1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org> 7 * Copyright (c) 2022 David Vernet <dvernet@meta.com> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 /* 13 * NOTE: sched_ext is in the process of growing multiple scheduler support and 14 * scx_root usage is in a transitional state. Naked dereferences are safe if the 15 * caller is one of the tasks attached to SCX and explicit RCU dereference is 16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but 17 * are used as temporary markers to indicate that the dereferences need to be 18 * updated to point to the associated scheduler instances rather than scx_root. 19 */ 20 static struct scx_sched __rcu *scx_root; 21 22 /* 23 * During exit, a task may schedule after losing its PIDs. When disabling the 24 * BPF scheduler, we need to be able to iterate tasks in every state to 25 * guarantee system safety. Maintain a dedicated task list which contains every 26 * task between its fork and eventual free. 27 */ 28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock); 29 static LIST_HEAD(scx_tasks); 30 31 /* ops enable/disable */ 32 static DEFINE_MUTEX(scx_enable_mutex); 33 DEFINE_STATIC_KEY_FALSE(__scx_enabled); 34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED); 36 static int scx_bypass_depth; 37 static cpumask_var_t scx_bypass_lb_donee_cpumask; 38 static cpumask_var_t scx_bypass_lb_resched_cpumask; 39 static bool scx_aborting; 40 static bool scx_init_task_enabled; 41 static bool scx_switching_all; 42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 43 44 /* 45 * Tracks whether scx_enable() called scx_bypass(true). Used to balance bypass 46 * depth on enable failure. Will be removed when bypass depth is moved into the 47 * sched instance. 48 */ 49 static bool scx_bypassed_for_enable; 50 51 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 52 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 53 54 /* 55 * A monotically increasing sequence number that is incremented every time a 56 * scheduler is enabled. This can be used by to check if any custom sched_ext 57 * scheduler has ever been used in the system. 58 */ 59 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 60 61 /* 62 * The maximum amount of time in jiffies that a task may be runnable without 63 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 64 * scx_error(). 65 */ 66 static unsigned long scx_watchdog_timeout; 67 68 /* 69 * The last time the delayed work was run. This delayed work relies on 70 * ksoftirqd being able to run to service timer interrupts, so it's possible 71 * that this work itself could get wedged. To account for this, we check that 72 * it's not stalled in the timer tick, and trigger an error if it is. 73 */ 74 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 75 76 static struct delayed_work scx_watchdog_work; 77 78 /* 79 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence 80 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu 81 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated 82 * lazily when enabling and freed when disabling to avoid waste when sched_ext 83 * isn't active. 84 */ 85 struct scx_kick_syncs { 86 struct rcu_head rcu; 87 unsigned long syncs[]; 88 }; 89 90 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs); 91 92 /* 93 * Direct dispatch marker. 94 * 95 * Non-NULL values are used for direct dispatch from enqueue path. A valid 96 * pointer points to the task currently being enqueued. An ERR_PTR value is used 97 * to indicate that direct dispatch has already happened. 98 */ 99 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 100 101 static const struct rhashtable_params dsq_hash_params = { 102 .key_len = sizeof_field(struct scx_dispatch_q, id), 103 .key_offset = offsetof(struct scx_dispatch_q, id), 104 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 105 }; 106 107 static LLIST_HEAD(dsqs_to_free); 108 109 /* dispatch buf */ 110 struct scx_dsp_buf_ent { 111 struct task_struct *task; 112 unsigned long qseq; 113 u64 dsq_id; 114 u64 enq_flags; 115 }; 116 117 static u32 scx_dsp_max_batch; 118 119 struct scx_dsp_ctx { 120 struct rq *rq; 121 u32 cursor; 122 u32 nr_tasks; 123 struct scx_dsp_buf_ent buf[]; 124 }; 125 126 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 127 128 /* string formatting from BPF */ 129 struct scx_bstr_buf { 130 u64 data[MAX_BPRINTF_VARARGS]; 131 char line[SCX_EXIT_MSG_LEN]; 132 }; 133 134 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 135 static struct scx_bstr_buf scx_exit_bstr_buf; 136 137 /* ops debug dump */ 138 struct scx_dump_data { 139 s32 cpu; 140 bool first; 141 s32 cursor; 142 struct seq_buf *s; 143 const char *prefix; 144 struct scx_bstr_buf buf; 145 }; 146 147 static struct scx_dump_data scx_dump_data = { 148 .cpu = -1, 149 }; 150 151 /* /sys/kernel/sched_ext interface */ 152 static struct kset *scx_kset; 153 154 /* 155 * Parameters that can be adjusted through /sys/module/sched_ext/parameters. 156 * There usually is no reason to modify these as normal scheduler operation 157 * shouldn't be affected by them. The knobs are primarily for debugging. 158 */ 159 static u64 scx_slice_dfl = SCX_SLICE_DFL; 160 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC; 161 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US; 162 163 static int set_slice_us(const char *val, const struct kernel_param *kp) 164 { 165 return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC); 166 } 167 168 static const struct kernel_param_ops slice_us_param_ops = { 169 .set = set_slice_us, 170 .get = param_get_uint, 171 }; 172 173 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp) 174 { 175 return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC); 176 } 177 178 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = { 179 .set = set_bypass_lb_intv_us, 180 .get = param_get_uint, 181 }; 182 183 #undef MODULE_PARAM_PREFIX 184 #define MODULE_PARAM_PREFIX "sched_ext." 185 186 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600); 187 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)"); 188 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600); 189 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)"); 190 191 #undef MODULE_PARAM_PREFIX 192 193 #define CREATE_TRACE_POINTS 194 #include <trace/events/sched_ext.h> 195 196 static void process_ddsp_deferred_locals(struct rq *rq); 197 static u32 reenq_local(struct rq *rq); 198 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags); 199 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind, 200 s64 exit_code, const char *fmt, va_list args); 201 202 static __printf(4, 5) bool scx_exit(struct scx_sched *sch, 203 enum scx_exit_kind kind, s64 exit_code, 204 const char *fmt, ...) 205 { 206 va_list args; 207 bool ret; 208 209 va_start(args, fmt); 210 ret = scx_vexit(sch, kind, exit_code, fmt, args); 211 va_end(args); 212 213 return ret; 214 } 215 216 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args) 217 #define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args) 218 219 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op) 220 221 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 222 { 223 if (time_after(at, now)) 224 return jiffies_to_msecs(at - now); 225 else 226 return -(long)jiffies_to_msecs(now - at); 227 } 228 229 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 230 static u32 higher_bits(u32 flags) 231 { 232 return ~((1 << fls(flags)) - 1); 233 } 234 235 /* return the mask with only the highest bit set */ 236 static u32 highest_bit(u32 flags) 237 { 238 int bit = fls(flags); 239 return ((u64)1 << bit) >> 1; 240 } 241 242 static bool u32_before(u32 a, u32 b) 243 { 244 return (s32)(a - b) < 0; 245 } 246 247 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch, 248 struct task_struct *p) 249 { 250 return sch->global_dsqs[cpu_to_node(task_cpu(p))]; 251 } 252 253 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id) 254 { 255 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params); 256 } 257 258 static const struct sched_class *scx_setscheduler_class(struct task_struct *p) 259 { 260 if (p->sched_class == &stop_sched_class) 261 return &stop_sched_class; 262 263 return __setscheduler_class(p->policy, p->prio); 264 } 265 266 /* 267 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 268 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 269 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 270 * whether it's running from an allowed context. 271 * 272 * @mask is constant, always inline to cull the mask calculations. 273 */ 274 static __always_inline void scx_kf_allow(u32 mask) 275 { 276 /* nesting is allowed only in increasing scx_kf_mask order */ 277 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 278 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 279 current->scx.kf_mask, mask); 280 current->scx.kf_mask |= mask; 281 barrier(); 282 } 283 284 static void scx_kf_disallow(u32 mask) 285 { 286 barrier(); 287 current->scx.kf_mask &= ~mask; 288 } 289 290 /* 291 * Track the rq currently locked. 292 * 293 * This allows kfuncs to safely operate on rq from any scx ops callback, 294 * knowing which rq is already locked. 295 */ 296 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state); 297 298 static inline void update_locked_rq(struct rq *rq) 299 { 300 /* 301 * Check whether @rq is actually locked. This can help expose bugs 302 * or incorrect assumptions about the context in which a kfunc or 303 * callback is executed. 304 */ 305 if (rq) 306 lockdep_assert_rq_held(rq); 307 __this_cpu_write(scx_locked_rq_state, rq); 308 } 309 310 #define SCX_CALL_OP(sch, mask, op, rq, args...) \ 311 do { \ 312 if (rq) \ 313 update_locked_rq(rq); \ 314 if (mask) { \ 315 scx_kf_allow(mask); \ 316 (sch)->ops.op(args); \ 317 scx_kf_disallow(mask); \ 318 } else { \ 319 (sch)->ops.op(args); \ 320 } \ 321 if (rq) \ 322 update_locked_rq(NULL); \ 323 } while (0) 324 325 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \ 326 ({ \ 327 __typeof__((sch)->ops.op(args)) __ret; \ 328 \ 329 if (rq) \ 330 update_locked_rq(rq); \ 331 if (mask) { \ 332 scx_kf_allow(mask); \ 333 __ret = (sch)->ops.op(args); \ 334 scx_kf_disallow(mask); \ 335 } else { \ 336 __ret = (sch)->ops.op(args); \ 337 } \ 338 if (rq) \ 339 update_locked_rq(NULL); \ 340 __ret; \ 341 }) 342 343 /* 344 * Some kfuncs are allowed only on the tasks that are subjects of the 345 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 346 * restrictions, the following SCX_CALL_OP_*() variants should be used when 347 * invoking scx_ops operations that take task arguments. These can only be used 348 * for non-nesting operations due to the way the tasks are tracked. 349 * 350 * kfuncs which can only operate on such tasks can in turn use 351 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 352 * the specific task. 353 */ 354 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \ 355 do { \ 356 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 357 current->scx.kf_tasks[0] = task; \ 358 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \ 359 current->scx.kf_tasks[0] = NULL; \ 360 } while (0) 361 362 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \ 363 ({ \ 364 __typeof__((sch)->ops.op(task, ##args)) __ret; \ 365 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 366 current->scx.kf_tasks[0] = task; \ 367 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \ 368 current->scx.kf_tasks[0] = NULL; \ 369 __ret; \ 370 }) 371 372 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \ 373 ({ \ 374 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \ 375 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 376 current->scx.kf_tasks[0] = task0; \ 377 current->scx.kf_tasks[1] = task1; \ 378 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \ 379 current->scx.kf_tasks[0] = NULL; \ 380 current->scx.kf_tasks[1] = NULL; \ 381 __ret; \ 382 }) 383 384 /* @mask is constant, always inline to cull unnecessary branches */ 385 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask) 386 { 387 if (unlikely(!(current->scx.kf_mask & mask))) { 388 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x", 389 mask, current->scx.kf_mask); 390 return false; 391 } 392 393 /* 394 * Enforce nesting boundaries. e.g. A kfunc which can be called from 395 * DISPATCH must not be called if we're running DEQUEUE which is nested 396 * inside ops.dispatch(). We don't need to check boundaries for any 397 * blocking kfuncs as the verifier ensures they're only called from 398 * sleepable progs. 399 */ 400 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 401 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 402 scx_error(sch, "cpu_release kfunc called from a nested operation"); 403 return false; 404 } 405 406 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 407 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 408 scx_error(sch, "dispatch kfunc called from a nested operation"); 409 return false; 410 } 411 412 return true; 413 } 414 415 /* see SCX_CALL_OP_TASK() */ 416 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch, 417 u32 mask, 418 struct task_struct *p) 419 { 420 if (!scx_kf_allowed(sch, mask)) 421 return false; 422 423 if (unlikely((p != current->scx.kf_tasks[0] && 424 p != current->scx.kf_tasks[1]))) { 425 scx_error(sch, "called on a task not being operated on"); 426 return false; 427 } 428 429 return true; 430 } 431 432 /** 433 * nldsq_next_task - Iterate to the next task in a non-local DSQ 434 * @dsq: user dsq being iterated 435 * @cur: current position, %NULL to start iteration 436 * @rev: walk backwards 437 * 438 * Returns %NULL when iteration is finished. 439 */ 440 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 441 struct task_struct *cur, bool rev) 442 { 443 struct list_head *list_node; 444 struct scx_dsq_list_node *dsq_lnode; 445 446 lockdep_assert_held(&dsq->lock); 447 448 if (cur) 449 list_node = &cur->scx.dsq_list.node; 450 else 451 list_node = &dsq->list; 452 453 /* find the next task, need to skip BPF iteration cursors */ 454 do { 455 if (rev) 456 list_node = list_node->prev; 457 else 458 list_node = list_node->next; 459 460 if (list_node == &dsq->list) 461 return NULL; 462 463 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 464 node); 465 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 466 467 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 468 } 469 470 #define nldsq_for_each_task(p, dsq) \ 471 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 472 (p) = nldsq_next_task((dsq), (p), false)) 473 474 475 /* 476 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 477 * dispatch order. BPF-visible iterator is opaque and larger to allow future 478 * changes without breaking backward compatibility. Can be used with 479 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 480 */ 481 enum scx_dsq_iter_flags { 482 /* iterate in the reverse dispatch order */ 483 SCX_DSQ_ITER_REV = 1U << 16, 484 485 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 486 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 487 488 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 489 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 490 __SCX_DSQ_ITER_HAS_SLICE | 491 __SCX_DSQ_ITER_HAS_VTIME, 492 }; 493 494 struct bpf_iter_scx_dsq_kern { 495 struct scx_dsq_list_node cursor; 496 struct scx_dispatch_q *dsq; 497 u64 slice; 498 u64 vtime; 499 } __attribute__((aligned(8))); 500 501 struct bpf_iter_scx_dsq { 502 u64 __opaque[6]; 503 } __attribute__((aligned(8))); 504 505 506 /* 507 * SCX task iterator. 508 */ 509 struct scx_task_iter { 510 struct sched_ext_entity cursor; 511 struct task_struct *locked_task; 512 struct rq *rq; 513 struct rq_flags rf; 514 u32 cnt; 515 bool list_locked; 516 }; 517 518 /** 519 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 520 * @iter: iterator to init 521 * 522 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 523 * must eventually be stopped with scx_task_iter_stop(). 524 * 525 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 526 * between this and the first next() call or between any two next() calls. If 527 * the locks are released between two next() calls, the caller is responsible 528 * for ensuring that the task being iterated remains accessible either through 529 * RCU read lock or obtaining a reference count. 530 * 531 * All tasks which existed when the iteration started are guaranteed to be 532 * visited as long as they are not dead. 533 */ 534 static void scx_task_iter_start(struct scx_task_iter *iter) 535 { 536 memset(iter, 0, sizeof(*iter)); 537 538 raw_spin_lock_irq(&scx_tasks_lock); 539 540 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 541 list_add(&iter->cursor.tasks_node, &scx_tasks); 542 iter->list_locked = true; 543 } 544 545 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 546 { 547 if (iter->locked_task) { 548 __balance_callbacks(iter->rq, &iter->rf); 549 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf); 550 iter->locked_task = NULL; 551 } 552 } 553 554 /** 555 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 556 * @iter: iterator to unlock 557 * 558 * If @iter is in the middle of a locked iteration, it may be locking the rq of 559 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 560 * This function can be safely called anytime during an iteration. The next 561 * iterator operation will automatically restore the necessary locking. 562 */ 563 static void scx_task_iter_unlock(struct scx_task_iter *iter) 564 { 565 __scx_task_iter_rq_unlock(iter); 566 if (iter->list_locked) { 567 iter->list_locked = false; 568 raw_spin_unlock_irq(&scx_tasks_lock); 569 } 570 } 571 572 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter) 573 { 574 if (!iter->list_locked) { 575 raw_spin_lock_irq(&scx_tasks_lock); 576 iter->list_locked = true; 577 } 578 } 579 580 /** 581 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 582 * @iter: iterator to exit 583 * 584 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 585 * which is released on return. If the iterator holds a task's rq lock, that rq 586 * lock is also released. See scx_task_iter_start() for details. 587 */ 588 static void scx_task_iter_stop(struct scx_task_iter *iter) 589 { 590 __scx_task_iter_maybe_relock(iter); 591 list_del_init(&iter->cursor.tasks_node); 592 scx_task_iter_unlock(iter); 593 } 594 595 /** 596 * scx_task_iter_next - Next task 597 * @iter: iterator to walk 598 * 599 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 600 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls 601 * by holding scx_tasks_lock for too long. 602 */ 603 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 604 { 605 struct list_head *cursor = &iter->cursor.tasks_node; 606 struct sched_ext_entity *pos; 607 608 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) { 609 scx_task_iter_unlock(iter); 610 cond_resched(); 611 } 612 613 __scx_task_iter_maybe_relock(iter); 614 615 list_for_each_entry(pos, cursor, tasks_node) { 616 if (&pos->tasks_node == &scx_tasks) 617 return NULL; 618 if (!(pos->flags & SCX_TASK_CURSOR)) { 619 list_move(cursor, &pos->tasks_node); 620 return container_of(pos, struct task_struct, scx); 621 } 622 } 623 624 /* can't happen, should always terminate at scx_tasks above */ 625 BUG(); 626 } 627 628 /** 629 * scx_task_iter_next_locked - Next non-idle task with its rq locked 630 * @iter: iterator to walk 631 * 632 * Visit the non-idle task with its rq lock held. Allows callers to specify 633 * whether they would like to filter out dead tasks. See scx_task_iter_start() 634 * for details. 635 */ 636 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 637 { 638 struct task_struct *p; 639 640 __scx_task_iter_rq_unlock(iter); 641 642 while ((p = scx_task_iter_next(iter))) { 643 /* 644 * scx_task_iter is used to prepare and move tasks into SCX 645 * while loading the BPF scheduler and vice-versa while 646 * unloading. The init_tasks ("swappers") should be excluded 647 * from the iteration because: 648 * 649 * - It's unsafe to use __setschduler_prio() on an init_task to 650 * determine the sched_class to use as it won't preserve its 651 * idle_sched_class. 652 * 653 * - ops.init/exit_task() can easily be confused if called with 654 * init_tasks as they, e.g., share PID 0. 655 * 656 * As init_tasks are never scheduled through SCX, they can be 657 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 658 * doesn't work here: 659 * 660 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 661 * yet been onlined. 662 * 663 * - %PF_IDLE can be set on tasks that are not init_tasks. See 664 * play_idle_precise() used by CONFIG_IDLE_INJECT. 665 * 666 * Test for idle_sched_class as only init_tasks are on it. 667 */ 668 if (p->sched_class != &idle_sched_class) 669 break; 670 } 671 if (!p) 672 return NULL; 673 674 iter->rq = task_rq_lock(p, &iter->rf); 675 iter->locked_task = p; 676 677 return p; 678 } 679 680 /** 681 * scx_add_event - Increase an event counter for 'name' by 'cnt' 682 * @sch: scx_sched to account events for 683 * @name: an event name defined in struct scx_event_stats 684 * @cnt: the number of the event occurred 685 * 686 * This can be used when preemption is not disabled. 687 */ 688 #define scx_add_event(sch, name, cnt) do { \ 689 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 690 trace_sched_ext_event(#name, (cnt)); \ 691 } while(0) 692 693 /** 694 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 695 * @sch: scx_sched to account events for 696 * @name: an event name defined in struct scx_event_stats 697 * @cnt: the number of the event occurred 698 * 699 * This should be used only when preemption is disabled. 700 */ 701 #define __scx_add_event(sch, name, cnt) do { \ 702 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \ 703 trace_sched_ext_event(#name, cnt); \ 704 } while(0) 705 706 /** 707 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 708 * @dst_e: destination event stats 709 * @src_e: source event stats 710 * @kind: a kind of event to be aggregated 711 */ 712 #define scx_agg_event(dst_e, src_e, kind) do { \ 713 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 714 } while(0) 715 716 /** 717 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 718 * @s: output seq_buf 719 * @events: event stats 720 * @kind: a kind of event to dump 721 */ 722 #define scx_dump_event(s, events, kind) do { \ 723 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \ 724 } while (0) 725 726 727 static void scx_read_events(struct scx_sched *sch, 728 struct scx_event_stats *events); 729 730 static enum scx_enable_state scx_enable_state(void) 731 { 732 return atomic_read(&scx_enable_state_var); 733 } 734 735 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to) 736 { 737 return atomic_xchg(&scx_enable_state_var, to); 738 } 739 740 static bool scx_tryset_enable_state(enum scx_enable_state to, 741 enum scx_enable_state from) 742 { 743 int from_v = from; 744 745 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to); 746 } 747 748 /** 749 * wait_ops_state - Busy-wait the specified ops state to end 750 * @p: target task 751 * @opss: state to wait the end of 752 * 753 * Busy-wait for @p to transition out of @opss. This can only be used when the 754 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 755 * has load_acquire semantics to ensure that the caller can see the updates made 756 * in the enqueueing and dispatching paths. 757 */ 758 static void wait_ops_state(struct task_struct *p, unsigned long opss) 759 { 760 do { 761 cpu_relax(); 762 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 763 } 764 765 static inline bool __cpu_valid(s32 cpu) 766 { 767 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu)); 768 } 769 770 /** 771 * ops_cpu_valid - Verify a cpu number, to be used on ops input args 772 * @sch: scx_sched to abort on error 773 * @cpu: cpu number which came from a BPF ops 774 * @where: extra information reported on error 775 * 776 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 777 * Verify that it is in range and one of the possible cpus. If invalid, trigger 778 * an ops error. 779 */ 780 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where) 781 { 782 if (__cpu_valid(cpu)) { 783 return true; 784 } else { 785 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: ""); 786 return false; 787 } 788 } 789 790 /** 791 * ops_sanitize_err - Sanitize a -errno value 792 * @sch: scx_sched to error out on error 793 * @ops_name: operation to blame on failure 794 * @err: -errno value to sanitize 795 * 796 * Verify @err is a valid -errno. If not, trigger scx_error() and return 797 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 798 * cause misbehaviors. For an example, a large negative return from 799 * ops.init_task() triggers an oops when passed up the call chain because the 800 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 801 * handled as a pointer. 802 */ 803 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err) 804 { 805 if (err < 0 && err >= -MAX_ERRNO) 806 return err; 807 808 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err); 809 return -EPROTO; 810 } 811 812 static void run_deferred(struct rq *rq) 813 { 814 process_ddsp_deferred_locals(rq); 815 816 if (local_read(&rq->scx.reenq_local_deferred)) { 817 local_set(&rq->scx.reenq_local_deferred, 0); 818 reenq_local(rq); 819 } 820 } 821 822 static void deferred_bal_cb_workfn(struct rq *rq) 823 { 824 run_deferred(rq); 825 } 826 827 static void deferred_irq_workfn(struct irq_work *irq_work) 828 { 829 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 830 831 raw_spin_rq_lock(rq); 832 run_deferred(rq); 833 raw_spin_rq_unlock(rq); 834 } 835 836 /** 837 * schedule_deferred - Schedule execution of deferred actions on an rq 838 * @rq: target rq 839 * 840 * Schedule execution of deferred actions on @rq. Deferred actions are executed 841 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks 842 * to other rqs. 843 */ 844 static void schedule_deferred(struct rq *rq) 845 { 846 /* 847 * Queue an irq work. They are executed on IRQ re-enable which may take 848 * a bit longer than the scheduler hook in schedule_deferred_locked(). 849 */ 850 irq_work_queue(&rq->scx.deferred_irq_work); 851 } 852 853 /** 854 * schedule_deferred_locked - Schedule execution of deferred actions on an rq 855 * @rq: target rq 856 * 857 * Schedule execution of deferred actions on @rq. Equivalent to 858 * schedule_deferred() but requires @rq to be locked and can be more efficient. 859 */ 860 static void schedule_deferred_locked(struct rq *rq) 861 { 862 lockdep_assert_rq_held(rq); 863 864 /* 865 * If in the middle of waking up a task, task_woken_scx() will be called 866 * afterwards which will then run the deferred actions, no need to 867 * schedule anything. 868 */ 869 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 870 return; 871 872 /* Don't do anything if there already is a deferred operation. */ 873 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING) 874 return; 875 876 /* 877 * If in balance, the balance callbacks will be called before rq lock is 878 * released. Schedule one. 879 * 880 * 881 * We can't directly insert the callback into the 882 * rq's list: The call can drop its lock and make the pending balance 883 * callback visible to unrelated code paths that call rq_pin_lock(). 884 * 885 * Just let balance_one() know that it must do it itself. 886 */ 887 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 888 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING; 889 return; 890 } 891 892 /* 893 * No scheduler hooks available. Use the generic irq_work path. The 894 * above WAKEUP and BALANCE paths should cover most of the cases and the 895 * time to IRQ re-enable shouldn't be long. 896 */ 897 schedule_deferred(rq); 898 } 899 900 /** 901 * touch_core_sched - Update timestamp used for core-sched task ordering 902 * @rq: rq to read clock from, must be locked 903 * @p: task to update the timestamp for 904 * 905 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 906 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 907 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 908 * exhaustion). 909 */ 910 static void touch_core_sched(struct rq *rq, struct task_struct *p) 911 { 912 lockdep_assert_rq_held(rq); 913 914 #ifdef CONFIG_SCHED_CORE 915 /* 916 * It's okay to update the timestamp spuriously. Use 917 * sched_core_disabled() which is cheaper than enabled(). 918 * 919 * As this is used to determine ordering between tasks of sibling CPUs, 920 * it may be better to use per-core dispatch sequence instead. 921 */ 922 if (!sched_core_disabled()) 923 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 924 #endif 925 } 926 927 /** 928 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 929 * @rq: rq to read clock from, must be locked 930 * @p: task being dispatched 931 * 932 * If the BPF scheduler implements custom core-sched ordering via 933 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 934 * ordering within each local DSQ. This function is called from dispatch paths 935 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 936 */ 937 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 938 { 939 lockdep_assert_rq_held(rq); 940 941 #ifdef CONFIG_SCHED_CORE 942 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before))) 943 touch_core_sched(rq, p); 944 #endif 945 } 946 947 static void update_curr_scx(struct rq *rq) 948 { 949 struct task_struct *curr = rq->curr; 950 s64 delta_exec; 951 952 delta_exec = update_curr_common(rq); 953 if (unlikely(delta_exec <= 0)) 954 return; 955 956 if (curr->scx.slice != SCX_SLICE_INF) { 957 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 958 if (!curr->scx.slice) 959 touch_core_sched(rq, curr); 960 } 961 } 962 963 static bool scx_dsq_priq_less(struct rb_node *node_a, 964 const struct rb_node *node_b) 965 { 966 const struct task_struct *a = 967 container_of(node_a, struct task_struct, scx.dsq_priq); 968 const struct task_struct *b = 969 container_of(node_b, struct task_struct, scx.dsq_priq); 970 971 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 972 } 973 974 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 975 { 976 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 977 WRITE_ONCE(dsq->nr, dsq->nr + delta); 978 } 979 980 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p) 981 { 982 p->scx.slice = READ_ONCE(scx_slice_dfl); 983 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1); 984 } 985 986 static void local_dsq_post_enq(struct scx_dispatch_q *dsq, struct task_struct *p, 987 u64 enq_flags) 988 { 989 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 990 bool preempt = false; 991 992 /* 993 * If @rq is in balance, the CPU is already vacant and looking for the 994 * next task to run. No need to preempt or trigger resched after moving 995 * @p into its local DSQ. 996 */ 997 if (rq->scx.flags & SCX_RQ_IN_BALANCE) 998 return; 999 1000 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1001 rq->curr->sched_class == &ext_sched_class) { 1002 rq->curr->scx.slice = 0; 1003 preempt = true; 1004 } 1005 1006 if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class)) 1007 resched_curr(rq); 1008 } 1009 1010 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq, 1011 struct task_struct *p, u64 enq_flags) 1012 { 1013 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1014 1015 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1016 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1017 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1018 1019 if (!is_local) { 1020 raw_spin_lock_nested(&dsq->lock, 1021 (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0); 1022 1023 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1024 scx_error(sch, "attempting to dispatch to a destroyed dsq"); 1025 /* fall back to the global dsq */ 1026 raw_spin_unlock(&dsq->lock); 1027 dsq = find_global_dsq(sch, p); 1028 raw_spin_lock(&dsq->lock); 1029 } 1030 } 1031 1032 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1033 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1034 /* 1035 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1036 * their FIFO queues. To avoid confusion and accidentally 1037 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1038 * disallow any internal DSQ from doing vtime ordering of 1039 * tasks. 1040 */ 1041 scx_error(sch, "cannot use vtime ordering for built-in DSQs"); 1042 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1043 } 1044 1045 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1046 struct rb_node *rbp; 1047 1048 /* 1049 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1050 * linked to both the rbtree and list on PRIQs, this can only be 1051 * tested easily when adding the first task. 1052 */ 1053 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1054 nldsq_next_task(dsq, NULL, false))) 1055 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1056 dsq->id); 1057 1058 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1059 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1060 1061 /* 1062 * Find the previous task and insert after it on the list so 1063 * that @dsq->list is vtime ordered. 1064 */ 1065 rbp = rb_prev(&p->scx.dsq_priq); 1066 if (rbp) { 1067 struct task_struct *prev = 1068 container_of(rbp, struct task_struct, 1069 scx.dsq_priq); 1070 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1071 /* first task unchanged - no update needed */ 1072 } else { 1073 list_add(&p->scx.dsq_list.node, &dsq->list); 1074 /* not builtin and new task is at head - use fastpath */ 1075 rcu_assign_pointer(dsq->first_task, p); 1076 } 1077 } else { 1078 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1079 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1080 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1081 dsq->id); 1082 1083 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) { 1084 list_add(&p->scx.dsq_list.node, &dsq->list); 1085 /* new task inserted at head - use fastpath */ 1086 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1087 rcu_assign_pointer(dsq->first_task, p); 1088 } else { 1089 bool was_empty; 1090 1091 was_empty = list_empty(&dsq->list); 1092 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1093 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN)) 1094 rcu_assign_pointer(dsq->first_task, p); 1095 } 1096 } 1097 1098 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1099 dsq->seq++; 1100 p->scx.dsq_seq = dsq->seq; 1101 1102 dsq_mod_nr(dsq, 1); 1103 p->scx.dsq = dsq; 1104 1105 /* 1106 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1107 * direct dispatch path, but we clear them here because the direct 1108 * dispatch verdict may be overridden on the enqueue path during e.g. 1109 * bypass. 1110 */ 1111 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1112 p->scx.ddsp_enq_flags = 0; 1113 1114 /* 1115 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1116 * match waiters' load_acquire. 1117 */ 1118 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1119 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1120 1121 if (is_local) 1122 local_dsq_post_enq(dsq, p, enq_flags); 1123 else 1124 raw_spin_unlock(&dsq->lock); 1125 } 1126 1127 static void task_unlink_from_dsq(struct task_struct *p, 1128 struct scx_dispatch_q *dsq) 1129 { 1130 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1131 1132 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1133 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1134 RB_CLEAR_NODE(&p->scx.dsq_priq); 1135 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1136 } 1137 1138 list_del_init(&p->scx.dsq_list.node); 1139 dsq_mod_nr(dsq, -1); 1140 1141 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) { 1142 struct task_struct *first_task; 1143 1144 first_task = nldsq_next_task(dsq, NULL, false); 1145 rcu_assign_pointer(dsq->first_task, first_task); 1146 } 1147 } 1148 1149 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1150 { 1151 struct scx_dispatch_q *dsq = p->scx.dsq; 1152 bool is_local = dsq == &rq->scx.local_dsq; 1153 1154 lockdep_assert_rq_held(rq); 1155 1156 if (!dsq) { 1157 /* 1158 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1159 * Unlinking is all that's needed to cancel. 1160 */ 1161 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1162 list_del_init(&p->scx.dsq_list.node); 1163 1164 /* 1165 * When dispatching directly from the BPF scheduler to a local 1166 * DSQ, the task isn't associated with any DSQ but 1167 * @p->scx.holding_cpu may be set under the protection of 1168 * %SCX_OPSS_DISPATCHING. 1169 */ 1170 if (p->scx.holding_cpu >= 0) 1171 p->scx.holding_cpu = -1; 1172 1173 return; 1174 } 1175 1176 if (!is_local) 1177 raw_spin_lock(&dsq->lock); 1178 1179 /* 1180 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1181 * change underneath us. 1182 */ 1183 if (p->scx.holding_cpu < 0) { 1184 /* @p must still be on @dsq, dequeue */ 1185 task_unlink_from_dsq(p, dsq); 1186 } else { 1187 /* 1188 * We're racing against dispatch_to_local_dsq() which already 1189 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1190 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1191 * the race. 1192 */ 1193 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1194 p->scx.holding_cpu = -1; 1195 } 1196 p->scx.dsq = NULL; 1197 1198 if (!is_local) 1199 raw_spin_unlock(&dsq->lock); 1200 } 1201 1202 /* 1203 * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq 1204 * and dsq are locked. 1205 */ 1206 static void dispatch_dequeue_locked(struct task_struct *p, 1207 struct scx_dispatch_q *dsq) 1208 { 1209 lockdep_assert_rq_held(task_rq(p)); 1210 lockdep_assert_held(&dsq->lock); 1211 1212 task_unlink_from_dsq(p, dsq); 1213 p->scx.dsq = NULL; 1214 } 1215 1216 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch, 1217 struct rq *rq, u64 dsq_id, 1218 struct task_struct *p) 1219 { 1220 struct scx_dispatch_q *dsq; 1221 1222 if (dsq_id == SCX_DSQ_LOCAL) 1223 return &rq->scx.local_dsq; 1224 1225 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1226 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1227 1228 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 1229 return find_global_dsq(sch, p); 1230 1231 return &cpu_rq(cpu)->scx.local_dsq; 1232 } 1233 1234 if (dsq_id == SCX_DSQ_GLOBAL) 1235 dsq = find_global_dsq(sch, p); 1236 else 1237 dsq = find_user_dsq(sch, dsq_id); 1238 1239 if (unlikely(!dsq)) { 1240 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]", 1241 dsq_id, p->comm, p->pid); 1242 return find_global_dsq(sch, p); 1243 } 1244 1245 return dsq; 1246 } 1247 1248 static void mark_direct_dispatch(struct scx_sched *sch, 1249 struct task_struct *ddsp_task, 1250 struct task_struct *p, u64 dsq_id, 1251 u64 enq_flags) 1252 { 1253 /* 1254 * Mark that dispatch already happened from ops.select_cpu() or 1255 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 1256 * which can never match a valid task pointer. 1257 */ 1258 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 1259 1260 /* @p must match the task on the enqueue path */ 1261 if (unlikely(p != ddsp_task)) { 1262 if (IS_ERR(ddsp_task)) 1263 scx_error(sch, "%s[%d] already direct-dispatched", 1264 p->comm, p->pid); 1265 else 1266 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 1267 ddsp_task->comm, ddsp_task->pid, 1268 p->comm, p->pid); 1269 return; 1270 } 1271 1272 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 1273 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 1274 1275 p->scx.ddsp_dsq_id = dsq_id; 1276 p->scx.ddsp_enq_flags = enq_flags; 1277 } 1278 1279 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p, 1280 u64 enq_flags) 1281 { 1282 struct rq *rq = task_rq(p); 1283 struct scx_dispatch_q *dsq = 1284 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 1285 1286 touch_core_sched_dispatch(rq, p); 1287 1288 p->scx.ddsp_enq_flags |= enq_flags; 1289 1290 /* 1291 * We are in the enqueue path with @rq locked and pinned, and thus can't 1292 * double lock a remote rq and enqueue to its local DSQ. For 1293 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 1294 * the enqueue so that it's executed when @rq can be unlocked. 1295 */ 1296 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 1297 unsigned long opss; 1298 1299 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 1300 1301 switch (opss & SCX_OPSS_STATE_MASK) { 1302 case SCX_OPSS_NONE: 1303 break; 1304 case SCX_OPSS_QUEUEING: 1305 /* 1306 * As @p was never passed to the BPF side, _release is 1307 * not strictly necessary. Still do it for consistency. 1308 */ 1309 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1310 break; 1311 default: 1312 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 1313 p->comm, p->pid, opss); 1314 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1315 break; 1316 } 1317 1318 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1319 list_add_tail(&p->scx.dsq_list.node, 1320 &rq->scx.ddsp_deferred_locals); 1321 schedule_deferred_locked(rq); 1322 return; 1323 } 1324 1325 dispatch_enqueue(sch, dsq, p, 1326 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 1327 } 1328 1329 static bool scx_rq_online(struct rq *rq) 1330 { 1331 /* 1332 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 1333 * the online state as seen from the BPF scheduler. cpu_active() test 1334 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 1335 * stay set until the current scheduling operation is complete even if 1336 * we aren't locking @rq. 1337 */ 1338 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 1339 } 1340 1341 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 1342 int sticky_cpu) 1343 { 1344 struct scx_sched *sch = scx_root; 1345 struct task_struct **ddsp_taskp; 1346 struct scx_dispatch_q *dsq; 1347 unsigned long qseq; 1348 1349 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 1350 1351 /* rq migration */ 1352 if (sticky_cpu == cpu_of(rq)) 1353 goto local_norefill; 1354 1355 /* 1356 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 1357 * is offline and are just running the hotplug path. Don't bother the 1358 * BPF scheduler. 1359 */ 1360 if (!scx_rq_online(rq)) 1361 goto local; 1362 1363 if (scx_rq_bypassing(rq)) { 1364 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 1365 goto bypass; 1366 } 1367 1368 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1369 goto direct; 1370 1371 /* see %SCX_OPS_ENQ_EXITING */ 1372 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) && 1373 unlikely(p->flags & PF_EXITING)) { 1374 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1); 1375 goto local; 1376 } 1377 1378 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 1379 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) && 1380 is_migration_disabled(p)) { 1381 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 1382 goto local; 1383 } 1384 1385 if (unlikely(!SCX_HAS_OP(sch, enqueue))) 1386 goto global; 1387 1388 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 1389 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 1390 1391 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1392 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 1393 1394 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 1395 WARN_ON_ONCE(*ddsp_taskp); 1396 *ddsp_taskp = p; 1397 1398 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags); 1399 1400 *ddsp_taskp = NULL; 1401 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 1402 goto direct; 1403 1404 /* 1405 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 1406 * dequeue may be waiting. The store_release matches their load_acquire. 1407 */ 1408 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 1409 return; 1410 1411 direct: 1412 direct_dispatch(sch, p, enq_flags); 1413 return; 1414 local_norefill: 1415 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags); 1416 return; 1417 local: 1418 dsq = &rq->scx.local_dsq; 1419 goto enqueue; 1420 global: 1421 dsq = find_global_dsq(sch, p); 1422 goto enqueue; 1423 bypass: 1424 dsq = &task_rq(p)->scx.bypass_dsq; 1425 goto enqueue; 1426 1427 enqueue: 1428 /* 1429 * For task-ordering, slice refill must be treated as implying the end 1430 * of the current slice. Otherwise, the longer @p stays on the CPU, the 1431 * higher priority it becomes from scx_prio_less()'s POV. 1432 */ 1433 touch_core_sched(rq, p); 1434 refill_task_slice_dfl(sch, p); 1435 dispatch_enqueue(sch, dsq, p, enq_flags); 1436 } 1437 1438 static bool task_runnable(const struct task_struct *p) 1439 { 1440 return !list_empty(&p->scx.runnable_node); 1441 } 1442 1443 static void set_task_runnable(struct rq *rq, struct task_struct *p) 1444 { 1445 lockdep_assert_rq_held(rq); 1446 1447 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 1448 p->scx.runnable_at = jiffies; 1449 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 1450 } 1451 1452 /* 1453 * list_add_tail() must be used. scx_bypass() depends on tasks being 1454 * appended to the runnable_list. 1455 */ 1456 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 1457 } 1458 1459 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 1460 { 1461 list_del_init(&p->scx.runnable_node); 1462 if (reset_runnable_at) 1463 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 1464 } 1465 1466 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 1467 { 1468 struct scx_sched *sch = scx_root; 1469 int sticky_cpu = p->scx.sticky_cpu; 1470 1471 if (enq_flags & ENQUEUE_WAKEUP) 1472 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 1473 1474 enq_flags |= rq->scx.extra_enq_flags; 1475 1476 if (sticky_cpu >= 0) 1477 p->scx.sticky_cpu = -1; 1478 1479 /* 1480 * Restoring a running task will be immediately followed by 1481 * set_next_task_scx() which expects the task to not be on the BPF 1482 * scheduler as tasks can only start running through local DSQs. Force 1483 * direct-dispatch into the local DSQ by setting the sticky_cpu. 1484 */ 1485 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 1486 sticky_cpu = cpu_of(rq); 1487 1488 if (p->scx.flags & SCX_TASK_QUEUED) { 1489 WARN_ON_ONCE(!task_runnable(p)); 1490 goto out; 1491 } 1492 1493 set_task_runnable(rq, p); 1494 p->scx.flags |= SCX_TASK_QUEUED; 1495 rq->scx.nr_running++; 1496 add_nr_running(rq, 1); 1497 1498 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p)) 1499 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags); 1500 1501 if (enq_flags & SCX_ENQ_WAKEUP) 1502 touch_core_sched(rq, p); 1503 1504 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 1505 out: 1506 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 1507 1508 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 1509 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 1510 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1); 1511 } 1512 1513 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags) 1514 { 1515 struct scx_sched *sch = scx_root; 1516 unsigned long opss; 1517 1518 /* dequeue is always temporary, don't reset runnable_at */ 1519 clr_task_runnable(p, false); 1520 1521 /* acquire ensures that we see the preceding updates on QUEUED */ 1522 opss = atomic_long_read_acquire(&p->scx.ops_state); 1523 1524 switch (opss & SCX_OPSS_STATE_MASK) { 1525 case SCX_OPSS_NONE: 1526 break; 1527 case SCX_OPSS_QUEUEING: 1528 /* 1529 * QUEUEING is started and finished while holding @p's rq lock. 1530 * As we're holding the rq lock now, we shouldn't see QUEUEING. 1531 */ 1532 BUG(); 1533 case SCX_OPSS_QUEUED: 1534 if (SCX_HAS_OP(sch, dequeue)) 1535 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq, 1536 p, deq_flags); 1537 1538 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 1539 SCX_OPSS_NONE)) 1540 break; 1541 fallthrough; 1542 case SCX_OPSS_DISPATCHING: 1543 /* 1544 * If @p is being dispatched from the BPF scheduler to a DSQ, 1545 * wait for the transfer to complete so that @p doesn't get 1546 * added to its DSQ after dequeueing is complete. 1547 * 1548 * As we're waiting on DISPATCHING with the rq locked, the 1549 * dispatching side shouldn't try to lock the rq while 1550 * DISPATCHING is set. See dispatch_to_local_dsq(). 1551 * 1552 * DISPATCHING shouldn't have qseq set and control can reach 1553 * here with NONE @opss from the above QUEUED case block. 1554 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 1555 */ 1556 wait_ops_state(p, SCX_OPSS_DISPATCHING); 1557 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 1558 break; 1559 } 1560 } 1561 1562 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 1563 { 1564 struct scx_sched *sch = scx_root; 1565 1566 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 1567 WARN_ON_ONCE(task_runnable(p)); 1568 return true; 1569 } 1570 1571 ops_dequeue(rq, p, deq_flags); 1572 1573 /* 1574 * A currently running task which is going off @rq first gets dequeued 1575 * and then stops running. As we want running <-> stopping transitions 1576 * to be contained within runnable <-> quiescent transitions, trigger 1577 * ->stopping() early here instead of in put_prev_task_scx(). 1578 * 1579 * @p may go through multiple stopping <-> running transitions between 1580 * here and put_prev_task_scx() if task attribute changes occur while 1581 * balance_one() leaves @rq unlocked. However, they don't contain any 1582 * information meaningful to the BPF scheduler and can be suppressed by 1583 * skipping the callbacks if the task is !QUEUED. 1584 */ 1585 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) { 1586 update_curr_scx(rq); 1587 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false); 1588 } 1589 1590 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p)) 1591 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags); 1592 1593 if (deq_flags & SCX_DEQ_SLEEP) 1594 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 1595 else 1596 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 1597 1598 p->scx.flags &= ~SCX_TASK_QUEUED; 1599 rq->scx.nr_running--; 1600 sub_nr_running(rq, 1); 1601 1602 dispatch_dequeue(rq, p); 1603 return true; 1604 } 1605 1606 static void yield_task_scx(struct rq *rq) 1607 { 1608 struct scx_sched *sch = scx_root; 1609 struct task_struct *p = rq->donor; 1610 1611 if (SCX_HAS_OP(sch, yield)) 1612 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL); 1613 else 1614 p->scx.slice = 0; 1615 } 1616 1617 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 1618 { 1619 struct scx_sched *sch = scx_root; 1620 struct task_struct *from = rq->donor; 1621 1622 if (SCX_HAS_OP(sch, yield)) 1623 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, 1624 from, to); 1625 else 1626 return false; 1627 } 1628 1629 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1630 struct scx_dispatch_q *src_dsq, 1631 struct rq *dst_rq) 1632 { 1633 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 1634 1635 /* @dsq is locked and @p is on @dst_rq */ 1636 lockdep_assert_held(&src_dsq->lock); 1637 lockdep_assert_rq_held(dst_rq); 1638 1639 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1640 1641 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1642 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 1643 else 1644 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 1645 1646 dsq_mod_nr(dst_dsq, 1); 1647 p->scx.dsq = dst_dsq; 1648 1649 local_dsq_post_enq(dst_dsq, p, enq_flags); 1650 } 1651 1652 /** 1653 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 1654 * @p: task to move 1655 * @enq_flags: %SCX_ENQ_* 1656 * @src_rq: rq to move the task from, locked on entry, released on return 1657 * @dst_rq: rq to move the task into, locked on return 1658 * 1659 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 1660 */ 1661 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 1662 struct rq *src_rq, struct rq *dst_rq) 1663 { 1664 lockdep_assert_rq_held(src_rq); 1665 1666 /* the following marks @p MIGRATING which excludes dequeue */ 1667 deactivate_task(src_rq, p, 0); 1668 set_task_cpu(p, cpu_of(dst_rq)); 1669 p->scx.sticky_cpu = cpu_of(dst_rq); 1670 1671 raw_spin_rq_unlock(src_rq); 1672 raw_spin_rq_lock(dst_rq); 1673 1674 /* 1675 * We want to pass scx-specific enq_flags but activate_task() will 1676 * truncate the upper 32 bit. As we own @rq, we can pass them through 1677 * @rq->scx.extra_enq_flags instead. 1678 */ 1679 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 1680 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 1681 dst_rq->scx.extra_enq_flags = enq_flags; 1682 activate_task(dst_rq, p, 0); 1683 dst_rq->scx.extra_enq_flags = 0; 1684 } 1685 1686 /* 1687 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 1688 * differences: 1689 * 1690 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 1691 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 1692 * this CPU?". 1693 * 1694 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 1695 * must be allowed to finish on the CPU that it's currently on regardless of 1696 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 1697 * BPF scheduler shouldn't attempt to migrate a task which has migration 1698 * disabled. 1699 * 1700 * - The BPF scheduler is bypassed while the rq is offline and we can always say 1701 * no to the BPF scheduler initiated migrations while offline. 1702 * 1703 * The caller must ensure that @p and @rq are on different CPUs. 1704 */ 1705 static bool task_can_run_on_remote_rq(struct scx_sched *sch, 1706 struct task_struct *p, struct rq *rq, 1707 bool enforce) 1708 { 1709 int cpu = cpu_of(rq); 1710 1711 WARN_ON_ONCE(task_cpu(p) == cpu); 1712 1713 /* 1714 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 1715 * the pinned CPU in migrate_disable_switch() while @p is being switched 1716 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 1717 * updated and thus another CPU may see @p on a DSQ inbetween leading to 1718 * @p passing the below task_allowed_on_cpu() check while migration is 1719 * disabled. 1720 * 1721 * Test the migration disabled state first as the race window is narrow 1722 * and the BPF scheduler failing to check migration disabled state can 1723 * easily be masked if task_allowed_on_cpu() is done first. 1724 */ 1725 if (unlikely(is_migration_disabled(p))) { 1726 if (enforce) 1727 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 1728 p->comm, p->pid, task_cpu(p), cpu); 1729 return false; 1730 } 1731 1732 /* 1733 * We don't require the BPF scheduler to avoid dispatching to offline 1734 * CPUs mostly for convenience but also because CPUs can go offline 1735 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 1736 * picked CPU is outside the allowed mask. 1737 */ 1738 if (!task_allowed_on_cpu(p, cpu)) { 1739 if (enforce) 1740 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 1741 cpu, p->comm, p->pid); 1742 return false; 1743 } 1744 1745 if (!scx_rq_online(rq)) { 1746 if (enforce) 1747 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 1748 return false; 1749 } 1750 1751 return true; 1752 } 1753 1754 /** 1755 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 1756 * @p: target task 1757 * @dsq: locked DSQ @p is currently on 1758 * @src_rq: rq @p is currently on, stable with @dsq locked 1759 * 1760 * Called with @dsq locked but no rq's locked. We want to move @p to a different 1761 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 1762 * required when transferring into a local DSQ. Even when transferring into a 1763 * non-local DSQ, it's better to use the same mechanism to protect against 1764 * dequeues and maintain the invariant that @p->scx.dsq can only change while 1765 * @src_rq is locked, which e.g. scx_dump_task() depends on. 1766 * 1767 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 1768 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 1769 * this may race with dequeue, which can't drop the rq lock or fail, do a little 1770 * dancing from our side. 1771 * 1772 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 1773 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 1774 * would be cleared to -1. While other cpus may have updated it to different 1775 * values afterwards, as this operation can't be preempted or recurse, the 1776 * holding_cpu can never become this CPU again before we're done. Thus, we can 1777 * tell whether we lost to dequeue by testing whether the holding_cpu still 1778 * points to this CPU. See dispatch_dequeue() for the counterpart. 1779 * 1780 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 1781 * still valid. %false if lost to dequeue. 1782 */ 1783 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 1784 struct scx_dispatch_q *dsq, 1785 struct rq *src_rq) 1786 { 1787 s32 cpu = raw_smp_processor_id(); 1788 1789 lockdep_assert_held(&dsq->lock); 1790 1791 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 1792 task_unlink_from_dsq(p, dsq); 1793 p->scx.holding_cpu = cpu; 1794 1795 raw_spin_unlock(&dsq->lock); 1796 raw_spin_rq_lock(src_rq); 1797 1798 /* task_rq couldn't have changed if we're still the holding cpu */ 1799 return likely(p->scx.holding_cpu == cpu) && 1800 !WARN_ON_ONCE(src_rq != task_rq(p)); 1801 } 1802 1803 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 1804 struct scx_dispatch_q *dsq, struct rq *src_rq) 1805 { 1806 raw_spin_rq_unlock(this_rq); 1807 1808 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 1809 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 1810 return true; 1811 } else { 1812 raw_spin_rq_unlock(src_rq); 1813 raw_spin_rq_lock(this_rq); 1814 return false; 1815 } 1816 } 1817 1818 /** 1819 * move_task_between_dsqs() - Move a task from one DSQ to another 1820 * @sch: scx_sched being operated on 1821 * @p: target task 1822 * @enq_flags: %SCX_ENQ_* 1823 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 1824 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 1825 * 1826 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 1827 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 1828 * will change. As @p's task_rq is locked, this function doesn't need to use the 1829 * holding_cpu mechanism. 1830 * 1831 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 1832 * return value, is locked. 1833 */ 1834 static struct rq *move_task_between_dsqs(struct scx_sched *sch, 1835 struct task_struct *p, u64 enq_flags, 1836 struct scx_dispatch_q *src_dsq, 1837 struct scx_dispatch_q *dst_dsq) 1838 { 1839 struct rq *src_rq = task_rq(p), *dst_rq; 1840 1841 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 1842 lockdep_assert_held(&src_dsq->lock); 1843 lockdep_assert_rq_held(src_rq); 1844 1845 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1846 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1847 if (src_rq != dst_rq && 1848 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1849 dst_dsq = find_global_dsq(sch, p); 1850 dst_rq = src_rq; 1851 } 1852 } else { 1853 /* no need to migrate if destination is a non-local DSQ */ 1854 dst_rq = src_rq; 1855 } 1856 1857 /* 1858 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 1859 * CPU, @p will be migrated. 1860 */ 1861 if (dst_dsq->id == SCX_DSQ_LOCAL) { 1862 /* @p is going from a non-local DSQ to a local DSQ */ 1863 if (src_rq == dst_rq) { 1864 task_unlink_from_dsq(p, src_dsq); 1865 move_local_task_to_local_dsq(p, enq_flags, 1866 src_dsq, dst_rq); 1867 raw_spin_unlock(&src_dsq->lock); 1868 } else { 1869 raw_spin_unlock(&src_dsq->lock); 1870 move_remote_task_to_local_dsq(p, enq_flags, 1871 src_rq, dst_rq); 1872 } 1873 } else { 1874 /* 1875 * @p is going from a non-local DSQ to a non-local DSQ. As 1876 * $src_dsq is already locked, do an abbreviated dequeue. 1877 */ 1878 dispatch_dequeue_locked(p, src_dsq); 1879 raw_spin_unlock(&src_dsq->lock); 1880 1881 dispatch_enqueue(sch, dst_dsq, p, enq_flags); 1882 } 1883 1884 return dst_rq; 1885 } 1886 1887 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq, 1888 struct scx_dispatch_q *dsq) 1889 { 1890 struct task_struct *p; 1891 retry: 1892 /* 1893 * The caller can't expect to successfully consume a task if the task's 1894 * addition to @dsq isn't guaranteed to be visible somehow. Test 1895 * @dsq->list without locking and skip if it seems empty. 1896 */ 1897 if (list_empty(&dsq->list)) 1898 return false; 1899 1900 raw_spin_lock(&dsq->lock); 1901 1902 nldsq_for_each_task(p, dsq) { 1903 struct rq *task_rq = task_rq(p); 1904 1905 /* 1906 * This loop can lead to multiple lockup scenarios, e.g. the BPF 1907 * scheduler can put an enormous number of affinitized tasks into 1908 * a contended DSQ, or the outer retry loop can repeatedly race 1909 * against scx_bypass() dequeueing tasks from @dsq trying to put 1910 * the system into the bypass mode. This can easily live-lock the 1911 * machine. If aborting, exit from all non-bypass DSQs. 1912 */ 1913 if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS) 1914 break; 1915 1916 if (rq == task_rq) { 1917 task_unlink_from_dsq(p, dsq); 1918 move_local_task_to_local_dsq(p, 0, dsq, rq); 1919 raw_spin_unlock(&dsq->lock); 1920 return true; 1921 } 1922 1923 if (task_can_run_on_remote_rq(sch, p, rq, false)) { 1924 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 1925 return true; 1926 goto retry; 1927 } 1928 } 1929 1930 raw_spin_unlock(&dsq->lock); 1931 return false; 1932 } 1933 1934 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq) 1935 { 1936 int node = cpu_to_node(cpu_of(rq)); 1937 1938 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]); 1939 } 1940 1941 /** 1942 * dispatch_to_local_dsq - Dispatch a task to a local dsq 1943 * @sch: scx_sched being operated on 1944 * @rq: current rq which is locked 1945 * @dst_dsq: destination DSQ 1946 * @p: task to dispatch 1947 * @enq_flags: %SCX_ENQ_* 1948 * 1949 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 1950 * DSQ. This function performs all the synchronization dancing needed because 1951 * local DSQs are protected with rq locks. 1952 * 1953 * The caller must have exclusive ownership of @p (e.g. through 1954 * %SCX_OPSS_DISPATCHING). 1955 */ 1956 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq, 1957 struct scx_dispatch_q *dst_dsq, 1958 struct task_struct *p, u64 enq_flags) 1959 { 1960 struct rq *src_rq = task_rq(p); 1961 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 1962 struct rq *locked_rq = rq; 1963 1964 /* 1965 * We're synchronized against dequeue through DISPATCHING. As @p can't 1966 * be dequeued, its task_rq and cpus_allowed are stable too. 1967 * 1968 * If dispatching to @rq that @p is already on, no lock dancing needed. 1969 */ 1970 if (rq == src_rq && rq == dst_rq) { 1971 dispatch_enqueue(sch, dst_dsq, p, 1972 enq_flags | SCX_ENQ_CLEAR_OPSS); 1973 return; 1974 } 1975 1976 if (src_rq != dst_rq && 1977 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) { 1978 dispatch_enqueue(sch, find_global_dsq(sch, p), p, 1979 enq_flags | SCX_ENQ_CLEAR_OPSS); 1980 return; 1981 } 1982 1983 /* 1984 * @p is on a possibly remote @src_rq which we need to lock to move the 1985 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 1986 * on DISPATCHING, so we can't grab @src_rq lock while holding 1987 * DISPATCHING. 1988 * 1989 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 1990 * we're moving from a DSQ and use the same mechanism - mark the task 1991 * under transfer with holding_cpu, release DISPATCHING and then follow 1992 * the same protocol. See unlink_dsq_and_lock_src_rq(). 1993 */ 1994 p->scx.holding_cpu = raw_smp_processor_id(); 1995 1996 /* store_release ensures that dequeue sees the above */ 1997 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1998 1999 /* switch to @src_rq lock */ 2000 if (locked_rq != src_rq) { 2001 raw_spin_rq_unlock(locked_rq); 2002 locked_rq = src_rq; 2003 raw_spin_rq_lock(src_rq); 2004 } 2005 2006 /* task_rq couldn't have changed if we're still the holding cpu */ 2007 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2008 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2009 /* 2010 * If @p is staying on the same rq, there's no need to go 2011 * through the full deactivate/activate cycle. Optimize by 2012 * abbreviating move_remote_task_to_local_dsq(). 2013 */ 2014 if (src_rq == dst_rq) { 2015 p->scx.holding_cpu = -1; 2016 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p, 2017 enq_flags); 2018 } else { 2019 move_remote_task_to_local_dsq(p, enq_flags, 2020 src_rq, dst_rq); 2021 /* task has been moved to dst_rq, which is now locked */ 2022 locked_rq = dst_rq; 2023 } 2024 2025 /* if the destination CPU is idle, wake it up */ 2026 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2027 resched_curr(dst_rq); 2028 } 2029 2030 /* switch back to @rq lock */ 2031 if (locked_rq != rq) { 2032 raw_spin_rq_unlock(locked_rq); 2033 raw_spin_rq_lock(rq); 2034 } 2035 } 2036 2037 /** 2038 * finish_dispatch - Asynchronously finish dispatching a task 2039 * @rq: current rq which is locked 2040 * @p: task to finish dispatching 2041 * @qseq_at_dispatch: qseq when @p started getting dispatched 2042 * @dsq_id: destination DSQ ID 2043 * @enq_flags: %SCX_ENQ_* 2044 * 2045 * Dispatching to local DSQs may need to wait for queueing to complete or 2046 * require rq lock dancing. As we don't wanna do either while inside 2047 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2048 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2049 * task and its qseq. Once ops.dispatch() returns, this function is called to 2050 * finish up. 2051 * 2052 * There is no guarantee that @p is still valid for dispatching or even that it 2053 * was valid in the first place. Make sure that the task is still owned by the 2054 * BPF scheduler and claim the ownership before dispatching. 2055 */ 2056 static void finish_dispatch(struct scx_sched *sch, struct rq *rq, 2057 struct task_struct *p, 2058 unsigned long qseq_at_dispatch, 2059 u64 dsq_id, u64 enq_flags) 2060 { 2061 struct scx_dispatch_q *dsq; 2062 unsigned long opss; 2063 2064 touch_core_sched_dispatch(rq, p); 2065 retry: 2066 /* 2067 * No need for _acquire here. @p is accessed only after a successful 2068 * try_cmpxchg to DISPATCHING. 2069 */ 2070 opss = atomic_long_read(&p->scx.ops_state); 2071 2072 switch (opss & SCX_OPSS_STATE_MASK) { 2073 case SCX_OPSS_DISPATCHING: 2074 case SCX_OPSS_NONE: 2075 /* someone else already got to it */ 2076 return; 2077 case SCX_OPSS_QUEUED: 2078 /* 2079 * If qseq doesn't match, @p has gone through at least one 2080 * dispatch/dequeue and re-enqueue cycle between 2081 * scx_bpf_dsq_insert() and here and we have no claim on it. 2082 */ 2083 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2084 return; 2085 2086 /* 2087 * While we know @p is accessible, we don't yet have a claim on 2088 * it - the BPF scheduler is allowed to dispatch tasks 2089 * spuriously and there can be a racing dequeue attempt. Let's 2090 * claim @p by atomically transitioning it from QUEUED to 2091 * DISPATCHING. 2092 */ 2093 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2094 SCX_OPSS_DISPATCHING))) 2095 break; 2096 goto retry; 2097 case SCX_OPSS_QUEUEING: 2098 /* 2099 * do_enqueue_task() is in the process of transferring the task 2100 * to the BPF scheduler while holding @p's rq lock. As we aren't 2101 * holding any kernel or BPF resource that the enqueue path may 2102 * depend upon, it's safe to wait. 2103 */ 2104 wait_ops_state(p, opss); 2105 goto retry; 2106 } 2107 2108 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2109 2110 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p); 2111 2112 if (dsq->id == SCX_DSQ_LOCAL) 2113 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags); 2114 else 2115 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2116 } 2117 2118 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq) 2119 { 2120 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2121 u32 u; 2122 2123 for (u = 0; u < dspc->cursor; u++) { 2124 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2125 2126 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id, 2127 ent->enq_flags); 2128 } 2129 2130 dspc->nr_tasks += dspc->cursor; 2131 dspc->cursor = 0; 2132 } 2133 2134 static inline void maybe_queue_balance_callback(struct rq *rq) 2135 { 2136 lockdep_assert_rq_held(rq); 2137 2138 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING)) 2139 return; 2140 2141 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 2142 deferred_bal_cb_workfn); 2143 2144 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING; 2145 } 2146 2147 static int balance_one(struct rq *rq, struct task_struct *prev) 2148 { 2149 struct scx_sched *sch = scx_root; 2150 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2151 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2152 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2153 int nr_loops = SCX_DSP_MAX_LOOPS; 2154 2155 lockdep_assert_rq_held(rq); 2156 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2157 rq->scx.flags &= ~SCX_RQ_BAL_KEEP; 2158 2159 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) && 2160 unlikely(rq->scx.cpu_released)) { 2161 /* 2162 * If the previous sched_class for the current CPU was not SCX, 2163 * notify the BPF scheduler that it again has control of the 2164 * core. This callback complements ->cpu_release(), which is 2165 * emitted in switch_class(). 2166 */ 2167 if (SCX_HAS_OP(sch, cpu_acquire)) 2168 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq, 2169 cpu_of(rq), NULL); 2170 rq->scx.cpu_released = false; 2171 } 2172 2173 if (prev_on_scx) { 2174 update_curr_scx(rq); 2175 2176 /* 2177 * If @prev is runnable & has slice left, it has priority and 2178 * fetching more just increases latency for the fetched tasks. 2179 * Tell pick_task_scx() to keep running @prev. If the BPF 2180 * scheduler wants to handle this explicitly, it should 2181 * implement ->cpu_release(). 2182 * 2183 * See scx_disable_workfn() for the explanation on the bypassing 2184 * test. 2185 */ 2186 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2187 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2188 goto has_tasks; 2189 } 2190 } 2191 2192 /* if there already are tasks to run, nothing to do */ 2193 if (rq->scx.local_dsq.nr) 2194 goto has_tasks; 2195 2196 if (consume_global_dsq(sch, rq)) 2197 goto has_tasks; 2198 2199 if (scx_rq_bypassing(rq)) { 2200 if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq)) 2201 goto has_tasks; 2202 else 2203 goto no_tasks; 2204 } 2205 2206 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq)) 2207 goto no_tasks; 2208 2209 dspc->rq = rq; 2210 2211 /* 2212 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2213 * the local DSQ might still end up empty after a successful 2214 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2215 * produced some tasks, retry. The BPF scheduler may depend on this 2216 * looping behavior to simplify its implementation. 2217 */ 2218 do { 2219 dspc->nr_tasks = 0; 2220 2221 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq, 2222 cpu_of(rq), prev_on_scx ? prev : NULL); 2223 2224 flush_dispatch_buf(sch, rq); 2225 2226 if (prev_on_rq && prev->scx.slice) { 2227 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2228 goto has_tasks; 2229 } 2230 if (rq->scx.local_dsq.nr) 2231 goto has_tasks; 2232 if (consume_global_dsq(sch, rq)) 2233 goto has_tasks; 2234 2235 /* 2236 * ops.dispatch() can trap us in this loop by repeatedly 2237 * dispatching ineligible tasks. Break out once in a while to 2238 * allow the watchdog to run. As IRQ can't be enabled in 2239 * balance(), we want to complete this scheduling cycle and then 2240 * start a new one. IOW, we want to call resched_curr() on the 2241 * next, most likely idle, task, not the current one. Use 2242 * scx_kick_cpu() for deferred kicking. 2243 */ 2244 if (unlikely(!--nr_loops)) { 2245 scx_kick_cpu(sch, cpu_of(rq), 0); 2246 break; 2247 } 2248 } while (dspc->nr_tasks); 2249 2250 no_tasks: 2251 /* 2252 * Didn't find another task to run. Keep running @prev unless 2253 * %SCX_OPS_ENQ_LAST is in effect. 2254 */ 2255 if (prev_on_rq && 2256 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) { 2257 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2258 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1); 2259 goto has_tasks; 2260 } 2261 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2262 return false; 2263 2264 has_tasks: 2265 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 2266 return true; 2267 } 2268 2269 static void process_ddsp_deferred_locals(struct rq *rq) 2270 { 2271 struct task_struct *p; 2272 2273 lockdep_assert_rq_held(rq); 2274 2275 /* 2276 * Now that @rq can be unlocked, execute the deferred enqueueing of 2277 * tasks directly dispatched to the local DSQs of other CPUs. See 2278 * direct_dispatch(). Keep popping from the head instead of using 2279 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 2280 * temporarily. 2281 */ 2282 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 2283 struct task_struct, scx.dsq_list.node))) { 2284 struct scx_sched *sch = scx_root; 2285 struct scx_dispatch_q *dsq; 2286 2287 list_del_init(&p->scx.dsq_list.node); 2288 2289 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p); 2290 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 2291 dispatch_to_local_dsq(sch, rq, dsq, p, 2292 p->scx.ddsp_enq_flags); 2293 } 2294 } 2295 2296 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 2297 { 2298 struct scx_sched *sch = scx_root; 2299 2300 if (p->scx.flags & SCX_TASK_QUEUED) { 2301 /* 2302 * Core-sched might decide to execute @p before it is 2303 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 2304 */ 2305 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC); 2306 dispatch_dequeue(rq, p); 2307 } 2308 2309 p->se.exec_start = rq_clock_task(rq); 2310 2311 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2312 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED)) 2313 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p); 2314 2315 clr_task_runnable(p, true); 2316 2317 /* 2318 * @p is getting newly scheduled or got kicked after someone updated its 2319 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 2320 */ 2321 if ((p->scx.slice == SCX_SLICE_INF) != 2322 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 2323 if (p->scx.slice == SCX_SLICE_INF) 2324 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 2325 else 2326 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 2327 2328 sched_update_tick_dependency(rq); 2329 2330 /* 2331 * For now, let's refresh the load_avgs just when transitioning 2332 * in and out of nohz. In the future, we might want to add a 2333 * mechanism which calls the following periodically on 2334 * tick-stopped CPUs. 2335 */ 2336 update_other_load_avgs(rq); 2337 } 2338 } 2339 2340 static enum scx_cpu_preempt_reason 2341 preempt_reason_from_class(const struct sched_class *class) 2342 { 2343 if (class == &stop_sched_class) 2344 return SCX_CPU_PREEMPT_STOP; 2345 if (class == &dl_sched_class) 2346 return SCX_CPU_PREEMPT_DL; 2347 if (class == &rt_sched_class) 2348 return SCX_CPU_PREEMPT_RT; 2349 return SCX_CPU_PREEMPT_UNKNOWN; 2350 } 2351 2352 static void switch_class(struct rq *rq, struct task_struct *next) 2353 { 2354 struct scx_sched *sch = scx_root; 2355 const struct sched_class *next_class = next->sched_class; 2356 2357 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT)) 2358 return; 2359 2360 /* 2361 * The callback is conceptually meant to convey that the CPU is no 2362 * longer under the control of SCX. Therefore, don't invoke the callback 2363 * if the next class is below SCX (in which case the BPF scheduler has 2364 * actively decided not to schedule any tasks on the CPU). 2365 */ 2366 if (sched_class_above(&ext_sched_class, next_class)) 2367 return; 2368 2369 /* 2370 * At this point we know that SCX was preempted by a higher priority 2371 * sched_class, so invoke the ->cpu_release() callback if we have not 2372 * done so already. We only send the callback once between SCX being 2373 * preempted, and it regaining control of the CPU. 2374 * 2375 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 2376 * next time that balance_one() is invoked. 2377 */ 2378 if (!rq->scx.cpu_released) { 2379 if (SCX_HAS_OP(sch, cpu_release)) { 2380 struct scx_cpu_release_args args = { 2381 .reason = preempt_reason_from_class(next_class), 2382 .task = next, 2383 }; 2384 2385 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq, 2386 cpu_of(rq), &args); 2387 } 2388 rq->scx.cpu_released = true; 2389 } 2390 } 2391 2392 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 2393 struct task_struct *next) 2394 { 2395 struct scx_sched *sch = scx_root; 2396 2397 /* see kick_cpus_irq_workfn() */ 2398 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2399 2400 update_curr_scx(rq); 2401 2402 /* see dequeue_task_scx() on why we skip when !QUEUED */ 2403 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 2404 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true); 2405 2406 if (p->scx.flags & SCX_TASK_QUEUED) { 2407 set_task_runnable(rq, p); 2408 2409 /* 2410 * If @p has slice left and is being put, @p is getting 2411 * preempted by a higher priority scheduler class or core-sched 2412 * forcing a different task. Leave it at the head of the local 2413 * DSQ. 2414 */ 2415 if (p->scx.slice && !scx_rq_bypassing(rq)) { 2416 dispatch_enqueue(sch, &rq->scx.local_dsq, p, 2417 SCX_ENQ_HEAD); 2418 goto switch_class; 2419 } 2420 2421 /* 2422 * If @p is runnable but we're about to enter a lower 2423 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 2424 * ops.enqueue() that @p is the only one available for this cpu, 2425 * which should trigger an explicit follow-up scheduling event. 2426 */ 2427 if (next && sched_class_above(&ext_sched_class, next->sched_class)) { 2428 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST)); 2429 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 2430 } else { 2431 do_enqueue_task(rq, p, 0, -1); 2432 } 2433 } 2434 2435 switch_class: 2436 if (next && next->sched_class != &ext_sched_class) 2437 switch_class(rq, next); 2438 } 2439 2440 static struct task_struct *first_local_task(struct rq *rq) 2441 { 2442 return list_first_entry_or_null(&rq->scx.local_dsq.list, 2443 struct task_struct, scx.dsq_list.node); 2444 } 2445 2446 static struct task_struct * 2447 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx) 2448 { 2449 struct task_struct *prev = rq->curr; 2450 bool keep_prev; 2451 struct task_struct *p; 2452 2453 /* see kick_cpus_irq_workfn() */ 2454 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1); 2455 2456 rq_modified_clear(rq); 2457 2458 rq_unpin_lock(rq, rf); 2459 balance_one(rq, prev); 2460 rq_repin_lock(rq, rf); 2461 maybe_queue_balance_callback(rq); 2462 2463 /* 2464 * If any higher-priority sched class enqueued a runnable task on 2465 * this rq during balance_one(), abort and return RETRY_TASK, so 2466 * that the scheduler loop can restart. 2467 * 2468 * If @force_scx is true, always try to pick a SCHED_EXT task, 2469 * regardless of any higher-priority sched classes activity. 2470 */ 2471 if (!force_scx && rq_modified_above(rq, &ext_sched_class)) 2472 return RETRY_TASK; 2473 2474 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 2475 if (unlikely(keep_prev && 2476 prev->sched_class != &ext_sched_class)) { 2477 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED); 2478 keep_prev = false; 2479 } 2480 2481 /* 2482 * If balance_one() is telling us to keep running @prev, replenish slice 2483 * if necessary and keep running @prev. Otherwise, pop the first one 2484 * from the local DSQ. 2485 */ 2486 if (keep_prev) { 2487 p = prev; 2488 if (!p->scx.slice) 2489 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p); 2490 } else { 2491 p = first_local_task(rq); 2492 if (!p) 2493 return NULL; 2494 2495 if (unlikely(!p->scx.slice)) { 2496 struct scx_sched *sch = rcu_dereference_sched(scx_root); 2497 2498 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) { 2499 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 2500 p->comm, p->pid, __func__); 2501 sch->warned_zero_slice = true; 2502 } 2503 refill_task_slice_dfl(sch, p); 2504 } 2505 } 2506 2507 return p; 2508 } 2509 2510 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf) 2511 { 2512 return do_pick_task_scx(rq, rf, false); 2513 } 2514 2515 #ifdef CONFIG_SCHED_CORE 2516 /** 2517 * scx_prio_less - Task ordering for core-sched 2518 * @a: task A 2519 * @b: task B 2520 * @in_fi: in forced idle state 2521 * 2522 * Core-sched is implemented as an additional scheduling layer on top of the 2523 * usual sched_class'es and needs to find out the expected task ordering. For 2524 * SCX, core-sched calls this function to interrogate the task ordering. 2525 * 2526 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 2527 * to implement the default task ordering. The older the timestamp, the higher 2528 * priority the task - the global FIFO ordering matching the default scheduling 2529 * behavior. 2530 * 2531 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 2532 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 2533 */ 2534 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 2535 bool in_fi) 2536 { 2537 struct scx_sched *sch = scx_root; 2538 2539 /* 2540 * The const qualifiers are dropped from task_struct pointers when 2541 * calling ops.core_sched_before(). Accesses are controlled by the 2542 * verifier. 2543 */ 2544 if (SCX_HAS_OP(sch, core_sched_before) && 2545 !scx_rq_bypassing(task_rq(a))) 2546 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before, 2547 NULL, 2548 (struct task_struct *)a, 2549 (struct task_struct *)b); 2550 else 2551 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 2552 } 2553 #endif /* CONFIG_SCHED_CORE */ 2554 2555 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 2556 { 2557 struct scx_sched *sch = scx_root; 2558 bool rq_bypass; 2559 2560 /* 2561 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 2562 * can be a good migration opportunity with low cache and memory 2563 * footprint. Returning a CPU different than @prev_cpu triggers 2564 * immediate rq migration. However, for SCX, as the current rq 2565 * association doesn't dictate where the task is going to run, this 2566 * doesn't fit well. If necessary, we can later add a dedicated method 2567 * which can decide to preempt self to force it through the regular 2568 * scheduling path. 2569 */ 2570 if (unlikely(wake_flags & WF_EXEC)) 2571 return prev_cpu; 2572 2573 rq_bypass = scx_rq_bypassing(task_rq(p)); 2574 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) { 2575 s32 cpu; 2576 struct task_struct **ddsp_taskp; 2577 2578 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2579 WARN_ON_ONCE(*ddsp_taskp); 2580 *ddsp_taskp = p; 2581 2582 cpu = SCX_CALL_OP_TASK_RET(sch, 2583 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 2584 select_cpu, NULL, p, prev_cpu, 2585 wake_flags); 2586 p->scx.selected_cpu = cpu; 2587 *ddsp_taskp = NULL; 2588 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()")) 2589 return cpu; 2590 else 2591 return prev_cpu; 2592 } else { 2593 s32 cpu; 2594 2595 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0); 2596 if (cpu >= 0) { 2597 refill_task_slice_dfl(sch, p); 2598 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 2599 } else { 2600 cpu = prev_cpu; 2601 } 2602 p->scx.selected_cpu = cpu; 2603 2604 if (rq_bypass) 2605 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1); 2606 return cpu; 2607 } 2608 } 2609 2610 static void task_woken_scx(struct rq *rq, struct task_struct *p) 2611 { 2612 run_deferred(rq); 2613 } 2614 2615 static void set_cpus_allowed_scx(struct task_struct *p, 2616 struct affinity_context *ac) 2617 { 2618 struct scx_sched *sch = scx_root; 2619 2620 set_cpus_allowed_common(p, ac); 2621 2622 /* 2623 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 2624 * differ from the configured one in @p->cpus_mask. Always tell the bpf 2625 * scheduler the effective one. 2626 * 2627 * Fine-grained memory write control is enforced by BPF making the const 2628 * designation pointless. Cast it away when calling the operation. 2629 */ 2630 if (SCX_HAS_OP(sch, set_cpumask)) 2631 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL, 2632 p, (struct cpumask *)p->cpus_ptr); 2633 } 2634 2635 static void handle_hotplug(struct rq *rq, bool online) 2636 { 2637 struct scx_sched *sch = scx_root; 2638 int cpu = cpu_of(rq); 2639 2640 atomic_long_inc(&scx_hotplug_seq); 2641 2642 /* 2643 * scx_root updates are protected by cpus_read_lock() and will stay 2644 * stable here. Note that we can't depend on scx_enabled() test as the 2645 * hotplug ops need to be enabled before __scx_enabled is set. 2646 */ 2647 if (unlikely(!sch)) 2648 return; 2649 2650 if (scx_enabled()) 2651 scx_idle_update_selcpu_topology(&sch->ops); 2652 2653 if (online && SCX_HAS_OP(sch, cpu_online)) 2654 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu); 2655 else if (!online && SCX_HAS_OP(sch, cpu_offline)) 2656 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu); 2657 else 2658 scx_exit(sch, SCX_EXIT_UNREG_KERN, 2659 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 2660 "cpu %d going %s, exiting scheduler", cpu, 2661 online ? "online" : "offline"); 2662 } 2663 2664 void scx_rq_activate(struct rq *rq) 2665 { 2666 handle_hotplug(rq, true); 2667 } 2668 2669 void scx_rq_deactivate(struct rq *rq) 2670 { 2671 handle_hotplug(rq, false); 2672 } 2673 2674 static void rq_online_scx(struct rq *rq) 2675 { 2676 rq->scx.flags |= SCX_RQ_ONLINE; 2677 } 2678 2679 static void rq_offline_scx(struct rq *rq) 2680 { 2681 rq->scx.flags &= ~SCX_RQ_ONLINE; 2682 } 2683 2684 2685 static bool check_rq_for_timeouts(struct rq *rq) 2686 { 2687 struct scx_sched *sch; 2688 struct task_struct *p; 2689 struct rq_flags rf; 2690 bool timed_out = false; 2691 2692 rq_lock_irqsave(rq, &rf); 2693 sch = rcu_dereference_bh(scx_root); 2694 if (unlikely(!sch)) 2695 goto out_unlock; 2696 2697 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 2698 unsigned long last_runnable = p->scx.runnable_at; 2699 2700 if (unlikely(time_after(jiffies, 2701 last_runnable + scx_watchdog_timeout))) { 2702 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 2703 2704 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2705 "%s[%d] failed to run for %u.%03us", 2706 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000); 2707 timed_out = true; 2708 break; 2709 } 2710 } 2711 out_unlock: 2712 rq_unlock_irqrestore(rq, &rf); 2713 return timed_out; 2714 } 2715 2716 static void scx_watchdog_workfn(struct work_struct *work) 2717 { 2718 int cpu; 2719 2720 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 2721 2722 for_each_online_cpu(cpu) { 2723 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 2724 break; 2725 2726 cond_resched(); 2727 } 2728 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 2729 scx_watchdog_timeout / 2); 2730 } 2731 2732 void scx_tick(struct rq *rq) 2733 { 2734 struct scx_sched *sch; 2735 unsigned long last_check; 2736 2737 if (!scx_enabled()) 2738 return; 2739 2740 sch = rcu_dereference_bh(scx_root); 2741 if (unlikely(!sch)) 2742 return; 2743 2744 last_check = READ_ONCE(scx_watchdog_timestamp); 2745 if (unlikely(time_after(jiffies, 2746 last_check + READ_ONCE(scx_watchdog_timeout)))) { 2747 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 2748 2749 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0, 2750 "watchdog failed to check in for %u.%03us", 2751 dur_ms / 1000, dur_ms % 1000); 2752 } 2753 2754 update_other_load_avgs(rq); 2755 } 2756 2757 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 2758 { 2759 struct scx_sched *sch = scx_root; 2760 2761 update_curr_scx(rq); 2762 2763 /* 2764 * While disabling, always resched and refresh core-sched timestamp as 2765 * we can't trust the slice management or ops.core_sched_before(). 2766 */ 2767 if (scx_rq_bypassing(rq)) { 2768 curr->scx.slice = 0; 2769 touch_core_sched(rq, curr); 2770 } else if (SCX_HAS_OP(sch, tick)) { 2771 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr); 2772 } 2773 2774 if (!curr->scx.slice) 2775 resched_curr(rq); 2776 } 2777 2778 #ifdef CONFIG_EXT_GROUP_SCHED 2779 static struct cgroup *tg_cgrp(struct task_group *tg) 2780 { 2781 /* 2782 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 2783 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 2784 * root cgroup. 2785 */ 2786 if (tg && tg->css.cgroup) 2787 return tg->css.cgroup; 2788 else 2789 return &cgrp_dfl_root.cgrp; 2790 } 2791 2792 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 2793 2794 #else /* CONFIG_EXT_GROUP_SCHED */ 2795 2796 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 2797 2798 #endif /* CONFIG_EXT_GROUP_SCHED */ 2799 2800 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 2801 { 2802 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 2803 } 2804 2805 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 2806 { 2807 enum scx_task_state prev_state = scx_get_task_state(p); 2808 bool warn = false; 2809 2810 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 2811 2812 switch (state) { 2813 case SCX_TASK_NONE: 2814 break; 2815 case SCX_TASK_INIT: 2816 warn = prev_state != SCX_TASK_NONE; 2817 break; 2818 case SCX_TASK_READY: 2819 warn = prev_state == SCX_TASK_NONE; 2820 break; 2821 case SCX_TASK_ENABLED: 2822 warn = prev_state != SCX_TASK_READY; 2823 break; 2824 default: 2825 warn = true; 2826 return; 2827 } 2828 2829 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 2830 prev_state, state, p->comm, p->pid); 2831 2832 p->scx.flags &= ~SCX_TASK_STATE_MASK; 2833 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 2834 } 2835 2836 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork) 2837 { 2838 struct scx_sched *sch = scx_root; 2839 int ret; 2840 2841 p->scx.disallow = false; 2842 2843 if (SCX_HAS_OP(sch, init_task)) { 2844 struct scx_init_task_args args = { 2845 SCX_INIT_TASK_ARGS_CGROUP(tg) 2846 .fork = fork, 2847 }; 2848 2849 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL, 2850 p, &args); 2851 if (unlikely(ret)) { 2852 ret = ops_sanitize_err(sch, "init_task", ret); 2853 return ret; 2854 } 2855 } 2856 2857 scx_set_task_state(p, SCX_TASK_INIT); 2858 2859 if (p->scx.disallow) { 2860 if (!fork) { 2861 struct rq *rq; 2862 struct rq_flags rf; 2863 2864 rq = task_rq_lock(p, &rf); 2865 2866 /* 2867 * We're in the load path and @p->policy will be applied 2868 * right after. Reverting @p->policy here and rejecting 2869 * %SCHED_EXT transitions from scx_check_setscheduler() 2870 * guarantees that if ops.init_task() sets @p->disallow, 2871 * @p can never be in SCX. 2872 */ 2873 if (p->policy == SCHED_EXT) { 2874 p->policy = SCHED_NORMAL; 2875 atomic_long_inc(&scx_nr_rejected); 2876 } 2877 2878 task_rq_unlock(rq, p, &rf); 2879 } else if (p->policy == SCHED_EXT) { 2880 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork", 2881 p->comm, p->pid); 2882 } 2883 } 2884 2885 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2886 return 0; 2887 } 2888 2889 static void scx_enable_task(struct task_struct *p) 2890 { 2891 struct scx_sched *sch = scx_root; 2892 struct rq *rq = task_rq(p); 2893 u32 weight; 2894 2895 lockdep_assert_rq_held(rq); 2896 2897 /* 2898 * Set the weight before calling ops.enable() so that the scheduler 2899 * doesn't see a stale value if they inspect the task struct. 2900 */ 2901 if (task_has_idle_policy(p)) 2902 weight = WEIGHT_IDLEPRIO; 2903 else 2904 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 2905 2906 p->scx.weight = sched_weight_to_cgroup(weight); 2907 2908 if (SCX_HAS_OP(sch, enable)) 2909 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p); 2910 scx_set_task_state(p, SCX_TASK_ENABLED); 2911 2912 if (SCX_HAS_OP(sch, set_weight)) 2913 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 2914 p, p->scx.weight); 2915 } 2916 2917 static void scx_disable_task(struct task_struct *p) 2918 { 2919 struct scx_sched *sch = scx_root; 2920 struct rq *rq = task_rq(p); 2921 2922 lockdep_assert_rq_held(rq); 2923 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 2924 2925 if (SCX_HAS_OP(sch, disable)) 2926 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p); 2927 scx_set_task_state(p, SCX_TASK_READY); 2928 } 2929 2930 static void scx_exit_task(struct task_struct *p) 2931 { 2932 struct scx_sched *sch = scx_root; 2933 struct scx_exit_task_args args = { 2934 .cancelled = false, 2935 }; 2936 2937 lockdep_assert_rq_held(task_rq(p)); 2938 2939 switch (scx_get_task_state(p)) { 2940 case SCX_TASK_NONE: 2941 return; 2942 case SCX_TASK_INIT: 2943 args.cancelled = true; 2944 break; 2945 case SCX_TASK_READY: 2946 break; 2947 case SCX_TASK_ENABLED: 2948 scx_disable_task(p); 2949 break; 2950 default: 2951 WARN_ON_ONCE(true); 2952 return; 2953 } 2954 2955 if (SCX_HAS_OP(sch, exit_task)) 2956 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p), 2957 p, &args); 2958 scx_set_task_state(p, SCX_TASK_NONE); 2959 } 2960 2961 void init_scx_entity(struct sched_ext_entity *scx) 2962 { 2963 memset(scx, 0, sizeof(*scx)); 2964 INIT_LIST_HEAD(&scx->dsq_list.node); 2965 RB_CLEAR_NODE(&scx->dsq_priq); 2966 scx->sticky_cpu = -1; 2967 scx->holding_cpu = -1; 2968 INIT_LIST_HEAD(&scx->runnable_node); 2969 scx->runnable_at = jiffies; 2970 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 2971 scx->slice = READ_ONCE(scx_slice_dfl); 2972 } 2973 2974 void scx_pre_fork(struct task_struct *p) 2975 { 2976 /* 2977 * BPF scheduler enable/disable paths want to be able to iterate and 2978 * update all tasks which can become complex when racing forks. As 2979 * enable/disable are very cold paths, let's use a percpu_rwsem to 2980 * exclude forks. 2981 */ 2982 percpu_down_read(&scx_fork_rwsem); 2983 } 2984 2985 int scx_fork(struct task_struct *p) 2986 { 2987 percpu_rwsem_assert_held(&scx_fork_rwsem); 2988 2989 if (scx_init_task_enabled) 2990 return scx_init_task(p, task_group(p), true); 2991 else 2992 return 0; 2993 } 2994 2995 void scx_post_fork(struct task_struct *p) 2996 { 2997 if (scx_init_task_enabled) { 2998 scx_set_task_state(p, SCX_TASK_READY); 2999 3000 /* 3001 * Enable the task immediately if it's running on sched_ext. 3002 * Otherwise, it'll be enabled in switching_to_scx() if and 3003 * when it's ever configured to run with a SCHED_EXT policy. 3004 */ 3005 if (p->sched_class == &ext_sched_class) { 3006 struct rq_flags rf; 3007 struct rq *rq; 3008 3009 rq = task_rq_lock(p, &rf); 3010 scx_enable_task(p); 3011 task_rq_unlock(rq, p, &rf); 3012 } 3013 } 3014 3015 raw_spin_lock_irq(&scx_tasks_lock); 3016 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3017 raw_spin_unlock_irq(&scx_tasks_lock); 3018 3019 percpu_up_read(&scx_fork_rwsem); 3020 } 3021 3022 void scx_cancel_fork(struct task_struct *p) 3023 { 3024 if (scx_enabled()) { 3025 struct rq *rq; 3026 struct rq_flags rf; 3027 3028 rq = task_rq_lock(p, &rf); 3029 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3030 scx_exit_task(p); 3031 task_rq_unlock(rq, p, &rf); 3032 } 3033 3034 percpu_up_read(&scx_fork_rwsem); 3035 } 3036 3037 void sched_ext_dead(struct task_struct *p) 3038 { 3039 unsigned long flags; 3040 3041 raw_spin_lock_irqsave(&scx_tasks_lock, flags); 3042 list_del_init(&p->scx.tasks_node); 3043 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags); 3044 3045 /* 3046 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED 3047 * transitions can't race us. Disable ops for @p. 3048 */ 3049 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3050 struct rq_flags rf; 3051 struct rq *rq; 3052 3053 rq = task_rq_lock(p, &rf); 3054 scx_exit_task(p); 3055 task_rq_unlock(rq, p, &rf); 3056 } 3057 } 3058 3059 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3060 const struct load_weight *lw) 3061 { 3062 struct scx_sched *sch = scx_root; 3063 3064 lockdep_assert_rq_held(task_rq(p)); 3065 3066 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3067 if (SCX_HAS_OP(sch, set_weight)) 3068 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq, 3069 p, p->scx.weight); 3070 } 3071 3072 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio) 3073 { 3074 } 3075 3076 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3077 { 3078 struct scx_sched *sch = scx_root; 3079 3080 scx_enable_task(p); 3081 3082 /* 3083 * set_cpus_allowed_scx() is not called while @p is associated with a 3084 * different scheduler class. Keep the BPF scheduler up-to-date. 3085 */ 3086 if (SCX_HAS_OP(sch, set_cpumask)) 3087 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq, 3088 p, (struct cpumask *)p->cpus_ptr); 3089 } 3090 3091 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3092 { 3093 scx_disable_task(p); 3094 } 3095 3096 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3097 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3098 3099 int scx_check_setscheduler(struct task_struct *p, int policy) 3100 { 3101 lockdep_assert_rq_held(task_rq(p)); 3102 3103 /* if disallow, reject transitioning into SCX */ 3104 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3105 p->policy != policy && policy == SCHED_EXT) 3106 return -EACCES; 3107 3108 return 0; 3109 } 3110 3111 #ifdef CONFIG_NO_HZ_FULL 3112 bool scx_can_stop_tick(struct rq *rq) 3113 { 3114 struct task_struct *p = rq->curr; 3115 3116 if (scx_rq_bypassing(rq)) 3117 return false; 3118 3119 if (p->sched_class != &ext_sched_class) 3120 return true; 3121 3122 /* 3123 * @rq can dispatch from different DSQs, so we can't tell whether it 3124 * needs the tick or not by looking at nr_running. Allow stopping ticks 3125 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3126 */ 3127 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3128 } 3129 #endif 3130 3131 #ifdef CONFIG_EXT_GROUP_SCHED 3132 3133 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem); 3134 static bool scx_cgroup_enabled; 3135 3136 void scx_tg_init(struct task_group *tg) 3137 { 3138 tg->scx.weight = CGROUP_WEIGHT_DFL; 3139 tg->scx.bw_period_us = default_bw_period_us(); 3140 tg->scx.bw_quota_us = RUNTIME_INF; 3141 tg->scx.idle = false; 3142 } 3143 3144 int scx_tg_online(struct task_group *tg) 3145 { 3146 struct scx_sched *sch = scx_root; 3147 int ret = 0; 3148 3149 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3150 3151 if (scx_cgroup_enabled) { 3152 if (SCX_HAS_OP(sch, cgroup_init)) { 3153 struct scx_cgroup_init_args args = 3154 { .weight = tg->scx.weight, 3155 .bw_period_us = tg->scx.bw_period_us, 3156 .bw_quota_us = tg->scx.bw_quota_us, 3157 .bw_burst_us = tg->scx.bw_burst_us }; 3158 3159 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, 3160 NULL, tg->css.cgroup, &args); 3161 if (ret) 3162 ret = ops_sanitize_err(sch, "cgroup_init", ret); 3163 } 3164 if (ret == 0) 3165 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3166 } else { 3167 tg->scx.flags |= SCX_TG_ONLINE; 3168 } 3169 3170 return ret; 3171 } 3172 3173 void scx_tg_offline(struct task_group *tg) 3174 { 3175 struct scx_sched *sch = scx_root; 3176 3177 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE)); 3178 3179 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) && 3180 (tg->scx.flags & SCX_TG_INITED)) 3181 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3182 tg->css.cgroup); 3183 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3184 } 3185 3186 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3187 { 3188 struct scx_sched *sch = scx_root; 3189 struct cgroup_subsys_state *css; 3190 struct task_struct *p; 3191 int ret; 3192 3193 if (!scx_cgroup_enabled) 3194 return 0; 3195 3196 cgroup_taskset_for_each(p, css, tset) { 3197 struct cgroup *from = tg_cgrp(task_group(p)); 3198 struct cgroup *to = tg_cgrp(css_tg(css)); 3199 3200 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3201 3202 /* 3203 * sched_move_task() omits identity migrations. Let's match the 3204 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3205 * always match one-to-one. 3206 */ 3207 if (from == to) 3208 continue; 3209 3210 if (SCX_HAS_OP(sch, cgroup_prep_move)) { 3211 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, 3212 cgroup_prep_move, NULL, 3213 p, from, css->cgroup); 3214 if (ret) 3215 goto err; 3216 } 3217 3218 p->scx.cgrp_moving_from = from; 3219 } 3220 3221 return 0; 3222 3223 err: 3224 cgroup_taskset_for_each(p, css, tset) { 3225 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3226 p->scx.cgrp_moving_from) 3227 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3228 p, p->scx.cgrp_moving_from, css->cgroup); 3229 p->scx.cgrp_moving_from = NULL; 3230 } 3231 3232 return ops_sanitize_err(sch, "cgroup_prep_move", ret); 3233 } 3234 3235 void scx_cgroup_move_task(struct task_struct *p) 3236 { 3237 struct scx_sched *sch = scx_root; 3238 3239 if (!scx_cgroup_enabled) 3240 return; 3241 3242 /* 3243 * @p must have ops.cgroup_prep_move() called on it and thus 3244 * cgrp_moving_from set. 3245 */ 3246 if (SCX_HAS_OP(sch, cgroup_move) && 3247 !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 3248 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL, 3249 p, p->scx.cgrp_moving_from, 3250 tg_cgrp(task_group(p))); 3251 p->scx.cgrp_moving_from = NULL; 3252 } 3253 3254 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 3255 { 3256 struct scx_sched *sch = scx_root; 3257 struct cgroup_subsys_state *css; 3258 struct task_struct *p; 3259 3260 if (!scx_cgroup_enabled) 3261 return; 3262 3263 cgroup_taskset_for_each(p, css, tset) { 3264 if (SCX_HAS_OP(sch, cgroup_cancel_move) && 3265 p->scx.cgrp_moving_from) 3266 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL, 3267 p, p->scx.cgrp_moving_from, css->cgroup); 3268 p->scx.cgrp_moving_from = NULL; 3269 } 3270 } 3271 3272 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 3273 { 3274 struct scx_sched *sch = scx_root; 3275 3276 percpu_down_read(&scx_cgroup_ops_rwsem); 3277 3278 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) && 3279 tg->scx.weight != weight) 3280 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL, 3281 tg_cgrp(tg), weight); 3282 3283 tg->scx.weight = weight; 3284 3285 percpu_up_read(&scx_cgroup_ops_rwsem); 3286 } 3287 3288 void scx_group_set_idle(struct task_group *tg, bool idle) 3289 { 3290 struct scx_sched *sch = scx_root; 3291 3292 percpu_down_read(&scx_cgroup_ops_rwsem); 3293 3294 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle)) 3295 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL, 3296 tg_cgrp(tg), idle); 3297 3298 /* Update the task group's idle state */ 3299 tg->scx.idle = idle; 3300 3301 percpu_up_read(&scx_cgroup_ops_rwsem); 3302 } 3303 3304 void scx_group_set_bandwidth(struct task_group *tg, 3305 u64 period_us, u64 quota_us, u64 burst_us) 3306 { 3307 struct scx_sched *sch = scx_root; 3308 3309 percpu_down_read(&scx_cgroup_ops_rwsem); 3310 3311 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) && 3312 (tg->scx.bw_period_us != period_us || 3313 tg->scx.bw_quota_us != quota_us || 3314 tg->scx.bw_burst_us != burst_us)) 3315 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL, 3316 tg_cgrp(tg), period_us, quota_us, burst_us); 3317 3318 tg->scx.bw_period_us = period_us; 3319 tg->scx.bw_quota_us = quota_us; 3320 tg->scx.bw_burst_us = burst_us; 3321 3322 percpu_up_read(&scx_cgroup_ops_rwsem); 3323 } 3324 3325 static void scx_cgroup_lock(void) 3326 { 3327 percpu_down_write(&scx_cgroup_ops_rwsem); 3328 cgroup_lock(); 3329 } 3330 3331 static void scx_cgroup_unlock(void) 3332 { 3333 cgroup_unlock(); 3334 percpu_up_write(&scx_cgroup_ops_rwsem); 3335 } 3336 3337 #else /* CONFIG_EXT_GROUP_SCHED */ 3338 3339 static void scx_cgroup_lock(void) {} 3340 static void scx_cgroup_unlock(void) {} 3341 3342 #endif /* CONFIG_EXT_GROUP_SCHED */ 3343 3344 /* 3345 * Omitted operations: 3346 * 3347 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 3348 * isn't tied to the CPU at that point. Preemption is implemented by resetting 3349 * the victim task's slice to 0 and triggering reschedule on the target CPU. 3350 * 3351 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 3352 * 3353 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 3354 * their current sched_class. Call them directly from sched core instead. 3355 */ 3356 DEFINE_SCHED_CLASS(ext) = { 3357 .queue_mask = 1, 3358 3359 .enqueue_task = enqueue_task_scx, 3360 .dequeue_task = dequeue_task_scx, 3361 .yield_task = yield_task_scx, 3362 .yield_to_task = yield_to_task_scx, 3363 3364 .wakeup_preempt = wakeup_preempt_scx, 3365 3366 .pick_task = pick_task_scx, 3367 3368 .put_prev_task = put_prev_task_scx, 3369 .set_next_task = set_next_task_scx, 3370 3371 .select_task_rq = select_task_rq_scx, 3372 .task_woken = task_woken_scx, 3373 .set_cpus_allowed = set_cpus_allowed_scx, 3374 3375 .rq_online = rq_online_scx, 3376 .rq_offline = rq_offline_scx, 3377 3378 .task_tick = task_tick_scx, 3379 3380 .switching_to = switching_to_scx, 3381 .switched_from = switched_from_scx, 3382 .switched_to = switched_to_scx, 3383 .reweight_task = reweight_task_scx, 3384 .prio_changed = prio_changed_scx, 3385 3386 .update_curr = update_curr_scx, 3387 3388 #ifdef CONFIG_UCLAMP_TASK 3389 .uclamp_enabled = 1, 3390 #endif 3391 }; 3392 3393 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 3394 { 3395 memset(dsq, 0, sizeof(*dsq)); 3396 3397 raw_spin_lock_init(&dsq->lock); 3398 INIT_LIST_HEAD(&dsq->list); 3399 dsq->id = dsq_id; 3400 } 3401 3402 static void free_dsq_irq_workfn(struct irq_work *irq_work) 3403 { 3404 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 3405 struct scx_dispatch_q *dsq, *tmp_dsq; 3406 3407 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 3408 kfree_rcu(dsq, rcu); 3409 } 3410 3411 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 3412 3413 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id) 3414 { 3415 struct scx_dispatch_q *dsq; 3416 unsigned long flags; 3417 3418 rcu_read_lock(); 3419 3420 dsq = find_user_dsq(sch, dsq_id); 3421 if (!dsq) 3422 goto out_unlock_rcu; 3423 3424 raw_spin_lock_irqsave(&dsq->lock, flags); 3425 3426 if (dsq->nr) { 3427 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)", 3428 dsq->id, dsq->nr); 3429 goto out_unlock_dsq; 3430 } 3431 3432 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node, 3433 dsq_hash_params)) 3434 goto out_unlock_dsq; 3435 3436 /* 3437 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 3438 * queueing more tasks. As this function can be called from anywhere, 3439 * freeing is bounced through an irq work to avoid nesting RCU 3440 * operations inside scheduler locks. 3441 */ 3442 dsq->id = SCX_DSQ_INVALID; 3443 llist_add(&dsq->free_node, &dsqs_to_free); 3444 irq_work_queue(&free_dsq_irq_work); 3445 3446 out_unlock_dsq: 3447 raw_spin_unlock_irqrestore(&dsq->lock, flags); 3448 out_unlock_rcu: 3449 rcu_read_unlock(); 3450 } 3451 3452 #ifdef CONFIG_EXT_GROUP_SCHED 3453 static void scx_cgroup_exit(struct scx_sched *sch) 3454 { 3455 struct cgroup_subsys_state *css; 3456 3457 scx_cgroup_enabled = false; 3458 3459 /* 3460 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3461 * cgroups and exit all the inited ones, all online cgroups are exited. 3462 */ 3463 css_for_each_descendant_post(css, &root_task_group.css) { 3464 struct task_group *tg = css_tg(css); 3465 3466 if (!(tg->scx.flags & SCX_TG_INITED)) 3467 continue; 3468 tg->scx.flags &= ~SCX_TG_INITED; 3469 3470 if (!sch->ops.cgroup_exit) 3471 continue; 3472 3473 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL, 3474 css->cgroup); 3475 } 3476 } 3477 3478 static int scx_cgroup_init(struct scx_sched *sch) 3479 { 3480 struct cgroup_subsys_state *css; 3481 int ret; 3482 3483 /* 3484 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk 3485 * cgroups and init, all online cgroups are initialized. 3486 */ 3487 css_for_each_descendant_pre(css, &root_task_group.css) { 3488 struct task_group *tg = css_tg(css); 3489 struct scx_cgroup_init_args args = { 3490 .weight = tg->scx.weight, 3491 .bw_period_us = tg->scx.bw_period_us, 3492 .bw_quota_us = tg->scx.bw_quota_us, 3493 .bw_burst_us = tg->scx.bw_burst_us, 3494 }; 3495 3496 if ((tg->scx.flags & 3497 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 3498 continue; 3499 3500 if (!sch->ops.cgroup_init) { 3501 tg->scx.flags |= SCX_TG_INITED; 3502 continue; 3503 } 3504 3505 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL, 3506 css->cgroup, &args); 3507 if (ret) { 3508 css_put(css); 3509 scx_error(sch, "ops.cgroup_init() failed (%d)", ret); 3510 return ret; 3511 } 3512 tg->scx.flags |= SCX_TG_INITED; 3513 } 3514 3515 WARN_ON_ONCE(scx_cgroup_enabled); 3516 scx_cgroup_enabled = true; 3517 3518 return 0; 3519 } 3520 3521 #else 3522 static void scx_cgroup_exit(struct scx_sched *sch) {} 3523 static int scx_cgroup_init(struct scx_sched *sch) { return 0; } 3524 #endif 3525 3526 3527 /******************************************************************************** 3528 * Sysfs interface and ops enable/disable. 3529 */ 3530 3531 #define SCX_ATTR(_name) \ 3532 static struct kobj_attribute scx_attr_##_name = { \ 3533 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 3534 .show = scx_attr_##_name##_show, \ 3535 } 3536 3537 static ssize_t scx_attr_state_show(struct kobject *kobj, 3538 struct kobj_attribute *ka, char *buf) 3539 { 3540 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]); 3541 } 3542 SCX_ATTR(state); 3543 3544 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 3545 struct kobj_attribute *ka, char *buf) 3546 { 3547 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 3548 } 3549 SCX_ATTR(switch_all); 3550 3551 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 3552 struct kobj_attribute *ka, char *buf) 3553 { 3554 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 3555 } 3556 SCX_ATTR(nr_rejected); 3557 3558 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 3559 struct kobj_attribute *ka, char *buf) 3560 { 3561 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 3562 } 3563 SCX_ATTR(hotplug_seq); 3564 3565 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 3566 struct kobj_attribute *ka, char *buf) 3567 { 3568 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 3569 } 3570 SCX_ATTR(enable_seq); 3571 3572 static struct attribute *scx_global_attrs[] = { 3573 &scx_attr_state.attr, 3574 &scx_attr_switch_all.attr, 3575 &scx_attr_nr_rejected.attr, 3576 &scx_attr_hotplug_seq.attr, 3577 &scx_attr_enable_seq.attr, 3578 NULL, 3579 }; 3580 3581 static const struct attribute_group scx_global_attr_group = { 3582 .attrs = scx_global_attrs, 3583 }; 3584 3585 static void free_exit_info(struct scx_exit_info *ei); 3586 3587 static void scx_sched_free_rcu_work(struct work_struct *work) 3588 { 3589 struct rcu_work *rcu_work = to_rcu_work(work); 3590 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work); 3591 struct rhashtable_iter rht_iter; 3592 struct scx_dispatch_q *dsq; 3593 int node; 3594 3595 irq_work_sync(&sch->error_irq_work); 3596 kthread_destroy_worker(sch->helper); 3597 3598 free_percpu(sch->pcpu); 3599 3600 for_each_node_state(node, N_POSSIBLE) 3601 kfree(sch->global_dsqs[node]); 3602 kfree(sch->global_dsqs); 3603 3604 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter); 3605 do { 3606 rhashtable_walk_start(&rht_iter); 3607 3608 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 3609 destroy_dsq(sch, dsq->id); 3610 3611 rhashtable_walk_stop(&rht_iter); 3612 } while (dsq == ERR_PTR(-EAGAIN)); 3613 rhashtable_walk_exit(&rht_iter); 3614 3615 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 3616 free_exit_info(sch->exit_info); 3617 kfree(sch); 3618 } 3619 3620 static void scx_kobj_release(struct kobject *kobj) 3621 { 3622 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3623 3624 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work); 3625 queue_rcu_work(system_unbound_wq, &sch->rcu_work); 3626 } 3627 3628 static ssize_t scx_attr_ops_show(struct kobject *kobj, 3629 struct kobj_attribute *ka, char *buf) 3630 { 3631 return sysfs_emit(buf, "%s\n", scx_root->ops.name); 3632 } 3633 SCX_ATTR(ops); 3634 3635 #define scx_attr_event_show(buf, at, events, kind) ({ \ 3636 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 3637 }) 3638 3639 static ssize_t scx_attr_events_show(struct kobject *kobj, 3640 struct kobj_attribute *ka, char *buf) 3641 { 3642 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj); 3643 struct scx_event_stats events; 3644 int at = 0; 3645 3646 scx_read_events(sch, &events); 3647 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 3648 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 3649 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 3650 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 3651 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 3652 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL); 3653 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 3654 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 3655 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 3656 return at; 3657 } 3658 SCX_ATTR(events); 3659 3660 static struct attribute *scx_sched_attrs[] = { 3661 &scx_attr_ops.attr, 3662 &scx_attr_events.attr, 3663 NULL, 3664 }; 3665 ATTRIBUTE_GROUPS(scx_sched); 3666 3667 static const struct kobj_type scx_ktype = { 3668 .release = scx_kobj_release, 3669 .sysfs_ops = &kobj_sysfs_ops, 3670 .default_groups = scx_sched_groups, 3671 }; 3672 3673 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 3674 { 3675 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name); 3676 } 3677 3678 static const struct kset_uevent_ops scx_uevent_ops = { 3679 .uevent = scx_uevent, 3680 }; 3681 3682 /* 3683 * Used by sched_fork() and __setscheduler_prio() to pick the matching 3684 * sched_class. dl/rt are already handled. 3685 */ 3686 bool task_should_scx(int policy) 3687 { 3688 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING)) 3689 return false; 3690 if (READ_ONCE(scx_switching_all)) 3691 return true; 3692 return policy == SCHED_EXT; 3693 } 3694 3695 bool scx_allow_ttwu_queue(const struct task_struct *p) 3696 { 3697 struct scx_sched *sch; 3698 3699 if (!scx_enabled()) 3700 return true; 3701 3702 sch = rcu_dereference_sched(scx_root); 3703 if (unlikely(!sch)) 3704 return true; 3705 3706 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 3707 return true; 3708 3709 if (unlikely(p->sched_class != &ext_sched_class)) 3710 return true; 3711 3712 return false; 3713 } 3714 3715 /** 3716 * handle_lockup - sched_ext common lockup handler 3717 * @fmt: format string 3718 * 3719 * Called on system stall or lockup condition and initiates abort of sched_ext 3720 * if enabled, which may resolve the reported lockup. 3721 * 3722 * Returns %true if sched_ext is enabled and abort was initiated, which may 3723 * resolve the lockup. %false if sched_ext is not enabled or abort was already 3724 * initiated by someone else. 3725 */ 3726 static __printf(1, 2) bool handle_lockup(const char *fmt, ...) 3727 { 3728 struct scx_sched *sch; 3729 va_list args; 3730 bool ret; 3731 3732 guard(rcu)(); 3733 3734 sch = rcu_dereference(scx_root); 3735 if (unlikely(!sch)) 3736 return false; 3737 3738 switch (scx_enable_state()) { 3739 case SCX_ENABLING: 3740 case SCX_ENABLED: 3741 va_start(args, fmt); 3742 ret = scx_verror(sch, fmt, args); 3743 va_end(args); 3744 return ret; 3745 default: 3746 return false; 3747 } 3748 } 3749 3750 /** 3751 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler 3752 * 3753 * While there are various reasons why RCU CPU stalls can occur on a system 3754 * that may not be caused by the current BPF scheduler, try kicking out the 3755 * current scheduler in an attempt to recover the system to a good state before 3756 * issuing panics. 3757 * 3758 * Returns %true if sched_ext is enabled and abort was initiated, which may 3759 * resolve the reported RCU stall. %false if sched_ext is not enabled or someone 3760 * else already initiated abort. 3761 */ 3762 bool scx_rcu_cpu_stall(void) 3763 { 3764 return handle_lockup("RCU CPU stall detected!"); 3765 } 3766 3767 /** 3768 * scx_softlockup - sched_ext softlockup handler 3769 * @dur_s: number of seconds of CPU stuck due to soft lockup 3770 * 3771 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 3772 * live-lock the system by making many CPUs target the same DSQ to the point 3773 * where soft-lockup detection triggers. This function is called from 3774 * soft-lockup watchdog when the triggering point is close and tries to unjam 3775 * the system and aborting the BPF scheduler. 3776 */ 3777 void scx_softlockup(u32 dur_s) 3778 { 3779 if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s)) 3780 return; 3781 3782 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n", 3783 smp_processor_id(), dur_s); 3784 } 3785 3786 /** 3787 * scx_hardlockup - sched_ext hardlockup handler 3788 * 3789 * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting 3790 * numerous affinitized tasks in a single queue and directing all CPUs at it. 3791 * Try kicking out the current scheduler in an attempt to recover the system to 3792 * a good state before taking more drastic actions. 3793 * 3794 * Returns %true if sched_ext is enabled and abort was initiated, which may 3795 * resolve the reported hardlockdup. %false if sched_ext is not enabled or 3796 * someone else already initiated abort. 3797 */ 3798 bool scx_hardlockup(int cpu) 3799 { 3800 if (!handle_lockup("hard lockup - CPU %d", cpu)) 3801 return false; 3802 3803 printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n", 3804 cpu); 3805 return true; 3806 } 3807 3808 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq, 3809 struct cpumask *donee_mask, struct cpumask *resched_mask, 3810 u32 nr_donor_target, u32 nr_donee_target) 3811 { 3812 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq; 3813 struct task_struct *p, *n; 3814 struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0); 3815 s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target; 3816 u32 nr_balanced = 0, min_delta_us; 3817 3818 /* 3819 * All we want to guarantee is reasonable forward progress. No reason to 3820 * fine tune. Assuming every task on @donor_dsq runs their full slice, 3821 * consider offloading iff the total queued duration is over the 3822 * threshold. 3823 */ 3824 min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV; 3825 if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us)) 3826 return 0; 3827 3828 raw_spin_rq_lock_irq(rq); 3829 raw_spin_lock(&donor_dsq->lock); 3830 list_add(&cursor.node, &donor_dsq->list); 3831 resume: 3832 n = container_of(&cursor, struct task_struct, scx.dsq_list); 3833 n = nldsq_next_task(donor_dsq, n, false); 3834 3835 while ((p = n)) { 3836 struct rq *donee_rq; 3837 struct scx_dispatch_q *donee_dsq; 3838 int donee; 3839 3840 n = nldsq_next_task(donor_dsq, n, false); 3841 3842 if (donor_dsq->nr <= nr_donor_target) 3843 break; 3844 3845 if (cpumask_empty(donee_mask)) 3846 break; 3847 3848 donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr); 3849 if (donee >= nr_cpu_ids) 3850 continue; 3851 3852 donee_rq = cpu_rq(donee); 3853 donee_dsq = &donee_rq->scx.bypass_dsq; 3854 3855 /* 3856 * $p's rq is not locked but $p's DSQ lock protects its 3857 * scheduling properties making this test safe. 3858 */ 3859 if (!task_can_run_on_remote_rq(sch, p, donee_rq, false)) 3860 continue; 3861 3862 /* 3863 * Moving $p from one non-local DSQ to another. The source rq 3864 * and DSQ are already locked. Do an abbreviated dequeue and 3865 * then perform enqueue without unlocking $donor_dsq. 3866 * 3867 * We don't want to drop and reacquire the lock on each 3868 * iteration as @donor_dsq can be very long and potentially 3869 * highly contended. Donee DSQs are less likely to be contended. 3870 * The nested locking is safe as only this LB moves tasks 3871 * between bypass DSQs. 3872 */ 3873 dispatch_dequeue_locked(p, donor_dsq); 3874 dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED); 3875 3876 /* 3877 * $donee might have been idle and need to be woken up. No need 3878 * to be clever. Kick every CPU that receives tasks. 3879 */ 3880 cpumask_set_cpu(donee, resched_mask); 3881 3882 if (READ_ONCE(donee_dsq->nr) >= nr_donee_target) 3883 cpumask_clear_cpu(donee, donee_mask); 3884 3885 nr_balanced++; 3886 if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) { 3887 list_move_tail(&cursor.node, &n->scx.dsq_list.node); 3888 raw_spin_unlock(&donor_dsq->lock); 3889 raw_spin_rq_unlock_irq(rq); 3890 cpu_relax(); 3891 raw_spin_rq_lock_irq(rq); 3892 raw_spin_lock(&donor_dsq->lock); 3893 goto resume; 3894 } 3895 } 3896 3897 list_del_init(&cursor.node); 3898 raw_spin_unlock(&donor_dsq->lock); 3899 raw_spin_rq_unlock_irq(rq); 3900 3901 return nr_balanced; 3902 } 3903 3904 static void bypass_lb_node(struct scx_sched *sch, int node) 3905 { 3906 const struct cpumask *node_mask = cpumask_of_node(node); 3907 struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask; 3908 struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask; 3909 u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0; 3910 u32 nr_target, nr_donor_target; 3911 u32 before_min = U32_MAX, before_max = 0; 3912 u32 after_min = U32_MAX, after_max = 0; 3913 int cpu; 3914 3915 /* count the target tasks and CPUs */ 3916 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3917 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr); 3918 3919 nr_tasks += nr; 3920 nr_cpus++; 3921 3922 before_min = min(nr, before_min); 3923 before_max = max(nr, before_max); 3924 } 3925 3926 if (!nr_cpus) 3927 return; 3928 3929 /* 3930 * We don't want CPUs to have more than $nr_donor_target tasks and 3931 * balancing to fill donee CPUs upto $nr_target. Once targets are 3932 * calculated, find the donee CPUs. 3933 */ 3934 nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus); 3935 nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100); 3936 3937 cpumask_clear(donee_mask); 3938 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3939 if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target) 3940 cpumask_set_cpu(cpu, donee_mask); 3941 } 3942 3943 /* iterate !donee CPUs and see if they should be offloaded */ 3944 cpumask_clear(resched_mask); 3945 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3946 struct rq *rq = cpu_rq(cpu); 3947 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq; 3948 3949 if (cpumask_empty(donee_mask)) 3950 break; 3951 if (cpumask_test_cpu(cpu, donee_mask)) 3952 continue; 3953 if (READ_ONCE(donor_dsq->nr) <= nr_donor_target) 3954 continue; 3955 3956 nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask, 3957 nr_donor_target, nr_target); 3958 } 3959 3960 for_each_cpu(cpu, resched_mask) 3961 resched_cpu(cpu); 3962 3963 for_each_cpu_and(cpu, cpu_online_mask, node_mask) { 3964 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr); 3965 3966 after_min = min(nr, after_min); 3967 after_max = max(nr, after_max); 3968 3969 } 3970 3971 trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced, 3972 before_min, before_max, after_min, after_max); 3973 } 3974 3975 /* 3976 * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine 3977 * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some 3978 * bypass DSQs can be overloaded. If there are enough tasks to saturate other 3979 * lightly loaded CPUs, such imbalance can lead to very high execution latency 3980 * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such 3981 * outcomes, a simple load balancing mechanism is implemented by the following 3982 * timer which runs periodically while bypass mode is in effect. 3983 */ 3984 static void scx_bypass_lb_timerfn(struct timer_list *timer) 3985 { 3986 struct scx_sched *sch; 3987 int node; 3988 u32 intv_us; 3989 3990 sch = rcu_dereference_all(scx_root); 3991 if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth)) 3992 return; 3993 3994 for_each_node_with_cpus(node) 3995 bypass_lb_node(sch, node); 3996 3997 intv_us = READ_ONCE(scx_bypass_lb_intv_us); 3998 if (intv_us) 3999 mod_timer(timer, jiffies + usecs_to_jiffies(intv_us)); 4000 } 4001 4002 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn); 4003 4004 /** 4005 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress 4006 * @bypass: true for bypass, false for unbypass 4007 * 4008 * Bypassing guarantees that all runnable tasks make forward progress without 4009 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4010 * be held by tasks that the BPF scheduler is forgetting to run, which 4011 * unfortunately also excludes toggling the static branches. 4012 * 4013 * Let's work around by overriding a couple ops and modifying behaviors based on 4014 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4015 * to force global FIFO scheduling. 4016 * 4017 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4018 * 4019 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4020 * %SCX_OPS_ENQ_LAST is also ignored. 4021 * 4022 * - ops.dispatch() is ignored. 4023 * 4024 * - balance_one() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4025 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4026 * the tail of the queue with core_sched_at touched. 4027 * 4028 * - pick_next_task() suppresses zero slice warning. 4029 * 4030 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM 4031 * operations. 4032 * 4033 * - scx_prio_less() reverts to the default core_sched_at order. 4034 */ 4035 static void scx_bypass(bool bypass) 4036 { 4037 static DEFINE_RAW_SPINLOCK(bypass_lock); 4038 static unsigned long bypass_timestamp; 4039 struct scx_sched *sch; 4040 unsigned long flags; 4041 int cpu; 4042 4043 raw_spin_lock_irqsave(&bypass_lock, flags); 4044 sch = rcu_dereference_bh(scx_root); 4045 4046 if (bypass) { 4047 u32 intv_us; 4048 4049 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1); 4050 WARN_ON_ONCE(scx_bypass_depth <= 0); 4051 if (scx_bypass_depth != 1) 4052 goto unlock; 4053 WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC); 4054 bypass_timestamp = ktime_get_ns(); 4055 if (sch) 4056 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1); 4057 4058 intv_us = READ_ONCE(scx_bypass_lb_intv_us); 4059 if (intv_us && !timer_pending(&scx_bypass_lb_timer)) { 4060 scx_bypass_lb_timer.expires = 4061 jiffies + usecs_to_jiffies(intv_us); 4062 add_timer_global(&scx_bypass_lb_timer); 4063 } 4064 } else { 4065 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1); 4066 WARN_ON_ONCE(scx_bypass_depth < 0); 4067 if (scx_bypass_depth != 0) 4068 goto unlock; 4069 WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL); 4070 if (sch) 4071 scx_add_event(sch, SCX_EV_BYPASS_DURATION, 4072 ktime_get_ns() - bypass_timestamp); 4073 } 4074 4075 /* 4076 * No task property is changing. We just need to make sure all currently 4077 * queued tasks are re-queued according to the new scx_rq_bypassing() 4078 * state. As an optimization, walk each rq's runnable_list instead of 4079 * the scx_tasks list. 4080 * 4081 * This function can't trust the scheduler and thus can't use 4082 * cpus_read_lock(). Walk all possible CPUs instead of online. 4083 */ 4084 for_each_possible_cpu(cpu) { 4085 struct rq *rq = cpu_rq(cpu); 4086 struct task_struct *p, *n; 4087 4088 raw_spin_rq_lock(rq); 4089 4090 if (bypass) { 4091 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4092 rq->scx.flags |= SCX_RQ_BYPASSING; 4093 } else { 4094 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4095 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4096 } 4097 4098 /* 4099 * We need to guarantee that no tasks are on the BPF scheduler 4100 * while bypassing. Either we see enabled or the enable path 4101 * sees scx_rq_bypassing() before moving tasks to SCX. 4102 */ 4103 if (!scx_enabled()) { 4104 raw_spin_rq_unlock(rq); 4105 continue; 4106 } 4107 4108 /* 4109 * The use of list_for_each_entry_safe_reverse() is required 4110 * because each task is going to be removed from and added back 4111 * to the runnable_list during iteration. Because they're added 4112 * to the tail of the list, safe reverse iteration can still 4113 * visit all nodes. 4114 */ 4115 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4116 scx.runnable_node) { 4117 /* cycling deq/enq is enough, see the function comment */ 4118 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) { 4119 /* nothing */ ; 4120 } 4121 } 4122 4123 /* resched to restore ticks and idle state */ 4124 if (cpu_online(cpu) || cpu == smp_processor_id()) 4125 resched_curr(rq); 4126 4127 raw_spin_rq_unlock(rq); 4128 } 4129 4130 unlock: 4131 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4132 } 4133 4134 static void free_exit_info(struct scx_exit_info *ei) 4135 { 4136 kvfree(ei->dump); 4137 kfree(ei->msg); 4138 kfree(ei->bt); 4139 kfree(ei); 4140 } 4141 4142 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4143 { 4144 struct scx_exit_info *ei; 4145 4146 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4147 if (!ei) 4148 return NULL; 4149 4150 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4151 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4152 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL); 4153 4154 if (!ei->bt || !ei->msg || !ei->dump) { 4155 free_exit_info(ei); 4156 return NULL; 4157 } 4158 4159 return ei; 4160 } 4161 4162 static const char *scx_exit_reason(enum scx_exit_kind kind) 4163 { 4164 switch (kind) { 4165 case SCX_EXIT_UNREG: 4166 return "unregistered from user space"; 4167 case SCX_EXIT_UNREG_BPF: 4168 return "unregistered from BPF"; 4169 case SCX_EXIT_UNREG_KERN: 4170 return "unregistered from the main kernel"; 4171 case SCX_EXIT_SYSRQ: 4172 return "disabled by sysrq-S"; 4173 case SCX_EXIT_ERROR: 4174 return "runtime error"; 4175 case SCX_EXIT_ERROR_BPF: 4176 return "scx_bpf_error"; 4177 case SCX_EXIT_ERROR_STALL: 4178 return "runnable task stall"; 4179 default: 4180 return "<UNKNOWN>"; 4181 } 4182 } 4183 4184 static void free_kick_syncs(void) 4185 { 4186 int cpu; 4187 4188 for_each_possible_cpu(cpu) { 4189 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4190 struct scx_kick_syncs *to_free; 4191 4192 to_free = rcu_replace_pointer(*ksyncs, NULL, true); 4193 if (to_free) 4194 kvfree_rcu(to_free, rcu); 4195 } 4196 } 4197 4198 static void scx_disable_workfn(struct kthread_work *work) 4199 { 4200 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work); 4201 struct scx_exit_info *ei = sch->exit_info; 4202 struct scx_task_iter sti; 4203 struct task_struct *p; 4204 int kind, cpu; 4205 4206 kind = atomic_read(&sch->exit_kind); 4207 while (true) { 4208 if (kind == SCX_EXIT_DONE) /* already disabled? */ 4209 return; 4210 WARN_ON_ONCE(kind == SCX_EXIT_NONE); 4211 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE)) 4212 break; 4213 } 4214 ei->kind = kind; 4215 ei->reason = scx_exit_reason(ei->kind); 4216 4217 /* guarantee forward progress by bypassing scx_ops */ 4218 scx_bypass(true); 4219 WRITE_ONCE(scx_aborting, false); 4220 4221 switch (scx_set_enable_state(SCX_DISABLING)) { 4222 case SCX_DISABLING: 4223 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4224 break; 4225 case SCX_DISABLED: 4226 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4227 sch->exit_info->msg); 4228 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4229 goto done; 4230 default: 4231 break; 4232 } 4233 4234 /* 4235 * Here, every runnable task is guaranteed to make forward progress and 4236 * we can safely use blocking synchronization constructs. Actually 4237 * disable ops. 4238 */ 4239 mutex_lock(&scx_enable_mutex); 4240 4241 static_branch_disable(&__scx_switched_all); 4242 WRITE_ONCE(scx_switching_all, false); 4243 4244 /* 4245 * Shut down cgroup support before tasks so that the cgroup attach path 4246 * doesn't race against scx_exit_task(). 4247 */ 4248 scx_cgroup_lock(); 4249 scx_cgroup_exit(sch); 4250 scx_cgroup_unlock(); 4251 4252 /* 4253 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4254 * must be switched out and exited synchronously. 4255 */ 4256 percpu_down_write(&scx_fork_rwsem); 4257 4258 scx_init_task_enabled = false; 4259 4260 scx_task_iter_start(&sti); 4261 while ((p = scx_task_iter_next_locked(&sti))) { 4262 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 4263 const struct sched_class *old_class = p->sched_class; 4264 const struct sched_class *new_class = scx_setscheduler_class(p); 4265 4266 update_rq_clock(task_rq(p)); 4267 4268 if (old_class != new_class) 4269 queue_flags |= DEQUEUE_CLASS; 4270 4271 scoped_guard (sched_change, p, queue_flags) { 4272 p->sched_class = new_class; 4273 } 4274 4275 scx_exit_task(p); 4276 } 4277 scx_task_iter_stop(&sti); 4278 percpu_up_write(&scx_fork_rwsem); 4279 4280 /* 4281 * Invalidate all the rq clocks to prevent getting outdated 4282 * rq clocks from a previous scx scheduler. 4283 */ 4284 for_each_possible_cpu(cpu) { 4285 struct rq *rq = cpu_rq(cpu); 4286 scx_rq_clock_invalidate(rq); 4287 } 4288 4289 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4290 static_branch_disable(&__scx_enabled); 4291 bitmap_zero(sch->has_op, SCX_OPI_END); 4292 scx_idle_disable(); 4293 synchronize_rcu(); 4294 4295 if (ei->kind >= SCX_EXIT_ERROR) { 4296 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4297 sch->ops.name, ei->reason); 4298 4299 if (ei->msg[0] != '\0') 4300 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg); 4301 #ifdef CONFIG_STACKTRACE 4302 stack_trace_print(ei->bt, ei->bt_len, 2); 4303 #endif 4304 } else { 4305 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4306 sch->ops.name, ei->reason); 4307 } 4308 4309 if (sch->ops.exit) 4310 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei); 4311 4312 cancel_delayed_work_sync(&scx_watchdog_work); 4313 4314 /* 4315 * scx_root clearing must be inside cpus_read_lock(). See 4316 * handle_hotplug(). 4317 */ 4318 cpus_read_lock(); 4319 RCU_INIT_POINTER(scx_root, NULL); 4320 cpus_read_unlock(); 4321 4322 /* 4323 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs 4324 * could observe an object of the same name still in the hierarchy when 4325 * the next scheduler is loaded. 4326 */ 4327 kobject_del(&sch->kobj); 4328 4329 free_percpu(scx_dsp_ctx); 4330 scx_dsp_ctx = NULL; 4331 scx_dsp_max_batch = 0; 4332 free_kick_syncs(); 4333 4334 if (scx_bypassed_for_enable) { 4335 scx_bypassed_for_enable = false; 4336 scx_bypass(false); 4337 } 4338 4339 mutex_unlock(&scx_enable_mutex); 4340 4341 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING); 4342 done: 4343 scx_bypass(false); 4344 } 4345 4346 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind) 4347 { 4348 int none = SCX_EXIT_NONE; 4349 4350 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind)) 4351 return false; 4352 4353 /* 4354 * Some CPUs may be trapped in the dispatch paths. Set the aborting 4355 * flag to break potential live-lock scenarios, ensuring we can 4356 * successfully reach scx_bypass(). 4357 */ 4358 WRITE_ONCE(scx_aborting, true); 4359 return true; 4360 } 4361 4362 static void scx_disable(enum scx_exit_kind kind) 4363 { 4364 struct scx_sched *sch; 4365 4366 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4367 kind = SCX_EXIT_ERROR; 4368 4369 rcu_read_lock(); 4370 sch = rcu_dereference(scx_root); 4371 if (sch) { 4372 scx_claim_exit(sch, kind); 4373 kthread_queue_work(sch->helper, &sch->disable_work); 4374 } 4375 rcu_read_unlock(); 4376 } 4377 4378 static void dump_newline(struct seq_buf *s) 4379 { 4380 trace_sched_ext_dump(""); 4381 4382 /* @s may be zero sized and seq_buf triggers WARN if so */ 4383 if (s->size) 4384 seq_buf_putc(s, '\n'); 4385 } 4386 4387 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4388 { 4389 va_list args; 4390 4391 #ifdef CONFIG_TRACEPOINTS 4392 if (trace_sched_ext_dump_enabled()) { 4393 /* protected by scx_dump_state()::dump_lock */ 4394 static char line_buf[SCX_EXIT_MSG_LEN]; 4395 4396 va_start(args, fmt); 4397 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4398 va_end(args); 4399 4400 trace_sched_ext_dump(line_buf); 4401 } 4402 #endif 4403 /* @s may be zero sized and seq_buf triggers WARN if so */ 4404 if (s->size) { 4405 va_start(args, fmt); 4406 seq_buf_vprintf(s, fmt, args); 4407 va_end(args); 4408 4409 seq_buf_putc(s, '\n'); 4410 } 4411 } 4412 4413 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4414 const unsigned long *bt, unsigned int len) 4415 { 4416 unsigned int i; 4417 4418 for (i = 0; i < len; i++) 4419 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4420 } 4421 4422 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4423 { 4424 struct scx_dump_data *dd = &scx_dump_data; 4425 4426 lockdep_assert_irqs_disabled(); 4427 4428 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4429 dd->first = true; 4430 dd->cursor = 0; 4431 dd->s = s; 4432 dd->prefix = prefix; 4433 } 4434 4435 static void ops_dump_flush(void) 4436 { 4437 struct scx_dump_data *dd = &scx_dump_data; 4438 char *line = dd->buf.line; 4439 4440 if (!dd->cursor) 4441 return; 4442 4443 /* 4444 * There's something to flush and this is the first line. Insert a blank 4445 * line to distinguish ops dump. 4446 */ 4447 if (dd->first) { 4448 dump_newline(dd->s); 4449 dd->first = false; 4450 } 4451 4452 /* 4453 * There may be multiple lines in $line. Scan and emit each line 4454 * separately. 4455 */ 4456 while (true) { 4457 char *end = line; 4458 char c; 4459 4460 while (*end != '\n' && *end != '\0') 4461 end++; 4462 4463 /* 4464 * If $line overflowed, it may not have newline at the end. 4465 * Always emit with a newline. 4466 */ 4467 c = *end; 4468 *end = '\0'; 4469 dump_line(dd->s, "%s%s", dd->prefix, line); 4470 if (c == '\0') 4471 break; 4472 4473 /* move to the next line */ 4474 end++; 4475 if (*end == '\0') 4476 break; 4477 line = end; 4478 } 4479 4480 dd->cursor = 0; 4481 } 4482 4483 static void ops_dump_exit(void) 4484 { 4485 ops_dump_flush(); 4486 scx_dump_data.cpu = -1; 4487 } 4488 4489 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4490 struct task_struct *p, char marker) 4491 { 4492 static unsigned long bt[SCX_EXIT_BT_LEN]; 4493 struct scx_sched *sch = scx_root; 4494 char dsq_id_buf[19] = "(n/a)"; 4495 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4496 unsigned int bt_len = 0; 4497 4498 if (p->scx.dsq) 4499 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4500 (unsigned long long)p->scx.dsq->id); 4501 4502 dump_newline(s); 4503 dump_line(s, " %c%c %s[%d] %+ldms", 4504 marker, task_state_to_char(p), p->comm, p->pid, 4505 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4506 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4507 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4508 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4509 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4510 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4511 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4512 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4513 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4514 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr), 4515 p->migration_disabled); 4516 4517 if (SCX_HAS_OP(sch, dump_task)) { 4518 ops_dump_init(s, " "); 4519 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p); 4520 ops_dump_exit(); 4521 } 4522 4523 #ifdef CONFIG_STACKTRACE 4524 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4525 #endif 4526 if (bt_len) { 4527 dump_newline(s); 4528 dump_stack_trace(s, " ", bt, bt_len); 4529 } 4530 } 4531 4532 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 4533 { 4534 static DEFINE_SPINLOCK(dump_lock); 4535 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 4536 struct scx_sched *sch = scx_root; 4537 struct scx_dump_ctx dctx = { 4538 .kind = ei->kind, 4539 .exit_code = ei->exit_code, 4540 .reason = ei->reason, 4541 .at_ns = ktime_get_ns(), 4542 .at_jiffies = jiffies, 4543 }; 4544 struct seq_buf s; 4545 struct scx_event_stats events; 4546 unsigned long flags; 4547 char *buf; 4548 int cpu; 4549 4550 spin_lock_irqsave(&dump_lock, flags); 4551 4552 seq_buf_init(&s, ei->dump, dump_len); 4553 4554 if (ei->kind == SCX_EXIT_NONE) { 4555 dump_line(&s, "Debug dump triggered by %s", ei->reason); 4556 } else { 4557 dump_line(&s, "%s[%d] triggered exit kind %d:", 4558 current->comm, current->pid, ei->kind); 4559 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 4560 dump_newline(&s); 4561 dump_line(&s, "Backtrace:"); 4562 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 4563 } 4564 4565 if (SCX_HAS_OP(sch, dump)) { 4566 ops_dump_init(&s, ""); 4567 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx); 4568 ops_dump_exit(); 4569 } 4570 4571 dump_newline(&s); 4572 dump_line(&s, "CPU states"); 4573 dump_line(&s, "----------"); 4574 4575 for_each_possible_cpu(cpu) { 4576 struct rq *rq = cpu_rq(cpu); 4577 struct rq_flags rf; 4578 struct task_struct *p; 4579 struct seq_buf ns; 4580 size_t avail, used; 4581 bool idle; 4582 4583 rq_lock_irqsave(rq, &rf); 4584 4585 idle = list_empty(&rq->scx.runnable_list) && 4586 rq->curr->sched_class == &idle_sched_class; 4587 4588 if (idle && !SCX_HAS_OP(sch, dump_cpu)) 4589 goto next; 4590 4591 /* 4592 * We don't yet know whether ops.dump_cpu() will produce output 4593 * and we may want to skip the default CPU dump if it doesn't. 4594 * Use a nested seq_buf to generate the standard dump so that we 4595 * can decide whether to commit later. 4596 */ 4597 avail = seq_buf_get_buf(&s, &buf); 4598 seq_buf_init(&ns, buf, avail); 4599 4600 dump_newline(&ns); 4601 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu", 4602 cpu, rq->scx.nr_running, rq->scx.flags, 4603 rq->scx.cpu_released, rq->scx.ops_qseq, 4604 rq->scx.kick_sync); 4605 dump_line(&ns, " curr=%s[%d] class=%ps", 4606 rq->curr->comm, rq->curr->pid, 4607 rq->curr->sched_class); 4608 if (!cpumask_empty(rq->scx.cpus_to_kick)) 4609 dump_line(&ns, " cpus_to_kick : %*pb", 4610 cpumask_pr_args(rq->scx.cpus_to_kick)); 4611 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 4612 dump_line(&ns, " idle_to_kick : %*pb", 4613 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 4614 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 4615 dump_line(&ns, " cpus_to_preempt: %*pb", 4616 cpumask_pr_args(rq->scx.cpus_to_preempt)); 4617 if (!cpumask_empty(rq->scx.cpus_to_wait)) 4618 dump_line(&ns, " cpus_to_wait : %*pb", 4619 cpumask_pr_args(rq->scx.cpus_to_wait)); 4620 4621 used = seq_buf_used(&ns); 4622 if (SCX_HAS_OP(sch, dump_cpu)) { 4623 ops_dump_init(&ns, " "); 4624 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL, 4625 &dctx, cpu, idle); 4626 ops_dump_exit(); 4627 } 4628 4629 /* 4630 * If idle && nothing generated by ops.dump_cpu(), there's 4631 * nothing interesting. Skip. 4632 */ 4633 if (idle && used == seq_buf_used(&ns)) 4634 goto next; 4635 4636 /* 4637 * $s may already have overflowed when $ns was created. If so, 4638 * calling commit on it will trigger BUG. 4639 */ 4640 if (avail) { 4641 seq_buf_commit(&s, seq_buf_used(&ns)); 4642 if (seq_buf_has_overflowed(&ns)) 4643 seq_buf_set_overflow(&s); 4644 } 4645 4646 if (rq->curr->sched_class == &ext_sched_class) 4647 scx_dump_task(&s, &dctx, rq->curr, '*'); 4648 4649 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 4650 scx_dump_task(&s, &dctx, p, ' '); 4651 next: 4652 rq_unlock_irqrestore(rq, &rf); 4653 } 4654 4655 dump_newline(&s); 4656 dump_line(&s, "Event counters"); 4657 dump_line(&s, "--------------"); 4658 4659 scx_read_events(sch, &events); 4660 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 4661 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4662 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 4663 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 4664 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4665 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL); 4666 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 4667 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 4668 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 4669 4670 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 4671 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 4672 trunc_marker, sizeof(trunc_marker)); 4673 4674 spin_unlock_irqrestore(&dump_lock, flags); 4675 } 4676 4677 static void scx_error_irq_workfn(struct irq_work *irq_work) 4678 { 4679 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work); 4680 struct scx_exit_info *ei = sch->exit_info; 4681 4682 if (ei->kind >= SCX_EXIT_ERROR) 4683 scx_dump_state(ei, sch->ops.exit_dump_len); 4684 4685 kthread_queue_work(sch->helper, &sch->disable_work); 4686 } 4687 4688 static bool scx_vexit(struct scx_sched *sch, 4689 enum scx_exit_kind kind, s64 exit_code, 4690 const char *fmt, va_list args) 4691 { 4692 struct scx_exit_info *ei = sch->exit_info; 4693 4694 if (!scx_claim_exit(sch, kind)) 4695 return false; 4696 4697 ei->exit_code = exit_code; 4698 #ifdef CONFIG_STACKTRACE 4699 if (kind >= SCX_EXIT_ERROR) 4700 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 4701 #endif 4702 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 4703 4704 /* 4705 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 4706 * in scx_disable_workfn(). 4707 */ 4708 ei->kind = kind; 4709 ei->reason = scx_exit_reason(ei->kind); 4710 4711 irq_work_queue(&sch->error_irq_work); 4712 return true; 4713 } 4714 4715 static int alloc_kick_syncs(void) 4716 { 4717 int cpu; 4718 4719 /* 4720 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size 4721 * can exceed percpu allocator limits on large machines. 4722 */ 4723 for_each_possible_cpu(cpu) { 4724 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu); 4725 struct scx_kick_syncs *new_ksyncs; 4726 4727 WARN_ON_ONCE(rcu_access_pointer(*ksyncs)); 4728 4729 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids), 4730 GFP_KERNEL, cpu_to_node(cpu)); 4731 if (!new_ksyncs) { 4732 free_kick_syncs(); 4733 return -ENOMEM; 4734 } 4735 4736 rcu_assign_pointer(*ksyncs, new_ksyncs); 4737 } 4738 4739 return 0; 4740 } 4741 4742 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops) 4743 { 4744 struct scx_sched *sch; 4745 int node, ret; 4746 4747 sch = kzalloc(sizeof(*sch), GFP_KERNEL); 4748 if (!sch) 4749 return ERR_PTR(-ENOMEM); 4750 4751 sch->exit_info = alloc_exit_info(ops->exit_dump_len); 4752 if (!sch->exit_info) { 4753 ret = -ENOMEM; 4754 goto err_free_sch; 4755 } 4756 4757 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params); 4758 if (ret < 0) 4759 goto err_free_ei; 4760 4761 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]), 4762 GFP_KERNEL); 4763 if (!sch->global_dsqs) { 4764 ret = -ENOMEM; 4765 goto err_free_hash; 4766 } 4767 4768 for_each_node_state(node, N_POSSIBLE) { 4769 struct scx_dispatch_q *dsq; 4770 4771 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4772 if (!dsq) { 4773 ret = -ENOMEM; 4774 goto err_free_gdsqs; 4775 } 4776 4777 init_dsq(dsq, SCX_DSQ_GLOBAL); 4778 sch->global_dsqs[node] = dsq; 4779 } 4780 4781 sch->pcpu = alloc_percpu(struct scx_sched_pcpu); 4782 if (!sch->pcpu) { 4783 ret = -ENOMEM; 4784 goto err_free_gdsqs; 4785 } 4786 4787 sch->helper = kthread_run_worker(0, "sched_ext_helper"); 4788 if (IS_ERR(sch->helper)) { 4789 ret = PTR_ERR(sch->helper); 4790 goto err_free_pcpu; 4791 } 4792 4793 sched_set_fifo(sch->helper->task); 4794 4795 atomic_set(&sch->exit_kind, SCX_EXIT_NONE); 4796 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn); 4797 kthread_init_work(&sch->disable_work, scx_disable_workfn); 4798 sch->ops = *ops; 4799 ops->priv = sch; 4800 4801 sch->kobj.kset = scx_kset; 4802 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root"); 4803 if (ret < 0) 4804 goto err_stop_helper; 4805 4806 return sch; 4807 4808 err_stop_helper: 4809 kthread_destroy_worker(sch->helper); 4810 err_free_pcpu: 4811 free_percpu(sch->pcpu); 4812 err_free_gdsqs: 4813 for_each_node_state(node, N_POSSIBLE) 4814 kfree(sch->global_dsqs[node]); 4815 kfree(sch->global_dsqs); 4816 err_free_hash: 4817 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL); 4818 err_free_ei: 4819 free_exit_info(sch->exit_info); 4820 err_free_sch: 4821 kfree(sch); 4822 return ERR_PTR(ret); 4823 } 4824 4825 static int check_hotplug_seq(struct scx_sched *sch, 4826 const struct sched_ext_ops *ops) 4827 { 4828 unsigned long long global_hotplug_seq; 4829 4830 /* 4831 * If a hotplug event has occurred between when a scheduler was 4832 * initialized, and when we were able to attach, exit and notify user 4833 * space about it. 4834 */ 4835 if (ops->hotplug_seq) { 4836 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 4837 if (ops->hotplug_seq != global_hotplug_seq) { 4838 scx_exit(sch, SCX_EXIT_UNREG_KERN, 4839 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 4840 "expected hotplug seq %llu did not match actual %llu", 4841 ops->hotplug_seq, global_hotplug_seq); 4842 return -EBUSY; 4843 } 4844 } 4845 4846 return 0; 4847 } 4848 4849 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops) 4850 { 4851 /* 4852 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 4853 * ops.enqueue() callback isn't implemented. 4854 */ 4855 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 4856 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 4857 return -EINVAL; 4858 } 4859 4860 /* 4861 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle 4862 * selection policy to be enabled. 4863 */ 4864 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) && 4865 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) { 4866 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled"); 4867 return -EINVAL; 4868 } 4869 4870 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT) 4871 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n"); 4872 4873 if (ops->cpu_acquire || ops->cpu_release) 4874 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n"); 4875 4876 return 0; 4877 } 4878 4879 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link) 4880 { 4881 struct scx_sched *sch; 4882 struct scx_task_iter sti; 4883 struct task_struct *p; 4884 unsigned long timeout; 4885 int i, cpu, ret; 4886 4887 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 4888 cpu_possible_mask)) { 4889 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 4890 return -EINVAL; 4891 } 4892 4893 mutex_lock(&scx_enable_mutex); 4894 4895 if (scx_enable_state() != SCX_DISABLED) { 4896 ret = -EBUSY; 4897 goto err_unlock; 4898 } 4899 4900 ret = alloc_kick_syncs(); 4901 if (ret) 4902 goto err_unlock; 4903 4904 sch = scx_alloc_and_add_sched(ops); 4905 if (IS_ERR(sch)) { 4906 ret = PTR_ERR(sch); 4907 goto err_free_ksyncs; 4908 } 4909 4910 /* 4911 * Transition to ENABLING and clear exit info to arm the disable path. 4912 * Failure triggers full disabling from here on. 4913 */ 4914 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED); 4915 WARN_ON_ONCE(scx_root); 4916 if (WARN_ON_ONCE(READ_ONCE(scx_aborting))) 4917 WRITE_ONCE(scx_aborting, false); 4918 4919 atomic_long_set(&scx_nr_rejected, 0); 4920 4921 for_each_possible_cpu(cpu) 4922 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 4923 4924 /* 4925 * Keep CPUs stable during enable so that the BPF scheduler can track 4926 * online CPUs by watching ->on/offline_cpu() after ->init(). 4927 */ 4928 cpus_read_lock(); 4929 4930 /* 4931 * Make the scheduler instance visible. Must be inside cpus_read_lock(). 4932 * See handle_hotplug(). 4933 */ 4934 rcu_assign_pointer(scx_root, sch); 4935 4936 scx_idle_enable(ops); 4937 4938 if (sch->ops.init) { 4939 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL); 4940 if (ret) { 4941 ret = ops_sanitize_err(sch, "init", ret); 4942 cpus_read_unlock(); 4943 scx_error(sch, "ops.init() failed (%d)", ret); 4944 goto err_disable; 4945 } 4946 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED; 4947 } 4948 4949 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 4950 if (((void (**)(void))ops)[i]) 4951 set_bit(i, sch->has_op); 4952 4953 ret = check_hotplug_seq(sch, ops); 4954 if (ret) { 4955 cpus_read_unlock(); 4956 goto err_disable; 4957 } 4958 scx_idle_update_selcpu_topology(ops); 4959 4960 cpus_read_unlock(); 4961 4962 ret = validate_ops(sch, ops); 4963 if (ret) 4964 goto err_disable; 4965 4966 WARN_ON_ONCE(scx_dsp_ctx); 4967 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 4968 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 4969 scx_dsp_max_batch), 4970 __alignof__(struct scx_dsp_ctx)); 4971 if (!scx_dsp_ctx) { 4972 ret = -ENOMEM; 4973 goto err_disable; 4974 } 4975 4976 if (ops->timeout_ms) 4977 timeout = msecs_to_jiffies(ops->timeout_ms); 4978 else 4979 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 4980 4981 WRITE_ONCE(scx_watchdog_timeout, timeout); 4982 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 4983 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 4984 scx_watchdog_timeout / 2); 4985 4986 /* 4987 * Once __scx_enabled is set, %current can be switched to SCX anytime. 4988 * This can lead to stalls as some BPF schedulers (e.g. userspace 4989 * scheduling) may not function correctly before all tasks are switched. 4990 * Init in bypass mode to guarantee forward progress. 4991 */ 4992 scx_bypass(true); 4993 scx_bypassed_for_enable = true; 4994 4995 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 4996 if (((void (**)(void))ops)[i]) 4997 set_bit(i, sch->has_op); 4998 4999 if (sch->ops.cpu_acquire || sch->ops.cpu_release) 5000 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT; 5001 5002 /* 5003 * Lock out forks, cgroup on/offlining and moves before opening the 5004 * floodgate so that they don't wander into the operations prematurely. 5005 */ 5006 percpu_down_write(&scx_fork_rwsem); 5007 5008 WARN_ON_ONCE(scx_init_task_enabled); 5009 scx_init_task_enabled = true; 5010 5011 /* 5012 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5013 * preventing new tasks from being added. No need to exclude tasks 5014 * leaving as sched_ext_free() can handle both prepped and enabled 5015 * tasks. Prep all tasks first and then enable them with preemption 5016 * disabled. 5017 * 5018 * All cgroups should be initialized before scx_init_task() so that the 5019 * BPF scheduler can reliably track each task's cgroup membership from 5020 * scx_init_task(). Lock out cgroup on/offlining and task migrations 5021 * while tasks are being initialized so that scx_cgroup_can_attach() 5022 * never sees uninitialized tasks. 5023 */ 5024 scx_cgroup_lock(); 5025 ret = scx_cgroup_init(sch); 5026 if (ret) 5027 goto err_disable_unlock_all; 5028 5029 scx_task_iter_start(&sti); 5030 while ((p = scx_task_iter_next_locked(&sti))) { 5031 /* 5032 * @p may already be dead, have lost all its usages counts and 5033 * be waiting for RCU grace period before being freed. @p can't 5034 * be initialized for SCX in such cases and should be ignored. 5035 */ 5036 if (!tryget_task_struct(p)) 5037 continue; 5038 5039 scx_task_iter_unlock(&sti); 5040 5041 ret = scx_init_task(p, task_group(p), false); 5042 if (ret) { 5043 put_task_struct(p); 5044 scx_task_iter_stop(&sti); 5045 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]", 5046 ret, p->comm, p->pid); 5047 goto err_disable_unlock_all; 5048 } 5049 5050 scx_set_task_state(p, SCX_TASK_READY); 5051 5052 put_task_struct(p); 5053 } 5054 scx_task_iter_stop(&sti); 5055 scx_cgroup_unlock(); 5056 percpu_up_write(&scx_fork_rwsem); 5057 5058 /* 5059 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5060 * all eligible tasks. 5061 */ 5062 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5063 static_branch_enable(&__scx_enabled); 5064 5065 /* 5066 * We're fully committed and can't fail. The task READY -> ENABLED 5067 * transitions here are synchronized against sched_ext_free() through 5068 * scx_tasks_lock. 5069 */ 5070 percpu_down_write(&scx_fork_rwsem); 5071 scx_task_iter_start(&sti); 5072 while ((p = scx_task_iter_next_locked(&sti))) { 5073 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE; 5074 const struct sched_class *old_class = p->sched_class; 5075 const struct sched_class *new_class = scx_setscheduler_class(p); 5076 5077 if (scx_get_task_state(p) != SCX_TASK_READY) 5078 continue; 5079 5080 if (old_class != new_class) 5081 queue_flags |= DEQUEUE_CLASS; 5082 5083 scoped_guard (sched_change, p, queue_flags) { 5084 p->scx.slice = READ_ONCE(scx_slice_dfl); 5085 p->sched_class = new_class; 5086 } 5087 } 5088 scx_task_iter_stop(&sti); 5089 percpu_up_write(&scx_fork_rwsem); 5090 5091 scx_bypassed_for_enable = false; 5092 scx_bypass(false); 5093 5094 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) { 5095 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE); 5096 goto err_disable; 5097 } 5098 5099 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5100 static_branch_enable(&__scx_switched_all); 5101 5102 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5103 sch->ops.name, scx_switched_all() ? "" : " (partial)"); 5104 kobject_uevent(&sch->kobj, KOBJ_ADD); 5105 mutex_unlock(&scx_enable_mutex); 5106 5107 atomic_long_inc(&scx_enable_seq); 5108 5109 return 0; 5110 5111 err_free_ksyncs: 5112 free_kick_syncs(); 5113 err_unlock: 5114 mutex_unlock(&scx_enable_mutex); 5115 return ret; 5116 5117 err_disable_unlock_all: 5118 scx_cgroup_unlock(); 5119 percpu_up_write(&scx_fork_rwsem); 5120 /* we'll soon enter disable path, keep bypass on */ 5121 err_disable: 5122 mutex_unlock(&scx_enable_mutex); 5123 /* 5124 * Returning an error code here would not pass all the error information 5125 * to userspace. Record errno using scx_error() for cases scx_error() 5126 * wasn't already invoked and exit indicating success so that the error 5127 * is notified through ops.exit() with all the details. 5128 * 5129 * Flush scx_disable_work to ensure that error is reported before init 5130 * completion. sch's base reference will be put by bpf_scx_unreg(). 5131 */ 5132 scx_error(sch, "scx_enable() failed (%d)", ret); 5133 kthread_flush_work(&sch->disable_work); 5134 return 0; 5135 } 5136 5137 5138 /******************************************************************************** 5139 * bpf_struct_ops plumbing. 5140 */ 5141 #include <linux/bpf_verifier.h> 5142 #include <linux/bpf.h> 5143 #include <linux/btf.h> 5144 5145 static const struct btf_type *task_struct_type; 5146 5147 static bool bpf_scx_is_valid_access(int off, int size, 5148 enum bpf_access_type type, 5149 const struct bpf_prog *prog, 5150 struct bpf_insn_access_aux *info) 5151 { 5152 if (type != BPF_READ) 5153 return false; 5154 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5155 return false; 5156 if (off % size != 0) 5157 return false; 5158 5159 return btf_ctx_access(off, size, type, prog, info); 5160 } 5161 5162 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5163 const struct bpf_reg_state *reg, int off, 5164 int size) 5165 { 5166 const struct btf_type *t; 5167 5168 t = btf_type_by_id(reg->btf, reg->btf_id); 5169 if (t == task_struct_type) { 5170 if (off >= offsetof(struct task_struct, scx.slice) && 5171 off + size <= offsetofend(struct task_struct, scx.slice)) 5172 return SCALAR_VALUE; 5173 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5174 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5175 return SCALAR_VALUE; 5176 if (off >= offsetof(struct task_struct, scx.disallow) && 5177 off + size <= offsetofend(struct task_struct, scx.disallow)) 5178 return SCALAR_VALUE; 5179 } 5180 5181 return -EACCES; 5182 } 5183 5184 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5185 .get_func_proto = bpf_base_func_proto, 5186 .is_valid_access = bpf_scx_is_valid_access, 5187 .btf_struct_access = bpf_scx_btf_struct_access, 5188 }; 5189 5190 static int bpf_scx_init_member(const struct btf_type *t, 5191 const struct btf_member *member, 5192 void *kdata, const void *udata) 5193 { 5194 const struct sched_ext_ops *uops = udata; 5195 struct sched_ext_ops *ops = kdata; 5196 u32 moff = __btf_member_bit_offset(t, member) / 8; 5197 int ret; 5198 5199 switch (moff) { 5200 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5201 if (*(u32 *)(udata + moff) > INT_MAX) 5202 return -E2BIG; 5203 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5204 return 1; 5205 case offsetof(struct sched_ext_ops, flags): 5206 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5207 return -EINVAL; 5208 ops->flags = *(u64 *)(udata + moff); 5209 return 1; 5210 case offsetof(struct sched_ext_ops, name): 5211 ret = bpf_obj_name_cpy(ops->name, uops->name, 5212 sizeof(ops->name)); 5213 if (ret < 0) 5214 return ret; 5215 if (ret == 0) 5216 return -EINVAL; 5217 return 1; 5218 case offsetof(struct sched_ext_ops, timeout_ms): 5219 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5220 SCX_WATCHDOG_MAX_TIMEOUT) 5221 return -E2BIG; 5222 ops->timeout_ms = *(u32 *)(udata + moff); 5223 return 1; 5224 case offsetof(struct sched_ext_ops, exit_dump_len): 5225 ops->exit_dump_len = 5226 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5227 return 1; 5228 case offsetof(struct sched_ext_ops, hotplug_seq): 5229 ops->hotplug_seq = *(u64 *)(udata + moff); 5230 return 1; 5231 } 5232 5233 return 0; 5234 } 5235 5236 static int bpf_scx_check_member(const struct btf_type *t, 5237 const struct btf_member *member, 5238 const struct bpf_prog *prog) 5239 { 5240 u32 moff = __btf_member_bit_offset(t, member) / 8; 5241 5242 switch (moff) { 5243 case offsetof(struct sched_ext_ops, init_task): 5244 #ifdef CONFIG_EXT_GROUP_SCHED 5245 case offsetof(struct sched_ext_ops, cgroup_init): 5246 case offsetof(struct sched_ext_ops, cgroup_exit): 5247 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5248 #endif 5249 case offsetof(struct sched_ext_ops, cpu_online): 5250 case offsetof(struct sched_ext_ops, cpu_offline): 5251 case offsetof(struct sched_ext_ops, init): 5252 case offsetof(struct sched_ext_ops, exit): 5253 break; 5254 default: 5255 if (prog->sleepable) 5256 return -EINVAL; 5257 } 5258 5259 return 0; 5260 } 5261 5262 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5263 { 5264 return scx_enable(kdata, link); 5265 } 5266 5267 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5268 { 5269 struct sched_ext_ops *ops = kdata; 5270 struct scx_sched *sch = ops->priv; 5271 5272 scx_disable(SCX_EXIT_UNREG); 5273 kthread_flush_work(&sch->disable_work); 5274 kobject_put(&sch->kobj); 5275 } 5276 5277 static int bpf_scx_init(struct btf *btf) 5278 { 5279 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5280 5281 return 0; 5282 } 5283 5284 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5285 { 5286 /* 5287 * sched_ext does not support updating the actively-loaded BPF 5288 * scheduler, as registering a BPF scheduler can always fail if the 5289 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5290 * etc. Similarly, we can always race with unregistration happening 5291 * elsewhere, such as with sysrq. 5292 */ 5293 return -EOPNOTSUPP; 5294 } 5295 5296 static int bpf_scx_validate(void *kdata) 5297 { 5298 return 0; 5299 } 5300 5301 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5302 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5303 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5304 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5305 static void sched_ext_ops__tick(struct task_struct *p) {} 5306 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5307 static void sched_ext_ops__running(struct task_struct *p) {} 5308 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5309 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5310 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5311 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5312 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5313 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5314 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5315 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5316 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5317 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5318 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5319 static void sched_ext_ops__enable(struct task_struct *p) {} 5320 static void sched_ext_ops__disable(struct task_struct *p) {} 5321 #ifdef CONFIG_EXT_GROUP_SCHED 5322 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5323 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5324 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5325 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5326 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5327 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5328 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {} 5329 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {} 5330 #endif 5331 static void sched_ext_ops__cpu_online(s32 cpu) {} 5332 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5333 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5334 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5335 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5336 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5337 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5338 5339 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5340 .select_cpu = sched_ext_ops__select_cpu, 5341 .enqueue = sched_ext_ops__enqueue, 5342 .dequeue = sched_ext_ops__dequeue, 5343 .dispatch = sched_ext_ops__dispatch, 5344 .tick = sched_ext_ops__tick, 5345 .runnable = sched_ext_ops__runnable, 5346 .running = sched_ext_ops__running, 5347 .stopping = sched_ext_ops__stopping, 5348 .quiescent = sched_ext_ops__quiescent, 5349 .yield = sched_ext_ops__yield, 5350 .core_sched_before = sched_ext_ops__core_sched_before, 5351 .set_weight = sched_ext_ops__set_weight, 5352 .set_cpumask = sched_ext_ops__set_cpumask, 5353 .update_idle = sched_ext_ops__update_idle, 5354 .cpu_acquire = sched_ext_ops__cpu_acquire, 5355 .cpu_release = sched_ext_ops__cpu_release, 5356 .init_task = sched_ext_ops__init_task, 5357 .exit_task = sched_ext_ops__exit_task, 5358 .enable = sched_ext_ops__enable, 5359 .disable = sched_ext_ops__disable, 5360 #ifdef CONFIG_EXT_GROUP_SCHED 5361 .cgroup_init = sched_ext_ops__cgroup_init, 5362 .cgroup_exit = sched_ext_ops__cgroup_exit, 5363 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5364 .cgroup_move = sched_ext_ops__cgroup_move, 5365 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5366 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5367 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth, 5368 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle, 5369 #endif 5370 .cpu_online = sched_ext_ops__cpu_online, 5371 .cpu_offline = sched_ext_ops__cpu_offline, 5372 .init = sched_ext_ops__init, 5373 .exit = sched_ext_ops__exit, 5374 .dump = sched_ext_ops__dump, 5375 .dump_cpu = sched_ext_ops__dump_cpu, 5376 .dump_task = sched_ext_ops__dump_task, 5377 }; 5378 5379 static struct bpf_struct_ops bpf_sched_ext_ops = { 5380 .verifier_ops = &bpf_scx_verifier_ops, 5381 .reg = bpf_scx_reg, 5382 .unreg = bpf_scx_unreg, 5383 .check_member = bpf_scx_check_member, 5384 .init_member = bpf_scx_init_member, 5385 .init = bpf_scx_init, 5386 .update = bpf_scx_update, 5387 .validate = bpf_scx_validate, 5388 .name = "sched_ext_ops", 5389 .owner = THIS_MODULE, 5390 .cfi_stubs = &__bpf_ops_sched_ext_ops 5391 }; 5392 5393 5394 /******************************************************************************** 5395 * System integration and init. 5396 */ 5397 5398 static void sysrq_handle_sched_ext_reset(u8 key) 5399 { 5400 scx_disable(SCX_EXIT_SYSRQ); 5401 } 5402 5403 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5404 .handler = sysrq_handle_sched_ext_reset, 5405 .help_msg = "reset-sched-ext(S)", 5406 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5407 .enable_mask = SYSRQ_ENABLE_RTNICE, 5408 }; 5409 5410 static void sysrq_handle_sched_ext_dump(u8 key) 5411 { 5412 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5413 5414 if (scx_enabled()) 5415 scx_dump_state(&ei, 0); 5416 } 5417 5418 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5419 .handler = sysrq_handle_sched_ext_dump, 5420 .help_msg = "dump-sched-ext(D)", 5421 .action_msg = "Trigger sched_ext debug dump", 5422 .enable_mask = SYSRQ_ENABLE_RTNICE, 5423 }; 5424 5425 static bool can_skip_idle_kick(struct rq *rq) 5426 { 5427 lockdep_assert_rq_held(rq); 5428 5429 /* 5430 * We can skip idle kicking if @rq is going to go through at least one 5431 * full SCX scheduling cycle before going idle. Just checking whether 5432 * curr is not idle is insufficient because we could be racing 5433 * balance_one() trying to pull the next task from a remote rq, which 5434 * may fail, and @rq may become idle afterwards. 5435 * 5436 * The race window is small and we don't and can't guarantee that @rq is 5437 * only kicked while idle anyway. Skip only when sure. 5438 */ 5439 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5440 } 5441 5442 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs) 5443 { 5444 struct rq *rq = cpu_rq(cpu); 5445 struct scx_rq *this_scx = &this_rq->scx; 5446 const struct sched_class *cur_class; 5447 bool should_wait = false; 5448 unsigned long flags; 5449 5450 raw_spin_rq_lock_irqsave(rq, flags); 5451 cur_class = rq->curr->sched_class; 5452 5453 /* 5454 * During CPU hotplug, a CPU may depend on kicking itself to make 5455 * forward progress. Allow kicking self regardless of online state. If 5456 * @cpu is running a higher class task, we have no control over @cpu. 5457 * Skip kicking. 5458 */ 5459 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) && 5460 !sched_class_above(cur_class, &ext_sched_class)) { 5461 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5462 if (cur_class == &ext_sched_class) 5463 rq->curr->scx.slice = 0; 5464 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5465 } 5466 5467 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5468 if (cur_class == &ext_sched_class) { 5469 ksyncs[cpu] = rq->scx.kick_sync; 5470 should_wait = true; 5471 } else { 5472 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5473 } 5474 } 5475 5476 resched_curr(rq); 5477 } else { 5478 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5479 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5480 } 5481 5482 raw_spin_rq_unlock_irqrestore(rq, flags); 5483 5484 return should_wait; 5485 } 5486 5487 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5488 { 5489 struct rq *rq = cpu_rq(cpu); 5490 unsigned long flags; 5491 5492 raw_spin_rq_lock_irqsave(rq, flags); 5493 5494 if (!can_skip_idle_kick(rq) && 5495 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5496 resched_curr(rq); 5497 5498 raw_spin_rq_unlock_irqrestore(rq, flags); 5499 } 5500 5501 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5502 { 5503 struct rq *this_rq = this_rq(); 5504 struct scx_rq *this_scx = &this_rq->scx; 5505 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs); 5506 bool should_wait = false; 5507 unsigned long *ksyncs; 5508 s32 cpu; 5509 5510 if (unlikely(!ksyncs_pcpu)) { 5511 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs"); 5512 return; 5513 } 5514 5515 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs; 5516 5517 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5518 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs); 5519 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5520 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5521 } 5522 5523 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5524 kick_one_cpu_if_idle(cpu, this_rq); 5525 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5526 } 5527 5528 if (!should_wait) 5529 return; 5530 5531 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5532 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync; 5533 5534 /* 5535 * Busy-wait until the task running at the time of kicking is no 5536 * longer running. This can be used to implement e.g. core 5537 * scheduling. 5538 * 5539 * smp_cond_load_acquire() pairs with store_releases in 5540 * pick_task_scx() and put_prev_task_scx(). The former breaks 5541 * the wait if SCX's scheduling path is entered even if the same 5542 * task is picked subsequently. The latter is necessary to break 5543 * the wait when $cpu is taken by a higher sched class. 5544 */ 5545 if (cpu != cpu_of(this_rq)) 5546 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]); 5547 5548 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5549 } 5550 } 5551 5552 /** 5553 * print_scx_info - print out sched_ext scheduler state 5554 * @log_lvl: the log level to use when printing 5555 * @p: target task 5556 * 5557 * If a sched_ext scheduler is enabled, print the name and state of the 5558 * scheduler. If @p is on sched_ext, print further information about the task. 5559 * 5560 * This function can be safely called on any task as long as the task_struct 5561 * itself is accessible. While safe, this function isn't synchronized and may 5562 * print out mixups or garbages of limited length. 5563 */ 5564 void print_scx_info(const char *log_lvl, struct task_struct *p) 5565 { 5566 struct scx_sched *sch = scx_root; 5567 enum scx_enable_state state = scx_enable_state(); 5568 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5569 char runnable_at_buf[22] = "?"; 5570 struct sched_class *class; 5571 unsigned long runnable_at; 5572 5573 if (state == SCX_DISABLED) 5574 return; 5575 5576 /* 5577 * Carefully check if the task was running on sched_ext, and then 5578 * carefully copy the time it's been runnable, and its state. 5579 */ 5580 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5581 class != &ext_sched_class) { 5582 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name, 5583 scx_enable_state_str[state], all); 5584 return; 5585 } 5586 5587 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5588 sizeof(runnable_at))) 5589 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 5590 jiffies_delta_msecs(runnable_at, jiffies)); 5591 5592 /* print everything onto one line to conserve console space */ 5593 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 5594 log_lvl, sch->ops.name, scx_enable_state_str[state], all, 5595 runnable_at_buf); 5596 } 5597 5598 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 5599 { 5600 /* 5601 * SCX schedulers often have userspace components which are sometimes 5602 * involved in critial scheduling paths. PM operations involve freezing 5603 * userspace which can lead to scheduling misbehaviors including stalls. 5604 * Let's bypass while PM operations are in progress. 5605 */ 5606 switch (event) { 5607 case PM_HIBERNATION_PREPARE: 5608 case PM_SUSPEND_PREPARE: 5609 case PM_RESTORE_PREPARE: 5610 scx_bypass(true); 5611 break; 5612 case PM_POST_HIBERNATION: 5613 case PM_POST_SUSPEND: 5614 case PM_POST_RESTORE: 5615 scx_bypass(false); 5616 break; 5617 } 5618 5619 return NOTIFY_OK; 5620 } 5621 5622 static struct notifier_block scx_pm_notifier = { 5623 .notifier_call = scx_pm_handler, 5624 }; 5625 5626 void __init init_sched_ext_class(void) 5627 { 5628 s32 cpu, v; 5629 5630 /* 5631 * The following is to prevent the compiler from optimizing out the enum 5632 * definitions so that BPF scheduler implementations can use them 5633 * through the generated vmlinux.h. 5634 */ 5635 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 5636 SCX_TG_ONLINE); 5637 5638 scx_idle_init_masks(); 5639 5640 for_each_possible_cpu(cpu) { 5641 struct rq *rq = cpu_rq(cpu); 5642 int n = cpu_to_node(cpu); 5643 5644 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 5645 init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS); 5646 INIT_LIST_HEAD(&rq->scx.runnable_list); 5647 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 5648 5649 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 5650 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 5651 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 5652 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 5653 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn); 5654 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn); 5655 5656 if (cpu_online(cpu)) 5657 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 5658 } 5659 5660 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 5661 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 5662 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 5663 } 5664 5665 5666 /******************************************************************************** 5667 * Helpers that can be called from the BPF scheduler. 5668 */ 5669 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p, 5670 u64 enq_flags) 5671 { 5672 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 5673 return false; 5674 5675 lockdep_assert_irqs_disabled(); 5676 5677 if (unlikely(!p)) { 5678 scx_error(sch, "called with NULL task"); 5679 return false; 5680 } 5681 5682 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 5683 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags); 5684 return false; 5685 } 5686 5687 return true; 5688 } 5689 5690 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p, 5691 u64 dsq_id, u64 enq_flags) 5692 { 5693 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 5694 struct task_struct *ddsp_task; 5695 5696 ddsp_task = __this_cpu_read(direct_dispatch_task); 5697 if (ddsp_task) { 5698 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags); 5699 return; 5700 } 5701 5702 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 5703 scx_error(sch, "dispatch buffer overflow"); 5704 return; 5705 } 5706 5707 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 5708 .task = p, 5709 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 5710 .dsq_id = dsq_id, 5711 .enq_flags = enq_flags, 5712 }; 5713 } 5714 5715 __bpf_kfunc_start_defs(); 5716 5717 /** 5718 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 5719 * @p: task_struct to insert 5720 * @dsq_id: DSQ to insert into 5721 * @slice: duration @p can run for in nsecs, 0 to keep the current value 5722 * @enq_flags: SCX_ENQ_* 5723 * 5724 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 5725 * call this function spuriously. Can be called from ops.enqueue(), 5726 * ops.select_cpu(), and ops.dispatch(). 5727 * 5728 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 5729 * and @p must match the task being enqueued. 5730 * 5731 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 5732 * will be directly inserted into the corresponding dispatch queue after 5733 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 5734 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 5735 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 5736 * task is inserted. 5737 * 5738 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 5739 * and this function can be called upto ops.dispatch_max_batch times to insert 5740 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 5741 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the 5742 * counter. 5743 * 5744 * This function doesn't have any locking restrictions and may be called under 5745 * BPF locks (in the future when BPF introduces more flexible locking). 5746 * 5747 * @p is allowed to run for @slice. The scheduling path is triggered on slice 5748 * exhaustion. If zero, the current residual slice is maintained. If 5749 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 5750 * scx_bpf_kick_cpu() to trigger scheduling. 5751 * 5752 * Returns %true on successful insertion, %false on failure. On the root 5753 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5754 * to check the return value. 5755 */ 5756 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id, 5757 u64 slice, u64 enq_flags) 5758 { 5759 struct scx_sched *sch; 5760 5761 guard(rcu)(); 5762 sch = rcu_dereference(scx_root); 5763 if (unlikely(!sch)) 5764 return false; 5765 5766 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5767 return false; 5768 5769 if (slice) 5770 p->scx.slice = slice; 5771 else 5772 p->scx.slice = p->scx.slice ?: 1; 5773 5774 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags); 5775 5776 return true; 5777 } 5778 5779 /* 5780 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix. 5781 */ 5782 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, 5783 u64 slice, u64 enq_flags) 5784 { 5785 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags); 5786 } 5787 5788 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p, 5789 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) 5790 { 5791 if (!scx_dsq_insert_preamble(sch, p, enq_flags)) 5792 return false; 5793 5794 if (slice) 5795 p->scx.slice = slice; 5796 else 5797 p->scx.slice = p->scx.slice ?: 1; 5798 5799 p->scx.dsq_vtime = vtime; 5800 5801 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 5802 5803 return true; 5804 } 5805 5806 struct scx_bpf_dsq_insert_vtime_args { 5807 /* @p can't be packed together as KF_RCU is not transitive */ 5808 u64 dsq_id; 5809 u64 slice; 5810 u64 vtime; 5811 u64 enq_flags; 5812 }; 5813 5814 /** 5815 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion 5816 * @p: task_struct to insert 5817 * @args: struct containing the rest of the arguments 5818 * @args->dsq_id: DSQ to insert into 5819 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value 5820 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 5821 * @args->enq_flags: SCX_ENQ_* 5822 * 5823 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument 5824 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided 5825 * as an inline wrapper in common.bpf.h. 5826 * 5827 * Insert @p into the vtime priority queue of the DSQ identified by 5828 * @args->dsq_id. Tasks queued into the priority queue are ordered by 5829 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert(). 5830 * 5831 * @args->vtime ordering is according to time_before64() which considers 5832 * wrapping. A numerically larger vtime may indicate an earlier position in the 5833 * ordering and vice-versa. 5834 * 5835 * A DSQ can only be used as a FIFO or priority queue at any given time and this 5836 * function must not be called on a DSQ which already has one or more FIFO tasks 5837 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 5838 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 5839 * 5840 * Returns %true on successful insertion, %false on failure. On the root 5841 * scheduler, %false return triggers scheduler abort and the caller doesn't need 5842 * to check the return value. 5843 */ 5844 __bpf_kfunc bool 5845 __scx_bpf_dsq_insert_vtime(struct task_struct *p, 5846 struct scx_bpf_dsq_insert_vtime_args *args) 5847 { 5848 struct scx_sched *sch; 5849 5850 guard(rcu)(); 5851 5852 sch = rcu_dereference(scx_root); 5853 if (unlikely(!sch)) 5854 return false; 5855 5856 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice, 5857 args->vtime, args->enq_flags); 5858 } 5859 5860 /* 5861 * COMPAT: Will be removed in v6.23. 5862 */ 5863 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 5864 u64 slice, u64 vtime, u64 enq_flags) 5865 { 5866 struct scx_sched *sch; 5867 5868 guard(rcu)(); 5869 5870 sch = rcu_dereference(scx_root); 5871 if (unlikely(!sch)) 5872 return; 5873 5874 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags); 5875 } 5876 5877 __bpf_kfunc_end_defs(); 5878 5879 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 5880 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 5881 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU) 5882 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU) 5883 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 5884 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 5885 5886 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 5887 .owner = THIS_MODULE, 5888 .set = &scx_kfunc_ids_enqueue_dispatch, 5889 }; 5890 5891 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 5892 struct task_struct *p, u64 dsq_id, u64 enq_flags) 5893 { 5894 struct scx_sched *sch = scx_root; 5895 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 5896 struct rq *this_rq, *src_rq, *locked_rq; 5897 bool dispatched = false; 5898 bool in_balance; 5899 unsigned long flags; 5900 5901 if (!scx_kf_allowed_if_unlocked() && 5902 !scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5903 return false; 5904 5905 /* 5906 * If the BPF scheduler keeps calling this function repeatedly, it can 5907 * cause similar live-lock conditions as consume_dispatch_q(). 5908 */ 5909 if (unlikely(READ_ONCE(scx_aborting))) 5910 return false; 5911 5912 /* 5913 * Can be called from either ops.dispatch() locking this_rq() or any 5914 * context where no rq lock is held. If latter, lock @p's task_rq which 5915 * we'll likely need anyway. 5916 */ 5917 src_rq = task_rq(p); 5918 5919 local_irq_save(flags); 5920 this_rq = this_rq(); 5921 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 5922 5923 if (in_balance) { 5924 if (this_rq != src_rq) { 5925 raw_spin_rq_unlock(this_rq); 5926 raw_spin_rq_lock(src_rq); 5927 } 5928 } else { 5929 raw_spin_rq_lock(src_rq); 5930 } 5931 5932 locked_rq = src_rq; 5933 raw_spin_lock(&src_dsq->lock); 5934 5935 /* 5936 * Did someone else get to it? @p could have already left $src_dsq, got 5937 * re-enqueud, or be in the process of being consumed by someone else. 5938 */ 5939 if (unlikely(p->scx.dsq != src_dsq || 5940 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 5941 p->scx.holding_cpu >= 0) || 5942 WARN_ON_ONCE(src_rq != task_rq(p))) { 5943 raw_spin_unlock(&src_dsq->lock); 5944 goto out; 5945 } 5946 5947 /* @p is still on $src_dsq and stable, determine the destination */ 5948 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p); 5949 5950 /* 5951 * Apply vtime and slice updates before moving so that the new time is 5952 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 5953 * this is safe as we're locking it. 5954 */ 5955 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 5956 p->scx.dsq_vtime = kit->vtime; 5957 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 5958 p->scx.slice = kit->slice; 5959 5960 /* execute move */ 5961 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq); 5962 dispatched = true; 5963 out: 5964 if (in_balance) { 5965 if (this_rq != locked_rq) { 5966 raw_spin_rq_unlock(locked_rq); 5967 raw_spin_rq_lock(this_rq); 5968 } 5969 } else { 5970 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 5971 } 5972 5973 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 5974 __SCX_DSQ_ITER_HAS_VTIME); 5975 return dispatched; 5976 } 5977 5978 __bpf_kfunc_start_defs(); 5979 5980 /** 5981 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 5982 * 5983 * Can only be called from ops.dispatch(). 5984 */ 5985 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 5986 { 5987 struct scx_sched *sch; 5988 5989 guard(rcu)(); 5990 5991 sch = rcu_dereference(scx_root); 5992 if (unlikely(!sch)) 5993 return 0; 5994 5995 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 5996 return 0; 5997 5998 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 5999 } 6000 6001 /** 6002 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6003 * 6004 * Cancel the latest dispatch. Can be called multiple times to cancel further 6005 * dispatches. Can only be called from ops.dispatch(). 6006 */ 6007 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6008 { 6009 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6010 struct scx_sched *sch; 6011 6012 guard(rcu)(); 6013 6014 sch = rcu_dereference(scx_root); 6015 if (unlikely(!sch)) 6016 return; 6017 6018 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6019 return; 6020 6021 if (dspc->cursor > 0) 6022 dspc->cursor--; 6023 else 6024 scx_error(sch, "dispatch buffer underflow"); 6025 } 6026 6027 /** 6028 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6029 * @dsq_id: DSQ to move task from 6030 * 6031 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6032 * local DSQ for execution. Can only be called from ops.dispatch(). 6033 * 6034 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6035 * before trying to move from the specified DSQ. It may also grab rq locks and 6036 * thus can't be called under any BPF locks. 6037 * 6038 * Returns %true if a task has been moved, %false if there isn't any task to 6039 * move. 6040 */ 6041 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6042 { 6043 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6044 struct scx_dispatch_q *dsq; 6045 struct scx_sched *sch; 6046 6047 guard(rcu)(); 6048 6049 sch = rcu_dereference(scx_root); 6050 if (unlikely(!sch)) 6051 return false; 6052 6053 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH)) 6054 return false; 6055 6056 flush_dispatch_buf(sch, dspc->rq); 6057 6058 dsq = find_user_dsq(sch, dsq_id); 6059 if (unlikely(!dsq)) { 6060 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id); 6061 return false; 6062 } 6063 6064 if (consume_dispatch_q(sch, dspc->rq, dsq)) { 6065 /* 6066 * A successfully consumed task can be dequeued before it starts 6067 * running while the CPU is trying to migrate other dispatched 6068 * tasks. Bump nr_tasks to tell balance_one() to retry on empty 6069 * local DSQ. 6070 */ 6071 dspc->nr_tasks++; 6072 return true; 6073 } else { 6074 return false; 6075 } 6076 } 6077 6078 /** 6079 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6080 * @it__iter: DSQ iterator in progress 6081 * @slice: duration the moved task can run for in nsecs 6082 * 6083 * Override the slice of the next task that will be moved from @it__iter using 6084 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6085 * slice duration is kept. 6086 */ 6087 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6088 u64 slice) 6089 { 6090 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6091 6092 kit->slice = slice; 6093 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6094 } 6095 6096 /** 6097 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6098 * @it__iter: DSQ iterator in progress 6099 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6100 * 6101 * Override the vtime of the next task that will be moved from @it__iter using 6102 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6103 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6104 * override is ignored and cleared. 6105 */ 6106 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6107 u64 vtime) 6108 { 6109 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6110 6111 kit->vtime = vtime; 6112 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6113 } 6114 6115 /** 6116 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6117 * @it__iter: DSQ iterator in progress 6118 * @p: task to transfer 6119 * @dsq_id: DSQ to move @p to 6120 * @enq_flags: SCX_ENQ_* 6121 * 6122 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6123 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6124 * be the destination. 6125 * 6126 * For the transfer to be successful, @p must still be on the DSQ and have been 6127 * queued before the DSQ iteration started. This function doesn't care whether 6128 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6129 * been queued before the iteration started. 6130 * 6131 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6132 * 6133 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6134 * lock (e.g. BPF timers or SYSCALL programs). 6135 * 6136 * Returns %true if @p has been consumed, %false if @p had already been 6137 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local 6138 * DSQ. 6139 */ 6140 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6141 struct task_struct *p, u64 dsq_id, 6142 u64 enq_flags) 6143 { 6144 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6145 p, dsq_id, enq_flags); 6146 } 6147 6148 /** 6149 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6150 * @it__iter: DSQ iterator in progress 6151 * @p: task to transfer 6152 * @dsq_id: DSQ to move @p to 6153 * @enq_flags: SCX_ENQ_* 6154 * 6155 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6156 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6157 * user DSQ as only user DSQs support priority queue. 6158 * 6159 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6160 * and scx_bpf_dsq_move_set_vtime() to update. 6161 * 6162 * All other aspects are identical to scx_bpf_dsq_move(). See 6163 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6164 */ 6165 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6166 struct task_struct *p, u64 dsq_id, 6167 u64 enq_flags) 6168 { 6169 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6170 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6171 } 6172 6173 __bpf_kfunc_end_defs(); 6174 6175 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6176 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6177 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6178 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6179 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6180 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6181 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6182 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6183 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6184 6185 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6186 .owner = THIS_MODULE, 6187 .set = &scx_kfunc_ids_dispatch, 6188 }; 6189 6190 static u32 reenq_local(struct rq *rq) 6191 { 6192 LIST_HEAD(tasks); 6193 u32 nr_enqueued = 0; 6194 struct task_struct *p, *n; 6195 6196 lockdep_assert_rq_held(rq); 6197 6198 /* 6199 * The BPF scheduler may choose to dispatch tasks back to 6200 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6201 * first to avoid processing the same tasks repeatedly. 6202 */ 6203 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6204 scx.dsq_list.node) { 6205 /* 6206 * If @p is being migrated, @p's current CPU may not agree with 6207 * its allowed CPUs and the migration_cpu_stop is about to 6208 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6209 * 6210 * While racing sched property changes may also dequeue and 6211 * re-enqueue a migrating task while its current CPU and allowed 6212 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6213 * the current local DSQ for running tasks and thus are not 6214 * visible to the BPF scheduler. 6215 */ 6216 if (p->migration_pending) 6217 continue; 6218 6219 dispatch_dequeue(rq, p); 6220 list_add_tail(&p->scx.dsq_list.node, &tasks); 6221 } 6222 6223 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6224 list_del_init(&p->scx.dsq_list.node); 6225 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6226 nr_enqueued++; 6227 } 6228 6229 return nr_enqueued; 6230 } 6231 6232 __bpf_kfunc_start_defs(); 6233 6234 /** 6235 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6236 * 6237 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6238 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6239 * processed tasks. Can only be called from ops.cpu_release(). 6240 * 6241 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void 6242 * returning variant that can be called from anywhere. 6243 */ 6244 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6245 { 6246 struct scx_sched *sch; 6247 struct rq *rq; 6248 6249 guard(rcu)(); 6250 sch = rcu_dereference(scx_root); 6251 if (unlikely(!sch)) 6252 return 0; 6253 6254 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE)) 6255 return 0; 6256 6257 rq = cpu_rq(smp_processor_id()); 6258 lockdep_assert_rq_held(rq); 6259 6260 return reenq_local(rq); 6261 } 6262 6263 __bpf_kfunc_end_defs(); 6264 6265 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6266 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6267 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6268 6269 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6270 .owner = THIS_MODULE, 6271 .set = &scx_kfunc_ids_cpu_release, 6272 }; 6273 6274 __bpf_kfunc_start_defs(); 6275 6276 /** 6277 * scx_bpf_create_dsq - Create a custom DSQ 6278 * @dsq_id: DSQ to create 6279 * @node: NUMA node to allocate from 6280 * 6281 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6282 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6283 */ 6284 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6285 { 6286 struct scx_dispatch_q *dsq; 6287 struct scx_sched *sch; 6288 s32 ret; 6289 6290 if (unlikely(node >= (int)nr_node_ids || 6291 (node < 0 && node != NUMA_NO_NODE))) 6292 return -EINVAL; 6293 6294 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) 6295 return -EINVAL; 6296 6297 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 6298 if (!dsq) 6299 return -ENOMEM; 6300 6301 init_dsq(dsq, dsq_id); 6302 6303 rcu_read_lock(); 6304 6305 sch = rcu_dereference(scx_root); 6306 if (sch) 6307 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node, 6308 dsq_hash_params); 6309 else 6310 ret = -ENODEV; 6311 6312 rcu_read_unlock(); 6313 if (ret) 6314 kfree(dsq); 6315 return ret; 6316 } 6317 6318 __bpf_kfunc_end_defs(); 6319 6320 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6321 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6322 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU) 6323 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU) 6324 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6325 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6326 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6327 6328 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6329 .owner = THIS_MODULE, 6330 .set = &scx_kfunc_ids_unlocked, 6331 }; 6332 6333 __bpf_kfunc_start_defs(); 6334 6335 /** 6336 * scx_bpf_task_set_slice - Set task's time slice 6337 * @p: task of interest 6338 * @slice: time slice to set in nsecs 6339 * 6340 * Set @p's time slice to @slice. Returns %true on success, %false if the 6341 * calling scheduler doesn't have authority over @p. 6342 */ 6343 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice) 6344 { 6345 p->scx.slice = slice; 6346 return true; 6347 } 6348 6349 /** 6350 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering 6351 * @p: task of interest 6352 * @vtime: virtual time to set 6353 * 6354 * Set @p's virtual time to @vtime. Returns %true on success, %false if the 6355 * calling scheduler doesn't have authority over @p. 6356 */ 6357 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime) 6358 { 6359 p->scx.dsq_vtime = vtime; 6360 return true; 6361 } 6362 6363 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags) 6364 { 6365 struct rq *this_rq; 6366 unsigned long irq_flags; 6367 6368 if (!ops_cpu_valid(sch, cpu, NULL)) 6369 return; 6370 6371 local_irq_save(irq_flags); 6372 6373 this_rq = this_rq(); 6374 6375 /* 6376 * While bypassing for PM ops, IRQ handling may not be online which can 6377 * lead to irq_work_queue() malfunction such as infinite busy wait for 6378 * IRQ status update. Suppress kicking. 6379 */ 6380 if (scx_rq_bypassing(this_rq)) 6381 goto out; 6382 6383 /* 6384 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6385 * rq locks. We can probably be smarter and avoid bouncing if called 6386 * from ops which don't hold a rq lock. 6387 */ 6388 if (flags & SCX_KICK_IDLE) { 6389 struct rq *target_rq = cpu_rq(cpu); 6390 6391 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6392 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6393 6394 if (raw_spin_rq_trylock(target_rq)) { 6395 if (can_skip_idle_kick(target_rq)) { 6396 raw_spin_rq_unlock(target_rq); 6397 goto out; 6398 } 6399 raw_spin_rq_unlock(target_rq); 6400 } 6401 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6402 } else { 6403 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6404 6405 if (flags & SCX_KICK_PREEMPT) 6406 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6407 if (flags & SCX_KICK_WAIT) 6408 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6409 } 6410 6411 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6412 out: 6413 local_irq_restore(irq_flags); 6414 } 6415 6416 /** 6417 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6418 * @cpu: cpu to kick 6419 * @flags: %SCX_KICK_* flags 6420 * 6421 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6422 * trigger rescheduling on a busy CPU. This can be called from any online 6423 * scx_ops operation and the actual kicking is performed asynchronously through 6424 * an irq work. 6425 */ 6426 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6427 { 6428 struct scx_sched *sch; 6429 6430 guard(rcu)(); 6431 sch = rcu_dereference(scx_root); 6432 if (likely(sch)) 6433 scx_kick_cpu(sch, cpu, flags); 6434 } 6435 6436 /** 6437 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6438 * @dsq_id: id of the DSQ 6439 * 6440 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6441 * -%ENOENT is returned. 6442 */ 6443 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6444 { 6445 struct scx_sched *sch; 6446 struct scx_dispatch_q *dsq; 6447 s32 ret; 6448 6449 preempt_disable(); 6450 6451 sch = rcu_dereference_sched(scx_root); 6452 if (unlikely(!sch)) { 6453 ret = -ENODEV; 6454 goto out; 6455 } 6456 6457 if (dsq_id == SCX_DSQ_LOCAL) { 6458 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6459 goto out; 6460 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6461 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6462 6463 if (ops_cpu_valid(sch, cpu, NULL)) { 6464 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6465 goto out; 6466 } 6467 } else { 6468 dsq = find_user_dsq(sch, dsq_id); 6469 if (dsq) { 6470 ret = READ_ONCE(dsq->nr); 6471 goto out; 6472 } 6473 } 6474 ret = -ENOENT; 6475 out: 6476 preempt_enable(); 6477 return ret; 6478 } 6479 6480 /** 6481 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6482 * @dsq_id: DSQ to destroy 6483 * 6484 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6485 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6486 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6487 * which doesn't exist. Can be called from any online scx_ops operations. 6488 */ 6489 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6490 { 6491 struct scx_sched *sch; 6492 6493 rcu_read_lock(); 6494 sch = rcu_dereference(scx_root); 6495 if (sch) 6496 destroy_dsq(sch, dsq_id); 6497 rcu_read_unlock(); 6498 } 6499 6500 /** 6501 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6502 * @it: iterator to initialize 6503 * @dsq_id: DSQ to iterate 6504 * @flags: %SCX_DSQ_ITER_* 6505 * 6506 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6507 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6508 * tasks which are already queued when this function is invoked. 6509 */ 6510 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6511 u64 flags) 6512 { 6513 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6514 struct scx_sched *sch; 6515 6516 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6517 sizeof(struct bpf_iter_scx_dsq)); 6518 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6519 __alignof__(struct bpf_iter_scx_dsq)); 6520 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 6521 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 6522 6523 /* 6524 * next() and destroy() will be called regardless of the return value. 6525 * Always clear $kit->dsq. 6526 */ 6527 kit->dsq = NULL; 6528 6529 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held()); 6530 if (unlikely(!sch)) 6531 return -ENODEV; 6532 6533 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6534 return -EINVAL; 6535 6536 kit->dsq = find_user_dsq(sch, dsq_id); 6537 if (!kit->dsq) 6538 return -ENOENT; 6539 6540 kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags, 6541 READ_ONCE(kit->dsq->seq)); 6542 6543 return 0; 6544 } 6545 6546 /** 6547 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6548 * @it: iterator to progress 6549 * 6550 * Return the next task. See bpf_iter_scx_dsq_new(). 6551 */ 6552 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6553 { 6554 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6555 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6556 struct task_struct *p; 6557 unsigned long flags; 6558 6559 if (!kit->dsq) 6560 return NULL; 6561 6562 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6563 6564 if (list_empty(&kit->cursor.node)) 6565 p = NULL; 6566 else 6567 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6568 6569 /* 6570 * Only tasks which were queued before the iteration started are 6571 * visible. This bounds BPF iterations and guarantees that vtime never 6572 * jumps in the other direction while iterating. 6573 */ 6574 do { 6575 p = nldsq_next_task(kit->dsq, p, rev); 6576 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6577 6578 if (p) { 6579 if (rev) 6580 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6581 else 6582 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6583 } else { 6584 list_del_init(&kit->cursor.node); 6585 } 6586 6587 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6588 6589 return p; 6590 } 6591 6592 /** 6593 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6594 * @it: iterator to destroy 6595 * 6596 * Undo scx_iter_scx_dsq_new(). 6597 */ 6598 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6599 { 6600 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6601 6602 if (!kit->dsq) 6603 return; 6604 6605 if (!list_empty(&kit->cursor.node)) { 6606 unsigned long flags; 6607 6608 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6609 list_del_init(&kit->cursor.node); 6610 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6611 } 6612 kit->dsq = NULL; 6613 } 6614 6615 /** 6616 * scx_bpf_dsq_peek - Lockless peek at the first element. 6617 * @dsq_id: DSQ to examine. 6618 * 6619 * Read the first element in the DSQ. This is semantically equivalent to using 6620 * the DSQ iterator, but is lockfree. Of course, like any lockless operation, 6621 * this provides only a point-in-time snapshot, and the contents may change 6622 * by the time any subsequent locking operation reads the queue. 6623 * 6624 * Returns the pointer, or NULL indicates an empty queue OR internal error. 6625 */ 6626 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id) 6627 { 6628 struct scx_sched *sch; 6629 struct scx_dispatch_q *dsq; 6630 6631 sch = rcu_dereference(scx_root); 6632 if (unlikely(!sch)) 6633 return NULL; 6634 6635 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) { 6636 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id); 6637 return NULL; 6638 } 6639 6640 dsq = find_user_dsq(sch, dsq_id); 6641 if (unlikely(!dsq)) { 6642 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id); 6643 return NULL; 6644 } 6645 6646 return rcu_dereference(dsq->first_task); 6647 } 6648 6649 __bpf_kfunc_end_defs(); 6650 6651 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf, 6652 size_t line_size, char *fmt, unsigned long long *data, 6653 u32 data__sz) 6654 { 6655 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6656 s32 ret; 6657 6658 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6659 (data__sz && !data)) { 6660 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz); 6661 return -EINVAL; 6662 } 6663 6664 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6665 if (ret < 0) { 6666 scx_error(sch, "failed to read data fields (%d)", ret); 6667 return ret; 6668 } 6669 6670 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6671 &bprintf_data); 6672 if (ret < 0) { 6673 scx_error(sch, "format preparation failed (%d)", ret); 6674 return ret; 6675 } 6676 6677 ret = bstr_printf(line_buf, line_size, fmt, 6678 bprintf_data.bin_args); 6679 bpf_bprintf_cleanup(&bprintf_data); 6680 if (ret < 0) { 6681 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz); 6682 return ret; 6683 } 6684 6685 return ret; 6686 } 6687 6688 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf, 6689 char *fmt, unsigned long long *data, u32 data__sz) 6690 { 6691 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line), 6692 fmt, data, data__sz); 6693 } 6694 6695 __bpf_kfunc_start_defs(); 6696 6697 /** 6698 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6699 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6700 * @fmt: error message format string 6701 * @data: format string parameters packaged using ___bpf_fill() macro 6702 * @data__sz: @data len, must end in '__sz' for the verifier 6703 * 6704 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6705 * disabling. 6706 */ 6707 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6708 unsigned long long *data, u32 data__sz) 6709 { 6710 struct scx_sched *sch; 6711 unsigned long flags; 6712 6713 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6714 sch = rcu_dereference_bh(scx_root); 6715 if (likely(sch) && 6716 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6717 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line); 6718 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6719 } 6720 6721 /** 6722 * scx_bpf_error_bstr - Indicate fatal error 6723 * @fmt: error message format string 6724 * @data: format string parameters packaged using ___bpf_fill() macro 6725 * @data__sz: @data len, must end in '__sz' for the verifier 6726 * 6727 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6728 * disabling. 6729 */ 6730 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6731 u32 data__sz) 6732 { 6733 struct scx_sched *sch; 6734 unsigned long flags; 6735 6736 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6737 sch = rcu_dereference_bh(scx_root); 6738 if (likely(sch) && 6739 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6740 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line); 6741 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6742 } 6743 6744 /** 6745 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6746 * @fmt: format string 6747 * @data: format string parameters packaged using ___bpf_fill() macro 6748 * @data__sz: @data len, must end in '__sz' for the verifier 6749 * 6750 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6751 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6752 * 6753 * The extra dump may be multiple lines. A single line may be split over 6754 * multiple calls. The last line is automatically terminated. 6755 */ 6756 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6757 u32 data__sz) 6758 { 6759 struct scx_sched *sch; 6760 struct scx_dump_data *dd = &scx_dump_data; 6761 struct scx_bstr_buf *buf = &dd->buf; 6762 s32 ret; 6763 6764 guard(rcu)(); 6765 6766 sch = rcu_dereference(scx_root); 6767 if (unlikely(!sch)) 6768 return; 6769 6770 if (raw_smp_processor_id() != dd->cpu) { 6771 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends"); 6772 return; 6773 } 6774 6775 /* append the formatted string to the line buf */ 6776 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor, 6777 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 6778 if (ret < 0) { 6779 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 6780 dd->prefix, fmt, data, data__sz, ret); 6781 return; 6782 } 6783 6784 dd->cursor += ret; 6785 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 6786 6787 if (!dd->cursor) 6788 return; 6789 6790 /* 6791 * If the line buf overflowed or ends in a newline, flush it into the 6792 * dump. This is to allow the caller to generate a single line over 6793 * multiple calls. As ops_dump_flush() can also handle multiple lines in 6794 * the line buf, the only case which can lead to an unexpected 6795 * truncation is when the caller keeps generating newlines in the middle 6796 * instead of the end consecutively. Don't do that. 6797 */ 6798 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 6799 ops_dump_flush(); 6800 } 6801 6802 /** 6803 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6804 * 6805 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6806 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from 6807 * anywhere. 6808 */ 6809 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void) 6810 { 6811 struct rq *rq; 6812 6813 guard(preempt)(); 6814 6815 rq = this_rq(); 6816 local_set(&rq->scx.reenq_local_deferred, 1); 6817 schedule_deferred(rq); 6818 } 6819 6820 /** 6821 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 6822 * @cpu: CPU of interest 6823 * 6824 * Return the maximum relative capacity of @cpu in relation to the most 6825 * performant CPU in the system. The return value is in the range [1, 6826 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 6827 */ 6828 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 6829 { 6830 struct scx_sched *sch; 6831 6832 guard(rcu)(); 6833 6834 sch = rcu_dereference(scx_root); 6835 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6836 return arch_scale_cpu_capacity(cpu); 6837 else 6838 return SCX_CPUPERF_ONE; 6839 } 6840 6841 /** 6842 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 6843 * @cpu: CPU of interest 6844 * 6845 * Return the current relative performance of @cpu in relation to its maximum. 6846 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 6847 * 6848 * The current performance level of a CPU in relation to the maximum performance 6849 * available in the system can be calculated as follows: 6850 * 6851 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 6852 * 6853 * The result is in the range [1, %SCX_CPUPERF_ONE]. 6854 */ 6855 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 6856 { 6857 struct scx_sched *sch; 6858 6859 guard(rcu)(); 6860 6861 sch = rcu_dereference(scx_root); 6862 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL)) 6863 return arch_scale_freq_capacity(cpu); 6864 else 6865 return SCX_CPUPERF_ONE; 6866 } 6867 6868 /** 6869 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 6870 * @cpu: CPU of interest 6871 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 6872 * 6873 * Set the target performance level of @cpu to @perf. @perf is in linear 6874 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 6875 * schedutil cpufreq governor chooses the target frequency. 6876 * 6877 * The actual performance level chosen, CPU grouping, and the overhead and 6878 * latency of the operations are dependent on the hardware and cpufreq driver in 6879 * use. Consult hardware and cpufreq documentation for more information. The 6880 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 6881 */ 6882 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 6883 { 6884 struct scx_sched *sch; 6885 6886 guard(rcu)(); 6887 6888 sch = rcu_dereference(scx_root); 6889 if (unlikely(!sch)) 6890 return; 6891 6892 if (unlikely(perf > SCX_CPUPERF_ONE)) { 6893 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu); 6894 return; 6895 } 6896 6897 if (ops_cpu_valid(sch, cpu, NULL)) { 6898 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq(); 6899 struct rq_flags rf; 6900 6901 /* 6902 * When called with an rq lock held, restrict the operation 6903 * to the corresponding CPU to prevent ABBA deadlocks. 6904 */ 6905 if (locked_rq && rq != locked_rq) { 6906 scx_error(sch, "Invalid target CPU %d", cpu); 6907 return; 6908 } 6909 6910 /* 6911 * If no rq lock is held, allow to operate on any CPU by 6912 * acquiring the corresponding rq lock. 6913 */ 6914 if (!locked_rq) { 6915 rq_lock_irqsave(rq, &rf); 6916 update_rq_clock(rq); 6917 } 6918 6919 rq->scx.cpuperf_target = perf; 6920 cpufreq_update_util(rq, 0); 6921 6922 if (!locked_rq) 6923 rq_unlock_irqrestore(rq, &rf); 6924 } 6925 } 6926 6927 /** 6928 * scx_bpf_nr_node_ids - Return the number of possible node IDs 6929 * 6930 * All valid node IDs in the system are smaller than the returned value. 6931 */ 6932 __bpf_kfunc u32 scx_bpf_nr_node_ids(void) 6933 { 6934 return nr_node_ids; 6935 } 6936 6937 /** 6938 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 6939 * 6940 * All valid CPU IDs in the system are smaller than the returned value. 6941 */ 6942 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 6943 { 6944 return nr_cpu_ids; 6945 } 6946 6947 /** 6948 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 6949 */ 6950 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 6951 { 6952 return cpu_possible_mask; 6953 } 6954 6955 /** 6956 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 6957 */ 6958 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 6959 { 6960 return cpu_online_mask; 6961 } 6962 6963 /** 6964 * scx_bpf_put_cpumask - Release a possible/online cpumask 6965 * @cpumask: cpumask to release 6966 */ 6967 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 6968 { 6969 /* 6970 * Empty function body because we aren't actually acquiring or releasing 6971 * a reference to a global cpumask, which is read-only in the caller and 6972 * is never released. The acquire / release semantics here are just used 6973 * to make the cpumask is a trusted pointer in the caller. 6974 */ 6975 } 6976 6977 /** 6978 * scx_bpf_task_running - Is task currently running? 6979 * @p: task of interest 6980 */ 6981 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 6982 { 6983 return task_rq(p)->curr == p; 6984 } 6985 6986 /** 6987 * scx_bpf_task_cpu - CPU a task is currently associated with 6988 * @p: task of interest 6989 */ 6990 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 6991 { 6992 return task_cpu(p); 6993 } 6994 6995 /** 6996 * scx_bpf_cpu_rq - Fetch the rq of a CPU 6997 * @cpu: CPU of the rq 6998 */ 6999 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7000 { 7001 struct scx_sched *sch; 7002 7003 guard(rcu)(); 7004 7005 sch = rcu_dereference(scx_root); 7006 if (unlikely(!sch)) 7007 return NULL; 7008 7009 if (!ops_cpu_valid(sch, cpu, NULL)) 7010 return NULL; 7011 7012 if (!sch->warned_deprecated_rq) { 7013 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; " 7014 "use scx_bpf_locked_rq() when holding rq lock " 7015 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__); 7016 sch->warned_deprecated_rq = true; 7017 } 7018 7019 return cpu_rq(cpu); 7020 } 7021 7022 /** 7023 * scx_bpf_locked_rq - Return the rq currently locked by SCX 7024 * 7025 * Returns the rq if a rq lock is currently held by SCX. 7026 * Otherwise emits an error and returns NULL. 7027 */ 7028 __bpf_kfunc struct rq *scx_bpf_locked_rq(void) 7029 { 7030 struct scx_sched *sch; 7031 struct rq *rq; 7032 7033 guard(preempt)(); 7034 7035 sch = rcu_dereference_sched(scx_root); 7036 if (unlikely(!sch)) 7037 return NULL; 7038 7039 rq = scx_locked_rq(); 7040 if (!rq) { 7041 scx_error(sch, "accessing rq without holding rq lock"); 7042 return NULL; 7043 } 7044 7045 return rq; 7046 } 7047 7048 /** 7049 * scx_bpf_cpu_curr - Return remote CPU's curr task 7050 * @cpu: CPU of interest 7051 * 7052 * Callers must hold RCU read lock (KF_RCU). 7053 */ 7054 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu) 7055 { 7056 struct scx_sched *sch; 7057 7058 guard(rcu)(); 7059 7060 sch = rcu_dereference(scx_root); 7061 if (unlikely(!sch)) 7062 return NULL; 7063 7064 if (!ops_cpu_valid(sch, cpu, NULL)) 7065 return NULL; 7066 7067 return rcu_dereference(cpu_rq(cpu)->curr); 7068 } 7069 7070 /** 7071 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7072 * @p: task of interest 7073 * 7074 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7075 * from the scheduler's POV. SCX operations should use this function to 7076 * determine @p's current cgroup as, unlike following @p->cgroups, 7077 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7078 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7079 * operations. The restriction guarantees that @p's rq is locked by the caller. 7080 */ 7081 #ifdef CONFIG_CGROUP_SCHED 7082 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7083 { 7084 struct task_group *tg = p->sched_task_group; 7085 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7086 struct scx_sched *sch; 7087 7088 guard(rcu)(); 7089 7090 sch = rcu_dereference(scx_root); 7091 if (unlikely(!sch)) 7092 goto out; 7093 7094 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p)) 7095 goto out; 7096 7097 cgrp = tg_cgrp(tg); 7098 7099 out: 7100 cgroup_get(cgrp); 7101 return cgrp; 7102 } 7103 #endif 7104 7105 /** 7106 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7107 * clock for the current CPU. The clock returned is in nanoseconds. 7108 * 7109 * It provides the following properties: 7110 * 7111 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7112 * to account for execution time and track tasks' runtime properties. 7113 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7114 * eventually reads a hardware timestamp counter -- is neither performant nor 7115 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7116 * using the rq clock in the scheduler core whenever possible. 7117 * 7118 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7119 * scheduler use cases, the required clock resolution is lower than the most 7120 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7121 * uses the rq clock in the scheduler core whenever it is valid. It considers 7122 * that the rq clock is valid from the time the rq clock is updated 7123 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7124 * 7125 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7126 * guarantees the clock never goes backward when comparing them in the same 7127 * CPU. On the other hand, when comparing clocks in different CPUs, there 7128 * is no such guarantee -- the clock can go backward. It provides a 7129 * monotonically *non-decreasing* clock so that it would provide the same 7130 * clock values in two different scx_bpf_now() calls in the same CPU 7131 * during the same period of when the rq clock is valid. 7132 */ 7133 __bpf_kfunc u64 scx_bpf_now(void) 7134 { 7135 struct rq *rq; 7136 u64 clock; 7137 7138 preempt_disable(); 7139 7140 rq = this_rq(); 7141 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7142 /* 7143 * If the rq clock is valid, use the cached rq clock. 7144 * 7145 * Note that scx_bpf_now() is re-entrant between a process 7146 * context and an interrupt context (e.g., timer interrupt). 7147 * However, we don't need to consider the race between them 7148 * because such race is not observable from a caller. 7149 */ 7150 clock = READ_ONCE(rq->scx.clock); 7151 } else { 7152 /* 7153 * Otherwise, return a fresh rq clock. 7154 * 7155 * The rq clock is updated outside of the rq lock. 7156 * In this case, keep the updated rq clock invalid so the next 7157 * kfunc call outside the rq lock gets a fresh rq clock. 7158 */ 7159 clock = sched_clock_cpu(cpu_of(rq)); 7160 } 7161 7162 preempt_enable(); 7163 7164 return clock; 7165 } 7166 7167 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events) 7168 { 7169 struct scx_event_stats *e_cpu; 7170 int cpu; 7171 7172 /* Aggregate per-CPU event counters into @events. */ 7173 memset(events, 0, sizeof(*events)); 7174 for_each_possible_cpu(cpu) { 7175 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats; 7176 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 7177 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 7178 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 7179 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 7180 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 7181 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL); 7182 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION); 7183 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH); 7184 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE); 7185 } 7186 } 7187 7188 /* 7189 * scx_bpf_events - Get a system-wide event counter to 7190 * @events: output buffer from a BPF program 7191 * @events__sz: @events len, must end in '__sz'' for the verifier 7192 */ 7193 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 7194 size_t events__sz) 7195 { 7196 struct scx_sched *sch; 7197 struct scx_event_stats e_sys; 7198 7199 rcu_read_lock(); 7200 sch = rcu_dereference(scx_root); 7201 if (sch) 7202 scx_read_events(sch, &e_sys); 7203 else 7204 memset(&e_sys, 0, sizeof(e_sys)); 7205 rcu_read_unlock(); 7206 7207 /* 7208 * We cannot entirely trust a BPF-provided size since a BPF program 7209 * might be compiled against a different vmlinux.h, of which 7210 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 7211 * (an older vmlinux.h). Hence, we use the smaller size to avoid 7212 * memory corruption. 7213 */ 7214 events__sz = min(events__sz, sizeof(*events)); 7215 memcpy(events, &e_sys, events__sz); 7216 } 7217 7218 __bpf_kfunc_end_defs(); 7219 7220 BTF_KFUNCS_START(scx_kfunc_ids_any) 7221 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU); 7222 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU); 7223 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7224 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7225 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7226 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL) 7227 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7228 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7229 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7230 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7231 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7232 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7233 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2) 7234 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7235 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7236 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7237 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids) 7238 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7239 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7240 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7241 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7242 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7243 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7244 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7245 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL) 7246 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED) 7247 #ifdef CONFIG_CGROUP_SCHED 7248 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7249 #endif 7250 BTF_ID_FLAGS(func, scx_bpf_now) 7251 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 7252 BTF_KFUNCS_END(scx_kfunc_ids_any) 7253 7254 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7255 .owner = THIS_MODULE, 7256 .set = &scx_kfunc_ids_any, 7257 }; 7258 7259 static int __init scx_init(void) 7260 { 7261 int ret; 7262 7263 /* 7264 * kfunc registration can't be done from init_sched_ext_class() as 7265 * register_btf_kfunc_id_set() needs most of the system to be up. 7266 * 7267 * Some kfuncs are context-sensitive and can only be called from 7268 * specific SCX ops. They are grouped into BTF sets accordingly. 7269 * Unfortunately, BPF currently doesn't have a way of enforcing such 7270 * restrictions. Eventually, the verifier should be able to enforce 7271 * them. For now, register them the same and make each kfunc explicitly 7272 * check using scx_kf_allowed(). 7273 */ 7274 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7275 &scx_kfunc_set_enqueue_dispatch)) || 7276 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7277 &scx_kfunc_set_dispatch)) || 7278 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7279 &scx_kfunc_set_cpu_release)) || 7280 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7281 &scx_kfunc_set_unlocked)) || 7282 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7283 &scx_kfunc_set_unlocked)) || 7284 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7285 &scx_kfunc_set_any)) || 7286 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7287 &scx_kfunc_set_any)) || 7288 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7289 &scx_kfunc_set_any))) { 7290 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7291 return ret; 7292 } 7293 7294 ret = scx_idle_init(); 7295 if (ret) { 7296 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 7297 return ret; 7298 } 7299 7300 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7301 if (ret) { 7302 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7303 return ret; 7304 } 7305 7306 ret = register_pm_notifier(&scx_pm_notifier); 7307 if (ret) { 7308 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7309 return ret; 7310 } 7311 7312 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7313 if (!scx_kset) { 7314 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7315 return -ENOMEM; 7316 } 7317 7318 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7319 if (ret < 0) { 7320 pr_err("sched_ext: Failed to add global attributes\n"); 7321 return ret; 7322 } 7323 7324 if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) || 7325 !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) { 7326 pr_err("sched_ext: Failed to allocate cpumasks\n"); 7327 return -ENOMEM; 7328 } 7329 7330 return 0; 7331 } 7332 __initcall(scx_init); 7333