xref: /linux/drivers/ata/libata-core.c (revision ced1b9e0392d981a7317c605b402c06650947a34)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.reset.prereset		= ata_std_prereset,
69 	.reset.postreset	= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 					u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80 
81 static DEFINE_IDA(ata_ida);
82 
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 	const char	*name;
86 	u8		cbl;
87 	u8		spd_limit;
88 	unsigned int	xfer_mask;
89 	unsigned int	quirk_on;
90 	unsigned int	quirk_off;
91 	unsigned int	pflags_on;
92 	u16		lflags_on;
93 	u16		lflags_off;
94 };
95 
96 struct ata_force_ent {
97 	int			port;
98 	int			device;
99 	struct ata_force_param	param;
100 };
101 
102 static struct ata_force_ent *ata_force_tbl;
103 static int ata_force_tbl_size;
104 
105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106 /* param_buf is thrown away after initialization, disallow read */
107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109 #endif
110 
111 static int atapi_enabled = 1;
112 module_param(atapi_enabled, int, 0444);
113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114 
115 static int atapi_dmadir = 0;
116 module_param(atapi_dmadir, int, 0444);
117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118 
119 int atapi_passthru16 = 1;
120 module_param(atapi_passthru16, int, 0444);
121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122 
123 int libata_fua = 0;
124 module_param_named(fua, libata_fua, int, 0444);
125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126 
127 static int ata_ignore_hpa;
128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130 
131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132 module_param_named(dma, libata_dma_mask, int, 0444);
133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134 
135 static int ata_probe_timeout;
136 module_param(ata_probe_timeout, int, 0444);
137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138 
139 int libata_noacpi = 0;
140 module_param_named(noacpi, libata_noacpi, int, 0444);
141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142 
143 int libata_allow_tpm = 0;
144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146 
147 static int atapi_an;
148 module_param(atapi_an, int, 0444);
149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150 
151 MODULE_AUTHOR("Jeff Garzik");
152 MODULE_DESCRIPTION("Library module for ATA devices");
153 MODULE_LICENSE("GPL");
154 MODULE_VERSION(DRV_VERSION);
155 
ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev)
157 {
158 	struct ata_eh_context *ehc = &dev->link->eh_context;
159 
160 	return ehc->i.flags & ATA_EHI_PRINTINFO;
161 }
162 
163 /**
164  *	ata_link_next - link iteration helper
165  *	@link: the previous link, NULL to start
166  *	@ap: ATA port containing links to iterate
167  *	@mode: iteration mode, one of ATA_LITER_*
168  *
169  *	LOCKING:
170  *	Host lock or EH context.
171  *
172  *	RETURNS:
173  *	Pointer to the next link.
174  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 			       enum ata_link_iter_mode mode)
177 {
178 	BUG_ON(mode != ATA_LITER_EDGE &&
179 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180 
181 	/* NULL link indicates start of iteration */
182 	if (!link)
183 		switch (mode) {
184 		case ATA_LITER_EDGE:
185 		case ATA_LITER_PMP_FIRST:
186 			if (sata_pmp_attached(ap))
187 				return ap->pmp_link;
188 			fallthrough;
189 		case ATA_LITER_HOST_FIRST:
190 			return &ap->link;
191 		}
192 
193 	/* we just iterated over the host link, what's next? */
194 	if (link == &ap->link)
195 		switch (mode) {
196 		case ATA_LITER_HOST_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_PMP_FIRST:
201 			if (unlikely(ap->slave_link))
202 				return ap->slave_link;
203 			fallthrough;
204 		case ATA_LITER_EDGE:
205 			return NULL;
206 		}
207 
208 	/* slave_link excludes PMP */
209 	if (unlikely(link == ap->slave_link))
210 		return NULL;
211 
212 	/* we were over a PMP link */
213 	if (++link < ap->pmp_link + ap->nr_pmp_links)
214 		return link;
215 
216 	if (mode == ATA_LITER_PMP_FIRST)
217 		return &ap->link;
218 
219 	return NULL;
220 }
221 EXPORT_SYMBOL_GPL(ata_link_next);
222 
223 /**
224  *	ata_dev_next - device iteration helper
225  *	@dev: the previous device, NULL to start
226  *	@link: ATA link containing devices to iterate
227  *	@mode: iteration mode, one of ATA_DITER_*
228  *
229  *	LOCKING:
230  *	Host lock or EH context.
231  *
232  *	RETURNS:
233  *	Pointer to the next device.
234  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 				enum ata_dev_iter_mode mode)
237 {
238 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240 
241 	/* NULL dev indicates start of iteration */
242 	if (!dev)
243 		switch (mode) {
244 		case ATA_DITER_ENABLED:
245 		case ATA_DITER_ALL:
246 			dev = link->device;
247 			goto check;
248 		case ATA_DITER_ENABLED_REVERSE:
249 		case ATA_DITER_ALL_REVERSE:
250 			dev = link->device + ata_link_max_devices(link) - 1;
251 			goto check;
252 		}
253 
254  next:
255 	/* move to the next one */
256 	switch (mode) {
257 	case ATA_DITER_ENABLED:
258 	case ATA_DITER_ALL:
259 		if (++dev < link->device + ata_link_max_devices(link))
260 			goto check;
261 		return NULL;
262 	case ATA_DITER_ENABLED_REVERSE:
263 	case ATA_DITER_ALL_REVERSE:
264 		if (--dev >= link->device)
265 			goto check;
266 		return NULL;
267 	}
268 
269  check:
270 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 	    !ata_dev_enabled(dev))
272 		goto next;
273 	return dev;
274 }
275 EXPORT_SYMBOL_GPL(ata_dev_next);
276 
277 /**
278  *	ata_dev_phys_link - find physical link for a device
279  *	@dev: ATA device to look up physical link for
280  *
281  *	Look up physical link which @dev is attached to.  Note that
282  *	this is different from @dev->link only when @dev is on slave
283  *	link.  For all other cases, it's the same as @dev->link.
284  *
285  *	LOCKING:
286  *	Don't care.
287  *
288  *	RETURNS:
289  *	Pointer to the found physical link.
290  */
ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292 {
293 	struct ata_port *ap = dev->link->ap;
294 
295 	if (!ap->slave_link)
296 		return dev->link;
297 	if (!dev->devno)
298 		return &ap->link;
299 	return ap->slave_link;
300 }
301 
302 #ifdef CONFIG_ATA_FORCE
303 /**
304  *	ata_force_cbl - force cable type according to libata.force
305  *	@ap: ATA port of interest
306  *
307  *	Force cable type according to libata.force and whine about it.
308  *	The last entry which has matching port number is used, so it
309  *	can be specified as part of device force parameters.  For
310  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311  *	same effect.
312  *
313  *	LOCKING:
314  *	EH context.
315  */
ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap)
317 {
318 	int i;
319 
320 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 		const struct ata_force_ent *fe = &ata_force_tbl[i];
322 
323 		if (fe->port != -1 && fe->port != ap->print_id)
324 			continue;
325 
326 		if (fe->param.cbl == ATA_CBL_NONE)
327 			continue;
328 
329 		ap->cbl = fe->param.cbl;
330 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 		return;
332 	}
333 }
334 
335 /**
336  *	ata_force_pflags - force port flags according to libata.force
337  *	@ap: ATA port of interest
338  *
339  *	Force port flags according to libata.force and whine about it.
340  *
341  *	LOCKING:
342  *	EH context.
343  */
ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap)
345 {
346 	int i;
347 
348 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 		const struct ata_force_ent *fe = &ata_force_tbl[i];
350 
351 		if (fe->port != -1 && fe->port != ap->print_id)
352 			continue;
353 
354 		/* let pflags stack */
355 		if (fe->param.pflags_on) {
356 			ap->pflags |= fe->param.pflags_on;
357 			ata_port_notice(ap,
358 					"FORCE: port flag 0x%x forced -> 0x%x\n",
359 					fe->param.pflags_on, ap->pflags);
360 		}
361 	}
362 }
363 
364 /**
365  *	ata_force_link_limits - force link limits according to libata.force
366  *	@link: ATA link of interest
367  *
368  *	Force link flags and SATA spd limit according to libata.force
369  *	and whine about it.  When only the port part is specified
370  *	(e.g. 1:), the limit applies to all links connected to both
371  *	the host link and all fan-out ports connected via PMP.  If the
372  *	device part is specified as 0 (e.g. 1.00:), it specifies the
373  *	first fan-out link not the host link.  Device number 15 always
374  *	points to the host link whether PMP is attached or not.  If the
375  *	controller has slave link, device number 16 points to it.
376  *
377  *	LOCKING:
378  *	EH context.
379  */
ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link)
381 {
382 	bool did_spd = false;
383 	int linkno = link->pmp;
384 	int i;
385 
386 	if (ata_is_host_link(link))
387 		linkno += 15;
388 
389 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 		const struct ata_force_ent *fe = &ata_force_tbl[i];
391 
392 		if (fe->port != -1 && fe->port != link->ap->print_id)
393 			continue;
394 
395 		if (fe->device != -1 && fe->device != linkno)
396 			continue;
397 
398 		/* only honor the first spd limit */
399 		if (!did_spd && fe->param.spd_limit) {
400 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 					fe->param.name);
403 			did_spd = true;
404 		}
405 
406 		/* let lflags stack */
407 		if (fe->param.lflags_on) {
408 			link->flags |= fe->param.lflags_on;
409 			ata_link_notice(link,
410 					"FORCE: link flag 0x%x forced -> 0x%x\n",
411 					fe->param.lflags_on, link->flags);
412 		}
413 		if (fe->param.lflags_off) {
414 			link->flags &= ~fe->param.lflags_off;
415 			ata_link_notice(link,
416 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
417 				fe->param.lflags_off, link->flags);
418 		}
419 	}
420 }
421 
422 /**
423  *	ata_force_xfermask - force xfermask according to libata.force
424  *	@dev: ATA device of interest
425  *
426  *	Force xfer_mask according to libata.force and whine about it.
427  *	For consistency with link selection, device number 15 selects
428  *	the first device connected to the host link.
429  *
430  *	LOCKING:
431  *	EH context.
432  */
ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev)
434 {
435 	int devno = dev->link->pmp + dev->devno;
436 	int alt_devno = devno;
437 	int i;
438 
439 	/* allow n.15/16 for devices attached to host port */
440 	if (ata_is_host_link(dev->link))
441 		alt_devno += 15;
442 
443 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 		const struct ata_force_ent *fe = &ata_force_tbl[i];
445 		unsigned int pio_mask, mwdma_mask, udma_mask;
446 
447 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 			continue;
449 
450 		if (fe->device != -1 && fe->device != devno &&
451 		    fe->device != alt_devno)
452 			continue;
453 
454 		if (!fe->param.xfer_mask)
455 			continue;
456 
457 		ata_unpack_xfermask(fe->param.xfer_mask,
458 				    &pio_mask, &mwdma_mask, &udma_mask);
459 		if (udma_mask)
460 			dev->udma_mask = udma_mask;
461 		else if (mwdma_mask) {
462 			dev->udma_mask = 0;
463 			dev->mwdma_mask = mwdma_mask;
464 		} else {
465 			dev->udma_mask = 0;
466 			dev->mwdma_mask = 0;
467 			dev->pio_mask = pio_mask;
468 		}
469 
470 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 			       fe->param.name);
472 		return;
473 	}
474 }
475 
476 /**
477  *	ata_force_quirks - force quirks according to libata.force
478  *	@dev: ATA device of interest
479  *
480  *	Force quirks according to libata.force and whine about it.
481  *	For consistency with link selection, device number 15 selects
482  *	the first device connected to the host link.
483  *
484  *	LOCKING:
485  *	EH context.
486  */
ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev)
488 {
489 	int devno = dev->link->pmp + dev->devno;
490 	int alt_devno = devno;
491 	int i;
492 
493 	/* allow n.15/16 for devices attached to host port */
494 	if (ata_is_host_link(dev->link))
495 		alt_devno += 15;
496 
497 	for (i = 0; i < ata_force_tbl_size; i++) {
498 		const struct ata_force_ent *fe = &ata_force_tbl[i];
499 
500 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 			continue;
502 
503 		if (fe->device != -1 && fe->device != devno &&
504 		    fe->device != alt_devno)
505 			continue;
506 
507 		if (!(~dev->quirks & fe->param.quirk_on) &&
508 		    !(dev->quirks & fe->param.quirk_off))
509 			continue;
510 
511 		dev->quirks |= fe->param.quirk_on;
512 		dev->quirks &= ~fe->param.quirk_off;
513 
514 		ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 			       fe->param.name);
516 	}
517 }
518 #else
ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { }
523 #endif
524 
525 /**
526  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527  *	@opcode: SCSI opcode
528  *
529  *	Determine ATAPI command type from @opcode.
530  *
531  *	LOCKING:
532  *	None.
533  *
534  *	RETURNS:
535  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536  */
atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode)
538 {
539 	switch (opcode) {
540 	case GPCMD_READ_10:
541 	case GPCMD_READ_12:
542 		return ATAPI_READ;
543 
544 	case GPCMD_WRITE_10:
545 	case GPCMD_WRITE_12:
546 	case GPCMD_WRITE_AND_VERIFY_10:
547 		return ATAPI_WRITE;
548 
549 	case GPCMD_READ_CD:
550 	case GPCMD_READ_CD_MSF:
551 		return ATAPI_READ_CD;
552 
553 	case ATA_16:
554 	case ATA_12:
555 		if (atapi_passthru16)
556 			return ATAPI_PASS_THRU;
557 		fallthrough;
558 	default:
559 		return ATAPI_MISC;
560 	}
561 }
562 EXPORT_SYMBOL_GPL(atapi_cmd_type);
563 
564 static const u8 ata_rw_cmds[] = {
565 	/* pio multi */
566 	ATA_CMD_READ_MULTI,
567 	ATA_CMD_WRITE_MULTI,
568 	ATA_CMD_READ_MULTI_EXT,
569 	ATA_CMD_WRITE_MULTI_EXT,
570 	0,
571 	0,
572 	0,
573 	0,
574 	/* pio */
575 	ATA_CMD_PIO_READ,
576 	ATA_CMD_PIO_WRITE,
577 	ATA_CMD_PIO_READ_EXT,
578 	ATA_CMD_PIO_WRITE_EXT,
579 	0,
580 	0,
581 	0,
582 	0,
583 	/* dma */
584 	ATA_CMD_READ,
585 	ATA_CMD_WRITE,
586 	ATA_CMD_READ_EXT,
587 	ATA_CMD_WRITE_EXT,
588 	0,
589 	0,
590 	0,
591 	ATA_CMD_WRITE_FUA_EXT
592 };
593 
594 /**
595  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596  *	@dev: target device for the taskfile
597  *	@tf: taskfile to examine and configure
598  *
599  *	Examine the device configuration and tf->flags to determine
600  *	the proper read/write command and protocol to use for @tf.
601  *
602  *	LOCKING:
603  *	caller.
604  */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 				   struct ata_taskfile *tf)
607 {
608 	u8 cmd;
609 
610 	int index, fua, lba48, write;
611 
612 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615 
616 	if (dev->flags & ATA_DFLAG_PIO) {
617 		tf->protocol = ATA_PROT_PIO;
618 		index = dev->multi_count ? 0 : 8;
619 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 		/* Unable to use DMA due to host limitation */
621 		tf->protocol = ATA_PROT_PIO;
622 		index = dev->multi_count ? 0 : 8;
623 	} else {
624 		tf->protocol = ATA_PROT_DMA;
625 		index = 16;
626 	}
627 
628 	cmd = ata_rw_cmds[index + fua + lba48 + write];
629 	if (!cmd)
630 		return false;
631 
632 	tf->command = cmd;
633 
634 	return true;
635 }
636 
637 /**
638  *	ata_tf_read_block - Read block address from ATA taskfile
639  *	@tf: ATA taskfile of interest
640  *	@dev: ATA device @tf belongs to
641  *
642  *	LOCKING:
643  *	None.
644  *
645  *	Read block address from @tf.  This function can handle all
646  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
647  *	flags select the address format to use.
648  *
649  *	RETURNS:
650  *	Block address read from @tf.
651  */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 	u64 block = 0;
655 
656 	if (tf->flags & ATA_TFLAG_LBA) {
657 		if (tf->flags & ATA_TFLAG_LBA48) {
658 			block |= (u64)tf->hob_lbah << 40;
659 			block |= (u64)tf->hob_lbam << 32;
660 			block |= (u64)tf->hob_lbal << 24;
661 		} else
662 			block |= (tf->device & 0xf) << 24;
663 
664 		block |= tf->lbah << 16;
665 		block |= tf->lbam << 8;
666 		block |= tf->lbal;
667 	} else {
668 		u32 cyl, head, sect;
669 
670 		cyl = tf->lbam | (tf->lbah << 8);
671 		head = tf->device & 0xf;
672 		sect = tf->lbal;
673 
674 		if (!sect) {
675 			ata_dev_warn(dev,
676 				     "device reported invalid CHS sector 0\n");
677 			return U64_MAX;
678 		}
679 
680 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 	}
682 
683 	return block;
684 }
685 
686 /*
687  * Set a taskfile command duration limit index.
688  */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690 {
691 	struct ata_taskfile *tf = &qc->tf;
692 
693 	if (tf->protocol == ATA_PROT_NCQ)
694 		tf->auxiliary |= cdl;
695 	else
696 		tf->feature |= cdl;
697 
698 	/*
699 	 * Mark this command as having a CDL and request the result
700 	 * task file so that we can inspect the sense data available
701 	 * bit on completion.
702 	 */
703 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704 }
705 
706 /**
707  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
708  *	@qc: Metadata associated with the taskfile to build
709  *	@block: Block address
710  *	@n_block: Number of blocks
711  *	@tf_flags: RW/FUA etc...
712  *	@cdl: Command duration limit index
713  *	@class: IO priority class
714  *
715  *	LOCKING:
716  *	None.
717  *
718  *	Build ATA taskfile for the command @qc for read/write request described
719  *	by @block, @n_block, @tf_flags and @class.
720  *
721  *	RETURNS:
722  *
723  *	0 on success, -ERANGE if the request is too large for @dev,
724  *	-EINVAL if the request is invalid.
725  */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 		    unsigned int tf_flags, int cdl, int class)
728 {
729 	struct ata_taskfile *tf = &qc->tf;
730 	struct ata_device *dev = qc->dev;
731 
732 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 	tf->flags |= tf_flags;
734 
735 	if (ata_ncq_enabled(dev)) {
736 		/* yay, NCQ */
737 		if (!lba_48_ok(block, n_block))
738 			return -ERANGE;
739 
740 		tf->protocol = ATA_PROT_NCQ;
741 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742 
743 		if (tf->flags & ATA_TFLAG_WRITE)
744 			tf->command = ATA_CMD_FPDMA_WRITE;
745 		else
746 			tf->command = ATA_CMD_FPDMA_READ;
747 
748 		tf->nsect = qc->hw_tag << 3;
749 		tf->hob_feature = (n_block >> 8) & 0xff;
750 		tf->feature = n_block & 0xff;
751 
752 		tf->hob_lbah = (block >> 40) & 0xff;
753 		tf->hob_lbam = (block >> 32) & 0xff;
754 		tf->hob_lbal = (block >> 24) & 0xff;
755 		tf->lbah = (block >> 16) & 0xff;
756 		tf->lbam = (block >> 8) & 0xff;
757 		tf->lbal = block & 0xff;
758 
759 		tf->device = ATA_LBA;
760 		if (tf->flags & ATA_TFLAG_FUA)
761 			tf->device |= 1 << 7;
762 
763 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 		    class == IOPRIO_CLASS_RT)
765 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766 
767 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 			ata_set_tf_cdl(qc, cdl);
769 
770 	} else if (dev->flags & ATA_DFLAG_LBA) {
771 		tf->flags |= ATA_TFLAG_LBA;
772 
773 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 			ata_set_tf_cdl(qc, cdl);
775 
776 		/* Both FUA writes and a CDL index require 48-bit commands */
777 		if (!(tf->flags & ATA_TFLAG_FUA) &&
778 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 		    lba_28_ok(block, n_block)) {
780 			/* use LBA28 */
781 			tf->device |= (block >> 24) & 0xf;
782 		} else if (lba_48_ok(block, n_block)) {
783 			if (!(dev->flags & ATA_DFLAG_LBA48))
784 				return -ERANGE;
785 
786 			/* use LBA48 */
787 			tf->flags |= ATA_TFLAG_LBA48;
788 
789 			tf->hob_nsect = (n_block >> 8) & 0xff;
790 
791 			tf->hob_lbah = (block >> 40) & 0xff;
792 			tf->hob_lbam = (block >> 32) & 0xff;
793 			tf->hob_lbal = (block >> 24) & 0xff;
794 		} else {
795 			/* request too large even for LBA48 */
796 			return -ERANGE;
797 		}
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		tf->nsect = n_block & 0xff;
803 
804 		tf->lbah = (block >> 16) & 0xff;
805 		tf->lbam = (block >> 8) & 0xff;
806 		tf->lbal = block & 0xff;
807 
808 		tf->device |= ATA_LBA;
809 	} else {
810 		/* CHS */
811 		u32 sect, head, cyl, track;
812 
813 		/* The request -may- be too large for CHS addressing. */
814 		if (!lba_28_ok(block, n_block))
815 			return -ERANGE;
816 
817 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 			return -EINVAL;
819 
820 		/* Convert LBA to CHS */
821 		track = (u32)block / dev->sectors;
822 		cyl   = track / dev->heads;
823 		head  = track % dev->heads;
824 		sect  = (u32)block % dev->sectors + 1;
825 
826 		/* Check whether the converted CHS can fit.
827 		   Cylinder: 0-65535
828 		   Head: 0-15
829 		   Sector: 1-255*/
830 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 			return -ERANGE;
832 
833 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 		tf->lbal = sect;
835 		tf->lbam = cyl;
836 		tf->lbah = cyl >> 8;
837 		tf->device |= head;
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845  *	@pio_mask: pio_mask
846  *	@mwdma_mask: mwdma_mask
847  *	@udma_mask: udma_mask
848  *
849  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850  *	unsigned int xfer_mask.
851  *
852  *	LOCKING:
853  *	None.
854  *
855  *	RETURNS:
856  *	Packed xfer_mask.
857  */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 			       unsigned int mwdma_mask,
860 			       unsigned int udma_mask)
861 {
862 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 }
866 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867 
868 /**
869  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870  *	@xfer_mask: xfer_mask to unpack
871  *	@pio_mask: resulting pio_mask
872  *	@mwdma_mask: resulting mwdma_mask
873  *	@udma_mask: resulting udma_mask
874  *
875  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876  *	Any NULL destination masks will be ignored.
877  */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
880 {
881 	if (pio_mask)
882 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 	if (mwdma_mask)
884 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 	if (udma_mask)
886 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887 }
888 
889 static const struct ata_xfer_ent {
890 	int shift, bits;
891 	u8 base;
892 } ata_xfer_tbl[] = {
893 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 	{ -1, },
897 };
898 
899 /**
900  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901  *	@xfer_mask: xfer_mask of interest
902  *
903  *	Return matching XFER_* value for @xfer_mask.  Only the highest
904  *	bit of @xfer_mask is considered.
905  *
906  *	LOCKING:
907  *	None.
908  *
909  *	RETURNS:
910  *	Matching XFER_* value, 0xff if no match found.
911  */
ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913 {
914 	int highbit = fls(xfer_mask) - 1;
915 	const struct ata_xfer_ent *ent;
916 
917 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 			return ent->base + highbit - ent->shift;
920 	return 0xff;
921 }
922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923 
924 /**
925  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926  *	@xfer_mode: XFER_* of interest
927  *
928  *	Return matching xfer_mask for @xfer_mode.
929  *
930  *	LOCKING:
931  *	None.
932  *
933  *	RETURNS:
934  *	Matching xfer_mask, 0 if no match found.
935  */
ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937 {
938 	const struct ata_xfer_ent *ent;
939 
940 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 				& ~((1 << ent->shift) - 1);
944 	return 0;
945 }
946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947 
948 /**
949  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950  *	@xfer_mode: XFER_* of interest
951  *
952  *	Return matching xfer_shift for @xfer_mode.
953  *
954  *	LOCKING:
955  *	None.
956  *
957  *	RETURNS:
958  *	Matching xfer_shift, -1 if no match found.
959  */
ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode)
961 {
962 	const struct ata_xfer_ent *ent;
963 
964 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 			return ent->shift;
967 	return -1;
968 }
969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970 
971 /**
972  *	ata_mode_string - convert xfer_mask to string
973  *	@xfer_mask: mask of bits supported; only highest bit counts.
974  *
975  *	Determine string which represents the highest speed
976  *	(highest bit in @modemask).
977  *
978  *	LOCKING:
979  *	None.
980  *
981  *	RETURNS:
982  *	Constant C string representing highest speed listed in
983  *	@mode_mask, or the constant C string "<n/a>".
984  */
ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask)
986 {
987 	static const char * const xfer_mode_str[] = {
988 		"PIO0",
989 		"PIO1",
990 		"PIO2",
991 		"PIO3",
992 		"PIO4",
993 		"PIO5",
994 		"PIO6",
995 		"MWDMA0",
996 		"MWDMA1",
997 		"MWDMA2",
998 		"MWDMA3",
999 		"MWDMA4",
1000 		"UDMA/16",
1001 		"UDMA/25",
1002 		"UDMA/33",
1003 		"UDMA/44",
1004 		"UDMA/66",
1005 		"UDMA/100",
1006 		"UDMA/133",
1007 		"UDMA7",
1008 	};
1009 	int highbit;
1010 
1011 	highbit = fls(xfer_mask) - 1;
1012 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 		return xfer_mode_str[highbit];
1014 	return "<n/a>";
1015 }
1016 EXPORT_SYMBOL_GPL(ata_mode_string);
1017 
sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 	static const char * const spd_str[] = {
1021 		"1.5 Gbps",
1022 		"3.0 Gbps",
1023 		"6.0 Gbps",
1024 	};
1025 
1026 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 		return "<unknown>";
1028 	return spd_str[spd - 1];
1029 }
1030 
1031 /**
1032  *	ata_dev_classify - determine device type based on ATA-spec signature
1033  *	@tf: ATA taskfile register set for device to be identified
1034  *
1035  *	Determine from taskfile register contents whether a device is
1036  *	ATA or ATAPI, as per "Signature and persistence" section
1037  *	of ATA/PI spec (volume 1, sect 5.14).
1038  *
1039  *	LOCKING:
1040  *	None.
1041  *
1042  *	RETURNS:
1043  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045  */
ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 	/* Apple's open source Darwin code hints that some devices only
1049 	 * put a proper signature into the LBA mid/high registers,
1050 	 * So, we only check those.  It's sufficient for uniqueness.
1051 	 *
1052 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1055 	 * spec has never mentioned about using different signatures
1056 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1057 	 * Multiplier specification began to use 0x69/0x96 to identify
1058 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 	 * 0x69/0x96 shortly and described them as reserved for
1061 	 * SerialATA.
1062 	 *
1063 	 * We follow the current spec and consider that 0x69/0x96
1064 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 	 * SEMB signature.  This is worked around in
1067 	 * ata_dev_read_id().
1068 	 */
1069 	if (tf->lbam == 0 && tf->lbah == 0)
1070 		return ATA_DEV_ATA;
1071 
1072 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 		return ATA_DEV_ATAPI;
1074 
1075 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 		return ATA_DEV_PMP;
1077 
1078 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 		return ATA_DEV_SEMB;
1080 
1081 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 		return ATA_DEV_ZAC;
1083 
1084 	return ATA_DEV_UNKNOWN;
1085 }
1086 EXPORT_SYMBOL_GPL(ata_dev_classify);
1087 
1088 /**
1089  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1090  *	@id: IDENTIFY DEVICE results we will examine
1091  *	@s: string into which data is output
1092  *	@ofs: offset into identify device page
1093  *	@len: length of string to return. must be an even number.
1094  *
1095  *	The strings in the IDENTIFY DEVICE page are broken up into
1096  *	16-bit chunks.  Run through the string, and output each
1097  *	8-bit chunk linearly, regardless of platform.
1098  *
1099  *	LOCKING:
1100  *	caller.
1101  */
1102 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s,
1104 		   unsigned int ofs, unsigned int len)
1105 {
1106 	unsigned int c;
1107 
1108 	BUG_ON(len & 1);
1109 
1110 	while (len > 0) {
1111 		c = id[ofs] >> 8;
1112 		*s = c;
1113 		s++;
1114 
1115 		c = id[ofs] & 0xff;
1116 		*s = c;
1117 		s++;
1118 
1119 		ofs++;
1120 		len -= 2;
1121 	}
1122 }
1123 EXPORT_SYMBOL_GPL(ata_id_string);
1124 
1125 /**
1126  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127  *	@id: IDENTIFY DEVICE results we will examine
1128  *	@s: string into which data is output
1129  *	@ofs: offset into identify device page
1130  *	@len: length of string to return. must be an odd number.
1131  *
1132  *	This function is identical to ata_id_string except that it
1133  *	trims trailing spaces and terminates the resulting string with
1134  *	null.  @len must be actual maximum length (even number) + 1.
1135  *
1136  *	LOCKING:
1137  *	caller.
1138  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s,
1140 		     unsigned int ofs, unsigned int len)
1141 {
1142 	unsigned char *p;
1143 
1144 	ata_id_string(id, s, ofs, len - 1);
1145 
1146 	p = s + strnlen(s, len - 1);
1147 	while (p > s && p[-1] == ' ')
1148 		p--;
1149 	*p = '\0';
1150 }
1151 EXPORT_SYMBOL_GPL(ata_id_c_string);
1152 
ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id)
1154 {
1155 	if (ata_id_has_lba(id)) {
1156 		if (ata_id_has_lba48(id))
1157 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158 
1159 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 	}
1161 
1162 	if (ata_id_current_chs_valid(id))
1163 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 		       (u32)id[ATA_ID_CUR_SECTORS];
1165 
1166 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 	       (u32)id[ATA_ID_SECTORS];
1168 }
1169 
ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171 {
1172 	u64 sectors = 0;
1173 
1174 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 	sectors |= (tf->lbah & 0xff) << 16;
1178 	sectors |= (tf->lbam & 0xff) << 8;
1179 	sectors |= (tf->lbal & 0xff);
1180 
1181 	return sectors;
1182 }
1183 
ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185 {
1186 	u64 sectors = 0;
1187 
1188 	sectors |= (tf->device & 0x0f) << 24;
1189 	sectors |= (tf->lbah & 0xff) << 16;
1190 	sectors |= (tf->lbam & 0xff) << 8;
1191 	sectors |= (tf->lbal & 0xff);
1192 
1193 	return sectors;
1194 }
1195 
1196 /**
1197  *	ata_read_native_max_address - Read native max address
1198  *	@dev: target device
1199  *	@max_sectors: out parameter for the result native max address
1200  *
1201  *	Perform an LBA48 or LBA28 native size query upon the device in
1202  *	question.
1203  *
1204  *	RETURNS:
1205  *	0 on success, -EACCES if command is aborted by the drive.
1206  *	-EIO on other errors.
1207  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209 {
1210 	unsigned int err_mask;
1211 	struct ata_taskfile tf;
1212 	int lba48 = ata_id_has_lba48(dev->id);
1213 
1214 	ata_tf_init(dev, &tf);
1215 
1216 	/* always clear all address registers */
1217 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218 
1219 	if (lba48) {
1220 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 		tf.flags |= ATA_TFLAG_LBA48;
1222 	} else
1223 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1224 
1225 	tf.protocol = ATA_PROT_NODATA;
1226 	tf.device |= ATA_LBA;
1227 
1228 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 	if (err_mask) {
1230 		ata_dev_warn(dev,
1231 			     "failed to read native max address (err_mask=0x%x)\n",
1232 			     err_mask);
1233 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 			return -EACCES;
1235 		return -EIO;
1236 	}
1237 
1238 	if (lba48)
1239 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 	else
1241 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1242 	if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 		(*max_sectors)--;
1244 	return 0;
1245 }
1246 
1247 /**
1248  *	ata_set_max_sectors - Set max sectors
1249  *	@dev: target device
1250  *	@new_sectors: new max sectors value to set for the device
1251  *
1252  *	Set max sectors of @dev to @new_sectors.
1253  *
1254  *	RETURNS:
1255  *	0 on success, -EACCES if command is aborted or denied (due to
1256  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1257  *	errors.
1258  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260 {
1261 	unsigned int err_mask;
1262 	struct ata_taskfile tf;
1263 	int lba48 = ata_id_has_lba48(dev->id);
1264 
1265 	new_sectors--;
1266 
1267 	ata_tf_init(dev, &tf);
1268 
1269 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270 
1271 	if (lba48) {
1272 		tf.command = ATA_CMD_SET_MAX_EXT;
1273 		tf.flags |= ATA_TFLAG_LBA48;
1274 
1275 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 	} else {
1279 		tf.command = ATA_CMD_SET_MAX;
1280 
1281 		tf.device |= (new_sectors >> 24) & 0xf;
1282 	}
1283 
1284 	tf.protocol = ATA_PROT_NODATA;
1285 	tf.device |= ATA_LBA;
1286 
1287 	tf.lbal = (new_sectors >> 0) & 0xff;
1288 	tf.lbam = (new_sectors >> 8) & 0xff;
1289 	tf.lbah = (new_sectors >> 16) & 0xff;
1290 
1291 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 	if (err_mask) {
1293 		ata_dev_warn(dev,
1294 			     "failed to set max address (err_mask=0x%x)\n",
1295 			     err_mask);
1296 		if (err_mask == AC_ERR_DEV &&
1297 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 			return -EACCES;
1299 		return -EIO;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 /**
1306  *	ata_hpa_resize		-	Resize a device with an HPA set
1307  *	@dev: Device to resize
1308  *
1309  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310  *	it if required to the full size of the media. The caller must check
1311  *	the drive has the HPA feature set enabled.
1312  *
1313  *	RETURNS:
1314  *	0 on success, -errno on failure.
1315  */
ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev)
1317 {
1318 	bool print_info = ata_dev_print_info(dev);
1319 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 	u64 sectors = ata_id_n_sectors(dev->id);
1321 	u64 native_sectors;
1322 	int rc;
1323 
1324 	/* do we need to do it? */
1325 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 	    (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 		return 0;
1329 
1330 	/* read native max address */
1331 	rc = ata_read_native_max_address(dev, &native_sectors);
1332 	if (rc) {
1333 		/* If device aborted the command or HPA isn't going to
1334 		 * be unlocked, skip HPA resizing.
1335 		 */
1336 		if (rc == -EACCES || !unlock_hpa) {
1337 			ata_dev_warn(dev,
1338 				     "HPA support seems broken, skipping HPA handling\n");
1339 			dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340 
1341 			/* we can continue if device aborted the command */
1342 			if (rc == -EACCES)
1343 				rc = 0;
1344 		}
1345 
1346 		return rc;
1347 	}
1348 	dev->n_native_sectors = native_sectors;
1349 
1350 	/* nothing to do? */
1351 	if (native_sectors <= sectors || !unlock_hpa) {
1352 		if (!print_info || native_sectors == sectors)
1353 			return 0;
1354 
1355 		if (native_sectors > sectors)
1356 			ata_dev_info(dev,
1357 				"HPA detected: current %llu, native %llu\n",
1358 				(unsigned long long)sectors,
1359 				(unsigned long long)native_sectors);
1360 		else if (native_sectors < sectors)
1361 			ata_dev_warn(dev,
1362 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1363 				(unsigned long long)native_sectors,
1364 				(unsigned long long)sectors);
1365 		return 0;
1366 	}
1367 
1368 	/* let's unlock HPA */
1369 	rc = ata_set_max_sectors(dev, native_sectors);
1370 	if (rc == -EACCES) {
1371 		/* if device aborted the command, skip HPA resizing */
1372 		ata_dev_warn(dev,
1373 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 			     (unsigned long long)sectors,
1375 			     (unsigned long long)native_sectors);
1376 		dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 		return 0;
1378 	} else if (rc)
1379 		return rc;
1380 
1381 	/* re-read IDENTIFY data */
1382 	rc = ata_dev_reread_id(dev, 0);
1383 	if (rc) {
1384 		ata_dev_err(dev,
1385 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1386 		return rc;
1387 	}
1388 
1389 	if (print_info) {
1390 		u64 new_sectors = ata_id_n_sectors(dev->id);
1391 		ata_dev_info(dev,
1392 			"HPA unlocked: %llu -> %llu, native %llu\n",
1393 			(unsigned long long)sectors,
1394 			(unsigned long long)new_sectors,
1395 			(unsigned long long)native_sectors);
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1403  *	@dev: device from which the information is fetched
1404  *	@id: IDENTIFY DEVICE page to dump
1405  *
1406  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1407  *	page.
1408  *
1409  *	LOCKING:
1410  *	caller.
1411  */
1412 
ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414 {
1415 	ata_dev_dbg(dev,
1416 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1417 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1418 		"88==0x%04x  93==0x%04x\n",
1419 		id[49], id[53], id[63], id[64], id[75], id[80],
1420 		id[81], id[82], id[83], id[84], id[88], id[93]);
1421 }
1422 
1423 /**
1424  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425  *	@id: IDENTIFY data to compute xfer mask from
1426  *
1427  *	Compute the xfermask for this device. This is not as trivial
1428  *	as it seems if we must consider early devices correctly.
1429  *
1430  *	FIXME: pre IDE drive timing (do we care ?).
1431  *
1432  *	LOCKING:
1433  *	None.
1434  *
1435  *	RETURNS:
1436  *	Computed xfermask
1437  */
ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id)
1439 {
1440 	unsigned int pio_mask, mwdma_mask, udma_mask;
1441 
1442 	/* Usual case. Word 53 indicates word 64 is valid */
1443 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 		pio_mask <<= 3;
1446 		pio_mask |= 0x7;
1447 	} else {
1448 		/* If word 64 isn't valid then Word 51 high byte holds
1449 		 * the PIO timing number for the maximum. Turn it into
1450 		 * a mask.
1451 		 */
1452 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 		if (mode < 5)	/* Valid PIO range */
1454 			pio_mask = (2 << mode) - 1;
1455 		else
1456 			pio_mask = 1;
1457 
1458 		/* But wait.. there's more. Design your standards by
1459 		 * committee and you too can get a free iordy field to
1460 		 * process. However it is the speeds not the modes that
1461 		 * are supported... Note drivers using the timing API
1462 		 * will get this right anyway
1463 		 */
1464 	}
1465 
1466 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467 
1468 	if (ata_id_is_cfa(id)) {
1469 		/*
1470 		 *	Process compact flash extended modes
1471 		 */
1472 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474 
1475 		if (pio)
1476 			pio_mask |= (1 << 5);
1477 		if (pio > 1)
1478 			pio_mask |= (1 << 6);
1479 		if (dma)
1480 			mwdma_mask |= (1 << 3);
1481 		if (dma > 1)
1482 			mwdma_mask |= (1 << 4);
1483 	}
1484 
1485 	udma_mask = 0;
1486 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488 
1489 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490 }
1491 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494 {
1495 	struct completion *waiting = qc->private_data;
1496 
1497 	complete(waiting);
1498 }
1499 
1500 /**
1501  *	ata_exec_internal - execute libata internal command
1502  *	@dev: Device to which the command is sent
1503  *	@tf: Taskfile registers for the command and the result
1504  *	@cdb: CDB for packet command
1505  *	@dma_dir: Data transfer direction of the command
1506  *	@buf: Data buffer of the command
1507  *	@buflen: Length of data buffer
1508  *	@timeout: Timeout in msecs (0 for default)
1509  *
1510  *	Executes libata internal command with timeout. @tf contains
1511  *	the command on entry and the result on return. Timeout and error
1512  *	conditions are reported via the return value. No recovery action
1513  *	is taken after a command times out. It is the caller's duty to
1514  *	clean up after timeout.
1515  *
1516  *	LOCKING:
1517  *	None.  Should be called with kernel context, might sleep.
1518  *
1519  *	RETURNS:
1520  *	Zero on success, AC_ERR_* mask on failure
1521  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 			       const u8 *cdb, enum dma_data_direction dma_dir,
1524 			       void *buf, unsigned int buflen,
1525 			       unsigned int timeout)
1526 {
1527 	struct ata_link *link = dev->link;
1528 	struct ata_port *ap = link->ap;
1529 	u8 command = tf->command;
1530 	struct ata_queued_cmd *qc;
1531 	struct scatterlist sgl;
1532 	unsigned int preempted_tag;
1533 	u32 preempted_sactive;
1534 	u64 preempted_qc_active;
1535 	int preempted_nr_active_links;
1536 	bool auto_timeout = false;
1537 	DECLARE_COMPLETION_ONSTACK(wait);
1538 	unsigned long flags;
1539 	unsigned int err_mask;
1540 	int rc;
1541 
1542 	if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 		return AC_ERR_INVALID;
1544 
1545 	spin_lock_irqsave(ap->lock, flags);
1546 
1547 	/* No internal command while frozen */
1548 	if (ata_port_is_frozen(ap)) {
1549 		spin_unlock_irqrestore(ap->lock, flags);
1550 		return AC_ERR_SYSTEM;
1551 	}
1552 
1553 	/* Initialize internal qc */
1554 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555 
1556 	qc->tag = ATA_TAG_INTERNAL;
1557 	qc->hw_tag = 0;
1558 	qc->scsicmd = NULL;
1559 	qc->ap = ap;
1560 	qc->dev = dev;
1561 	ata_qc_reinit(qc);
1562 
1563 	preempted_tag = link->active_tag;
1564 	preempted_sactive = link->sactive;
1565 	preempted_qc_active = ap->qc_active;
1566 	preempted_nr_active_links = ap->nr_active_links;
1567 	link->active_tag = ATA_TAG_POISON;
1568 	link->sactive = 0;
1569 	ap->qc_active = 0;
1570 	ap->nr_active_links = 0;
1571 
1572 	/* Prepare and issue qc */
1573 	qc->tf = *tf;
1574 	if (cdb)
1575 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576 
1577 	/* Some SATA bridges need us to indicate data xfer direction */
1578 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 	    dma_dir == DMA_FROM_DEVICE)
1580 		qc->tf.feature |= ATAPI_DMADIR;
1581 
1582 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 	qc->dma_dir = dma_dir;
1584 	if (dma_dir != DMA_NONE) {
1585 		sg_init_one(&sgl, buf, buflen);
1586 		ata_sg_init(qc, &sgl, 1);
1587 		qc->nbytes = buflen;
1588 	}
1589 
1590 	qc->private_data = &wait;
1591 	qc->complete_fn = ata_qc_complete_internal;
1592 
1593 	ata_qc_issue(qc);
1594 
1595 	spin_unlock_irqrestore(ap->lock, flags);
1596 
1597 	if (!timeout) {
1598 		if (ata_probe_timeout) {
1599 			timeout = ata_probe_timeout * 1000;
1600 		} else {
1601 			timeout = ata_internal_cmd_timeout(dev, command);
1602 			auto_timeout = true;
1603 		}
1604 	}
1605 
1606 	ata_eh_release(ap);
1607 
1608 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609 
1610 	ata_eh_acquire(ap);
1611 
1612 	ata_sff_flush_pio_task(ap);
1613 
1614 	if (!rc) {
1615 		/*
1616 		 * We are racing with irq here. If we lose, the following test
1617 		 * prevents us from completing the qc twice. If we win, the port
1618 		 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 		 */
1620 		spin_lock_irqsave(ap->lock, flags);
1621 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 			qc->err_mask |= AC_ERR_TIMEOUT;
1623 			ata_port_freeze(ap);
1624 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 				     timeout, command);
1626 		}
1627 		spin_unlock_irqrestore(ap->lock, flags);
1628 	}
1629 
1630 	if (ap->ops->post_internal_cmd)
1631 		ap->ops->post_internal_cmd(qc);
1632 
1633 	/* Perform minimal error analysis */
1634 	if (qc->flags & ATA_QCFLAG_EH) {
1635 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 			qc->err_mask |= AC_ERR_DEV;
1637 
1638 		if (!qc->err_mask)
1639 			qc->err_mask |= AC_ERR_OTHER;
1640 
1641 		if (qc->err_mask & ~AC_ERR_OTHER)
1642 			qc->err_mask &= ~AC_ERR_OTHER;
1643 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 		qc->result_tf.status |= ATA_SENSE;
1645 	}
1646 
1647 	/* Finish up */
1648 	spin_lock_irqsave(ap->lock, flags);
1649 
1650 	*tf = qc->result_tf;
1651 	err_mask = qc->err_mask;
1652 
1653 	ata_qc_free(qc);
1654 	link->active_tag = preempted_tag;
1655 	link->sactive = preempted_sactive;
1656 	ap->qc_active = preempted_qc_active;
1657 	ap->nr_active_links = preempted_nr_active_links;
1658 
1659 	spin_unlock_irqrestore(ap->lock, flags);
1660 
1661 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 		ata_internal_cmd_timed_out(dev, command);
1663 
1664 	return err_mask;
1665 }
1666 
1667 /**
1668  *	ata_pio_need_iordy	-	check if iordy needed
1669  *	@adev: ATA device
1670  *
1671  *	Check if the current speed of the device requires IORDY. Used
1672  *	by various controllers for chip configuration.
1673  */
ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675 {
1676 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1677 	 * lead to controller lock up on certain controllers if the
1678 	 * port is not occupied.  See bko#11703 for details.
1679 	 */
1680 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 		return 0;
1682 	/* Controller doesn't support IORDY.  Probably a pointless
1683 	 * check as the caller should know this.
1684 	 */
1685 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 		return 0;
1687 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1688 	if (ata_id_is_cfa(adev->id)
1689 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 		return 0;
1691 	/* PIO3 and higher it is mandatory */
1692 	if (adev->pio_mode > XFER_PIO_2)
1693 		return 1;
1694 	/* We turn it on when possible */
1695 	if (ata_id_has_iordy(adev->id))
1696 		return 1;
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700 
1701 /**
1702  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1703  *	@adev: ATA device
1704  *
1705  *	Compute the highest mode possible if we are not using iordy. Return
1706  *	-1 if no iordy mode is available.
1707  */
ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709 {
1710 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1712 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 		/* Is the speed faster than the drive allows non IORDY ? */
1714 		if (pio) {
1715 			/* This is cycle times not frequency - watch the logic! */
1716 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1717 				return 3 << ATA_SHIFT_PIO;
1718 			return 7 << ATA_SHIFT_PIO;
1719 		}
1720 	}
1721 	return 3 << ATA_SHIFT_PIO;
1722 }
1723 
1724 /**
1725  *	ata_do_dev_read_id		-	default ID read method
1726  *	@dev: device
1727  *	@tf: proposed taskfile
1728  *	@id: data buffer
1729  *
1730  *	Issue the identify taskfile and hand back the buffer containing
1731  *	identify data. For some RAID controllers and for pre ATA devices
1732  *	this function is wrapped or replaced by the driver
1733  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 				struct ata_taskfile *tf, __le16 *id)
1736 {
1737 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739 }
1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741 
1742 /**
1743  *	ata_dev_read_id - Read ID data from the specified device
1744  *	@dev: target device
1745  *	@p_class: pointer to class of the target device (may be changed)
1746  *	@flags: ATA_READID_* flags
1747  *	@id: buffer to read IDENTIFY data into
1748  *
1749  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1750  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1752  *	for pre-ATA4 drives.
1753  *
1754  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755  *	now we abort if we hit that case.
1756  *
1757  *	LOCKING:
1758  *	Kernel thread context (may sleep)
1759  *
1760  *	RETURNS:
1761  *	0 on success, -errno otherwise.
1762  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 		    unsigned int flags, u16 *id)
1765 {
1766 	struct ata_port *ap = dev->link->ap;
1767 	unsigned int class = *p_class;
1768 	struct ata_taskfile tf;
1769 	unsigned int err_mask = 0;
1770 	const char *reason;
1771 	bool is_semb = class == ATA_DEV_SEMB;
1772 	int may_fallback = 1, tried_spinup = 0;
1773 	int rc;
1774 
1775 retry:
1776 	ata_tf_init(dev, &tf);
1777 
1778 	switch (class) {
1779 	case ATA_DEV_SEMB:
1780 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1781 		fallthrough;
1782 	case ATA_DEV_ATA:
1783 	case ATA_DEV_ZAC:
1784 		tf.command = ATA_CMD_ID_ATA;
1785 		break;
1786 	case ATA_DEV_ATAPI:
1787 		tf.command = ATA_CMD_ID_ATAPI;
1788 		break;
1789 	default:
1790 		rc = -ENODEV;
1791 		reason = "unsupported class";
1792 		goto err_out;
1793 	}
1794 
1795 	tf.protocol = ATA_PROT_PIO;
1796 
1797 	/* Some devices choke if TF registers contain garbage.  Make
1798 	 * sure those are properly initialized.
1799 	 */
1800 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801 
1802 	/* Device presence detection is unreliable on some
1803 	 * controllers.  Always poll IDENTIFY if available.
1804 	 */
1805 	tf.flags |= ATA_TFLAG_POLLING;
1806 
1807 	if (ap->ops->read_id)
1808 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 	else
1810 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811 
1812 	if (err_mask) {
1813 		if (err_mask & AC_ERR_NODEV_HINT) {
1814 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 			return -ENOENT;
1816 		}
1817 
1818 		if (is_semb) {
1819 			ata_dev_info(dev,
1820 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 			/* SEMB is not supported yet */
1822 			*p_class = ATA_DEV_SEMB_UNSUP;
1823 			return 0;
1824 		}
1825 
1826 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 			/* Device or controller might have reported
1828 			 * the wrong device class.  Give a shot at the
1829 			 * other IDENTIFY if the current one is
1830 			 * aborted by the device.
1831 			 */
1832 			if (may_fallback) {
1833 				may_fallback = 0;
1834 
1835 				if (class == ATA_DEV_ATA)
1836 					class = ATA_DEV_ATAPI;
1837 				else
1838 					class = ATA_DEV_ATA;
1839 				goto retry;
1840 			}
1841 
1842 			/* Control reaches here iff the device aborted
1843 			 * both flavors of IDENTIFYs which happens
1844 			 * sometimes with phantom devices.
1845 			 */
1846 			ata_dev_dbg(dev,
1847 				    "both IDENTIFYs aborted, assuming NODEV\n");
1848 			return -ENOENT;
1849 		}
1850 
1851 		rc = -EIO;
1852 		reason = "I/O error";
1853 		goto err_out;
1854 	}
1855 
1856 	if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 		ata_dev_info(dev, "dumping IDENTIFY data, "
1858 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1859 			    class, may_fallback, tried_spinup);
1860 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 	}
1863 
1864 	/* Falling back doesn't make sense if ID data was read
1865 	 * successfully at least once.
1866 	 */
1867 	may_fallback = 0;
1868 
1869 	swap_buf_le16(id, ATA_ID_WORDS);
1870 
1871 	/* sanity check */
1872 	rc = -EINVAL;
1873 	reason = "device reports invalid type";
1874 
1875 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 			goto err_out;
1878 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 							ata_id_is_ata(id)) {
1880 			ata_dev_dbg(dev,
1881 				"host indicates ignore ATA devices, ignored\n");
1882 			return -ENOENT;
1883 		}
1884 	} else {
1885 		if (ata_id_is_ata(id))
1886 			goto err_out;
1887 	}
1888 
1889 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 		tried_spinup = 1;
1891 		/*
1892 		 * Drive powered-up in standby mode, and requires a specific
1893 		 * SET_FEATURES spin-up subcommand before it will accept
1894 		 * anything other than the original IDENTIFY command.
1895 		 */
1896 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 		if (err_mask && id[2] != 0x738c) {
1898 			rc = -EIO;
1899 			reason = "SPINUP failed";
1900 			goto err_out;
1901 		}
1902 		/*
1903 		 * If the drive initially returned incomplete IDENTIFY info,
1904 		 * we now must reissue the IDENTIFY command.
1905 		 */
1906 		if (id[2] == 0x37c8)
1907 			goto retry;
1908 	}
1909 
1910 	if ((flags & ATA_READID_POSTRESET) &&
1911 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 		/*
1913 		 * The exact sequence expected by certain pre-ATA4 drives is:
1914 		 * SRST RESET
1915 		 * IDENTIFY (optional in early ATA)
1916 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 		 * anything else..
1918 		 * Some drives were very specific about that exact sequence.
1919 		 *
1920 		 * Note that ATA4 says lba is mandatory so the second check
1921 		 * should never trigger.
1922 		 */
1923 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 			if (err_mask) {
1926 				rc = -EIO;
1927 				reason = "INIT_DEV_PARAMS failed";
1928 				goto err_out;
1929 			}
1930 
1931 			/* current CHS translation info (id[53-58]) might be
1932 			 * changed. reread the identify device info.
1933 			 */
1934 			flags &= ~ATA_READID_POSTRESET;
1935 			goto retry;
1936 		}
1937 	}
1938 
1939 	*p_class = class;
1940 
1941 	return 0;
1942 
1943  err_out:
1944 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 		     reason, err_mask);
1946 	return rc;
1947 }
1948 
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 			   bool set_active)
1951 {
1952 	/* Only applies to ATA and ZAC devices */
1953 	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 		return false;
1955 
1956 	ata_tf_init(dev, tf);
1957 	tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 	tf->protocol = ATA_PROT_NODATA;
1959 
1960 	if (set_active) {
1961 		/* VERIFY for 1 sector at lba=0 */
1962 		tf->command = ATA_CMD_VERIFY;
1963 		tf->nsect = 1;
1964 		if (dev->flags & ATA_DFLAG_LBA) {
1965 			tf->flags |= ATA_TFLAG_LBA;
1966 			tf->device |= ATA_LBA;
1967 		} else {
1968 			/* CHS */
1969 			tf->lbal = 0x1; /* sect */
1970 		}
1971 	} else {
1972 		tf->command = ATA_CMD_STANDBYNOW1;
1973 	}
1974 
1975 	return true;
1976 }
1977 
ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev)
1979 {
1980 	struct ata_taskfile tf;
1981 	unsigned int err_mask;
1982 
1983 	ata_tf_init(dev, &tf);
1984 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 	tf.protocol = ATA_PROT_NODATA;
1986 	tf.command = ATA_CMD_CHK_POWER;
1987 
1988 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 	if (err_mask) {
1990 		ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 			    err_mask);
1992 		/*
1993 		 * Assume we are in standby mode so that we always force a
1994 		 * spinup in ata_dev_power_set_active().
1995 		 */
1996 		return false;
1997 	}
1998 
1999 	ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000 
2001 	/* Active or idle */
2002 	return tf.nsect == 0xff;
2003 }
2004 
2005 /**
2006  *	ata_dev_power_set_standby - Set a device power mode to standby
2007  *	@dev: target device
2008  *
2009  *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010  *	For an HDD device, this spins down the disks.
2011  *
2012  *	LOCKING:
2013  *	Kernel thread context (may sleep).
2014  */
ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev)
2016 {
2017 	unsigned long ap_flags = dev->link->ap->flags;
2018 	struct ata_taskfile tf;
2019 	unsigned int err_mask;
2020 
2021 	/* If the device is already sleeping or in standby, do nothing. */
2022 	if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 	    !ata_dev_power_is_active(dev))
2024 		return;
2025 
2026 	/*
2027 	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 	 * causing some drives to spin up and down again. For these, do nothing
2029 	 * if we are being called on shutdown.
2030 	 */
2031 	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 	    system_state == SYSTEM_POWER_OFF)
2033 		return;
2034 
2035 	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 	    system_entering_hibernation())
2037 		return;
2038 
2039 	/* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 	if (!ata_dev_power_init_tf(dev, &tf, false))
2041 		return;
2042 
2043 	ata_dev_notice(dev, "Entering standby power mode\n");
2044 
2045 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 	if (err_mask)
2047 		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 			    err_mask);
2049 }
2050 
2051 /**
2052  *	ata_dev_power_set_active -  Set a device power mode to active
2053  *	@dev: target device
2054  *
2055  *	Issue a VERIFY command to enter to ensure that the device is in the
2056  *	active power mode. For a spun-down HDD (standby or idle power mode),
2057  *	the VERIFY command will complete after the disk spins up.
2058  *
2059  *	LOCKING:
2060  *	Kernel thread context (may sleep).
2061  */
ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev)
2063 {
2064 	struct ata_taskfile tf;
2065 	unsigned int err_mask;
2066 
2067 	/*
2068 	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 	 * if supported by the device.
2070 	 */
2071 	if (!ata_dev_power_init_tf(dev, &tf, true))
2072 		return;
2073 
2074 	/*
2075 	 * Check the device power state & condition and force a spinup with
2076 	 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 	 */
2078 	if (ata_dev_power_is_active(dev))
2079 		return;
2080 
2081 	ata_dev_notice(dev, "Entering active power mode\n");
2082 
2083 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 	if (err_mask)
2085 		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 			    err_mask);
2087 }
2088 
2089 /**
2090  *	ata_read_log_page - read a specific log page
2091  *	@dev: target device
2092  *	@log: log to read
2093  *	@page: page to read
2094  *	@buf: buffer to store read page
2095  *	@sectors: number of sectors to read
2096  *
2097  *	Read log page using READ_LOG_EXT command.
2098  *
2099  *	LOCKING:
2100  *	Kernel thread context (may sleep).
2101  *
2102  *	RETURNS:
2103  *	0 on success, AC_ERR_* mask otherwise.
2104  */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 			       u8 page, void *buf, unsigned int sectors)
2107 {
2108 	unsigned long ap_flags = dev->link->ap->flags;
2109 	struct ata_taskfile tf;
2110 	unsigned int err_mask;
2111 	bool dma = false;
2112 
2113 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114 
2115 	/*
2116 	 * Return error without actually issuing the command on controllers
2117 	 * which e.g. lockup on a read log page.
2118 	 */
2119 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 		return AC_ERR_DEV;
2121 
2122 retry:
2123 	ata_tf_init(dev, &tf);
2124 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 	    !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 		tf.protocol = ATA_PROT_DMA;
2128 		dma = true;
2129 	} else {
2130 		tf.command = ATA_CMD_READ_LOG_EXT;
2131 		tf.protocol = ATA_PROT_PIO;
2132 		dma = false;
2133 	}
2134 	tf.lbal = log;
2135 	tf.lbam = page;
2136 	tf.nsect = sectors;
2137 	tf.hob_nsect = sectors >> 8;
2138 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139 
2140 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 				     buf, sectors * ATA_SECT_SIZE, 0);
2142 
2143 	if (err_mask) {
2144 		if (dma) {
2145 			dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 			if (!ata_port_is_frozen(dev->link->ap))
2147 				goto retry;
2148 		}
2149 		ata_dev_err(dev,
2150 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 			    (unsigned int)log, (unsigned int)page, err_mask);
2152 	}
2153 
2154 	return err_mask;
2155 }
2156 
ata_clear_log_directory(struct ata_device * dev)2157 static inline void ata_clear_log_directory(struct ata_device *dev)
2158 {
2159 	memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160 }
2161 
ata_read_log_directory(struct ata_device * dev)2162 static int ata_read_log_directory(struct ata_device *dev)
2163 {
2164 	u16 version;
2165 
2166 	/* If the log page is already cached, do nothing. */
2167 	version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168 	if (version == 0x0001)
2169 		return 0;
2170 
2171 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172 		ata_clear_log_directory(dev);
2173 		return -EIO;
2174 	}
2175 
2176 	version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177 	if (version != 0x0001) {
2178 		ata_dev_err(dev, "Invalid log directory version 0x%04x\n",
2179 			    version);
2180 		ata_clear_log_directory(dev);
2181 		dev->quirks |= ATA_QUIRK_NO_LOG_DIR;
2182 		return -EINVAL;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
ata_log_supported(struct ata_device * dev,u8 log)2188 static int ata_log_supported(struct ata_device *dev, u8 log)
2189 {
2190 	if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2191 		return 0;
2192 
2193 	if (ata_read_log_directory(dev))
2194 		return 0;
2195 
2196 	return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2197 }
2198 
ata_identify_page_supported(struct ata_device * dev,u8 page)2199 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2200 {
2201 	unsigned int err, i;
2202 
2203 	if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2204 		return false;
2205 
2206 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2207 		/*
2208 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2209 		 * with ACS-3 (ATA version 10). Warn about the missing log
2210 		 * for drives which implement this ATA level or above.
2211 		 */
2212 		if (ata_id_major_version(dev->id) >= 10)
2213 			ata_dev_warn(dev,
2214 				"ATA Identify Device Log not supported\n");
2215 		dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2216 		return false;
2217 	}
2218 
2219 	/*
2220 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2221 	 * supported.
2222 	 */
2223 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2224 				dev->sector_buf, 1);
2225 	if (err)
2226 		return false;
2227 
2228 	for (i = 0; i < dev->sector_buf[8]; i++) {
2229 		if (dev->sector_buf[9 + i] == page)
2230 			return true;
2231 	}
2232 
2233 	return false;
2234 }
2235 
ata_do_link_spd_quirk(struct ata_device * dev)2236 static int ata_do_link_spd_quirk(struct ata_device *dev)
2237 {
2238 	struct ata_link *plink = ata_dev_phys_link(dev);
2239 	u32 target, target_limit;
2240 
2241 	if (!sata_scr_valid(plink))
2242 		return 0;
2243 
2244 	if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2245 		target = 1;
2246 	else
2247 		return 0;
2248 
2249 	target_limit = (1 << target) - 1;
2250 
2251 	/* if already on stricter limit, no need to push further */
2252 	if (plink->sata_spd_limit <= target_limit)
2253 		return 0;
2254 
2255 	plink->sata_spd_limit = target_limit;
2256 
2257 	/* Request another EH round by returning -EAGAIN if link is
2258 	 * going faster than the target speed.  Forward progress is
2259 	 * guaranteed by setting sata_spd_limit to target_limit above.
2260 	 */
2261 	if (plink->sata_spd > target) {
2262 		ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2263 			     sata_spd_string(target));
2264 		return -EAGAIN;
2265 	}
2266 	return 0;
2267 }
2268 
ata_dev_knobble(struct ata_device * dev)2269 static inline bool ata_dev_knobble(struct ata_device *dev)
2270 {
2271 	struct ata_port *ap = dev->link->ap;
2272 
2273 	if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2274 		return false;
2275 
2276 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2277 }
2278 
ata_dev_config_ncq_send_recv(struct ata_device * dev)2279 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2280 {
2281 	unsigned int err_mask;
2282 
2283 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2284 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2285 		return;
2286 	}
2287 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2288 				     0, dev->sector_buf, 1);
2289 	if (!err_mask) {
2290 		u8 *cmds = dev->ncq_send_recv_cmds;
2291 
2292 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2293 		memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2294 
2295 		if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2296 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2297 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2298 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2299 		}
2300 	}
2301 }
2302 
ata_dev_config_ncq_non_data(struct ata_device * dev)2303 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2304 {
2305 	unsigned int err_mask;
2306 
2307 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2308 		ata_dev_warn(dev,
2309 			     "NCQ Non-Data Log not supported\n");
2310 		return;
2311 	}
2312 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2313 				     0, dev->sector_buf, 1);
2314 	if (!err_mask)
2315 		memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2316 		       ATA_LOG_NCQ_NON_DATA_SIZE);
2317 }
2318 
ata_dev_config_ncq_prio(struct ata_device * dev)2319 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2320 {
2321 	unsigned int err_mask;
2322 
2323 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2324 		return;
2325 
2326 	err_mask = ata_read_log_page(dev,
2327 				     ATA_LOG_IDENTIFY_DEVICE,
2328 				     ATA_LOG_SATA_SETTINGS,
2329 				     dev->sector_buf, 1);
2330 	if (err_mask)
2331 		goto not_supported;
2332 
2333 	if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2334 		goto not_supported;
2335 
2336 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2337 
2338 	return;
2339 
2340 not_supported:
2341 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2342 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2343 }
2344 
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2345 static bool ata_dev_check_adapter(struct ata_device *dev,
2346 				  unsigned short vendor_id)
2347 {
2348 	struct pci_dev *pcidev = NULL;
2349 	struct device *parent_dev = NULL;
2350 
2351 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2352 	     parent_dev = parent_dev->parent) {
2353 		if (dev_is_pci(parent_dev)) {
2354 			pcidev = to_pci_dev(parent_dev);
2355 			if (pcidev->vendor == vendor_id)
2356 				return true;
2357 			break;
2358 		}
2359 	}
2360 
2361 	return false;
2362 }
2363 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2364 static int ata_dev_config_ncq(struct ata_device *dev,
2365 			       char *desc, size_t desc_sz)
2366 {
2367 	struct ata_port *ap = dev->link->ap;
2368 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2369 	unsigned int err_mask;
2370 	char *aa_desc = "";
2371 
2372 	if (!ata_id_has_ncq(dev->id)) {
2373 		desc[0] = '\0';
2374 		return 0;
2375 	}
2376 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2377 		return 0;
2378 	if (dev->quirks & ATA_QUIRK_NONCQ) {
2379 		snprintf(desc, desc_sz, "NCQ (not used)");
2380 		return 0;
2381 	}
2382 
2383 	if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2384 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2385 		snprintf(desc, desc_sz, "NCQ (not used)");
2386 		return 0;
2387 	}
2388 
2389 	if (ap->flags & ATA_FLAG_NCQ) {
2390 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2391 		dev->flags |= ATA_DFLAG_NCQ;
2392 	}
2393 
2394 	if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2395 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2396 		ata_id_has_fpdma_aa(dev->id)) {
2397 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2398 			SATA_FPDMA_AA);
2399 		if (err_mask) {
2400 			ata_dev_err(dev,
2401 				    "failed to enable AA (error_mask=0x%x)\n",
2402 				    err_mask);
2403 			if (err_mask != AC_ERR_DEV) {
2404 				dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2405 				return -EIO;
2406 			}
2407 		} else
2408 			aa_desc = ", AA";
2409 	}
2410 
2411 	if (hdepth >= ddepth)
2412 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2413 	else
2414 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2415 			ddepth, aa_desc);
2416 
2417 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2418 		if (ata_id_has_ncq_send_and_recv(dev->id))
2419 			ata_dev_config_ncq_send_recv(dev);
2420 		if (ata_id_has_ncq_non_data(dev->id))
2421 			ata_dev_config_ncq_non_data(dev);
2422 		if (ata_id_has_ncq_prio(dev->id))
2423 			ata_dev_config_ncq_prio(dev);
2424 	}
2425 
2426 	return 0;
2427 }
2428 
ata_dev_config_sense_reporting(struct ata_device * dev)2429 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2430 {
2431 	unsigned int err_mask;
2432 
2433 	if (!ata_id_has_sense_reporting(dev->id))
2434 		return;
2435 
2436 	if (ata_id_sense_reporting_enabled(dev->id))
2437 		return;
2438 
2439 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2440 	if (err_mask) {
2441 		ata_dev_dbg(dev,
2442 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2443 			    err_mask);
2444 	}
2445 }
2446 
ata_dev_config_zac(struct ata_device * dev)2447 static void ata_dev_config_zac(struct ata_device *dev)
2448 {
2449 	unsigned int err_mask;
2450 	u8 *identify_buf = dev->sector_buf;
2451 
2452 	dev->zac_zones_optimal_open = U32_MAX;
2453 	dev->zac_zones_optimal_nonseq = U32_MAX;
2454 	dev->zac_zones_max_open = U32_MAX;
2455 
2456 	if (!ata_dev_is_zac(dev))
2457 		return;
2458 
2459 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2460 		ata_dev_warn(dev,
2461 			     "ATA Zoned Information Log not supported\n");
2462 		return;
2463 	}
2464 
2465 	/*
2466 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2467 	 */
2468 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2469 				     ATA_LOG_ZONED_INFORMATION,
2470 				     identify_buf, 1);
2471 	if (!err_mask) {
2472 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2473 
2474 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2475 		if ((zoned_cap >> 63))
2476 			dev->zac_zoned_cap = (zoned_cap & 1);
2477 		opt_open = get_unaligned_le64(&identify_buf[24]);
2478 		if ((opt_open >> 63))
2479 			dev->zac_zones_optimal_open = (u32)opt_open;
2480 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2481 		if ((opt_nonseq >> 63))
2482 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2483 		max_open = get_unaligned_le64(&identify_buf[40]);
2484 		if ((max_open >> 63))
2485 			dev->zac_zones_max_open = (u32)max_open;
2486 	}
2487 }
2488 
ata_dev_config_trusted(struct ata_device * dev)2489 static void ata_dev_config_trusted(struct ata_device *dev)
2490 {
2491 	u64 trusted_cap;
2492 	unsigned int err;
2493 
2494 	if (!ata_id_has_trusted(dev->id))
2495 		return;
2496 
2497 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2498 		ata_dev_warn(dev,
2499 			     "Security Log not supported\n");
2500 		return;
2501 	}
2502 
2503 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2504 				dev->sector_buf, 1);
2505 	if (err)
2506 		return;
2507 
2508 	trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2509 	if (!(trusted_cap & (1ULL << 63))) {
2510 		ata_dev_dbg(dev,
2511 			    "Trusted Computing capability qword not valid!\n");
2512 		return;
2513 	}
2514 
2515 	if (trusted_cap & (1 << 0))
2516 		dev->flags |= ATA_DFLAG_TRUSTED;
2517 }
2518 
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2519 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2520 {
2521 	kfree(dev->cdl);
2522 	dev->cdl = NULL;
2523 }
2524 
ata_dev_init_cdl_resources(struct ata_device * dev)2525 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2526 {
2527 	struct ata_cdl *cdl = dev->cdl;
2528 	unsigned int err_mask;
2529 
2530 	if (!cdl) {
2531 		cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2532 		if (!cdl)
2533 			return -ENOMEM;
2534 		dev->cdl = cdl;
2535 	}
2536 
2537 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2538 				     ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2539 	if (err_mask) {
2540 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2541 		ata_dev_cleanup_cdl_resources(dev);
2542 		return -EIO;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
ata_dev_config_cdl(struct ata_device * dev)2548 static void ata_dev_config_cdl(struct ata_device *dev)
2549 {
2550 	unsigned int err_mask;
2551 	bool cdl_enabled;
2552 	u64 val;
2553 	int ret;
2554 
2555 	if (ata_id_major_version(dev->id) < 11)
2556 		goto not_supported;
2557 
2558 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2559 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2560 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2561 		goto not_supported;
2562 
2563 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2564 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2565 				     dev->sector_buf, 1);
2566 	if (err_mask)
2567 		goto not_supported;
2568 
2569 	/* Check Command Duration Limit Supported bits */
2570 	val = get_unaligned_le64(&dev->sector_buf[168]);
2571 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2572 		goto not_supported;
2573 
2574 	/* Warn the user if command duration guideline is not supported */
2575 	if (!(val & BIT_ULL(1)))
2576 		ata_dev_warn(dev,
2577 			"Command duration guideline is not supported\n");
2578 
2579 	/*
2580 	 * We must have support for the sense data for successful NCQ commands
2581 	 * log indicated by the successful NCQ command sense data supported bit.
2582 	 */
2583 	val = get_unaligned_le64(&dev->sector_buf[8]);
2584 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2585 		ata_dev_warn(dev,
2586 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2587 		goto not_supported;
2588 	}
2589 
2590 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2591 	if (!ata_id_has_ncq_autosense(dev->id)) {
2592 		ata_dev_warn(dev,
2593 			"CDL supported but NCQ autosense is not supported\n");
2594 		goto not_supported;
2595 	}
2596 
2597 	/*
2598 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2599 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2600 	 */
2601 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2602 				     ATA_LOG_CURRENT_SETTINGS,
2603 				     dev->sector_buf, 1);
2604 	if (err_mask)
2605 		goto not_supported;
2606 
2607 	val = get_unaligned_le64(&dev->sector_buf[8]);
2608 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2609 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2610 		if (!cdl_enabled) {
2611 			/* Enable CDL on the device */
2612 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2613 			if (err_mask) {
2614 				ata_dev_err(dev,
2615 					    "Enable CDL feature failed\n");
2616 				goto not_supported;
2617 			}
2618 		}
2619 	} else {
2620 		if (cdl_enabled) {
2621 			/* Disable CDL on the device */
2622 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2623 			if (err_mask) {
2624 				ata_dev_err(dev,
2625 					    "Disable CDL feature failed\n");
2626 				goto not_supported;
2627 			}
2628 		}
2629 	}
2630 
2631 	/*
2632 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2633 	 * sense data for successful NCQ commands is enabled to work properly.
2634 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2635 	 * if supported.
2636 	 */
2637 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2638 		err_mask = ata_dev_set_feature(dev,
2639 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2640 		if (err_mask) {
2641 			ata_dev_warn(dev,
2642 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2643 				     err_mask);
2644 			goto not_supported;
2645 		}
2646 	}
2647 
2648 	/* CDL is supported: allocate and initialize needed resources. */
2649 	ret = ata_dev_init_cdl_resources(dev);
2650 	if (ret) {
2651 		ata_dev_warn(dev, "Initialize CDL resources failed\n");
2652 		goto not_supported;
2653 	}
2654 
2655 	dev->flags |= ATA_DFLAG_CDL;
2656 
2657 	return;
2658 
2659 not_supported:
2660 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2661 	ata_dev_cleanup_cdl_resources(dev);
2662 }
2663 
ata_dev_config_lba(struct ata_device * dev)2664 static int ata_dev_config_lba(struct ata_device *dev)
2665 {
2666 	const u16 *id = dev->id;
2667 	const char *lba_desc;
2668 	char ncq_desc[32];
2669 	int ret;
2670 
2671 	dev->flags |= ATA_DFLAG_LBA;
2672 
2673 	if (ata_id_has_lba48(id)) {
2674 		lba_desc = "LBA48";
2675 		dev->flags |= ATA_DFLAG_LBA48;
2676 		if (dev->n_sectors >= (1UL << 28) &&
2677 		    ata_id_has_flush_ext(id))
2678 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2679 	} else {
2680 		lba_desc = "LBA";
2681 	}
2682 
2683 	/* config NCQ */
2684 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2685 
2686 	/* print device info to dmesg */
2687 	if (ata_dev_print_info(dev))
2688 		ata_dev_info(dev,
2689 			     "%llu sectors, multi %u: %s %s\n",
2690 			     (unsigned long long)dev->n_sectors,
2691 			     dev->multi_count, lba_desc, ncq_desc);
2692 
2693 	return ret;
2694 }
2695 
ata_dev_config_chs(struct ata_device * dev)2696 static void ata_dev_config_chs(struct ata_device *dev)
2697 {
2698 	const u16 *id = dev->id;
2699 
2700 	if (ata_id_current_chs_valid(id)) {
2701 		/* Current CHS translation is valid. */
2702 		dev->cylinders = id[54];
2703 		dev->heads     = id[55];
2704 		dev->sectors   = id[56];
2705 	} else {
2706 		/* Default translation */
2707 		dev->cylinders	= id[1];
2708 		dev->heads	= id[3];
2709 		dev->sectors	= id[6];
2710 	}
2711 
2712 	/* print device info to dmesg */
2713 	if (ata_dev_print_info(dev))
2714 		ata_dev_info(dev,
2715 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2716 			     (unsigned long long)dev->n_sectors,
2717 			     dev->multi_count, dev->cylinders,
2718 			     dev->heads, dev->sectors);
2719 }
2720 
ata_dev_config_fua(struct ata_device * dev)2721 static void ata_dev_config_fua(struct ata_device *dev)
2722 {
2723 	/* Ignore FUA support if its use is disabled globally */
2724 	if (!libata_fua)
2725 		goto nofua;
2726 
2727 	/* Ignore devices without support for WRITE DMA FUA EXT */
2728 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2729 		goto nofua;
2730 
2731 	/* Ignore known bad devices and devices that lack NCQ support */
2732 	if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2733 		goto nofua;
2734 
2735 	dev->flags |= ATA_DFLAG_FUA;
2736 
2737 	return;
2738 
2739 nofua:
2740 	dev->flags &= ~ATA_DFLAG_FUA;
2741 }
2742 
ata_dev_config_devslp(struct ata_device * dev)2743 static void ata_dev_config_devslp(struct ata_device *dev)
2744 {
2745 	u8 *sata_setting = dev->sector_buf;
2746 	unsigned int err_mask;
2747 	int i, j;
2748 
2749 	/*
2750 	 * Check device sleep capability. Get DevSlp timing variables
2751 	 * from SATA Settings page of Identify Device Data Log.
2752 	 */
2753 	if (!ata_id_has_devslp(dev->id) ||
2754 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2755 		return;
2756 
2757 	err_mask = ata_read_log_page(dev,
2758 				     ATA_LOG_IDENTIFY_DEVICE,
2759 				     ATA_LOG_SATA_SETTINGS,
2760 				     sata_setting, 1);
2761 	if (err_mask)
2762 		return;
2763 
2764 	dev->flags |= ATA_DFLAG_DEVSLP;
2765 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2766 		j = ATA_LOG_DEVSLP_OFFSET + i;
2767 		dev->devslp_timing[i] = sata_setting[j];
2768 	}
2769 }
2770 
ata_dev_config_cpr(struct ata_device * dev)2771 static void ata_dev_config_cpr(struct ata_device *dev)
2772 {
2773 	unsigned int err_mask;
2774 	size_t buf_len;
2775 	int i, nr_cpr = 0;
2776 	struct ata_cpr_log *cpr_log = NULL;
2777 	u8 *desc, *buf = NULL;
2778 
2779 	if (ata_id_major_version(dev->id) < 11)
2780 		goto out;
2781 
2782 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2783 	if (buf_len == 0)
2784 		goto out;
2785 
2786 	/*
2787 	 * Read the concurrent positioning ranges log (0x47). We can have at
2788 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2789 	 * size, so use the size reported in the GPL directory. Reading beyond
2790 	 * the supported length will result in an error.
2791 	 */
2792 	buf_len <<= 9;
2793 	buf = kzalloc(buf_len, GFP_KERNEL);
2794 	if (!buf)
2795 		goto out;
2796 
2797 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2798 				     0, buf, buf_len >> 9);
2799 	if (err_mask)
2800 		goto out;
2801 
2802 	nr_cpr = buf[0];
2803 	if (!nr_cpr)
2804 		goto out;
2805 
2806 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2807 	if (!cpr_log)
2808 		goto out;
2809 
2810 	cpr_log->nr_cpr = nr_cpr;
2811 	desc = &buf[64];
2812 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2813 		cpr_log->cpr[i].num = desc[0];
2814 		cpr_log->cpr[i].num_storage_elements = desc[1];
2815 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2816 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2817 	}
2818 
2819 out:
2820 	swap(dev->cpr_log, cpr_log);
2821 	kfree(cpr_log);
2822 	kfree(buf);
2823 }
2824 
2825 /*
2826  * Configure features related to link power management.
2827  */
ata_dev_config_lpm(struct ata_device * dev)2828 static void ata_dev_config_lpm(struct ata_device *dev)
2829 {
2830 	struct ata_port *ap = dev->link->ap;
2831 	unsigned int err_mask;
2832 
2833 	if (ap->flags & ATA_FLAG_NO_LPM) {
2834 		/*
2835 		 * When the port does not support LPM, we cannot support it on
2836 		 * the device either.
2837 		 */
2838 		dev->quirks |= ATA_QUIRK_NOLPM;
2839 	} else {
2840 		/*
2841 		 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2842 		 * them.
2843 		 */
2844 		if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845 		    (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846 			dev->quirks |= ATA_QUIRK_NOLPM;
2847 
2848 		/* ATI specific quirk */
2849 		if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2850 		    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2851 			dev->quirks |= ATA_QUIRK_NOLPM;
2852 	}
2853 
2854 	if (dev->quirks & ATA_QUIRK_NOLPM &&
2855 	    ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2856 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2857 		ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2858 	}
2859 
2860 	/*
2861 	 * Device Initiated Power Management (DIPM) is normally disabled by
2862 	 * default on a device. However, DIPM may have been enabled and that
2863 	 * setting kept even after COMRESET because of the Software Settings
2864 	 * Preservation feature. So if the port does not support DIPM and the
2865 	 * device does, disable DIPM on the device.
2866 	 */
2867 	if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2868 		err_mask = ata_dev_set_feature(dev,
2869 					SETFEATURES_SATA_DISABLE, SATA_DIPM);
2870 		if (err_mask && err_mask != AC_ERR_DEV)
2871 			ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2872 				    err_mask);
2873 	}
2874 }
2875 
ata_dev_print_features(struct ata_device * dev)2876 static void ata_dev_print_features(struct ata_device *dev)
2877 {
2878 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2879 		return;
2880 
2881 	ata_dev_info(dev,
2882 		     "Features:%s%s%s%s%s%s%s%s%s%s\n",
2883 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2884 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2885 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2886 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2887 		     ata_id_has_hipm(dev->id) ? " HIPM" : "",
2888 		     ata_id_has_dipm(dev->id) ? " DIPM" : "",
2889 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2890 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2891 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2892 		     dev->cpr_log ? " CPR" : "");
2893 }
2894 
2895 /**
2896  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2897  *	@dev: Target device to configure
2898  *
2899  *	Configure @dev according to @dev->id.  Generic and low-level
2900  *	driver specific fixups are also applied.
2901  *
2902  *	LOCKING:
2903  *	Kernel thread context (may sleep)
2904  *
2905  *	RETURNS:
2906  *	0 on success, -errno otherwise
2907  */
ata_dev_configure(struct ata_device * dev)2908 int ata_dev_configure(struct ata_device *dev)
2909 {
2910 	struct ata_port *ap = dev->link->ap;
2911 	bool print_info = ata_dev_print_info(dev);
2912 	const u16 *id = dev->id;
2913 	unsigned int xfer_mask;
2914 	unsigned int err_mask;
2915 	char revbuf[7];		/* XYZ-99\0 */
2916 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2917 	char modelbuf[ATA_ID_PROD_LEN+1];
2918 	int rc;
2919 
2920 	if (!ata_dev_enabled(dev)) {
2921 		ata_dev_dbg(dev, "no device\n");
2922 		return 0;
2923 	}
2924 
2925 	/* Clear the general purpose log directory cache. */
2926 	ata_clear_log_directory(dev);
2927 
2928 	/* Set quirks */
2929 	dev->quirks |= ata_dev_quirks(dev);
2930 	ata_force_quirks(dev);
2931 
2932 	if (dev->quirks & ATA_QUIRK_DISABLE) {
2933 		ata_dev_info(dev, "unsupported device, disabling\n");
2934 		ata_dev_disable(dev);
2935 		return 0;
2936 	}
2937 
2938 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2939 	    dev->class == ATA_DEV_ATAPI) {
2940 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2941 			     atapi_enabled ? "not supported with this driver"
2942 			     : "disabled");
2943 		ata_dev_disable(dev);
2944 		return 0;
2945 	}
2946 
2947 	rc = ata_do_link_spd_quirk(dev);
2948 	if (rc)
2949 		return rc;
2950 
2951 	/* let ACPI work its magic */
2952 	rc = ata_acpi_on_devcfg(dev);
2953 	if (rc)
2954 		return rc;
2955 
2956 	/* massage HPA, do it early as it might change IDENTIFY data */
2957 	rc = ata_hpa_resize(dev);
2958 	if (rc)
2959 		return rc;
2960 
2961 	/* print device capabilities */
2962 	ata_dev_dbg(dev,
2963 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2964 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2965 		    __func__,
2966 		    id[49], id[82], id[83], id[84],
2967 		    id[85], id[86], id[87], id[88]);
2968 
2969 	/* initialize to-be-configured parameters */
2970 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2971 	dev->max_sectors = 0;
2972 	dev->cdb_len = 0;
2973 	dev->n_sectors = 0;
2974 	dev->cylinders = 0;
2975 	dev->heads = 0;
2976 	dev->sectors = 0;
2977 	dev->multi_count = 0;
2978 
2979 	/*
2980 	 * common ATA, ATAPI feature tests
2981 	 */
2982 
2983 	/* find max transfer mode; for printk only */
2984 	xfer_mask = ata_id_xfermask(id);
2985 
2986 	ata_dump_id(dev, id);
2987 
2988 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2989 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2990 			sizeof(fwrevbuf));
2991 
2992 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2993 			sizeof(modelbuf));
2994 
2995 	/* ATA-specific feature tests */
2996 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2997 		if (ata_id_is_cfa(id)) {
2998 			/* CPRM may make this media unusable */
2999 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
3000 				ata_dev_warn(dev,
3001 	"supports DRM functions and may not be fully accessible\n");
3002 			snprintf(revbuf, 7, "CFA");
3003 		} else {
3004 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3005 			/* Warn the user if the device has TPM extensions */
3006 			if (ata_id_has_tpm(id))
3007 				ata_dev_warn(dev,
3008 	"supports DRM functions and may not be fully accessible\n");
3009 		}
3010 
3011 		dev->n_sectors = ata_id_n_sectors(id);
3012 
3013 		/* get current R/W Multiple count setting */
3014 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3015 			unsigned int max = dev->id[47] & 0xff;
3016 			unsigned int cnt = dev->id[59] & 0xff;
3017 			/* only recognize/allow powers of two here */
3018 			if (is_power_of_2(max) && is_power_of_2(cnt))
3019 				if (cnt <= max)
3020 					dev->multi_count = cnt;
3021 		}
3022 
3023 		/* print device info to dmesg */
3024 		if (print_info)
3025 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
3026 				     revbuf, modelbuf, fwrevbuf,
3027 				     ata_mode_string(xfer_mask));
3028 
3029 		if (ata_id_has_lba(id)) {
3030 			rc = ata_dev_config_lba(dev);
3031 			if (rc)
3032 				return rc;
3033 		} else {
3034 			ata_dev_config_chs(dev);
3035 		}
3036 
3037 		ata_dev_config_lpm(dev);
3038 		ata_dev_config_fua(dev);
3039 		ata_dev_config_devslp(dev);
3040 		ata_dev_config_sense_reporting(dev);
3041 		ata_dev_config_zac(dev);
3042 		ata_dev_config_trusted(dev);
3043 		ata_dev_config_cpr(dev);
3044 		ata_dev_config_cdl(dev);
3045 		dev->cdb_len = 32;
3046 
3047 		if (print_info)
3048 			ata_dev_print_features(dev);
3049 	}
3050 
3051 	/* ATAPI-specific feature tests */
3052 	else if (dev->class == ATA_DEV_ATAPI) {
3053 		const char *cdb_intr_string = "";
3054 		const char *atapi_an_string = "";
3055 		const char *dma_dir_string = "";
3056 		u32 sntf;
3057 
3058 		rc = atapi_cdb_len(id);
3059 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3060 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3061 			rc = -EINVAL;
3062 			goto err_out_nosup;
3063 		}
3064 		dev->cdb_len = (unsigned int) rc;
3065 
3066 		/* Enable ATAPI AN if both the host and device have
3067 		 * the support.  If PMP is attached, SNTF is required
3068 		 * to enable ATAPI AN to discern between PHY status
3069 		 * changed notifications and ATAPI ANs.
3070 		 */
3071 		if (atapi_an &&
3072 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3073 		    (!sata_pmp_attached(ap) ||
3074 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3075 			/* issue SET feature command to turn this on */
3076 			err_mask = ata_dev_set_feature(dev,
3077 					SETFEATURES_SATA_ENABLE, SATA_AN);
3078 			if (err_mask)
3079 				ata_dev_err(dev,
3080 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
3081 					    err_mask);
3082 			else {
3083 				dev->flags |= ATA_DFLAG_AN;
3084 				atapi_an_string = ", ATAPI AN";
3085 			}
3086 		}
3087 
3088 		if (ata_id_cdb_intr(dev->id)) {
3089 			dev->flags |= ATA_DFLAG_CDB_INTR;
3090 			cdb_intr_string = ", CDB intr";
3091 		}
3092 
3093 		if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3094 		    atapi_id_dmadir(dev->id)) {
3095 			dev->flags |= ATA_DFLAG_DMADIR;
3096 			dma_dir_string = ", DMADIR";
3097 		}
3098 
3099 		if (ata_id_has_da(dev->id)) {
3100 			dev->flags |= ATA_DFLAG_DA;
3101 			zpodd_init(dev);
3102 		}
3103 
3104 		/* print device info to dmesg */
3105 		if (print_info)
3106 			ata_dev_info(dev,
3107 				     "ATAPI: %s, %s, max %s%s%s%s\n",
3108 				     modelbuf, fwrevbuf,
3109 				     ata_mode_string(xfer_mask),
3110 				     cdb_intr_string, atapi_an_string,
3111 				     dma_dir_string);
3112 	}
3113 
3114 	/* determine max_sectors */
3115 	dev->max_sectors = ATA_MAX_SECTORS;
3116 	if (dev->flags & ATA_DFLAG_LBA48)
3117 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3118 
3119 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3120 	   200 sectors */
3121 	if (ata_dev_knobble(dev)) {
3122 		if (print_info)
3123 			ata_dev_info(dev, "applying bridge limits\n");
3124 		dev->udma_mask &= ATA_UDMA5;
3125 		dev->max_sectors = ATA_MAX_SECTORS;
3126 	}
3127 
3128 	if ((dev->class == ATA_DEV_ATAPI) &&
3129 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3130 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3131 		dev->quirks |= ATA_QUIRK_STUCK_ERR;
3132 	}
3133 
3134 	if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3135 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3136 					 dev->max_sectors);
3137 
3138 	if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3139 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3140 					 dev->max_sectors);
3141 
3142 	if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3143 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3144 
3145 	if (ap->ops->dev_config)
3146 		ap->ops->dev_config(dev);
3147 
3148 	if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3149 		/* Let the user know. We don't want to disallow opens for
3150 		   rescue purposes, or in case the vendor is just a blithering
3151 		   idiot. Do this after the dev_config call as some controllers
3152 		   with buggy firmware may want to avoid reporting false device
3153 		   bugs */
3154 
3155 		if (print_info) {
3156 			ata_dev_warn(dev,
3157 "Drive reports diagnostics failure. This may indicate a drive\n");
3158 			ata_dev_warn(dev,
3159 "fault or invalid emulation. Contact drive vendor for information.\n");
3160 		}
3161 	}
3162 
3163 	if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3164 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3165 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3166 	}
3167 
3168 	return 0;
3169 
3170 err_out_nosup:
3171 	return rc;
3172 }
3173 
3174 /**
3175  *	ata_cable_40wire	-	return 40 wire cable type
3176  *	@ap: port
3177  *
3178  *	Helper method for drivers which want to hardwire 40 wire cable
3179  *	detection.
3180  */
3181 
ata_cable_40wire(struct ata_port * ap)3182 int ata_cable_40wire(struct ata_port *ap)
3183 {
3184 	return ATA_CBL_PATA40;
3185 }
3186 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3187 
3188 /**
3189  *	ata_cable_80wire	-	return 80 wire cable type
3190  *	@ap: port
3191  *
3192  *	Helper method for drivers which want to hardwire 80 wire cable
3193  *	detection.
3194  */
3195 
ata_cable_80wire(struct ata_port * ap)3196 int ata_cable_80wire(struct ata_port *ap)
3197 {
3198 	return ATA_CBL_PATA80;
3199 }
3200 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3201 
3202 /**
3203  *	ata_cable_unknown	-	return unknown PATA cable.
3204  *	@ap: port
3205  *
3206  *	Helper method for drivers which have no PATA cable detection.
3207  */
3208 
ata_cable_unknown(struct ata_port * ap)3209 int ata_cable_unknown(struct ata_port *ap)
3210 {
3211 	return ATA_CBL_PATA_UNK;
3212 }
3213 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3214 
3215 /**
3216  *	ata_cable_ignore	-	return ignored PATA cable.
3217  *	@ap: port
3218  *
3219  *	Helper method for drivers which don't use cable type to limit
3220  *	transfer mode.
3221  */
ata_cable_ignore(struct ata_port * ap)3222 int ata_cable_ignore(struct ata_port *ap)
3223 {
3224 	return ATA_CBL_PATA_IGN;
3225 }
3226 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3227 
3228 /**
3229  *	ata_cable_sata	-	return SATA cable type
3230  *	@ap: port
3231  *
3232  *	Helper method for drivers which have SATA cables
3233  */
3234 
ata_cable_sata(struct ata_port * ap)3235 int ata_cable_sata(struct ata_port *ap)
3236 {
3237 	return ATA_CBL_SATA;
3238 }
3239 EXPORT_SYMBOL_GPL(ata_cable_sata);
3240 
3241 /**
3242  *	sata_print_link_status - Print SATA link status
3243  *	@link: SATA link to printk link status about
3244  *
3245  *	This function prints link speed and status of a SATA link.
3246  *
3247  *	LOCKING:
3248  *	None.
3249  */
sata_print_link_status(struct ata_link * link)3250 static void sata_print_link_status(struct ata_link *link)
3251 {
3252 	u32 sstatus, scontrol, tmp;
3253 
3254 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3255 		return;
3256 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3257 		return;
3258 
3259 	if (ata_phys_link_online(link)) {
3260 		tmp = (sstatus >> 4) & 0xf;
3261 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3262 			      sata_spd_string(tmp), sstatus, scontrol);
3263 	} else {
3264 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3265 			      sstatus, scontrol);
3266 	}
3267 }
3268 
3269 /**
3270  *	ata_dev_pair		-	return other device on cable
3271  *	@adev: device
3272  *
3273  *	Obtain the other device on the same cable, or if none is
3274  *	present NULL is returned
3275  */
3276 
ata_dev_pair(struct ata_device * adev)3277 struct ata_device *ata_dev_pair(struct ata_device *adev)
3278 {
3279 	struct ata_link *link = adev->link;
3280 	struct ata_device *pair = &link->device[1 - adev->devno];
3281 	if (!ata_dev_enabled(pair))
3282 		return NULL;
3283 	return pair;
3284 }
3285 EXPORT_SYMBOL_GPL(ata_dev_pair);
3286 
3287 #ifdef CONFIG_ATA_ACPI
3288 /**
3289  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3290  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3291  *	@cycle: cycle duration in ns
3292  *
3293  *	Return matching xfer mode for @cycle.  The returned mode is of
3294  *	the transfer type specified by @xfer_shift.  If @cycle is too
3295  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3296  *	than the fastest known mode, the fasted mode is returned.
3297  *
3298  *	LOCKING:
3299  *	None.
3300  *
3301  *	RETURNS:
3302  *	Matching xfer_mode, 0xff if no match found.
3303  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3304 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3305 {
3306 	u8 base_mode = 0xff, last_mode = 0xff;
3307 	const struct ata_xfer_ent *ent;
3308 	const struct ata_timing *t;
3309 
3310 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3311 		if (ent->shift == xfer_shift)
3312 			base_mode = ent->base;
3313 
3314 	for (t = ata_timing_find_mode(base_mode);
3315 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3316 		unsigned short this_cycle;
3317 
3318 		switch (xfer_shift) {
3319 		case ATA_SHIFT_PIO:
3320 		case ATA_SHIFT_MWDMA:
3321 			this_cycle = t->cycle;
3322 			break;
3323 		case ATA_SHIFT_UDMA:
3324 			this_cycle = t->udma;
3325 			break;
3326 		default:
3327 			return 0xff;
3328 		}
3329 
3330 		if (cycle > this_cycle)
3331 			break;
3332 
3333 		last_mode = t->mode;
3334 	}
3335 
3336 	return last_mode;
3337 }
3338 #endif
3339 
3340 /**
3341  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3342  *	@dev: Device to adjust xfer masks
3343  *	@sel: ATA_DNXFER_* selector
3344  *
3345  *	Adjust xfer masks of @dev downward.  Note that this function
3346  *	does not apply the change.  Invoking ata_set_mode() afterwards
3347  *	will apply the limit.
3348  *
3349  *	LOCKING:
3350  *	Inherited from caller.
3351  *
3352  *	RETURNS:
3353  *	0 on success, negative errno on failure
3354  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3355 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3356 {
3357 	char buf[32];
3358 	unsigned int orig_mask, xfer_mask;
3359 	unsigned int pio_mask, mwdma_mask, udma_mask;
3360 	int quiet, highbit;
3361 
3362 	quiet = !!(sel & ATA_DNXFER_QUIET);
3363 	sel &= ~ATA_DNXFER_QUIET;
3364 
3365 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3366 						  dev->mwdma_mask,
3367 						  dev->udma_mask);
3368 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3369 
3370 	switch (sel) {
3371 	case ATA_DNXFER_PIO:
3372 		highbit = fls(pio_mask) - 1;
3373 		pio_mask &= ~(1 << highbit);
3374 		break;
3375 
3376 	case ATA_DNXFER_DMA:
3377 		if (udma_mask) {
3378 			highbit = fls(udma_mask) - 1;
3379 			udma_mask &= ~(1 << highbit);
3380 			if (!udma_mask)
3381 				return -ENOENT;
3382 		} else if (mwdma_mask) {
3383 			highbit = fls(mwdma_mask) - 1;
3384 			mwdma_mask &= ~(1 << highbit);
3385 			if (!mwdma_mask)
3386 				return -ENOENT;
3387 		}
3388 		break;
3389 
3390 	case ATA_DNXFER_40C:
3391 		udma_mask &= ATA_UDMA_MASK_40C;
3392 		break;
3393 
3394 	case ATA_DNXFER_FORCE_PIO0:
3395 		pio_mask &= 1;
3396 		fallthrough;
3397 	case ATA_DNXFER_FORCE_PIO:
3398 		mwdma_mask = 0;
3399 		udma_mask = 0;
3400 		break;
3401 
3402 	default:
3403 		BUG();
3404 	}
3405 
3406 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3407 
3408 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3409 		return -ENOENT;
3410 
3411 	if (!quiet) {
3412 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3413 			snprintf(buf, sizeof(buf), "%s:%s",
3414 				 ata_mode_string(xfer_mask),
3415 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3416 		else
3417 			snprintf(buf, sizeof(buf), "%s",
3418 				 ata_mode_string(xfer_mask));
3419 
3420 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3421 	}
3422 
3423 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3424 			    &dev->udma_mask);
3425 
3426 	return 0;
3427 }
3428 
ata_dev_set_mode(struct ata_device * dev)3429 static int ata_dev_set_mode(struct ata_device *dev)
3430 {
3431 	struct ata_port *ap = dev->link->ap;
3432 	struct ata_eh_context *ehc = &dev->link->eh_context;
3433 	const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3434 	const char *dev_err_whine = "";
3435 	int ign_dev_err = 0;
3436 	unsigned int err_mask = 0;
3437 	int rc;
3438 
3439 	dev->flags &= ~ATA_DFLAG_PIO;
3440 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3441 		dev->flags |= ATA_DFLAG_PIO;
3442 
3443 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3444 		dev_err_whine = " (SET_XFERMODE skipped)";
3445 	else {
3446 		if (nosetxfer)
3447 			ata_dev_warn(dev,
3448 				     "NOSETXFER but PATA detected - can't "
3449 				     "skip SETXFER, might malfunction\n");
3450 		err_mask = ata_dev_set_xfermode(dev);
3451 	}
3452 
3453 	if (err_mask & ~AC_ERR_DEV)
3454 		goto fail;
3455 
3456 	/* revalidate */
3457 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3458 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3459 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3460 	if (rc)
3461 		return rc;
3462 
3463 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3464 		/* Old CFA may refuse this command, which is just fine */
3465 		if (ata_id_is_cfa(dev->id))
3466 			ign_dev_err = 1;
3467 		/* Catch several broken garbage emulations plus some pre
3468 		   ATA devices */
3469 		if (ata_id_major_version(dev->id) == 0 &&
3470 					dev->pio_mode <= XFER_PIO_2)
3471 			ign_dev_err = 1;
3472 		/* Some very old devices and some bad newer ones fail
3473 		   any kind of SET_XFERMODE request but support PIO0-2
3474 		   timings and no IORDY */
3475 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3476 			ign_dev_err = 1;
3477 	}
3478 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3479 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3480 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3481 	    dev->dma_mode == XFER_MW_DMA_0 &&
3482 	    (dev->id[63] >> 8) & 1)
3483 		ign_dev_err = 1;
3484 
3485 	/* if the device is actually configured correctly, ignore dev err */
3486 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3487 		ign_dev_err = 1;
3488 
3489 	if (err_mask & AC_ERR_DEV) {
3490 		if (!ign_dev_err)
3491 			goto fail;
3492 		else
3493 			dev_err_whine = " (device error ignored)";
3494 	}
3495 
3496 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3497 		    dev->xfer_shift, (int)dev->xfer_mode);
3498 
3499 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3500 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3501 		ata_dev_info(dev, "configured for %s%s\n",
3502 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3503 			     dev_err_whine);
3504 
3505 	return 0;
3506 
3507  fail:
3508 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3509 	return -EIO;
3510 }
3511 
3512 /**
3513  *	ata_set_mode - Program timings and issue SET FEATURES - XFER
3514  *	@link: link on which timings will be programmed
3515  *	@r_failed_dev: out parameter for failed device
3516  *
3517  *	Standard implementation of the function used to tune and set
3518  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3519  *	ata_dev_set_mode() fails, pointer to the failing device is
3520  *	returned in @r_failed_dev.
3521  *
3522  *	LOCKING:
3523  *	PCI/etc. bus probe sem.
3524  *
3525  *	RETURNS:
3526  *	0 on success, negative errno otherwise
3527  */
3528 
ata_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3529 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3530 {
3531 	struct ata_port *ap = link->ap;
3532 	struct ata_device *dev;
3533 	int rc = 0, used_dma = 0, found = 0;
3534 
3535 	/* step 1: calculate xfer_mask */
3536 	ata_for_each_dev(dev, link, ENABLED) {
3537 		unsigned int pio_mask, dma_mask;
3538 		unsigned int mode_mask;
3539 
3540 		mode_mask = ATA_DMA_MASK_ATA;
3541 		if (dev->class == ATA_DEV_ATAPI)
3542 			mode_mask = ATA_DMA_MASK_ATAPI;
3543 		else if (ata_id_is_cfa(dev->id))
3544 			mode_mask = ATA_DMA_MASK_CFA;
3545 
3546 		ata_dev_xfermask(dev);
3547 		ata_force_xfermask(dev);
3548 
3549 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3550 
3551 		if (libata_dma_mask & mode_mask)
3552 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3553 						     dev->udma_mask);
3554 		else
3555 			dma_mask = 0;
3556 
3557 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3558 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3559 
3560 		found = 1;
3561 		if (ata_dma_enabled(dev))
3562 			used_dma = 1;
3563 	}
3564 	if (!found)
3565 		goto out;
3566 
3567 	/* step 2: always set host PIO timings */
3568 	ata_for_each_dev(dev, link, ENABLED) {
3569 		if (dev->pio_mode == 0xff) {
3570 			ata_dev_warn(dev, "no PIO support\n");
3571 			rc = -EINVAL;
3572 			goto out;
3573 		}
3574 
3575 		dev->xfer_mode = dev->pio_mode;
3576 		dev->xfer_shift = ATA_SHIFT_PIO;
3577 		if (ap->ops->set_piomode)
3578 			ap->ops->set_piomode(ap, dev);
3579 	}
3580 
3581 	/* step 3: set host DMA timings */
3582 	ata_for_each_dev(dev, link, ENABLED) {
3583 		if (!ata_dma_enabled(dev))
3584 			continue;
3585 
3586 		dev->xfer_mode = dev->dma_mode;
3587 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3588 		if (ap->ops->set_dmamode)
3589 			ap->ops->set_dmamode(ap, dev);
3590 	}
3591 
3592 	/* step 4: update devices' xfer mode */
3593 	ata_for_each_dev(dev, link, ENABLED) {
3594 		rc = ata_dev_set_mode(dev);
3595 		if (rc)
3596 			goto out;
3597 	}
3598 
3599 	/* Record simplex status. If we selected DMA then the other
3600 	 * host channels are not permitted to do so.
3601 	 */
3602 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3603 		ap->host->simplex_claimed = ap;
3604 
3605  out:
3606 	if (rc)
3607 		*r_failed_dev = dev;
3608 	return rc;
3609 }
3610 EXPORT_SYMBOL_GPL(ata_set_mode);
3611 
3612 /**
3613  *	ata_wait_ready - wait for link to become ready
3614  *	@link: link to be waited on
3615  *	@deadline: deadline jiffies for the operation
3616  *	@check_ready: callback to check link readiness
3617  *
3618  *	Wait for @link to become ready.  @check_ready should return
3619  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3620  *	link doesn't seem to be occupied, other errno for other error
3621  *	conditions.
3622  *
3623  *	Transient -ENODEV conditions are allowed for
3624  *	ATA_TMOUT_FF_WAIT.
3625  *
3626  *	LOCKING:
3627  *	EH context.
3628  *
3629  *	RETURNS:
3630  *	0 if @link is ready before @deadline; otherwise, -errno.
3631  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3632 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3633 		   int (*check_ready)(struct ata_link *link))
3634 {
3635 	unsigned long start = jiffies;
3636 	unsigned long nodev_deadline;
3637 	int warned = 0;
3638 
3639 	/* choose which 0xff timeout to use, read comment in libata.h */
3640 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3641 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3642 	else
3643 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3644 
3645 	/* Slave readiness can't be tested separately from master.  On
3646 	 * M/S emulation configuration, this function should be called
3647 	 * only on the master and it will handle both master and slave.
3648 	 */
3649 	WARN_ON(link == link->ap->slave_link);
3650 
3651 	if (time_after(nodev_deadline, deadline))
3652 		nodev_deadline = deadline;
3653 
3654 	while (1) {
3655 		unsigned long now = jiffies;
3656 		int ready, tmp;
3657 
3658 		ready = tmp = check_ready(link);
3659 		if (ready > 0)
3660 			return 0;
3661 
3662 		/*
3663 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3664 		 * is online.  Also, some SATA devices take a long
3665 		 * time to clear 0xff after reset.  Wait for
3666 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3667 		 * offline.
3668 		 *
3669 		 * Note that some PATA controllers (pata_ali) explode
3670 		 * if status register is read more than once when
3671 		 * there's no device attached.
3672 		 */
3673 		if (ready == -ENODEV) {
3674 			if (ata_link_online(link))
3675 				ready = 0;
3676 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3677 				 !ata_link_offline(link) &&
3678 				 time_before(now, nodev_deadline))
3679 				ready = 0;
3680 		}
3681 
3682 		if (ready)
3683 			return ready;
3684 		if (time_after(now, deadline))
3685 			return -EBUSY;
3686 
3687 		if (!warned && time_after(now, start + 5 * HZ) &&
3688 		    (deadline - now > 3 * HZ)) {
3689 			ata_link_warn(link,
3690 				"link is slow to respond, please be patient "
3691 				"(ready=%d)\n", tmp);
3692 			warned = 1;
3693 		}
3694 
3695 		ata_msleep(link->ap, 50);
3696 	}
3697 }
3698 
3699 /**
3700  *	ata_wait_after_reset - wait for link to become ready after reset
3701  *	@link: link to be waited on
3702  *	@deadline: deadline jiffies for the operation
3703  *	@check_ready: callback to check link readiness
3704  *
3705  *	Wait for @link to become ready after reset.
3706  *
3707  *	LOCKING:
3708  *	EH context.
3709  *
3710  *	RETURNS:
3711  *	0 if @link is ready before @deadline; otherwise, -errno.
3712  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3713 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3714 				int (*check_ready)(struct ata_link *link))
3715 {
3716 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3717 
3718 	return ata_wait_ready(link, deadline, check_ready);
3719 }
3720 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3721 
3722 /**
3723  *	ata_std_prereset - prepare for reset
3724  *	@link: ATA link to be reset
3725  *	@deadline: deadline jiffies for the operation
3726  *
3727  *	@link is about to be reset.  Initialize it.  Failure from
3728  *	prereset makes libata abort whole reset sequence and give up
3729  *	that port, so prereset should be best-effort.  It does its
3730  *	best to prepare for reset sequence but if things go wrong, it
3731  *	should just whine, not fail.
3732  *
3733  *	LOCKING:
3734  *	Kernel thread context (may sleep)
3735  *
3736  *	RETURNS:
3737  *	Always 0.
3738  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3739 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3740 {
3741 	struct ata_port *ap = link->ap;
3742 	struct ata_eh_context *ehc = &link->eh_context;
3743 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3744 	int rc;
3745 
3746 	/* if we're about to do hardreset, nothing more to do */
3747 	if (ehc->i.action & ATA_EH_HARDRESET)
3748 		return 0;
3749 
3750 	/* if SATA, resume link */
3751 	if (ap->flags & ATA_FLAG_SATA) {
3752 		rc = sata_link_resume(link, timing, deadline);
3753 		/* whine about phy resume failure but proceed */
3754 		if (rc && rc != -EOPNOTSUPP)
3755 			ata_link_warn(link,
3756 				      "failed to resume link for reset (errno=%d)\n",
3757 				      rc);
3758 	}
3759 
3760 	/* no point in trying softreset on offline link */
3761 	if (ata_phys_link_offline(link))
3762 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3763 
3764 	return 0;
3765 }
3766 EXPORT_SYMBOL_GPL(ata_std_prereset);
3767 
3768 /**
3769  *	ata_std_postreset - standard postreset callback
3770  *	@link: the target ata_link
3771  *	@classes: classes of attached devices
3772  *
3773  *	This function is invoked after a successful reset.  Note that
3774  *	the device might have been reset more than once using
3775  *	different reset methods before postreset is invoked.
3776  *
3777  *	LOCKING:
3778  *	Kernel thread context (may sleep)
3779  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3780 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3781 {
3782 	u32 serror;
3783 
3784 	/* reset complete, clear SError */
3785 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3786 		sata_scr_write(link, SCR_ERROR, serror);
3787 
3788 	/* print link status */
3789 	sata_print_link_status(link);
3790 }
3791 EXPORT_SYMBOL_GPL(ata_std_postreset);
3792 
3793 /**
3794  *	ata_dev_same_device - Determine whether new ID matches configured device
3795  *	@dev: device to compare against
3796  *	@new_class: class of the new device
3797  *	@new_id: IDENTIFY page of the new device
3798  *
3799  *	Compare @new_class and @new_id against @dev and determine
3800  *	whether @dev is the device indicated by @new_class and
3801  *	@new_id.
3802  *
3803  *	LOCKING:
3804  *	None.
3805  *
3806  *	RETURNS:
3807  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3808  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3809 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3810 			       const u16 *new_id)
3811 {
3812 	const u16 *old_id = dev->id;
3813 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3814 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3815 
3816 	if (dev->class != new_class) {
3817 		ata_dev_info(dev, "class mismatch %d != %d\n",
3818 			     dev->class, new_class);
3819 		return 0;
3820 	}
3821 
3822 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3823 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3824 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3825 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3826 
3827 	if (strcmp(model[0], model[1])) {
3828 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3829 			     model[0], model[1]);
3830 		return 0;
3831 	}
3832 
3833 	if (strcmp(serial[0], serial[1])) {
3834 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3835 			     serial[0], serial[1]);
3836 		return 0;
3837 	}
3838 
3839 	return 1;
3840 }
3841 
3842 /**
3843  *	ata_dev_reread_id - Re-read IDENTIFY data
3844  *	@dev: target ATA device
3845  *	@readid_flags: read ID flags
3846  *
3847  *	Re-read IDENTIFY page and make sure @dev is still attached to
3848  *	the port.
3849  *
3850  *	LOCKING:
3851  *	Kernel thread context (may sleep)
3852  *
3853  *	RETURNS:
3854  *	0 on success, negative errno otherwise
3855  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3856 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3857 {
3858 	unsigned int class = dev->class;
3859 	u16 *id = (void *)dev->sector_buf;
3860 	int rc;
3861 
3862 	/* read ID data */
3863 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3864 	if (rc)
3865 		return rc;
3866 
3867 	/* is the device still there? */
3868 	if (!ata_dev_same_device(dev, class, id))
3869 		return -ENODEV;
3870 
3871 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3872 	return 0;
3873 }
3874 
3875 /**
3876  *	ata_dev_revalidate - Revalidate ATA device
3877  *	@dev: device to revalidate
3878  *	@new_class: new class code
3879  *	@readid_flags: read ID flags
3880  *
3881  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3882  *	port and reconfigure it according to the new IDENTIFY page.
3883  *
3884  *	LOCKING:
3885  *	Kernel thread context (may sleep)
3886  *
3887  *	RETURNS:
3888  *	0 on success, negative errno otherwise
3889  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3890 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3891 		       unsigned int readid_flags)
3892 {
3893 	u64 n_sectors = dev->n_sectors;
3894 	u64 n_native_sectors = dev->n_native_sectors;
3895 	int rc;
3896 
3897 	if (!ata_dev_enabled(dev))
3898 		return -ENODEV;
3899 
3900 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3901 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3902 		ata_dev_info(dev, "class mismatch %u != %u\n",
3903 			     dev->class, new_class);
3904 		rc = -ENODEV;
3905 		goto fail;
3906 	}
3907 
3908 	/* re-read ID */
3909 	rc = ata_dev_reread_id(dev, readid_flags);
3910 	if (rc)
3911 		goto fail;
3912 
3913 	/* configure device according to the new ID */
3914 	rc = ata_dev_configure(dev);
3915 	if (rc)
3916 		goto fail;
3917 
3918 	/* verify n_sectors hasn't changed */
3919 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3920 	    dev->n_sectors == n_sectors)
3921 		return 0;
3922 
3923 	/* n_sectors has changed */
3924 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3925 		     (unsigned long long)n_sectors,
3926 		     (unsigned long long)dev->n_sectors);
3927 
3928 	/*
3929 	 * Something could have caused HPA to be unlocked
3930 	 * involuntarily.  If n_native_sectors hasn't changed and the
3931 	 * new size matches it, keep the device.
3932 	 */
3933 	if (dev->n_native_sectors == n_native_sectors &&
3934 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3935 		ata_dev_warn(dev,
3936 			     "new n_sectors matches native, probably "
3937 			     "late HPA unlock, n_sectors updated\n");
3938 		/* use the larger n_sectors */
3939 		return 0;
3940 	}
3941 
3942 	/*
3943 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3944 	 * unlocking HPA in those cases.
3945 	 *
3946 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3947 	 */
3948 	if (dev->n_native_sectors == n_native_sectors &&
3949 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3950 	    !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3951 		ata_dev_warn(dev,
3952 			     "old n_sectors matches native, probably "
3953 			     "late HPA lock, will try to unlock HPA\n");
3954 		/* try unlocking HPA */
3955 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3956 		rc = -EIO;
3957 	} else
3958 		rc = -ENODEV;
3959 
3960 	/* restore original n_[native_]sectors and fail */
3961 	dev->n_native_sectors = n_native_sectors;
3962 	dev->n_sectors = n_sectors;
3963  fail:
3964 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3965 	return rc;
3966 }
3967 
3968 static const char * const ata_quirk_names[] = {
3969 	[__ATA_QUIRK_DIAGNOSTIC]	= "diagnostic",
3970 	[__ATA_QUIRK_NODMA]		= "nodma",
3971 	[__ATA_QUIRK_NONCQ]		= "noncq",
3972 	[__ATA_QUIRK_MAX_SEC_128]	= "maxsec128",
3973 	[__ATA_QUIRK_BROKEN_HPA]	= "brokenhpa",
3974 	[__ATA_QUIRK_DISABLE]		= "disable",
3975 	[__ATA_QUIRK_HPA_SIZE]		= "hpasize",
3976 	[__ATA_QUIRK_IVB]		= "ivb",
3977 	[__ATA_QUIRK_STUCK_ERR]		= "stuckerr",
3978 	[__ATA_QUIRK_BRIDGE_OK]		= "bridgeok",
3979 	[__ATA_QUIRK_ATAPI_MOD16_DMA]	= "atapimod16dma",
3980 	[__ATA_QUIRK_FIRMWARE_WARN]	= "firmwarewarn",
3981 	[__ATA_QUIRK_1_5_GBPS]		= "1.5gbps",
3982 	[__ATA_QUIRK_NOSETXFER]		= "nosetxfer",
3983 	[__ATA_QUIRK_BROKEN_FPDMA_AA]	= "brokenfpdmaaa",
3984 	[__ATA_QUIRK_DUMP_ID]		= "dumpid",
3985 	[__ATA_QUIRK_MAX_SEC_LBA48]	= "maxseclba48",
3986 	[__ATA_QUIRK_ATAPI_DMADIR]	= "atapidmadir",
3987 	[__ATA_QUIRK_NO_NCQ_TRIM]	= "noncqtrim",
3988 	[__ATA_QUIRK_NOLPM]		= "nolpm",
3989 	[__ATA_QUIRK_WD_BROKEN_LPM]	= "wdbrokenlpm",
3990 	[__ATA_QUIRK_ZERO_AFTER_TRIM]	= "zeroaftertrim",
3991 	[__ATA_QUIRK_NO_DMA_LOG]	= "nodmalog",
3992 	[__ATA_QUIRK_NOTRIM]		= "notrim",
3993 	[__ATA_QUIRK_MAX_SEC_1024]	= "maxsec1024",
3994 	[__ATA_QUIRK_MAX_TRIM_128M]	= "maxtrim128m",
3995 	[__ATA_QUIRK_NO_NCQ_ON_ATI]	= "noncqonati",
3996 	[__ATA_QUIRK_NO_LPM_ON_ATI]	= "nolpmonati",
3997 	[__ATA_QUIRK_NO_ID_DEV_LOG]	= "noiddevlog",
3998 	[__ATA_QUIRK_NO_LOG_DIR]	= "nologdir",
3999 	[__ATA_QUIRK_NO_FUA]		= "nofua",
4000 };
4001 
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)4002 static void ata_dev_print_quirks(const struct ata_device *dev,
4003 				 const char *model, const char *rev,
4004 				 unsigned int quirks)
4005 {
4006 	struct ata_eh_context *ehc = &dev->link->eh_context;
4007 	int n = 0, i;
4008 	size_t sz;
4009 	char *str;
4010 
4011 	if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4012 		return;
4013 
4014 	ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4015 
4016 	if (!quirks)
4017 		return;
4018 
4019 	sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4020 	str = kmalloc(sz, GFP_KERNEL);
4021 	if (!str)
4022 		return;
4023 
4024 	n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4025 		     model, rev);
4026 
4027 	for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4028 		if (quirks & (1U << i))
4029 			n += snprintf(str + n, sz - n,
4030 				      " %s", ata_quirk_names[i]);
4031 	}
4032 
4033 	ata_dev_warn(dev, "%s\n", str);
4034 
4035 	kfree(str);
4036 }
4037 
4038 struct ata_dev_quirks_entry {
4039 	const char *model_num;
4040 	const char *model_rev;
4041 	unsigned int quirks;
4042 };
4043 
4044 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4045 	/* Devices with DMA related problems under Linux */
4046 	{ "WDC AC11000H",	NULL,		ATA_QUIRK_NODMA },
4047 	{ "WDC AC22100H",	NULL,		ATA_QUIRK_NODMA },
4048 	{ "WDC AC32500H",	NULL,		ATA_QUIRK_NODMA },
4049 	{ "WDC AC33100H",	NULL,		ATA_QUIRK_NODMA },
4050 	{ "WDC AC31600H",	NULL,		ATA_QUIRK_NODMA },
4051 	{ "WDC AC32100H",	"24.09P07",	ATA_QUIRK_NODMA },
4052 	{ "WDC AC23200L",	"21.10N21",	ATA_QUIRK_NODMA },
4053 	{ "Compaq CRD-8241B",	NULL,		ATA_QUIRK_NODMA },
4054 	{ "CRD-8400B",		NULL,		ATA_QUIRK_NODMA },
4055 	{ "CRD-848[02]B",	NULL,		ATA_QUIRK_NODMA },
4056 	{ "CRD-84",		NULL,		ATA_QUIRK_NODMA },
4057 	{ "SanDisk SDP3B",	NULL,		ATA_QUIRK_NODMA },
4058 	{ "SanDisk SDP3B-64",	NULL,		ATA_QUIRK_NODMA },
4059 	{ "SANYO CD-ROM CRD",	NULL,		ATA_QUIRK_NODMA },
4060 	{ "HITACHI CDR-8",	NULL,		ATA_QUIRK_NODMA },
4061 	{ "HITACHI CDR-8[34]35", NULL,		ATA_QUIRK_NODMA },
4062 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_QUIRK_NODMA },
4063 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_QUIRK_NODMA },
4064 	{ "CD-532E-A",		NULL,		ATA_QUIRK_NODMA },
4065 	{ "E-IDE CD-ROM CR-840", NULL,		ATA_QUIRK_NODMA },
4066 	{ "CD-ROM Drive/F5A",	NULL,		ATA_QUIRK_NODMA },
4067 	{ "WPI CDD-820",	NULL,		ATA_QUIRK_NODMA },
4068 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_QUIRK_NODMA },
4069 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_QUIRK_NODMA },
4070 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4071 	{ "_NEC DV5800A",	NULL,		ATA_QUIRK_NODMA },
4072 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_QUIRK_NODMA },
4073 	{ "Seagate STT20000A", NULL,		ATA_QUIRK_NODMA },
4074 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_QUIRK_NODMA },
4075 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_QUIRK_NODMA },
4076 	/* Odd clown on sil3726/4726 PMPs */
4077 	{ "Config  Disk",	NULL,		ATA_QUIRK_DISABLE },
4078 	/* Similar story with ASMedia 1092 */
4079 	{ "ASMT109x- Config",	NULL,		ATA_QUIRK_DISABLE },
4080 
4081 	/* Weird ATAPI devices */
4082 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_QUIRK_MAX_SEC_128 },
4083 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_QUIRK_ATAPI_MOD16_DMA },
4084 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
4085 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_QUIRK_MAX_SEC_LBA48 },
4086 
4087 	/*
4088 	 * Causes silent data corruption with higher max sects.
4089 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4090 	 */
4091 	{ "ST380013AS",		"3.20",		ATA_QUIRK_MAX_SEC_1024 },
4092 
4093 	/*
4094 	 * These devices time out with higher max sects.
4095 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4096 	 */
4097 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4098 	{ "LITEON EP1-*",	NULL,		ATA_QUIRK_MAX_SEC_1024 },
4099 
4100 	/* Devices we expect to fail diagnostics */
4101 
4102 	/* Devices where NCQ should be avoided */
4103 	/* NCQ is slow */
4104 	{ "WDC WD740ADFD-00",	NULL,		ATA_QUIRK_NONCQ },
4105 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_QUIRK_NONCQ },
4106 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4107 	{ "FUJITSU MHT2060BH",	NULL,		ATA_QUIRK_NONCQ },
4108 	/* NCQ is broken */
4109 	{ "Maxtor *",		"BANC*",	ATA_QUIRK_NONCQ },
4110 	{ "Maxtor 7V300F0",	"VA111630",	ATA_QUIRK_NONCQ },
4111 	{ "ST380817AS",		"3.42",		ATA_QUIRK_NONCQ },
4112 	{ "ST3160023AS",	"3.42",		ATA_QUIRK_NONCQ },
4113 	{ "OCZ CORE_SSD",	"02.10104",	ATA_QUIRK_NONCQ },
4114 
4115 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4116 	{ "ST31500341AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4117 						ATA_QUIRK_FIRMWARE_WARN },
4118 
4119 	{ "ST31000333AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4120 						ATA_QUIRK_FIRMWARE_WARN },
4121 
4122 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4123 						ATA_QUIRK_FIRMWARE_WARN },
4124 
4125 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_QUIRK_NONCQ |
4126 						ATA_QUIRK_FIRMWARE_WARN },
4127 
4128 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4129 	   the ST disks also have LPM issues */
4130 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_QUIRK_BROKEN_FPDMA_AA |
4131 						ATA_QUIRK_NOLPM },
4132 	{ "VB0250EAVER",	"HPG7",		ATA_QUIRK_BROKEN_FPDMA_AA },
4133 
4134 	/* Blacklist entries taken from Silicon Image 3124/3132
4135 	   Windows driver .inf file - also several Linux problem reports */
4136 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_QUIRK_NONCQ },
4137 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_QUIRK_NONCQ },
4138 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_QUIRK_NONCQ },
4139 
4140 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4141 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_QUIRK_NONCQ },
4142 
4143 	/* Sandisk SD7/8/9s lock up hard on large trims */
4144 	{ "SanDisk SD[789]*",	NULL,		ATA_QUIRK_MAX_TRIM_128M },
4145 
4146 	/* devices which puke on READ_NATIVE_MAX */
4147 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_QUIRK_BROKEN_HPA },
4148 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4149 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4150 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_QUIRK_BROKEN_HPA },
4151 
4152 	/* this one allows HPA unlocking but fails IOs on the area */
4153 	{ "OCZ-VERTEX",		    "1.30",	ATA_QUIRK_BROKEN_HPA },
4154 
4155 	/* Devices which report 1 sector over size HPA */
4156 	{ "ST340823A",		NULL,		ATA_QUIRK_HPA_SIZE },
4157 	{ "ST320413A",		NULL,		ATA_QUIRK_HPA_SIZE },
4158 	{ "ST310211A",		NULL,		ATA_QUIRK_HPA_SIZE },
4159 
4160 	/* Devices which get the IVB wrong */
4161 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4162 	/* Maybe we should just add all TSSTcorp devices... */
4163 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_QUIRK_IVB },
4164 
4165 	/* Devices that do not need bridging limits applied */
4166 	{ "MTRON MSP-SATA*",		NULL,	ATA_QUIRK_BRIDGE_OK },
4167 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_QUIRK_BRIDGE_OK },
4168 
4169 	/* Devices which aren't very happy with higher link speeds */
4170 	{ "WD My Book",			NULL,	ATA_QUIRK_1_5_GBPS },
4171 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_QUIRK_1_5_GBPS },
4172 
4173 	/*
4174 	 * Devices which choke on SETXFER.  Applies only if both the
4175 	 * device and controller are SATA.
4176 	 */
4177 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_QUIRK_NOSETXFER },
4178 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_QUIRK_NOSETXFER },
4179 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_QUIRK_NOSETXFER },
4180 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_QUIRK_NOSETXFER },
4181 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_QUIRK_NOSETXFER },
4182 
4183 	/* These specific Pioneer models have LPM issues */
4184 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_QUIRK_NOLPM },
4185 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_QUIRK_NOLPM },
4186 
4187 	/* Crucial devices with broken LPM support */
4188 	{ "CT*0BX*00SSD1",		NULL,	ATA_QUIRK_NOLPM },
4189 
4190 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4191 	{ "Crucial_CT512MX100*",	"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4192 						ATA_QUIRK_ZERO_AFTER_TRIM |
4193 						ATA_QUIRK_NOLPM },
4194 	/* 512GB MX100 with newer firmware has only LPM issues */
4195 	{ "Crucial_CT512MX100*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM |
4196 						ATA_QUIRK_NOLPM },
4197 
4198 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4199 	{ "Crucial_CT480M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4200 						ATA_QUIRK_ZERO_AFTER_TRIM |
4201 						ATA_QUIRK_NOLPM },
4202 	{ "Crucial_CT960M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4203 						ATA_QUIRK_ZERO_AFTER_TRIM |
4204 						ATA_QUIRK_NOLPM },
4205 
4206 	/* AMD Radeon devices with broken LPM support */
4207 	{ "R3SL240G",			NULL,	ATA_QUIRK_NOLPM },
4208 
4209 	/* Apacer models with LPM issues */
4210 	{ "Apacer AS340*",		NULL,	ATA_QUIRK_NOLPM },
4211 
4212 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4213 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4214 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_QUIRK_NOLPM },
4215 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_QUIRK_NOLPM },
4216 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4217 
4218 	/* devices that don't properly handle queued TRIM commands */
4219 	{ "Micron_M500IT_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4220 						ATA_QUIRK_ZERO_AFTER_TRIM },
4221 	{ "Micron_M500_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4222 						ATA_QUIRK_ZERO_AFTER_TRIM },
4223 	{ "Micron_M5[15]0_*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4224 						ATA_QUIRK_ZERO_AFTER_TRIM },
4225 	{ "Micron_1100_*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4226 						ATA_QUIRK_ZERO_AFTER_TRIM, },
4227 	{ "Crucial_CT*M500*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4228 						ATA_QUIRK_ZERO_AFTER_TRIM },
4229 	{ "Crucial_CT*M550*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4230 						ATA_QUIRK_ZERO_AFTER_TRIM },
4231 	{ "Crucial_CT*MX100*",		"MU01",	ATA_QUIRK_NO_NCQ_TRIM |
4232 						ATA_QUIRK_ZERO_AFTER_TRIM },
4233 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4234 						ATA_QUIRK_NO_DMA_LOG |
4235 						ATA_QUIRK_ZERO_AFTER_TRIM },
4236 	{ "Samsung SSD 840*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4237 						ATA_QUIRK_ZERO_AFTER_TRIM },
4238 	{ "Samsung SSD 850*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4239 						ATA_QUIRK_ZERO_AFTER_TRIM },
4240 	{ "Samsung SSD 860*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4241 						ATA_QUIRK_ZERO_AFTER_TRIM |
4242 						ATA_QUIRK_NO_NCQ_ON_ATI |
4243 						ATA_QUIRK_NO_LPM_ON_ATI },
4244 	{ "Samsung SSD 870*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4245 						ATA_QUIRK_ZERO_AFTER_TRIM |
4246 						ATA_QUIRK_NO_NCQ_ON_ATI |
4247 						ATA_QUIRK_NO_LPM_ON_ATI },
4248 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4249 						ATA_QUIRK_ZERO_AFTER_TRIM |
4250 						ATA_QUIRK_NO_NCQ_ON_ATI |
4251 						ATA_QUIRK_NO_LPM_ON_ATI },
4252 	{ "FCCT*M500*",			NULL,	ATA_QUIRK_NO_NCQ_TRIM |
4253 						ATA_QUIRK_ZERO_AFTER_TRIM },
4254 
4255 	/* devices that don't properly handle TRIM commands */
4256 	{ "SuperSSpeed S238*",		NULL,	ATA_QUIRK_NOTRIM },
4257 	{ "M88V29*",			NULL,	ATA_QUIRK_NOTRIM },
4258 
4259 	/*
4260 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4261 	 * (Return Zero After Trim) flags in the ATA Command Set are
4262 	 * unreliable in the sense that they only define what happens if
4263 	 * the device successfully executed the DSM TRIM command. TRIM
4264 	 * is only advisory, however, and the device is free to silently
4265 	 * ignore all or parts of the request.
4266 	 *
4267 	 * Whitelist drives that are known to reliably return zeroes
4268 	 * after TRIM.
4269 	 */
4270 
4271 	/*
4272 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4273 	 * that model before whitelisting all other intel SSDs.
4274 	 */
4275 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4276 
4277 	{ "Micron*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4278 	{ "Crucial*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4279 	{ "INTEL*SSD*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4280 	{ "SSD*INTEL*",			NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4281 	{ "Samsung*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4282 	{ "SAMSUNG*SSD*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4283 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4284 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_QUIRK_ZERO_AFTER_TRIM },
4285 
4286 	/*
4287 	 * Some WD SATA-I drives spin up and down erratically when the link
4288 	 * is put into the slumber mode.  We don't have full list of the
4289 	 * affected devices.  Disable LPM if the device matches one of the
4290 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4291 	 * lost too.
4292 	 *
4293 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4294 	 */
4295 	{ "WDC WD800JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4296 	{ "WDC WD1200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4297 	{ "WDC WD1600JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4298 	{ "WDC WD2000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4299 	{ "WDC WD2500JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4300 	{ "WDC WD3000JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4301 	{ "WDC WD3200JD-*",		NULL,	ATA_QUIRK_WD_BROKEN_LPM },
4302 
4303 	/*
4304 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4305 	 * log page is accessed. Ensure we never ask for this log page with
4306 	 * these devices.
4307 	 */
4308 	{ "SATADOM-ML 3ME",		NULL,	ATA_QUIRK_NO_LOG_DIR },
4309 
4310 	/* Buggy FUA */
4311 	{ "Maxtor",		"BANC1G10",	ATA_QUIRK_NO_FUA },
4312 	{ "WDC*WD2500J*",	NULL,		ATA_QUIRK_NO_FUA },
4313 	{ "OCZ-VERTEX*",	NULL,		ATA_QUIRK_NO_FUA },
4314 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_QUIRK_NO_FUA },
4315 
4316 	/* End Marker */
4317 	{ }
4318 };
4319 
ata_dev_quirks(const struct ata_device * dev)4320 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4321 {
4322 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324 	const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4325 
4326 	/* dev->quirks is an unsigned int. */
4327 	BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4328 
4329 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4330 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4331 
4332 	while (ad->model_num) {
4333 		if (glob_match(ad->model_num, model_num) &&
4334 		    (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4335 			ata_dev_print_quirks(dev, model_num, model_rev,
4336 					     ad->quirks);
4337 			return ad->quirks;
4338 		}
4339 		ad++;
4340 	}
4341 	return 0;
4342 }
4343 
ata_dev_nodma(const struct ata_device * dev)4344 static bool ata_dev_nodma(const struct ata_device *dev)
4345 {
4346 	/*
4347 	 * We do not support polling DMA. Deny DMA for those ATAPI devices
4348 	 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4349 	 * the HSM_ST_LAST state.
4350 	 */
4351 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4352 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4353 		return true;
4354 	return dev->quirks & ATA_QUIRK_NODMA;
4355 }
4356 
4357 /**
4358  *	ata_is_40wire		-	check drive side detection
4359  *	@dev: device
4360  *
4361  *	Perform drive side detection decoding, allowing for device vendors
4362  *	who can't follow the documentation.
4363  */
4364 
ata_is_40wire(struct ata_device * dev)4365 static int ata_is_40wire(struct ata_device *dev)
4366 {
4367 	if (dev->quirks & ATA_QUIRK_IVB)
4368 		return ata_drive_40wire_relaxed(dev->id);
4369 	return ata_drive_40wire(dev->id);
4370 }
4371 
4372 /**
4373  *	cable_is_40wire		-	40/80/SATA decider
4374  *	@ap: port to consider
4375  *
4376  *	This function encapsulates the policy for speed management
4377  *	in one place. At the moment we don't cache the result but
4378  *	there is a good case for setting ap->cbl to the result when
4379  *	we are called with unknown cables (and figuring out if it
4380  *	impacts hotplug at all).
4381  *
4382  *	Return 1 if the cable appears to be 40 wire.
4383  */
4384 
cable_is_40wire(struct ata_port * ap)4385 static int cable_is_40wire(struct ata_port *ap)
4386 {
4387 	struct ata_link *link;
4388 	struct ata_device *dev;
4389 
4390 	/* If the controller thinks we are 40 wire, we are. */
4391 	if (ap->cbl == ATA_CBL_PATA40)
4392 		return 1;
4393 
4394 	/* If the controller thinks we are 80 wire, we are. */
4395 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4396 		return 0;
4397 
4398 	/* If the system is known to be 40 wire short cable (eg
4399 	 * laptop), then we allow 80 wire modes even if the drive
4400 	 * isn't sure.
4401 	 */
4402 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4403 		return 0;
4404 
4405 	/* If the controller doesn't know, we scan.
4406 	 *
4407 	 * Note: We look for all 40 wire detects at this point.  Any
4408 	 *       80 wire detect is taken to be 80 wire cable because
4409 	 * - in many setups only the one drive (slave if present) will
4410 	 *   give a valid detect
4411 	 * - if you have a non detect capable drive you don't want it
4412 	 *   to colour the choice
4413 	 */
4414 	ata_for_each_link(link, ap, EDGE) {
4415 		ata_for_each_dev(dev, link, ENABLED) {
4416 			if (!ata_is_40wire(dev))
4417 				return 0;
4418 		}
4419 	}
4420 	return 1;
4421 }
4422 
4423 /**
4424  *	ata_dev_xfermask - Compute supported xfermask of the given device
4425  *	@dev: Device to compute xfermask for
4426  *
4427  *	Compute supported xfermask of @dev and store it in
4428  *	dev->*_mask.  This function is responsible for applying all
4429  *	known limits including host controller limits, device quirks, etc...
4430  *
4431  *	LOCKING:
4432  *	None.
4433  */
ata_dev_xfermask(struct ata_device * dev)4434 static void ata_dev_xfermask(struct ata_device *dev)
4435 {
4436 	struct ata_link *link = dev->link;
4437 	struct ata_port *ap = link->ap;
4438 	struct ata_host *host = ap->host;
4439 	unsigned int xfer_mask;
4440 
4441 	/* controller modes available */
4442 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4443 				      ap->mwdma_mask, ap->udma_mask);
4444 
4445 	/* drive modes available */
4446 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4447 				       dev->mwdma_mask, dev->udma_mask);
4448 	xfer_mask &= ata_id_xfermask(dev->id);
4449 
4450 	/*
4451 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4452 	 *	cable
4453 	 */
4454 	if (ata_dev_pair(dev)) {
4455 		/* No PIO5 or PIO6 */
4456 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4457 		/* No MWDMA3 or MWDMA 4 */
4458 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4459 	}
4460 
4461 	if (ata_dev_nodma(dev)) {
4462 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4463 		ata_dev_warn(dev,
4464 			     "device does not support DMA, disabling DMA\n");
4465 	}
4466 
4467 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4468 	    host->simplex_claimed && host->simplex_claimed != ap) {
4469 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4470 		ata_dev_warn(dev,
4471 			     "simplex DMA is claimed by other device, disabling DMA\n");
4472 	}
4473 
4474 	if (ap->flags & ATA_FLAG_NO_IORDY)
4475 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4476 
4477 	if (ap->ops->mode_filter)
4478 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4479 
4480 	/* Apply cable rule here.  Don't apply it early because when
4481 	 * we handle hot plug the cable type can itself change.
4482 	 * Check this last so that we know if the transfer rate was
4483 	 * solely limited by the cable.
4484 	 * Unknown or 80 wire cables reported host side are checked
4485 	 * drive side as well. Cases where we know a 40wire cable
4486 	 * is used safely for 80 are not checked here.
4487 	 */
4488 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4489 		/* UDMA/44 or higher would be available */
4490 		if (cable_is_40wire(ap)) {
4491 			ata_dev_warn(dev,
4492 				     "limited to UDMA/33 due to 40-wire cable\n");
4493 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4494 		}
4495 
4496 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4497 			    &dev->mwdma_mask, &dev->udma_mask);
4498 }
4499 
4500 /**
4501  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4502  *	@dev: Device to which command will be sent
4503  *
4504  *	Issue SET FEATURES - XFER MODE command to device @dev
4505  *	on port @ap.
4506  *
4507  *	LOCKING:
4508  *	PCI/etc. bus probe sem.
4509  *
4510  *	RETURNS:
4511  *	0 on success, AC_ERR_* mask otherwise.
4512  */
4513 
ata_dev_set_xfermode(struct ata_device * dev)4514 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4515 {
4516 	struct ata_taskfile tf;
4517 
4518 	/* set up set-features taskfile */
4519 	ata_dev_dbg(dev, "set features - xfer mode\n");
4520 
4521 	/* Some controllers and ATAPI devices show flaky interrupt
4522 	 * behavior after setting xfer mode.  Use polling instead.
4523 	 */
4524 	ata_tf_init(dev, &tf);
4525 	tf.command = ATA_CMD_SET_FEATURES;
4526 	tf.feature = SETFEATURES_XFER;
4527 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4528 	tf.protocol = ATA_PROT_NODATA;
4529 	/* If we are using IORDY we must send the mode setting command */
4530 	if (ata_pio_need_iordy(dev))
4531 		tf.nsect = dev->xfer_mode;
4532 	/* If the device has IORDY and the controller does not - turn it off */
4533  	else if (ata_id_has_iordy(dev->id))
4534 		tf.nsect = 0x01;
4535 	else /* In the ancient relic department - skip all of this */
4536 		return 0;
4537 
4538 	/*
4539 	 * On some disks, this command causes spin-up, so we need longer
4540 	 * timeout.
4541 	 */
4542 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4543 }
4544 
4545 /**
4546  *	ata_dev_set_feature - Issue SET FEATURES
4547  *	@dev: Device to which command will be sent
4548  *	@subcmd: The SET FEATURES subcommand to be sent
4549  *	@action: The sector count represents a subcommand specific action
4550  *
4551  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4552  *
4553  *	LOCKING:
4554  *	PCI/etc. bus probe sem.
4555  *
4556  *	RETURNS:
4557  *	0 on success, AC_ERR_* mask otherwise.
4558  */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4559 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4560 {
4561 	struct ata_taskfile tf;
4562 	unsigned int timeout = 0;
4563 
4564 	/* set up set-features taskfile */
4565 	ata_dev_dbg(dev, "set features\n");
4566 
4567 	ata_tf_init(dev, &tf);
4568 	tf.command = ATA_CMD_SET_FEATURES;
4569 	tf.feature = subcmd;
4570 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571 	tf.protocol = ATA_PROT_NODATA;
4572 	tf.nsect = action;
4573 
4574 	if (subcmd == SETFEATURES_SPINUP)
4575 		timeout = ata_probe_timeout ?
4576 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4577 
4578 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4579 }
4580 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4581 
4582 /**
4583  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4584  *	@dev: Device to which command will be sent
4585  *	@heads: Number of heads (taskfile parameter)
4586  *	@sectors: Number of sectors (taskfile parameter)
4587  *
4588  *	LOCKING:
4589  *	Kernel thread context (may sleep)
4590  *
4591  *	RETURNS:
4592  *	0 on success, AC_ERR_* mask otherwise.
4593  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4594 static unsigned int ata_dev_init_params(struct ata_device *dev,
4595 					u16 heads, u16 sectors)
4596 {
4597 	struct ata_taskfile tf;
4598 	unsigned int err_mask;
4599 
4600 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4601 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4602 		return AC_ERR_INVALID;
4603 
4604 	/* set up init dev params taskfile */
4605 	ata_dev_dbg(dev, "init dev params \n");
4606 
4607 	ata_tf_init(dev, &tf);
4608 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4609 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4610 	tf.protocol = ATA_PROT_NODATA;
4611 	tf.nsect = sectors;
4612 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4613 
4614 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4615 	/* A clean abort indicates an original or just out of spec drive
4616 	   and we should continue as we issue the setup based on the
4617 	   drive reported working geometry */
4618 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4619 		err_mask = 0;
4620 
4621 	return err_mask;
4622 }
4623 
4624 /**
4625  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4626  *	@qc: Metadata associated with taskfile to check
4627  *
4628  *	Allow low-level driver to filter ATA PACKET commands, returning
4629  *	a status indicating whether or not it is OK to use DMA for the
4630  *	supplied PACKET command.
4631  *
4632  *	LOCKING:
4633  *	spin_lock_irqsave(host lock)
4634  *
4635  *	RETURNS: 0 when ATAPI DMA can be used
4636  *               nonzero otherwise
4637  */
atapi_check_dma(struct ata_queued_cmd * qc)4638 int atapi_check_dma(struct ata_queued_cmd *qc)
4639 {
4640 	struct ata_port *ap = qc->ap;
4641 
4642 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4643 	 * few ATAPI devices choke on such DMA requests.
4644 	 */
4645 	if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4646 	    unlikely(qc->nbytes & 15))
4647 		return -EOPNOTSUPP;
4648 
4649 	if (ap->ops->check_atapi_dma)
4650 		return ap->ops->check_atapi_dma(qc);
4651 
4652 	return 0;
4653 }
4654 
4655 /**
4656  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4657  *	@qc: ATA command in question
4658  *
4659  *	Non-NCQ commands cannot run with any other command, NCQ or
4660  *	not.  As upper layer only knows the queue depth, we are
4661  *	responsible for maintaining exclusion.  This function checks
4662  *	whether a new command @qc can be issued.
4663  *
4664  *	LOCKING:
4665  *	spin_lock_irqsave(host lock)
4666  *
4667  *	RETURNS:
4668  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4669  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4670 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4671 {
4672 	struct ata_link *link = qc->dev->link;
4673 
4674 	if (ata_is_ncq(qc->tf.protocol)) {
4675 		if (!ata_tag_valid(link->active_tag))
4676 			return 0;
4677 	} else {
4678 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4679 			return 0;
4680 	}
4681 
4682 	return ATA_DEFER_LINK;
4683 }
4684 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4685 
4686 /**
4687  *	ata_sg_init - Associate command with scatter-gather table.
4688  *	@qc: Command to be associated
4689  *	@sg: Scatter-gather table.
4690  *	@n_elem: Number of elements in s/g table.
4691  *
4692  *	Initialize the data-related elements of queued_cmd @qc
4693  *	to point to a scatter-gather table @sg, containing @n_elem
4694  *	elements.
4695  *
4696  *	LOCKING:
4697  *	spin_lock_irqsave(host lock)
4698  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4699 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4700 		 unsigned int n_elem)
4701 {
4702 	qc->sg = sg;
4703 	qc->n_elem = n_elem;
4704 	qc->cursg = qc->sg;
4705 }
4706 
4707 #ifdef CONFIG_HAS_DMA
4708 
4709 /**
4710  *	ata_sg_clean - Unmap DMA memory associated with command
4711  *	@qc: Command containing DMA memory to be released
4712  *
4713  *	Unmap all mapped DMA memory associated with this command.
4714  *
4715  *	LOCKING:
4716  *	spin_lock_irqsave(host lock)
4717  */
ata_sg_clean(struct ata_queued_cmd * qc)4718 static void ata_sg_clean(struct ata_queued_cmd *qc)
4719 {
4720 	struct ata_port *ap = qc->ap;
4721 	struct scatterlist *sg = qc->sg;
4722 	int dir = qc->dma_dir;
4723 
4724 	WARN_ON_ONCE(sg == NULL);
4725 
4726 	if (qc->n_elem)
4727 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4728 
4729 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4730 	qc->sg = NULL;
4731 }
4732 
4733 /**
4734  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4735  *	@qc: Command with scatter-gather table to be mapped.
4736  *
4737  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4738  *
4739  *	LOCKING:
4740  *	spin_lock_irqsave(host lock)
4741  *
4742  *	RETURNS:
4743  *	Zero on success, negative on error.
4744  *
4745  */
ata_sg_setup(struct ata_queued_cmd * qc)4746 static int ata_sg_setup(struct ata_queued_cmd *qc)
4747 {
4748 	struct ata_port *ap = qc->ap;
4749 	unsigned int n_elem;
4750 
4751 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4752 	if (n_elem < 1)
4753 		return -1;
4754 
4755 	qc->orig_n_elem = qc->n_elem;
4756 	qc->n_elem = n_elem;
4757 	qc->flags |= ATA_QCFLAG_DMAMAP;
4758 
4759 	return 0;
4760 }
4761 
4762 #else /* !CONFIG_HAS_DMA */
4763 
ata_sg_clean(struct ata_queued_cmd * qc)4764 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4765 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4766 
4767 #endif /* !CONFIG_HAS_DMA */
4768 
4769 /**
4770  *	swap_buf_le16 - swap halves of 16-bit words in place
4771  *	@buf:  Buffer to swap
4772  *	@buf_words:  Number of 16-bit words in buffer.
4773  *
4774  *	Swap halves of 16-bit words if needed to convert from
4775  *	little-endian byte order to native cpu byte order, or
4776  *	vice-versa.
4777  *
4778  *	LOCKING:
4779  *	Inherited from caller.
4780  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4781 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4782 {
4783 #ifdef __BIG_ENDIAN
4784 	unsigned int i;
4785 
4786 	for (i = 0; i < buf_words; i++)
4787 		buf[i] = le16_to_cpu(buf[i]);
4788 #endif /* __BIG_ENDIAN */
4789 }
4790 
4791 /**
4792  *	ata_qc_free - free unused ata_queued_cmd
4793  *	@qc: Command to complete
4794  *
4795  *	Designed to free unused ata_queued_cmd object
4796  *	in case something prevents using it.
4797  *
4798  *	LOCKING:
4799  *	spin_lock_irqsave(host lock)
4800  */
ata_qc_free(struct ata_queued_cmd * qc)4801 void ata_qc_free(struct ata_queued_cmd *qc)
4802 {
4803 	qc->flags = 0;
4804 	if (ata_tag_valid(qc->tag))
4805 		qc->tag = ATA_TAG_POISON;
4806 }
4807 
__ata_qc_complete(struct ata_queued_cmd * qc)4808 void __ata_qc_complete(struct ata_queued_cmd *qc)
4809 {
4810 	struct ata_port *ap;
4811 	struct ata_link *link;
4812 
4813 	if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4814 		return;
4815 
4816 	ap = qc->ap;
4817 	link = qc->dev->link;
4818 
4819 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4820 		ata_sg_clean(qc);
4821 
4822 	/* command should be marked inactive atomically with qc completion */
4823 	if (ata_is_ncq(qc->tf.protocol)) {
4824 		link->sactive &= ~(1 << qc->hw_tag);
4825 		if (!link->sactive)
4826 			ap->nr_active_links--;
4827 	} else {
4828 		link->active_tag = ATA_TAG_POISON;
4829 		ap->nr_active_links--;
4830 	}
4831 
4832 	/* clear exclusive status */
4833 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4834 		     ap->excl_link == link))
4835 		ap->excl_link = NULL;
4836 
4837 	/*
4838 	 * Mark qc as inactive to prevent the port interrupt handler from
4839 	 * completing the command twice later, before the error handler is
4840 	 * called.
4841 	 */
4842 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4843 	ap->qc_active &= ~(1ULL << qc->tag);
4844 
4845 	/* call completion callback */
4846 	qc->complete_fn(qc);
4847 }
4848 
fill_result_tf(struct ata_queued_cmd * qc)4849 static void fill_result_tf(struct ata_queued_cmd *qc)
4850 {
4851 	struct ata_port *ap = qc->ap;
4852 
4853 	/*
4854 	 * rtf may already be filled (e.g. for successful NCQ commands).
4855 	 * If that is the case, we have nothing to do.
4856 	 */
4857 	if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4858 		return;
4859 
4860 	qc->result_tf.flags = qc->tf.flags;
4861 	ap->ops->qc_fill_rtf(qc);
4862 	qc->flags |= ATA_QCFLAG_RTF_FILLED;
4863 }
4864 
ata_verify_xfer(struct ata_queued_cmd * qc)4865 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4866 {
4867 	struct ata_device *dev = qc->dev;
4868 
4869 	if (!ata_is_data(qc->tf.protocol))
4870 		return;
4871 
4872 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4873 		return;
4874 
4875 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4876 }
4877 
4878 /**
4879  *	ata_qc_complete - Complete an active ATA command
4880  *	@qc: Command to complete
4881  *
4882  *	Indicate to the mid and upper layers that an ATA command has
4883  *	completed, with either an ok or not-ok status.
4884  *
4885  *	Refrain from calling this function multiple times when
4886  *	successfully completing multiple NCQ commands.
4887  *	ata_qc_complete_multiple() should be used instead, which will
4888  *	properly update IRQ expect state.
4889  *
4890  *	LOCKING:
4891  *	spin_lock_irqsave(host lock)
4892  */
ata_qc_complete(struct ata_queued_cmd * qc)4893 void ata_qc_complete(struct ata_queued_cmd *qc)
4894 {
4895 	struct ata_port *ap = qc->ap;
4896 	struct ata_device *dev = qc->dev;
4897 	struct ata_eh_info *ehi = &dev->link->eh_info;
4898 
4899 	/* Trigger the LED (if available) */
4900 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4901 
4902 	/*
4903 	 * In order to synchronize EH with the regular execution path, a qc that
4904 	 * is owned by EH is marked with ATA_QCFLAG_EH.
4905 	 *
4906 	 * The normal execution path is responsible for not accessing a qc owned
4907 	 * by EH.  libata core enforces the rule by returning NULL from
4908 	 * ata_qc_from_tag() for qcs owned by EH.
4909 	 */
4910 	if (unlikely(qc->err_mask))
4911 		qc->flags |= ATA_QCFLAG_EH;
4912 
4913 	/*
4914 	 * Finish internal commands without any further processing and always
4915 	 * with the result TF filled.
4916 	 */
4917 	if (unlikely(ata_tag_internal(qc->tag))) {
4918 		fill_result_tf(qc);
4919 		trace_ata_qc_complete_internal(qc);
4920 		__ata_qc_complete(qc);
4921 		return;
4922 	}
4923 
4924 	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4925 	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4926 		fill_result_tf(qc);
4927 		trace_ata_qc_complete_failed(qc);
4928 		ata_qc_schedule_eh(qc);
4929 		return;
4930 	}
4931 
4932 	WARN_ON_ONCE(ata_port_is_frozen(ap));
4933 
4934 	/* read result TF if requested */
4935 	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4936 		fill_result_tf(qc);
4937 
4938 	trace_ata_qc_complete_done(qc);
4939 
4940 	/*
4941 	 * For CDL commands that completed without an error, check if we have
4942 	 * sense data (ATA_SENSE is set). If we do, then the command may have
4943 	 * been aborted by the device due to a limit timeout using the policy
4944 	 * 0xD. For these commands, invoke EH to get the command sense data.
4945 	 */
4946 	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4947 	    qc->result_tf.status & ATA_SENSE) {
4948 		/*
4949 		 * Tell SCSI EH to not overwrite scmd->result even if this
4950 		 * command is finished with result SAM_STAT_GOOD.
4951 		 */
4952 		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4953 		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4954 		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4955 
4956 		/*
4957 		 * set pending so that ata_qc_schedule_eh() does not trigger
4958 		 * fast drain, and freeze the port.
4959 		 */
4960 		ap->pflags |= ATA_PFLAG_EH_PENDING;
4961 		ata_qc_schedule_eh(qc);
4962 		return;
4963 	}
4964 
4965 	/* Some commands need post-processing after successful completion. */
4966 	switch (qc->tf.command) {
4967 	case ATA_CMD_SET_FEATURES:
4968 		if (qc->tf.feature != SETFEATURES_WC_ON &&
4969 		    qc->tf.feature != SETFEATURES_WC_OFF &&
4970 		    qc->tf.feature != SETFEATURES_RA_ON &&
4971 		    qc->tf.feature != SETFEATURES_RA_OFF)
4972 			break;
4973 		fallthrough;
4974 	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4975 	case ATA_CMD_SET_MULTI: /* multi_count changed */
4976 		/* revalidate device */
4977 		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4978 		ata_port_schedule_eh(ap);
4979 		break;
4980 
4981 	case ATA_CMD_SLEEP:
4982 		dev->flags |= ATA_DFLAG_SLEEPING;
4983 		break;
4984 	}
4985 
4986 	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4987 		ata_verify_xfer(qc);
4988 
4989 	__ata_qc_complete(qc);
4990 }
4991 EXPORT_SYMBOL_GPL(ata_qc_complete);
4992 
4993 /**
4994  *	ata_qc_get_active - get bitmask of active qcs
4995  *	@ap: port in question
4996  *
4997  *	LOCKING:
4998  *	spin_lock_irqsave(host lock)
4999  *
5000  *	RETURNS:
5001  *	Bitmask of active qcs
5002  */
ata_qc_get_active(struct ata_port * ap)5003 u64 ata_qc_get_active(struct ata_port *ap)
5004 {
5005 	u64 qc_active = ap->qc_active;
5006 
5007 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5008 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5009 		qc_active |= (1 << 0);
5010 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5011 	}
5012 
5013 	return qc_active;
5014 }
5015 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5016 
5017 /**
5018  *	ata_qc_issue - issue taskfile to device
5019  *	@qc: command to issue to device
5020  *
5021  *	Prepare an ATA command to submission to device.
5022  *	This includes mapping the data into a DMA-able
5023  *	area, filling in the S/G table, and finally
5024  *	writing the taskfile to hardware, starting the command.
5025  *
5026  *	LOCKING:
5027  *	spin_lock_irqsave(host lock)
5028  */
ata_qc_issue(struct ata_queued_cmd * qc)5029 void ata_qc_issue(struct ata_queued_cmd *qc)
5030 {
5031 	struct ata_port *ap = qc->ap;
5032 	struct ata_link *link = qc->dev->link;
5033 	u8 prot = qc->tf.protocol;
5034 
5035 	/* Make sure only one non-NCQ command is outstanding. */
5036 	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5037 
5038 	if (ata_is_ncq(prot)) {
5039 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5040 
5041 		if (!link->sactive)
5042 			ap->nr_active_links++;
5043 		link->sactive |= 1 << qc->hw_tag;
5044 	} else {
5045 		WARN_ON_ONCE(link->sactive);
5046 
5047 		ap->nr_active_links++;
5048 		link->active_tag = qc->tag;
5049 	}
5050 
5051 	qc->flags |= ATA_QCFLAG_ACTIVE;
5052 	ap->qc_active |= 1ULL << qc->tag;
5053 
5054 	/*
5055 	 * We guarantee to LLDs that they will have at least one
5056 	 * non-zero sg if the command is a data command.
5057 	 */
5058 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5059 		goto sys_err;
5060 
5061 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5062 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5063 		if (ata_sg_setup(qc))
5064 			goto sys_err;
5065 
5066 	/* if device is sleeping, schedule reset and abort the link */
5067 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5068 		link->eh_info.action |= ATA_EH_RESET;
5069 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5070 		ata_link_abort(link);
5071 		return;
5072 	}
5073 
5074 	if (ap->ops->qc_prep) {
5075 		trace_ata_qc_prep(qc);
5076 		qc->err_mask |= ap->ops->qc_prep(qc);
5077 		if (unlikely(qc->err_mask))
5078 			goto err;
5079 	}
5080 
5081 	trace_ata_qc_issue(qc);
5082 	qc->err_mask |= ap->ops->qc_issue(qc);
5083 	if (unlikely(qc->err_mask))
5084 		goto err;
5085 	return;
5086 
5087 sys_err:
5088 	qc->err_mask |= AC_ERR_SYSTEM;
5089 err:
5090 	ata_qc_complete(qc);
5091 }
5092 
5093 /**
5094  *	ata_phys_link_online - test whether the given link is online
5095  *	@link: ATA link to test
5096  *
5097  *	Test whether @link is online.  Note that this function returns
5098  *	0 if online status of @link cannot be obtained, so
5099  *	ata_link_online(link) != !ata_link_offline(link).
5100  *
5101  *	LOCKING:
5102  *	None.
5103  *
5104  *	RETURNS:
5105  *	True if the port online status is available and online.
5106  */
ata_phys_link_online(struct ata_link * link)5107 bool ata_phys_link_online(struct ata_link *link)
5108 {
5109 	u32 sstatus;
5110 
5111 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5112 	    ata_sstatus_online(sstatus))
5113 		return true;
5114 	return false;
5115 }
5116 
5117 /**
5118  *	ata_phys_link_offline - test whether the given link is offline
5119  *	@link: ATA link to test
5120  *
5121  *	Test whether @link is offline.  Note that this function
5122  *	returns 0 if offline status of @link cannot be obtained, so
5123  *	ata_link_online(link) != !ata_link_offline(link).
5124  *
5125  *	LOCKING:
5126  *	None.
5127  *
5128  *	RETURNS:
5129  *	True if the port offline status is available and offline.
5130  */
ata_phys_link_offline(struct ata_link * link)5131 bool ata_phys_link_offline(struct ata_link *link)
5132 {
5133 	u32 sstatus;
5134 
5135 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5136 	    !ata_sstatus_online(sstatus))
5137 		return true;
5138 	return false;
5139 }
5140 
5141 /**
5142  *	ata_link_online - test whether the given link is online
5143  *	@link: ATA link to test
5144  *
5145  *	Test whether @link is online.  This is identical to
5146  *	ata_phys_link_online() when there's no slave link.  When
5147  *	there's a slave link, this function should only be called on
5148  *	the master link and will return true if any of M/S links is
5149  *	online.
5150  *
5151  *	LOCKING:
5152  *	None.
5153  *
5154  *	RETURNS:
5155  *	True if the port online status is available and online.
5156  */
ata_link_online(struct ata_link * link)5157 bool ata_link_online(struct ata_link *link)
5158 {
5159 	struct ata_link *slave = link->ap->slave_link;
5160 
5161 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5162 
5163 	return ata_phys_link_online(link) ||
5164 		(slave && ata_phys_link_online(slave));
5165 }
5166 EXPORT_SYMBOL_GPL(ata_link_online);
5167 
5168 /**
5169  *	ata_link_offline - test whether the given link is offline
5170  *	@link: ATA link to test
5171  *
5172  *	Test whether @link is offline.  This is identical to
5173  *	ata_phys_link_offline() when there's no slave link.  When
5174  *	there's a slave link, this function should only be called on
5175  *	the master link and will return true if both M/S links are
5176  *	offline.
5177  *
5178  *	LOCKING:
5179  *	None.
5180  *
5181  *	RETURNS:
5182  *	True if the port offline status is available and offline.
5183  */
ata_link_offline(struct ata_link * link)5184 bool ata_link_offline(struct ata_link *link)
5185 {
5186 	struct ata_link *slave = link->ap->slave_link;
5187 
5188 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5189 
5190 	return ata_phys_link_offline(link) &&
5191 		(!slave || ata_phys_link_offline(slave));
5192 }
5193 EXPORT_SYMBOL_GPL(ata_link_offline);
5194 
5195 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5196 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5197 				unsigned int action, unsigned int ehi_flags,
5198 				bool async)
5199 {
5200 	struct ata_link *link;
5201 	unsigned long flags;
5202 
5203 	spin_lock_irqsave(ap->lock, flags);
5204 
5205 	/*
5206 	 * A previous PM operation might still be in progress. Wait for
5207 	 * ATA_PFLAG_PM_PENDING to clear.
5208 	 */
5209 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5210 		spin_unlock_irqrestore(ap->lock, flags);
5211 		ata_port_wait_eh(ap);
5212 		spin_lock_irqsave(ap->lock, flags);
5213 	}
5214 
5215 	/* Request PM operation to EH */
5216 	ap->pm_mesg = mesg;
5217 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5218 	ata_for_each_link(link, ap, HOST_FIRST) {
5219 		link->eh_info.action |= action;
5220 		link->eh_info.flags |= ehi_flags;
5221 	}
5222 
5223 	ata_port_schedule_eh(ap);
5224 
5225 	spin_unlock_irqrestore(ap->lock, flags);
5226 
5227 	if (!async)
5228 		ata_port_wait_eh(ap);
5229 }
5230 
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5231 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5232 			     bool async)
5233 {
5234 	/*
5235 	 * We are about to suspend the port, so we do not care about
5236 	 * scsi_rescan_device() calls scheduled by previous resume operations.
5237 	 * The next resume will schedule the rescan again. So cancel any rescan
5238 	 * that is not done yet.
5239 	 */
5240 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5241 
5242 	/*
5243 	 * On some hardware, device fails to respond after spun down for
5244 	 * suspend. As the device will not be used until being resumed, we
5245 	 * do not need to touch the device. Ask EH to skip the usual stuff
5246 	 * and proceed directly to suspend.
5247 	 *
5248 	 * http://thread.gmane.org/gmane.linux.ide/46764
5249 	 */
5250 	ata_port_request_pm(ap, mesg, 0,
5251 			    ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5252 			    ATA_EHI_NO_RECOVERY,
5253 			    async);
5254 }
5255 
ata_port_pm_suspend(struct device * dev)5256 static int ata_port_pm_suspend(struct device *dev)
5257 {
5258 	struct ata_port *ap = to_ata_port(dev);
5259 
5260 	if (pm_runtime_suspended(dev))
5261 		return 0;
5262 
5263 	ata_port_suspend(ap, PMSG_SUSPEND, false);
5264 	return 0;
5265 }
5266 
ata_port_pm_freeze(struct device * dev)5267 static int ata_port_pm_freeze(struct device *dev)
5268 {
5269 	struct ata_port *ap = to_ata_port(dev);
5270 
5271 	if (pm_runtime_suspended(dev))
5272 		return 0;
5273 
5274 	ata_port_suspend(ap, PMSG_FREEZE, false);
5275 	return 0;
5276 }
5277 
ata_port_pm_poweroff(struct device * dev)5278 static int ata_port_pm_poweroff(struct device *dev)
5279 {
5280 	if (!pm_runtime_suspended(dev))
5281 		ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5282 	return 0;
5283 }
5284 
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5285 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5286 			    bool async)
5287 {
5288 	ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5289 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5290 			    async);
5291 }
5292 
ata_port_pm_resume(struct device * dev)5293 static int ata_port_pm_resume(struct device *dev)
5294 {
5295 	if (!pm_runtime_suspended(dev))
5296 		ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5297 	return 0;
5298 }
5299 
5300 /*
5301  * For ODDs, the upper layer will poll for media change every few seconds,
5302  * which will make it enter and leave suspend state every few seconds. And
5303  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5304  * is very little and the ODD may malfunction after constantly being reset.
5305  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5306  * ODD is attached to the port.
5307  */
ata_port_runtime_idle(struct device * dev)5308 static int ata_port_runtime_idle(struct device *dev)
5309 {
5310 	struct ata_port *ap = to_ata_port(dev);
5311 	struct ata_link *link;
5312 	struct ata_device *adev;
5313 
5314 	ata_for_each_link(link, ap, HOST_FIRST) {
5315 		ata_for_each_dev(adev, link, ENABLED)
5316 			if (adev->class == ATA_DEV_ATAPI &&
5317 			    !zpodd_dev_enabled(adev))
5318 				return -EBUSY;
5319 	}
5320 
5321 	return 0;
5322 }
5323 
ata_port_runtime_suspend(struct device * dev)5324 static int ata_port_runtime_suspend(struct device *dev)
5325 {
5326 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5327 	return 0;
5328 }
5329 
ata_port_runtime_resume(struct device * dev)5330 static int ata_port_runtime_resume(struct device *dev)
5331 {
5332 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5333 	return 0;
5334 }
5335 
5336 static const struct dev_pm_ops ata_port_pm_ops = {
5337 	.suspend = ata_port_pm_suspend,
5338 	.resume = ata_port_pm_resume,
5339 	.freeze = ata_port_pm_freeze,
5340 	.thaw = ata_port_pm_resume,
5341 	.poweroff = ata_port_pm_poweroff,
5342 	.restore = ata_port_pm_resume,
5343 
5344 	.runtime_suspend = ata_port_runtime_suspend,
5345 	.runtime_resume = ata_port_runtime_resume,
5346 	.runtime_idle = ata_port_runtime_idle,
5347 };
5348 
5349 /* sas ports don't participate in pm runtime management of ata_ports,
5350  * and need to resume ata devices at the domain level, not the per-port
5351  * level. sas suspend/resume is async to allow parallel port recovery
5352  * since sas has multiple ata_port instances per Scsi_Host.
5353  */
ata_sas_port_suspend(struct ata_port * ap)5354 void ata_sas_port_suspend(struct ata_port *ap)
5355 {
5356 	ata_port_suspend(ap, PMSG_SUSPEND, true);
5357 }
5358 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5359 
ata_sas_port_resume(struct ata_port * ap)5360 void ata_sas_port_resume(struct ata_port *ap)
5361 {
5362 	ata_port_resume(ap, PMSG_RESUME, true);
5363 }
5364 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5365 
5366 /**
5367  *	ata_host_suspend - suspend host
5368  *	@host: host to suspend
5369  *	@mesg: PM message
5370  *
5371  *	Suspend @host.  Actual operation is performed by port suspend.
5372  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5373 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5374 {
5375 	host->dev->power.power_state = mesg;
5376 }
5377 EXPORT_SYMBOL_GPL(ata_host_suspend);
5378 
5379 /**
5380  *	ata_host_resume - resume host
5381  *	@host: host to resume
5382  *
5383  *	Resume @host.  Actual operation is performed by port resume.
5384  */
ata_host_resume(struct ata_host * host)5385 void ata_host_resume(struct ata_host *host)
5386 {
5387 	host->dev->power.power_state = PMSG_ON;
5388 }
5389 EXPORT_SYMBOL_GPL(ata_host_resume);
5390 #endif
5391 
5392 const struct device_type ata_port_type = {
5393 	.name = ATA_PORT_TYPE_NAME,
5394 #ifdef CONFIG_PM
5395 	.pm = &ata_port_pm_ops,
5396 #endif
5397 };
5398 
5399 /**
5400  *	ata_dev_init - Initialize an ata_device structure
5401  *	@dev: Device structure to initialize
5402  *
5403  *	Initialize @dev in preparation for probing.
5404  *
5405  *	LOCKING:
5406  *	Inherited from caller.
5407  */
ata_dev_init(struct ata_device * dev)5408 void ata_dev_init(struct ata_device *dev)
5409 {
5410 	struct ata_link *link = ata_dev_phys_link(dev);
5411 	struct ata_port *ap = link->ap;
5412 	unsigned long flags;
5413 
5414 	/* SATA spd limit is bound to the attached device, reset together */
5415 	link->sata_spd_limit = link->hw_sata_spd_limit;
5416 	link->sata_spd = 0;
5417 
5418 	/* High bits of dev->flags are used to record warm plug
5419 	 * requests which occur asynchronously.  Synchronize using
5420 	 * host lock.
5421 	 */
5422 	spin_lock_irqsave(ap->lock, flags);
5423 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5424 	dev->quirks = 0;
5425 	spin_unlock_irqrestore(ap->lock, flags);
5426 
5427 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5428 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5429 	dev->pio_mask = UINT_MAX;
5430 	dev->mwdma_mask = UINT_MAX;
5431 	dev->udma_mask = UINT_MAX;
5432 }
5433 
5434 /**
5435  *	ata_link_init - Initialize an ata_link structure
5436  *	@ap: ATA port link is attached to
5437  *	@link: Link structure to initialize
5438  *	@pmp: Port multiplier port number
5439  *
5440  *	Initialize @link.
5441  *
5442  *	LOCKING:
5443  *	Kernel thread context (may sleep)
5444  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5445 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5446 {
5447 	int i;
5448 
5449 	/* clear everything except for devices */
5450 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5451 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5452 
5453 	link->ap = ap;
5454 	link->pmp = pmp;
5455 	link->active_tag = ATA_TAG_POISON;
5456 	link->hw_sata_spd_limit = UINT_MAX;
5457 
5458 	/* can't use iterator, ap isn't initialized yet */
5459 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5460 		struct ata_device *dev = &link->device[i];
5461 
5462 		dev->link = link;
5463 		dev->devno = dev - link->device;
5464 #ifdef CONFIG_ATA_ACPI
5465 		dev->gtf_filter = ata_acpi_gtf_filter;
5466 #endif
5467 		ata_dev_init(dev);
5468 	}
5469 }
5470 
5471 /**
5472  *	sata_link_init_spd - Initialize link->sata_spd_limit
5473  *	@link: Link to configure sata_spd_limit for
5474  *
5475  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5476  *	configured value.
5477  *
5478  *	LOCKING:
5479  *	Kernel thread context (may sleep).
5480  *
5481  *	RETURNS:
5482  *	0 on success, -errno on failure.
5483  */
sata_link_init_spd(struct ata_link * link)5484 int sata_link_init_spd(struct ata_link *link)
5485 {
5486 	u8 spd;
5487 	int rc;
5488 
5489 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5490 	if (rc)
5491 		return rc;
5492 
5493 	spd = (link->saved_scontrol >> 4) & 0xf;
5494 	if (spd)
5495 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5496 
5497 	ata_force_link_limits(link);
5498 
5499 	link->sata_spd_limit = link->hw_sata_spd_limit;
5500 
5501 	return 0;
5502 }
5503 
5504 /**
5505  *	ata_port_alloc - allocate and initialize basic ATA port resources
5506  *	@host: ATA host this allocated port belongs to
5507  *
5508  *	Allocate and initialize basic ATA port resources.
5509  *
5510  *	RETURNS:
5511  *	Allocate ATA port on success, NULL on failure.
5512  *
5513  *	LOCKING:
5514  *	Inherited from calling layer (may sleep).
5515  */
ata_port_alloc(struct ata_host * host)5516 struct ata_port *ata_port_alloc(struct ata_host *host)
5517 {
5518 	struct ata_port *ap;
5519 	int id;
5520 
5521 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5522 	if (!ap)
5523 		return NULL;
5524 
5525 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5526 	ap->lock = &host->lock;
5527 	id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5528 	if (id < 0) {
5529 		kfree(ap);
5530 		return NULL;
5531 	}
5532 	ap->print_id = id;
5533 	ap->host = host;
5534 	ap->dev = host->dev;
5535 
5536 	mutex_init(&ap->scsi_scan_mutex);
5537 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5538 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5539 	INIT_LIST_HEAD(&ap->eh_done_q);
5540 	init_waitqueue_head(&ap->eh_wait_q);
5541 	init_completion(&ap->park_req_pending);
5542 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5543 		    TIMER_DEFERRABLE);
5544 
5545 	ap->cbl = ATA_CBL_NONE;
5546 
5547 	ata_link_init(ap, &ap->link, 0);
5548 
5549 #ifdef ATA_IRQ_TRAP
5550 	ap->stats.unhandled_irq = 1;
5551 	ap->stats.idle_irq = 1;
5552 #endif
5553 	ata_sff_port_init(ap);
5554 
5555 	ata_force_pflags(ap);
5556 
5557 	return ap;
5558 }
5559 EXPORT_SYMBOL_GPL(ata_port_alloc);
5560 
ata_port_free(struct ata_port * ap)5561 void ata_port_free(struct ata_port *ap)
5562 {
5563 	if (!ap)
5564 		return;
5565 
5566 	kfree(ap->pmp_link);
5567 	kfree(ap->slave_link);
5568 	ida_free(&ata_ida, ap->print_id);
5569 	kfree(ap);
5570 }
5571 EXPORT_SYMBOL_GPL(ata_port_free);
5572 
ata_devres_release(struct device * gendev,void * res)5573 static void ata_devres_release(struct device *gendev, void *res)
5574 {
5575 	struct ata_host *host = dev_get_drvdata(gendev);
5576 	int i;
5577 
5578 	for (i = 0; i < host->n_ports; i++) {
5579 		struct ata_port *ap = host->ports[i];
5580 
5581 		if (!ap)
5582 			continue;
5583 
5584 		if (ap->scsi_host)
5585 			scsi_host_put(ap->scsi_host);
5586 
5587 	}
5588 
5589 	dev_set_drvdata(gendev, NULL);
5590 	ata_host_put(host);
5591 }
5592 
ata_host_release(struct kref * kref)5593 static void ata_host_release(struct kref *kref)
5594 {
5595 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5596 	int i;
5597 
5598 	for (i = 0; i < host->n_ports; i++) {
5599 		ata_port_free(host->ports[i]);
5600 		host->ports[i] = NULL;
5601 	}
5602 	kfree(host);
5603 }
5604 
ata_host_get(struct ata_host * host)5605 void ata_host_get(struct ata_host *host)
5606 {
5607 	kref_get(&host->kref);
5608 }
5609 
ata_host_put(struct ata_host * host)5610 void ata_host_put(struct ata_host *host)
5611 {
5612 	kref_put(&host->kref, ata_host_release);
5613 }
5614 EXPORT_SYMBOL_GPL(ata_host_put);
5615 
5616 /**
5617  *	ata_host_alloc - allocate and init basic ATA host resources
5618  *	@dev: generic device this host is associated with
5619  *	@n_ports: the number of ATA ports associated with this host
5620  *
5621  *	Allocate and initialize basic ATA host resources.  LLD calls
5622  *	this function to allocate a host, initializes it fully and
5623  *	attaches it using ata_host_register().
5624  *
5625  *	RETURNS:
5626  *	Allocate ATA host on success, NULL on failure.
5627  *
5628  *	LOCKING:
5629  *	Inherited from calling layer (may sleep).
5630  */
ata_host_alloc(struct device * dev,int n_ports)5631 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5632 {
5633 	struct ata_host *host;
5634 	size_t sz;
5635 	int i;
5636 	void *dr;
5637 
5638 	/* alloc a container for our list of ATA ports (buses) */
5639 	sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5640 	host = kzalloc(sz, GFP_KERNEL);
5641 	if (!host)
5642 		return NULL;
5643 
5644 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5645 		kfree(host);
5646 		return NULL;
5647 	}
5648 
5649 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5650 	if (!dr) {
5651 		kfree(host);
5652 		goto err_out;
5653 	}
5654 
5655 	devres_add(dev, dr);
5656 	dev_set_drvdata(dev, host);
5657 
5658 	spin_lock_init(&host->lock);
5659 	mutex_init(&host->eh_mutex);
5660 	host->dev = dev;
5661 	host->n_ports = n_ports;
5662 	kref_init(&host->kref);
5663 
5664 	/* allocate ports bound to this host */
5665 	for (i = 0; i < n_ports; i++) {
5666 		struct ata_port *ap;
5667 
5668 		ap = ata_port_alloc(host);
5669 		if (!ap)
5670 			goto err_out;
5671 
5672 		ap->port_no = i;
5673 		host->ports[i] = ap;
5674 	}
5675 
5676 	devres_remove_group(dev, NULL);
5677 	return host;
5678 
5679  err_out:
5680 	devres_release_group(dev, NULL);
5681 	return NULL;
5682 }
5683 EXPORT_SYMBOL_GPL(ata_host_alloc);
5684 
5685 /**
5686  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5687  *	@dev: generic device this host is associated with
5688  *	@ppi: array of ATA port_info to initialize host with
5689  *	@n_ports: number of ATA ports attached to this host
5690  *
5691  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5692  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5693  *	last entry will be used for the remaining ports.
5694  *
5695  *	RETURNS:
5696  *	Allocate ATA host on success, NULL on failure.
5697  *
5698  *	LOCKING:
5699  *	Inherited from calling layer (may sleep).
5700  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5701 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5702 				      const struct ata_port_info * const * ppi,
5703 				      int n_ports)
5704 {
5705 	const struct ata_port_info *pi = &ata_dummy_port_info;
5706 	struct ata_host *host;
5707 	int i, j;
5708 
5709 	host = ata_host_alloc(dev, n_ports);
5710 	if (!host)
5711 		return NULL;
5712 
5713 	for (i = 0, j = 0; i < host->n_ports; i++) {
5714 		struct ata_port *ap = host->ports[i];
5715 
5716 		if (ppi[j])
5717 			pi = ppi[j++];
5718 
5719 		ap->pio_mask = pi->pio_mask;
5720 		ap->mwdma_mask = pi->mwdma_mask;
5721 		ap->udma_mask = pi->udma_mask;
5722 		ap->flags |= pi->flags;
5723 		ap->link.flags |= pi->link_flags;
5724 		ap->ops = pi->port_ops;
5725 
5726 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5727 			host->ops = pi->port_ops;
5728 	}
5729 
5730 	return host;
5731 }
5732 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5733 
ata_host_stop(struct device * gendev,void * res)5734 static void ata_host_stop(struct device *gendev, void *res)
5735 {
5736 	struct ata_host *host = dev_get_drvdata(gendev);
5737 	int i;
5738 
5739 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5740 
5741 	for (i = 0; i < host->n_ports; i++) {
5742 		struct ata_port *ap = host->ports[i];
5743 
5744 		if (ap->ops->port_stop)
5745 			ap->ops->port_stop(ap);
5746 	}
5747 
5748 	if (host->ops->host_stop)
5749 		host->ops->host_stop(host);
5750 }
5751 
5752 /**
5753  *	ata_finalize_port_ops - finalize ata_port_operations
5754  *	@ops: ata_port_operations to finalize
5755  *
5756  *	An ata_port_operations can inherit from another ops and that
5757  *	ops can again inherit from another.  This can go on as many
5758  *	times as necessary as long as there is no loop in the
5759  *	inheritance chain.
5760  *
5761  *	Ops tables are finalized when the host is started.  NULL or
5762  *	unspecified entries are inherited from the closet ancestor
5763  *	which has the method and the entry is populated with it.
5764  *	After finalization, the ops table directly points to all the
5765  *	methods and ->inherits is no longer necessary and cleared.
5766  *
5767  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5768  *
5769  *	LOCKING:
5770  *	None.
5771  */
ata_finalize_port_ops(struct ata_port_operations * ops)5772 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5773 {
5774 	static DEFINE_SPINLOCK(lock);
5775 	const struct ata_port_operations *cur;
5776 	void **begin = (void **)ops;
5777 	void **end = (void **)&ops->inherits;
5778 	void **pp;
5779 
5780 	if (!ops || !ops->inherits)
5781 		return;
5782 
5783 	spin_lock(&lock);
5784 
5785 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5786 		void **inherit = (void **)cur;
5787 
5788 		for (pp = begin; pp < end; pp++, inherit++)
5789 			if (!*pp)
5790 				*pp = *inherit;
5791 	}
5792 
5793 	for (pp = begin; pp < end; pp++)
5794 		if (IS_ERR(*pp))
5795 			*pp = NULL;
5796 
5797 	ops->inherits = NULL;
5798 
5799 	spin_unlock(&lock);
5800 }
5801 
5802 /**
5803  *	ata_host_start - start and freeze ports of an ATA host
5804  *	@host: ATA host to start ports for
5805  *
5806  *	Start and then freeze ports of @host.  Started status is
5807  *	recorded in host->flags, so this function can be called
5808  *	multiple times.  Ports are guaranteed to get started only
5809  *	once.  If host->ops is not initialized yet, it is set to the
5810  *	first non-dummy port ops.
5811  *
5812  *	LOCKING:
5813  *	Inherited from calling layer (may sleep).
5814  *
5815  *	RETURNS:
5816  *	0 if all ports are started successfully, -errno otherwise.
5817  */
ata_host_start(struct ata_host * host)5818 int ata_host_start(struct ata_host *host)
5819 {
5820 	int have_stop = 0;
5821 	void *start_dr = NULL;
5822 	int i, rc;
5823 
5824 	if (host->flags & ATA_HOST_STARTED)
5825 		return 0;
5826 
5827 	ata_finalize_port_ops(host->ops);
5828 
5829 	for (i = 0; i < host->n_ports; i++) {
5830 		struct ata_port *ap = host->ports[i];
5831 
5832 		ata_finalize_port_ops(ap->ops);
5833 
5834 		if (!host->ops && !ata_port_is_dummy(ap))
5835 			host->ops = ap->ops;
5836 
5837 		if (ap->ops->port_stop)
5838 			have_stop = 1;
5839 	}
5840 
5841 	if (host->ops && host->ops->host_stop)
5842 		have_stop = 1;
5843 
5844 	if (have_stop) {
5845 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5846 		if (!start_dr)
5847 			return -ENOMEM;
5848 	}
5849 
5850 	for (i = 0; i < host->n_ports; i++) {
5851 		struct ata_port *ap = host->ports[i];
5852 
5853 		if (ap->ops->port_start) {
5854 			rc = ap->ops->port_start(ap);
5855 			if (rc) {
5856 				if (rc != -ENODEV)
5857 					dev_err(host->dev,
5858 						"failed to start port %d (errno=%d)\n",
5859 						i, rc);
5860 				goto err_out;
5861 			}
5862 		}
5863 		ata_eh_freeze_port(ap);
5864 	}
5865 
5866 	if (start_dr)
5867 		devres_add(host->dev, start_dr);
5868 	host->flags |= ATA_HOST_STARTED;
5869 	return 0;
5870 
5871  err_out:
5872 	while (--i >= 0) {
5873 		struct ata_port *ap = host->ports[i];
5874 
5875 		if (ap->ops->port_stop)
5876 			ap->ops->port_stop(ap);
5877 	}
5878 	devres_free(start_dr);
5879 	return rc;
5880 }
5881 EXPORT_SYMBOL_GPL(ata_host_start);
5882 
5883 /**
5884  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5885  *	@host:	host to initialize
5886  *	@dev:	device host is attached to
5887  *	@ops:	port_ops
5888  *
5889  */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5890 void ata_host_init(struct ata_host *host, struct device *dev,
5891 		   struct ata_port_operations *ops)
5892 {
5893 	spin_lock_init(&host->lock);
5894 	mutex_init(&host->eh_mutex);
5895 	host->n_tags = ATA_MAX_QUEUE;
5896 	host->dev = dev;
5897 	host->ops = ops;
5898 	kref_init(&host->kref);
5899 }
5900 EXPORT_SYMBOL_GPL(ata_host_init);
5901 
ata_port_probe(struct ata_port * ap)5902 void ata_port_probe(struct ata_port *ap)
5903 {
5904 	struct ata_eh_info *ehi = &ap->link.eh_info;
5905 	unsigned long flags;
5906 
5907 	/* kick EH for boot probing */
5908 	spin_lock_irqsave(ap->lock, flags);
5909 
5910 	ehi->probe_mask |= ATA_ALL_DEVICES;
5911 	ehi->action |= ATA_EH_RESET;
5912 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5913 
5914 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5915 	ap->pflags |= ATA_PFLAG_LOADING;
5916 	ata_port_schedule_eh(ap);
5917 
5918 	spin_unlock_irqrestore(ap->lock, flags);
5919 }
5920 EXPORT_SYMBOL_GPL(ata_port_probe);
5921 
async_port_probe(void * data,async_cookie_t cookie)5922 static void async_port_probe(void *data, async_cookie_t cookie)
5923 {
5924 	struct ata_port *ap = data;
5925 
5926 	/*
5927 	 * If we're not allowed to scan this host in parallel,
5928 	 * we need to wait until all previous scans have completed
5929 	 * before going further.
5930 	 * Jeff Garzik says this is only within a controller, so we
5931 	 * don't need to wait for port 0, only for later ports.
5932 	 */
5933 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5934 		async_synchronize_cookie(cookie);
5935 
5936 	ata_port_probe(ap);
5937 	ata_port_wait_eh(ap);
5938 
5939 	/* in order to keep device order, we need to synchronize at this point */
5940 	async_synchronize_cookie(cookie);
5941 
5942 	ata_scsi_scan_host(ap, 1);
5943 }
5944 
5945 /**
5946  *	ata_host_register - register initialized ATA host
5947  *	@host: ATA host to register
5948  *	@sht: template for SCSI host
5949  *
5950  *	Register initialized ATA host.  @host is allocated using
5951  *	ata_host_alloc() and fully initialized by LLD.  This function
5952  *	starts ports, registers @host with ATA and SCSI layers and
5953  *	probe registered devices.
5954  *
5955  *	LOCKING:
5956  *	Inherited from calling layer (may sleep).
5957  *
5958  *	RETURNS:
5959  *	0 on success, -errno otherwise.
5960  */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5961 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5962 {
5963 	int i, rc;
5964 
5965 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5966 
5967 	/* host must have been started */
5968 	if (!(host->flags & ATA_HOST_STARTED)) {
5969 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5970 		WARN_ON(1);
5971 		return -EINVAL;
5972 	}
5973 
5974 	/* Create associated sysfs transport objects  */
5975 	for (i = 0; i < host->n_ports; i++) {
5976 		rc = ata_tport_add(host->dev,host->ports[i]);
5977 		if (rc) {
5978 			goto err_tadd;
5979 		}
5980 	}
5981 
5982 	rc = ata_scsi_add_hosts(host, sht);
5983 	if (rc)
5984 		goto err_tadd;
5985 
5986 	/* set cable, sata_spd_limit and report */
5987 	for (i = 0; i < host->n_ports; i++) {
5988 		struct ata_port *ap = host->ports[i];
5989 		unsigned int xfer_mask;
5990 
5991 		/* set SATA cable type if still unset */
5992 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5993 			ap->cbl = ATA_CBL_SATA;
5994 
5995 		/* init sata_spd_limit to the current value */
5996 		sata_link_init_spd(&ap->link);
5997 		if (ap->slave_link)
5998 			sata_link_init_spd(ap->slave_link);
5999 
6000 		/* print per-port info to dmesg */
6001 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6002 					      ap->udma_mask);
6003 
6004 		if (!ata_port_is_dummy(ap)) {
6005 			ata_port_info(ap, "%cATA max %s %s\n",
6006 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6007 				      ata_mode_string(xfer_mask),
6008 				      ap->link.eh_info.desc);
6009 			ata_ehi_clear_desc(&ap->link.eh_info);
6010 		} else
6011 			ata_port_info(ap, "DUMMY\n");
6012 	}
6013 
6014 	/* perform each probe asynchronously */
6015 	for (i = 0; i < host->n_ports; i++) {
6016 		struct ata_port *ap = host->ports[i];
6017 		ap->cookie = async_schedule(async_port_probe, ap);
6018 	}
6019 
6020 	return 0;
6021 
6022  err_tadd:
6023 	while (--i >= 0) {
6024 		ata_tport_delete(host->ports[i]);
6025 	}
6026 	return rc;
6027 
6028 }
6029 EXPORT_SYMBOL_GPL(ata_host_register);
6030 
6031 /**
6032  *	ata_host_activate - start host, request IRQ and register it
6033  *	@host: target ATA host
6034  *	@irq: IRQ to request
6035  *	@irq_handler: irq_handler used when requesting IRQ
6036  *	@irq_flags: irq_flags used when requesting IRQ
6037  *	@sht: scsi_host_template to use when registering the host
6038  *
6039  *	After allocating an ATA host and initializing it, most libata
6040  *	LLDs perform three steps to activate the host - start host,
6041  *	request IRQ and register it.  This helper takes necessary
6042  *	arguments and performs the three steps in one go.
6043  *
6044  *	An invalid IRQ skips the IRQ registration and expects the host to
6045  *	have set polling mode on the port. In this case, @irq_handler
6046  *	should be NULL.
6047  *
6048  *	LOCKING:
6049  *	Inherited from calling layer (may sleep).
6050  *
6051  *	RETURNS:
6052  *	0 on success, -errno otherwise.
6053  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6054 int ata_host_activate(struct ata_host *host, int irq,
6055 		      irq_handler_t irq_handler, unsigned long irq_flags,
6056 		      const struct scsi_host_template *sht)
6057 {
6058 	int i, rc;
6059 	char *irq_desc;
6060 
6061 	rc = ata_host_start(host);
6062 	if (rc)
6063 		return rc;
6064 
6065 	/* Special case for polling mode */
6066 	if (!irq) {
6067 		WARN_ON(irq_handler);
6068 		return ata_host_register(host, sht);
6069 	}
6070 
6071 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6072 				  dev_driver_string(host->dev),
6073 				  dev_name(host->dev));
6074 	if (!irq_desc)
6075 		return -ENOMEM;
6076 
6077 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6078 			      irq_desc, host);
6079 	if (rc)
6080 		return rc;
6081 
6082 	for (i = 0; i < host->n_ports; i++)
6083 		ata_port_desc_misc(host->ports[i], irq);
6084 
6085 	rc = ata_host_register(host, sht);
6086 	/* if failed, just free the IRQ and leave ports alone */
6087 	if (rc)
6088 		devm_free_irq(host->dev, irq, host);
6089 
6090 	return rc;
6091 }
6092 EXPORT_SYMBOL_GPL(ata_host_activate);
6093 
6094 /**
6095  *	ata_dev_free_resources - Free a device resources
6096  *	@dev: Target ATA device
6097  *
6098  *	Free resources allocated to support a device features.
6099  *
6100  *	LOCKING:
6101  *	Kernel thread context (may sleep).
6102  */
ata_dev_free_resources(struct ata_device * dev)6103 void ata_dev_free_resources(struct ata_device *dev)
6104 {
6105 	if (zpodd_dev_enabled(dev))
6106 		zpodd_exit(dev);
6107 
6108 	ata_dev_cleanup_cdl_resources(dev);
6109 }
6110 
6111 /**
6112  *	ata_port_detach - Detach ATA port in preparation of device removal
6113  *	@ap: ATA port to be detached
6114  *
6115  *	Detach all ATA devices and the associated SCSI devices of @ap;
6116  *	then, remove the associated SCSI host.  @ap is guaranteed to
6117  *	be quiescent on return from this function.
6118  *
6119  *	LOCKING:
6120  *	Kernel thread context (may sleep).
6121  */
ata_port_detach(struct ata_port * ap)6122 static void ata_port_detach(struct ata_port *ap)
6123 {
6124 	unsigned long flags;
6125 	struct ata_link *link;
6126 	struct ata_device *dev;
6127 
6128 	/* Ensure ata_port probe has completed */
6129 	async_synchronize_cookie(ap->cookie + 1);
6130 
6131 	/* Wait for any ongoing EH */
6132 	ata_port_wait_eh(ap);
6133 
6134 	mutex_lock(&ap->scsi_scan_mutex);
6135 	spin_lock_irqsave(ap->lock, flags);
6136 
6137 	/* Remove scsi devices */
6138 	ata_for_each_link(link, ap, HOST_FIRST) {
6139 		ata_for_each_dev(dev, link, ALL) {
6140 			if (dev->sdev) {
6141 				spin_unlock_irqrestore(ap->lock, flags);
6142 				scsi_remove_device(dev->sdev);
6143 				spin_lock_irqsave(ap->lock, flags);
6144 				dev->sdev = NULL;
6145 			}
6146 		}
6147 	}
6148 
6149 	/* Tell EH to disable all devices */
6150 	ap->pflags |= ATA_PFLAG_UNLOADING;
6151 	ata_port_schedule_eh(ap);
6152 
6153 	spin_unlock_irqrestore(ap->lock, flags);
6154 	mutex_unlock(&ap->scsi_scan_mutex);
6155 
6156 	/* wait till EH commits suicide */
6157 	ata_port_wait_eh(ap);
6158 
6159 	/* it better be dead now */
6160 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6161 
6162 	cancel_delayed_work_sync(&ap->hotplug_task);
6163 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6164 
6165 	/* Delete port multiplier link transport devices */
6166 	if (ap->pmp_link) {
6167 		int i;
6168 
6169 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6170 			ata_tlink_delete(&ap->pmp_link[i]);
6171 	}
6172 
6173 	/* Remove the associated SCSI host */
6174 	scsi_remove_host(ap->scsi_host);
6175 	ata_tport_delete(ap);
6176 }
6177 
6178 /**
6179  *	ata_host_detach - Detach all ports of an ATA host
6180  *	@host: Host to detach
6181  *
6182  *	Detach all ports of @host.
6183  *
6184  *	LOCKING:
6185  *	Kernel thread context (may sleep).
6186  */
ata_host_detach(struct ata_host * host)6187 void ata_host_detach(struct ata_host *host)
6188 {
6189 	int i;
6190 
6191 	for (i = 0; i < host->n_ports; i++)
6192 		ata_port_detach(host->ports[i]);
6193 
6194 	/* the host is dead now, dissociate ACPI */
6195 	ata_acpi_dissociate(host);
6196 }
6197 EXPORT_SYMBOL_GPL(ata_host_detach);
6198 
6199 #ifdef CONFIG_PCI
6200 
6201 /**
6202  *	ata_pci_remove_one - PCI layer callback for device removal
6203  *	@pdev: PCI device that was removed
6204  *
6205  *	PCI layer indicates to libata via this hook that hot-unplug or
6206  *	module unload event has occurred.  Detach all ports.  Resource
6207  *	release is handled via devres.
6208  *
6209  *	LOCKING:
6210  *	Inherited from PCI layer (may sleep).
6211  */
ata_pci_remove_one(struct pci_dev * pdev)6212 void ata_pci_remove_one(struct pci_dev *pdev)
6213 {
6214 	struct ata_host *host = pci_get_drvdata(pdev);
6215 
6216 	ata_host_detach(host);
6217 }
6218 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6219 
ata_pci_shutdown_one(struct pci_dev * pdev)6220 void ata_pci_shutdown_one(struct pci_dev *pdev)
6221 {
6222 	struct ata_host *host = pci_get_drvdata(pdev);
6223 	int i;
6224 
6225 	for (i = 0; i < host->n_ports; i++) {
6226 		struct ata_port *ap = host->ports[i];
6227 
6228 		ap->pflags |= ATA_PFLAG_FROZEN;
6229 
6230 		/* Disable port interrupts */
6231 		if (ap->ops->freeze)
6232 			ap->ops->freeze(ap);
6233 
6234 		/* Stop the port DMA engines */
6235 		if (ap->ops->port_stop)
6236 			ap->ops->port_stop(ap);
6237 	}
6238 }
6239 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6240 
6241 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6242 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6243 {
6244 	unsigned long tmp = 0;
6245 
6246 	switch (bits->width) {
6247 	case 1: {
6248 		u8 tmp8 = 0;
6249 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6250 		tmp = tmp8;
6251 		break;
6252 	}
6253 	case 2: {
6254 		u16 tmp16 = 0;
6255 		pci_read_config_word(pdev, bits->reg, &tmp16);
6256 		tmp = tmp16;
6257 		break;
6258 	}
6259 	case 4: {
6260 		u32 tmp32 = 0;
6261 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6262 		tmp = tmp32;
6263 		break;
6264 	}
6265 
6266 	default:
6267 		return -EINVAL;
6268 	}
6269 
6270 	tmp &= bits->mask;
6271 
6272 	return (tmp == bits->val) ? 1 : 0;
6273 }
6274 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6275 
6276 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6277 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6278 {
6279 	pci_save_state(pdev);
6280 	pci_disable_device(pdev);
6281 
6282 	if (mesg.event & PM_EVENT_SLEEP)
6283 		pci_set_power_state(pdev, PCI_D3hot);
6284 }
6285 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6286 
ata_pci_device_do_resume(struct pci_dev * pdev)6287 int ata_pci_device_do_resume(struct pci_dev *pdev)
6288 {
6289 	int rc;
6290 
6291 	pci_set_power_state(pdev, PCI_D0);
6292 	pci_restore_state(pdev);
6293 
6294 	rc = pcim_enable_device(pdev);
6295 	if (rc) {
6296 		dev_err(&pdev->dev,
6297 			"failed to enable device after resume (%d)\n", rc);
6298 		return rc;
6299 	}
6300 
6301 	pci_set_master(pdev);
6302 	return 0;
6303 }
6304 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6305 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6306 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6307 {
6308 	struct ata_host *host = pci_get_drvdata(pdev);
6309 
6310 	ata_host_suspend(host, mesg);
6311 
6312 	ata_pci_device_do_suspend(pdev, mesg);
6313 
6314 	return 0;
6315 }
6316 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6317 
ata_pci_device_resume(struct pci_dev * pdev)6318 int ata_pci_device_resume(struct pci_dev *pdev)
6319 {
6320 	struct ata_host *host = pci_get_drvdata(pdev);
6321 	int rc;
6322 
6323 	rc = ata_pci_device_do_resume(pdev);
6324 	if (rc == 0)
6325 		ata_host_resume(host);
6326 	return rc;
6327 }
6328 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6329 #endif /* CONFIG_PM */
6330 #endif /* CONFIG_PCI */
6331 
6332 /**
6333  *	ata_platform_remove_one - Platform layer callback for device removal
6334  *	@pdev: Platform device that was removed
6335  *
6336  *	Platform layer indicates to libata via this hook that hot-unplug or
6337  *	module unload event has occurred.  Detach all ports.  Resource
6338  *	release is handled via devres.
6339  *
6340  *	LOCKING:
6341  *	Inherited from platform layer (may sleep).
6342  */
ata_platform_remove_one(struct platform_device * pdev)6343 void ata_platform_remove_one(struct platform_device *pdev)
6344 {
6345 	struct ata_host *host = platform_get_drvdata(pdev);
6346 
6347 	ata_host_detach(host);
6348 }
6349 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6350 
6351 #ifdef CONFIG_ATA_FORCE
6352 
6353 #define force_cbl(name, flag)				\
6354 	{ #name,	.cbl		= (flag) }
6355 
6356 #define force_spd_limit(spd, val)			\
6357 	{ #spd,	.spd_limit		= (val) }
6358 
6359 #define force_xfer(mode, shift)				\
6360 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6361 
6362 #define force_lflag_on(name, flags)			\
6363 	{ #name,	.lflags_on	= (flags) }
6364 
6365 #define force_lflag_onoff(name, flags)			\
6366 	{ "no" #name,	.lflags_on	= (flags) },	\
6367 	{ #name,	.lflags_off	= (flags) }
6368 
6369 #define force_pflag_on(name, flags)			\
6370 	{ #name,	.pflags_on	= (flags) }
6371 
6372 #define force_quirk_on(name, flag)			\
6373 	{ #name,	.quirk_on	= (flag) }
6374 
6375 #define force_quirk_onoff(name, flag)			\
6376 	{ "no" #name,	.quirk_on	= (flag) },	\
6377 	{ #name,	.quirk_off	= (flag) }
6378 
6379 static const struct ata_force_param force_tbl[] __initconst = {
6380 	force_cbl(40c,			ATA_CBL_PATA40),
6381 	force_cbl(80c,			ATA_CBL_PATA80),
6382 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6383 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6384 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6385 	force_cbl(sata,			ATA_CBL_SATA),
6386 
6387 	force_spd_limit(1.5Gbps,	1),
6388 	force_spd_limit(3.0Gbps,	2),
6389 
6390 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6391 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6392 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6393 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6394 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6395 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6396 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6397 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6398 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6399 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6400 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6401 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6402 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6403 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6404 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6405 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6406 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6407 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6408 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6409 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6410 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6411 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6412 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6413 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6414 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6415 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6416 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6417 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6418 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6419 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6420 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6421 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6422 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6423 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6424 
6425 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6426 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6427 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6428 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6429 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6430 
6431 	force_pflag_on(external,	ATA_PFLAG_EXTERNAL),
6432 
6433 	force_quirk_onoff(ncq,		ATA_QUIRK_NONCQ),
6434 	force_quirk_onoff(ncqtrim,	ATA_QUIRK_NO_NCQ_TRIM),
6435 	force_quirk_onoff(ncqati,	ATA_QUIRK_NO_NCQ_ON_ATI),
6436 
6437 	force_quirk_onoff(trim,		ATA_QUIRK_NOTRIM),
6438 	force_quirk_on(trim_zero,	ATA_QUIRK_ZERO_AFTER_TRIM),
6439 	force_quirk_on(max_trim_128m,	ATA_QUIRK_MAX_TRIM_128M),
6440 
6441 	force_quirk_onoff(dma,		ATA_QUIRK_NODMA),
6442 	force_quirk_on(atapi_dmadir,	ATA_QUIRK_ATAPI_DMADIR),
6443 	force_quirk_on(atapi_mod16_dma,	ATA_QUIRK_ATAPI_MOD16_DMA),
6444 
6445 	force_quirk_onoff(dmalog,	ATA_QUIRK_NO_DMA_LOG),
6446 	force_quirk_onoff(iddevlog,	ATA_QUIRK_NO_ID_DEV_LOG),
6447 	force_quirk_onoff(logdir,	ATA_QUIRK_NO_LOG_DIR),
6448 
6449 	force_quirk_on(max_sec_128,	ATA_QUIRK_MAX_SEC_128),
6450 	force_quirk_on(max_sec_1024,	ATA_QUIRK_MAX_SEC_1024),
6451 	force_quirk_on(max_sec_lba48,	ATA_QUIRK_MAX_SEC_LBA48),
6452 
6453 	force_quirk_onoff(lpm,		ATA_QUIRK_NOLPM),
6454 	force_quirk_onoff(setxfer,	ATA_QUIRK_NOSETXFER),
6455 	force_quirk_on(dump_id,		ATA_QUIRK_DUMP_ID),
6456 	force_quirk_onoff(fua,		ATA_QUIRK_NO_FUA),
6457 
6458 	force_quirk_on(disable,		ATA_QUIRK_DISABLE),
6459 };
6460 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6461 static int __init ata_parse_force_one(char **cur,
6462 				      struct ata_force_ent *force_ent,
6463 				      const char **reason)
6464 {
6465 	char *start = *cur, *p = *cur;
6466 	char *id, *val, *endp;
6467 	const struct ata_force_param *match_fp = NULL;
6468 	int nr_matches = 0, i;
6469 
6470 	/* find where this param ends and update *cur */
6471 	while (*p != '\0' && *p != ',')
6472 		p++;
6473 
6474 	if (*p == '\0')
6475 		*cur = p;
6476 	else
6477 		*cur = p + 1;
6478 
6479 	*p = '\0';
6480 
6481 	/* parse */
6482 	p = strchr(start, ':');
6483 	if (!p) {
6484 		val = strstrip(start);
6485 		goto parse_val;
6486 	}
6487 	*p = '\0';
6488 
6489 	id = strstrip(start);
6490 	val = strstrip(p + 1);
6491 
6492 	/* parse id */
6493 	p = strchr(id, '.');
6494 	if (p) {
6495 		*p++ = '\0';
6496 		force_ent->device = simple_strtoul(p, &endp, 10);
6497 		if (p == endp || *endp != '\0') {
6498 			*reason = "invalid device";
6499 			return -EINVAL;
6500 		}
6501 	}
6502 
6503 	force_ent->port = simple_strtoul(id, &endp, 10);
6504 	if (id == endp || *endp != '\0') {
6505 		*reason = "invalid port/link";
6506 		return -EINVAL;
6507 	}
6508 
6509  parse_val:
6510 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6511 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6512 		const struct ata_force_param *fp = &force_tbl[i];
6513 
6514 		if (strncasecmp(val, fp->name, strlen(val)))
6515 			continue;
6516 
6517 		nr_matches++;
6518 		match_fp = fp;
6519 
6520 		if (strcasecmp(val, fp->name) == 0) {
6521 			nr_matches = 1;
6522 			break;
6523 		}
6524 	}
6525 
6526 	if (!nr_matches) {
6527 		*reason = "unknown value";
6528 		return -EINVAL;
6529 	}
6530 	if (nr_matches > 1) {
6531 		*reason = "ambiguous value";
6532 		return -EINVAL;
6533 	}
6534 
6535 	force_ent->param = *match_fp;
6536 
6537 	return 0;
6538 }
6539 
ata_parse_force_param(void)6540 static void __init ata_parse_force_param(void)
6541 {
6542 	int idx = 0, size = 1;
6543 	int last_port = -1, last_device = -1;
6544 	char *p, *cur, *next;
6545 
6546 	/* Calculate maximum number of params and allocate ata_force_tbl */
6547 	for (p = ata_force_param_buf; *p; p++)
6548 		if (*p == ',')
6549 			size++;
6550 
6551 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6552 	if (!ata_force_tbl) {
6553 		printk(KERN_WARNING "ata: failed to extend force table, "
6554 		       "libata.force ignored\n");
6555 		return;
6556 	}
6557 
6558 	/* parse and populate the table */
6559 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6560 		const char *reason = "";
6561 		struct ata_force_ent te = { .port = -1, .device = -1 };
6562 
6563 		next = cur;
6564 		if (ata_parse_force_one(&next, &te, &reason)) {
6565 			printk(KERN_WARNING "ata: failed to parse force "
6566 			       "parameter \"%s\" (%s)\n",
6567 			       cur, reason);
6568 			continue;
6569 		}
6570 
6571 		if (te.port == -1) {
6572 			te.port = last_port;
6573 			te.device = last_device;
6574 		}
6575 
6576 		ata_force_tbl[idx++] = te;
6577 
6578 		last_port = te.port;
6579 		last_device = te.device;
6580 	}
6581 
6582 	ata_force_tbl_size = idx;
6583 }
6584 
ata_free_force_param(void)6585 static void ata_free_force_param(void)
6586 {
6587 	kfree(ata_force_tbl);
6588 }
6589 #else
ata_parse_force_param(void)6590 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6591 static inline void ata_free_force_param(void) { }
6592 #endif
6593 
ata_init(void)6594 static int __init ata_init(void)
6595 {
6596 	int rc;
6597 
6598 	ata_parse_force_param();
6599 
6600 	rc = ata_sff_init();
6601 	if (rc) {
6602 		ata_free_force_param();
6603 		return rc;
6604 	}
6605 
6606 	libata_transport_init();
6607 	ata_scsi_transport_template = ata_attach_transport();
6608 	if (!ata_scsi_transport_template) {
6609 		ata_sff_exit();
6610 		rc = -ENOMEM;
6611 		goto err_out;
6612 	}
6613 
6614 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6615 	return 0;
6616 
6617 err_out:
6618 	return rc;
6619 }
6620 
ata_exit(void)6621 static void __exit ata_exit(void)
6622 {
6623 	ata_release_transport(ata_scsi_transport_template);
6624 	libata_transport_exit();
6625 	ata_sff_exit();
6626 	ata_free_force_param();
6627 }
6628 
6629 subsys_initcall(ata_init);
6630 module_exit(ata_exit);
6631 
6632 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6633 
ata_ratelimit(void)6634 int ata_ratelimit(void)
6635 {
6636 	return __ratelimit(&ratelimit);
6637 }
6638 EXPORT_SYMBOL_GPL(ata_ratelimit);
6639 
6640 /**
6641  *	ata_msleep - ATA EH owner aware msleep
6642  *	@ap: ATA port to attribute the sleep to
6643  *	@msecs: duration to sleep in milliseconds
6644  *
6645  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6646  *	ownership is released before going to sleep and reacquired
6647  *	after the sleep is complete.  IOW, other ports sharing the
6648  *	@ap->host will be allowed to own the EH while this task is
6649  *	sleeping.
6650  *
6651  *	LOCKING:
6652  *	Might sleep.
6653  */
ata_msleep(struct ata_port * ap,unsigned int msecs)6654 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6655 {
6656 	bool owns_eh = ap && ap->host->eh_owner == current;
6657 
6658 	if (owns_eh)
6659 		ata_eh_release(ap);
6660 
6661 	if (msecs < 20) {
6662 		unsigned long usecs = msecs * USEC_PER_MSEC;
6663 		usleep_range(usecs, usecs + 50);
6664 	} else {
6665 		msleep(msecs);
6666 	}
6667 
6668 	if (owns_eh)
6669 		ata_eh_acquire(ap);
6670 }
6671 EXPORT_SYMBOL_GPL(ata_msleep);
6672 
6673 /**
6674  *	ata_wait_register - wait until register value changes
6675  *	@ap: ATA port to wait register for, can be NULL
6676  *	@reg: IO-mapped register
6677  *	@mask: Mask to apply to read register value
6678  *	@val: Wait condition
6679  *	@interval: polling interval in milliseconds
6680  *	@timeout: timeout in milliseconds
6681  *
6682  *	Waiting for some bits of register to change is a common
6683  *	operation for ATA controllers.  This function reads 32bit LE
6684  *	IO-mapped register @reg and tests for the following condition.
6685  *
6686  *	(*@reg & mask) != val
6687  *
6688  *	If the condition is met, it returns; otherwise, the process is
6689  *	repeated after @interval_msec until timeout.
6690  *
6691  *	LOCKING:
6692  *	Kernel thread context (may sleep)
6693  *
6694  *	RETURNS:
6695  *	The final register value.
6696  */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6697 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6698 		      unsigned int interval, unsigned int timeout)
6699 {
6700 	unsigned long deadline;
6701 	u32 tmp;
6702 
6703 	tmp = ioread32(reg);
6704 
6705 	/* Calculate timeout _after_ the first read to make sure
6706 	 * preceding writes reach the controller before starting to
6707 	 * eat away the timeout.
6708 	 */
6709 	deadline = ata_deadline(jiffies, timeout);
6710 
6711 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6712 		ata_msleep(ap, interval);
6713 		tmp = ioread32(reg);
6714 	}
6715 
6716 	return tmp;
6717 }
6718 EXPORT_SYMBOL_GPL(ata_wait_register);
6719 
6720 /*
6721  * Dummy port_ops
6722  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6724 {
6725 	return AC_ERR_SYSTEM;
6726 }
6727 
ata_dummy_error_handler(struct ata_port * ap)6728 static void ata_dummy_error_handler(struct ata_port *ap)
6729 {
6730 	/* truly dummy */
6731 }
6732 
6733 struct ata_port_operations ata_dummy_port_ops = {
6734 	.qc_issue		= ata_dummy_qc_issue,
6735 	.error_handler		= ata_dummy_error_handler,
6736 	.sched_eh		= ata_std_sched_eh,
6737 	.end_eh			= ata_std_end_eh,
6738 };
6739 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6740 
6741 const struct ata_port_info ata_dummy_port_info = {
6742 	.port_ops		= &ata_dummy_port_ops,
6743 };
6744 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6745 
6746 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6747 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6748 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6749 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6750 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6751