1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48
49 /*
50 * Maximum number of blkcg policies allowed to be registered concurrently.
51 * Defined here to simplify include dependency.
52 */
53 #define BLKCG_MAX_POLS 6
54
55 #define DISK_MAX_PARTS 256
56 #define DISK_NAME_LEN 32
57
58 #define PARTITION_META_INFO_VOLNAMELTH 64
59 /*
60 * Enough for the string representation of any kind of UUID plus NULL.
61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62 */
63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
64
65 struct partition_meta_info {
66 char uuid[PARTITION_META_INFO_UUIDLTH];
67 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69
70 /**
71 * DOC: genhd capability flags
72 *
73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74 * removable media. When set, the device remains present even when media is not
75 * inserted. Shall not be set for devices which are removed entirely when the
76 * media is removed.
77 *
78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79 * doesn't appear in sysfs, and can't be opened from userspace or using
80 * blkdev_get*. Used for the underlying components of multipath devices.
81 *
82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
83 * scan for partitions from add_disk, and users can't add partitions manually.
84 *
85 */
86 enum {
87 GENHD_FL_REMOVABLE = 1 << 0,
88 GENHD_FL_HIDDEN = 1 << 1,
89 GENHD_FL_NO_PART = 1 << 2,
90 };
91
92 enum {
93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
95 };
96
97 enum {
98 /* Poll even if events_poll_msecs is unset */
99 DISK_EVENT_FLAG_POLL = 1 << 0,
100 /* Forward events to udev */
101 DISK_EVENT_FLAG_UEVENT = 1 << 1,
102 /* Block event polling when open for exclusive write */
103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
104 };
105
106 struct disk_events;
107 struct badblocks;
108
109 enum blk_integrity_checksum {
110 BLK_INTEGRITY_CSUM_NONE = 0,
111 BLK_INTEGRITY_CSUM_IP = 1,
112 BLK_INTEGRITY_CSUM_CRC = 2,
113 BLK_INTEGRITY_CSUM_CRC64 = 3,
114 } __packed ;
115
116 struct blk_integrity {
117 unsigned char flags;
118 enum blk_integrity_checksum csum_type;
119 unsigned char tuple_size;
120 unsigned char pi_offset;
121 unsigned char interval_exp;
122 unsigned char tag_size;
123 };
124
125 typedef unsigned int __bitwise blk_mode_t;
126
127 /* open for reading */
128 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
141
142 struct gendisk {
143 /*
144 * major/first_minor/minors should not be set by any new driver, the
145 * block core will take care of allocating them automatically.
146 */
147 int major;
148 int first_minor;
149 int minors;
150
151 char disk_name[DISK_NAME_LEN]; /* name of major driver */
152
153 unsigned short events; /* supported events */
154 unsigned short event_flags; /* flags related to event processing */
155
156 struct xarray part_tbl;
157 struct block_device *part0;
158
159 const struct block_device_operations *fops;
160 struct request_queue *queue;
161 void *private_data;
162
163 struct bio_set bio_split;
164
165 int flags;
166 unsigned long state;
167 #define GD_NEED_PART_SCAN 0
168 #define GD_READ_ONLY 1
169 #define GD_DEAD 2
170 #define GD_NATIVE_CAPACITY 3
171 #define GD_ADDED 4
172 #define GD_SUPPRESS_PART_SCAN 5
173 #define GD_OWNS_QUEUE 6
174
175 struct mutex open_mutex; /* open/close mutex */
176 unsigned open_partitions; /* number of open partitions */
177
178 struct backing_dev_info *bdi;
179 struct kobject queue_kobj; /* the queue/ directory */
180 struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 struct list_head slave_bdevs;
183 #endif
184 struct timer_rand_state *random;
185 atomic_t sync_io; /* RAID */
186 struct disk_events *ev;
187
188 #ifdef CONFIG_BLK_DEV_ZONED
189 /*
190 * Zoned block device information. Reads of this information must be
191 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 * information is only allowed while no requests are being processed.
193 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 */
195 unsigned int nr_zones;
196 unsigned int zone_capacity;
197 unsigned int last_zone_capacity;
198 unsigned long __rcu *conv_zones_bitmap;
199 unsigned int zone_wplugs_hash_bits;
200 atomic_t nr_zone_wplugs;
201 spinlock_t zone_wplugs_lock;
202 struct mempool_s *zone_wplugs_pool;
203 struct hlist_head *zone_wplugs_hash;
204 struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206
207 #if IS_ENABLED(CONFIG_CDROM)
208 struct cdrom_device_info *cdi;
209 #endif
210 int node_id;
211 struct badblocks *bb;
212 struct lockdep_map lockdep_map;
213 u64 diskseq;
214 blk_mode_t open_mode;
215
216 /*
217 * Independent sector access ranges. This is always NULL for
218 * devices that do not have multiple independent access ranges.
219 */
220 struct blk_independent_access_ranges *ia_ranges;
221 };
222
223 /**
224 * disk_openers - returns how many openers are there for a disk
225 * @disk: disk to check
226 *
227 * This returns the number of openers for a disk. Note that this value is only
228 * stable if disk->open_mutex is held.
229 *
230 * Note: Due to a quirk in the block layer open code, each open partition is
231 * only counted once even if there are multiple openers.
232 */
disk_openers(struct gendisk * disk)233 static inline unsigned int disk_openers(struct gendisk *disk)
234 {
235 return atomic_read(&disk->part0->bd_openers);
236 }
237
238 /**
239 * disk_has_partscan - return %true if partition scanning is enabled on a disk
240 * @disk: disk to check
241 *
242 * Returns %true if partitions scanning is enabled for @disk, or %false if
243 * partition scanning is disabled either permanently or temporarily.
244 */
disk_has_partscan(struct gendisk * disk)245 static inline bool disk_has_partscan(struct gendisk *disk)
246 {
247 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
248 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
249 }
250
251 /*
252 * The gendisk is refcounted by the part0 block_device, and the bd_device
253 * therein is also used for device model presentation in sysfs.
254 */
255 #define dev_to_disk(device) \
256 (dev_to_bdev(device)->bd_disk)
257 #define disk_to_dev(disk) \
258 (&((disk)->part0->bd_device))
259
260 #if IS_REACHABLE(CONFIG_CDROM)
261 #define disk_to_cdi(disk) ((disk)->cdi)
262 #else
263 #define disk_to_cdi(disk) NULL
264 #endif
265
disk_devt(struct gendisk * disk)266 static inline dev_t disk_devt(struct gendisk *disk)
267 {
268 return MKDEV(disk->major, disk->first_minor);
269 }
270
271 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)272 static inline int blk_validate_block_size(unsigned long bsize)
273 {
274 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
275 return -EINVAL;
276
277 return 0;
278 }
279
blk_op_is_passthrough(blk_opf_t op)280 static inline bool blk_op_is_passthrough(blk_opf_t op)
281 {
282 op &= REQ_OP_MASK;
283 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
284 }
285
286 /* flags set by the driver in queue_limits.features */
287 typedef unsigned int __bitwise blk_features_t;
288
289 /* supports a volatile write cache */
290 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
291
292 /* supports passing on the FUA bit */
293 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
294
295 /* rotational device (hard drive or floppy) */
296 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
297
298 /* contributes to the random number pool */
299 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
300
301 /* do disk/partitions IO accounting */
302 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
303
304 /* don't modify data until writeback is done */
305 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
306
307 /* always completes in submit context */
308 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
309
310 /* supports REQ_NOWAIT */
311 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
312
313 /* supports DAX */
314 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
315
316 /* supports I/O polling */
317 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
318
319 /* is a zoned device */
320 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
321
322 /* supports PCI(e) p2p requests */
323 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
324
325 /* skip this queue in blk_mq_(un)quiesce_tagset */
326 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
327
328 /* bounce all highmem pages */
329 #define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14))
330
331 /* undocumented magic for bcache */
332 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
333 ((__force blk_features_t)(1u << 15))
334
335 /* atomic writes enabled */
336 #define BLK_FEAT_ATOMIC_WRITES \
337 ((__force blk_features_t)(1u << 16))
338
339 /*
340 * Flags automatically inherited when stacking limits.
341 */
342 #define BLK_FEAT_INHERIT_MASK \
343 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
344 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
345 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
346
347 /* internal flags in queue_limits.flags */
348 typedef unsigned int __bitwise blk_flags_t;
349
350 /* do not send FLUSH/FUA commands despite advertising a write cache */
351 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
352
353 /* I/O topology is misaligned */
354 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
355
356 /* passthrough command IO accounting */
357 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2))
358
359 struct queue_limits {
360 blk_features_t features;
361 blk_flags_t flags;
362 unsigned long seg_boundary_mask;
363 unsigned long virt_boundary_mask;
364
365 unsigned int max_hw_sectors;
366 unsigned int max_dev_sectors;
367 unsigned int chunk_sectors;
368 unsigned int max_sectors;
369 unsigned int max_user_sectors;
370 unsigned int max_segment_size;
371 unsigned int min_segment_size;
372 unsigned int physical_block_size;
373 unsigned int logical_block_size;
374 unsigned int alignment_offset;
375 unsigned int io_min;
376 unsigned int io_opt;
377 unsigned int max_discard_sectors;
378 unsigned int max_hw_discard_sectors;
379 unsigned int max_user_discard_sectors;
380 unsigned int max_secure_erase_sectors;
381 unsigned int max_write_zeroes_sectors;
382 unsigned int max_hw_zone_append_sectors;
383 unsigned int max_zone_append_sectors;
384 unsigned int discard_granularity;
385 unsigned int discard_alignment;
386 unsigned int zone_write_granularity;
387
388 /* atomic write limits */
389 unsigned int atomic_write_hw_max;
390 unsigned int atomic_write_max_sectors;
391 unsigned int atomic_write_hw_boundary;
392 unsigned int atomic_write_boundary_sectors;
393 unsigned int atomic_write_hw_unit_min;
394 unsigned int atomic_write_unit_min;
395 unsigned int atomic_write_hw_unit_max;
396 unsigned int atomic_write_unit_max;
397
398 unsigned short max_segments;
399 unsigned short max_integrity_segments;
400 unsigned short max_discard_segments;
401
402 unsigned int max_open_zones;
403 unsigned int max_active_zones;
404
405 /*
406 * Drivers that set dma_alignment to less than 511 must be prepared to
407 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
408 * due to possible offsets.
409 */
410 unsigned int dma_alignment;
411 unsigned int dma_pad_mask;
412
413 struct blk_integrity integrity;
414 };
415
416 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
417 void *data);
418
419 #define BLK_ALL_ZONES ((unsigned int)-1)
420 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
421 unsigned int nr_zones, report_zones_cb cb, void *data);
422 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
423 sector_t sectors, sector_t nr_sectors);
424 int blk_revalidate_disk_zones(struct gendisk *disk);
425
426 /*
427 * Independent access ranges: struct blk_independent_access_range describes
428 * a range of contiguous sectors that can be accessed using device command
429 * execution resources that are independent from the resources used for
430 * other access ranges. This is typically found with single-LUN multi-actuator
431 * HDDs where each access range is served by a different set of heads.
432 * The set of independent ranges supported by the device is defined using
433 * struct blk_independent_access_ranges. The independent ranges must not overlap
434 * and must include all sectors within the disk capacity (no sector holes
435 * allowed).
436 * For a device with multiple ranges, requests targeting sectors in different
437 * ranges can be executed in parallel. A request can straddle an access range
438 * boundary.
439 */
440 struct blk_independent_access_range {
441 struct kobject kobj;
442 sector_t sector;
443 sector_t nr_sectors;
444 };
445
446 struct blk_independent_access_ranges {
447 struct kobject kobj;
448 bool sysfs_registered;
449 unsigned int nr_ia_ranges;
450 struct blk_independent_access_range ia_range[];
451 };
452
453 struct request_queue {
454 /*
455 * The queue owner gets to use this for whatever they like.
456 * ll_rw_blk doesn't touch it.
457 */
458 void *queuedata;
459
460 struct elevator_queue *elevator;
461
462 const struct blk_mq_ops *mq_ops;
463
464 /* sw queues */
465 struct blk_mq_ctx __percpu *queue_ctx;
466
467 /*
468 * various queue flags, see QUEUE_* below
469 */
470 unsigned long queue_flags;
471
472 unsigned int rq_timeout;
473
474 unsigned int queue_depth;
475
476 refcount_t refs;
477
478 /* hw dispatch queues */
479 unsigned int nr_hw_queues;
480 struct xarray hctx_table;
481
482 struct percpu_ref q_usage_counter;
483 struct lock_class_key io_lock_cls_key;
484 struct lockdep_map io_lockdep_map;
485
486 struct lock_class_key q_lock_cls_key;
487 struct lockdep_map q_lockdep_map;
488
489 struct request *last_merge;
490
491 spinlock_t queue_lock;
492
493 int quiesce_depth;
494
495 struct gendisk *disk;
496
497 /*
498 * mq queue kobject
499 */
500 struct kobject *mq_kobj;
501
502 struct queue_limits limits;
503
504 #ifdef CONFIG_PM
505 struct device *dev;
506 enum rpm_status rpm_status;
507 #endif
508
509 /*
510 * Number of contexts that have called blk_set_pm_only(). If this
511 * counter is above zero then only RQF_PM requests are processed.
512 */
513 atomic_t pm_only;
514
515 struct blk_queue_stats *stats;
516 struct rq_qos *rq_qos;
517 struct mutex rq_qos_mutex;
518
519 /*
520 * ida allocated id for this queue. Used to index queues from
521 * ioctx.
522 */
523 int id;
524
525 /*
526 * queue settings
527 */
528 unsigned long nr_requests; /* Max # of requests */
529
530 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
531 struct blk_crypto_profile *crypto_profile;
532 struct kobject *crypto_kobject;
533 #endif
534
535 struct timer_list timeout;
536 struct work_struct timeout_work;
537
538 atomic_t nr_active_requests_shared_tags;
539
540 struct blk_mq_tags *sched_shared_tags;
541
542 struct list_head icq_list;
543 #ifdef CONFIG_BLK_CGROUP
544 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
545 struct blkcg_gq *root_blkg;
546 struct list_head blkg_list;
547 struct mutex blkcg_mutex;
548 #endif
549
550 int node;
551
552 spinlock_t requeue_lock;
553 struct list_head requeue_list;
554 struct delayed_work requeue_work;
555
556 #ifdef CONFIG_BLK_DEV_IO_TRACE
557 struct blk_trace __rcu *blk_trace;
558 #endif
559 /*
560 * for flush operations
561 */
562 struct blk_flush_queue *fq;
563 struct list_head flush_list;
564
565 struct mutex sysfs_lock;
566 struct mutex limits_lock;
567
568 /*
569 * for reusing dead hctx instance in case of updating
570 * nr_hw_queues
571 */
572 struct list_head unused_hctx_list;
573 spinlock_t unused_hctx_lock;
574
575 int mq_freeze_depth;
576
577 #ifdef CONFIG_BLK_DEV_THROTTLING
578 /* Throttle data */
579 struct throtl_data *td;
580 #endif
581 struct rcu_head rcu_head;
582 #ifdef CONFIG_LOCKDEP
583 struct task_struct *mq_freeze_owner;
584 int mq_freeze_owner_depth;
585 /*
586 * Records disk & queue state in current context, used in unfreeze
587 * queue
588 */
589 bool mq_freeze_disk_dead;
590 bool mq_freeze_queue_dying;
591 #endif
592 wait_queue_head_t mq_freeze_wq;
593 /*
594 * Protect concurrent access to q_usage_counter by
595 * percpu_ref_kill() and percpu_ref_reinit().
596 */
597 struct mutex mq_freeze_lock;
598
599 struct blk_mq_tag_set *tag_set;
600 struct list_head tag_set_list;
601
602 struct dentry *debugfs_dir;
603 struct dentry *sched_debugfs_dir;
604 struct dentry *rqos_debugfs_dir;
605 /*
606 * Serializes all debugfs metadata operations using the above dentries.
607 */
608 struct mutex debugfs_mutex;
609 };
610
611 /* Keep blk_queue_flag_name[] in sync with the definitions below */
612 enum {
613 QUEUE_FLAG_DYING, /* queue being torn down */
614 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
615 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
616 QUEUE_FLAG_FAIL_IO, /* fake timeout */
617 QUEUE_FLAG_NOXMERGES, /* No extended merges */
618 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
619 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
620 QUEUE_FLAG_STATS, /* track IO start and completion times */
621 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
622 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
623 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
624 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
625 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
626 QUEUE_FLAG_MAX
627 };
628
629 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
630
631 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
632 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
633
634 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
635 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
636 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
637 #define blk_queue_noxmerges(q) \
638 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
639 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
640 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
641 #define blk_queue_passthrough_stat(q) \
642 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
643 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
644 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
645 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
646 #define blk_queue_rq_alloc_time(q) \
647 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
648 #else
649 #define blk_queue_rq_alloc_time(q) false
650 #endif
651
652 #define blk_noretry_request(rq) \
653 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
654 REQ_FAILFAST_DRIVER))
655 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
656 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
657 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
658 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
659 #define blk_queue_skip_tagset_quiesce(q) \
660 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
661
662 extern void blk_set_pm_only(struct request_queue *q);
663 extern void blk_clear_pm_only(struct request_queue *q);
664
665 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
666
667 #define dma_map_bvec(dev, bv, dir, attrs) \
668 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
669 (dir), (attrs))
670
queue_is_mq(struct request_queue * q)671 static inline bool queue_is_mq(struct request_queue *q)
672 {
673 return q->mq_ops;
674 }
675
676 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)677 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
678 {
679 return q->rpm_status;
680 }
681 #else
queue_rpm_status(struct request_queue * q)682 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
683 {
684 return RPM_ACTIVE;
685 }
686 #endif
687
blk_queue_is_zoned(struct request_queue * q)688 static inline bool blk_queue_is_zoned(struct request_queue *q)
689 {
690 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
691 (q->limits.features & BLK_FEAT_ZONED);
692 }
693
694 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)695 static inline unsigned int disk_nr_zones(struct gendisk *disk)
696 {
697 return disk->nr_zones;
698 }
699 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
700 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)701 static inline unsigned int disk_nr_zones(struct gendisk *disk)
702 {
703 return 0;
704 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)705 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
706 {
707 return false;
708 }
709 #endif /* CONFIG_BLK_DEV_ZONED */
710
disk_zone_no(struct gendisk * disk,sector_t sector)711 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
712 {
713 if (!blk_queue_is_zoned(disk->queue))
714 return 0;
715 return sector >> ilog2(disk->queue->limits.chunk_sectors);
716 }
717
bdev_nr_zones(struct block_device * bdev)718 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
719 {
720 return disk_nr_zones(bdev->bd_disk);
721 }
722
bdev_max_open_zones(struct block_device * bdev)723 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
724 {
725 return bdev->bd_disk->queue->limits.max_open_zones;
726 }
727
bdev_max_active_zones(struct block_device * bdev)728 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
729 {
730 return bdev->bd_disk->queue->limits.max_active_zones;
731 }
732
blk_queue_depth(struct request_queue * q)733 static inline unsigned int blk_queue_depth(struct request_queue *q)
734 {
735 if (q->queue_depth)
736 return q->queue_depth;
737
738 return q->nr_requests;
739 }
740
741 /*
742 * default timeout for SG_IO if none specified
743 */
744 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
745 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
746
747 /* This should not be used directly - use rq_for_each_segment */
748 #define for_each_bio(_bio) \
749 for (; _bio; _bio = _bio->bi_next)
750
751 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
752 const struct attribute_group **groups,
753 struct fwnode_handle *fwnode);
754 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
755 const struct attribute_group **groups);
add_disk(struct gendisk * disk)756 static inline int __must_check add_disk(struct gendisk *disk)
757 {
758 return device_add_disk(NULL, disk, NULL);
759 }
760 void del_gendisk(struct gendisk *gp);
761 void invalidate_disk(struct gendisk *disk);
762 void set_disk_ro(struct gendisk *disk, bool read_only);
763 void disk_uevent(struct gendisk *disk, enum kobject_action action);
764
bdev_partno(const struct block_device * bdev)765 static inline u8 bdev_partno(const struct block_device *bdev)
766 {
767 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
768 }
769
bdev_test_flag(const struct block_device * bdev,unsigned flag)770 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
771 {
772 return atomic_read(&bdev->__bd_flags) & flag;
773 }
774
bdev_set_flag(struct block_device * bdev,unsigned flag)775 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
776 {
777 atomic_or(flag, &bdev->__bd_flags);
778 }
779
bdev_clear_flag(struct block_device * bdev,unsigned flag)780 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
781 {
782 atomic_andnot(flag, &bdev->__bd_flags);
783 }
784
get_disk_ro(struct gendisk * disk)785 static inline bool get_disk_ro(struct gendisk *disk)
786 {
787 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
788 test_bit(GD_READ_ONLY, &disk->state);
789 }
790
bdev_read_only(struct block_device * bdev)791 static inline bool bdev_read_only(struct block_device *bdev)
792 {
793 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
794 }
795
796 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
797 void disk_force_media_change(struct gendisk *disk);
798 void bdev_mark_dead(struct block_device *bdev, bool surprise);
799
800 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
801 void rand_initialize_disk(struct gendisk *disk);
802
get_start_sect(struct block_device * bdev)803 static inline sector_t get_start_sect(struct block_device *bdev)
804 {
805 return bdev->bd_start_sect;
806 }
807
bdev_nr_sectors(struct block_device * bdev)808 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
809 {
810 return bdev->bd_nr_sectors;
811 }
812
bdev_nr_bytes(struct block_device * bdev)813 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
814 {
815 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
816 }
817
get_capacity(struct gendisk * disk)818 static inline sector_t get_capacity(struct gendisk *disk)
819 {
820 return bdev_nr_sectors(disk->part0);
821 }
822
sb_bdev_nr_blocks(struct super_block * sb)823 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
824 {
825 return bdev_nr_sectors(sb->s_bdev) >>
826 (sb->s_blocksize_bits - SECTOR_SHIFT);
827 }
828
829 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
830
831 void put_disk(struct gendisk *disk);
832 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
833 struct lock_class_key *lkclass);
834
835 /**
836 * blk_alloc_disk - allocate a gendisk structure
837 * @lim: queue limits to be used for this disk.
838 * @node_id: numa node to allocate on
839 *
840 * Allocate and pre-initialize a gendisk structure for use with BIO based
841 * drivers.
842 *
843 * Returns an ERR_PTR on error, else the allocated disk.
844 *
845 * Context: can sleep
846 */
847 #define blk_alloc_disk(lim, node_id) \
848 ({ \
849 static struct lock_class_key __key; \
850 \
851 __blk_alloc_disk(lim, node_id, &__key); \
852 })
853
854 int __register_blkdev(unsigned int major, const char *name,
855 void (*probe)(dev_t devt));
856 #define register_blkdev(major, name) \
857 __register_blkdev(major, name, NULL)
858 void unregister_blkdev(unsigned int major, const char *name);
859
860 bool disk_check_media_change(struct gendisk *disk);
861 void set_capacity(struct gendisk *disk, sector_t size);
862
863 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
864 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
865 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
866 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)867 static inline int bd_link_disk_holder(struct block_device *bdev,
868 struct gendisk *disk)
869 {
870 return 0;
871 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)872 static inline void bd_unlink_disk_holder(struct block_device *bdev,
873 struct gendisk *disk)
874 {
875 }
876 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
877
878 dev_t part_devt(struct gendisk *disk, u8 partno);
879 void inc_diskseq(struct gendisk *disk);
880 void blk_request_module(dev_t devt);
881
882 extern int blk_register_queue(struct gendisk *disk);
883 extern void blk_unregister_queue(struct gendisk *disk);
884 void submit_bio_noacct(struct bio *bio);
885 struct bio *bio_split_to_limits(struct bio *bio);
886
887 extern int blk_lld_busy(struct request_queue *q);
888 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
889 extern void blk_queue_exit(struct request_queue *q);
890 extern void blk_sync_queue(struct request_queue *q);
891
892 /* Helper to convert REQ_OP_XXX to its string format XXX */
893 extern const char *blk_op_str(enum req_op op);
894
895 int blk_status_to_errno(blk_status_t status);
896 blk_status_t errno_to_blk_status(int errno);
897 const char *blk_status_to_str(blk_status_t status);
898
899 /* only poll the hardware once, don't continue until a completion was found */
900 #define BLK_POLL_ONESHOT (1 << 0)
901 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
902 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
903 unsigned int flags);
904
bdev_get_queue(struct block_device * bdev)905 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
906 {
907 return bdev->bd_queue; /* this is never NULL */
908 }
909
910 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
911 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
912
bio_zone_no(struct bio * bio)913 static inline unsigned int bio_zone_no(struct bio *bio)
914 {
915 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
916 }
917
bio_straddles_zones(struct bio * bio)918 static inline bool bio_straddles_zones(struct bio *bio)
919 {
920 return bio_sectors(bio) &&
921 bio_zone_no(bio) !=
922 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
923 }
924
925 /*
926 * Return how much within the boundary is left to be used for I/O at a given
927 * offset.
928 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)929 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
930 unsigned int boundary_sectors)
931 {
932 if (unlikely(!is_power_of_2(boundary_sectors)))
933 return boundary_sectors - sector_div(offset, boundary_sectors);
934 return boundary_sectors - (offset & (boundary_sectors - 1));
935 }
936
937 /**
938 * queue_limits_start_update - start an atomic update of queue limits
939 * @q: queue to update
940 *
941 * This functions starts an atomic update of the queue limits. It takes a lock
942 * to prevent other updates and returns a snapshot of the current limits that
943 * the caller can modify. The caller must call queue_limits_commit_update()
944 * to finish the update.
945 *
946 * Context: process context.
947 */
948 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)949 queue_limits_start_update(struct request_queue *q)
950 {
951 mutex_lock(&q->limits_lock);
952 return q->limits;
953 }
954 int queue_limits_commit_update_frozen(struct request_queue *q,
955 struct queue_limits *lim);
956 int queue_limits_commit_update(struct request_queue *q,
957 struct queue_limits *lim);
958 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
959 int blk_validate_limits(struct queue_limits *lim);
960
961 /**
962 * queue_limits_cancel_update - cancel an atomic update of queue limits
963 * @q: queue to update
964 *
965 * This functions cancels an atomic update of the queue limits started by
966 * queue_limits_start_update() and should be used when an error occurs after
967 * starting update.
968 */
queue_limits_cancel_update(struct request_queue * q)969 static inline void queue_limits_cancel_update(struct request_queue *q)
970 {
971 mutex_unlock(&q->limits_lock);
972 }
973
974 /*
975 * These helpers are for drivers that have sloppy feature negotiation and might
976 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
977 * completion handler when the device returned an indicator that the respective
978 * feature is not actually supported. They are racy and the driver needs to
979 * cope with that. Try to avoid this scheme if you can.
980 */
blk_queue_disable_discard(struct request_queue * q)981 static inline void blk_queue_disable_discard(struct request_queue *q)
982 {
983 q->limits.max_discard_sectors = 0;
984 }
985
blk_queue_disable_secure_erase(struct request_queue * q)986 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
987 {
988 q->limits.max_secure_erase_sectors = 0;
989 }
990
blk_queue_disable_write_zeroes(struct request_queue * q)991 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
992 {
993 q->limits.max_write_zeroes_sectors = 0;
994 }
995
996 /*
997 * Access functions for manipulating queue properties
998 */
999 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1000 extern void blk_set_stacking_limits(struct queue_limits *lim);
1001 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1002 sector_t offset);
1003 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1004 sector_t offset, const char *pfx);
1005 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1006
1007 struct blk_independent_access_ranges *
1008 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1009 void disk_set_independent_access_ranges(struct gendisk *disk,
1010 struct blk_independent_access_ranges *iars);
1011
1012 bool __must_check blk_get_queue(struct request_queue *);
1013 extern void blk_put_queue(struct request_queue *);
1014
1015 void blk_mark_disk_dead(struct gendisk *disk);
1016
1017 struct rq_list {
1018 struct request *head;
1019 struct request *tail;
1020 };
1021
1022 #ifdef CONFIG_BLOCK
1023 /*
1024 * blk_plug permits building a queue of related requests by holding the I/O
1025 * fragments for a short period. This allows merging of sequential requests
1026 * into single larger request. As the requests are moved from a per-task list to
1027 * the device's request_queue in a batch, this results in improved scalability
1028 * as the lock contention for request_queue lock is reduced.
1029 *
1030 * It is ok not to disable preemption when adding the request to the plug list
1031 * or when attempting a merge. For details, please see schedule() where
1032 * blk_flush_plug() is called.
1033 */
1034 struct blk_plug {
1035 struct rq_list mq_list; /* blk-mq requests */
1036
1037 /* if ios_left is > 1, we can batch tag/rq allocations */
1038 struct rq_list cached_rqs;
1039 u64 cur_ktime;
1040 unsigned short nr_ios;
1041
1042 unsigned short rq_count;
1043
1044 bool multiple_queues;
1045 bool has_elevator;
1046
1047 struct list_head cb_list; /* md requires an unplug callback */
1048 };
1049
1050 struct blk_plug_cb;
1051 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1052 struct blk_plug_cb {
1053 struct list_head list;
1054 blk_plug_cb_fn callback;
1055 void *data;
1056 };
1057 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1058 void *data, int size);
1059 extern void blk_start_plug(struct blk_plug *);
1060 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1061 extern void blk_finish_plug(struct blk_plug *);
1062
1063 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1064 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1065 {
1066 if (plug)
1067 __blk_flush_plug(plug, async);
1068 }
1069
1070 /*
1071 * tsk == current here
1072 */
blk_plug_invalidate_ts(struct task_struct * tsk)1073 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1074 {
1075 struct blk_plug *plug = tsk->plug;
1076
1077 if (plug)
1078 plug->cur_ktime = 0;
1079 current->flags &= ~PF_BLOCK_TS;
1080 }
1081
1082 int blkdev_issue_flush(struct block_device *bdev);
1083 long nr_blockdev_pages(void);
1084 #else /* CONFIG_BLOCK */
1085 struct blk_plug {
1086 };
1087
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1088 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1089 unsigned short nr_ios)
1090 {
1091 }
1092
blk_start_plug(struct blk_plug * plug)1093 static inline void blk_start_plug(struct blk_plug *plug)
1094 {
1095 }
1096
blk_finish_plug(struct blk_plug * plug)1097 static inline void blk_finish_plug(struct blk_plug *plug)
1098 {
1099 }
1100
blk_flush_plug(struct blk_plug * plug,bool async)1101 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1102 {
1103 }
1104
blk_plug_invalidate_ts(struct task_struct * tsk)1105 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1106 {
1107 }
1108
blkdev_issue_flush(struct block_device * bdev)1109 static inline int blkdev_issue_flush(struct block_device *bdev)
1110 {
1111 return 0;
1112 }
1113
nr_blockdev_pages(void)1114 static inline long nr_blockdev_pages(void)
1115 {
1116 return 0;
1117 }
1118 #endif /* CONFIG_BLOCK */
1119
1120 extern void blk_io_schedule(void);
1121
1122 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1123 sector_t nr_sects, gfp_t gfp_mask);
1124 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1125 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1126 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1127 sector_t nr_sects, gfp_t gfp);
1128
1129 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1130 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1131 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1132
1133 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1134 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1135 unsigned flags);
1136 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1137 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1138
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1139 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1140 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1141 {
1142 return blkdev_issue_discard(sb->s_bdev,
1143 block << (sb->s_blocksize_bits -
1144 SECTOR_SHIFT),
1145 nr_blocks << (sb->s_blocksize_bits -
1146 SECTOR_SHIFT),
1147 gfp_mask);
1148 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1149 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1150 sector_t nr_blocks, gfp_t gfp_mask)
1151 {
1152 return blkdev_issue_zeroout(sb->s_bdev,
1153 block << (sb->s_blocksize_bits -
1154 SECTOR_SHIFT),
1155 nr_blocks << (sb->s_blocksize_bits -
1156 SECTOR_SHIFT),
1157 gfp_mask, 0);
1158 }
1159
bdev_is_partition(struct block_device * bdev)1160 static inline bool bdev_is_partition(struct block_device *bdev)
1161 {
1162 return bdev_partno(bdev) != 0;
1163 }
1164
1165 enum blk_default_limits {
1166 BLK_MAX_SEGMENTS = 128,
1167 BLK_SAFE_MAX_SECTORS = 255,
1168 BLK_MAX_SEGMENT_SIZE = 65536,
1169 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1170 };
1171
1172 /*
1173 * Default upper limit for the software max_sectors limit used for
1174 * regular file system I/O. This can be increased through sysfs.
1175 *
1176 * Not to be confused with the max_hw_sector limit that is entirely
1177 * controlled by the driver, usually based on hardware limits.
1178 */
1179 #define BLK_DEF_MAX_SECTORS_CAP 2560u
1180
bdev_limits(struct block_device * bdev)1181 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1182 {
1183 return &bdev_get_queue(bdev)->limits;
1184 }
1185
queue_segment_boundary(const struct request_queue * q)1186 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1187 {
1188 return q->limits.seg_boundary_mask;
1189 }
1190
queue_virt_boundary(const struct request_queue * q)1191 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1192 {
1193 return q->limits.virt_boundary_mask;
1194 }
1195
queue_max_sectors(const struct request_queue * q)1196 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1197 {
1198 return q->limits.max_sectors;
1199 }
1200
queue_max_bytes(struct request_queue * q)1201 static inline unsigned int queue_max_bytes(struct request_queue *q)
1202 {
1203 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1204 }
1205
queue_max_hw_sectors(const struct request_queue * q)1206 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1207 {
1208 return q->limits.max_hw_sectors;
1209 }
1210
queue_max_segments(const struct request_queue * q)1211 static inline unsigned short queue_max_segments(const struct request_queue *q)
1212 {
1213 return q->limits.max_segments;
1214 }
1215
queue_max_discard_segments(const struct request_queue * q)1216 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1217 {
1218 return q->limits.max_discard_segments;
1219 }
1220
queue_max_segment_size(const struct request_queue * q)1221 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1222 {
1223 return q->limits.max_segment_size;
1224 }
1225
queue_emulates_zone_append(struct request_queue * q)1226 static inline bool queue_emulates_zone_append(struct request_queue *q)
1227 {
1228 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1229 }
1230
bdev_emulates_zone_append(struct block_device * bdev)1231 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1232 {
1233 return queue_emulates_zone_append(bdev_get_queue(bdev));
1234 }
1235
1236 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1237 bdev_max_zone_append_sectors(struct block_device *bdev)
1238 {
1239 return bdev_limits(bdev)->max_zone_append_sectors;
1240 }
1241
bdev_max_segments(struct block_device * bdev)1242 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1243 {
1244 return queue_max_segments(bdev_get_queue(bdev));
1245 }
1246
queue_logical_block_size(const struct request_queue * q)1247 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1248 {
1249 return q->limits.logical_block_size;
1250 }
1251
bdev_logical_block_size(struct block_device * bdev)1252 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1253 {
1254 return queue_logical_block_size(bdev_get_queue(bdev));
1255 }
1256
queue_physical_block_size(const struct request_queue * q)1257 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1258 {
1259 return q->limits.physical_block_size;
1260 }
1261
bdev_physical_block_size(struct block_device * bdev)1262 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1263 {
1264 return queue_physical_block_size(bdev_get_queue(bdev));
1265 }
1266
queue_io_min(const struct request_queue * q)1267 static inline unsigned int queue_io_min(const struct request_queue *q)
1268 {
1269 return q->limits.io_min;
1270 }
1271
bdev_io_min(struct block_device * bdev)1272 static inline unsigned int bdev_io_min(struct block_device *bdev)
1273 {
1274 return queue_io_min(bdev_get_queue(bdev));
1275 }
1276
queue_io_opt(const struct request_queue * q)1277 static inline unsigned int queue_io_opt(const struct request_queue *q)
1278 {
1279 return q->limits.io_opt;
1280 }
1281
bdev_io_opt(struct block_device * bdev)1282 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1283 {
1284 return queue_io_opt(bdev_get_queue(bdev));
1285 }
1286
1287 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1288 queue_zone_write_granularity(const struct request_queue *q)
1289 {
1290 return q->limits.zone_write_granularity;
1291 }
1292
1293 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1294 bdev_zone_write_granularity(struct block_device *bdev)
1295 {
1296 return queue_zone_write_granularity(bdev_get_queue(bdev));
1297 }
1298
1299 int bdev_alignment_offset(struct block_device *bdev);
1300 unsigned int bdev_discard_alignment(struct block_device *bdev);
1301
bdev_max_discard_sectors(struct block_device * bdev)1302 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1303 {
1304 return bdev_limits(bdev)->max_discard_sectors;
1305 }
1306
bdev_discard_granularity(struct block_device * bdev)1307 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1308 {
1309 return bdev_limits(bdev)->discard_granularity;
1310 }
1311
1312 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1313 bdev_max_secure_erase_sectors(struct block_device *bdev)
1314 {
1315 return bdev_limits(bdev)->max_secure_erase_sectors;
1316 }
1317
bdev_write_zeroes_sectors(struct block_device * bdev)1318 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1319 {
1320 return bdev_limits(bdev)->max_write_zeroes_sectors;
1321 }
1322
bdev_nonrot(struct block_device * bdev)1323 static inline bool bdev_nonrot(struct block_device *bdev)
1324 {
1325 return blk_queue_nonrot(bdev_get_queue(bdev));
1326 }
1327
bdev_synchronous(struct block_device * bdev)1328 static inline bool bdev_synchronous(struct block_device *bdev)
1329 {
1330 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1331 }
1332
bdev_stable_writes(struct block_device * bdev)1333 static inline bool bdev_stable_writes(struct block_device *bdev)
1334 {
1335 struct request_queue *q = bdev_get_queue(bdev);
1336
1337 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1338 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1339 return true;
1340 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1341 }
1342
blk_queue_write_cache(struct request_queue * q)1343 static inline bool blk_queue_write_cache(struct request_queue *q)
1344 {
1345 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1346 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1347 }
1348
bdev_write_cache(struct block_device * bdev)1349 static inline bool bdev_write_cache(struct block_device *bdev)
1350 {
1351 return blk_queue_write_cache(bdev_get_queue(bdev));
1352 }
1353
bdev_fua(struct block_device * bdev)1354 static inline bool bdev_fua(struct block_device *bdev)
1355 {
1356 return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1357 }
1358
bdev_nowait(struct block_device * bdev)1359 static inline bool bdev_nowait(struct block_device *bdev)
1360 {
1361 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1362 }
1363
bdev_is_zoned(struct block_device * bdev)1364 static inline bool bdev_is_zoned(struct block_device *bdev)
1365 {
1366 return blk_queue_is_zoned(bdev_get_queue(bdev));
1367 }
1368
bdev_zone_no(struct block_device * bdev,sector_t sec)1369 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1370 {
1371 return disk_zone_no(bdev->bd_disk, sec);
1372 }
1373
bdev_zone_sectors(struct block_device * bdev)1374 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1375 {
1376 struct request_queue *q = bdev_get_queue(bdev);
1377
1378 if (!blk_queue_is_zoned(q))
1379 return 0;
1380 return q->limits.chunk_sectors;
1381 }
1382
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1383 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1384 sector_t sector)
1385 {
1386 return sector & (bdev_zone_sectors(bdev) - 1);
1387 }
1388
bio_offset_from_zone_start(struct bio * bio)1389 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1390 {
1391 return bdev_offset_from_zone_start(bio->bi_bdev,
1392 bio->bi_iter.bi_sector);
1393 }
1394
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1395 static inline bool bdev_is_zone_start(struct block_device *bdev,
1396 sector_t sector)
1397 {
1398 return bdev_offset_from_zone_start(bdev, sector) == 0;
1399 }
1400
1401 /**
1402 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1403 * @bdev: block device to check
1404 * @sector: sector number
1405 *
1406 * Check if @sector on @bdev is contained in a sequential write required zone.
1407 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1408 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1409 {
1410 bool is_seq = false;
1411
1412 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1413 if (bdev_is_zoned(bdev)) {
1414 struct gendisk *disk = bdev->bd_disk;
1415 unsigned long *bitmap;
1416
1417 rcu_read_lock();
1418 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1419 is_seq = !bitmap ||
1420 !test_bit(disk_zone_no(disk, sector), bitmap);
1421 rcu_read_unlock();
1422 }
1423 #endif
1424
1425 return is_seq;
1426 }
1427
1428 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1429 sector_t nr_sects, gfp_t gfp_mask);
1430
queue_dma_alignment(const struct request_queue * q)1431 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1432 {
1433 return q->limits.dma_alignment;
1434 }
1435
1436 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1437 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1438 {
1439 return q->limits.atomic_write_unit_max;
1440 }
1441
1442 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1443 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1444 {
1445 return q->limits.atomic_write_unit_min;
1446 }
1447
1448 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1449 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1450 {
1451 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1452 }
1453
1454 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1455 queue_atomic_write_max_bytes(const struct request_queue *q)
1456 {
1457 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1458 }
1459
bdev_dma_alignment(struct block_device * bdev)1460 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1461 {
1462 return queue_dma_alignment(bdev_get_queue(bdev));
1463 }
1464
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1465 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1466 struct iov_iter *iter)
1467 {
1468 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1469 bdev_logical_block_size(bdev) - 1);
1470 }
1471
1472 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1473 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1474 {
1475 return lim->dma_alignment | lim->dma_pad_mask;
1476 }
1477
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1478 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1479 unsigned int len)
1480 {
1481 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1482
1483 return !(addr & alignment) && !(len & alignment);
1484 }
1485
1486 /* assumes size > 256 */
blksize_bits(unsigned int size)1487 static inline unsigned int blksize_bits(unsigned int size)
1488 {
1489 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1490 }
1491
1492 int kblockd_schedule_work(struct work_struct *work);
1493 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1494
1495 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1496 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1497 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1498 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1499
1500 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1501
1502 bool blk_crypto_register(struct blk_crypto_profile *profile,
1503 struct request_queue *q);
1504
1505 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1506
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1507 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1508 struct request_queue *q)
1509 {
1510 return true;
1511 }
1512
1513 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1514
1515 enum blk_unique_id {
1516 /* these match the Designator Types specified in SPC */
1517 BLK_UID_T10 = 1,
1518 BLK_UID_EUI64 = 2,
1519 BLK_UID_NAA = 3,
1520 };
1521
1522 struct block_device_operations {
1523 void (*submit_bio)(struct bio *bio);
1524 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1525 unsigned int flags);
1526 int (*open)(struct gendisk *disk, blk_mode_t mode);
1527 void (*release)(struct gendisk *disk);
1528 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1529 unsigned cmd, unsigned long arg);
1530 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1531 unsigned cmd, unsigned long arg);
1532 unsigned int (*check_events) (struct gendisk *disk,
1533 unsigned int clearing);
1534 void (*unlock_native_capacity) (struct gendisk *);
1535 int (*getgeo)(struct block_device *, struct hd_geometry *);
1536 int (*set_read_only)(struct block_device *bdev, bool ro);
1537 void (*free_disk)(struct gendisk *disk);
1538 /* this callback is with swap_lock and sometimes page table lock held */
1539 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1540 int (*report_zones)(struct gendisk *, sector_t sector,
1541 unsigned int nr_zones, report_zones_cb cb, void *data);
1542 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1543 /* returns the length of the identifier or a negative errno: */
1544 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1545 enum blk_unique_id id_type);
1546 struct module *owner;
1547 const struct pr_ops *pr_ops;
1548
1549 /*
1550 * Special callback for probing GPT entry at a given sector.
1551 * Needed by Android devices, used by GPT scanner and MMC blk
1552 * driver.
1553 */
1554 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1555 };
1556
1557 #ifdef CONFIG_COMPAT
1558 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1559 unsigned int, unsigned long);
1560 #else
1561 #define blkdev_compat_ptr_ioctl NULL
1562 #endif
1563
blk_wake_io_task(struct task_struct * waiter)1564 static inline void blk_wake_io_task(struct task_struct *waiter)
1565 {
1566 /*
1567 * If we're polling, the task itself is doing the completions. For
1568 * that case, we don't need to signal a wakeup, it's enough to just
1569 * mark us as RUNNING.
1570 */
1571 if (waiter == current)
1572 __set_current_state(TASK_RUNNING);
1573 else
1574 wake_up_process(waiter);
1575 }
1576
1577 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1578 unsigned long start_time);
1579 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1580 unsigned int sectors, unsigned long start_time);
1581
1582 unsigned long bio_start_io_acct(struct bio *bio);
1583 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1584 struct block_device *orig_bdev);
1585
1586 /**
1587 * bio_end_io_acct - end I/O accounting for bio based drivers
1588 * @bio: bio to end account for
1589 * @start_time: start time returned by bio_start_io_acct()
1590 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1591 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1592 {
1593 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1594 }
1595
1596 int set_blocksize(struct file *file, int size);
1597
1598 int lookup_bdev(const char *pathname, dev_t *dev);
1599
1600 void blkdev_show(struct seq_file *seqf, off_t offset);
1601
1602 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1603 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1604 #ifdef CONFIG_BLOCK
1605 #define BLKDEV_MAJOR_MAX 512
1606 #else
1607 #define BLKDEV_MAJOR_MAX 0
1608 #endif
1609
1610 struct blk_holder_ops {
1611 void (*mark_dead)(struct block_device *bdev, bool surprise);
1612
1613 /*
1614 * Sync the file system mounted on the block device.
1615 */
1616 void (*sync)(struct block_device *bdev);
1617
1618 /*
1619 * Freeze the file system mounted on the block device.
1620 */
1621 int (*freeze)(struct block_device *bdev);
1622
1623 /*
1624 * Thaw the file system mounted on the block device.
1625 */
1626 int (*thaw)(struct block_device *bdev);
1627 };
1628
1629 /*
1630 * For filesystems using @fs_holder_ops, the @holder argument passed to
1631 * helpers used to open and claim block devices via
1632 * bd_prepare_to_claim() must point to a superblock.
1633 */
1634 extern const struct blk_holder_ops fs_holder_ops;
1635
1636 /*
1637 * Return the correct open flags for blkdev_get_by_* for super block flags
1638 * as stored in sb->s_flags.
1639 */
1640 #define sb_open_mode(flags) \
1641 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1642 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1643
1644 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1645 const struct blk_holder_ops *hops);
1646 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1647 void *holder, const struct blk_holder_ops *hops);
1648 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1649 const struct blk_holder_ops *hops);
1650 void bd_abort_claiming(struct block_device *bdev, void *holder);
1651
1652 /* just for blk-cgroup, don't use elsewhere */
1653 struct block_device *blkdev_get_no_open(dev_t dev);
1654 void blkdev_put_no_open(struct block_device *bdev);
1655
1656 struct block_device *I_BDEV(struct inode *inode);
1657 struct block_device *file_bdev(struct file *bdev_file);
1658 bool disk_live(struct gendisk *disk);
1659 unsigned int block_size(struct block_device *bdev);
1660
1661 #ifdef CONFIG_BLOCK
1662 void invalidate_bdev(struct block_device *bdev);
1663 int sync_blockdev(struct block_device *bdev);
1664 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1665 int sync_blockdev_nowait(struct block_device *bdev);
1666 void sync_bdevs(bool wait);
1667 void bdev_statx(struct path *, struct kstat *, u32);
1668 void printk_all_partitions(void);
1669 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1670 #else
invalidate_bdev(struct block_device * bdev)1671 static inline void invalidate_bdev(struct block_device *bdev)
1672 {
1673 }
sync_blockdev(struct block_device * bdev)1674 static inline int sync_blockdev(struct block_device *bdev)
1675 {
1676 return 0;
1677 }
sync_blockdev_nowait(struct block_device * bdev)1678 static inline int sync_blockdev_nowait(struct block_device *bdev)
1679 {
1680 return 0;
1681 }
sync_bdevs(bool wait)1682 static inline void sync_bdevs(bool wait)
1683 {
1684 }
bdev_statx(struct path * path,struct kstat * stat,u32 request_mask)1685 static inline void bdev_statx(struct path *path, struct kstat *stat,
1686 u32 request_mask)
1687 {
1688 }
printk_all_partitions(void)1689 static inline void printk_all_partitions(void)
1690 {
1691 }
early_lookup_bdev(const char * pathname,dev_t * dev)1692 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1693 {
1694 return -EINVAL;
1695 }
1696 #endif /* CONFIG_BLOCK */
1697
1698 int bdev_freeze(struct block_device *bdev);
1699 int bdev_thaw(struct block_device *bdev);
1700 void bdev_fput(struct file *bdev_file);
1701
1702 struct io_comp_batch {
1703 struct rq_list req_list;
1704 bool need_ts;
1705 void (*complete)(struct io_comp_batch *);
1706 };
1707
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1708 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1709 struct queue_limits *limits)
1710 {
1711 unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1712 limits->atomic_write_hw_boundary);
1713
1714 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1715 }
1716
bdev_can_atomic_write(struct block_device * bdev)1717 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1718 {
1719 struct request_queue *bd_queue = bdev->bd_queue;
1720 struct queue_limits *limits = &bd_queue->limits;
1721
1722 if (!limits->atomic_write_unit_min)
1723 return false;
1724
1725 if (bdev_is_partition(bdev))
1726 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1727 limits);
1728
1729 return true;
1730 }
1731
1732 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1733 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1734 {
1735 if (!bdev_can_atomic_write(bdev))
1736 return 0;
1737 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1738 }
1739
1740 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1741 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1742 {
1743 if (!bdev_can_atomic_write(bdev))
1744 return 0;
1745 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1746 }
1747
1748 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1749
1750 #endif /* _LINUX_BLKDEV_H */
1751