187 		/*
4188 		 * Caveat for rotational devices: processes doing I/O
4189 		 * in the slower disk zones tend to be slow(er) even
4190 		 * if not seeky. In this respect, the estimated peak
4191 		 * rate is likely to be an average over the disk
4192 		 * surface. Accordingly, to not be too harsh with
4193 		 * unlucky processes, a process is deemed slow only if
4194 		 * its rate has been lower than half of the estimated
4195 		 * peak rate.
4196 		 */
4197 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4198 	}
4199 
4200 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4201 
4202 	return slow;
4203 }
4204 
4205 /*
4206  * To be deemed as soft real-time, an application must meet two
4207  * requirements. First, the application must not require an average
4208  * bandwidth higher than the approximate bandwidth required to playback or
4209  * record a compressed high-definition video.
4210  * The next function is invoked on the completion of the last request of a
4211  * batch, to compute the next-start time instant, soft_rt_next_start, such
4212  * that, if the next request of the application does not arrive before
4213  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4214  *
4215  * The second requirement is that the request pattern of the application is
4216  * isochronous, i.e., that, after issuing a request or a batch of requests,
4217  * the application stops issuing new requests until all its pending requests
4218  * have been completed. After that, the application may issue a new batch,
4219  * and so on.
4220  * For this reason the next function is invoked to compute
4221  * soft_rt_next_start only for applications that meet this requirement,
4222  * whereas soft_rt_next_start is set to infinity for applications that do
4223  * not.
4224  *
4225  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4226  * happen to meet, occasionally or systematically, both the above
4227  * bandwidth and isochrony requirements. This may happen at least in
4228  * the following circumstances. First, if the CPU load is high. The
4229  * application may stop issuing requests while the CPUs are busy
4230  * serving other processes, then restart, then stop again for a while,
4231  * and so on. The other circumstances are related to the storage
4232  * device: the storage device is highly loaded or reaches a low-enough
4233  * throughput with the I/O of the application (e.g., because the I/O
4234  * is random and/or the device is slow). In all these cases, the
4235  * I/O of the application may be simply slowed down enough to meet
4236  * the bandwidth and isochrony requirements. To reduce the probability
4237  * that greedy applications are deemed as soft real-time in these
4238  * corner cases, a further rule is used in the computation of
4239  * soft_rt_next_start: the return value of this function is forced to
4240  * be higher than the maximum between the following two quantities.
4241  *
4242  * (a) Current time plus: (1) the maximum time for which the arrival
4243  *     of a request is waited for when a sync queue becomes idle,
4244  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4245  *     postpone for a moment the reason for adding a few extra
4246  *     jiffies; we get back to it after next item (b).  Lower-bounding
4247  *     the return value of this function with the current time plus
4248  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4249  *     because the latter issue their next request as soon as possible
4250  *     after the last one has been completed. In contrast, a soft
4251  *     real-time application spends some time processing data, after a
4252  *     batch of its requests has been completed.
4253  *
4254  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4255  *     above, greedy applications may happen to meet both the
4256  *     bandwidth and isochrony requirements under heavy CPU or
4257  *     storage-device load. In more detail, in these scenarios, these
4258  *     applications happen, only for limited time periods, to do I/O
4259  *     slowly enough to meet all the requirements described so far,
4260  *     including the filtering in above item (a). These slow-speed
4261  *     time intervals are usually interspersed between other time
4262  *     intervals during which these applications do I/O at a very high
4263  *     speed. Fortunately, exactly because of the high speed of the
4264  *     I/O in the high-speed intervals, the values returned by this
4265  *     function happen to be so high, near the end of any such
4266  *     high-speed interval, to be likely to fall *after* the end of
4267  *     the low-speed time interval that follows. These high values are
4268  *     stored in bfqq->soft_rt_next_start after each invocation of
4269  *     this function. As a consequence, if the last value of
4270  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4271  *     next value that this function may return, then, from the very
4272  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4273  *     likely to be constantly kept so high that any I/O request
4274  *     issued during the low-speed interval is considered as arriving
4275  *     to soon for the application to be deemed as soft
4276  *     real-time. Then, in the high-speed interval that follows, the
4277  *     application will not be deemed as soft real-time, just because
4278  *     it will do I/O at a high speed. And so on.
4279  *
4280  * Getting back to the filtering in item (a), in the following two
4281  * cases this filtering might be easily passed by a greedy
4282  * application, if the reference quantity was just
4283  * bfqd->bfq_slice_idle:
4284  * 1) HZ is so low that the duration of a jiffy is comparable to or
4285  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4286  *    devices with HZ=100. The time granularity may be so coarse
4287  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4288  *    is rather lower than the exact value.
4289  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4290  *    for a while, then suddenly 'jump' by several units to recover the lost
4291  *    increments. This seems to happen, e.g., inside virtual machines.
4292  * To address this issue, in the filtering in (a) we do not use as a
4293  * reference time interval just bfqd->bfq_slice_idle, but
4294  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4295  * minimum number of jiffies for which the filter seems to be quite
4296  * precise also in embedded systems and KVM/QEMU virtual machines.
4297  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)4298 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4299 						struct bfq_queue *bfqq)
4300 {
4301 	return max3(bfqq->soft_rt_next_start,
4302 		    bfqq->last_idle_bklogged +
4303 		    HZ * bfqq->service_from_backlogged /
4304 		    bfqd->bfq_wr_max_softrt_rate,
4305 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4306 }
4307 
4308 /**
4309  * bfq_bfqq_expire - expire a queue.
4310  * @bfqd: device owning the queue.
4311  * @bfqq: the queue to expire.
4312  * @compensate: if true, compensate for the time spent idling.
4313  * @reason: the reason causing the expiration.
4314  *
4315  * If the process associated with bfqq does slow I/O (e.g., because it
4316  * issues random requests), we charge bfqq with the time it has been
4317  * in service instead of the service it has received (see
4318  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4319  * a consequence, bfqq will typically get higher timestamps upon
4320  * reactivation, and hence it will be rescheduled as if it had
4321  * received more service than what it has actually received. In the
4322  * end, bfqq receives less service in proportion to how slowly its
4323  * associated process consumes its budgets (and hence how seriously it
4324  * tends to lower the throughput). In addition, this time-charging
4325  * strategy guarantees time fairness among slow processes. In
4326  * contrast, if the process associated with bfqq is not slow, we
4327  * charge bfqq exactly with the service it has received.
4328  *
4329  * Charging time to the first type of queues and the exact service to
4330  * the other has the effect of using the WF2Q+ policy to schedule the
4331  * former on a timeslice basis, without violating service domain
4332  * guarantees among the latter.
4333  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)4334 void bfq_bfqq_expire(struct bfq_data *bfqd,
4335 		     struct bfq_queue *bfqq,
4336 		     bool compensate,
4337 		     enum bfqq_expiration reason)
4338 {
4339 	bool slow;
4340 	unsigned long delta = 0;
4341 	struct bfq_entity *entity = &bfqq->entity;
4342 
4343 	/*
4344 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4345 	 */
4346 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, &delta);
4347 
4348 	/*
4349 	 * As above explained, charge slow (typically seeky) and
4350 	 * timed-out queues with the time and not the service
4351 	 * received, to favor sequential workloads.
4352 	 *
4353 	 * Processes doing I/O in the slower disk zones will tend to
4354 	 * be slow(er) even if not seeky. Therefore, since the
4355 	 * estimated peak rate is actually an average over the disk
4356 	 * surface, these processes may timeout just for bad luck. To
4357 	 * avoid punishing them, do not charge time to processes that
4358 	 * succeeded in consuming at least 2/3 of their budget. This
4359 	 * allows BFQ to preserve enough elasticity to still perform
4360 	 * bandwidth, and not time, distribution with little unlucky
4361 	 * or quasi-sequential processes.
4362 	 */
4363 	if (bfqq->wr_coeff == 1 &&
4364 	    (slow ||
4365 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4366 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4367 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4368 
4369 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4370 		bfqq->last_wr_start_finish = jiffies;
4371 
4372 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4373 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4374 		/*
4375 		 * If we get here, and there are no outstanding
4376 		 * requests, then the request pattern is isochronous
4377 		 * (see the comments on the function
4378 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4379 		 * compute soft_rt_next_start.
4380 		 *
4381 		 * If, instead, the queue still has outstanding
4382 		 * requests, then we have to wait for the completion
4383 		 * of all the outstanding requests to discover whether
4384 		 * the request pattern is actually isochronous.
4385 		 */
4386 		if (bfqq->dispatched == 0)
4387 			bfqq->soft_rt_next_start =
4388 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4389 		else if (bfqq->dispatched > 0) {
4390 			/*
4391 			 * Schedule an update of soft_rt_next_start to when
4392 			 * the task may be discovered to be isochronous.
4393 			 */
4394 			bfq_mark_bfqq_softrt_update(bfqq);
4395 		}
4396 	}
4397 
4398 	bfq_log_bfqq(bfqd, bfqq,
4399 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4400 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4401 
4402 	/*
4403 	 * bfqq expired, so no total service time needs to be computed
4404 	 * any longer: reset state machine for measuring total service
4405 	 * times.
4406 	 */
4407 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4408 	bfqd->waited_rq = NULL;
4409 
4410 	/*
4411 	 * Increase, decrease or leave budget unchanged according to
4412 	 * reason.
4413 	 */
4414 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4415 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4416 		/* bfqq is gone, no more actions on it */
4417 		return;
4418 
4419 	/* mark bfqq as waiting a request only if a bic still points to it */
4420 	if (!bfq_bfqq_busy(bfqq) &&
4421 	    reason != BFQQE_BUDGET_TIMEOUT &&
4422 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4423 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4424 		/*
4425 		 * Not setting service to 0, because, if the next rq
4426 		 * arrives in time, the queue will go on receiving
4427 		 * service with this same budget (as if it never expired)
4428 		 */
4429 	} else
4430 		entity->service = 0;
4431 
4432 	/*
4433 	 * Reset the received-service counter for every parent entity.
4434 	 * Differently from what happens with bfqq->entity.service,
4435 	 * the resetting of this counter never needs to be postponed
4436 	 * for parent entities. In fact, in case bfqq may have a
4437 	 * chance to go on being served using the last, partially
4438 	 * consumed budget, bfqq->entity.service needs to be kept,
4439 	 * because if bfqq then actually goes on being served using
4440 	 * the same budget, the last value of bfqq->entity.service is
4441 	 * needed to properly decrement bfqq->entity.budget by the
4442 	 * portion already consumed. In contrast, it is not necessary
4443 	 * to keep entity->service for parent entities too, because
4444 	 * the bubble up of the new value of bfqq->entity.budget will
4445 	 * make sure that the budgets of parent entities are correct,
4446 	 * even in case bfqq and thus parent entities go on receiving
4447 	 * service with the same budget.
4448 	 */
4449 	entity = entity->parent;
4450 	for_each_entity(entity)
4451 		entity->service = 0;
4452 }
4453 
4454 /*
4455  * Budget timeout is not implemented through a dedicated timer, but
4456  * just checked on request arrivals and completions, as well as on
4457  * idle timer expirations.
4458  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)4459 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4460 {
4461 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4462 }
4463 
4464 /*
4465  * If we expire a queue that is actively waiting (i.e., with the
4466  * device idled) for the arrival of a new request, then we may incur
4467  * the timestamp misalignment problem described in the body of the
4468  * function __bfq_activate_entity. Hence we return true only if this
4469  * condition does not hold, or if the queue is slow enough to deserve
4470  * only to be kicked off for preserving a high throughput.
4471  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)4472 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4473 {
4474 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4475 		"may_budget_timeout: wait_request %d left %d timeout %d",
4476 		bfq_bfqq_wait_request(bfqq),
4477 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4478 		bfq_bfqq_budget_timeout(bfqq));
4479 
4480 	return (!bfq_bfqq_wait_request(bfqq) ||
4481 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4482 		&&
4483 		bfq_bfqq_budget_timeout(bfqq);
4484 }
4485 
idling_boosts_thr_without_issues(struct bfq_data * bfqd,struct bfq_queue * bfqq)4486 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4487 					     struct bfq_queue *bfqq)
4488 {
4489 	bool rot_without_queueing =
4490 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4491 		bfqq_sequential_and_IO_bound,
4492 		idling_boosts_thr;
4493 
4494 	/* No point in idling for bfqq if it won't get requests any longer */
4495 	if (unlikely(!bfqq_process_refs(bfqq)))
4496 		return false;
4497 
4498 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4499 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4500 
4501 	/*
4502 	 * The next variable takes into account the cases where idling
4503 	 * boosts the throughput.
4504 	 *
4505 	 * The value of the variable is computed considering, first, that
4506 	 * idling is virtually always beneficial for the throughput if:
4507 	 * (a) the device is not NCQ-capable and rotational, or
4508 	 * (b) regardless of the presence of NCQ, the device is rotational and
4509 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4510 	 * (c) regardless of whether it is rotational, the device is
4511 	 *     not NCQ-capable and the request pattern for bfqq is
4512 	 *     I/O-bound and sequential.
4513 	 *
4514 	 * Secondly, and in contrast to the above item (b), idling an
4515 	 * NCQ-capable flash-based device would not boost the
4516 	 * throughput even with sequential I/O; rather it would lower
4517 	 * the throughput in proportion to how fast the device
4518 	 * is. Accordingly, the next variable is true if any of the
4519 	 * above conditions (a), (b) or (c) is true, and, in
4520 	 * particular, happens to be false if bfqd is an NCQ-capable
4521 	 * flash-based device.
4522 	 */
4523 	idling_boosts_thr = rot_without_queueing ||
4524 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4525 		 bfqq_sequential_and_IO_bound);
4526 
4527 	/*
4528 	 * The return value of this function is equal to that of
4529 	 * idling_boosts_thr, unless a special case holds. In this
4530 	 * special case, described below, idling may cause problems to
4531 	 * weight-raised queues.
4532 	 *
4533 	 * When the request pool is saturated (e.g., in the presence
4534 	 * of write hogs), if the processes associated with
4535 	 * non-weight-raised queues ask for requests at a lower rate,
4536 	 * then processes associated with weight-raised queues have a
4537 	 * higher probability to get a request from the pool
4538 	 * immediately (or at least soon) when they need one. Thus
4539 	 * they have a higher probability to actually get a fraction
4540 	 * of the device throughput proportional to their high
4541 	 * weight. This is especially true with NCQ-capable drives,
4542 	 * which enqueue several requests in advance, and further
4543 	 * reorder internally-queued requests.
4544 	 *
4545 	 * For this reason, we force to false the return value if
4546 	 * there are weight-raised busy queues. In this case, and if
4547 	 * bfqq is not weight-raised, this guarantees that the device
4548 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4549 	 * then idling will be guaranteed by another variable, see
4550 	 * below). Combined with the timestamping rules of BFQ (see
4551 	 * [1] for details), this behavior causes bfqq, and hence any
4552 	 * sync non-weight-raised queue, to get a lower number of
4553 	 * requests served, and thus to ask for a lower number of
4554 	 * requests from the request pool, before the busy
4555 	 * weight-raised queues get served again. This often mitigates
4556 	 * starvation problems in the presence of heavy write
4557 	 * workloads and NCQ, thereby guaranteeing a higher
4558 	 * application and system responsiveness in these hostile
4559 	 * scenarios.
4560 	 */
4561 	return idling_boosts_thr &&
4562 		bfqd->wr_busy_queues == 0;
4563 }
4564 
4565 /*
4566  * For a queue that becomes empty, device idling is allowed only if
4567  * this function returns true for that queue. As a consequence, since
4568  * device idling plays a critical role for both throughput boosting
4569  * and service guarantees, the return value of this function plays a
4570  * critical role as well.
4571  *
4572  * In a nutshell, this function returns true only if idling is
4573  * beneficial for throughput or, even if detrimental for throughput,
4574  * idling is however necessary to preserve service guarantees (low
4575  * latency, desired throughput distribution, ...). In particular, on
4576  * NCQ-capable devices, this function tries to return false, so as to
4577  * help keep the drives' internal queues full, whenever this helps the
4578  * device boost the throughput without causing any service-guarantee
4579  * issue.
4580  *
4581  * Most of the issues taken into account to get the return value of
4582  * this function are not trivial. We discuss these issues in the two
4583  * functions providing the main pieces of information needed by this
4584  * function.
4585  */
bfq_better_to_idle(struct bfq_queue * bfqq)4586 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4587 {
4588 	struct bfq_data *bfqd = bfqq->bfqd;
4589 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4590 
4591 	/* No point in idling for bfqq if it won't get requests any longer */
4592 	if (unlikely(!bfqq_process_refs(bfqq)))
4593 		return false;
4594 
4595 	if (unlikely(bfqd->strict_guarantees))
4596 		return true;
4597 
4598 	/*
4599 	 * Idling is performed only if slice_idle > 0. In addition, we
4600 	 * do not idle if
4601 	 * (a) bfqq is async
4602 	 * (b) bfqq is in the idle io prio class: in this case we do
4603 	 * not idle because we want to minimize the bandwidth that
4604 	 * queues in this class can steal to higher-priority queues
4605 	 */
4606 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4607 	   bfq_class_idle(bfqq))
4608 		return false;
4609 
4610 	idling_boosts_thr_with_no_issue =
4611 		idling_boosts_thr_without_issues(bfqd, bfqq);
4612 
4613 	idling_needed_for_service_guar =
4614 		idling_needed_for_service_guarantees(bfqd, bfqq);
4615 
4616 	/*
4617 	 * We have now the two components we need to compute the
4618 	 * return value of the function, which is true only if idling
4619 	 * either boosts the throughput (without issues), or is
4620 	 * necessary to preserve service guarantees.
4621 	 */
4622 	return idling_boosts_thr_with_no_issue ||
4623 		idling_needed_for_service_guar;
4624 }
4625 
4626 /*
4627  * If the in-service queue is empty but the function bfq_better_to_idle
4628  * returns true, then:
4629  * 1) the queue must remain in service and cannot be expired, and
4630  * 2) the device must be idled to wait for the possible arrival of a new
4631  *    request for the queue.
4632  * See the comments on the function bfq_better_to_idle for the reasons
4633  * why performing device idling is the best choice to boost the throughput
4634  * and preserve service guarantees when bfq_better_to_idle itself
4635  * returns true.
4636  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)4637 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4638 {
4639 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4640 }
4641 
4642 /*
4643  * This function chooses the queue from which to pick the next extra
4644  * I/O request to inject, if it finds a compatible queue. See the
4645  * comments on bfq_update_inject_limit() for details on the injection
4646  * mechanism, and for the definitions of the quantities mentioned
4647  * below.
4648  */
4649 static struct bfq_queue *
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)4650 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4651 {
4652 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4653 	unsigned int limit = in_serv_bfqq->inject_limit;
4654 	int i;
4655 
4656 	/*
4657 	 * If
4658 	 * - bfqq is not weight-raised and therefore does not carry
4659 	 *   time-critical I/O,
4660 	 * or
4661 	 * - regardless of whether bfqq is weight-raised, bfqq has
4662 	 *   however a long think time, during which it can absorb the
4663 	 *   effect of an appropriate number of extra I/O requests
4664 	 *   from other queues (see bfq_update_inject_limit for
4665 	 *   details on the computation of this number);
4666 	 * then injection can be performed without restrictions.
4667 	 */
4668 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4669 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4670 
4671 	/*
4672 	 * If
4673 	 * - the baseline total service time could not be sampled yet,
4674 	 *   so the inject limit happens to be still 0, and
4675 	 * - a lot of time has elapsed since the plugging of I/O
4676 	 *   dispatching started, so drive speed is being wasted
4677 	 *   significantly;
4678 	 * then temporarily raise inject limit to one request.
4679 	 */
4680 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4681 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4682 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4683 				      bfqd->bfq_slice_idle)
4684 		)
4685 		limit = 1;
4686 
4687 	if (bfqd->tot_rq_in_driver >= limit)
4688 		return NULL;
4689 
4690 	/*
4691 	 * Linear search of the source queue for injection; but, with
4692 	 * a high probability, very few steps are needed to find a
4693 	 * candidate queue, i.e., a queue with enough budget left for
4694 	 * its next request. In fact:
4695 	 * - BFQ dynamically updates the budget of every queue so as
4696 	 *   to accommodate the expected backlog of the queue;
4697 	 * - if a queue gets all its requests dispatched as injected
4698 	 *   service, then the queue is removed from the active list
4699 	 *   (and re-added only if it gets new requests, but then it
4700 	 *   is assigned again enough budget for its new backlog).
4701 	 */
4702 	for (i = 0; i < bfqd->num_actuators; i++) {
4703 		list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list)
4704 			if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4705 				(in_serv_always_inject || bfqq->wr_coeff > 1) &&
4706 				bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4707 				bfq_bfqq_budget_left(bfqq)) {
4708 			/*
4709 			 * Allow for only one large in-flight request
4710 			 * on non-rotational devices, for the
4711 			 * following reason. On non-rotationl drives,
4712 			 * large requests take much longer than
4713 			 * smaller requests to be served. In addition,
4714 			 * the drive prefers to serve large requests
4715 			 * w.r.t. to small ones, if it can choose. So,
4716 			 * having more than one large requests queued
4717 			 * in the drive may easily make the next first
4718 			 * request of the in-service queue wait for so
4719 			 * long to break bfqq's service guarantees. On
4720 			 * the bright side, large requests let the
4721 			 * drive reach a very high throughput, even if
4722 			 * there is only one in-flight large request
4723 			 * at a time.
4724 			 */
4725 			if (blk_queue_nonrot(bfqd->queue) &&
4726 			    blk_rq_sectors(bfqq->next_rq) >=
4727 			    BFQQ_SECT_THR_NONROT &&
4728 			    bfqd->tot_rq_in_driver >= 1)
4729 				continue;
4730 			else {
4731 				bfqd->rqs_injected = true;
4732 				return bfqq;
4733 			}
4734 		}
4735 	}
4736 
4737 	return NULL;
4738 }
4739 
4740 static struct bfq_queue *
bfq_find_active_bfqq_for_actuator(struct bfq_data * bfqd,int idx)4741 bfq_find_active_bfqq_for_actuator(struct bfq_data *bfqd, int idx)
4742 {
4743 	struct bfq_queue *bfqq;
4744 
4745 	if (bfqd->in_service_queue &&
4746 	    bfqd->in_service_queue->actuator_idx == idx)
4747 		return bfqd->in_service_queue;
4748 
4749 	list_for_each_entry(bfqq, &bfqd->active_list[idx], bfqq_list) {
4750 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4751 			bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4752 				bfq_bfqq_budget_left(bfqq)) {
4753 			return bfqq;
4754 		}
4755 	}
4756 
4757 	return NULL;
4758 }
4759 
4760 /*
4761  * Perform a linear scan of each actuator, until an actuator is found
4762  * for which the following three conditions hold: the load of the
4763  * actuator is below the threshold (see comments on
4764  * actuator_load_threshold for details) and lower than that of the
4765  * next actuator (comments on this extra condition below), and there
4766  * is a queue that contains I/O for that actuator. On success, return
4767  * that queue.
4768  *
4769  * Performing a plain linear scan entails a prioritization among
4770  * actuators. The extra condition above breaks this prioritization and
4771  * tends to distribute injection uniformly across actuators.
4772  */
4773 static struct bfq_queue *
bfq_find_bfqq_for_underused_actuator(struct bfq_data * bfqd)4774 bfq_find_bfqq_for_underused_actuator(struct bfq_data *bfqd)
4775 {
4776 	int i;
4777 
4778 	for (i = 0 ; i < bfqd->num_actuators; i++) {
4779 		if (bfqd->rq_in_driver[i] < bfqd->actuator_load_threshold &&
4780 		    (i == bfqd->num_actuators - 1 ||
4781 		     bfqd->rq_in_driver[i] < bfqd->rq_in_driver[i+1])) {
4782 			struct bfq_queue *bfqq =
4783 				bfq_find_active_bfqq_for_actuator(bfqd, i);
4784 
4785 			if (bfqq)
4786 				return bfqq;
4787 		}
4788 	}
4789 
4790 	return NULL;
4791 }
4792 
4793 
4794 /*
4795  * Select a queue for service.  If we have a current queue in service,
4796  * check whether to continue servicing it, or retrieve and set a new one.
4797  */
bfq_select_queue(struct bfq_data * bfqd)4798 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4799 {
4800 	struct bfq_queue *bfqq, *inject_bfqq;
4801 	struct request *next_rq;
4802 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4803 
4804 	bfqq = bfqd->in_service_queue;
4805 	if (!bfqq)
4806 		goto new_queue;
4807 
4808 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4809 
4810 	/*
4811 	 * Do not expire bfqq for budget timeout if bfqq may be about
4812 	 * to enjoy device idling. The reason why, in this case, we
4813 	 * prevent bfqq from expiring is the same as in the comments
4814 	 * on the case where bfq_bfqq_must_idle() returns true, in
4815 	 * bfq_completed_request().
4816 	 */
4817 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4818 	    !bfq_bfqq_must_idle(bfqq))
4819 		goto expire;
4820 
4821 check_queue:
4822 	/*
4823 	 *  If some actuator is underutilized, but the in-service
4824 	 *  queue does not contain I/O for that actuator, then try to
4825 	 *  inject I/O for that actuator.
4826 	 */
4827 	inject_bfqq = bfq_find_bfqq_for_underused_actuator(bfqd);
4828 	if (inject_bfqq && inject_bfqq != bfqq)
4829 		return inject_bfqq;
4830 
4831 	/*
4832 	 * This loop is rarely executed more than once. Even when it
4833 	 * happens, it is much more convenient to re-execute this loop
4834 	 * than to return NULL and trigger a new dispatch to get a
4835 	 * request served.
4836 	 */
4837 	next_rq = bfqq->next_rq;
4838 	/*
4839 	 * If bfqq has requests queued and it has enough budget left to
4840 	 * serve them, keep the queue, otherwise expire it.
4841 	 */
4842 	if (next_rq) {
4843 		if (bfq_serv_to_charge(next_rq, bfqq) >
4844 			bfq_bfqq_budget_left(bfqq)) {
4845 			/*
4846 			 * Expire the queue for budget exhaustion,
4847 			 * which makes sure that the next budget is
4848 			 * enough to serve the next request, even if
4849 			 * it comes from the fifo expired path.
4850 			 */
4851 			reason = BFQQE_BUDGET_EXHAUSTED;
4852 			goto expire;
4853 		} else {
4854 			/*
4855 			 * The idle timer may be pending because we may
4856 			 * not disable disk idling even when a new request
4857 			 * arrives.
4858 			 */
4859 			if (bfq_bfqq_wait_request(bfqq)) {
4860 				/*
4861 				 * If we get here: 1) at least a new request
4862 				 * has arrived but we have not disabled the
4863 				 * timer because the request was too small,
4864 				 * 2) then the block layer has unplugged
4865 				 * the device, causing the dispatch to be
4866 				 * invoked.
4867 				 *
4868 				 * Since the device is unplugged, now the
4869 				 * requests are probably large enough to
4870 				 * provide a reasonable throughput.
4871 				 * So we disable idling.
4872 				 */
4873 				bfq_clear_bfqq_wait_request(bfqq);
4874 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4875 			}
4876 			goto keep_queue;
4877 		}
4878 	}
4879 
4880 	/*
4881 	 * No requests pending. However, if the in-service queue is idling
4882 	 * for a new request, or has requests waiting for a completion and
4883 	 * may idle after their completion, then keep it anyway.
4884 	 *
4885 	 * Yet, inject service from other queues if it boosts
4886 	 * throughput and is possible.
4887 	 */
4888 	if (bfq_bfqq_wait_request(bfqq) ||
4889 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4890 		unsigned int act_idx = bfqq->actuator_idx;
4891 		struct bfq_queue *async_bfqq = NULL;
4892 		struct bfq_queue *blocked_bfqq =
4893 			!hlist_empty(&bfqq->woken_list) ?
4894 			container_of(bfqq->woken_list.first,
4895 				     struct bfq_queue,
4896 				     woken_list_node)
4897 			: NULL;
4898 
4899 		if (bfqq->bic && bfqq->bic->bfqq[0][act_idx] &&
4900 		    bfq_bfqq_busy(bfqq->bic->bfqq[0][act_idx]) &&
4901 		    bfqq->bic->bfqq[0][act_idx]->next_rq)
4902 			async_bfqq = bfqq->bic->bfqq[0][act_idx];
4903 		/*
4904 		 * The next four mutually-exclusive ifs decide
4905 		 * whether to try injection, and choose the queue to
4906 		 * pick an I/O request from.
4907 		 *
4908 		 * The first if checks whether the process associated
4909 		 * with bfqq has also async I/O pending. If so, it
4910 		 * injects such I/O unconditionally. Injecting async
4911 		 * I/O from the same process can cause no harm to the
4912 		 * process. On the contrary, it can only increase
4913 		 * bandwidth and reduce latency for the process.
4914 		 *
4915 		 * The second if checks whether there happens to be a
4916 		 * non-empty waker queue for bfqq, i.e., a queue whose
4917 		 * I/O needs to be completed for bfqq to receive new
4918 		 * I/O. This happens, e.g., if bfqq is associated with
4919 		 * a process that does some sync. A sync generates
4920 		 * extra blocking I/O, which must be completed before
4921 		 * the process associated with bfqq can go on with its
4922 		 * I/O. If the I/O of the waker queue is not served,
4923 		 * then bfqq remains empty, and no I/O is dispatched,
4924 		 * until the idle timeout fires for bfqq. This is
4925 		 * likely to result in lower bandwidth and higher
4926 		 * latencies for bfqq, and in a severe loss of total
4927 		 * throughput. The best action to take is therefore to
4928 		 * serve the waker queue as soon as possible. So do it
4929 		 * (without relying on the third alternative below for
4930 		 * eventually serving waker_bfqq's I/O; see the last
4931 		 * paragraph for further details). This systematic
4932 		 * injection of I/O from the waker queue does not
4933 		 * cause any delay to bfqq's I/O. On the contrary,
4934 		 * next bfqq's I/O is brought forward dramatically,
4935 		 * for it is not blocked for milliseconds.
4936 		 *
4937 		 * The third if checks whether there is a queue woken
4938 		 * by bfqq, and currently with pending I/O. Such a
4939 		 * woken queue does not steal bandwidth from bfqq,
4940 		 * because it remains soon without I/O if bfqq is not
4941 		 * served. So there is virtually no risk of loss of
4942 		 * bandwidth for bfqq if this woken queue has I/O
4943 		 * dispatched while bfqq is waiting for new I/O.
4944 		 *
4945 		 * The fourth if checks whether bfqq is a queue for
4946 		 * which it is better to avoid injection. It is so if
4947 		 * bfqq delivers more throughput when served without
4948 		 * any further I/O from other queues in the middle, or
4949 		 * if the service times of bfqq's I/O requests both
4950 		 * count more than overall throughput, and may be
4951 		 * easily increased by injection (this happens if bfqq
4952 		 * has a short think time). If none of these
4953 		 * conditions holds, then a candidate queue for
4954 		 * injection is looked for through
4955 		 * bfq_choose_bfqq_for_injection(). Note that the
4956 		 * latter may return NULL (for example if the inject
4957 		 * limit for bfqq is currently 0).
4958 		 *
4959 		 * NOTE: motivation for the second alternative
4960 		 *
4961 		 * Thanks to the way the inject limit is updated in
4962 		 * bfq_update_has_short_ttime(), it is rather likely
4963 		 * that, if I/O is being plugged for bfqq and the
4964 		 * waker queue has pending I/O requests that are
4965 		 * blocking bfqq's I/O, then the fourth alternative
4966 		 * above lets the waker queue get served before the
4967 		 * I/O-plugging timeout fires. So one may deem the
4968 		 * second alternative superfluous. It is not, because
4969 		 * the fourth alternative may be way less effective in
4970 		 * case of a synchronization. For two main
4971 		 * reasons. First, throughput may be low because the
4972 		 * inject limit may be too low to guarantee the same
4973 		 * amount of injected I/O, from the waker queue or
4974 		 * other queues, that the second alternative
4975 		 * guarantees (the second alternative unconditionally
4976 		 * injects a pending I/O request of the waker queue
4977 		 * for each bfq_dispatch_request()). Second, with the
4978 		 * fourth alternative, the duration of the plugging,
4979 		 * i.e., the time before bfqq finally receives new I/O,
4980 		 * may not be minimized, because the waker queue may
4981 		 * happen to be served only after other queues.
4982 		 */
4983 		if (async_bfqq &&
4984 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4985 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4986 		    bfq_bfqq_budget_left(async_bfqq))
4987 			bfqq = async_bfqq;
4988 		else if (bfqq->waker_bfqq &&
4989 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4990 			   bfqq->waker_bfqq->next_rq &&
4991 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4992 					      bfqq->waker_bfqq) <=
4993 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4994 			)
4995 			bfqq = bfqq->waker_bfqq;
4996 		else if (blocked_bfqq &&
4997 			   bfq_bfqq_busy(blocked_bfqq) &&
4998 			   blocked_bfqq->next_rq &&
4999 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
5000 					      blocked_bfqq) <=
5001 			   bfq_bfqq_budget_left(blocked_bfqq)
5002 			)
5003 			bfqq = blocked_bfqq;
5004 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
5005 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
5006 			  !bfq_bfqq_has_short_ttime(bfqq)))
5007 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
5008 		else
5009 			bfqq = NULL;
5010 
5011 		goto keep_queue;
5012 	}
5013 
5014 	reason = BFQQE_NO_MORE_REQUESTS;
5015 expire:
5016 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
5017 new_queue:
5018 	bfqq = bfq_set_in_service_queue(bfqd);
5019 	if (bfqq) {
5020 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
5021 		goto check_queue;
5022 	}
5023 keep_queue:
5024 	if (bfqq)
5025 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
5026 	else
5027 		bfq_log(bfqd, "select_queue: no queue returned");
5028 
5029 	return bfqq;
5030 }
5031 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)5032 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5033 {
5034 	struct bfq_entity *entity = &bfqq->entity;
5035 
5036 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
5037 		bfq_log_bfqq(bfqd, bfqq,
5038 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
5039 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
5040 			jiffies_to_msecs(bfqq->wr_cur_max_time),
5041 			bfqq->wr_coeff,
5042 			bfqq->entity.weight, bfqq->entity.orig_weight);
5043 
5044 		if (entity->prio_changed)
5045 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
5046 
5047 		/*
5048 		 * If the queue was activated in a burst, or too much
5049 		 * time has elapsed from the beginning of this
5050 		 * weight-raising period, then end weight raising.
5051 		 */
5052 		if (bfq_bfqq_in_large_burst(bfqq))
5053 			bfq_bfqq_end_wr(bfqq);
5054 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
5055 						bfqq->wr_cur_max_time)) {
5056 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
5057 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5058 					       bfq_wr_duration(bfqd))) {
5059 				/*
5060 				 * Either in interactive weight
5061 				 * raising, or in soft_rt weight
5062 				 * raising with the
5063 				 * interactive-weight-raising period
5064 				 * elapsed (so no switch back to
5065 				 * interactive weight raising).
5066 				 */
5067 				bfq_bfqq_end_wr(bfqq);
5068 			} else { /*
5069 				  * soft_rt finishing while still in
5070 				  * interactive period, switch back to
5071 				  * interactive weight raising
5072 				  */
5073 				switch_back_to_interactive_wr(bfqq, bfqd);
5074 				bfqq->entity.prio_changed = 1;
5075 			}
5076 		}
5077 		if (bfqq->wr_coeff > 1 &&
5078 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
5079 		    bfqq->service_from_wr > max_service_from_wr) {
5080 			/* see comments on max_service_from_wr */
5081 			bfq_bfqq_end_wr(bfqq);
5082 		}
5083 	}
5084 	/*
5085 	 * To improve latency (for this or other queues), immediately
5086 	 * update weight both if it must be raised and if it must be
5087 	 * lowered. Since, entity may be on some active tree here, and
5088 	 * might have a pending change of its ioprio class, invoke
5089 	 * next function with the last parameter unset (see the
5090 	 * comments on the function).
5091 	 */
5092 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
5093 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
5094 						entity, false);
5095 }
5096 
5097 /*
5098  * Dispatch next request from bfqq.
5099  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)5100 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
5101 						 struct bfq_queue *bfqq)
5102 {
5103 	struct request *rq = bfqq->next_rq;
5104 	unsigned long service_to_charge;
5105 
5106 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
5107 
5108 	bfq_bfqq_served(bfqq, service_to_charge);
5109 
5110 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
5111 		bfqd->wait_dispatch = false;
5112 		bfqd->waited_rq = rq;
5113 	}
5114 
5115 	bfq_dispatch_remove(bfqd->queue, rq);
5116 
5117 	if (bfqq != bfqd->in_service_queue)
5118 		return rq;
5119 
5120 	/*
5121 	 * If weight raising has to terminate for bfqq, then next
5122 	 * function causes an immediate update of bfqq's weight,
5123 	 * without waiting for next activation. As a consequence, on
5124 	 * expiration, bfqq will be timestamped as if has never been
5125 	 * weight-raised during this service slot, even if it has
5126 	 * received part or even most of the service as a
5127 	 * weight-raised queue. This inflates bfqq's timestamps, which
5128 	 * is beneficial, as bfqq is then more willing to leave the
5129 	 * device immediately to possible other weight-raised queues.
5130 	 */
5131 	bfq_update_wr_data(bfqd, bfqq);
5132 
5133 	/*
5134 	 * Expire bfqq, pretending that its budget expired, if bfqq
5135 	 * belongs to CLASS_IDLE and other queues are waiting for
5136 	 * service.
5137 	 */
5138 	if (bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq))
5139 		bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
5140 
5141 	return rq;
5142 }
5143 
bfq_has_work(struct blk_mq_hw_ctx * hctx)5144 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
5145 {
5146 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5147 
5148 	/*
5149 	 * Avoiding lock: a race on bfqd->queued should cause at
5150 	 * most a call to dispatch for nothing
5151 	 */
5152 	return !list_empty_careful(&bfqd->dispatch) ||
5153 		READ_ONCE(bfqd->queued);
5154 }
5155 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)5156 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5157 {
5158 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5159 	struct request *rq = NULL;
5160 	struct bfq_queue *bfqq = NULL;
5161 
5162 	if (!list_empty(&bfqd->dispatch)) {
5163 		rq = list_first_entry(&bfqd->dispatch, struct request,
5164 				      queuelist);
5165 		list_del_init(&rq->queuelist);
5166 
5167 		bfqq = RQ_BFQQ(rq);
5168 
5169 		if (bfqq) {
5170 			/*
5171 			 * Increment counters here, because this
5172 			 * dispatch does not follow the standard
5173 			 * dispatch flow (where counters are
5174 			 * incremented)
5175 			 */
5176 			bfqq->dispatched++;
5177 
5178 			goto inc_in_driver_start_rq;
5179 		}
5180 
5181 		/*
5182 		 * We exploit the bfq_finish_requeue_request hook to
5183 		 * decrement tot_rq_in_driver, but
5184 		 * bfq_finish_requeue_request will not be invoked on
5185 		 * this request. So, to avoid unbalance, just start
5186 		 * this request, without incrementing tot_rq_in_driver. As
5187 		 * a negative consequence, tot_rq_in_driver is deceptively
5188 		 * lower than it should be while this request is in
5189 		 * service. This may cause bfq_schedule_dispatch to be
5190 		 * invoked uselessly.
5191 		 *
5192 		 * As for implementing an exact solution, the
5193 		 * bfq_finish_requeue_request hook, if defined, is
5194 		 * probably invoked also on this request. So, by
5195 		 * exploiting this hook, we could 1) increment
5196 		 * tot_rq_in_driver here, and 2) decrement it in
5197 		 * bfq_finish_requeue_request. Such a solution would
5198 		 * let the value of the counter be always accurate,
5199 		 * but it would entail using an extra interface
5200 		 * function. This cost seems higher than the benefit,
5201 		 * being the frequency of non-elevator-private
5202 		 * requests very low.
5203 		 */
5204 		goto start_rq;
5205 	}
5206 
5207 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5208 		bfq_tot_busy_queues(bfqd));
5209 
5210 	if (bfq_tot_busy_queues(bfqd) == 0)
5211 		goto exit;
5212 
5213 	/*
5214 	 * Force device to serve one request at a time if
5215 	 * strict_guarantees is true. Forcing this service scheme is
5216 	 * currently the ONLY way to guarantee that the request
5217 	 * service order enforced by the scheduler is respected by a
5218 	 * queueing device. Otherwise the device is free even to make
5219 	 * some unlucky request wait for as long as the device
5220 	 * wishes.
5221 	 *
5222 	 * Of course, serving one request at a time may cause loss of
5223 	 * throughput.
5224 	 */
5225 	if (bfqd->strict_guarantees && bfqd->tot_rq_in_driver > 0)
5226 		goto exit;
5227 
5228 	bfqq = bfq_select_queue(bfqd);
5229 	if (!bfqq)
5230 		goto exit;
5231 
5232 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5233 
5234 	if (rq) {
5235 inc_in_driver_start_rq:
5236 		bfqd->rq_in_driver[bfqq->actuator_idx]++;
5237 		bfqd->tot_rq_in_driver++;
5238 start_rq:
5239 		rq->rq_flags |= RQF_STARTED;
5240 	}
5241 exit:
5242 	return rq;
5243 }
5244 
5245 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)5246 static void bfq_update_dispatch_stats(struct request_queue *q,
5247 				      struct request *rq,
5248 				      struct bfq_queue *in_serv_queue,
5249 				      bool idle_timer_disabled)
5250 {
5251 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5252 
5253 	if (!idle_timer_disabled && !bfqq)
5254 		return;
5255 
5256 	/*
5257 	 * rq and bfqq are guaranteed to exist until this function
5258 	 * ends, for the following reasons. First, rq can be
5259 	 * dispatched to the device, and then can be completed and
5260 	 * freed, only after this function ends. Second, rq cannot be
5261 	 * merged (and thus freed because of a merge) any longer,
5262 	 * because it has already started. Thus rq cannot be freed
5263 	 * before this function ends, and, since rq has a reference to
5264 	 * bfqq, the same guarantee holds for bfqq too.
5265 	 *
5266 	 * In addition, the following queue lock guarantees that
5267 	 * bfqq_group(bfqq) exists as well.
5268 	 */
5269 	spin_lock_irq(&q->queue_lock);
5270 	if (idle_timer_disabled)
5271 		/*
5272 		 * Since the idle timer has been disabled,
5273 		 * in_serv_queue contained some request when
5274 		 * __bfq_dispatch_request was invoked above, which
5275 		 * implies that rq was picked exactly from
5276 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5277 		 * therefore guaranteed to exist because of the above
5278 		 * arguments.
5279 		 */
5280 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5281 	if (bfqq) {
5282 		struct bfq_group *bfqg = bfqq_group(bfqq);
5283 
5284 		bfqg_stats_update_avg_queue_size(bfqg);
5285 		bfqg_stats_set_start_empty_time(bfqg);
5286 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5287 	}
5288 	spin_unlock_irq(&q->queue_lock);
5289 }
5290 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)5291 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5292 					     struct request *rq,
5293 					     struct bfq_queue *in_serv_queue,
5294 					     bool idle_timer_disabled) {}
5295 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5296 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)5297 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5298 {
5299 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5300 	struct request *rq;
5301 	struct bfq_queue *in_serv_queue;
5302 	bool waiting_rq, idle_timer_disabled = false;
5303 
5304 	spin_lock_irq(&bfqd->lock);
5305 
5306 	in_serv_queue = bfqd->in_service_queue;
5307 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5308 
5309 	rq = __bfq_dispatch_request(hctx);
5310 	if (in_serv_queue == bfqd->in_service_queue) {
5311 		idle_timer_disabled =
5312 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5313 	}
5314 
5315 	spin_unlock_irq(&bfqd->lock);
5316 	bfq_update_dispatch_stats(hctx->queue, rq,
5317 			idle_timer_disabled ? in_serv_queue : NULL,
5318 				idle_timer_disabled);
5319 
5320 	return rq;
5321 }
5322 
5323 /*
5324  * Task holds one reference to the queue, dropped when task exits.  Each rq
5325  * in-flight on this queue also holds a reference, dropped when rq is freed.
5326  *
5327  * Scheduler lock must be held here. Recall not to use bfqq after calling
5328  * this function on it.
5329  */
bfq_put_queue(struct bfq_queue * bfqq)5330 void bfq_put_queue(struct bfq_queue *bfqq)
5331 {
5332 	struct bfq_queue *item;
5333 	struct hlist_node *n;
5334 	struct bfq_group *bfqg = bfqq_group(bfqq);
5335 
5336 	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
5337 
5338 	bfqq->ref--;
5339 	if (bfqq->ref)
5340 		return;
5341 
5342 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5343 		hlist_del_init(&bfqq->burst_list_node);
5344 		/*
5345 		 * Decrement also burst size after the removal, if the
5346 		 * process associated with bfqq is exiting, and thus
5347 		 * does not contribute to the burst any longer. This
5348 		 * decrement helps filter out false positives of large
5349 		 * bursts, when some short-lived process (often due to
5350 		 * the execution of commands by some service) happens
5351 		 * to start and exit while a complex application is
5352 		 * starting, and thus spawning several processes that
5353 		 * do I/O (and that *must not* be treated as a large
5354 		 * burst, see comments on bfq_handle_burst).
5355 		 *
5356 		 * In particular, the decrement is performed only if:
5357 		 * 1) bfqq is not a merged queue, because, if it is,
5358 		 * then this free of bfqq is not triggered by the exit
5359 		 * of the process bfqq is associated with, but exactly
5360 		 * by the fact that bfqq has just been merged.
5361 		 * 2) burst_size is greater than 0, to handle
5362 		 * unbalanced decrements. Unbalanced decrements may
5363 		 * happen in te following case: bfqq is inserted into
5364 		 * the current burst list--without incrementing
5365 		 * bust_size--because of a split, but the current
5366 		 * burst list is not the burst list bfqq belonged to
5367 		 * (see comments on the case of a split in
5368 		 * bfq_set_request).
5369 		 */
5370 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5371 			bfqq->bfqd->burst_size--;
5372 	}
5373 
5374 	/*
5375 	 * bfqq does not exist any longer, so it cannot be woken by
5376 	 * any other queue, and cannot wake any other queue. Then bfqq
5377 	 * must be removed from the woken list of its possible waker
5378 	 * queue, and all queues in the woken list of bfqq must stop
5379 	 * having a waker queue. Strictly speaking, these updates
5380 	 * should be performed when bfqq remains with no I/O source
5381 	 * attached to it, which happens before bfqq gets freed. In
5382 	 * particular, this happens when the last process associated
5383 	 * with bfqq exits or gets associated with a different
5384 	 * queue. However, both events lead to bfqq being freed soon,
5385 	 * and dangling references would come out only after bfqq gets
5386 	 * freed. So these updates are done here, as a simple and safe
5387 	 * way to handle all cases.
5388 	 */
5389 	/* remove bfqq from woken list */
5390 	if (!hlist_unhashed(&bfqq->woken_list_node))
5391 		hlist_del_init(&bfqq->woken_list_node);
5392 
5393 	/* reset waker for all queues in woken list */
5394 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5395 				  woken_list_node) {
5396 		item->waker_bfqq = NULL;
5397 		hlist_del_init(&item->woken_list_node);
5398 	}
5399 
5400 	if (bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5401 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5402 
5403 	WARN_ON_ONCE(!list_empty(&bfqq->fifo));
5404 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&bfqq->sort_list));
5405 	WARN_ON_ONCE(bfqq->dispatched);
5406 
5407 	kmem_cache_free(bfq_pool, bfqq);
5408 	bfqg_and_blkg_put(bfqg);
5409 }
5410 
bfq_put_stable_ref(struct bfq_queue * bfqq)5411 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5412 {
5413 	bfqq->stable_ref--;
5414 	bfq_put_queue(bfqq);
5415 }
5416 
bfq_put_cooperator(struct bfq_queue * bfqq)5417 void bfq_put_cooperator(struct bfq_queue *bfqq)
5418 {
5419 	struct bfq_queue *__bfqq, *next;
5420 
5421 	/*
5422 	 * If this queue was scheduled to merge with another queue, be
5423 	 * sure to drop the reference taken on that queue (and others in
5424 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5425 	 */
5426 	__bfqq = bfqq->new_bfqq;
5427 	while (__bfqq) {
5428 		next = __bfqq->new_bfqq;
5429 		bfq_put_queue(__bfqq);
5430 		__bfqq = next;
5431 	}
5432 }
5433 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)5434 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5435 {
5436 	if (bfqq == bfqd->in_service_queue) {
5437 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5438 		bfq_schedule_dispatch(bfqd);
5439 	}
5440 
5441 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5442 
5443 	bfq_put_cooperator(bfqq);
5444 
5445 	bfq_release_process_ref(bfqd, bfqq);
5446 }
5447 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync,unsigned int actuator_idx)5448 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync,
5449 			      unsigned int actuator_idx)
5450 {
5451 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, actuator_idx);
5452 	struct bfq_data *bfqd;
5453 
5454 	if (bfqq)
5455 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5456 
5457 	if (bfqq && bfqd) {
5458 		bic_set_bfqq(bic, NULL, is_sync, actuator_idx);
5459 		bfq_exit_bfqq(bfqd, bfqq);
5460 	}
5461 }
5462 
_bfq_exit_icq(struct bfq_io_cq * bic,unsigned int num_actuators)5463 static void _bfq_exit_icq(struct bfq_io_cq *bic, unsigned int num_actuators)
5464 {
5465 	struct bfq_iocq_bfqq_data *bfqq_data = bic->bfqq_data;
5466 	unsigned int act_idx;
5467 
5468 	for (act_idx = 0; act_idx < num_actuators; act_idx++) {
5469 		if (bfqq_data[act_idx].stable_merge_bfqq)
5470 			bfq_put_stable_ref(bfqq_data[act_idx].stable_merge_bfqq);
5471 
5472 		bfq_exit_icq_bfqq(bic, true, act_idx);
5473 		bfq_exit_icq_bfqq(bic, false, act_idx);
5474 	}
5475 }
5476 
bfq_exit_icq(struct io_cq * icq)5477 static void bfq_exit_icq(struct io_cq *icq)
5478 {
5479 	struct bfq_io_cq *bic = icq_to_bic(icq);
5480 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5481 	unsigned long flags;
5482 
5483 	/*
5484 	 * If bfqd and thus bfqd->num_actuators is not available any
5485 	 * longer, then cycle over all possible per-actuator bfqqs in
5486 	 * next loop. We rely on bic being zeroed on creation, and
5487 	 * therefore on its unused per-actuator fields being NULL.
5488 	 *
5489 	 * bfqd is NULL if scheduler already exited, and in that case
5490 	 * this is the last time these queues are accessed.
5491 	 */
5492 	if (bfqd) {
5493 		spin_lock_irqsave(&bfqd->lock, flags);
5494 		_bfq_exit_icq(bic, bfqd->num_actuators);
5495 		spin_unlock_irqrestore(&bfqd->lock, flags);
5496 	} else {
5497 		_bfq_exit_icq(bic, BFQ_MAX_ACTUATORS);
5498 	}
5499 }
5500 
5501 /*
5502  * Update the entity prio values; note that the new values will not
5503  * be used until the next (re)activation.
5504  */
5505 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)5506 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5507 {
5508 	struct task_struct *tsk = current;
5509 	int ioprio_class;
5510 	struct bfq_data *bfqd = bfqq->bfqd;
5511 
5512 	if (!bfqd)
5513 		return;
5514 
5515 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5516 	switch (ioprio_class) {
5517 	default:
5518 		pr_err("bdi %s: bfq: bad prio class %d\n",
5519 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5520 			ioprio_class);
5521 		fallthrough;
5522 	case IOPRIO_CLASS_NONE:
5523 		/*
5524 		 * No prio set, inherit CPU scheduling settings.
5525 		 */
5526 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5527 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5528 		break;
5529 	case IOPRIO_CLASS_RT:
5530 		bfqq->new_ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio);
5531 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5532 		break;
5533 	case IOPRIO_CLASS_BE:
5534 		bfqq->new_ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio);
5535 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5536 		break;
5537 	case IOPRIO_CLASS_IDLE:
5538 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5539 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5540 		break;
5541 	}
5542 
5543 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5544 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5545 			bfqq->new_ioprio);
5546 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5547 	}
5548 
5549 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5550 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5551 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5552 	bfqq->entity.prio_changed = 1;
5553 }
5554 
5555 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5556 				       struct bio *bio, bool is_sync,
5557 				       struct bfq_io_cq *bic,
5558 				       bool respawn);
5559 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)5560 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5561 {
5562 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5563 	struct bfq_queue *bfqq;
5564 	int ioprio = bic->icq.ioc->ioprio;
5565 
5566 	/*
5567 	 * This condition may trigger on a newly created bic, be sure to
5568 	 * drop the lock before returning.
5569 	 */
5570 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5571 		return;
5572 
5573 	bic->ioprio = ioprio;
5574 
5575 	bfqq = bic_to_bfqq(bic, false, bfq_actuator_index(bfqd, bio));
5576 	if (bfqq) {
5577 		struct bfq_queue *old_bfqq = bfqq;
5578 
5579 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5580 		bic_set_bfqq(bic, bfqq, false, bfq_actuator_index(bfqd, bio));
5581 		bfq_release_process_ref(bfqd, old_bfqq);
5582 	}
5583 
5584 	bfqq = bic_to_bfqq(bic, true, bfq_actuator_index(bfqd, bio));
5585 	if (bfqq)
5586 		bfq_set_next_ioprio_data(bfqq, bic);
5587 }
5588 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync,unsigned int act_idx)5589 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5590 			  struct bfq_io_cq *bic, pid_t pid, int is_sync,
5591 			  unsigned int act_idx)
5592 {
5593 	u64 now_ns = blk_time_get_ns();
5594 
5595 	bfqq->actuator_idx = act_idx;
5596 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5597 	INIT_LIST_HEAD(&bfqq->fifo);
5598 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5599 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5600 	INIT_HLIST_HEAD(&bfqq->woken_list);
5601 
5602 	bfqq->ref = 0;
5603 	bfqq->bfqd = bfqd;
5604 
5605 	if (bic)
5606 		bfq_set_next_ioprio_data(bfqq, bic);
5607 
5608 	if (is_sync) {
5609 		/*
5610 		 * No need to mark as has_short_ttime if in
5611 		 * idle_class, because no device idling is performed
5612 		 * for queues in idle class
5613 		 */
5614 		if (!bfq_class_idle(bfqq))
5615 			/* tentatively mark as has_short_ttime */
5616 			bfq_mark_bfqq_has_short_ttime(bfqq);
5617 		bfq_mark_bfqq_sync(bfqq);
5618 		bfq_mark_bfqq_just_created(bfqq);
5619 	} else
5620 		bfq_clear_bfqq_sync(bfqq);
5621 
5622 	/* set end request to minus infinity from now */
5623 	bfqq->ttime.last_end_request = now_ns + 1;
5624 
5625 	bfqq->creation_time = jiffies;
5626 
5627 	bfqq->io_start_time = now_ns;
5628 
5629 	bfq_mark_bfqq_IO_bound(bfqq);
5630 
5631 	bfqq->pid = pid;
5632 
5633 	/* Tentative initial value to trade off between thr and lat */
5634 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5635 	bfqq->budget_timeout = bfq_smallest_from_now();
5636 
5637 	bfqq->wr_coeff = 1;
5638 	bfqq->last_wr_start_finish = jiffies;
5639 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5640 	bfqq->split_time = bfq_smallest_from_now();
5641 
5642 	/*
5643 	 * To not forget the possibly high bandwidth consumed by a
5644 	 * process/queue in the recent past,
5645 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5646 	 * to the current value of bfqq->soft_rt_next_start (see
5647 	 * comments on bfq_bfqq_softrt_next_start).  Set
5648 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5649 	 * no bandwidth so far.
5650 	 */
5651 	bfqq->soft_rt_next_start = jiffies;
5652 
5653 	/* first request is almost certainly seeky */
5654 	bfqq->seek_history = 1;
5655 
5656 	bfqq->decrease_time_jif = jiffies;
5657 }
5658 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio,int act_idx)5659 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5660 					       struct bfq_group *bfqg,
5661 					       int ioprio_class, int ioprio, int act_idx)
5662 {
5663 	switch (ioprio_class) {
5664 	case IOPRIO_CLASS_RT:
5665 		return &bfqg->async_bfqq[0][ioprio][act_idx];
5666 	case IOPRIO_CLASS_NONE:
5667 		ioprio = IOPRIO_BE_NORM;
5668 		fallthrough;
5669 	case IOPRIO_CLASS_BE:
5670 		return &bfqg->async_bfqq[1][ioprio][act_idx];
5671 	case IOPRIO_CLASS_IDLE:
5672 		return &bfqg->async_idle_bfqq[act_idx];
5673 	default:
5674 		return NULL;
5675 	}
5676 }
5677 
5678 static struct bfq_queue *
bfq_do_early_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,struct bfq_queue * last_bfqq_created)5679 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5680 			  struct bfq_io_cq *bic,
5681 			  struct bfq_queue *last_bfqq_created)
5682 {
5683 	unsigned int a_idx = last_bfqq_created->actuator_idx;
5684 	struct bfq_queue *new_bfqq =
5685 		bfq_setup_merge(bfqq, last_bfqq_created);
5686 
5687 	if (!new_bfqq)
5688 		return bfqq;
5689 
5690 	if (new_bfqq->bic)
5691 		new_bfqq->bic->bfqq_data[a_idx].stably_merged = true;
5692 	bic->bfqq_data[a_idx].stably_merged = true;
5693 
5694 	/*
5695 	 * Reusing merge functions. This implies that
5696 	 * bfqq->bic must be set too, for
5697 	 * bfq_merge_bfqqs to correctly save bfqq's
5698 	 * state before killing it.
5699 	 */
5700 	bfqq->bic = bic;
5701 	return bfq_merge_bfqqs(bfqd, bic, bfqq);
5702 }
5703 
5704 /*
5705  * Many throughput-sensitive workloads are made of several parallel
5706  * I/O flows, with all flows generated by the same application, or
5707  * more generically by the same task (e.g., system boot). The most
5708  * counterproductive action with these workloads is plugging I/O
5709  * dispatch when one of the bfq_queues associated with these flows
5710  * remains temporarily empty.
5711  *
5712  * To avoid this plugging, BFQ has been using a burst-handling
5713  * mechanism for years now. This mechanism has proven effective for
5714  * throughput, and not detrimental for service guarantees. The
5715  * following function pushes this mechanism a little bit further,
5716  * basing on the following two facts.
5717  *
5718  * First, all the I/O flows of a the same application or task
5719  * contribute to the execution/completion of that common application
5720  * or task. So the performance figures that matter are total
5721  * throughput of the flows and task-wide I/O latency.  In particular,
5722  * these flows do not need to be protected from each other, in terms
5723  * of individual bandwidth or latency.
5724  *
5725  * Second, the above fact holds regardless of the number of flows.
5726  *
5727  * Putting these two facts together, this commits merges stably the
5728  * bfq_queues associated with these I/O flows, i.e., with the
5729  * processes that generate these IO/ flows, regardless of how many the
5730  * involved processes are.
5731  *
5732  * To decide whether a set of bfq_queues is actually associated with
5733  * the I/O flows of a common application or task, and to merge these
5734  * queues stably, this function operates as follows: given a bfq_queue,
5735  * say Q2, currently being created, and the last bfq_queue, say Q1,
5736  * created before Q2, Q2 is merged stably with Q1 if
5737  * - very little time has elapsed since when Q1 was created
5738  * - Q2 has the same ioprio as Q1
5739  * - Q2 belongs to the same group as Q1
5740  *
5741  * Merging bfq_queues also reduces scheduling overhead. A fio test
5742  * with ten random readers on /dev/nullb shows a throughput boost of
5743  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5744  * the total per-request processing time, the above throughput boost
5745  * implies that BFQ's overhead is reduced by more than 50%.
5746  *
5747  * This new mechanism most certainly obsoletes the current
5748  * burst-handling heuristics. We keep those heuristics for the moment.
5749  */
bfq_do_or_sched_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5750 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5751 						      struct bfq_queue *bfqq,
5752 						      struct bfq_io_cq *bic)
5753 {
5754 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5755 		&bfqq->entity.parent->last_bfqq_created :
5756 		&bfqd->last_bfqq_created;
5757 
5758 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5759 
5760 	/*
5761 	 * If last_bfqq_created has not been set yet, then init it. If
5762 	 * it has been set already, but too long ago, then move it
5763 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5764 	 * different group than last_bfqq_created, or if bfqq has a
5765 	 * different ioprio, ioprio_class or actuator_idx. If none of
5766 	 * these conditions holds true, then try an early stable merge
5767 	 * or schedule a delayed stable merge. As for the condition on
5768 	 * actuator_idx, the reason is that, if queues associated with
5769 	 * different actuators are merged, then control is lost on
5770 	 * each actuator. Therefore some actuator may be
5771 	 * underutilized, and throughput may decrease.
5772 	 *
5773 	 * A delayed merge is scheduled (instead of performing an
5774 	 * early merge), in case bfqq might soon prove to be more
5775 	 * throughput-beneficial if not merged. Currently this is
5776 	 * possible only if bfqd is rotational with no queueing. For
5777 	 * such a drive, not merging bfqq is better for throughput if
5778 	 * bfqq happens to contain sequential I/O. So, we wait a
5779 	 * little bit for enough I/O to flow through bfqq. After that,
5780 	 * if such an I/O is sequential, then the merge is
5781 	 * canceled. Otherwise the merge is finally performed.
5782 	 */
5783 	if (!last_bfqq_created ||
5784 	    time_before(last_bfqq_created->creation_time +
5785 			msecs_to_jiffies(bfq_activation_stable_merging),
5786 			bfqq->creation_time) ||
5787 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5788 		bfqq->ioprio != last_bfqq_created->ioprio ||
5789 		bfqq->ioprio_class != last_bfqq_created->ioprio_class ||
5790 		bfqq->actuator_idx != last_bfqq_created->actuator_idx)
5791 		*source_bfqq = bfqq;
5792 	else if (time_after_eq(last_bfqq_created->creation_time +
5793 				 bfqd->bfq_burst_interval,
5794 				 bfqq->creation_time)) {
5795 		if (likely(bfqd->nonrot_with_queueing))
5796 			/*
5797 			 * With this type of drive, leaving
5798 			 * bfqq alone may provide no
5799 			 * throughput benefits compared with
5800 			 * merging bfqq. So merge bfqq now.
5801 			 */
5802 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5803 							 bic,
5804 							 last_bfqq_created);
5805 		else { /* schedule tentative stable merge */
5806 			/*
5807 			 * get reference on last_bfqq_created,
5808 			 * to prevent it from being freed,
5809 			 * until we decide whether to merge
5810 			 */
5811 			last_bfqq_created->ref++;
5812 			/*
5813 			 * need to keep track of stable refs, to
5814 			 * compute process refs correctly
5815 			 */
5816 			last_bfqq_created->stable_ref++;
5817 			/*
5818 			 * Record the bfqq to merge to.
5819 			 */
5820 			bic->bfqq_data[last_bfqq_created->actuator_idx].stable_merge_bfqq =
5821 				last_bfqq_created;
5822 		}
5823 	}
5824 
5825 	return bfqq;
5826 }
5827 
5828 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic,bool respawn)5829 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5830 				       struct bio *bio, bool is_sync,
5831 				       struct bfq_io_cq *bic,
5832 				       bool respawn)
5833 {
5834 	const int ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio);
5835 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5836 	struct bfq_queue **async_bfqq = NULL;
5837 	struct bfq_queue *bfqq;
5838 	struct bfq_group *bfqg;
5839 
5840 	bfqg = bfq_bio_bfqg(bfqd, bio);
5841 	if (!is_sync) {
5842 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5843 						  ioprio,
5844 						  bfq_actuator_index(bfqd, bio));
5845 		bfqq = *async_bfqq;
5846 		if (bfqq)
5847 			goto out;
5848 	}
5849 
5850 	bfqq = kmem_cache_alloc_node(bfq_pool,
5851 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5852 				     bfqd->queue->node);
5853 
5854 	if (bfqq) {
5855 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5856 			      is_sync, bfq_actuator_index(bfqd, bio));
5857 		bfq_init_entity(&bfqq->entity, bfqg);
5858 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5859 	} else {
5860 		bfqq = &bfqd->oom_bfqq;
5861 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5862 		goto out;
5863 	}
5864 
5865 	/*
5866 	 * Pin the queue now that it's allocated, scheduler exit will
5867 	 * prune it.
5868 	 */
5869 	if (async_bfqq) {
5870 		bfqq->ref++; /*
5871 			      * Extra group reference, w.r.t. sync
5872 			      * queue. This extra reference is removed
5873 			      * only if bfqq->bfqg disappears, to
5874 			      * guarantee that this queue is not freed
5875 			      * until its group goes away.
5876 			      */
5877 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5878 			     bfqq, bfqq->ref);
5879 		*async_bfqq = bfqq;
5880 	}
5881 
5882 out:
5883 	bfqq->ref++; /* get a process reference to this queue */
5884 
5885 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5886 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5887 	return bfqq;
5888 }
5889 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)5890 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5891 				    struct bfq_queue *bfqq)
5892 {
5893 	struct bfq_ttime *ttime = &bfqq->ttime;
5894 	u64 elapsed;
5895 
5896 	/*
5897 	 * We are really interested in how long it takes for the queue to
5898 	 * become busy when there is no outstanding IO for this queue. So
5899 	 * ignore cases when the bfq queue has already IO queued.
5900 	 */
5901 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5902 		return;
5903 	elapsed = blk_time_get_ns() - bfqq->ttime.last_end_request;
5904 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5905 
5906 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5907 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5908 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5909 				     ttime->ttime_samples);
5910 }
5911 
5912 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5913 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5914 		       struct request *rq)
5915 {
5916 	bfqq->seek_history <<= 1;
5917 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5918 
5919 	if (bfqq->wr_coeff > 1 &&
5920 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5921 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5922 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5923 					   bfq_wr_duration(bfqd))) {
5924 			/*
5925 			 * In soft_rt weight raising with the
5926 			 * interactive-weight-raising period
5927 			 * elapsed (so no switch back to
5928 			 * interactive weight raising).
5929 			 */
5930 			bfq_bfqq_end_wr(bfqq);
5931 		} else { /*
5932 			  * stopping soft_rt weight raising
5933 			  * while still in interactive period,
5934 			  * switch back to interactive weight
5935 			  * raising
5936 			  */
5937 			switch_back_to_interactive_wr(bfqq, bfqd);
5938 			bfqq->entity.prio_changed = 1;
5939 		}
5940 	}
5941 }
5942 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5943 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5944 				       struct bfq_queue *bfqq,
5945 				       struct bfq_io_cq *bic)
5946 {
5947 	bool has_short_ttime = true, state_changed;
5948 
5949 	/*
5950 	 * No need to update has_short_ttime if bfqq is async or in
5951 	 * idle io prio class, or if bfq_slice_idle is zero, because
5952 	 * no device idling is performed for bfqq in this case.
5953 	 */
5954 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5955 	    bfqd->bfq_slice_idle == 0)
5956 		return;
5957 
5958 	/* Idle window just restored, statistics are meaningless. */
5959 	if (time_is_after_eq_jiffies(bfqq->split_time +
5960 				     bfqd->bfq_wr_min_idle_time))
5961 		return;
5962 
5963 	/* Think time is infinite if no process is linked to
5964 	 * bfqq. Otherwise check average think time to decide whether
5965 	 * to mark as has_short_ttime. To this goal, compare average
5966 	 * think time with half the I/O-plugging timeout.
5967 	 */
5968 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5969 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5970 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5971 		has_short_ttime = false;
5972 
5973 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5974 
5975 	if (has_short_ttime)
5976 		bfq_mark_bfqq_has_short_ttime(bfqq);
5977 	else
5978 		bfq_clear_bfqq_has_short_ttime(bfqq);
5979 
5980 	/*
5981 	 * Until the base value for the total service time gets
5982 	 * finally computed for bfqq, the inject limit does depend on
5983 	 * the think-time state (short|long). In particular, the limit
5984 	 * is 0 or 1 if the think time is deemed, respectively, as
5985 	 * short or long (details in the comments in
5986 	 * bfq_update_inject_limit()). Accordingly, the next
5987 	 * instructions reset the inject limit if the think-time state
5988 	 * has changed and the above base value is still to be
5989 	 * computed.
5990 	 *
5991 	 * However, the reset is performed only if more than 100 ms
5992 	 * have elapsed since the last update of the inject limit, or
5993 	 * (inclusive) if the change is from short to long think
5994 	 * time. The reason for this waiting is as follows.
5995 	 *
5996 	 * bfqq may have a long think time because of a
5997 	 * synchronization with some other queue, i.e., because the
5998 	 * I/O of some other queue may need to be completed for bfqq
5999 	 * to receive new I/O. Details in the comments on the choice
6000 	 * of the queue for injection in bfq_select_queue().
6001 	 *
6002 	 * As stressed in those comments, if such a synchronization is
6003 	 * actually in place, then, without injection on bfqq, the
6004 	 * blocking I/O cannot happen to served while bfqq is in
6005 	 * service. As a consequence, if bfqq is granted
6006 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
6007 	 * is dispatched, until the idle timeout fires. This is likely
6008 	 * to result in lower bandwidth and higher latencies for bfqq,
6009 	 * and in a severe loss of total throughput.
6010 	 *
6011 	 * On the opposite end, a non-zero inject limit may allow the
6012 	 * I/O that blocks bfqq to be executed soon, and therefore
6013 	 * bfqq to receive new I/O soon.
6014 	 *
6015 	 * But, if the blocking gets actually eliminated, then the
6016 	 * next think-time sample for bfqq may be very low. This in
6017 	 * turn may cause bfqq's think time to be deemed
6018 	 * short. Without the 100 ms barrier, this new state change
6019 	 * would cause the body of the next if to be executed
6020 	 * immediately. But this would set to 0 the inject
6021 	 * limit. Without injection, the blocking I/O would cause the
6022 	 * think time of bfqq to become long again, and therefore the
6023 	 * inject limit to be raised again, and so on. The only effect
6024 	 * of such a steady oscillation between the two think-time
6025 	 * states would be to prevent effective injection on bfqq.
6026 	 *
6027 	 * In contrast, if the inject limit is not reset during such a
6028 	 * long time interval as 100 ms, then the number of short
6029 	 * think time samples can grow significantly before the reset
6030 	 * is performed. As a consequence, the think time state can
6031 	 * become stable before the reset. Therefore there will be no
6032 	 * state change when the 100 ms elapse, and no reset of the
6033 	 * inject limit. The inject limit remains steadily equal to 1
6034 	 * both during and after the 100 ms. So injection can be
6035 	 * performed at all times, and throughput gets boosted.
6036 	 *
6037 	 * An inject limit equal to 1 is however in conflict, in
6038 	 * general, with the fact that the think time of bfqq is
6039 	 * short, because injection may be likely to delay bfqq's I/O
6040 	 * (as explained in the comments in
6041 	 * bfq_update_inject_limit()). But this does not happen in
6042 	 * this special case, because bfqq's low think time is due to
6043 	 * an effective handling of a synchronization, through
6044 	 * injection. In this special case, bfqq's I/O does not get
6045 	 * delayed by injection; on the contrary, bfqq's I/O is
6046 	 * brought forward, because it is not blocked for
6047 	 * milliseconds.
6048 	 *
6049 	 * In addition, serving the blocking I/O much sooner, and much
6050 	 * more frequently than once per I/O-plugging timeout, makes
6051 	 * it much quicker to detect a waker queue (the concept of
6052 	 * waker queue is defined in the comments in
6053 	 * bfq_add_request()). This makes it possible to start sooner
6054 	 * to boost throughput more effectively, by injecting the I/O
6055 	 * of the waker queue unconditionally on every
6056 	 * bfq_dispatch_request().
6057 	 *
6058 	 * One last, important benefit of not resetting the inject
6059 	 * limit before 100 ms is that, during this time interval, the
6060 	 * base value for the total service time is likely to get
6061 	 * finally computed for bfqq, freeing the inject limit from
6062 	 * its relation with the think time.
6063 	 */
6064 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
6065 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
6066 				      msecs_to_jiffies(100)) ||
6067 	     !has_short_ttime))
6068 		bfq_reset_inject_limit(bfqd, bfqq);
6069 }
6070 
6071 /*
6072  * Called when a new fs request (rq) is added to bfqq.  Check if there's
6073  * something we should do about it.
6074  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)6075 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
6076 			    struct request *rq)
6077 {
6078 	if (rq->cmd_flags & REQ_META)
6079 		bfqq->meta_pending++;
6080 
6081 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
6082 
6083 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
6084 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
6085 				 blk_rq_sectors(rq) < 32;
6086 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
6087 
6088 		/*
6089 		 * There is just this request queued: if
6090 		 * - the request is small, and
6091 		 * - we are idling to boost throughput, and
6092 		 * - the queue is not to be expired,
6093 		 * then just exit.
6094 		 *
6095 		 * In this way, if the device is being idled to wait
6096 		 * for a new request from the in-service queue, we
6097 		 * avoid unplugging the device and committing the
6098 		 * device to serve just a small request. In contrast
6099 		 * we wait for the block layer to decide when to
6100 		 * unplug the device: hopefully, new requests will be
6101 		 * merged to this one quickly, then the device will be
6102 		 * unplugged and larger requests will be dispatched.
6103 		 */
6104 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
6105 		    !budget_timeout)
6106 			return;
6107 
6108 		/*
6109 		 * A large enough request arrived, or idling is being
6110 		 * performed to preserve service guarantees, or
6111 		 * finally the queue is to be expired: in all these
6112 		 * cases disk idling is to be stopped, so clear
6113 		 * wait_request flag and reset timer.
6114 		 */
6115 		bfq_clear_bfqq_wait_request(bfqq);
6116 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
6117 
6118 		/*
6119 		 * The queue is not empty, because a new request just
6120 		 * arrived. Hence we can safely expire the queue, in
6121 		 * case of budget timeout, without risking that the
6122 		 * timestamps of the queue are not updated correctly.
6123 		 * See [1] for more details.
6124 		 */
6125 		if (budget_timeout)
6126 			bfq_bfqq_expire(bfqd, bfqq, false,
6127 					BFQQE_BUDGET_TIMEOUT);
6128 	}
6129 }
6130 
bfqq_request_allocated(struct bfq_queue * bfqq)6131 static void bfqq_request_allocated(struct bfq_queue *bfqq)
6132 {
6133 	struct bfq_entity *entity = &bfqq->entity;
6134 
6135 	for_each_entity(entity)
6136 		entity->allocated++;
6137 }
6138 
bfqq_request_freed(struct bfq_queue * bfqq)6139 static void bfqq_request_freed(struct bfq_queue *bfqq)
6140 {
6141 	struct bfq_entity *entity = &bfqq->entity;
6142 
6143 	for_each_entity(entity)
6144 		entity->allocated--;
6145 }
6146 
6147 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)6148 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
6149 {
6150 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
6151 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
6152 						 RQ_BIC(rq));
6153 	bool waiting, idle_timer_disabled = false;
6154 
6155 	if (new_bfqq) {
6156 		struct bfq_queue *old_bfqq = bfqq;
6157 		/*
6158 		 * Release the request's reference to the old bfqq
6159 		 * and make sure one is taken to the shared queue.
6160 		 */
6161 		bfqq_request_allocated(new_bfqq);
6162 		bfqq_request_freed(bfqq);
6163 		new_bfqq->ref++;
6164 		/*
6165 		 * If the bic associated with the process
6166 		 * issuing this request still points to bfqq
6167 		 * (and thus has not been already redirected
6168 		 * to new_bfqq or even some other bfq_queue),
6169 		 * then complete the merge and redirect it to
6170 		 * new_bfqq.
6171 		 */
6172 		if (bic_to_bfqq(RQ_BIC(rq), true,
6173 				bfq_actuator_index(bfqd, rq->bio)) == bfqq) {
6174 			while (bfqq != new_bfqq)
6175 				bfqq = bfq_merge_bfqqs(bfqd, RQ_BIC(rq), bfqq);
6176 		}
6177 
6178 		bfq_clear_bfqq_just_created(old_bfqq);
6179 		/*
6180 		 * rq is about to be enqueued into new_bfqq,
6181 		 * release rq reference on bfqq
6182 		 */
6183 		bfq_put_queue(old_bfqq);
6184 		rq->elv.priv[1] = new_bfqq;
6185 	}
6186 
6187 	bfq_update_io_thinktime(bfqd, bfqq);
6188 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
6189 	bfq_update_io_seektime(bfqd, bfqq, rq);
6190 
6191 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
6192 	bfq_add_request(rq);
6193 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
6194 
6195 	rq->fifo_time = blk_time_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
6196 	list_add_tail(&rq->queuelist, &bfqq->fifo);
6197 
6198 	bfq_rq_enqueued(bfqd, bfqq, rq);
6199 
6200 	return idle_timer_disabled;
6201 }
6202 
6203 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,blk_opf_t cmd_flags)6204 static void bfq_update_insert_stats(struct request_queue *q,
6205 				    struct bfq_queue *bfqq,
6206 				    bool idle_timer_disabled,
6207 				    blk_opf_t cmd_flags)
6208 {
6209 	if (!bfqq)
6210 		return;
6211 
6212 	/*
6213 	 * bfqq still exists, because it can disappear only after
6214 	 * either it is merged with another queue, or the process it
6215 	 * is associated with exits. But both actions must be taken by
6216 	 * the same process currently executing this flow of
6217 	 * instructions.
6218 	 *
6219 	 * In addition, the following queue lock guarantees that
6220 	 * bfqq_group(bfqq) exists as well.
6221 	 */
6222 	spin_lock_irq(&q->queue_lock);
6223 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
6224 	if (idle_timer_disabled)
6225 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
6226 	spin_unlock_irq(&q->queue_lock);
6227 }
6228 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,blk_opf_t cmd_flags)6229 static inline void bfq_update_insert_stats(struct request_queue *q,
6230 					   struct bfq_queue *bfqq,
6231 					   bool idle_timer_disabled,
6232 					   blk_opf_t cmd_flags) {}
6233 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
6234 
6235 static struct bfq_queue *bfq_init_rq(struct request *rq);
6236 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_insert_t flags)6237 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6238 			       blk_insert_t flags)
6239 {
6240 	struct request_queue *q = hctx->queue;
6241 	struct bfq_data *bfqd = q->elevator->elevator_data;
6242 	struct bfq_queue *bfqq;
6243 	bool idle_timer_disabled = false;
6244 	blk_opf_t cmd_flags;
6245 	LIST_HEAD(free);
6246 
6247 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6248 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6249 		bfqg_stats_update_legacy_io(q, rq);
6250 #endif
6251 	spin_lock_irq(&bfqd->lock);
6252 	bfqq = bfq_init_rq(rq);
6253 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6254 		spin_unlock_irq(&bfqd->lock);
6255 		blk_mq_free_requests(&free);
6256 		return;
6257 	}
6258 
6259 	trace_block_rq_insert(rq);
6260 
6261 	if (flags & BLK_MQ_INSERT_AT_HEAD) {
6262 		list_add(&rq->queuelist, &bfqd->dispatch);
6263 	} else if (!bfqq) {
6264 		list_add_tail(&rq->queuelist, &bfqd->dispatch);
6265 	} else {
6266 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6267 		/*
6268 		 * Update bfqq, because, if a queue merge has occurred
6269 		 * in __bfq_insert_request, then rq has been
6270 		 * redirected into a new queue.
6271 		 */
6272 		bfqq = RQ_BFQQ(rq);
6273 
6274 		if (rq_mergeable(rq)) {
6275 			elv_rqhash_add(q, rq);
6276 			if (!q->last_merge)
6277 				q->last_merge = rq;
6278 		}
6279 	}
6280 
6281 	/*
6282 	 * Cache cmd_flags before releasing scheduler lock, because rq
6283 	 * may disappear afterwards (for example, because of a request
6284 	 * merge).
6285 	 */
6286 	cmd_flags = rq->cmd_flags;
6287 	spin_unlock_irq(&bfqd->lock);
6288 
6289 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6290 				cmd_flags);
6291 }
6292 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,blk_insert_t flags)6293 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6294 				struct list_head *list,
6295 				blk_insert_t flags)
6296 {
6297 	while (!list_empty(list)) {
6298 		struct request *rq;
6299 
6300 		rq = list_first_entry(list, struct request, queuelist);
6301 		list_del_init(&rq->queuelist);
6302 		bfq_insert_request(hctx, rq, flags);
6303 	}
6304 }
6305 
bfq_update_hw_tag(struct bfq_data * bfqd)6306 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6307 {
6308 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6309 
6310 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6311 				       bfqd->tot_rq_in_driver);
6312 
6313 	if (bfqd->hw_tag == 1)
6314 		return;
6315 
6316 	/*
6317 	 * This sample is valid if the number of outstanding requests
6318 	 * is large enough to allow a queueing behavior.  Note that the
6319 	 * sum is not exact, as it's not taking into account deactivated
6320 	 * requests.
6321 	 */
6322 	if (bfqd->tot_rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6323 		return;
6324 
6325 	/*
6326 	 * If active queue hasn't enough requests and can idle, bfq might not
6327 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6328 	 * case
6329 	 */
6330 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6331 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6332 	    BFQ_HW_QUEUE_THRESHOLD &&
6333 	    bfqd->tot_rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6334 		return;
6335 
6336 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6337 		return;
6338 
6339 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6340 	bfqd->max_rq_in_driver = 0;
6341 	bfqd->hw_tag_samples = 0;
6342 
6343 	bfqd->nonrot_with_queueing =
6344 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6345 }
6346 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)6347 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6348 {
6349 	u64 now_ns;
6350 	u32 delta_us;
6351 
6352 	bfq_update_hw_tag(bfqd);
6353 
6354 	bfqd->rq_in_driver[bfqq->actuator_idx]--;
6355 	bfqd->tot_rq_in_driver--;
6356 	bfqq->dispatched--;
6357 
6358 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6359 		/*
6360 		 * Set budget_timeout (which we overload to store the
6361 		 * time at which the queue remains with no backlog and
6362 		 * no outstanding request; used by the weight-raising
6363 		 * mechanism).
6364 		 */
6365 		bfqq->budget_timeout = jiffies;
6366 
6367 		bfq_del_bfqq_in_groups_with_pending_reqs(bfqq);
6368 		bfq_weights_tree_remove(bfqq);
6369 	}
6370 
6371 	now_ns = blk_time_get_ns();
6372 
6373 	bfqq->ttime.last_end_request = now_ns;
6374 
6375 	/*
6376 	 * Using us instead of ns, to get a reasonable precision in
6377 	 * computing rate in next check.
6378 	 */
6379 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6380 
6381 	/*
6382 	 * If the request took rather long to complete, and, according
6383 	 * to the maximum request size recorded, this completion latency
6384 	 * implies that the request was certainly served at a very low
6385 	 * rate (less than 1M sectors/sec), then the whole observation
6386 	 * interval that lasts up to this time instant cannot be a
6387 	 * valid time interval for computing a new peak rate.  Invoke
6388 	 * bfq_update_rate_reset to have the following three steps
6389 	 * taken:
6390 	 * - close the observation interval at the last (previous)
6391 	 *   request dispatch or completion
6392 	 * - compute rate, if possible, for that observation interval
6393 	 * - reset to zero samples, which will trigger a proper
6394 	 *   re-initialization of the observation interval on next
6395 	 *   dispatch
6396 	 */
6397 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6398 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6399 			1UL<<(BFQ_RATE_SHIFT - 10))
6400 		bfq_update_rate_reset(bfqd, NULL);
6401 	bfqd->last_completion = now_ns;
6402 	/*
6403 	 * Shared queues are likely to receive I/O at a high
6404 	 * rate. This may deceptively let them be considered as wakers
6405 	 * of other queues. But a false waker will unjustly steal
6406 	 * bandwidth to its supposedly woken queue. So considering
6407 	 * also shared queues in the waking mechanism may cause more
6408 	 * control troubles than throughput benefits. Then reset
6409 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6410 	 */
6411 	if (!bfq_bfqq_coop(bfqq))
6412 		bfqd->last_completed_rq_bfqq = bfqq;
6413 	else
6414 		bfqd->last_completed_rq_bfqq = NULL;
6415 
6416 	/*
6417 	 * If we are waiting to discover whether the request pattern
6418 	 * of the task associated with the queue is actually
6419 	 * isochronous, and both requisites for this condition to hold
6420 	 * are now satisfied, then compute soft_rt_next_start (see the
6421 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6422 	 * do not compute soft_rt_next_start if bfqq is in interactive
6423 	 * weight raising (see the comments in bfq_bfqq_expire() for
6424 	 * an explanation). We schedule this delayed update when bfqq
6425 	 * expires, if it still has in-flight requests.
6426 	 */
6427 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6428 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6429 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6430 		bfqq->soft_rt_next_start =
6431 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6432 
6433 	/*
6434 	 * If this is the in-service queue, check if it needs to be expired,
6435 	 * or if we want to idle in case it has no pending requests.
6436 	 */
6437 	if (bfqd->in_service_queue == bfqq) {
6438 		if (bfq_bfqq_must_idle(bfqq)) {
6439 			if (bfqq->dispatched == 0)
6440 				bfq_arm_slice_timer(bfqd);
6441 			/*
6442 			 * If we get here, we do not expire bfqq, even
6443 			 * if bfqq was in budget timeout or had no
6444 			 * more requests (as controlled in the next
6445 			 * conditional instructions). The reason for
6446 			 * not expiring bfqq is as follows.
6447 			 *
6448 			 * Here bfqq->dispatched > 0 holds, but
6449 			 * bfq_bfqq_must_idle() returned true. This
6450 			 * implies that, even if no request arrives
6451 			 * for bfqq before bfqq->dispatched reaches 0,
6452 			 * bfqq will, however, not be expired on the
6453 			 * completion event that causes bfqq->dispatch
6454 			 * to reach zero. In contrast, on this event,
6455 			 * bfqq will start enjoying device idling
6456 			 * (I/O-dispatch plugging).
6457 			 *
6458 			 * But, if we expired bfqq here, bfqq would
6459 			 * not have the chance to enjoy device idling
6460 			 * when bfqq->dispatched finally reaches
6461 			 * zero. This would expose bfqq to violation
6462 			 * of its reserved service guarantees.
6463 			 */
6464 			return;
6465 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6466 			bfq_bfqq_expire(bfqd, bfqq, false,
6467 					BFQQE_BUDGET_TIMEOUT);
6468 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6469 			 (bfqq->dispatched == 0 ||
6470 			  !bfq_better_to_idle(bfqq)))
6471 			bfq_bfqq_expire(bfqd, bfqq, false,
6472 					BFQQE_NO_MORE_REQUESTS);
6473 	}
6474 
6475 	if (!bfqd->tot_rq_in_driver)
6476 		bfq_schedule_dispatch(bfqd);
6477 }
6478 
6479 /*
6480  * The processes associated with bfqq may happen to generate their
6481  * cumulative I/O at a lower rate than the rate at which the device
6482  * could serve the same I/O. This is rather probable, e.g., if only
6483  * one process is associated with bfqq and the device is an SSD. It
6484  * results in bfqq becoming often empty while in service. In this
6485  * respect, if BFQ is allowed to switch to another queue when bfqq
6486  * remains empty, then the device goes on being fed with I/O requests,
6487  * and the throughput is not affected. In contrast, if BFQ is not
6488  * allowed to switch to another queue---because bfqq is sync and
6489  * I/O-dispatch needs to be plugged while bfqq is temporarily
6490  * empty---then, during the service of bfqq, there will be frequent
6491  * "service holes", i.e., time intervals during which bfqq gets empty
6492  * and the device can only consume the I/O already queued in its
6493  * hardware queues. During service holes, the device may even get to
6494  * remaining idle. In the end, during the service of bfqq, the device
6495  * is driven at a lower speed than the one it can reach with the kind
6496  * of I/O flowing through bfqq.
6497  *
6498  * To counter this loss of throughput, BFQ implements a "request
6499  * injection mechanism", which tries to fill the above service holes
6500  * with I/O requests taken from other queues. The hard part in this
6501  * mechanism is finding the right amount of I/O to inject, so as to
6502  * both boost throughput and not break bfqq's bandwidth and latency
6503  * guarantees. In this respect, the mechanism maintains a per-queue
6504  * inject limit, computed as below. While bfqq is empty, the injection
6505  * mechanism dispatches extra I/O requests only until the total number
6506  * of I/O requests in flight---i.e., already dispatched but not yet
6507  * completed---remains lower than this limit.
6508  *
6509  * A first definition comes in handy to introduce the algorithm by
6510  * which the inject limit is computed.  We define as first request for
6511  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6512  * service, and causes bfqq to switch from empty to non-empty. The
6513  * algorithm updates the limit as a function of the effect of
6514  * injection on the service times of only the first requests of
6515  * bfqq. The reason for this restriction is that these are the
6516  * requests whose service time is affected most, because they are the
6517  * first to arrive after injection possibly occurred.
6518  *
6519  * To evaluate the effect of injection, the algorithm measures the
6520  * "total service time" of first requests. We define as total service
6521  * time of an I/O request, the time that elapses since when the
6522  * request is enqueued into bfqq, to when it is completed. This
6523  * quantity allows the whole effect of injection to be measured. It is
6524  * easy to see why. Suppose that some requests of other queues are
6525  * actually injected while bfqq is empty, and that a new request R
6526  * then arrives for bfqq. If the device does start to serve all or
6527  * part of the injected requests during the service hole, then,
6528  * because of this extra service, it may delay the next invocation of
6529  * the dispatch hook of BFQ. Then, even after R gets eventually
6530  * dispatched, the device may delay the actual service of R if it is
6531  * still busy serving the extra requests, or if it decides to serve,
6532  * before R, some extra request still present in its queues. As a
6533  * conclusion, the cumulative extra delay caused by injection can be
6534  * easily evaluated by just comparing the total service time of first
6535  * requests with and without injection.
6536  *
6537  * The limit-update algorithm works as follows. On the arrival of a
6538  * first request of bfqq, the algorithm measures the total time of the
6539  * request only if one of the three cases below holds, and, for each
6540  * case, it updates the limit as described below:
6541  *
6542  * (1) If there is no in-flight request. This gives a baseline for the
6543  *     total service time of the requests of bfqq. If the baseline has
6544  *     not been computed yet, then, after computing it, the limit is
6545  *     set to 1, to start boosting throughput, and to prepare the
6546  *     ground for the next case. If the baseline has already been
6547  *     computed, then it is updated, in case it results to be lower
6548  *     than the previous value.
6549  *
6550  * (2) If the limit is higher than 0 and there are in-flight
6551  *     requests. By comparing the total service time in this case with
6552  *     the above baseline, it is possible to know at which extent the
6553  *     current value of the limit is inflating the total service
6554  *     time. If the inflation is below a certain threshold, then bfqq
6555  *     is assumed to be suffering from no perceivable loss of its
6556  *     service guarantees, and the limit is even tentatively
6557  *     increased. If the inflation is above the threshold, then the
6558  *     limit is decreased. Due to the lack of any hysteresis, this
6559  *     logic makes the limit oscillate even in steady workload
6560  *     conditions. Yet we opted for it, because it is fast in reaching
6561  *     the best value for the limit, as a function of the current I/O
6562  *     workload. To reduce oscillations, this step is disabled for a
6563  *     short time interval after the limit happens to be decreased.
6564  *
6565  * (3) Periodically, after resetting the limit, to make sure that the
6566  *     limit eventually drops in case the workload changes. This is
6567  *     needed because, after the limit has gone safely up for a
6568  *     certain workload, it is impossible to guess whether the
6569  *     baseline total service time may have changed, without measuring
6570  *     it again without injection. A more effective version of this
6571  *     step might be to just sample the baseline, by interrupting
6572  *     injection only once, and then to reset/lower the limit only if
6573  *     the total service time with the current limit does happen to be
6574  *     too large.
6575  *
6576  * More details on each step are provided in the comments on the
6577  * pieces of code that implement these steps: the branch handling the
6578  * transition from empty to non empty in bfq_add_request(), the branch
6579  * handling injection in bfq_select_queue(), and the function
6580  * bfq_choose_bfqq_for_injection(). These comments also explain some
6581  * exceptions, made by the injection mechanism in some special cases.
6582  */
bfq_update_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)6583 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6584 				    struct bfq_queue *bfqq)
6585 {
6586 	u64 tot_time_ns = blk_time_get_ns() - bfqd->last_empty_occupied_ns;
6587 	unsigned int old_limit = bfqq->inject_limit;
6588 
6589 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6590 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6591 
6592 		if (tot_time_ns >= threshold && old_limit > 0) {
6593 			bfqq->inject_limit--;
6594 			bfqq->decrease_time_jif = jiffies;
6595 		} else if (tot_time_ns < threshold &&
6596 			   old_limit <= bfqd->max_rq_in_driver)
6597 			bfqq->inject_limit++;
6598 	}
6599 
6600 	/*
6601 	 * Either we still have to compute the base value for the
6602 	 * total service time, and there seem to be the right
6603 	 * conditions to do it, or we can lower the last base value
6604 	 * computed.
6605 	 *
6606 	 * NOTE: (bfqd->tot_rq_in_driver == 1) means that there is no I/O
6607 	 * request in flight, because this function is in the code
6608 	 * path that handles the completion of a request of bfqq, and,
6609 	 * in particular, this function is executed before
6610 	 * bfqd->tot_rq_in_driver is decremented in such a code path.
6611 	 */
6612 	if ((bfqq->last_serv_time_ns == 0 && bfqd->tot_rq_in_driver == 1) ||
6613 	    tot_time_ns < bfqq->last_serv_time_ns) {
6614 		if (bfqq->last_serv_time_ns == 0) {
6615 			/*
6616 			 * Now we certainly have a base value: make sure we
6617 			 * start trying injection.
6618 			 */
6619 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6620 		}
6621 		bfqq->last_serv_time_ns = tot_time_ns;
6622 	} else if (!bfqd->rqs_injected && bfqd->tot_rq_in_driver == 1)
6623 		/*
6624 		 * No I/O injected and no request still in service in
6625 		 * the drive: these are the exact conditions for
6626 		 * computing the base value of the total service time
6627 		 * for bfqq. So let's update this value, because it is
6628 		 * rather variable. For example, it varies if the size
6629 		 * or the spatial locality of the I/O requests in bfqq
6630 		 * change.
6631 		 */
6632 		bfqq->last_serv_time_ns = tot_time_ns;
6633 
6634 
6635 	/* update complete, not waiting for any request completion any longer */
6636 	bfqd->waited_rq = NULL;
6637 	bfqd->rqs_injected = false;
6638 }
6639 
6640 /*
6641  * Handle either a requeue or a finish for rq. The things to do are
6642  * the same in both cases: all references to rq are to be dropped. In
6643  * particular, rq is considered completed from the point of view of
6644  * the scheduler.
6645  */
bfq_finish_requeue_request(struct request * rq)6646 static void bfq_finish_requeue_request(struct request *rq)
6647 {
6648 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6649 	struct bfq_data *bfqd;
6650 	unsigned long flags;
6651 
6652 	/*
6653 	 * rq either is not associated with any icq, or is an already
6654 	 * requeued request that has not (yet) been re-inserted into
6655 	 * a bfq_queue.
6656 	 */
6657 	if (!rq->elv.icq || !bfqq)
6658 		return;
6659 
6660 	bfqd = bfqq->bfqd;
6661 
6662 	if (rq->rq_flags & RQF_STARTED)
6663 		bfqg_stats_update_completion(bfqq_group(bfqq),
6664 					     rq->start_time_ns,
6665 					     rq->io_start_time_ns,
6666 					     rq->cmd_flags);
6667 
6668 	spin_lock_irqsave(&bfqd->lock, flags);
6669 	if (likely(rq->rq_flags & RQF_STARTED)) {
6670 		if (rq == bfqd->waited_rq)
6671 			bfq_update_inject_limit(bfqd, bfqq);
6672 
6673 		bfq_completed_request(bfqq, bfqd);
6674 	}
6675 	bfqq_request_freed(bfqq);
6676 	bfq_put_queue(bfqq);
6677 	RQ_BIC(rq)->requests--;
6678 	spin_unlock_irqrestore(&bfqd->lock, flags);
6679 
6680 	/*
6681 	 * Reset private fields. In case of a requeue, this allows
6682 	 * this function to correctly do nothing if it is spuriously
6683 	 * invoked again on this same request (see the check at the
6684 	 * beginning of the function). Probably, a better general
6685 	 * design would be to prevent blk-mq from invoking the requeue
6686 	 * or finish hooks of an elevator, for a request that is not
6687 	 * referred by that elevator.
6688 	 *
6689 	 * Resetting the following fields would break the
6690 	 * request-insertion logic if rq is re-inserted into a bfq
6691 	 * internal queue, without a re-preparation. Here we assume
6692 	 * that re-insertions of requeued requests, without
6693 	 * re-preparation, can happen only for pass_through or at_head
6694 	 * requests (which are not re-inserted into bfq internal
6695 	 * queues).
6696 	 */
6697 	rq->elv.priv[0] = NULL;
6698 	rq->elv.priv[1] = NULL;
6699 }
6700 
bfq_finish_request(struct request * rq)6701 static void bfq_finish_request(struct request *rq)
6702 {
6703 	bfq_finish_requeue_request(rq);
6704 
6705 	if (rq->elv.icq) {
6706 		put_io_context(rq->elv.icq->ioc);
6707 		rq->elv.icq = NULL;
6708 	}
6709 }
6710 
6711 /*
6712  * Removes the association between the current task and bfqq, assuming
6713  * that bic points to the bfq iocontext of the task.
6714  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6715  * was the last process referring to that bfqq.
6716  */
6717 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)6718 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6719 {
6720 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6721 
6722 	if (bfqq_process_refs(bfqq) == 1 && !bfqq->new_bfqq) {
6723 		bfqq->pid = current->pid;
6724 		bfq_clear_bfqq_coop(bfqq);
6725 		bfq_clear_bfqq_split_coop(bfqq);
6726 		return bfqq;
6727 	}
6728 
6729 	bic_set_bfqq(bic, NULL, true, bfqq->actuator_idx);
6730 
6731 	bfq_put_cooperator(bfqq);
6732 
6733 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6734 	return NULL;
6735 }
6736 
6737 static struct bfq_queue *
__bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)6738 __bfq_get_bfqq_handle_split(struct bfq_data *bfqd, struct bfq_io_cq *bic,
6739 			    struct bio *bio, bool split, bool is_sync,
6740 			    bool *new_queue)
6741 {
6742 	unsigned int act_idx = bfq_actuator_index(bfqd, bio);
6743 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, act_idx);
6744 	struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[act_idx];
6745 
6746 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6747 		return bfqq;
6748 
6749 	if (new_queue)
6750 		*new_queue = true;
6751 
6752 	if (bfqq)
6753 		bfq_put_queue(bfqq);
6754 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6755 
6756 	bic_set_bfqq(bic, bfqq, is_sync, act_idx);
6757 	if (split && is_sync) {
6758 		if ((bfqq_data->was_in_burst_list && bfqd->large_burst) ||
6759 		    bfqq_data->saved_in_large_burst)
6760 			bfq_mark_bfqq_in_large_burst(bfqq);
6761 		else {
6762 			bfq_clear_bfqq_in_large_burst(bfqq);
6763 			if (bfqq_data->was_in_burst_list)
6764 				/*
6765 				 * If bfqq was in the current
6766 				 * burst list before being
6767 				 * merged, then we have to add
6768 				 * it back. And we do not need
6769 				 * to increase burst_size, as
6770 				 * we did not decrement
6771 				 * burst_size when we removed
6772 				 * bfqq from the burst list as
6773 				 * a consequence of a merge
6774 				 * (see comments in
6775 				 * bfq_put_queue). In this
6776 				 * respect, it would be rather
6777 				 * costly to know whether the
6778 				 * current burst list is still
6779 				 * the same burst list from
6780 				 * which bfqq was removed on
6781 				 * the merge. To avoid this
6782 				 * cost, if bfqq was in a
6783 				 * burst list, then we add
6784 				 * bfqq to the current burst
6785 				 * list without any further
6786 				 * check. This can cause
6787 				 * inappropriate insertions,
6788 				 * but rarely enough to not
6789 				 * harm the detection of large
6790 				 * bursts significantly.
6791 				 */
6792 				hlist_add_head(&bfqq->burst_list_node,
6793 					       &bfqd->burst_list);
6794 		}
6795 		bfqq->split_time = jiffies;
6796 	}
6797 
6798 	return bfqq;
6799 }
6800 
6801 /*
6802  * Only reset private fields. The actual request preparation will be
6803  * performed by bfq_init_rq, when rq is either inserted or merged. See
6804  * comments on bfq_init_rq for the reason behind this delayed
6805  * preparation.
6806  */
bfq_prepare_request(struct request * rq)6807 static void bfq_prepare_request(struct request *rq)
6808 {
6809 	rq->elv.icq = ioc_find_get_icq(rq->q);
6810 
6811 	/*
6812 	 * Regardless of whether we have an icq attached, we have to
6813 	 * clear the scheduler pointers, as they might point to
6814 	 * previously allocated bic/bfqq structs.
6815 	 */
6816 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6817 }
6818 
bfq_waker_bfqq(struct bfq_queue * bfqq)6819 static struct bfq_queue *bfq_waker_bfqq(struct bfq_queue *bfqq)
6820 {
6821 	struct bfq_queue *new_bfqq = bfqq->new_bfqq;
6822 	struct bfq_queue *waker_bfqq = bfqq->waker_bfqq;
6823 
6824 	if (!waker_bfqq)
6825 		return NULL;
6826 
6827 	while (new_bfqq) {
6828 		if (new_bfqq == waker_bfqq) {
6829 			/*
6830 			 * If waker_bfqq is in the merge chain, and current
6831 			 * is the only process, waker_bfqq can be freed.
6832 			 */
6833 			if (bfqq_process_refs(waker_bfqq) == 1)
6834 				return NULL;
6835 
6836 			return waker_bfqq;
6837 		}
6838 
6839 		new_bfqq = new_bfqq->new_bfqq;
6840 	}
6841 
6842 	/*
6843 	 * If waker_bfqq is not in the merge chain, and it's procress reference
6844 	 * is 0, waker_bfqq can be freed.
6845 	 */
6846 	if (bfqq_process_refs(waker_bfqq) == 0)
6847 		return NULL;
6848 
6849 	return waker_bfqq;
6850 }
6851 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,unsigned int idx,bool is_sync)6852 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6853 						   struct bfq_io_cq *bic,
6854 						   struct bio *bio,
6855 						   unsigned int idx,
6856 						   bool is_sync)
6857 {
6858 	struct bfq_queue *waker_bfqq;
6859 	struct bfq_queue *bfqq;
6860 	bool new_queue = false;
6861 
6862 	bfqq = __bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6863 					   &new_queue);
6864 	if (unlikely(new_queue))
6865 		return bfqq;
6866 
6867 	/* If the queue was seeky for too long, break it apart. */
6868 	if (!bfq_bfqq_coop(bfqq) || !bfq_bfqq_split_coop(bfqq) ||
6869 	    bic->bfqq_data[idx].stably_merged)
6870 		return bfqq;
6871 
6872 	waker_bfqq = bfq_waker_bfqq(bfqq);
6873 
6874 	/* Update bic before losing reference to bfqq */
6875 	if (bfq_bfqq_in_large_burst(bfqq))
6876 		bic->bfqq_data[idx].saved_in_large_burst = true;
6877 
6878 	bfqq = bfq_split_bfqq(bic, bfqq);
6879 	if (bfqq) {
6880 		bfq_bfqq_resume_state(bfqq, bfqd, bic, true);
6881 		return bfqq;
6882 	}
6883 
6884 	bfqq = __bfq_get_bfqq_handle_split(bfqd, bic, bio, true, is_sync, NULL);
6885 	if (unlikely(bfqq == &bfqd->oom_bfqq))
6886 		return bfqq;
6887 
6888 	bfq_bfqq_resume_state(bfqq, bfqd, bic, false);
6889 	bfqq->waker_bfqq = waker_bfqq;
6890 	bfqq->tentative_waker_bfqq = NULL;
6891 
6892 	/*
6893 	 * If the waker queue disappears, then new_bfqq->waker_bfqq must be
6894 	 * reset. So insert new_bfqq into the
6895 	 * woken_list of the waker. See
6896 	 * bfq_check_waker for details.
6897 	 */
6898 	if (waker_bfqq)
6899 		hlist_add_head(&bfqq->woken_list_node,
6900 			       &bfqq->waker_bfqq->woken_list);
6901 
6902 	return bfqq;
6903 }
6904 
6905 /*
6906  * If needed, init rq, allocate bfq data structures associated with
6907  * rq, and increment reference counters in the destination bfq_queue
6908  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6909  * not associated with any bfq_queue.
6910  *
6911  * This function is invoked by the functions that perform rq insertion
6912  * or merging. One may have expected the above preparation operations
6913  * to be performed in bfq_prepare_request, and not delayed to when rq
6914  * is inserted or merged. The rationale behind this delayed
6915  * preparation is that, after the prepare_request hook is invoked for
6916  * rq, rq may still be transformed into a request with no icq, i.e., a
6917  * request not associated with any queue. No bfq hook is invoked to
6918  * signal this transformation. As a consequence, should these
6919  * preparation operations be performed when the prepare_request hook
6920  * is invoked, and should rq be transformed one moment later, bfq
6921  * would end up in an inconsistent state, because it would have
6922  * incremented some queue counters for an rq destined to
6923  * transformation, without any chance to correctly lower these
6924  * counters back. In contrast, no transformation can still happen for
6925  * rq after rq has been inserted or merged. So, it is safe to execute
6926  * these preparation operations when rq is finally inserted or merged.
6927  */
bfq_init_rq(struct request * rq)6928 static struct bfq_queue *bfq_init_rq(struct request *rq)
6929 {
6930 	struct request_queue *q = rq->q;
6931 	struct bio *bio = rq->bio;
6932 	struct bfq_data *bfqd = q->elevator->elevator_data;
6933 	struct bfq_io_cq *bic;
6934 	const int is_sync = rq_is_sync(rq);
6935 	struct bfq_queue *bfqq;
6936 	unsigned int a_idx = bfq_actuator_index(bfqd, bio);
6937 
6938 	if (unlikely(!rq->elv.icq))
6939 		return NULL;
6940 
6941 	/*
6942 	 * Assuming that RQ_BFQQ(rq) is set only if everything is set
6943 	 * for this rq. This holds true, because this function is
6944 	 * invoked only for insertion or merging, and, after such
6945 	 * events, a request cannot be manipulated any longer before
6946 	 * being removed from bfq.
6947 	 */
6948 	if (RQ_BFQQ(rq))
6949 		return RQ_BFQQ(rq);
6950 
6951 	bic = icq_to_bic(rq->elv.icq);
6952 	bfq_check_ioprio_change(bic, bio);
6953 	bfq_bic_update_cgroup(bic, bio);
6954 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, a_idx, is_sync);
6955 
6956 	bfqq_request_allocated(bfqq);
6957 	bfqq->ref++;
6958 	bic->requests++;
6959 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6960 		     rq, bfqq, bfqq->ref);
6961 
6962 	rq->elv.priv[0] = bic;
6963 	rq->elv.priv[1] = bfqq;
6964 
6965 	/*
6966 	 * If a bfq_queue has only one process reference, it is owned
6967 	 * by only this bic: we can then set bfqq->bic = bic. in
6968 	 * addition, if the queue has also just been split, we have to
6969 	 * resume its state.
6970 	 */
6971 	if (likely(bfqq != &bfqd->oom_bfqq) && !bfqq->new_bfqq &&
6972 	    bfqq_process_refs(bfqq) == 1)
6973 		bfqq->bic = bic;
6974 
6975 	/*
6976 	 * Consider bfqq as possibly belonging to a burst of newly
6977 	 * created queues only if:
6978 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6979 	 * or
6980 	 * 2) There is no other active queue. In fact, if, in
6981 	 *    contrast, there are active queues not belonging to the
6982 	 *    possible burst bfqq may belong to, then there is no gain
6983 	 *    in considering bfqq as belonging to a burst, and
6984 	 *    therefore in not weight-raising bfqq. See comments on
6985 	 *    bfq_handle_burst().
6986 	 *
6987 	 * This filtering also helps eliminating false positives,
6988 	 * occurring when bfqq does not belong to an actual large
6989 	 * burst, but some background task (e.g., a service) happens
6990 	 * to trigger the creation of new queues very close to when
6991 	 * bfqq and its possible companion queues are created. See
6992 	 * comments on bfq_handle_burst() for further details also on
6993 	 * this issue.
6994 	 */
6995 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6996 		     (bfqd->burst_size > 0 ||
6997 		      bfq_tot_busy_queues(bfqd) == 0)))
6998 		bfq_handle_burst(bfqd, bfqq);
6999 
7000 	return bfqq;
7001 }
7002 
7003 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)7004 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
7005 {
7006 	enum bfqq_expiration reason;
7007 	unsigned long flags;
7008 
7009 	spin_lock_irqsave(&bfqd->lock, flags);
7010 
7011 	/*
7012 	 * Considering that bfqq may be in race, we should firstly check
7013 	 * whether bfqq is in service before doing something on it. If
7014 	 * the bfqq in race is not in service, it has already been expired
7015 	 * through __bfq_bfqq_expire func and its wait_request flags has
7016 	 * been cleared in __bfq_bfqd_reset_in_service func.
7017 	 */
7018 	if (bfqq != bfqd->in_service_queue) {
7019 		spin_unlock_irqrestore(&bfqd->lock, flags);
7020 		return;
7021 	}
7022 
7023 	bfq_clear_bfqq_wait_request(bfqq);
7024 
7025 	if (bfq_bfqq_budget_timeout(bfqq))
7026 		/*
7027 		 * Also here the queue can be safely expired
7028 		 * for budget timeout without wasting
7029 		 * guarantees
7030 		 */
7031 		reason = BFQQE_BUDGET_TIMEOUT;
7032 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
7033 		/*
7034 		 * The queue may not be empty upon timer expiration,
7035 		 * because we may not disable the timer when the
7036 		 * first request of the in-service queue arrives
7037 		 * during disk idling.
7038 		 */
7039 		reason = BFQQE_TOO_IDLE;
7040 	else
7041 		goto schedule_dispatch;
7042 
7043 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
7044 
7045 schedule_dispatch:
7046 	bfq_schedule_dispatch(bfqd);
7047 	spin_unlock_irqrestore(&bfqd->lock, flags);
7048 }
7049 
7050 /*
7051  * Handler of the expiration of the timer running if the in-service queue
7052  * is idling inside its time slice.
7053  */
bfq_idle_slice_timer(struct hrtimer * timer)7054 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
7055 {
7056 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
7057 					     idle_slice_timer);
7058 	struct bfq_queue *bfqq = bfqd->in_service_queue;
7059 
7060 	/*
7061 	 * Theoretical race here: the in-service queue can be NULL or
7062 	 * different from the queue that was idling if a new request
7063 	 * arrives for the current queue and there is a full dispatch
7064 	 * cycle that changes the in-service queue.  This can hardly
7065 	 * happen, but in the worst case we just expire a queue too
7066 	 * early.
7067 	 */
7068 	if (bfqq)
7069 		bfq_idle_slice_timer_body(bfqd, bfqq);
7070 
7071 	return HRTIMER_NORESTART;
7072 }
7073 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)7074 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
7075 				 struct bfq_queue **bfqq_ptr)
7076 {
7077 	struct bfq_queue *bfqq = *bfqq_ptr;
7078 
7079 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
7080 	if (bfqq) {
7081 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
7082 
7083 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
7084 			     bfqq, bfqq->ref);
7085 		bfq_put_queue(bfqq);
7086 		*bfqq_ptr = NULL;
7087 	}
7088 }
7089 
7090 /*
7091  * Release all the bfqg references to its async queues.  If we are
7092  * deallocating the group these queues may still contain requests, so
7093  * we reparent them to the root cgroup (i.e., the only one that will
7094  * exist for sure until all the requests on a device are gone).
7095  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)7096 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
7097 {
7098 	int i, j, k;
7099 
7100 	for (k = 0; k < bfqd->num_actuators; k++) {
7101 		for (i = 0; i < 2; i++)
7102 			for (j = 0; j < IOPRIO_NR_LEVELS; j++)
7103 				__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j][k]);
7104 
7105 		__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq[k]);
7106 	}
7107 }
7108 
7109 /*
7110  * See the comments on bfq_limit_depth for the purpose of
7111  * the depths set in the function. Return minimum shallow depth we'll use.
7112  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)7113 static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
7114 {
7115 	unsigned int nr_requests = bfqd->queue->nr_requests;
7116 
7117 	/*
7118 	 * In-word depths if no bfq_queue is being weight-raised:
7119 	 * leaving 25% of tags only for sync reads.
7120 	 *
7121 	 * In next formulas, right-shift the value
7122 	 * (1U<<bt->sb.shift), instead of computing directly
7123 	 * (1U<<(bt->sb.shift - something)), to be robust against
7124 	 * any possible value of bt->sb.shift, without having to
7125 	 * limit 'something'.
7126 	 */
7127 	/* no more than 50% of tags for async I/O */
7128 	bfqd->async_depths[0][0] = max(nr_requests >> 1, 1U);
7129 	/*
7130 	 * no more than 75% of tags for sync writes (25% extra tags
7131 	 * w.r.t. async I/O, to prevent async I/O from starving sync
7132 	 * writes)
7133 	 */
7134 	bfqd->async_depths[0][1] = max((nr_requests * 3) >> 2, 1U);
7135 
7136 	/*
7137 	 * In-word depths in case some bfq_queue is being weight-
7138 	 * raised: leaving ~63% of tags for sync reads. This is the
7139 	 * highest percentage for which, in our tests, application
7140 	 * start-up times didn't suffer from any regression due to tag
7141 	 * shortage.
7142 	 */
7143 	/* no more than ~18% of tags for async I/O */
7144 	bfqd->async_depths[1][0] = max((nr_requests * 3) >> 4, 1U);
7145 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
7146 	bfqd->async_depths[1][1] = max((nr_requests * 6) >> 4, 1U);
7147 }
7148 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)7149 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
7150 {
7151 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
7152 	struct blk_mq_tags *tags = hctx->sched_tags;
7153 
7154 	bfq_update_depths(bfqd, &tags->bitmap_tags);
7155 	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1);
7156 }
7157 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)7158 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
7159 {
7160 	bfq_depth_updated(hctx);
7161 	return 0;
7162 }
7163 
bfq_exit_queue(struct elevator_queue * e)7164 static void bfq_exit_queue(struct elevator_queue *e)
7165 {
7166 	struct bfq_data *bfqd = e->elevator_data;
7167 	struct bfq_queue *bfqq, *n;
7168 	unsigned int actuator;
7169 
7170 	hrtimer_cancel(&bfqd->idle_slice_timer);
7171 
7172 	spin_lock_irq(&bfqd->lock);
7173 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
7174 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
7175 	spin_unlock_irq(&bfqd->lock);
7176 
7177 	for (actuator = 0; actuator < bfqd->num_actuators; actuator++)
7178 		WARN_ON_ONCE(bfqd->rq_in_driver[actuator]);
7179 	WARN_ON_ONCE(bfqd->tot_rq_in_driver);
7180 
7181 	hrtimer_cancel(&bfqd->idle_slice_timer);
7182 
7183 	/* release oom-queue reference to root group */
7184 	bfqg_and_blkg_put(bfqd->root_group);
7185 
7186 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7187 	blkcg_deactivate_policy(bfqd->queue->disk, &blkcg_policy_bfq);
7188 #else
7189 	spin_lock_irq(&bfqd->lock);
7190 	bfq_put_async_queues(bfqd, bfqd->root_group);
7191 	kfree(bfqd->root_group);
7192 	spin_unlock_irq(&bfqd->lock);
7193 #endif
7194 
7195 	blk_stat_disable_accounting(bfqd->queue);
7196 	blk_queue_flag_clear(QUEUE_FLAG_DISABLE_WBT_DEF, bfqd->queue);
7197 	set_bit(ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT, &e->flags);
7198 
7199 	kfree(bfqd);
7200 }
7201 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)7202 static void bfq_init_root_group(struct bfq_group *root_group,
7203 				struct bfq_data *bfqd)
7204 {
7205 	int i;
7206 
7207 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7208 	root_group->entity.parent = NULL;
7209 	root_group->my_entity = NULL;
7210 	root_group->bfqd = bfqd;
7211 #endif
7212 	root_group->rq_pos_tree = RB_ROOT;
7213 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
7214 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
7215 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
7216 }
7217 
bfq_init_queue(struct request_queue * q,struct elevator_queue * eq)7218 static int bfq_init_queue(struct request_queue *q, struct elevator_queue *eq)
7219 {
7220 	struct bfq_data *bfqd;
7221 	unsigned int i;
7222 	struct blk_independent_access_ranges *ia_ranges = q->disk->ia_ranges;
7223 
7224 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
7225 	if (!bfqd)
7226 		return -ENOMEM;
7227 
7228 	eq->elevator_data = bfqd;
7229 
7230 	spin_lock_irq(&q->queue_lock);
7231 	q->elevator = eq;
7232 	spin_unlock_irq(&q->queue_lock);
7233 
7234 	/*
7235 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
7236 	 * Grab a permanent reference to it, so that the normal code flow
7237 	 * will not attempt to free it.
7238 	 * Set zero as actuator index: we will pretend that
7239 	 * all I/O requests are for the same actuator.
7240 	 */
7241 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0, 0);
7242 	bfqd->oom_bfqq.ref++;
7243 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
7244 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
7245 	bfqd->oom_bfqq.entity.new_weight =
7246 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
7247 
7248 	/* oom_bfqq does not participate to bursts */
7249 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
7250 
7251 	/*
7252 	 * Trigger weight initialization, according to ioprio, at the
7253 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
7254 	 * class won't be changed any more.
7255 	 */
7256 	bfqd->oom_bfqq.entity.prio_changed = 1;
7257 
7258 	bfqd->queue = q;
7259 
7260 	bfqd->num_actuators = 1;
7261 	/*
7262 	 * If the disk supports multiple actuators, copy independent
7263 	 * access ranges from the request queue structure.
7264 	 */
7265 	spin_lock_irq(&q->queue_lock);
7266 	if (ia_ranges) {
7267 		/*
7268 		 * Check if the disk ia_ranges size exceeds the current bfq
7269 		 * actuator limit.
7270 		 */
7271 		if (ia_ranges->nr_ia_ranges > BFQ_MAX_ACTUATORS) {
7272 			pr_crit("nr_ia_ranges higher than act limit: iars=%d, max=%d.\n",
7273 				ia_ranges->nr_ia_ranges, BFQ_MAX_ACTUATORS);
7274 			pr_crit("Falling back to single actuator mode.\n");
7275 		} else {
7276 			bfqd->num_actuators = ia_ranges->nr_ia_ranges;
7277 
7278 			for (i = 0; i < bfqd->num_actuators; i++) {
7279 				bfqd->sector[i] = ia_ranges->ia_range[i].sector;
7280 				bfqd->nr_sectors[i] =
7281 					ia_ranges->ia_range[i].nr_sectors;
7282 			}
7283 		}
7284 	}
7285 
7286 	/* Otherwise use single-actuator dev info */
7287 	if (bfqd->num_actuators == 1) {
7288 		bfqd->sector[0] = 0;
7289 		bfqd->nr_sectors[0] = get_capacity(q->disk);
7290 	}
7291 	spin_unlock_irq(&q->queue_lock);
7292 
7293 	INIT_LIST_HEAD(&bfqd->dispatch);
7294 
7295 	hrtimer_setup(&bfqd->idle_slice_timer, bfq_idle_slice_timer, CLOCK_MONOTONIC,
7296 		      HRTIMER_MODE_REL);
7297 
7298 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
7299 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7300 	bfqd->num_groups_with_pending_reqs = 0;
7301 #endif
7302 
7303 	INIT_LIST_HEAD(&bfqd->active_list[0]);
7304 	INIT_LIST_HEAD(&bfqd->active_list[1]);
7305 	INIT_LIST_HEAD(&bfqd->idle_list);
7306 	INIT_HLIST_HEAD(&bfqd->burst_list);
7307 
7308 	bfqd->hw_tag = -1;
7309 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
7310 
7311 	bfqd->bfq_max_budget = bfq_default_max_budget;
7312 
7313 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7314 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7315 	bfqd->bfq_back_max = bfq_back_max;
7316 	bfqd->bfq_back_penalty = bfq_back_penalty;
7317 	bfqd->bfq_slice_idle = bfq_slice_idle;
7318 	bfqd->bfq_timeout = bfq_timeout;
7319 
7320 	bfqd->bfq_large_burst_thresh = 8;
7321 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7322 
7323 	bfqd->low_latency = true;
7324 
7325 	/*
7326 	 * Trade-off between responsiveness and fairness.
7327 	 */
7328 	bfqd->bfq_wr_coeff = 30;
7329 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7330 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7331 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7332 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7333 					      * Approximate rate required
7334 					      * to playback or record a
7335 					      * high-definition compressed
7336 					      * video.
7337 					      */
7338 	bfqd->wr_busy_queues = 0;
7339 
7340 	/*
7341 	 * Begin by assuming, optimistically, that the device peak
7342 	 * rate is equal to 2/3 of the highest reference rate.
7343 	 */
7344 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7345 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7346 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7347 
7348 	/* see comments on the definition of next field inside bfq_data */
7349 	bfqd->actuator_load_threshold = 4;
7350 
7351 	spin_lock_init(&bfqd->lock);
7352 
7353 	/*
7354 	 * The invocation of the next bfq_create_group_hierarchy
7355 	 * function is the head of a chain of function calls
7356 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7357 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7358 	 * has_work hook function. For this reason,
7359 	 * bfq_create_group_hierarchy is invoked only after all
7360 	 * scheduler data has been initialized, apart from the fields
7361 	 * that can be initialized only after invoking
7362 	 * bfq_create_group_hierarchy. This, in particular, enables
7363 	 * has_work to correctly return false. Of course, to avoid
7364 	 * other inconsistencies, the blk-mq stack must then refrain
7365 	 * from invoking further scheduler hooks before this init
7366 	 * function is finished.
7367 	 */
7368 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7369 	if (!bfqd->root_group)
7370 		goto out_free;
7371 	bfq_init_root_group(bfqd->root_group, bfqd);
7372 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7373 
7374 	/* We dispatch from request queue wide instead of hw queue */
7375 	blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
7376 
7377 	blk_queue_flag_set(QUEUE_FLAG_DISABLE_WBT_DEF, q);
7378 	wbt_disable_default(q->disk);
7379 	blk_stat_enable_accounting(q);
7380 
7381 	return 0;
7382 
7383 out_free:
7384 	kfree(bfqd);
7385 	return -ENOMEM;
7386 }
7387 
bfq_slab_kill(void)7388 static void bfq_slab_kill(void)
7389 {
7390 	kmem_cache_destroy(bfq_pool);
7391 }
7392 
bfq_slab_setup(void)7393 static int __init bfq_slab_setup(void)
7394 {
7395 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7396 	if (!bfq_pool)
7397 		return -ENOMEM;
7398 	return 0;
7399 }
7400 
bfq_var_show(unsigned int var,char * page)7401 static ssize_t bfq_var_show(unsigned int var, char *page)
7402 {
7403 	return sprintf(page, "%u\n", var);
7404 }
7405 
bfq_var_store(unsigned long * var,const char * page)7406 static int bfq_var_store(unsigned long *var, const char *page)
7407 {
7408 	unsigned long new_val;
7409 	int ret = kstrtoul(page, 10, &new_val);
7410 
7411 	if (ret)
7412 		return ret;
7413 	*var = new_val;
7414 	return 0;
7415 }
7416 
7417 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7418 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7419 {									\
7420 	struct bfq_data *bfqd = e->elevator_data;			\
7421 	u64 __data = __VAR;						\
7422 	if (__CONV == 1)						\
7423 		__data = jiffies_to_msecs(__data);			\
7424 	else if (__CONV == 2)						\
7425 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7426 	return bfq_var_show(__data, (page));				\
7427 }
7428 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7429 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7430 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7431 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7432 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7433 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7434 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7435 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7436 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7437 #undef SHOW_FUNCTION
7438 
7439 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7440 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7441 {									\
7442 	struct bfq_data *bfqd = e->elevator_data;			\
7443 	u64 __data = __VAR;						\
7444 	__data = div_u64(__data, NSEC_PER_USEC);			\
7445 	return bfq_var_show(__data, (page));				\
7446 }
7447 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7448 #undef USEC_SHOW_FUNCTION
7449 
7450 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7451 static ssize_t								\
7452 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7453 {									\
7454 	struct bfq_data *bfqd = e->elevator_data;			\
7455 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7456 	int ret;							\
7457 									\
7458 	ret = bfq_var_store(&__data, (page));				\
7459 	if (ret)							\
7460 		return ret;						\
7461 	if (__data < __min)						\
7462 		__data = __min;						\
7463 	else if (__data > __max)					\
7464 		__data = __max;						\
7465 	if (__CONV == 1)						\
7466 		*(__PTR) = msecs_to_jiffies(__data);			\
7467 	else if (__CONV == 2)						\
7468 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7469 	else								\
7470 		*(__PTR) = __data;					\
7471 	return count;							\
7472 }
7473 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7474 		INT_MAX, 2);
7475 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7476 		INT_MAX, 2);
7477 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7478 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7479 		INT_MAX, 0);
7480 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7481 #undef STORE_FUNCTION
7482 
7483 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7484 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7485 {									\
7486 	struct bfq_data *bfqd = e->elevator_data;			\
7487 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7488 	int ret;							\
7489 									\
7490 	ret = bfq_var_store(&__data, (page));				\
7491 	if (ret)							\
7492 		return ret;						\
7493 	if (__data < __min)						\
7494 		__data = __min;						\
7495 	else if (__data > __max)					\
7496 		__data = __max;						\
7497 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7498 	return count;							\
7499 }
7500 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7501 		    UINT_MAX);
7502 #undef USEC_STORE_FUNCTION
7503 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)7504 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7505 				    const char *page, size_t count)
7506 {
7507 	struct bfq_data *bfqd = e->elevator_data;
7508 	unsigned long __data;
7509 	int ret;
7510 
7511 	ret = bfq_var_store(&__data, (page));
7512 	if (ret)
7513 		return ret;
7514 
7515 	if (__data == 0)
7516 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7517 	else {
7518 		if (__data > INT_MAX)
7519 			__data = INT_MAX;
7520 		bfqd->bfq_max_budget = __data;
7521 	}
7522 
7523 	bfqd->bfq_user_max_budget = __data;
7524 
7525 	return count;
7526 }
7527 
7528 /*
7529  * Leaving this name to preserve name compatibility with cfq
7530  * parameters, but this timeout is used for both sync and async.
7531  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)7532 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7533 				      const char *page, size_t count)
7534 {
7535 	struct bfq_data *bfqd = e->elevator_data;
7536 	unsigned long __data;
7537 	int ret;
7538 
7539 	ret = bfq_var_store(&__data, (page));
7540 	if (ret)
7541 		return ret;
7542 
7543 	if (__data < 1)
7544 		__data = 1;
7545 	else if (__data > INT_MAX)
7546 		__data = INT_MAX;
7547 
7548 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7549 	if (bfqd->bfq_user_max_budget == 0)
7550 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7551 
7552 	return count;
7553 }
7554 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)7555 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7556 				     const char *page, size_t count)
7557 {
7558 	struct bfq_data *bfqd = e->elevator_data;
7559 	unsigned long __data;
7560 	int ret;
7561 
7562 	ret = bfq_var_store(&__data, (page));
7563 	if (ret)
7564 		return ret;
7565 
7566 	if (__data > 1)
7567 		__data = 1;
7568 	if (!bfqd->strict_guarantees && __data == 1
7569 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7570 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7571 
7572 	bfqd->strict_guarantees = __data;
7573 
7574 	return count;
7575 }
7576 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)7577 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7578 				     const char *page, size_t count)
7579 {
7580 	struct bfq_data *bfqd = e->elevator_data;
7581 	unsigned long __data;
7582 	int ret;
7583 
7584 	ret = bfq_var_store(&__data, (page));
7585 	if (ret)
7586 		return ret;
7587 
7588 	if (__data > 1)
7589 		__data = 1;
7590 	if (__data == 0 && bfqd->low_latency != 0)
7591 		bfq_end_wr(bfqd);
7592 	bfqd->low_latency = __data;
7593 
7594 	return count;
7595 }
7596 
7597 #define BFQ_ATTR(name) \
7598 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7599 
7600 static const struct elv_fs_entry bfq_attrs[] = {
7601 	BFQ_ATTR(fifo_expire_sync),
7602 	BFQ_ATTR(fifo_expire_async),
7603 	BFQ_ATTR(back_seek_max),
7604 	BFQ_ATTR(back_seek_penalty),
7605 	BFQ_ATTR(slice_idle),
7606 	BFQ_ATTR(slice_idle_us),
7607 	BFQ_ATTR(max_budget),
7608 	BFQ_ATTR(timeout_sync),
7609 	BFQ_ATTR(strict_guarantees),
7610 	BFQ_ATTR(low_latency),
7611 	__ATTR_NULL
7612 };
7613 
7614 static struct elevator_type iosched_bfq_mq = {
7615 	.ops = {
7616 		.limit_depth		= bfq_limit_depth,
7617 		.prepare_request	= bfq_prepare_request,
7618 		.requeue_request        = bfq_finish_requeue_request,
7619 		.finish_request		= bfq_finish_request,
7620 		.exit_icq		= bfq_exit_icq,
7621 		.insert_requests	= bfq_insert_requests,
7622 		.dispatch_request	= bfq_dispatch_request,
7623 		.next_request		= elv_rb_latter_request,
7624 		.former_request		= elv_rb_former_request,
7625 		.allow_merge		= bfq_allow_bio_merge,
7626 		.bio_merge		= bfq_bio_merge,
7627 		.request_merge		= bfq_request_merge,
7628 		.requests_merged	= bfq_requests_merged,
7629 		.request_merged		= bfq_request_merged,
7630 		.has_work		= bfq_has_work,
7631 		.depth_updated		= bfq_depth_updated,
7632 		.init_hctx		= bfq_init_hctx,
7633 		.init_sched		= bfq_init_queue,
7634 		.exit_sched		= bfq_exit_queue,
7635 	},
7636 
7637 	.icq_size =		sizeof(struct bfq_io_cq),
7638 	.icq_align =		__alignof__(struct bfq_io_cq),
7639 	.elevator_attrs =	bfq_attrs,
7640 	.elevator_name =	"bfq",
7641 	.elevator_owner =	THIS_MODULE,
7642 };
7643 MODULE_ALIAS("bfq-iosched");
7644 
bfq_init(void)7645 static int __init bfq_init(void)
7646 {
7647 	int ret;
7648 
7649 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7650 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7651 	if (ret)
7652 		return ret;
7653 #endif
7654 
7655 	ret = -ENOMEM;
7656 	if (bfq_slab_setup())
7657 		goto err_pol_unreg;
7658 
7659 	/*
7660 	 * Times to load large popular applications for the typical
7661 	 * systems installed on the reference devices (see the
7662 	 * comments before the definition of the next
7663 	 * array). Actually, we use slightly lower values, as the
7664 	 * estimated peak rate tends to be smaller than the actual
7665 	 * peak rate.  The reason for this last fact is that estimates
7666 	 * are computed over much shorter time intervals than the long
7667 	 * intervals typically used for benchmarking. Why? First, to
7668 	 * adapt more quickly to variations. Second, because an I/O
7669 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7670 	 * be run for a long time.
7671 	 */
7672 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7673 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7674 
7675 	ret = elv_register(&iosched_bfq_mq);
7676 	if (ret)
7677 		goto slab_kill;
7678 
7679 	return 0;
7680 
7681 slab_kill:
7682 	bfq_slab_kill();
7683 err_pol_unreg:
7684 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7685 	blkcg_policy_unregister(&blkcg_policy_bfq);
7686 #endif
7687 	return ret;
7688 }
7689 
bfq_exit(void)7690 static void __exit bfq_exit(void)
7691 {
7692 	elv_unregister(&iosched_bfq_mq);
7693 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7694 	blkcg_policy_unregister(&blkcg_policy_bfq);
7695 #endif
7696 	bfq_slab_kill();
7697 }
7698 
7699 module_init(bfq_init);
7700 module_exit(bfq_exit);
7701 
7702 MODULE_AUTHOR("Paolo Valente");
7703 MODULE_LICENSE("GPL");
7704 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7705