1 // SPDX-License-Identifier: GPL-2.0+
2
3 #include <linux/crc32.h>
4
5 #include <drm/drm_atomic.h>
6 #include <drm/drm_atomic_helper.h>
7 #include <drm/drm_blend.h>
8 #include <drm/drm_fourcc.h>
9 #include <drm/drm_fixed.h>
10 #include <drm/drm_gem_framebuffer_helper.h>
11 #include <drm/drm_print.h>
12 #include <drm/drm_vblank.h>
13 #include <linux/minmax.h>
14 #include <kunit/visibility.h>
15
16 #include "vkms_composer.h"
17 #include "vkms_luts.h"
18
pre_mul_blend_channel(u16 src,u16 dst,u16 alpha)19 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
20 {
21 u32 new_color;
22
23 new_color = (src * 0xffff + dst * (0xffff - alpha));
24
25 return DIV_ROUND_CLOSEST(new_color, 0xffff);
26 }
27
28 /**
29 * pre_mul_alpha_blend - alpha blending equation
30 * @stage_buffer: The line with the pixels from src_plane
31 * @output_buffer: A line buffer that receives all the blends output
32 * @x_start: The start offset
33 * @pixel_count: The number of pixels to blend
34 *
35 * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at
36 * [@x_start;@x_start+@pixel_count) in output_buffer.
37 *
38 * The current DRM assumption is that pixel color values have been already
39 * pre-multiplied with the alpha channel values. See more
40 * drm_plane_create_blend_mode_property(). Also, this formula assumes a
41 * completely opaque background.
42 */
pre_mul_alpha_blend(const struct line_buffer * stage_buffer,struct line_buffer * output_buffer,int x_start,int pixel_count)43 static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer,
44 struct line_buffer *output_buffer, int x_start, int pixel_count)
45 {
46 struct pixel_argb_u16 *out = &output_buffer->pixels[x_start];
47 const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start];
48
49 for (int i = 0; i < pixel_count; i++) {
50 out[i].a = (u16)0xffff;
51 out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a);
52 out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a);
53 out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a);
54 }
55 }
56
57
fill_background(const struct pixel_argb_u16 * background_color,struct line_buffer * output_buffer)58 static void fill_background(const struct pixel_argb_u16 *background_color,
59 struct line_buffer *output_buffer)
60 {
61 for (size_t i = 0; i < output_buffer->n_pixels; i++)
62 output_buffer->pixels[i] = *background_color;
63 }
64
65 // lerp(a, b, t) = a + (b - a) * t
lerp_u16(u16 a,u16 b,s64 t)66 VISIBLE_IF_KUNIT u16 lerp_u16(u16 a, u16 b, s64 t)
67 {
68 s64 a_fp = drm_int2fixp(a);
69 s64 b_fp = drm_int2fixp(b);
70
71 s64 delta = drm_fixp_mul(b_fp - a_fp, t);
72
73 return drm_fixp2int_round(a_fp + delta);
74 }
75 EXPORT_SYMBOL_IF_KUNIT(lerp_u16);
76
get_lut_index(const struct vkms_color_lut * lut,u16 channel_value)77 VISIBLE_IF_KUNIT s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
78 {
79 s64 color_channel_fp = drm_int2fixp(channel_value);
80
81 return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
82 }
83 EXPORT_SYMBOL_IF_KUNIT(get_lut_index);
84
apply_lut_to_channel_value(const struct vkms_color_lut * lut,u16 channel_value,enum lut_channel channel)85 VISIBLE_IF_KUNIT u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
86 enum lut_channel channel)
87 {
88 s64 lut_index = get_lut_index(lut, channel_value);
89 u16 *floor_lut_value, *ceil_lut_value;
90 u16 floor_channel_value, ceil_channel_value;
91
92 /*
93 * This checks if `struct drm_color_lut` has any gap added by the compiler
94 * between the struct fields.
95 */
96 static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
97
98 floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
99 if (drm_fixp2int(lut_index) == (lut->lut_length - 1))
100 /* We're at the end of the LUT array, use same value for ceil and floor */
101 ceil_lut_value = floor_lut_value;
102 else
103 ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
104
105 floor_channel_value = floor_lut_value[channel];
106 ceil_channel_value = ceil_lut_value[channel];
107
108 return lerp_u16(floor_channel_value, ceil_channel_value,
109 lut_index & DRM_FIXED_DECIMAL_MASK);
110 }
111 EXPORT_SYMBOL_IF_KUNIT(apply_lut_to_channel_value);
112
113
apply_lut(const struct vkms_crtc_state * crtc_state,struct line_buffer * output_buffer)114 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
115 {
116 if (!crtc_state->gamma_lut.base)
117 return;
118
119 if (!crtc_state->gamma_lut.lut_length)
120 return;
121
122 for (size_t x = 0; x < output_buffer->n_pixels; x++) {
123 struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
124
125 pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
126 pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
127 pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
128 }
129 }
130
apply_3x4_matrix(struct pixel_argb_s32 * pixel,const struct drm_color_ctm_3x4 * matrix)131 VISIBLE_IF_KUNIT void apply_3x4_matrix(struct pixel_argb_s32 *pixel,
132 const struct drm_color_ctm_3x4 *matrix)
133 {
134 s64 rf, gf, bf;
135 s64 r, g, b;
136
137 r = drm_int2fixp(pixel->r);
138 g = drm_int2fixp(pixel->g);
139 b = drm_int2fixp(pixel->b);
140
141 rf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[0]), r) +
142 drm_fixp_mul(drm_sm2fixp(matrix->matrix[1]), g) +
143 drm_fixp_mul(drm_sm2fixp(matrix->matrix[2]), b) +
144 drm_sm2fixp(matrix->matrix[3]);
145
146 gf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[4]), r) +
147 drm_fixp_mul(drm_sm2fixp(matrix->matrix[5]), g) +
148 drm_fixp_mul(drm_sm2fixp(matrix->matrix[6]), b) +
149 drm_sm2fixp(matrix->matrix[7]);
150
151 bf = drm_fixp_mul(drm_sm2fixp(matrix->matrix[8]), r) +
152 drm_fixp_mul(drm_sm2fixp(matrix->matrix[9]), g) +
153 drm_fixp_mul(drm_sm2fixp(matrix->matrix[10]), b) +
154 drm_sm2fixp(matrix->matrix[11]);
155
156 pixel->r = drm_fixp2int_round(rf);
157 pixel->g = drm_fixp2int_round(gf);
158 pixel->b = drm_fixp2int_round(bf);
159 }
160 EXPORT_SYMBOL_IF_KUNIT(apply_3x4_matrix);
161
apply_colorop(struct pixel_argb_s32 * pixel,struct drm_colorop * colorop)162 static void apply_colorop(struct pixel_argb_s32 *pixel, struct drm_colorop *colorop)
163 {
164 struct drm_colorop_state *colorop_state = colorop->state;
165 struct drm_device *dev = colorop->dev;
166
167 if (colorop->type == DRM_COLOROP_1D_CURVE) {
168 switch (colorop_state->curve_1d_type) {
169 case DRM_COLOROP_1D_CURVE_SRGB_INV_EOTF:
170 pixel->r = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->r, LUT_RED);
171 pixel->g = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->g, LUT_GREEN);
172 pixel->b = apply_lut_to_channel_value(&srgb_inv_eotf, pixel->b, LUT_BLUE);
173 break;
174 case DRM_COLOROP_1D_CURVE_SRGB_EOTF:
175 pixel->r = apply_lut_to_channel_value(&srgb_eotf, pixel->r, LUT_RED);
176 pixel->g = apply_lut_to_channel_value(&srgb_eotf, pixel->g, LUT_GREEN);
177 pixel->b = apply_lut_to_channel_value(&srgb_eotf, pixel->b, LUT_BLUE);
178 break;
179 default:
180 drm_WARN_ONCE(dev, true,
181 "unknown colorop 1D curve type %d\n",
182 colorop_state->curve_1d_type);
183 break;
184 }
185 } else if (colorop->type == DRM_COLOROP_CTM_3X4) {
186 if (colorop_state->data)
187 apply_3x4_matrix(pixel,
188 (struct drm_color_ctm_3x4 *)colorop_state->data->data);
189 }
190 }
191
pre_blend_color_transform(const struct vkms_plane_state * plane_state,struct line_buffer * output_buffer)192 static void pre_blend_color_transform(const struct vkms_plane_state *plane_state,
193 struct line_buffer *output_buffer)
194 {
195 struct pixel_argb_s32 pixel;
196
197 for (size_t x = 0; x < output_buffer->n_pixels; x++) {
198 struct drm_colorop *colorop = plane_state->base.base.color_pipeline;
199
200 /*
201 * Some operations, such as applying a BT709 encoding matrix,
202 * followed by a decoding matrix, require that we preserve
203 * values above 1.0 and below 0.0 until the end of the pipeline.
204 *
205 * Pack the 16-bit UNORM values into s32 to give us head-room to
206 * avoid clipping until we're at the end of the pipeline. Clip
207 * intentionally at the end of the pipeline before packing
208 * UNORM values back into u16.
209 */
210 pixel.a = output_buffer->pixels[x].a;
211 pixel.r = output_buffer->pixels[x].r;
212 pixel.g = output_buffer->pixels[x].g;
213 pixel.b = output_buffer->pixels[x].b;
214
215 while (colorop) {
216 struct drm_colorop_state *colorop_state;
217
218 colorop_state = colorop->state;
219
220 if (!colorop_state)
221 return;
222
223 if (!colorop_state->bypass)
224 apply_colorop(&pixel, colorop);
225
226 colorop = colorop->next;
227 }
228
229 /* clamp values */
230 output_buffer->pixels[x].a = clamp_val(pixel.a, 0, 0xffff);
231 output_buffer->pixels[x].r = clamp_val(pixel.r, 0, 0xffff);
232 output_buffer->pixels[x].g = clamp_val(pixel.g, 0, 0xffff);
233 output_buffer->pixels[x].b = clamp_val(pixel.b, 0, 0xffff);
234 }
235 }
236
237 /**
238 * direction_for_rotation() - Get the correct reading direction for a given rotation
239 *
240 * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation.
241 *
242 * This function will use the @rotation setting of a source plane to compute the reading
243 * direction in this plane which correspond to a "left to right writing" in the CRTC.
244 * For example, if the buffer is reflected on X axis, the pixel must be read from right to left
245 * to be written from left to right on the CRTC.
246 */
direction_for_rotation(unsigned int rotation)247 static enum pixel_read_direction direction_for_rotation(unsigned int rotation)
248 {
249 struct drm_rect tmp_a, tmp_b;
250 int x, y;
251
252 /*
253 * Points A and B are depicted as zero-size rectangles on the CRTC.
254 * The CRTC writing direction is from A to B. The plane reading direction
255 * is discovered by inverse-transforming A and B.
256 * The reading direction is computed by rotating the vector AB (top-left to top-right) in a
257 * 1x1 square.
258 */
259
260 tmp_a = DRM_RECT_INIT(0, 0, 0, 0);
261 tmp_b = DRM_RECT_INIT(1, 0, 0, 0);
262 drm_rect_rotate_inv(&tmp_a, 1, 1, rotation);
263 drm_rect_rotate_inv(&tmp_b, 1, 1, rotation);
264
265 x = tmp_b.x1 - tmp_a.x1;
266 y = tmp_b.y1 - tmp_a.y1;
267
268 if (x == 1 && y == 0)
269 return READ_LEFT_TO_RIGHT;
270 else if (x == -1 && y == 0)
271 return READ_RIGHT_TO_LEFT;
272 else if (y == 1 && x == 0)
273 return READ_TOP_TO_BOTTOM;
274 else if (y == -1 && x == 0)
275 return READ_BOTTOM_TO_TOP;
276
277 WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction.");
278 return READ_LEFT_TO_RIGHT;
279 }
280
281 /**
282 * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend
283 * process.
284 *
285 * @direction: direction of the reading
286 * @current_plane: current plane blended
287 * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle
288 * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of
289 * pixel_count*1 if @direction is horizontal.
290 * @src_x_start: x start coordinate for the line reading
291 * @src_y_start: y start coordinate for the line reading
292 * @dst_x_start: x coordinate to blend the read line
293 * @pixel_count: number of pixels to blend
294 *
295 * This function is mainly a safety net to avoid reading outside the source buffer. As the
296 * userspace should never ask to read outside the source plane, all the cases covered here should
297 * be dead code.
298 */
clamp_line_coordinates(enum pixel_read_direction direction,const struct vkms_plane_state * current_plane,const struct drm_rect * src_line,int * src_x_start,int * src_y_start,int * dst_x_start,int * pixel_count)299 static void clamp_line_coordinates(enum pixel_read_direction direction,
300 const struct vkms_plane_state *current_plane,
301 const struct drm_rect *src_line, int *src_x_start,
302 int *src_y_start, int *dst_x_start, int *pixel_count)
303 {
304 /* By default the start points are correct */
305 *src_x_start = src_line->x1;
306 *src_y_start = src_line->y1;
307 *dst_x_start = current_plane->frame_info->dst.x1;
308
309 /* Get the correct number of pixel to blend, it depends of the direction */
310 switch (direction) {
311 case READ_LEFT_TO_RIGHT:
312 case READ_RIGHT_TO_LEFT:
313 *pixel_count = drm_rect_width(src_line);
314 break;
315 case READ_BOTTOM_TO_TOP:
316 case READ_TOP_TO_BOTTOM:
317 *pixel_count = drm_rect_height(src_line);
318 break;
319 }
320
321 /*
322 * Clamp the coordinates to avoid reading outside the buffer
323 *
324 * This is mainly a security check to avoid reading outside the buffer, the userspace
325 * should never request to read outside the source buffer.
326 */
327 switch (direction) {
328 case READ_LEFT_TO_RIGHT:
329 case READ_RIGHT_TO_LEFT:
330 if (*src_x_start < 0) {
331 *pixel_count += *src_x_start;
332 *dst_x_start -= *src_x_start;
333 *src_x_start = 0;
334 }
335 if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width)
336 *pixel_count = max(0, (int)current_plane->frame_info->fb->width -
337 *src_x_start);
338 break;
339 case READ_BOTTOM_TO_TOP:
340 case READ_TOP_TO_BOTTOM:
341 if (*src_y_start < 0) {
342 *pixel_count += *src_y_start;
343 *dst_x_start -= *src_y_start;
344 *src_y_start = 0;
345 }
346 if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height)
347 *pixel_count = max(0, (int)current_plane->frame_info->fb->height -
348 *src_y_start);
349 break;
350 }
351 }
352
353 /**
354 * blend_line() - Blend a line from a plane to the output buffer
355 *
356 * @current_plane: current plane to work on
357 * @y: line to write in the output buffer
358 * @crtc_x_limit: width of the output buffer
359 * @stage_buffer: temporary buffer to convert the pixel line from the source buffer
360 * @output_buffer: buffer to blend the read line into.
361 */
blend_line(struct vkms_plane_state * current_plane,int y,int crtc_x_limit,struct line_buffer * stage_buffer,struct line_buffer * output_buffer)362 static void blend_line(struct vkms_plane_state *current_plane, int y,
363 int crtc_x_limit, struct line_buffer *stage_buffer,
364 struct line_buffer *output_buffer)
365 {
366 int src_x_start, src_y_start, dst_x_start, pixel_count;
367 struct drm_rect dst_line, tmp_src, src_line;
368
369 /* Avoid rendering useless lines */
370 if (y < current_plane->frame_info->dst.y1 ||
371 y >= current_plane->frame_info->dst.y2)
372 return;
373
374 /*
375 * dst_line is the line to copy. The initial coordinates are inside the
376 * destination framebuffer, and then drm_rect_* helpers are used to
377 * compute the correct position into the source framebuffer.
378 */
379 dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y,
380 drm_rect_width(¤t_plane->frame_info->dst),
381 1);
382
383 drm_rect_fp_to_int(&tmp_src, ¤t_plane->frame_info->src);
384
385 /*
386 * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of
387 * the destination buffer
388 */
389 dst_line.x1 = max_t(int, dst_line.x1, 0);
390 dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit);
391 /* The destination is completely outside of the crtc. */
392 if (dst_line.x2 <= dst_line.x1)
393 return;
394
395 src_line = dst_line;
396
397 /*
398 * Transform the coordinate x/y from the crtc to coordinates into
399 * coordinates for the src buffer.
400 *
401 * - Cancel the offset of the dst buffer.
402 * - Invert the rotation. This assumes that
403 * dst = drm_rect_rotate(src, rotation) (dst and src have the
404 * same size, but can be rotated).
405 * - Apply the offset of the source rectangle to the coordinate.
406 */
407 drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1,
408 -current_plane->frame_info->dst.y1);
409 drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src),
410 drm_rect_height(&tmp_src),
411 current_plane->frame_info->rotation);
412 drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1);
413
414 /* Get the correct reading direction in the source buffer. */
415
416 enum pixel_read_direction direction =
417 direction_for_rotation(current_plane->frame_info->rotation);
418
419 /* [2]: Compute and clamp the number of pixel to read */
420 clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start,
421 &dst_x_start, &pixel_count);
422
423 if (pixel_count <= 0) {
424 /* Nothing to read, so avoid multiple function calls */
425 return;
426 }
427
428 /*
429 * Modify the starting point to take in account the rotation
430 *
431 * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or
432 * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left
433 * corner.
434 */
435 if (direction == READ_RIGHT_TO_LEFT) {
436 // src_x_start is now the right point
437 src_x_start += pixel_count - 1;
438 } else if (direction == READ_BOTTOM_TO_TOP) {
439 // src_y_start is now the bottom point
440 src_y_start += pixel_count - 1;
441 }
442
443 /*
444 * Perform the conversion and the blending
445 *
446 * Here we know that the read line (x_start, y_start, pixel_count) is
447 * inside the source buffer [2] and we don't write outside the stage
448 * buffer [1].
449 */
450 current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction,
451 pixel_count, &stage_buffer->pixels[dst_x_start]);
452 pre_blend_color_transform(current_plane, stage_buffer);
453 pre_mul_alpha_blend(stage_buffer, output_buffer,
454 dst_x_start, pixel_count);
455 }
456
457 /**
458 * blend - blend the pixels from all planes and compute crc
459 * @wb: The writeback frame buffer metadata
460 * @crtc_state: The crtc state
461 * @crc32: The crc output of the final frame
462 * @output_buffer: A buffer of a row that will receive the result of the blend(s)
463 * @stage_buffer: The line with the pixels from plane being blend to the output
464 * @row_size: The size, in bytes, of a single row
465 *
466 * This function blends the pixels (Using the `pre_mul_alpha_blend`)
467 * from all planes, calculates the crc32 of the output from the former step,
468 * and, if necessary, convert and store the output to the writeback buffer.
469 */
blend(struct vkms_writeback_job * wb,struct vkms_crtc_state * crtc_state,u32 * crc32,struct line_buffer * stage_buffer,struct line_buffer * output_buffer,size_t row_size)470 static void blend(struct vkms_writeback_job *wb,
471 struct vkms_crtc_state *crtc_state,
472 u32 *crc32, struct line_buffer *stage_buffer,
473 struct line_buffer *output_buffer, size_t row_size)
474 {
475 struct vkms_plane_state **plane = crtc_state->active_planes;
476 u32 n_active_planes = crtc_state->num_active_planes;
477
478 const struct pixel_argb_u16 background_color = { .a = 0xffff };
479
480 int crtc_y_limit = crtc_state->base.mode.vdisplay;
481 int crtc_x_limit = crtc_state->base.mode.hdisplay;
482
483 /*
484 * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary
485 * complexity to avoid poor blending performance.
486 *
487 * The function pixel_read_line callback is used to read a line, using an efficient
488 * algorithm for a specific format, into the staging buffer.
489 */
490 for (int y = 0; y < crtc_y_limit; y++) {
491 fill_background(&background_color, output_buffer);
492
493 /* The active planes are composed associatively in z-order. */
494 for (size_t i = 0; i < n_active_planes; i++) {
495 blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer);
496 }
497
498 apply_lut(crtc_state, output_buffer);
499
500 *crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
501
502 if (wb)
503 vkms_writeback_row(wb, output_buffer, y);
504 }
505 }
506
check_format_funcs(struct vkms_crtc_state * crtc_state,struct vkms_writeback_job * active_wb)507 static int check_format_funcs(struct vkms_crtc_state *crtc_state,
508 struct vkms_writeback_job *active_wb)
509 {
510 struct vkms_plane_state **planes = crtc_state->active_planes;
511 u32 n_active_planes = crtc_state->num_active_planes;
512
513 for (size_t i = 0; i < n_active_planes; i++)
514 if (!planes[i]->pixel_read_line)
515 return -1;
516
517 if (active_wb && !active_wb->pixel_write)
518 return -1;
519
520 return 0;
521 }
522
check_iosys_map(struct vkms_crtc_state * crtc_state)523 static int check_iosys_map(struct vkms_crtc_state *crtc_state)
524 {
525 struct vkms_plane_state **plane_state = crtc_state->active_planes;
526 u32 n_active_planes = crtc_state->num_active_planes;
527
528 for (size_t i = 0; i < n_active_planes; i++)
529 if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
530 return -1;
531
532 return 0;
533 }
534
compose_active_planes(struct vkms_writeback_job * active_wb,struct vkms_crtc_state * crtc_state,u32 * crc32)535 static int compose_active_planes(struct vkms_writeback_job *active_wb,
536 struct vkms_crtc_state *crtc_state,
537 u32 *crc32)
538 {
539 size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
540 struct line_buffer output_buffer, stage_buffer;
541 int ret = 0;
542
543 /*
544 * This check exists so we can call `crc32_le` for the entire line
545 * instead doing it for each channel of each pixel in case
546 * `struct `pixel_argb_u16` had any gap added by the compiler
547 * between the struct fields.
548 */
549 static_assert(sizeof(struct pixel_argb_u16) == 8);
550
551 if (WARN_ON(check_iosys_map(crtc_state)))
552 return -EINVAL;
553
554 if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
555 return -EINVAL;
556
557 line_width = crtc_state->base.mode.hdisplay;
558 stage_buffer.n_pixels = line_width;
559 output_buffer.n_pixels = line_width;
560
561 stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
562 if (!stage_buffer.pixels) {
563 DRM_ERROR("Cannot allocate memory for the output line buffer");
564 return -ENOMEM;
565 }
566
567 output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
568 if (!output_buffer.pixels) {
569 DRM_ERROR("Cannot allocate memory for intermediate line buffer");
570 ret = -ENOMEM;
571 goto free_stage_buffer;
572 }
573
574 blend(active_wb, crtc_state, crc32, &stage_buffer,
575 &output_buffer, line_width * pixel_size);
576
577 kvfree(output_buffer.pixels);
578 free_stage_buffer:
579 kvfree(stage_buffer.pixels);
580
581 return ret;
582 }
583
584 /**
585 * vkms_composer_worker - ordered work_struct to compute CRC
586 *
587 * @work: work_struct
588 *
589 * Work handler for composing and computing CRCs. work_struct scheduled in
590 * an ordered workqueue that's periodically scheduled to run by
591 * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
592 */
vkms_composer_worker(struct work_struct * work)593 void vkms_composer_worker(struct work_struct *work)
594 {
595 struct vkms_crtc_state *crtc_state = container_of(work,
596 struct vkms_crtc_state,
597 composer_work);
598 struct drm_crtc *crtc = crtc_state->base.crtc;
599 struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
600 struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
601 bool crc_pending, wb_pending;
602 u64 frame_start, frame_end;
603 u32 crc32 = 0;
604 int ret;
605
606 spin_lock_irq(&out->composer_lock);
607 frame_start = crtc_state->frame_start;
608 frame_end = crtc_state->frame_end;
609 crc_pending = crtc_state->crc_pending;
610 wb_pending = crtc_state->wb_pending;
611 crtc_state->frame_start = 0;
612 crtc_state->frame_end = 0;
613 crtc_state->crc_pending = false;
614
615 if (crtc->state->gamma_lut) {
616 s64 max_lut_index_fp;
617 s64 u16_max_fp = drm_int2fixp(0xffff);
618
619 crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
620 crtc_state->gamma_lut.lut_length =
621 crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
622 max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
623 crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
624 u16_max_fp);
625
626 } else {
627 crtc_state->gamma_lut.base = NULL;
628 }
629
630 spin_unlock_irq(&out->composer_lock);
631
632 /*
633 * We raced with the vblank hrtimer and previous work already computed
634 * the crc, nothing to do.
635 */
636 if (!crc_pending)
637 return;
638
639 if (wb_pending)
640 ret = compose_active_planes(active_wb, crtc_state, &crc32);
641 else
642 ret = compose_active_planes(NULL, crtc_state, &crc32);
643
644 if (ret)
645 return;
646
647 if (wb_pending) {
648 drm_writeback_signal_completion(&out->wb_connector, 0);
649 spin_lock_irq(&out->composer_lock);
650 crtc_state->wb_pending = false;
651 spin_unlock_irq(&out->composer_lock);
652 }
653
654 /*
655 * The worker can fall behind the vblank hrtimer, make sure we catch up.
656 */
657 while (frame_start <= frame_end)
658 drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
659 }
660
661 static const char *const pipe_crc_sources[] = { "auto" };
662
vkms_get_crc_sources(struct drm_crtc * crtc,size_t * count)663 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
664 size_t *count)
665 {
666 *count = ARRAY_SIZE(pipe_crc_sources);
667 return pipe_crc_sources;
668 }
669
vkms_crc_parse_source(const char * src_name,bool * enabled)670 static int vkms_crc_parse_source(const char *src_name, bool *enabled)
671 {
672 int ret = 0;
673
674 if (!src_name) {
675 *enabled = false;
676 } else if (strcmp(src_name, "auto") == 0) {
677 *enabled = true;
678 } else {
679 *enabled = false;
680 ret = -EINVAL;
681 }
682
683 return ret;
684 }
685
vkms_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)686 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
687 size_t *values_cnt)
688 {
689 bool enabled;
690
691 if (vkms_crc_parse_source(src_name, &enabled) < 0) {
692 DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
693 return -EINVAL;
694 }
695
696 *values_cnt = 1;
697
698 return 0;
699 }
700
vkms_set_composer(struct vkms_output * out,bool enabled)701 void vkms_set_composer(struct vkms_output *out, bool enabled)
702 {
703 bool old_enabled;
704
705 if (enabled)
706 drm_crtc_vblank_get(&out->crtc);
707
708 spin_lock_irq(&out->lock);
709 old_enabled = out->composer_enabled;
710 out->composer_enabled = enabled;
711 spin_unlock_irq(&out->lock);
712
713 if (old_enabled)
714 drm_crtc_vblank_put(&out->crtc);
715 }
716
vkms_set_crc_source(struct drm_crtc * crtc,const char * src_name)717 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
718 {
719 struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
720 bool enabled = false;
721 int ret = 0;
722
723 ret = vkms_crc_parse_source(src_name, &enabled);
724
725 vkms_set_composer(out, enabled);
726
727 return ret;
728 }
729