1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .reset.prereset = ata_std_prereset,
69 .reset.postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81 static DEFINE_IDA(ata_ida);
82
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 const char *name;
86 u8 cbl;
87 u8 spd_limit;
88 unsigned int xfer_mask;
89 unsigned int quirk_on;
90 unsigned int quirk_off;
91 unsigned int pflags_on;
92 u16 lflags_on;
93 u16 lflags_off;
94 };
95
96 struct ata_force_ent {
97 int port;
98 int device;
99 struct ata_force_param param;
100 };
101
102 static struct ata_force_ent *ata_force_tbl;
103 static int ata_force_tbl_size;
104
105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106 /* param_buf is thrown away after initialization, disallow read */
107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109 #endif
110
111 static int atapi_enabled = 1;
112 module_param(atapi_enabled, int, 0444);
113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114
115 static int atapi_dmadir = 0;
116 module_param(atapi_dmadir, int, 0444);
117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118
119 int atapi_passthru16 = 1;
120 module_param(atapi_passthru16, int, 0444);
121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122
123 int libata_fua = 0;
124 module_param_named(fua, libata_fua, int, 0444);
125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126
127 static int ata_ignore_hpa;
128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130
131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132 module_param_named(dma, libata_dma_mask, int, 0444);
133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134
135 static int ata_probe_timeout;
136 module_param(ata_probe_timeout, int, 0444);
137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138
139 int libata_noacpi = 0;
140 module_param_named(noacpi, libata_noacpi, int, 0444);
141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142
143 int libata_allow_tpm = 0;
144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146
147 static int atapi_an;
148 module_param(atapi_an, int, 0444);
149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150
151 MODULE_AUTHOR("Jeff Garzik");
152 MODULE_DESCRIPTION("Library module for ATA devices");
153 MODULE_LICENSE("GPL");
154 MODULE_VERSION(DRV_VERSION);
155
ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev)
157 {
158 struct ata_eh_context *ehc = &dev->link->eh_context;
159
160 return ehc->i.flags & ATA_EHI_PRINTINFO;
161 }
162
163 /**
164 * ata_link_next - link iteration helper
165 * @link: the previous link, NULL to start
166 * @ap: ATA port containing links to iterate
167 * @mode: iteration mode, one of ATA_LITER_*
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 *
172 * RETURNS:
173 * Pointer to the next link.
174 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 enum ata_link_iter_mode mode)
177 {
178 BUG_ON(mode != ATA_LITER_EDGE &&
179 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180
181 /* NULL link indicates start of iteration */
182 if (!link)
183 switch (mode) {
184 case ATA_LITER_EDGE:
185 case ATA_LITER_PMP_FIRST:
186 if (sata_pmp_attached(ap))
187 return ap->pmp_link;
188 fallthrough;
189 case ATA_LITER_HOST_FIRST:
190 return &ap->link;
191 }
192
193 /* we just iterated over the host link, what's next? */
194 if (link == &ap->link)
195 switch (mode) {
196 case ATA_LITER_HOST_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 fallthrough;
200 case ATA_LITER_PMP_FIRST:
201 if (unlikely(ap->slave_link))
202 return ap->slave_link;
203 fallthrough;
204 case ATA_LITER_EDGE:
205 return NULL;
206 }
207
208 /* slave_link excludes PMP */
209 if (unlikely(link == ap->slave_link))
210 return NULL;
211
212 /* we were over a PMP link */
213 if (++link < ap->pmp_link + ap->nr_pmp_links)
214 return link;
215
216 if (mode == ATA_LITER_PMP_FIRST)
217 return &ap->link;
218
219 return NULL;
220 }
221 EXPORT_SYMBOL_GPL(ata_link_next);
222
223 /**
224 * ata_dev_next - device iteration helper
225 * @dev: the previous device, NULL to start
226 * @link: ATA link containing devices to iterate
227 * @mode: iteration mode, one of ATA_DITER_*
228 *
229 * LOCKING:
230 * Host lock or EH context.
231 *
232 * RETURNS:
233 * Pointer to the next device.
234 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 enum ata_dev_iter_mode mode)
237 {
238 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240
241 /* NULL dev indicates start of iteration */
242 if (!dev)
243 switch (mode) {
244 case ATA_DITER_ENABLED:
245 case ATA_DITER_ALL:
246 dev = link->device;
247 goto check;
248 case ATA_DITER_ENABLED_REVERSE:
249 case ATA_DITER_ALL_REVERSE:
250 dev = link->device + ata_link_max_devices(link) - 1;
251 goto check;
252 }
253
254 next:
255 /* move to the next one */
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 if (++dev < link->device + ata_link_max_devices(link))
260 goto check;
261 return NULL;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 if (--dev >= link->device)
265 goto check;
266 return NULL;
267 }
268
269 check:
270 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 !ata_dev_enabled(dev))
272 goto next;
273 return dev;
274 }
275 EXPORT_SYMBOL_GPL(ata_dev_next);
276
277 /**
278 * ata_dev_phys_link - find physical link for a device
279 * @dev: ATA device to look up physical link for
280 *
281 * Look up physical link which @dev is attached to. Note that
282 * this is different from @dev->link only when @dev is on slave
283 * link. For all other cases, it's the same as @dev->link.
284 *
285 * LOCKING:
286 * Don't care.
287 *
288 * RETURNS:
289 * Pointer to the found physical link.
290 */
ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292 {
293 struct ata_port *ap = dev->link->ap;
294
295 if (!ap->slave_link)
296 return dev->link;
297 if (!dev->devno)
298 return &ap->link;
299 return ap->slave_link;
300 }
301
302 #ifdef CONFIG_ATA_FORCE
303 /**
304 * ata_force_cbl - force cable type according to libata.force
305 * @ap: ATA port of interest
306 *
307 * Force cable type according to libata.force and whine about it.
308 * The last entry which has matching port number is used, so it
309 * can be specified as part of device force parameters. For
310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311 * same effect.
312 *
313 * LOCKING:
314 * EH context.
315 */
ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap)
317 {
318 int i;
319
320 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323 if (fe->port != -1 && fe->port != ap->print_id)
324 continue;
325
326 if (fe->param.cbl == ATA_CBL_NONE)
327 continue;
328
329 ap->cbl = fe->param.cbl;
330 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 return;
332 }
333 }
334
335 /**
336 * ata_force_pflags - force port flags according to libata.force
337 * @ap: ATA port of interest
338 *
339 * Force port flags according to libata.force and whine about it.
340 *
341 * LOCKING:
342 * EH context.
343 */
ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap)
345 {
346 int i;
347
348 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 const struct ata_force_ent *fe = &ata_force_tbl[i];
350
351 if (fe->port != -1 && fe->port != ap->print_id)
352 continue;
353
354 /* let pflags stack */
355 if (fe->param.pflags_on) {
356 ap->pflags |= fe->param.pflags_on;
357 ata_port_notice(ap,
358 "FORCE: port flag 0x%x forced -> 0x%x\n",
359 fe->param.pflags_on, ap->pflags);
360 }
361 }
362 }
363
364 /**
365 * ata_force_link_limits - force link limits according to libata.force
366 * @link: ATA link of interest
367 *
368 * Force link flags and SATA spd limit according to libata.force
369 * and whine about it. When only the port part is specified
370 * (e.g. 1:), the limit applies to all links connected to both
371 * the host link and all fan-out ports connected via PMP. If the
372 * device part is specified as 0 (e.g. 1.00:), it specifies the
373 * first fan-out link not the host link. Device number 15 always
374 * points to the host link whether PMP is attached or not. If the
375 * controller has slave link, device number 16 points to it.
376 *
377 * LOCKING:
378 * EH context.
379 */
ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link)
381 {
382 bool did_spd = false;
383 int linkno = link->pmp;
384 int i;
385
386 if (ata_is_host_link(link))
387 linkno += 15;
388
389 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 const struct ata_force_ent *fe = &ata_force_tbl[i];
391
392 if (fe->port != -1 && fe->port != link->ap->print_id)
393 continue;
394
395 if (fe->device != -1 && fe->device != linkno)
396 continue;
397
398 /* only honor the first spd limit */
399 if (!did_spd && fe->param.spd_limit) {
400 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 fe->param.name);
403 did_spd = true;
404 }
405
406 /* let lflags stack */
407 if (fe->param.lflags_on) {
408 link->flags |= fe->param.lflags_on;
409 ata_link_notice(link,
410 "FORCE: link flag 0x%x forced -> 0x%x\n",
411 fe->param.lflags_on, link->flags);
412 }
413 if (fe->param.lflags_off) {
414 link->flags &= ~fe->param.lflags_off;
415 ata_link_notice(link,
416 "FORCE: link flag 0x%x cleared -> 0x%x\n",
417 fe->param.lflags_off, link->flags);
418 }
419 }
420 }
421
422 /**
423 * ata_force_xfermask - force xfermask according to libata.force
424 * @dev: ATA device of interest
425 *
426 * Force xfer_mask according to libata.force and whine about it.
427 * For consistency with link selection, device number 15 selects
428 * the first device connected to the host link.
429 *
430 * LOCKING:
431 * EH context.
432 */
ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev)
434 {
435 int devno = dev->link->pmp + dev->devno;
436 int alt_devno = devno;
437 int i;
438
439 /* allow n.15/16 for devices attached to host port */
440 if (ata_is_host_link(dev->link))
441 alt_devno += 15;
442
443 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 const struct ata_force_ent *fe = &ata_force_tbl[i];
445 unsigned int pio_mask, mwdma_mask, udma_mask;
446
447 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 continue;
449
450 if (fe->device != -1 && fe->device != devno &&
451 fe->device != alt_devno)
452 continue;
453
454 if (!fe->param.xfer_mask)
455 continue;
456
457 ata_unpack_xfermask(fe->param.xfer_mask,
458 &pio_mask, &mwdma_mask, &udma_mask);
459 if (udma_mask)
460 dev->udma_mask = udma_mask;
461 else if (mwdma_mask) {
462 dev->udma_mask = 0;
463 dev->mwdma_mask = mwdma_mask;
464 } else {
465 dev->udma_mask = 0;
466 dev->mwdma_mask = 0;
467 dev->pio_mask = pio_mask;
468 }
469
470 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 fe->param.name);
472 return;
473 }
474 }
475
476 /**
477 * ata_force_quirks - force quirks according to libata.force
478 * @dev: ATA device of interest
479 *
480 * Force quirks according to libata.force and whine about it.
481 * For consistency with link selection, device number 15 selects
482 * the first device connected to the host link.
483 *
484 * LOCKING:
485 * EH context.
486 */
ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev)
488 {
489 int devno = dev->link->pmp + dev->devno;
490 int alt_devno = devno;
491 int i;
492
493 /* allow n.15/16 for devices attached to host port */
494 if (ata_is_host_link(dev->link))
495 alt_devno += 15;
496
497 for (i = 0; i < ata_force_tbl_size; i++) {
498 const struct ata_force_ent *fe = &ata_force_tbl[i];
499
500 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 continue;
502
503 if (fe->device != -1 && fe->device != devno &&
504 fe->device != alt_devno)
505 continue;
506
507 if (!(~dev->quirks & fe->param.quirk_on) &&
508 !(dev->quirks & fe->param.quirk_off))
509 continue;
510
511 dev->quirks |= fe->param.quirk_on;
512 dev->quirks &= ~fe->param.quirk_off;
513
514 ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 fe->param.name);
516 }
517 }
518 #else
ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { }
523 #endif
524
525 /**
526 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527 * @opcode: SCSI opcode
528 *
529 * Determine ATAPI command type from @opcode.
530 *
531 * LOCKING:
532 * None.
533 *
534 * RETURNS:
535 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536 */
atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode)
538 {
539 switch (opcode) {
540 case GPCMD_READ_10:
541 case GPCMD_READ_12:
542 return ATAPI_READ;
543
544 case GPCMD_WRITE_10:
545 case GPCMD_WRITE_12:
546 case GPCMD_WRITE_AND_VERIFY_10:
547 return ATAPI_WRITE;
548
549 case GPCMD_READ_CD:
550 case GPCMD_READ_CD_MSF:
551 return ATAPI_READ_CD;
552
553 case ATA_16:
554 case ATA_12:
555 if (atapi_passthru16)
556 return ATAPI_PASS_THRU;
557 fallthrough;
558 default:
559 return ATAPI_MISC;
560 }
561 }
562 EXPORT_SYMBOL_GPL(atapi_cmd_type);
563
564 static const u8 ata_rw_cmds[] = {
565 /* pio multi */
566 ATA_CMD_READ_MULTI,
567 ATA_CMD_WRITE_MULTI,
568 ATA_CMD_READ_MULTI_EXT,
569 ATA_CMD_WRITE_MULTI_EXT,
570 0,
571 0,
572 0,
573 0,
574 /* pio */
575 ATA_CMD_PIO_READ,
576 ATA_CMD_PIO_WRITE,
577 ATA_CMD_PIO_READ_EXT,
578 ATA_CMD_PIO_WRITE_EXT,
579 0,
580 0,
581 0,
582 0,
583 /* dma */
584 ATA_CMD_READ,
585 ATA_CMD_WRITE,
586 ATA_CMD_READ_EXT,
587 ATA_CMD_WRITE_EXT,
588 0,
589 0,
590 0,
591 ATA_CMD_WRITE_FUA_EXT
592 };
593
594 /**
595 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596 * @dev: target device for the taskfile
597 * @tf: taskfile to examine and configure
598 *
599 * Examine the device configuration and tf->flags to determine
600 * the proper read/write command and protocol to use for @tf.
601 *
602 * LOCKING:
603 * caller.
604 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 struct ata_taskfile *tf)
607 {
608 u8 cmd;
609
610 int index, fua, lba48, write;
611
612 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615
616 if (dev->flags & ATA_DFLAG_PIO) {
617 tf->protocol = ATA_PROT_PIO;
618 index = dev->multi_count ? 0 : 8;
619 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 /* Unable to use DMA due to host limitation */
621 tf->protocol = ATA_PROT_PIO;
622 index = dev->multi_count ? 0 : 8;
623 } else {
624 tf->protocol = ATA_PROT_DMA;
625 index = 16;
626 }
627
628 cmd = ata_rw_cmds[index + fua + lba48 + write];
629 if (!cmd)
630 return false;
631
632 tf->command = cmd;
633
634 return true;
635 }
636
637 /**
638 * ata_tf_read_block - Read block address from ATA taskfile
639 * @tf: ATA taskfile of interest
640 * @dev: ATA device @tf belongs to
641 *
642 * LOCKING:
643 * None.
644 *
645 * Read block address from @tf. This function can handle all
646 * three address formats - LBA, LBA48 and CHS. tf->protocol and
647 * flags select the address format to use.
648 *
649 * RETURNS:
650 * Block address read from @tf.
651 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 u64 block = 0;
655
656 if (tf->flags & ATA_TFLAG_LBA) {
657 if (tf->flags & ATA_TFLAG_LBA48) {
658 block |= (u64)tf->hob_lbah << 40;
659 block |= (u64)tf->hob_lbam << 32;
660 block |= (u64)tf->hob_lbal << 24;
661 } else
662 block |= (tf->device & 0xf) << 24;
663
664 block |= tf->lbah << 16;
665 block |= tf->lbam << 8;
666 block |= tf->lbal;
667 } else {
668 u32 cyl, head, sect;
669
670 cyl = tf->lbam | (tf->lbah << 8);
671 head = tf->device & 0xf;
672 sect = tf->lbal;
673
674 if (!sect) {
675 ata_dev_warn(dev,
676 "device reported invalid CHS sector 0\n");
677 return U64_MAX;
678 }
679
680 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 }
682
683 return block;
684 }
685
686 /*
687 * Set a taskfile command duration limit index.
688 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690 {
691 struct ata_taskfile *tf = &qc->tf;
692
693 if (tf->protocol == ATA_PROT_NCQ)
694 tf->auxiliary |= cdl;
695 else
696 tf->feature |= cdl;
697
698 /*
699 * Mark this command as having a CDL and request the result
700 * task file so that we can inspect the sense data available
701 * bit on completion.
702 */
703 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704 }
705
706 /**
707 * ata_build_rw_tf - Build ATA taskfile for given read/write request
708 * @qc: Metadata associated with the taskfile to build
709 * @block: Block address
710 * @n_block: Number of blocks
711 * @tf_flags: RW/FUA etc...
712 * @cdl: Command duration limit index
713 * @class: IO priority class
714 *
715 * LOCKING:
716 * None.
717 *
718 * Build ATA taskfile for the command @qc for read/write request described
719 * by @block, @n_block, @tf_flags and @class.
720 *
721 * RETURNS:
722 *
723 * 0 on success, -ERANGE if the request is too large for @dev,
724 * -EINVAL if the request is invalid.
725 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 unsigned int tf_flags, int cdl, int class)
728 {
729 struct ata_taskfile *tf = &qc->tf;
730 struct ata_device *dev = qc->dev;
731
732 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 tf->flags |= tf_flags;
734
735 if (ata_ncq_enabled(dev)) {
736 /* yay, NCQ */
737 if (!lba_48_ok(block, n_block))
738 return -ERANGE;
739
740 tf->protocol = ATA_PROT_NCQ;
741 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742
743 if (tf->flags & ATA_TFLAG_WRITE)
744 tf->command = ATA_CMD_FPDMA_WRITE;
745 else
746 tf->command = ATA_CMD_FPDMA_READ;
747
748 tf->nsect = qc->hw_tag << 3;
749 tf->hob_feature = (n_block >> 8) & 0xff;
750 tf->feature = n_block & 0xff;
751
752 tf->hob_lbah = (block >> 40) & 0xff;
753 tf->hob_lbam = (block >> 32) & 0xff;
754 tf->hob_lbal = (block >> 24) & 0xff;
755 tf->lbah = (block >> 16) & 0xff;
756 tf->lbam = (block >> 8) & 0xff;
757 tf->lbal = block & 0xff;
758
759 tf->device = ATA_LBA;
760 if (tf->flags & ATA_TFLAG_FUA)
761 tf->device |= 1 << 7;
762
763 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 class == IOPRIO_CLASS_RT)
765 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766
767 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 ata_set_tf_cdl(qc, cdl);
769
770 } else if (dev->flags & ATA_DFLAG_LBA) {
771 tf->flags |= ATA_TFLAG_LBA;
772
773 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 ata_set_tf_cdl(qc, cdl);
775
776 /* Both FUA writes and a CDL index require 48-bit commands */
777 if (!(tf->flags & ATA_TFLAG_FUA) &&
778 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 lba_28_ok(block, n_block)) {
780 /* use LBA28 */
781 tf->device |= (block >> 24) & 0xf;
782 } else if (lba_48_ok(block, n_block)) {
783 if (!(dev->flags & ATA_DFLAG_LBA48))
784 return -ERANGE;
785
786 /* use LBA48 */
787 tf->flags |= ATA_TFLAG_LBA48;
788
789 tf->hob_nsect = (n_block >> 8) & 0xff;
790
791 tf->hob_lbah = (block >> 40) & 0xff;
792 tf->hob_lbam = (block >> 32) & 0xff;
793 tf->hob_lbal = (block >> 24) & 0xff;
794 } else {
795 /* request too large even for LBA48 */
796 return -ERANGE;
797 }
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 tf->nsect = n_block & 0xff;
803
804 tf->lbah = (block >> 16) & 0xff;
805 tf->lbam = (block >> 8) & 0xff;
806 tf->lbal = block & 0xff;
807
808 tf->device |= ATA_LBA;
809 } else {
810 /* CHS */
811 u32 sect, head, cyl, track;
812
813 /* The request -may- be too large for CHS addressing. */
814 if (!lba_28_ok(block, n_block))
815 return -ERANGE;
816
817 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 return -EINVAL;
819
820 /* Convert LBA to CHS */
821 track = (u32)block / dev->sectors;
822 cyl = track / dev->heads;
823 head = track % dev->heads;
824 sect = (u32)block % dev->sectors + 1;
825
826 /* Check whether the converted CHS can fit.
827 Cylinder: 0-65535
828 Head: 0-15
829 Sector: 1-255*/
830 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 return -ERANGE;
832
833 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 tf->lbal = sect;
835 tf->lbam = cyl;
836 tf->lbah = cyl >> 8;
837 tf->device |= head;
838 }
839
840 return 0;
841 }
842
843 /**
844 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845 * @pio_mask: pio_mask
846 * @mwdma_mask: mwdma_mask
847 * @udma_mask: udma_mask
848 *
849 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850 * unsigned int xfer_mask.
851 *
852 * LOCKING:
853 * None.
854 *
855 * RETURNS:
856 * Packed xfer_mask.
857 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 unsigned int mwdma_mask,
860 unsigned int udma_mask)
861 {
862 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 }
866 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867
868 /**
869 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870 * @xfer_mask: xfer_mask to unpack
871 * @pio_mask: resulting pio_mask
872 * @mwdma_mask: resulting mwdma_mask
873 * @udma_mask: resulting udma_mask
874 *
875 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876 * Any NULL destination masks will be ignored.
877 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 unsigned int *mwdma_mask, unsigned int *udma_mask)
880 {
881 if (pio_mask)
882 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 if (mwdma_mask)
884 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 if (udma_mask)
886 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887 }
888
889 static const struct ata_xfer_ent {
890 int shift, bits;
891 u8 base;
892 } ata_xfer_tbl[] = {
893 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 { -1, },
897 };
898
899 /**
900 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901 * @xfer_mask: xfer_mask of interest
902 *
903 * Return matching XFER_* value for @xfer_mask. Only the highest
904 * bit of @xfer_mask is considered.
905 *
906 * LOCKING:
907 * None.
908 *
909 * RETURNS:
910 * Matching XFER_* value, 0xff if no match found.
911 */
ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913 {
914 int highbit = fls(xfer_mask) - 1;
915 const struct ata_xfer_ent *ent;
916
917 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 return ent->base + highbit - ent->shift;
920 return 0xff;
921 }
922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923
924 /**
925 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926 * @xfer_mode: XFER_* of interest
927 *
928 * Return matching xfer_mask for @xfer_mode.
929 *
930 * LOCKING:
931 * None.
932 *
933 * RETURNS:
934 * Matching xfer_mask, 0 if no match found.
935 */
ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937 {
938 const struct ata_xfer_ent *ent;
939
940 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 & ~((1 << ent->shift) - 1);
944 return 0;
945 }
946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947
948 /**
949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950 * @xfer_mode: XFER_* of interest
951 *
952 * Return matching xfer_shift for @xfer_mode.
953 *
954 * LOCKING:
955 * None.
956 *
957 * RETURNS:
958 * Matching xfer_shift, -1 if no match found.
959 */
ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode)
961 {
962 const struct ata_xfer_ent *ent;
963
964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 return ent->shift;
967 return -1;
968 }
969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970
971 /**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask)
986 {
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015 }
1016 EXPORT_SYMBOL_GPL(ata_mode_string);
1017
sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029 }
1030
1031 /**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if (tf->lbam == 0 && tf->lbah == 0)
1070 return ATA_DEV_ATA;
1071
1072 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 return ATA_DEV_ATAPI;
1074
1075 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 return ATA_DEV_PMP;
1077
1078 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 return ATA_DEV_SEMB;
1080
1081 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 return ATA_DEV_ZAC;
1083
1084 return ATA_DEV_UNKNOWN;
1085 }
1086 EXPORT_SYMBOL_GPL(ata_dev_classify);
1087
1088 /**
1089 * ata_id_string - Convert IDENTIFY DEVICE page into string
1090 * @id: IDENTIFY DEVICE results we will examine
1091 * @s: string into which data is output
1092 * @ofs: offset into identify device page
1093 * @len: length of string to return. must be an even number.
1094 *
1095 * The strings in the IDENTIFY DEVICE page are broken up into
1096 * 16-bit chunks. Run through the string, and output each
1097 * 8-bit chunk linearly, regardless of platform.
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s,
1104 unsigned int ofs, unsigned int len)
1105 {
1106 unsigned int c;
1107
1108 BUG_ON(len & 1);
1109
1110 while (len > 0) {
1111 c = id[ofs] >> 8;
1112 *s = c;
1113 s++;
1114
1115 c = id[ofs] & 0xff;
1116 *s = c;
1117 s++;
1118
1119 ofs++;
1120 len -= 2;
1121 }
1122 }
1123 EXPORT_SYMBOL_GPL(ata_id_string);
1124
1125 /**
1126 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127 * @id: IDENTIFY DEVICE results we will examine
1128 * @s: string into which data is output
1129 * @ofs: offset into identify device page
1130 * @len: length of string to return. must be an odd number.
1131 *
1132 * This function is identical to ata_id_string except that it
1133 * trims trailing spaces and terminates the resulting string with
1134 * null. @len must be actual maximum length (even number) + 1.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s,
1140 unsigned int ofs, unsigned int len)
1141 {
1142 unsigned char *p;
1143
1144 ata_id_string(id, s, ofs, len - 1);
1145
1146 p = s + strnlen(s, len - 1);
1147 while (p > s && p[-1] == ' ')
1148 p--;
1149 *p = '\0';
1150 }
1151 EXPORT_SYMBOL_GPL(ata_id_c_string);
1152
ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id)
1154 {
1155 if (ata_id_has_lba(id)) {
1156 if (ata_id_has_lba48(id))
1157 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158
1159 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 }
1161
1162 if (ata_id_current_chs_valid(id))
1163 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 (u32)id[ATA_ID_CUR_SECTORS];
1165
1166 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 (u32)id[ATA_ID_SECTORS];
1168 }
1169
ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171 {
1172 u64 sectors = 0;
1173
1174 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 sectors |= (tf->lbah & 0xff) << 16;
1178 sectors |= (tf->lbam & 0xff) << 8;
1179 sectors |= (tf->lbal & 0xff);
1180
1181 return sectors;
1182 }
1183
ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185 {
1186 u64 sectors = 0;
1187
1188 sectors |= (tf->device & 0x0f) << 24;
1189 sectors |= (tf->lbah & 0xff) << 16;
1190 sectors |= (tf->lbam & 0xff) << 8;
1191 sectors |= (tf->lbal & 0xff);
1192
1193 return sectors;
1194 }
1195
1196 /**
1197 * ata_read_native_max_address - Read native max address
1198 * @dev: target device
1199 * @max_sectors: out parameter for the result native max address
1200 *
1201 * Perform an LBA48 or LBA28 native size query upon the device in
1202 * question.
1203 *
1204 * RETURNS:
1205 * 0 on success, -EACCES if command is aborted by the drive.
1206 * -EIO on other errors.
1207 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209 {
1210 unsigned int err_mask;
1211 struct ata_taskfile tf;
1212 int lba48 = ata_id_has_lba48(dev->id);
1213
1214 ata_tf_init(dev, &tf);
1215
1216 /* always clear all address registers */
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222 } else
1223 tf.command = ATA_CMD_READ_NATIVE_MAX;
1224
1225 tf.protocol = ATA_PROT_NODATA;
1226 tf.device |= ATA_LBA;
1227
1228 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 if (err_mask) {
1230 ata_dev_warn(dev,
1231 "failed to read native max address (err_mask=0x%x)\n",
1232 err_mask);
1233 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 return -EACCES;
1235 return -EIO;
1236 }
1237
1238 if (lba48)
1239 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 else
1241 *max_sectors = ata_tf_to_lba(&tf) + 1;
1242 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 (*max_sectors)--;
1244 return 0;
1245 }
1246
1247 /**
1248 * ata_set_max_sectors - Set max sectors
1249 * @dev: target device
1250 * @new_sectors: new max sectors value to set for the device
1251 *
1252 * Set max sectors of @dev to @new_sectors.
1253 *
1254 * RETURNS:
1255 * 0 on success, -EACCES if command is aborted or denied (due to
1256 * previous non-volatile SET_MAX) by the drive. -EIO on other
1257 * errors.
1258 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260 {
1261 unsigned int err_mask;
1262 struct ata_taskfile tf;
1263 int lba48 = ata_id_has_lba48(dev->id);
1264
1265 new_sectors--;
1266
1267 ata_tf_init(dev, &tf);
1268
1269 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270
1271 if (lba48) {
1272 tf.command = ATA_CMD_SET_MAX_EXT;
1273 tf.flags |= ATA_TFLAG_LBA48;
1274
1275 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 } else {
1279 tf.command = ATA_CMD_SET_MAX;
1280
1281 tf.device |= (new_sectors >> 24) & 0xf;
1282 }
1283
1284 tf.protocol = ATA_PROT_NODATA;
1285 tf.device |= ATA_LBA;
1286
1287 tf.lbal = (new_sectors >> 0) & 0xff;
1288 tf.lbam = (new_sectors >> 8) & 0xff;
1289 tf.lbah = (new_sectors >> 16) & 0xff;
1290
1291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 if (err_mask) {
1293 ata_dev_warn(dev,
1294 "failed to set max address (err_mask=0x%x)\n",
1295 err_mask);
1296 if (err_mask == AC_ERR_DEV &&
1297 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 return -EACCES;
1299 return -EIO;
1300 }
1301
1302 return 0;
1303 }
1304
1305 /**
1306 * ata_hpa_resize - Resize a device with an HPA set
1307 * @dev: Device to resize
1308 *
1309 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310 * it if required to the full size of the media. The caller must check
1311 * the drive has the HPA feature set enabled.
1312 *
1313 * RETURNS:
1314 * 0 on success, -errno on failure.
1315 */
ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev)
1317 {
1318 bool print_info = ata_dev_print_info(dev);
1319 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 u64 sectors = ata_id_n_sectors(dev->id);
1321 u64 native_sectors;
1322 int rc;
1323
1324 /* do we need to do it? */
1325 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 return 0;
1329
1330 /* read native max address */
1331 rc = ata_read_native_max_address(dev, &native_sectors);
1332 if (rc) {
1333 /* If device aborted the command or HPA isn't going to
1334 * be unlocked, skip HPA resizing.
1335 */
1336 if (rc == -EACCES || !unlock_hpa) {
1337 ata_dev_warn(dev,
1338 "HPA support seems broken, skipping HPA handling\n");
1339 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340
1341 /* we can continue if device aborted the command */
1342 if (rc == -EACCES)
1343 rc = 0;
1344 }
1345
1346 return rc;
1347 }
1348 dev->n_native_sectors = native_sectors;
1349
1350 /* nothing to do? */
1351 if (native_sectors <= sectors || !unlock_hpa) {
1352 if (!print_info || native_sectors == sectors)
1353 return 0;
1354
1355 if (native_sectors > sectors)
1356 ata_dev_info(dev,
1357 "HPA detected: current %llu, native %llu\n",
1358 (unsigned long long)sectors,
1359 (unsigned long long)native_sectors);
1360 else if (native_sectors < sectors)
1361 ata_dev_warn(dev,
1362 "native sectors (%llu) is smaller than sectors (%llu)\n",
1363 (unsigned long long)native_sectors,
1364 (unsigned long long)sectors);
1365 return 0;
1366 }
1367
1368 /* let's unlock HPA */
1369 rc = ata_set_max_sectors(dev, native_sectors);
1370 if (rc == -EACCES) {
1371 /* if device aborted the command, skip HPA resizing */
1372 ata_dev_warn(dev,
1373 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 return 0;
1378 } else if (rc)
1379 return rc;
1380
1381 /* re-read IDENTIFY data */
1382 rc = ata_dev_reread_id(dev, 0);
1383 if (rc) {
1384 ata_dev_err(dev,
1385 "failed to re-read IDENTIFY data after HPA resizing\n");
1386 return rc;
1387 }
1388
1389 if (print_info) {
1390 u64 new_sectors = ata_id_n_sectors(dev->id);
1391 ata_dev_info(dev,
1392 "HPA unlocked: %llu -> %llu, native %llu\n",
1393 (unsigned long long)sectors,
1394 (unsigned long long)new_sectors,
1395 (unsigned long long)native_sectors);
1396 }
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
1403 * @dev: device from which the information is fetched
1404 * @id: IDENTIFY DEVICE page to dump
1405 *
1406 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1407 * page.
1408 *
1409 * LOCKING:
1410 * caller.
1411 */
1412
ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414 {
1415 ata_dev_dbg(dev,
1416 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1417 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1418 "88==0x%04x 93==0x%04x\n",
1419 id[49], id[53], id[63], id[64], id[75], id[80],
1420 id[81], id[82], id[83], id[84], id[88], id[93]);
1421 }
1422
1423 /**
1424 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425 * @id: IDENTIFY data to compute xfer mask from
1426 *
1427 * Compute the xfermask for this device. This is not as trivial
1428 * as it seems if we must consider early devices correctly.
1429 *
1430 * FIXME: pre IDE drive timing (do we care ?).
1431 *
1432 * LOCKING:
1433 * None.
1434 *
1435 * RETURNS:
1436 * Computed xfermask
1437 */
ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id)
1439 {
1440 unsigned int pio_mask, mwdma_mask, udma_mask;
1441
1442 /* Usual case. Word 53 indicates word 64 is valid */
1443 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 pio_mask <<= 3;
1446 pio_mask |= 0x7;
1447 } else {
1448 /* If word 64 isn't valid then Word 51 high byte holds
1449 * the PIO timing number for the maximum. Turn it into
1450 * a mask.
1451 */
1452 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 if (mode < 5) /* Valid PIO range */
1454 pio_mask = (2 << mode) - 1;
1455 else
1456 pio_mask = 1;
1457
1458 /* But wait.. there's more. Design your standards by
1459 * committee and you too can get a free iordy field to
1460 * process. However it is the speeds not the modes that
1461 * are supported... Note drivers using the timing API
1462 * will get this right anyway
1463 */
1464 }
1465
1466 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467
1468 if (ata_id_is_cfa(id)) {
1469 /*
1470 * Process compact flash extended modes
1471 */
1472 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474
1475 if (pio)
1476 pio_mask |= (1 << 5);
1477 if (pio > 1)
1478 pio_mask |= (1 << 6);
1479 if (dma)
1480 mwdma_mask |= (1 << 3);
1481 if (dma > 1)
1482 mwdma_mask |= (1 << 4);
1483 }
1484
1485 udma_mask = 0;
1486 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488
1489 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490 }
1491 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492
ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494 {
1495 struct completion *waiting = qc->private_data;
1496
1497 complete(waiting);
1498 }
1499
1500 /**
1501 * ata_exec_internal - execute libata internal command
1502 * @dev: Device to which the command is sent
1503 * @tf: Taskfile registers for the command and the result
1504 * @cdb: CDB for packet command
1505 * @dma_dir: Data transfer direction of the command
1506 * @buf: Data buffer of the command
1507 * @buflen: Length of data buffer
1508 * @timeout: Timeout in msecs (0 for default)
1509 *
1510 * Executes libata internal command with timeout. @tf contains
1511 * the command on entry and the result on return. Timeout and error
1512 * conditions are reported via the return value. No recovery action
1513 * is taken after a command times out. It is the caller's duty to
1514 * clean up after timeout.
1515 *
1516 * LOCKING:
1517 * None. Should be called with kernel context, might sleep.
1518 *
1519 * RETURNS:
1520 * Zero on success, AC_ERR_* mask on failure
1521 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 const u8 *cdb, enum dma_data_direction dma_dir,
1524 void *buf, unsigned int buflen,
1525 unsigned int timeout)
1526 {
1527 struct ata_link *link = dev->link;
1528 struct ata_port *ap = link->ap;
1529 u8 command = tf->command;
1530 struct ata_queued_cmd *qc;
1531 struct scatterlist sgl;
1532 unsigned int preempted_tag;
1533 u32 preempted_sactive;
1534 u64 preempted_qc_active;
1535 int preempted_nr_active_links;
1536 bool auto_timeout = false;
1537 DECLARE_COMPLETION_ONSTACK(wait);
1538 unsigned long flags;
1539 unsigned int err_mask;
1540 int rc;
1541
1542 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 return AC_ERR_INVALID;
1544
1545 spin_lock_irqsave(ap->lock, flags);
1546
1547 /* No internal command while frozen */
1548 if (ata_port_is_frozen(ap)) {
1549 spin_unlock_irqrestore(ap->lock, flags);
1550 return AC_ERR_SYSTEM;
1551 }
1552
1553 /* Initialize internal qc */
1554 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555
1556 qc->tag = ATA_TAG_INTERNAL;
1557 qc->hw_tag = 0;
1558 qc->scsicmd = NULL;
1559 qc->ap = ap;
1560 qc->dev = dev;
1561 ata_qc_reinit(qc);
1562
1563 preempted_tag = link->active_tag;
1564 preempted_sactive = link->sactive;
1565 preempted_qc_active = ap->qc_active;
1566 preempted_nr_active_links = ap->nr_active_links;
1567 link->active_tag = ATA_TAG_POISON;
1568 link->sactive = 0;
1569 ap->qc_active = 0;
1570 ap->nr_active_links = 0;
1571
1572 /* Prepare and issue qc */
1573 qc->tf = *tf;
1574 if (cdb)
1575 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576
1577 /* Some SATA bridges need us to indicate data xfer direction */
1578 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 dma_dir == DMA_FROM_DEVICE)
1580 qc->tf.feature |= ATAPI_DMADIR;
1581
1582 qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 qc->dma_dir = dma_dir;
1584 if (dma_dir != DMA_NONE) {
1585 sg_init_one(&sgl, buf, buflen);
1586 ata_sg_init(qc, &sgl, 1);
1587 qc->nbytes = buflen;
1588 }
1589
1590 qc->private_data = &wait;
1591 qc->complete_fn = ata_qc_complete_internal;
1592
1593 ata_qc_issue(qc);
1594
1595 spin_unlock_irqrestore(ap->lock, flags);
1596
1597 if (!timeout) {
1598 if (ata_probe_timeout) {
1599 timeout = ata_probe_timeout * 1000;
1600 } else {
1601 timeout = ata_internal_cmd_timeout(dev, command);
1602 auto_timeout = true;
1603 }
1604 }
1605
1606 ata_eh_release(ap);
1607
1608 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609
1610 ata_eh_acquire(ap);
1611
1612 ata_sff_flush_pio_task(ap);
1613
1614 if (!rc) {
1615 /*
1616 * We are racing with irq here. If we lose, the following test
1617 * prevents us from completing the qc twice. If we win, the port
1618 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 */
1620 spin_lock_irqsave(ap->lock, flags);
1621 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 qc->err_mask |= AC_ERR_TIMEOUT;
1623 ata_port_freeze(ap);
1624 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 timeout, command);
1626 }
1627 spin_unlock_irqrestore(ap->lock, flags);
1628 }
1629
1630 if (ap->ops->post_internal_cmd)
1631 ap->ops->post_internal_cmd(qc);
1632
1633 /* Perform minimal error analysis */
1634 if (qc->flags & ATA_QCFLAG_EH) {
1635 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 qc->err_mask |= AC_ERR_DEV;
1637
1638 if (!qc->err_mask)
1639 qc->err_mask |= AC_ERR_OTHER;
1640
1641 if (qc->err_mask & ~AC_ERR_OTHER)
1642 qc->err_mask &= ~AC_ERR_OTHER;
1643 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 qc->result_tf.status |= ATA_SENSE;
1645 }
1646
1647 /* Finish up */
1648 spin_lock_irqsave(ap->lock, flags);
1649
1650 *tf = qc->result_tf;
1651 err_mask = qc->err_mask;
1652
1653 ata_qc_free(qc);
1654 link->active_tag = preempted_tag;
1655 link->sactive = preempted_sactive;
1656 ap->qc_active = preempted_qc_active;
1657 ap->nr_active_links = preempted_nr_active_links;
1658
1659 spin_unlock_irqrestore(ap->lock, flags);
1660
1661 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 ata_internal_cmd_timed_out(dev, command);
1663
1664 return err_mask;
1665 }
1666
1667 /**
1668 * ata_pio_need_iordy - check if iordy needed
1669 * @adev: ATA device
1670 *
1671 * Check if the current speed of the device requires IORDY. Used
1672 * by various controllers for chip configuration.
1673 */
ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675 {
1676 /* Don't set IORDY if we're preparing for reset. IORDY may
1677 * lead to controller lock up on certain controllers if the
1678 * port is not occupied. See bko#11703 for details.
1679 */
1680 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 return 0;
1682 /* Controller doesn't support IORDY. Probably a pointless
1683 * check as the caller should know this.
1684 */
1685 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 return 0;
1687 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1688 if (ata_id_is_cfa(adev->id)
1689 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 return 0;
1691 /* PIO3 and higher it is mandatory */
1692 if (adev->pio_mode > XFER_PIO_2)
1693 return 1;
1694 /* We turn it on when possible */
1695 if (ata_id_has_iordy(adev->id))
1696 return 1;
1697 return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700
1701 /**
1702 * ata_pio_mask_no_iordy - Return the non IORDY mask
1703 * @adev: ATA device
1704 *
1705 * Compute the highest mode possible if we are not using iordy. Return
1706 * -1 if no iordy mode is available.
1707 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709 {
1710 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1712 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 /* Is the speed faster than the drive allows non IORDY ? */
1714 if (pio) {
1715 /* This is cycle times not frequency - watch the logic! */
1716 if (pio > 240) /* PIO2 is 240nS per cycle */
1717 return 3 << ATA_SHIFT_PIO;
1718 return 7 << ATA_SHIFT_PIO;
1719 }
1720 }
1721 return 3 << ATA_SHIFT_PIO;
1722 }
1723
1724 /**
1725 * ata_do_dev_read_id - default ID read method
1726 * @dev: device
1727 * @tf: proposed taskfile
1728 * @id: data buffer
1729 *
1730 * Issue the identify taskfile and hand back the buffer containing
1731 * identify data. For some RAID controllers and for pre ATA devices
1732 * this function is wrapped or replaced by the driver
1733 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 struct ata_taskfile *tf, __le16 *id)
1736 {
1737 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739 }
1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741
1742 /**
1743 * ata_dev_read_id - Read ID data from the specified device
1744 * @dev: target device
1745 * @p_class: pointer to class of the target device (may be changed)
1746 * @flags: ATA_READID_* flags
1747 * @id: buffer to read IDENTIFY data into
1748 *
1749 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1750 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1752 * for pre-ATA4 drives.
1753 *
1754 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755 * now we abort if we hit that case.
1756 *
1757 * LOCKING:
1758 * Kernel thread context (may sleep)
1759 *
1760 * RETURNS:
1761 * 0 on success, -errno otherwise.
1762 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 unsigned int flags, u16 *id)
1765 {
1766 struct ata_port *ap = dev->link->ap;
1767 unsigned int class = *p_class;
1768 struct ata_taskfile tf;
1769 unsigned int err_mask = 0;
1770 const char *reason;
1771 bool is_semb = class == ATA_DEV_SEMB;
1772 int may_fallback = 1, tried_spinup = 0;
1773 int rc;
1774
1775 retry:
1776 ata_tf_init(dev, &tf);
1777
1778 switch (class) {
1779 case ATA_DEV_SEMB:
1780 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1781 fallthrough;
1782 case ATA_DEV_ATA:
1783 case ATA_DEV_ZAC:
1784 tf.command = ATA_CMD_ID_ATA;
1785 break;
1786 case ATA_DEV_ATAPI:
1787 tf.command = ATA_CMD_ID_ATAPI;
1788 break;
1789 default:
1790 rc = -ENODEV;
1791 reason = "unsupported class";
1792 goto err_out;
1793 }
1794
1795 tf.protocol = ATA_PROT_PIO;
1796
1797 /* Some devices choke if TF registers contain garbage. Make
1798 * sure those are properly initialized.
1799 */
1800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801
1802 /* Device presence detection is unreliable on some
1803 * controllers. Always poll IDENTIFY if available.
1804 */
1805 tf.flags |= ATA_TFLAG_POLLING;
1806
1807 if (ap->ops->read_id)
1808 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 else
1810 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811
1812 if (err_mask) {
1813 if (err_mask & AC_ERR_NODEV_HINT) {
1814 ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 return -ENOENT;
1816 }
1817
1818 if (is_semb) {
1819 ata_dev_info(dev,
1820 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 /* SEMB is not supported yet */
1822 *p_class = ATA_DEV_SEMB_UNSUP;
1823 return 0;
1824 }
1825
1826 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 /* Device or controller might have reported
1828 * the wrong device class. Give a shot at the
1829 * other IDENTIFY if the current one is
1830 * aborted by the device.
1831 */
1832 if (may_fallback) {
1833 may_fallback = 0;
1834
1835 if (class == ATA_DEV_ATA)
1836 class = ATA_DEV_ATAPI;
1837 else
1838 class = ATA_DEV_ATA;
1839 goto retry;
1840 }
1841
1842 /* Control reaches here iff the device aborted
1843 * both flavors of IDENTIFYs which happens
1844 * sometimes with phantom devices.
1845 */
1846 ata_dev_dbg(dev,
1847 "both IDENTIFYs aborted, assuming NODEV\n");
1848 return -ENOENT;
1849 }
1850
1851 rc = -EIO;
1852 reason = "I/O error";
1853 goto err_out;
1854 }
1855
1856 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 ata_dev_info(dev, "dumping IDENTIFY data, "
1858 "class=%d may_fallback=%d tried_spinup=%d\n",
1859 class, may_fallback, tried_spinup);
1860 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 }
1863
1864 /* Falling back doesn't make sense if ID data was read
1865 * successfully at least once.
1866 */
1867 may_fallback = 0;
1868
1869 swap_buf_le16(id, ATA_ID_WORDS);
1870
1871 /* sanity check */
1872 rc = -EINVAL;
1873 reason = "device reports invalid type";
1874
1875 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 goto err_out;
1878 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 ata_id_is_ata(id)) {
1880 ata_dev_dbg(dev,
1881 "host indicates ignore ATA devices, ignored\n");
1882 return -ENOENT;
1883 }
1884 } else {
1885 if (ata_id_is_ata(id))
1886 goto err_out;
1887 }
1888
1889 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 tried_spinup = 1;
1891 /*
1892 * Drive powered-up in standby mode, and requires a specific
1893 * SET_FEATURES spin-up subcommand before it will accept
1894 * anything other than the original IDENTIFY command.
1895 */
1896 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 if (err_mask && id[2] != 0x738c) {
1898 rc = -EIO;
1899 reason = "SPINUP failed";
1900 goto err_out;
1901 }
1902 /*
1903 * If the drive initially returned incomplete IDENTIFY info,
1904 * we now must reissue the IDENTIFY command.
1905 */
1906 if (id[2] == 0x37c8)
1907 goto retry;
1908 }
1909
1910 if ((flags & ATA_READID_POSTRESET) &&
1911 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 /*
1913 * The exact sequence expected by certain pre-ATA4 drives is:
1914 * SRST RESET
1915 * IDENTIFY (optional in early ATA)
1916 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 * anything else..
1918 * Some drives were very specific about that exact sequence.
1919 *
1920 * Note that ATA4 says lba is mandatory so the second check
1921 * should never trigger.
1922 */
1923 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 if (err_mask) {
1926 rc = -EIO;
1927 reason = "INIT_DEV_PARAMS failed";
1928 goto err_out;
1929 }
1930
1931 /* current CHS translation info (id[53-58]) might be
1932 * changed. reread the identify device info.
1933 */
1934 flags &= ~ATA_READID_POSTRESET;
1935 goto retry;
1936 }
1937 }
1938
1939 *p_class = class;
1940
1941 return 0;
1942
1943 err_out:
1944 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 reason, err_mask);
1946 return rc;
1947 }
1948
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 bool set_active)
1951 {
1952 /* Only applies to ATA and ZAC devices */
1953 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 return false;
1955
1956 ata_tf_init(dev, tf);
1957 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 tf->protocol = ATA_PROT_NODATA;
1959
1960 if (set_active) {
1961 /* VERIFY for 1 sector at lba=0 */
1962 tf->command = ATA_CMD_VERIFY;
1963 tf->nsect = 1;
1964 if (dev->flags & ATA_DFLAG_LBA) {
1965 tf->flags |= ATA_TFLAG_LBA;
1966 tf->device |= ATA_LBA;
1967 } else {
1968 /* CHS */
1969 tf->lbal = 0x1; /* sect */
1970 }
1971 } else {
1972 tf->command = ATA_CMD_STANDBYNOW1;
1973 }
1974
1975 return true;
1976 }
1977
ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev)
1979 {
1980 struct ata_taskfile tf;
1981 unsigned int err_mask;
1982
1983 ata_tf_init(dev, &tf);
1984 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 tf.protocol = ATA_PROT_NODATA;
1986 tf.command = ATA_CMD_CHK_POWER;
1987
1988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 if (err_mask) {
1990 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 err_mask);
1992 /*
1993 * Assume we are in standby mode so that we always force a
1994 * spinup in ata_dev_power_set_active().
1995 */
1996 return false;
1997 }
1998
1999 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000
2001 /* Active or idle */
2002 return tf.nsect == 0xff;
2003 }
2004
2005 /**
2006 * ata_dev_power_set_standby - Set a device power mode to standby
2007 * @dev: target device
2008 *
2009 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010 * For an HDD device, this spins down the disks.
2011 *
2012 * LOCKING:
2013 * Kernel thread context (may sleep).
2014 */
ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev)
2016 {
2017 unsigned long ap_flags = dev->link->ap->flags;
2018 struct ata_taskfile tf;
2019 unsigned int err_mask;
2020
2021 /* If the device is already sleeping or in standby, do nothing. */
2022 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 !ata_dev_power_is_active(dev))
2024 return;
2025
2026 /*
2027 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 * causing some drives to spin up and down again. For these, do nothing
2029 * if we are being called on shutdown.
2030 */
2031 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 system_state == SYSTEM_POWER_OFF)
2033 return;
2034
2035 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 system_entering_hibernation())
2037 return;
2038
2039 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 if (!ata_dev_power_init_tf(dev, &tf, false))
2041 return;
2042
2043 ata_dev_notice(dev, "Entering standby power mode\n");
2044
2045 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 if (err_mask)
2047 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 err_mask);
2049 }
2050
2051 /**
2052 * ata_dev_power_set_active - Set a device power mode to active
2053 * @dev: target device
2054 *
2055 * Issue a VERIFY command to enter to ensure that the device is in the
2056 * active power mode. For a spun-down HDD (standby or idle power mode),
2057 * the VERIFY command will complete after the disk spins up.
2058 *
2059 * LOCKING:
2060 * Kernel thread context (may sleep).
2061 */
ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev)
2063 {
2064 struct ata_taskfile tf;
2065 unsigned int err_mask;
2066
2067 /*
2068 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 * if supported by the device.
2070 */
2071 if (!ata_dev_power_init_tf(dev, &tf, true))
2072 return;
2073
2074 /*
2075 * Check the device power state & condition and force a spinup with
2076 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 */
2078 if (ata_dev_power_is_active(dev))
2079 return;
2080
2081 ata_dev_notice(dev, "Entering active power mode\n");
2082
2083 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 if (err_mask)
2085 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 err_mask);
2087 }
2088
2089 /**
2090 * ata_read_log_page - read a specific log page
2091 * @dev: target device
2092 * @log: log to read
2093 * @page: page to read
2094 * @buf: buffer to store read page
2095 * @sectors: number of sectors to read
2096 *
2097 * Read log page using READ_LOG_EXT command.
2098 *
2099 * LOCKING:
2100 * Kernel thread context (may sleep).
2101 *
2102 * RETURNS:
2103 * 0 on success, AC_ERR_* mask otherwise.
2104 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 u8 page, void *buf, unsigned int sectors)
2107 {
2108 unsigned long ap_flags = dev->link->ap->flags;
2109 struct ata_taskfile tf;
2110 unsigned int err_mask;
2111 bool dma = false;
2112
2113 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114
2115 /*
2116 * Return error without actually issuing the command on controllers
2117 * which e.g. lockup on a read log page.
2118 */
2119 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 return AC_ERR_DEV;
2121
2122 retry:
2123 ata_tf_init(dev, &tf);
2124 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 tf.protocol = ATA_PROT_DMA;
2128 dma = true;
2129 } else {
2130 tf.command = ATA_CMD_READ_LOG_EXT;
2131 tf.protocol = ATA_PROT_PIO;
2132 dma = false;
2133 }
2134 tf.lbal = log;
2135 tf.lbam = page;
2136 tf.nsect = sectors;
2137 tf.hob_nsect = sectors >> 8;
2138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139
2140 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 buf, sectors * ATA_SECT_SIZE, 0);
2142
2143 if (err_mask) {
2144 if (dma) {
2145 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 if (!ata_port_is_frozen(dev->link->ap))
2147 goto retry;
2148 }
2149 ata_dev_err(dev,
2150 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 (unsigned int)log, (unsigned int)page, err_mask);
2152 }
2153
2154 return err_mask;
2155 }
2156
ata_clear_log_directory(struct ata_device * dev)2157 static inline void ata_clear_log_directory(struct ata_device *dev)
2158 {
2159 memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160 }
2161
ata_read_log_directory(struct ata_device * dev)2162 static int ata_read_log_directory(struct ata_device *dev)
2163 {
2164 u16 version;
2165
2166 /* If the log page is already cached, do nothing. */
2167 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168 if (version == 0x0001)
2169 return 0;
2170
2171 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172 ata_clear_log_directory(dev);
2173 return -EIO;
2174 }
2175
2176 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177 if (version != 0x0001) {
2178 ata_dev_err(dev, "Invalid log directory version 0x%04x\n",
2179 version);
2180 ata_clear_log_directory(dev);
2181 dev->quirks |= ATA_QUIRK_NO_LOG_DIR;
2182 return -EINVAL;
2183 }
2184
2185 return 0;
2186 }
2187
ata_log_supported(struct ata_device * dev,u8 log)2188 static int ata_log_supported(struct ata_device *dev, u8 log)
2189 {
2190 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2191 return 0;
2192
2193 if (ata_read_log_directory(dev))
2194 return 0;
2195
2196 return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2197 }
2198
ata_identify_page_supported(struct ata_device * dev,u8 page)2199 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2200 {
2201 unsigned int err, i;
2202
2203 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2204 return false;
2205
2206 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2207 /*
2208 * IDENTIFY DEVICE data log is defined as mandatory starting
2209 * with ACS-3 (ATA version 10). Warn about the missing log
2210 * for drives which implement this ATA level or above.
2211 */
2212 if (ata_id_major_version(dev->id) >= 10)
2213 ata_dev_warn(dev,
2214 "ATA Identify Device Log not supported\n");
2215 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2216 return false;
2217 }
2218
2219 /*
2220 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2221 * supported.
2222 */
2223 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2224 dev->sector_buf, 1);
2225 if (err)
2226 return false;
2227
2228 for (i = 0; i < dev->sector_buf[8]; i++) {
2229 if (dev->sector_buf[9 + i] == page)
2230 return true;
2231 }
2232
2233 return false;
2234 }
2235
ata_do_link_spd_quirk(struct ata_device * dev)2236 static int ata_do_link_spd_quirk(struct ata_device *dev)
2237 {
2238 struct ata_link *plink = ata_dev_phys_link(dev);
2239 u32 target, target_limit;
2240
2241 if (!sata_scr_valid(plink))
2242 return 0;
2243
2244 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2245 target = 1;
2246 else
2247 return 0;
2248
2249 target_limit = (1 << target) - 1;
2250
2251 /* if already on stricter limit, no need to push further */
2252 if (plink->sata_spd_limit <= target_limit)
2253 return 0;
2254
2255 plink->sata_spd_limit = target_limit;
2256
2257 /* Request another EH round by returning -EAGAIN if link is
2258 * going faster than the target speed. Forward progress is
2259 * guaranteed by setting sata_spd_limit to target_limit above.
2260 */
2261 if (plink->sata_spd > target) {
2262 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2263 sata_spd_string(target));
2264 return -EAGAIN;
2265 }
2266 return 0;
2267 }
2268
ata_dev_knobble(struct ata_device * dev)2269 static inline bool ata_dev_knobble(struct ata_device *dev)
2270 {
2271 struct ata_port *ap = dev->link->ap;
2272
2273 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2274 return false;
2275
2276 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2277 }
2278
ata_dev_config_ncq_send_recv(struct ata_device * dev)2279 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2280 {
2281 unsigned int err_mask;
2282
2283 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2284 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2285 return;
2286 }
2287 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2288 0, dev->sector_buf, 1);
2289 if (!err_mask) {
2290 u8 *cmds = dev->ncq_send_recv_cmds;
2291
2292 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2293 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2294
2295 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2296 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2297 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2298 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2299 }
2300 }
2301 }
2302
ata_dev_config_ncq_non_data(struct ata_device * dev)2303 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2304 {
2305 unsigned int err_mask;
2306
2307 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2308 ata_dev_warn(dev,
2309 "NCQ Non-Data Log not supported\n");
2310 return;
2311 }
2312 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2313 0, dev->sector_buf, 1);
2314 if (!err_mask)
2315 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2316 ATA_LOG_NCQ_NON_DATA_SIZE);
2317 }
2318
ata_dev_config_ncq_prio(struct ata_device * dev)2319 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2320 {
2321 unsigned int err_mask;
2322
2323 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2324 return;
2325
2326 err_mask = ata_read_log_page(dev,
2327 ATA_LOG_IDENTIFY_DEVICE,
2328 ATA_LOG_SATA_SETTINGS,
2329 dev->sector_buf, 1);
2330 if (err_mask)
2331 goto not_supported;
2332
2333 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2334 goto not_supported;
2335
2336 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2337
2338 return;
2339
2340 not_supported:
2341 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2342 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2343 }
2344
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2345 static bool ata_dev_check_adapter(struct ata_device *dev,
2346 unsigned short vendor_id)
2347 {
2348 struct pci_dev *pcidev = NULL;
2349 struct device *parent_dev = NULL;
2350
2351 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2352 parent_dev = parent_dev->parent) {
2353 if (dev_is_pci(parent_dev)) {
2354 pcidev = to_pci_dev(parent_dev);
2355 if (pcidev->vendor == vendor_id)
2356 return true;
2357 break;
2358 }
2359 }
2360
2361 return false;
2362 }
2363
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2364 static int ata_dev_config_ncq(struct ata_device *dev,
2365 char *desc, size_t desc_sz)
2366 {
2367 struct ata_port *ap = dev->link->ap;
2368 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2369 unsigned int err_mask;
2370 char *aa_desc = "";
2371
2372 if (!ata_id_has_ncq(dev->id)) {
2373 desc[0] = '\0';
2374 return 0;
2375 }
2376 if (!IS_ENABLED(CONFIG_SATA_HOST))
2377 return 0;
2378 if (dev->quirks & ATA_QUIRK_NONCQ) {
2379 snprintf(desc, desc_sz, "NCQ (not used)");
2380 return 0;
2381 }
2382
2383 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2384 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2385 snprintf(desc, desc_sz, "NCQ (not used)");
2386 return 0;
2387 }
2388
2389 if (ap->flags & ATA_FLAG_NCQ) {
2390 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2391 dev->flags |= ATA_DFLAG_NCQ;
2392 }
2393
2394 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2395 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2396 ata_id_has_fpdma_aa(dev->id)) {
2397 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2398 SATA_FPDMA_AA);
2399 if (err_mask) {
2400 ata_dev_err(dev,
2401 "failed to enable AA (error_mask=0x%x)\n",
2402 err_mask);
2403 if (err_mask != AC_ERR_DEV) {
2404 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2405 return -EIO;
2406 }
2407 } else
2408 aa_desc = ", AA";
2409 }
2410
2411 if (hdepth >= ddepth)
2412 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2413 else
2414 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2415 ddepth, aa_desc);
2416
2417 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2418 if (ata_id_has_ncq_send_and_recv(dev->id))
2419 ata_dev_config_ncq_send_recv(dev);
2420 if (ata_id_has_ncq_non_data(dev->id))
2421 ata_dev_config_ncq_non_data(dev);
2422 if (ata_id_has_ncq_prio(dev->id))
2423 ata_dev_config_ncq_prio(dev);
2424 }
2425
2426 return 0;
2427 }
2428
ata_dev_config_sense_reporting(struct ata_device * dev)2429 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2430 {
2431 unsigned int err_mask;
2432
2433 if (!ata_id_has_sense_reporting(dev->id))
2434 return;
2435
2436 if (ata_id_sense_reporting_enabled(dev->id))
2437 return;
2438
2439 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2440 if (err_mask) {
2441 ata_dev_dbg(dev,
2442 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2443 err_mask);
2444 }
2445 }
2446
ata_dev_config_zac(struct ata_device * dev)2447 static void ata_dev_config_zac(struct ata_device *dev)
2448 {
2449 unsigned int err_mask;
2450 u8 *identify_buf = dev->sector_buf;
2451
2452 dev->zac_zones_optimal_open = U32_MAX;
2453 dev->zac_zones_optimal_nonseq = U32_MAX;
2454 dev->zac_zones_max_open = U32_MAX;
2455
2456 if (!ata_dev_is_zac(dev))
2457 return;
2458
2459 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2460 ata_dev_warn(dev,
2461 "ATA Zoned Information Log not supported\n");
2462 return;
2463 }
2464
2465 /*
2466 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2467 */
2468 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2469 ATA_LOG_ZONED_INFORMATION,
2470 identify_buf, 1);
2471 if (!err_mask) {
2472 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2473
2474 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2475 if ((zoned_cap >> 63))
2476 dev->zac_zoned_cap = (zoned_cap & 1);
2477 opt_open = get_unaligned_le64(&identify_buf[24]);
2478 if ((opt_open >> 63))
2479 dev->zac_zones_optimal_open = (u32)opt_open;
2480 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2481 if ((opt_nonseq >> 63))
2482 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2483 max_open = get_unaligned_le64(&identify_buf[40]);
2484 if ((max_open >> 63))
2485 dev->zac_zones_max_open = (u32)max_open;
2486 }
2487 }
2488
ata_dev_config_trusted(struct ata_device * dev)2489 static void ata_dev_config_trusted(struct ata_device *dev)
2490 {
2491 u64 trusted_cap;
2492 unsigned int err;
2493
2494 if (!ata_id_has_trusted(dev->id))
2495 return;
2496
2497 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2498 ata_dev_warn(dev,
2499 "Security Log not supported\n");
2500 return;
2501 }
2502
2503 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2504 dev->sector_buf, 1);
2505 if (err)
2506 return;
2507
2508 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2509 if (!(trusted_cap & (1ULL << 63))) {
2510 ata_dev_dbg(dev,
2511 "Trusted Computing capability qword not valid!\n");
2512 return;
2513 }
2514
2515 if (trusted_cap & (1 << 0))
2516 dev->flags |= ATA_DFLAG_TRUSTED;
2517 }
2518
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2519 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2520 {
2521 kfree(dev->cdl);
2522 dev->cdl = NULL;
2523 }
2524
ata_dev_init_cdl_resources(struct ata_device * dev)2525 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2526 {
2527 struct ata_cdl *cdl = dev->cdl;
2528 unsigned int err_mask;
2529
2530 if (!cdl) {
2531 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2532 if (!cdl)
2533 return -ENOMEM;
2534 dev->cdl = cdl;
2535 }
2536
2537 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2538 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2539 if (err_mask) {
2540 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2541 ata_dev_cleanup_cdl_resources(dev);
2542 return -EIO;
2543 }
2544
2545 return 0;
2546 }
2547
ata_dev_config_cdl(struct ata_device * dev)2548 static void ata_dev_config_cdl(struct ata_device *dev)
2549 {
2550 unsigned int err_mask;
2551 bool cdl_enabled;
2552 u64 val;
2553 int ret;
2554
2555 if (ata_id_major_version(dev->id) < 11)
2556 goto not_supported;
2557
2558 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2559 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2560 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2561 goto not_supported;
2562
2563 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2564 ATA_LOG_SUPPORTED_CAPABILITIES,
2565 dev->sector_buf, 1);
2566 if (err_mask)
2567 goto not_supported;
2568
2569 /* Check Command Duration Limit Supported bits */
2570 val = get_unaligned_le64(&dev->sector_buf[168]);
2571 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2572 goto not_supported;
2573
2574 /* Warn the user if command duration guideline is not supported */
2575 if (!(val & BIT_ULL(1)))
2576 ata_dev_warn(dev,
2577 "Command duration guideline is not supported\n");
2578
2579 /*
2580 * We must have support for the sense data for successful NCQ commands
2581 * log indicated by the successful NCQ command sense data supported bit.
2582 */
2583 val = get_unaligned_le64(&dev->sector_buf[8]);
2584 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2585 ata_dev_warn(dev,
2586 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2587 goto not_supported;
2588 }
2589
2590 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2591 if (!ata_id_has_ncq_autosense(dev->id)) {
2592 ata_dev_warn(dev,
2593 "CDL supported but NCQ autosense is not supported\n");
2594 goto not_supported;
2595 }
2596
2597 /*
2598 * If CDL is marked as enabled, make sure the feature is enabled too.
2599 * Conversely, if CDL is disabled, make sure the feature is turned off.
2600 */
2601 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2602 ATA_LOG_CURRENT_SETTINGS,
2603 dev->sector_buf, 1);
2604 if (err_mask)
2605 goto not_supported;
2606
2607 val = get_unaligned_le64(&dev->sector_buf[8]);
2608 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2609 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2610 if (!cdl_enabled) {
2611 /* Enable CDL on the device */
2612 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2613 if (err_mask) {
2614 ata_dev_err(dev,
2615 "Enable CDL feature failed\n");
2616 goto not_supported;
2617 }
2618 }
2619 } else {
2620 if (cdl_enabled) {
2621 /* Disable CDL on the device */
2622 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2623 if (err_mask) {
2624 ata_dev_err(dev,
2625 "Disable CDL feature failed\n");
2626 goto not_supported;
2627 }
2628 }
2629 }
2630
2631 /*
2632 * While CDL itself has to be enabled using sysfs, CDL requires that
2633 * sense data for successful NCQ commands is enabled to work properly.
2634 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2635 * if supported.
2636 */
2637 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2638 err_mask = ata_dev_set_feature(dev,
2639 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2640 if (err_mask) {
2641 ata_dev_warn(dev,
2642 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2643 err_mask);
2644 goto not_supported;
2645 }
2646 }
2647
2648 /* CDL is supported: allocate and initialize needed resources. */
2649 ret = ata_dev_init_cdl_resources(dev);
2650 if (ret) {
2651 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2652 goto not_supported;
2653 }
2654
2655 dev->flags |= ATA_DFLAG_CDL;
2656
2657 return;
2658
2659 not_supported:
2660 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2661 ata_dev_cleanup_cdl_resources(dev);
2662 }
2663
ata_dev_config_lba(struct ata_device * dev)2664 static int ata_dev_config_lba(struct ata_device *dev)
2665 {
2666 const u16 *id = dev->id;
2667 const char *lba_desc;
2668 char ncq_desc[32];
2669 int ret;
2670
2671 dev->flags |= ATA_DFLAG_LBA;
2672
2673 if (ata_id_has_lba48(id)) {
2674 lba_desc = "LBA48";
2675 dev->flags |= ATA_DFLAG_LBA48;
2676 if (dev->n_sectors >= (1UL << 28) &&
2677 ata_id_has_flush_ext(id))
2678 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2679 } else {
2680 lba_desc = "LBA";
2681 }
2682
2683 /* config NCQ */
2684 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2685
2686 /* print device info to dmesg */
2687 if (ata_dev_print_info(dev))
2688 ata_dev_info(dev,
2689 "%llu sectors, multi %u: %s %s\n",
2690 (unsigned long long)dev->n_sectors,
2691 dev->multi_count, lba_desc, ncq_desc);
2692
2693 return ret;
2694 }
2695
ata_dev_config_chs(struct ata_device * dev)2696 static void ata_dev_config_chs(struct ata_device *dev)
2697 {
2698 const u16 *id = dev->id;
2699
2700 if (ata_id_current_chs_valid(id)) {
2701 /* Current CHS translation is valid. */
2702 dev->cylinders = id[54];
2703 dev->heads = id[55];
2704 dev->sectors = id[56];
2705 } else {
2706 /* Default translation */
2707 dev->cylinders = id[1];
2708 dev->heads = id[3];
2709 dev->sectors = id[6];
2710 }
2711
2712 /* print device info to dmesg */
2713 if (ata_dev_print_info(dev))
2714 ata_dev_info(dev,
2715 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2716 (unsigned long long)dev->n_sectors,
2717 dev->multi_count, dev->cylinders,
2718 dev->heads, dev->sectors);
2719 }
2720
ata_dev_config_fua(struct ata_device * dev)2721 static void ata_dev_config_fua(struct ata_device *dev)
2722 {
2723 /* Ignore FUA support if its use is disabled globally */
2724 if (!libata_fua)
2725 goto nofua;
2726
2727 /* Ignore devices without support for WRITE DMA FUA EXT */
2728 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2729 goto nofua;
2730
2731 /* Ignore known bad devices and devices that lack NCQ support */
2732 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2733 goto nofua;
2734
2735 dev->flags |= ATA_DFLAG_FUA;
2736
2737 return;
2738
2739 nofua:
2740 dev->flags &= ~ATA_DFLAG_FUA;
2741 }
2742
ata_dev_config_devslp(struct ata_device * dev)2743 static void ata_dev_config_devslp(struct ata_device *dev)
2744 {
2745 u8 *sata_setting = dev->sector_buf;
2746 unsigned int err_mask;
2747 int i, j;
2748
2749 /*
2750 * Check device sleep capability. Get DevSlp timing variables
2751 * from SATA Settings page of Identify Device Data Log.
2752 */
2753 if (!ata_id_has_devslp(dev->id) ||
2754 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2755 return;
2756
2757 err_mask = ata_read_log_page(dev,
2758 ATA_LOG_IDENTIFY_DEVICE,
2759 ATA_LOG_SATA_SETTINGS,
2760 sata_setting, 1);
2761 if (err_mask)
2762 return;
2763
2764 dev->flags |= ATA_DFLAG_DEVSLP;
2765 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2766 j = ATA_LOG_DEVSLP_OFFSET + i;
2767 dev->devslp_timing[i] = sata_setting[j];
2768 }
2769 }
2770
ata_dev_config_cpr(struct ata_device * dev)2771 static void ata_dev_config_cpr(struct ata_device *dev)
2772 {
2773 unsigned int err_mask;
2774 size_t buf_len;
2775 int i, nr_cpr = 0;
2776 struct ata_cpr_log *cpr_log = NULL;
2777 u8 *desc, *buf = NULL;
2778
2779 if (ata_id_major_version(dev->id) < 11)
2780 goto out;
2781
2782 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2783 if (buf_len == 0)
2784 goto out;
2785
2786 /*
2787 * Read the concurrent positioning ranges log (0x47). We can have at
2788 * most 255 32B range descriptors plus a 64B header. This log varies in
2789 * size, so use the size reported in the GPL directory. Reading beyond
2790 * the supported length will result in an error.
2791 */
2792 buf_len <<= 9;
2793 buf = kzalloc(buf_len, GFP_KERNEL);
2794 if (!buf)
2795 goto out;
2796
2797 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2798 0, buf, buf_len >> 9);
2799 if (err_mask)
2800 goto out;
2801
2802 nr_cpr = buf[0];
2803 if (!nr_cpr)
2804 goto out;
2805
2806 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2807 if (!cpr_log)
2808 goto out;
2809
2810 cpr_log->nr_cpr = nr_cpr;
2811 desc = &buf[64];
2812 for (i = 0; i < nr_cpr; i++, desc += 32) {
2813 cpr_log->cpr[i].num = desc[0];
2814 cpr_log->cpr[i].num_storage_elements = desc[1];
2815 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2816 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2817 }
2818
2819 out:
2820 swap(dev->cpr_log, cpr_log);
2821 kfree(cpr_log);
2822 kfree(buf);
2823 }
2824
2825 /*
2826 * Configure features related to link power management.
2827 */
ata_dev_config_lpm(struct ata_device * dev)2828 static void ata_dev_config_lpm(struct ata_device *dev)
2829 {
2830 struct ata_port *ap = dev->link->ap;
2831 unsigned int err_mask;
2832
2833 if (ap->flags & ATA_FLAG_NO_LPM) {
2834 /*
2835 * When the port does not support LPM, we cannot support it on
2836 * the device either.
2837 */
2838 dev->quirks |= ATA_QUIRK_NOLPM;
2839 } else {
2840 /*
2841 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2842 * them.
2843 */
2844 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845 (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846 dev->quirks |= ATA_QUIRK_NOLPM;
2847
2848 /* ATI specific quirk */
2849 if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2850 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2851 dev->quirks |= ATA_QUIRK_NOLPM;
2852 }
2853
2854 if (dev->quirks & ATA_QUIRK_NOLPM &&
2855 ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2856 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2857 ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2858 }
2859
2860 /*
2861 * Device Initiated Power Management (DIPM) is normally disabled by
2862 * default on a device. However, DIPM may have been enabled and that
2863 * setting kept even after COMRESET because of the Software Settings
2864 * Preservation feature. So if the port does not support DIPM and the
2865 * device does, disable DIPM on the device.
2866 */
2867 if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2868 err_mask = ata_dev_set_feature(dev,
2869 SETFEATURES_SATA_DISABLE, SATA_DIPM);
2870 if (err_mask && err_mask != AC_ERR_DEV)
2871 ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2872 err_mask);
2873 }
2874 }
2875
ata_dev_print_features(struct ata_device * dev)2876 static void ata_dev_print_features(struct ata_device *dev)
2877 {
2878 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2879 return;
2880
2881 ata_dev_info(dev,
2882 "Features:%s%s%s%s%s%s%s%s%s%s\n",
2883 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2884 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2885 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2886 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2887 ata_id_has_hipm(dev->id) ? " HIPM" : "",
2888 ata_id_has_dipm(dev->id) ? " DIPM" : "",
2889 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2890 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2891 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2892 dev->cpr_log ? " CPR" : "");
2893 }
2894
2895 /**
2896 * ata_dev_configure - Configure the specified ATA/ATAPI device
2897 * @dev: Target device to configure
2898 *
2899 * Configure @dev according to @dev->id. Generic and low-level
2900 * driver specific fixups are also applied.
2901 *
2902 * LOCKING:
2903 * Kernel thread context (may sleep)
2904 *
2905 * RETURNS:
2906 * 0 on success, -errno otherwise
2907 */
ata_dev_configure(struct ata_device * dev)2908 int ata_dev_configure(struct ata_device *dev)
2909 {
2910 struct ata_port *ap = dev->link->ap;
2911 bool print_info = ata_dev_print_info(dev);
2912 const u16 *id = dev->id;
2913 unsigned int xfer_mask;
2914 unsigned int err_mask;
2915 char revbuf[7]; /* XYZ-99\0 */
2916 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2917 char modelbuf[ATA_ID_PROD_LEN+1];
2918 int rc;
2919
2920 if (!ata_dev_enabled(dev)) {
2921 ata_dev_dbg(dev, "no device\n");
2922 return 0;
2923 }
2924
2925 /* Clear the general purpose log directory cache. */
2926 ata_clear_log_directory(dev);
2927
2928 /* Set quirks */
2929 dev->quirks |= ata_dev_quirks(dev);
2930 ata_force_quirks(dev);
2931
2932 if (dev->quirks & ATA_QUIRK_DISABLE) {
2933 ata_dev_info(dev, "unsupported device, disabling\n");
2934 ata_dev_disable(dev);
2935 return 0;
2936 }
2937
2938 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2939 dev->class == ATA_DEV_ATAPI) {
2940 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2941 atapi_enabled ? "not supported with this driver"
2942 : "disabled");
2943 ata_dev_disable(dev);
2944 return 0;
2945 }
2946
2947 rc = ata_do_link_spd_quirk(dev);
2948 if (rc)
2949 return rc;
2950
2951 /* let ACPI work its magic */
2952 rc = ata_acpi_on_devcfg(dev);
2953 if (rc)
2954 return rc;
2955
2956 /* massage HPA, do it early as it might change IDENTIFY data */
2957 rc = ata_hpa_resize(dev);
2958 if (rc)
2959 return rc;
2960
2961 /* print device capabilities */
2962 ata_dev_dbg(dev,
2963 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2964 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2965 __func__,
2966 id[49], id[82], id[83], id[84],
2967 id[85], id[86], id[87], id[88]);
2968
2969 /* initialize to-be-configured parameters */
2970 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2971 dev->max_sectors = 0;
2972 dev->cdb_len = 0;
2973 dev->n_sectors = 0;
2974 dev->cylinders = 0;
2975 dev->heads = 0;
2976 dev->sectors = 0;
2977 dev->multi_count = 0;
2978
2979 /*
2980 * common ATA, ATAPI feature tests
2981 */
2982
2983 /* find max transfer mode; for printk only */
2984 xfer_mask = ata_id_xfermask(id);
2985
2986 ata_dump_id(dev, id);
2987
2988 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2989 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2990 sizeof(fwrevbuf));
2991
2992 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2993 sizeof(modelbuf));
2994
2995 /* ATA-specific feature tests */
2996 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2997 if (ata_id_is_cfa(id)) {
2998 /* CPRM may make this media unusable */
2999 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
3000 ata_dev_warn(dev,
3001 "supports DRM functions and may not be fully accessible\n");
3002 snprintf(revbuf, 7, "CFA");
3003 } else {
3004 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3005 /* Warn the user if the device has TPM extensions */
3006 if (ata_id_has_tpm(id))
3007 ata_dev_warn(dev,
3008 "supports DRM functions and may not be fully accessible\n");
3009 }
3010
3011 dev->n_sectors = ata_id_n_sectors(id);
3012
3013 /* get current R/W Multiple count setting */
3014 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3015 unsigned int max = dev->id[47] & 0xff;
3016 unsigned int cnt = dev->id[59] & 0xff;
3017 /* only recognize/allow powers of two here */
3018 if (is_power_of_2(max) && is_power_of_2(cnt))
3019 if (cnt <= max)
3020 dev->multi_count = cnt;
3021 }
3022
3023 /* print device info to dmesg */
3024 if (print_info)
3025 ata_dev_info(dev, "%s: %s, %s, max %s\n",
3026 revbuf, modelbuf, fwrevbuf,
3027 ata_mode_string(xfer_mask));
3028
3029 if (ata_id_has_lba(id)) {
3030 rc = ata_dev_config_lba(dev);
3031 if (rc)
3032 return rc;
3033 } else {
3034 ata_dev_config_chs(dev);
3035 }
3036
3037 ata_dev_config_lpm(dev);
3038 ata_dev_config_fua(dev);
3039 ata_dev_config_devslp(dev);
3040 ata_dev_config_sense_reporting(dev);
3041 ata_dev_config_zac(dev);
3042 ata_dev_config_trusted(dev);
3043 ata_dev_config_cpr(dev);
3044 ata_dev_config_cdl(dev);
3045 dev->cdb_len = 32;
3046
3047 if (print_info)
3048 ata_dev_print_features(dev);
3049 }
3050
3051 /* ATAPI-specific feature tests */
3052 else if (dev->class == ATA_DEV_ATAPI) {
3053 const char *cdb_intr_string = "";
3054 const char *atapi_an_string = "";
3055 const char *dma_dir_string = "";
3056 u32 sntf;
3057
3058 rc = atapi_cdb_len(id);
3059 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3060 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3061 rc = -EINVAL;
3062 goto err_out_nosup;
3063 }
3064 dev->cdb_len = (unsigned int) rc;
3065
3066 /* Enable ATAPI AN if both the host and device have
3067 * the support. If PMP is attached, SNTF is required
3068 * to enable ATAPI AN to discern between PHY status
3069 * changed notifications and ATAPI ANs.
3070 */
3071 if (atapi_an &&
3072 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3073 (!sata_pmp_attached(ap) ||
3074 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3075 /* issue SET feature command to turn this on */
3076 err_mask = ata_dev_set_feature(dev,
3077 SETFEATURES_SATA_ENABLE, SATA_AN);
3078 if (err_mask)
3079 ata_dev_err(dev,
3080 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3081 err_mask);
3082 else {
3083 dev->flags |= ATA_DFLAG_AN;
3084 atapi_an_string = ", ATAPI AN";
3085 }
3086 }
3087
3088 if (ata_id_cdb_intr(dev->id)) {
3089 dev->flags |= ATA_DFLAG_CDB_INTR;
3090 cdb_intr_string = ", CDB intr";
3091 }
3092
3093 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3094 atapi_id_dmadir(dev->id)) {
3095 dev->flags |= ATA_DFLAG_DMADIR;
3096 dma_dir_string = ", DMADIR";
3097 }
3098
3099 if (ata_id_has_da(dev->id)) {
3100 dev->flags |= ATA_DFLAG_DA;
3101 zpodd_init(dev);
3102 }
3103
3104 /* print device info to dmesg */
3105 if (print_info)
3106 ata_dev_info(dev,
3107 "ATAPI: %s, %s, max %s%s%s%s\n",
3108 modelbuf, fwrevbuf,
3109 ata_mode_string(xfer_mask),
3110 cdb_intr_string, atapi_an_string,
3111 dma_dir_string);
3112 }
3113
3114 /* determine max_sectors */
3115 dev->max_sectors = ATA_MAX_SECTORS;
3116 if (dev->flags & ATA_DFLAG_LBA48)
3117 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3118
3119 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3120 200 sectors */
3121 if (ata_dev_knobble(dev)) {
3122 if (print_info)
3123 ata_dev_info(dev, "applying bridge limits\n");
3124 dev->udma_mask &= ATA_UDMA5;
3125 dev->max_sectors = ATA_MAX_SECTORS;
3126 }
3127
3128 if ((dev->class == ATA_DEV_ATAPI) &&
3129 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3130 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3131 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3132 }
3133
3134 if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3135 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3136 dev->max_sectors);
3137
3138 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3139 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3140 dev->max_sectors);
3141
3142 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3143 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3144
3145 if (ap->ops->dev_config)
3146 ap->ops->dev_config(dev);
3147
3148 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3149 /* Let the user know. We don't want to disallow opens for
3150 rescue purposes, or in case the vendor is just a blithering
3151 idiot. Do this after the dev_config call as some controllers
3152 with buggy firmware may want to avoid reporting false device
3153 bugs */
3154
3155 if (print_info) {
3156 ata_dev_warn(dev,
3157 "Drive reports diagnostics failure. This may indicate a drive\n");
3158 ata_dev_warn(dev,
3159 "fault or invalid emulation. Contact drive vendor for information.\n");
3160 }
3161 }
3162
3163 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3164 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3165 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3166 }
3167
3168 return 0;
3169
3170 err_out_nosup:
3171 return rc;
3172 }
3173
3174 /**
3175 * ata_cable_40wire - return 40 wire cable type
3176 * @ap: port
3177 *
3178 * Helper method for drivers which want to hardwire 40 wire cable
3179 * detection.
3180 */
3181
ata_cable_40wire(struct ata_port * ap)3182 int ata_cable_40wire(struct ata_port *ap)
3183 {
3184 return ATA_CBL_PATA40;
3185 }
3186 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3187
3188 /**
3189 * ata_cable_80wire - return 80 wire cable type
3190 * @ap: port
3191 *
3192 * Helper method for drivers which want to hardwire 80 wire cable
3193 * detection.
3194 */
3195
ata_cable_80wire(struct ata_port * ap)3196 int ata_cable_80wire(struct ata_port *ap)
3197 {
3198 return ATA_CBL_PATA80;
3199 }
3200 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3201
3202 /**
3203 * ata_cable_unknown - return unknown PATA cable.
3204 * @ap: port
3205 *
3206 * Helper method for drivers which have no PATA cable detection.
3207 */
3208
ata_cable_unknown(struct ata_port * ap)3209 int ata_cable_unknown(struct ata_port *ap)
3210 {
3211 return ATA_CBL_PATA_UNK;
3212 }
3213 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3214
3215 /**
3216 * ata_cable_ignore - return ignored PATA cable.
3217 * @ap: port
3218 *
3219 * Helper method for drivers which don't use cable type to limit
3220 * transfer mode.
3221 */
ata_cable_ignore(struct ata_port * ap)3222 int ata_cable_ignore(struct ata_port *ap)
3223 {
3224 return ATA_CBL_PATA_IGN;
3225 }
3226 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3227
3228 /**
3229 * ata_cable_sata - return SATA cable type
3230 * @ap: port
3231 *
3232 * Helper method for drivers which have SATA cables
3233 */
3234
ata_cable_sata(struct ata_port * ap)3235 int ata_cable_sata(struct ata_port *ap)
3236 {
3237 return ATA_CBL_SATA;
3238 }
3239 EXPORT_SYMBOL_GPL(ata_cable_sata);
3240
3241 /**
3242 * sata_print_link_status - Print SATA link status
3243 * @link: SATA link to printk link status about
3244 *
3245 * This function prints link speed and status of a SATA link.
3246 *
3247 * LOCKING:
3248 * None.
3249 */
sata_print_link_status(struct ata_link * link)3250 static void sata_print_link_status(struct ata_link *link)
3251 {
3252 u32 sstatus, scontrol, tmp;
3253
3254 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3255 return;
3256 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3257 return;
3258
3259 if (ata_phys_link_online(link)) {
3260 tmp = (sstatus >> 4) & 0xf;
3261 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3262 sata_spd_string(tmp), sstatus, scontrol);
3263 } else {
3264 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3265 sstatus, scontrol);
3266 }
3267 }
3268
3269 /**
3270 * ata_dev_pair - return other device on cable
3271 * @adev: device
3272 *
3273 * Obtain the other device on the same cable, or if none is
3274 * present NULL is returned
3275 */
3276
ata_dev_pair(struct ata_device * adev)3277 struct ata_device *ata_dev_pair(struct ata_device *adev)
3278 {
3279 struct ata_link *link = adev->link;
3280 struct ata_device *pair = &link->device[1 - adev->devno];
3281 if (!ata_dev_enabled(pair))
3282 return NULL;
3283 return pair;
3284 }
3285 EXPORT_SYMBOL_GPL(ata_dev_pair);
3286
3287 #ifdef CONFIG_ATA_ACPI
3288 /**
3289 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3290 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3291 * @cycle: cycle duration in ns
3292 *
3293 * Return matching xfer mode for @cycle. The returned mode is of
3294 * the transfer type specified by @xfer_shift. If @cycle is too
3295 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3296 * than the fastest known mode, the fasted mode is returned.
3297 *
3298 * LOCKING:
3299 * None.
3300 *
3301 * RETURNS:
3302 * Matching xfer_mode, 0xff if no match found.
3303 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3304 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3305 {
3306 u8 base_mode = 0xff, last_mode = 0xff;
3307 const struct ata_xfer_ent *ent;
3308 const struct ata_timing *t;
3309
3310 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3311 if (ent->shift == xfer_shift)
3312 base_mode = ent->base;
3313
3314 for (t = ata_timing_find_mode(base_mode);
3315 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3316 unsigned short this_cycle;
3317
3318 switch (xfer_shift) {
3319 case ATA_SHIFT_PIO:
3320 case ATA_SHIFT_MWDMA:
3321 this_cycle = t->cycle;
3322 break;
3323 case ATA_SHIFT_UDMA:
3324 this_cycle = t->udma;
3325 break;
3326 default:
3327 return 0xff;
3328 }
3329
3330 if (cycle > this_cycle)
3331 break;
3332
3333 last_mode = t->mode;
3334 }
3335
3336 return last_mode;
3337 }
3338 #endif
3339
3340 /**
3341 * ata_down_xfermask_limit - adjust dev xfer masks downward
3342 * @dev: Device to adjust xfer masks
3343 * @sel: ATA_DNXFER_* selector
3344 *
3345 * Adjust xfer masks of @dev downward. Note that this function
3346 * does not apply the change. Invoking ata_set_mode() afterwards
3347 * will apply the limit.
3348 *
3349 * LOCKING:
3350 * Inherited from caller.
3351 *
3352 * RETURNS:
3353 * 0 on success, negative errno on failure
3354 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3355 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3356 {
3357 char buf[32];
3358 unsigned int orig_mask, xfer_mask;
3359 unsigned int pio_mask, mwdma_mask, udma_mask;
3360 int quiet, highbit;
3361
3362 quiet = !!(sel & ATA_DNXFER_QUIET);
3363 sel &= ~ATA_DNXFER_QUIET;
3364
3365 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3366 dev->mwdma_mask,
3367 dev->udma_mask);
3368 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3369
3370 switch (sel) {
3371 case ATA_DNXFER_PIO:
3372 highbit = fls(pio_mask) - 1;
3373 pio_mask &= ~(1 << highbit);
3374 break;
3375
3376 case ATA_DNXFER_DMA:
3377 if (udma_mask) {
3378 highbit = fls(udma_mask) - 1;
3379 udma_mask &= ~(1 << highbit);
3380 if (!udma_mask)
3381 return -ENOENT;
3382 } else if (mwdma_mask) {
3383 highbit = fls(mwdma_mask) - 1;
3384 mwdma_mask &= ~(1 << highbit);
3385 if (!mwdma_mask)
3386 return -ENOENT;
3387 }
3388 break;
3389
3390 case ATA_DNXFER_40C:
3391 udma_mask &= ATA_UDMA_MASK_40C;
3392 break;
3393
3394 case ATA_DNXFER_FORCE_PIO0:
3395 pio_mask &= 1;
3396 fallthrough;
3397 case ATA_DNXFER_FORCE_PIO:
3398 mwdma_mask = 0;
3399 udma_mask = 0;
3400 break;
3401
3402 default:
3403 BUG();
3404 }
3405
3406 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3407
3408 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3409 return -ENOENT;
3410
3411 if (!quiet) {
3412 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3413 snprintf(buf, sizeof(buf), "%s:%s",
3414 ata_mode_string(xfer_mask),
3415 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3416 else
3417 snprintf(buf, sizeof(buf), "%s",
3418 ata_mode_string(xfer_mask));
3419
3420 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3421 }
3422
3423 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3424 &dev->udma_mask);
3425
3426 return 0;
3427 }
3428
ata_dev_set_mode(struct ata_device * dev)3429 static int ata_dev_set_mode(struct ata_device *dev)
3430 {
3431 struct ata_port *ap = dev->link->ap;
3432 struct ata_eh_context *ehc = &dev->link->eh_context;
3433 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3434 const char *dev_err_whine = "";
3435 int ign_dev_err = 0;
3436 unsigned int err_mask = 0;
3437 int rc;
3438
3439 dev->flags &= ~ATA_DFLAG_PIO;
3440 if (dev->xfer_shift == ATA_SHIFT_PIO)
3441 dev->flags |= ATA_DFLAG_PIO;
3442
3443 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3444 dev_err_whine = " (SET_XFERMODE skipped)";
3445 else {
3446 if (nosetxfer)
3447 ata_dev_warn(dev,
3448 "NOSETXFER but PATA detected - can't "
3449 "skip SETXFER, might malfunction\n");
3450 err_mask = ata_dev_set_xfermode(dev);
3451 }
3452
3453 if (err_mask & ~AC_ERR_DEV)
3454 goto fail;
3455
3456 /* revalidate */
3457 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3458 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3459 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3460 if (rc)
3461 return rc;
3462
3463 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3464 /* Old CFA may refuse this command, which is just fine */
3465 if (ata_id_is_cfa(dev->id))
3466 ign_dev_err = 1;
3467 /* Catch several broken garbage emulations plus some pre
3468 ATA devices */
3469 if (ata_id_major_version(dev->id) == 0 &&
3470 dev->pio_mode <= XFER_PIO_2)
3471 ign_dev_err = 1;
3472 /* Some very old devices and some bad newer ones fail
3473 any kind of SET_XFERMODE request but support PIO0-2
3474 timings and no IORDY */
3475 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3476 ign_dev_err = 1;
3477 }
3478 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3479 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3480 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3481 dev->dma_mode == XFER_MW_DMA_0 &&
3482 (dev->id[63] >> 8) & 1)
3483 ign_dev_err = 1;
3484
3485 /* if the device is actually configured correctly, ignore dev err */
3486 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3487 ign_dev_err = 1;
3488
3489 if (err_mask & AC_ERR_DEV) {
3490 if (!ign_dev_err)
3491 goto fail;
3492 else
3493 dev_err_whine = " (device error ignored)";
3494 }
3495
3496 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3497 dev->xfer_shift, (int)dev->xfer_mode);
3498
3499 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3500 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3501 ata_dev_info(dev, "configured for %s%s\n",
3502 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3503 dev_err_whine);
3504
3505 return 0;
3506
3507 fail:
3508 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3509 return -EIO;
3510 }
3511
3512 /**
3513 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3514 * @link: link on which timings will be programmed
3515 * @r_failed_dev: out parameter for failed device
3516 *
3517 * Standard implementation of the function used to tune and set
3518 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3519 * ata_dev_set_mode() fails, pointer to the failing device is
3520 * returned in @r_failed_dev.
3521 *
3522 * LOCKING:
3523 * PCI/etc. bus probe sem.
3524 *
3525 * RETURNS:
3526 * 0 on success, negative errno otherwise
3527 */
3528
ata_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3529 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3530 {
3531 struct ata_port *ap = link->ap;
3532 struct ata_device *dev;
3533 int rc = 0, used_dma = 0, found = 0;
3534
3535 /* step 1: calculate xfer_mask */
3536 ata_for_each_dev(dev, link, ENABLED) {
3537 unsigned int pio_mask, dma_mask;
3538 unsigned int mode_mask;
3539
3540 mode_mask = ATA_DMA_MASK_ATA;
3541 if (dev->class == ATA_DEV_ATAPI)
3542 mode_mask = ATA_DMA_MASK_ATAPI;
3543 else if (ata_id_is_cfa(dev->id))
3544 mode_mask = ATA_DMA_MASK_CFA;
3545
3546 ata_dev_xfermask(dev);
3547 ata_force_xfermask(dev);
3548
3549 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3550
3551 if (libata_dma_mask & mode_mask)
3552 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3553 dev->udma_mask);
3554 else
3555 dma_mask = 0;
3556
3557 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3558 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3559
3560 found = 1;
3561 if (ata_dma_enabled(dev))
3562 used_dma = 1;
3563 }
3564 if (!found)
3565 goto out;
3566
3567 /* step 2: always set host PIO timings */
3568 ata_for_each_dev(dev, link, ENABLED) {
3569 if (dev->pio_mode == 0xff) {
3570 ata_dev_warn(dev, "no PIO support\n");
3571 rc = -EINVAL;
3572 goto out;
3573 }
3574
3575 dev->xfer_mode = dev->pio_mode;
3576 dev->xfer_shift = ATA_SHIFT_PIO;
3577 if (ap->ops->set_piomode)
3578 ap->ops->set_piomode(ap, dev);
3579 }
3580
3581 /* step 3: set host DMA timings */
3582 ata_for_each_dev(dev, link, ENABLED) {
3583 if (!ata_dma_enabled(dev))
3584 continue;
3585
3586 dev->xfer_mode = dev->dma_mode;
3587 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3588 if (ap->ops->set_dmamode)
3589 ap->ops->set_dmamode(ap, dev);
3590 }
3591
3592 /* step 4: update devices' xfer mode */
3593 ata_for_each_dev(dev, link, ENABLED) {
3594 rc = ata_dev_set_mode(dev);
3595 if (rc)
3596 goto out;
3597 }
3598
3599 /* Record simplex status. If we selected DMA then the other
3600 * host channels are not permitted to do so.
3601 */
3602 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3603 ap->host->simplex_claimed = ap;
3604
3605 out:
3606 if (rc)
3607 *r_failed_dev = dev;
3608 return rc;
3609 }
3610 EXPORT_SYMBOL_GPL(ata_set_mode);
3611
3612 /**
3613 * ata_wait_ready - wait for link to become ready
3614 * @link: link to be waited on
3615 * @deadline: deadline jiffies for the operation
3616 * @check_ready: callback to check link readiness
3617 *
3618 * Wait for @link to become ready. @check_ready should return
3619 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3620 * link doesn't seem to be occupied, other errno for other error
3621 * conditions.
3622 *
3623 * Transient -ENODEV conditions are allowed for
3624 * ATA_TMOUT_FF_WAIT.
3625 *
3626 * LOCKING:
3627 * EH context.
3628 *
3629 * RETURNS:
3630 * 0 if @link is ready before @deadline; otherwise, -errno.
3631 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3632 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3633 int (*check_ready)(struct ata_link *link))
3634 {
3635 unsigned long start = jiffies;
3636 unsigned long nodev_deadline;
3637 int warned = 0;
3638
3639 /* choose which 0xff timeout to use, read comment in libata.h */
3640 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3641 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3642 else
3643 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3644
3645 /* Slave readiness can't be tested separately from master. On
3646 * M/S emulation configuration, this function should be called
3647 * only on the master and it will handle both master and slave.
3648 */
3649 WARN_ON(link == link->ap->slave_link);
3650
3651 if (time_after(nodev_deadline, deadline))
3652 nodev_deadline = deadline;
3653
3654 while (1) {
3655 unsigned long now = jiffies;
3656 int ready, tmp;
3657
3658 ready = tmp = check_ready(link);
3659 if (ready > 0)
3660 return 0;
3661
3662 /*
3663 * -ENODEV could be transient. Ignore -ENODEV if link
3664 * is online. Also, some SATA devices take a long
3665 * time to clear 0xff after reset. Wait for
3666 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3667 * offline.
3668 *
3669 * Note that some PATA controllers (pata_ali) explode
3670 * if status register is read more than once when
3671 * there's no device attached.
3672 */
3673 if (ready == -ENODEV) {
3674 if (ata_link_online(link))
3675 ready = 0;
3676 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3677 !ata_link_offline(link) &&
3678 time_before(now, nodev_deadline))
3679 ready = 0;
3680 }
3681
3682 if (ready)
3683 return ready;
3684 if (time_after(now, deadline))
3685 return -EBUSY;
3686
3687 if (!warned && time_after(now, start + 5 * HZ) &&
3688 (deadline - now > 3 * HZ)) {
3689 ata_link_warn(link,
3690 "link is slow to respond, please be patient "
3691 "(ready=%d)\n", tmp);
3692 warned = 1;
3693 }
3694
3695 ata_msleep(link->ap, 50);
3696 }
3697 }
3698
3699 /**
3700 * ata_wait_after_reset - wait for link to become ready after reset
3701 * @link: link to be waited on
3702 * @deadline: deadline jiffies for the operation
3703 * @check_ready: callback to check link readiness
3704 *
3705 * Wait for @link to become ready after reset.
3706 *
3707 * LOCKING:
3708 * EH context.
3709 *
3710 * RETURNS:
3711 * 0 if @link is ready before @deadline; otherwise, -errno.
3712 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3713 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3714 int (*check_ready)(struct ata_link *link))
3715 {
3716 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3717
3718 return ata_wait_ready(link, deadline, check_ready);
3719 }
3720 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3721
3722 /**
3723 * ata_std_prereset - prepare for reset
3724 * @link: ATA link to be reset
3725 * @deadline: deadline jiffies for the operation
3726 *
3727 * @link is about to be reset. Initialize it. Failure from
3728 * prereset makes libata abort whole reset sequence and give up
3729 * that port, so prereset should be best-effort. It does its
3730 * best to prepare for reset sequence but if things go wrong, it
3731 * should just whine, not fail.
3732 *
3733 * LOCKING:
3734 * Kernel thread context (may sleep)
3735 *
3736 * RETURNS:
3737 * Always 0.
3738 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3739 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3740 {
3741 struct ata_port *ap = link->ap;
3742 struct ata_eh_context *ehc = &link->eh_context;
3743 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3744 int rc;
3745
3746 /* if we're about to do hardreset, nothing more to do */
3747 if (ehc->i.action & ATA_EH_HARDRESET)
3748 return 0;
3749
3750 /* if SATA, resume link */
3751 if (ap->flags & ATA_FLAG_SATA) {
3752 rc = sata_link_resume(link, timing, deadline);
3753 /* whine about phy resume failure but proceed */
3754 if (rc && rc != -EOPNOTSUPP)
3755 ata_link_warn(link,
3756 "failed to resume link for reset (errno=%d)\n",
3757 rc);
3758 }
3759
3760 /* no point in trying softreset on offline link */
3761 if (ata_phys_link_offline(link))
3762 ehc->i.action &= ~ATA_EH_SOFTRESET;
3763
3764 return 0;
3765 }
3766 EXPORT_SYMBOL_GPL(ata_std_prereset);
3767
3768 /**
3769 * ata_std_postreset - standard postreset callback
3770 * @link: the target ata_link
3771 * @classes: classes of attached devices
3772 *
3773 * This function is invoked after a successful reset. Note that
3774 * the device might have been reset more than once using
3775 * different reset methods before postreset is invoked.
3776 *
3777 * LOCKING:
3778 * Kernel thread context (may sleep)
3779 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3780 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3781 {
3782 u32 serror;
3783
3784 /* reset complete, clear SError */
3785 if (!sata_scr_read(link, SCR_ERROR, &serror))
3786 sata_scr_write(link, SCR_ERROR, serror);
3787
3788 /* print link status */
3789 sata_print_link_status(link);
3790 }
3791 EXPORT_SYMBOL_GPL(ata_std_postreset);
3792
3793 /**
3794 * ata_dev_same_device - Determine whether new ID matches configured device
3795 * @dev: device to compare against
3796 * @new_class: class of the new device
3797 * @new_id: IDENTIFY page of the new device
3798 *
3799 * Compare @new_class and @new_id against @dev and determine
3800 * whether @dev is the device indicated by @new_class and
3801 * @new_id.
3802 *
3803 * LOCKING:
3804 * None.
3805 *
3806 * RETURNS:
3807 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3808 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3809 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3810 const u16 *new_id)
3811 {
3812 const u16 *old_id = dev->id;
3813 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3814 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3815
3816 if (dev->class != new_class) {
3817 ata_dev_info(dev, "class mismatch %d != %d\n",
3818 dev->class, new_class);
3819 return 0;
3820 }
3821
3822 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3823 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3824 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3825 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3826
3827 if (strcmp(model[0], model[1])) {
3828 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3829 model[0], model[1]);
3830 return 0;
3831 }
3832
3833 if (strcmp(serial[0], serial[1])) {
3834 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3835 serial[0], serial[1]);
3836 return 0;
3837 }
3838
3839 return 1;
3840 }
3841
3842 /**
3843 * ata_dev_reread_id - Re-read IDENTIFY data
3844 * @dev: target ATA device
3845 * @readid_flags: read ID flags
3846 *
3847 * Re-read IDENTIFY page and make sure @dev is still attached to
3848 * the port.
3849 *
3850 * LOCKING:
3851 * Kernel thread context (may sleep)
3852 *
3853 * RETURNS:
3854 * 0 on success, negative errno otherwise
3855 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3856 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3857 {
3858 unsigned int class = dev->class;
3859 u16 *id = (void *)dev->sector_buf;
3860 int rc;
3861
3862 /* read ID data */
3863 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3864 if (rc)
3865 return rc;
3866
3867 /* is the device still there? */
3868 if (!ata_dev_same_device(dev, class, id))
3869 return -ENODEV;
3870
3871 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3872 return 0;
3873 }
3874
3875 /**
3876 * ata_dev_revalidate - Revalidate ATA device
3877 * @dev: device to revalidate
3878 * @new_class: new class code
3879 * @readid_flags: read ID flags
3880 *
3881 * Re-read IDENTIFY page, make sure @dev is still attached to the
3882 * port and reconfigure it according to the new IDENTIFY page.
3883 *
3884 * LOCKING:
3885 * Kernel thread context (may sleep)
3886 *
3887 * RETURNS:
3888 * 0 on success, negative errno otherwise
3889 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3890 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3891 unsigned int readid_flags)
3892 {
3893 u64 n_sectors = dev->n_sectors;
3894 u64 n_native_sectors = dev->n_native_sectors;
3895 int rc;
3896
3897 if (!ata_dev_enabled(dev))
3898 return -ENODEV;
3899
3900 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3901 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3902 ata_dev_info(dev, "class mismatch %u != %u\n",
3903 dev->class, new_class);
3904 rc = -ENODEV;
3905 goto fail;
3906 }
3907
3908 /* re-read ID */
3909 rc = ata_dev_reread_id(dev, readid_flags);
3910 if (rc)
3911 goto fail;
3912
3913 /* configure device according to the new ID */
3914 rc = ata_dev_configure(dev);
3915 if (rc)
3916 goto fail;
3917
3918 /* verify n_sectors hasn't changed */
3919 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3920 dev->n_sectors == n_sectors)
3921 return 0;
3922
3923 /* n_sectors has changed */
3924 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3925 (unsigned long long)n_sectors,
3926 (unsigned long long)dev->n_sectors);
3927
3928 /*
3929 * Something could have caused HPA to be unlocked
3930 * involuntarily. If n_native_sectors hasn't changed and the
3931 * new size matches it, keep the device.
3932 */
3933 if (dev->n_native_sectors == n_native_sectors &&
3934 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3935 ata_dev_warn(dev,
3936 "new n_sectors matches native, probably "
3937 "late HPA unlock, n_sectors updated\n");
3938 /* use the larger n_sectors */
3939 return 0;
3940 }
3941
3942 /*
3943 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3944 * unlocking HPA in those cases.
3945 *
3946 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3947 */
3948 if (dev->n_native_sectors == n_native_sectors &&
3949 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3950 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3951 ata_dev_warn(dev,
3952 "old n_sectors matches native, probably "
3953 "late HPA lock, will try to unlock HPA\n");
3954 /* try unlocking HPA */
3955 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3956 rc = -EIO;
3957 } else
3958 rc = -ENODEV;
3959
3960 /* restore original n_[native_]sectors and fail */
3961 dev->n_native_sectors = n_native_sectors;
3962 dev->n_sectors = n_sectors;
3963 fail:
3964 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3965 return rc;
3966 }
3967
3968 static const char * const ata_quirk_names[] = {
3969 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3970 [__ATA_QUIRK_NODMA] = "nodma",
3971 [__ATA_QUIRK_NONCQ] = "noncq",
3972 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3973 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3974 [__ATA_QUIRK_DISABLE] = "disable",
3975 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
3976 [__ATA_QUIRK_IVB] = "ivb",
3977 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3978 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3979 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3980 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3981 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3982 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3983 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3984 [__ATA_QUIRK_DUMP_ID] = "dumpid",
3985 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3986 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3987 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3988 [__ATA_QUIRK_NOLPM] = "nolpm",
3989 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
3990 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
3991 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
3992 [__ATA_QUIRK_NOTRIM] = "notrim",
3993 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
3994 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
3995 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
3996 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
3997 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
3998 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
3999 [__ATA_QUIRK_NO_FUA] = "nofua",
4000 };
4001
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)4002 static void ata_dev_print_quirks(const struct ata_device *dev,
4003 const char *model, const char *rev,
4004 unsigned int quirks)
4005 {
4006 struct ata_eh_context *ehc = &dev->link->eh_context;
4007 int n = 0, i;
4008 size_t sz;
4009 char *str;
4010
4011 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4012 return;
4013
4014 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4015
4016 if (!quirks)
4017 return;
4018
4019 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4020 str = kmalloc(sz, GFP_KERNEL);
4021 if (!str)
4022 return;
4023
4024 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4025 model, rev);
4026
4027 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4028 if (quirks & (1U << i))
4029 n += snprintf(str + n, sz - n,
4030 " %s", ata_quirk_names[i]);
4031 }
4032
4033 ata_dev_warn(dev, "%s\n", str);
4034
4035 kfree(str);
4036 }
4037
4038 struct ata_dev_quirks_entry {
4039 const char *model_num;
4040 const char *model_rev;
4041 unsigned int quirks;
4042 };
4043
4044 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4045 /* Devices with DMA related problems under Linux */
4046 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
4047 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
4048 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
4049 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
4050 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
4051 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
4052 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
4053 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
4054 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
4055 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
4056 { "CRD-84", NULL, ATA_QUIRK_NODMA },
4057 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
4058 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
4059 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
4060 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4061 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4062 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4063 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4064 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4065 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4066 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4067 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4068 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4069 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4070 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4071 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4072 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4073 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4074 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4075 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4076 /* Odd clown on sil3726/4726 PMPs */
4077 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
4078 /* Similar story with ASMedia 1092 */
4079 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4080
4081 /* Weird ATAPI devices */
4082 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
4083 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4084 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4085 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4086
4087 /*
4088 * Causes silent data corruption with higher max sects.
4089 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4090 */
4091 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4092
4093 /*
4094 * These devices time out with higher max sects.
4095 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4096 */
4097 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4098 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4099
4100 /* Devices we expect to fail diagnostics */
4101
4102 /* Devices where NCQ should be avoided */
4103 /* NCQ is slow */
4104 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4105 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4106 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4107 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4108 /* NCQ is broken */
4109 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4110 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4111 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4112 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4113 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4114
4115 /* Seagate NCQ + FLUSH CACHE firmware bug */
4116 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4117 ATA_QUIRK_FIRMWARE_WARN },
4118
4119 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4120 ATA_QUIRK_FIRMWARE_WARN },
4121
4122 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4123 ATA_QUIRK_FIRMWARE_WARN },
4124
4125 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4126 ATA_QUIRK_FIRMWARE_WARN },
4127
4128 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4129 the ST disks also have LPM issues */
4130 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4131 ATA_QUIRK_NOLPM },
4132 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4133
4134 /* Blacklist entries taken from Silicon Image 3124/3132
4135 Windows driver .inf file - also several Linux problem reports */
4136 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4137 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4138 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4139
4140 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4141 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4142
4143 /* Sandisk SD7/8/9s lock up hard on large trims */
4144 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4145
4146 /* devices which puke on READ_NATIVE_MAX */
4147 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4148 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4149 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4150 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4151
4152 /* this one allows HPA unlocking but fails IOs on the area */
4153 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4154
4155 /* Devices which report 1 sector over size HPA */
4156 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4157 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4158 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4159
4160 /* Devices which get the IVB wrong */
4161 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4162 /* Maybe we should just add all TSSTcorp devices... */
4163 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4164
4165 /* Devices that do not need bridging limits applied */
4166 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4167 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4168
4169 /* Devices which aren't very happy with higher link speeds */
4170 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4171 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4172
4173 /*
4174 * Devices which choke on SETXFER. Applies only if both the
4175 * device and controller are SATA.
4176 */
4177 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4178 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4179 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4180 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4181 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4182
4183 /* These specific Pioneer models have LPM issues */
4184 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4185 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4186
4187 /* Crucial devices with broken LPM support */
4188 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4189
4190 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4191 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4192 ATA_QUIRK_ZERO_AFTER_TRIM |
4193 ATA_QUIRK_NOLPM },
4194 /* 512GB MX100 with newer firmware has only LPM issues */
4195 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4196 ATA_QUIRK_NOLPM },
4197
4198 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4199 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4200 ATA_QUIRK_ZERO_AFTER_TRIM |
4201 ATA_QUIRK_NOLPM },
4202 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4203 ATA_QUIRK_ZERO_AFTER_TRIM |
4204 ATA_QUIRK_NOLPM },
4205
4206 /* AMD Radeon devices with broken LPM support */
4207 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4208
4209 /* Apacer models with LPM issues */
4210 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4211
4212 /* These specific Samsung models/firmware-revs do not handle LPM well */
4213 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4214 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4215 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4216 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4217
4218 /* devices that don't properly handle queued TRIM commands */
4219 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4220 ATA_QUIRK_ZERO_AFTER_TRIM },
4221 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4222 ATA_QUIRK_ZERO_AFTER_TRIM },
4223 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4224 ATA_QUIRK_ZERO_AFTER_TRIM },
4225 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4226 ATA_QUIRK_ZERO_AFTER_TRIM, },
4227 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4228 ATA_QUIRK_ZERO_AFTER_TRIM },
4229 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4230 ATA_QUIRK_ZERO_AFTER_TRIM },
4231 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4232 ATA_QUIRK_ZERO_AFTER_TRIM },
4233 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4234 ATA_QUIRK_NO_DMA_LOG |
4235 ATA_QUIRK_ZERO_AFTER_TRIM },
4236 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4237 ATA_QUIRK_ZERO_AFTER_TRIM },
4238 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4239 ATA_QUIRK_ZERO_AFTER_TRIM },
4240 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4241 ATA_QUIRK_ZERO_AFTER_TRIM |
4242 ATA_QUIRK_NO_NCQ_ON_ATI |
4243 ATA_QUIRK_NO_LPM_ON_ATI },
4244 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4245 ATA_QUIRK_ZERO_AFTER_TRIM |
4246 ATA_QUIRK_NO_NCQ_ON_ATI |
4247 ATA_QUIRK_NO_LPM_ON_ATI },
4248 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4249 ATA_QUIRK_ZERO_AFTER_TRIM |
4250 ATA_QUIRK_NO_NCQ_ON_ATI |
4251 ATA_QUIRK_NO_LPM_ON_ATI },
4252 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4253 ATA_QUIRK_ZERO_AFTER_TRIM },
4254
4255 /* devices that don't properly handle TRIM commands */
4256 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4257 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4258
4259 /*
4260 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4261 * (Return Zero After Trim) flags in the ATA Command Set are
4262 * unreliable in the sense that they only define what happens if
4263 * the device successfully executed the DSM TRIM command. TRIM
4264 * is only advisory, however, and the device is free to silently
4265 * ignore all or parts of the request.
4266 *
4267 * Whitelist drives that are known to reliably return zeroes
4268 * after TRIM.
4269 */
4270
4271 /*
4272 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4273 * that model before whitelisting all other intel SSDs.
4274 */
4275 { "INTEL*SSDSC2MH*", NULL, 0 },
4276
4277 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4278 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4279 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4280 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4281 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4282 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4283 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4284 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4285
4286 /*
4287 * Some WD SATA-I drives spin up and down erratically when the link
4288 * is put into the slumber mode. We don't have full list of the
4289 * affected devices. Disable LPM if the device matches one of the
4290 * known prefixes and is SATA-1. As a side effect LPM partial is
4291 * lost too.
4292 *
4293 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4294 */
4295 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4296 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4297 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4298 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4299 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4300 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4301 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4302
4303 /*
4304 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4305 * log page is accessed. Ensure we never ask for this log page with
4306 * these devices.
4307 */
4308 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4309
4310 /* Buggy FUA */
4311 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4312 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4313 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4314 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4315
4316 /* End Marker */
4317 { }
4318 };
4319
ata_dev_quirks(const struct ata_device * dev)4320 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4321 {
4322 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4323 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4324 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4325
4326 /* dev->quirks is an unsigned int. */
4327 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4328
4329 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4330 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4331
4332 while (ad->model_num) {
4333 if (glob_match(ad->model_num, model_num) &&
4334 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4335 ata_dev_print_quirks(dev, model_num, model_rev,
4336 ad->quirks);
4337 return ad->quirks;
4338 }
4339 ad++;
4340 }
4341 return 0;
4342 }
4343
ata_dev_nodma(const struct ata_device * dev)4344 static bool ata_dev_nodma(const struct ata_device *dev)
4345 {
4346 /*
4347 * We do not support polling DMA. Deny DMA for those ATAPI devices
4348 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4349 * the HSM_ST_LAST state.
4350 */
4351 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4352 (dev->flags & ATA_DFLAG_CDB_INTR))
4353 return true;
4354 return dev->quirks & ATA_QUIRK_NODMA;
4355 }
4356
4357 /**
4358 * ata_is_40wire - check drive side detection
4359 * @dev: device
4360 *
4361 * Perform drive side detection decoding, allowing for device vendors
4362 * who can't follow the documentation.
4363 */
4364
ata_is_40wire(struct ata_device * dev)4365 static int ata_is_40wire(struct ata_device *dev)
4366 {
4367 if (dev->quirks & ATA_QUIRK_IVB)
4368 return ata_drive_40wire_relaxed(dev->id);
4369 return ata_drive_40wire(dev->id);
4370 }
4371
4372 /**
4373 * cable_is_40wire - 40/80/SATA decider
4374 * @ap: port to consider
4375 *
4376 * This function encapsulates the policy for speed management
4377 * in one place. At the moment we don't cache the result but
4378 * there is a good case for setting ap->cbl to the result when
4379 * we are called with unknown cables (and figuring out if it
4380 * impacts hotplug at all).
4381 *
4382 * Return 1 if the cable appears to be 40 wire.
4383 */
4384
cable_is_40wire(struct ata_port * ap)4385 static int cable_is_40wire(struct ata_port *ap)
4386 {
4387 struct ata_link *link;
4388 struct ata_device *dev;
4389
4390 /* If the controller thinks we are 40 wire, we are. */
4391 if (ap->cbl == ATA_CBL_PATA40)
4392 return 1;
4393
4394 /* If the controller thinks we are 80 wire, we are. */
4395 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4396 return 0;
4397
4398 /* If the system is known to be 40 wire short cable (eg
4399 * laptop), then we allow 80 wire modes even if the drive
4400 * isn't sure.
4401 */
4402 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4403 return 0;
4404
4405 /* If the controller doesn't know, we scan.
4406 *
4407 * Note: We look for all 40 wire detects at this point. Any
4408 * 80 wire detect is taken to be 80 wire cable because
4409 * - in many setups only the one drive (slave if present) will
4410 * give a valid detect
4411 * - if you have a non detect capable drive you don't want it
4412 * to colour the choice
4413 */
4414 ata_for_each_link(link, ap, EDGE) {
4415 ata_for_each_dev(dev, link, ENABLED) {
4416 if (!ata_is_40wire(dev))
4417 return 0;
4418 }
4419 }
4420 return 1;
4421 }
4422
4423 /**
4424 * ata_dev_xfermask - Compute supported xfermask of the given device
4425 * @dev: Device to compute xfermask for
4426 *
4427 * Compute supported xfermask of @dev and store it in
4428 * dev->*_mask. This function is responsible for applying all
4429 * known limits including host controller limits, device quirks, etc...
4430 *
4431 * LOCKING:
4432 * None.
4433 */
ata_dev_xfermask(struct ata_device * dev)4434 static void ata_dev_xfermask(struct ata_device *dev)
4435 {
4436 struct ata_link *link = dev->link;
4437 struct ata_port *ap = link->ap;
4438 struct ata_host *host = ap->host;
4439 unsigned int xfer_mask;
4440
4441 /* controller modes available */
4442 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4443 ap->mwdma_mask, ap->udma_mask);
4444
4445 /* drive modes available */
4446 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4447 dev->mwdma_mask, dev->udma_mask);
4448 xfer_mask &= ata_id_xfermask(dev->id);
4449
4450 /*
4451 * CFA Advanced TrueIDE timings are not allowed on a shared
4452 * cable
4453 */
4454 if (ata_dev_pair(dev)) {
4455 /* No PIO5 or PIO6 */
4456 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4457 /* No MWDMA3 or MWDMA 4 */
4458 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4459 }
4460
4461 if (ata_dev_nodma(dev)) {
4462 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4463 ata_dev_warn(dev,
4464 "device does not support DMA, disabling DMA\n");
4465 }
4466
4467 if ((host->flags & ATA_HOST_SIMPLEX) &&
4468 host->simplex_claimed && host->simplex_claimed != ap) {
4469 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4470 ata_dev_warn(dev,
4471 "simplex DMA is claimed by other device, disabling DMA\n");
4472 }
4473
4474 if (ap->flags & ATA_FLAG_NO_IORDY)
4475 xfer_mask &= ata_pio_mask_no_iordy(dev);
4476
4477 if (ap->ops->mode_filter)
4478 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4479
4480 /* Apply cable rule here. Don't apply it early because when
4481 * we handle hot plug the cable type can itself change.
4482 * Check this last so that we know if the transfer rate was
4483 * solely limited by the cable.
4484 * Unknown or 80 wire cables reported host side are checked
4485 * drive side as well. Cases where we know a 40wire cable
4486 * is used safely for 80 are not checked here.
4487 */
4488 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4489 /* UDMA/44 or higher would be available */
4490 if (cable_is_40wire(ap)) {
4491 ata_dev_warn(dev,
4492 "limited to UDMA/33 due to 40-wire cable\n");
4493 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4494 }
4495
4496 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4497 &dev->mwdma_mask, &dev->udma_mask);
4498 }
4499
4500 /**
4501 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4502 * @dev: Device to which command will be sent
4503 *
4504 * Issue SET FEATURES - XFER MODE command to device @dev
4505 * on port @ap.
4506 *
4507 * LOCKING:
4508 * PCI/etc. bus probe sem.
4509 *
4510 * RETURNS:
4511 * 0 on success, AC_ERR_* mask otherwise.
4512 */
4513
ata_dev_set_xfermode(struct ata_device * dev)4514 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4515 {
4516 struct ata_taskfile tf;
4517
4518 /* set up set-features taskfile */
4519 ata_dev_dbg(dev, "set features - xfer mode\n");
4520
4521 /* Some controllers and ATAPI devices show flaky interrupt
4522 * behavior after setting xfer mode. Use polling instead.
4523 */
4524 ata_tf_init(dev, &tf);
4525 tf.command = ATA_CMD_SET_FEATURES;
4526 tf.feature = SETFEATURES_XFER;
4527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4528 tf.protocol = ATA_PROT_NODATA;
4529 /* If we are using IORDY we must send the mode setting command */
4530 if (ata_pio_need_iordy(dev))
4531 tf.nsect = dev->xfer_mode;
4532 /* If the device has IORDY and the controller does not - turn it off */
4533 else if (ata_id_has_iordy(dev->id))
4534 tf.nsect = 0x01;
4535 else /* In the ancient relic department - skip all of this */
4536 return 0;
4537
4538 /*
4539 * On some disks, this command causes spin-up, so we need longer
4540 * timeout.
4541 */
4542 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4543 }
4544
4545 /**
4546 * ata_dev_set_feature - Issue SET FEATURES
4547 * @dev: Device to which command will be sent
4548 * @subcmd: The SET FEATURES subcommand to be sent
4549 * @action: The sector count represents a subcommand specific action
4550 *
4551 * Issue SET FEATURES command to device @dev on port @ap with sector count
4552 *
4553 * LOCKING:
4554 * PCI/etc. bus probe sem.
4555 *
4556 * RETURNS:
4557 * 0 on success, AC_ERR_* mask otherwise.
4558 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4559 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4560 {
4561 struct ata_taskfile tf;
4562 unsigned int timeout = 0;
4563
4564 /* set up set-features taskfile */
4565 ata_dev_dbg(dev, "set features\n");
4566
4567 ata_tf_init(dev, &tf);
4568 tf.command = ATA_CMD_SET_FEATURES;
4569 tf.feature = subcmd;
4570 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571 tf.protocol = ATA_PROT_NODATA;
4572 tf.nsect = action;
4573
4574 if (subcmd == SETFEATURES_SPINUP)
4575 timeout = ata_probe_timeout ?
4576 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4577
4578 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4579 }
4580 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4581
4582 /**
4583 * ata_dev_init_params - Issue INIT DEV PARAMS command
4584 * @dev: Device to which command will be sent
4585 * @heads: Number of heads (taskfile parameter)
4586 * @sectors: Number of sectors (taskfile parameter)
4587 *
4588 * LOCKING:
4589 * Kernel thread context (may sleep)
4590 *
4591 * RETURNS:
4592 * 0 on success, AC_ERR_* mask otherwise.
4593 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4594 static unsigned int ata_dev_init_params(struct ata_device *dev,
4595 u16 heads, u16 sectors)
4596 {
4597 struct ata_taskfile tf;
4598 unsigned int err_mask;
4599
4600 /* Number of sectors per track 1-255. Number of heads 1-16 */
4601 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4602 return AC_ERR_INVALID;
4603
4604 /* set up init dev params taskfile */
4605 ata_dev_dbg(dev, "init dev params \n");
4606
4607 ata_tf_init(dev, &tf);
4608 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4609 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4610 tf.protocol = ATA_PROT_NODATA;
4611 tf.nsect = sectors;
4612 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4613
4614 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4615 /* A clean abort indicates an original or just out of spec drive
4616 and we should continue as we issue the setup based on the
4617 drive reported working geometry */
4618 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4619 err_mask = 0;
4620
4621 return err_mask;
4622 }
4623
4624 /**
4625 * atapi_check_dma - Check whether ATAPI DMA can be supported
4626 * @qc: Metadata associated with taskfile to check
4627 *
4628 * Allow low-level driver to filter ATA PACKET commands, returning
4629 * a status indicating whether or not it is OK to use DMA for the
4630 * supplied PACKET command.
4631 *
4632 * LOCKING:
4633 * spin_lock_irqsave(host lock)
4634 *
4635 * RETURNS: 0 when ATAPI DMA can be used
4636 * nonzero otherwise
4637 */
atapi_check_dma(struct ata_queued_cmd * qc)4638 int atapi_check_dma(struct ata_queued_cmd *qc)
4639 {
4640 struct ata_port *ap = qc->ap;
4641
4642 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4643 * few ATAPI devices choke on such DMA requests.
4644 */
4645 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4646 unlikely(qc->nbytes & 15))
4647 return -EOPNOTSUPP;
4648
4649 if (ap->ops->check_atapi_dma)
4650 return ap->ops->check_atapi_dma(qc);
4651
4652 return 0;
4653 }
4654
4655 /**
4656 * ata_std_qc_defer - Check whether a qc needs to be deferred
4657 * @qc: ATA command in question
4658 *
4659 * Non-NCQ commands cannot run with any other command, NCQ or
4660 * not. As upper layer only knows the queue depth, we are
4661 * responsible for maintaining exclusion. This function checks
4662 * whether a new command @qc can be issued.
4663 *
4664 * LOCKING:
4665 * spin_lock_irqsave(host lock)
4666 *
4667 * RETURNS:
4668 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4669 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4670 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4671 {
4672 struct ata_link *link = qc->dev->link;
4673
4674 if (ata_is_ncq(qc->tf.protocol)) {
4675 if (!ata_tag_valid(link->active_tag))
4676 return 0;
4677 } else {
4678 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4679 return 0;
4680 }
4681
4682 return ATA_DEFER_LINK;
4683 }
4684 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4685
4686 /**
4687 * ata_sg_init - Associate command with scatter-gather table.
4688 * @qc: Command to be associated
4689 * @sg: Scatter-gather table.
4690 * @n_elem: Number of elements in s/g table.
4691 *
4692 * Initialize the data-related elements of queued_cmd @qc
4693 * to point to a scatter-gather table @sg, containing @n_elem
4694 * elements.
4695 *
4696 * LOCKING:
4697 * spin_lock_irqsave(host lock)
4698 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4699 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4700 unsigned int n_elem)
4701 {
4702 qc->sg = sg;
4703 qc->n_elem = n_elem;
4704 qc->cursg = qc->sg;
4705 }
4706
4707 #ifdef CONFIG_HAS_DMA
4708
4709 /**
4710 * ata_sg_clean - Unmap DMA memory associated with command
4711 * @qc: Command containing DMA memory to be released
4712 *
4713 * Unmap all mapped DMA memory associated with this command.
4714 *
4715 * LOCKING:
4716 * spin_lock_irqsave(host lock)
4717 */
ata_sg_clean(struct ata_queued_cmd * qc)4718 static void ata_sg_clean(struct ata_queued_cmd *qc)
4719 {
4720 struct ata_port *ap = qc->ap;
4721 struct scatterlist *sg = qc->sg;
4722 int dir = qc->dma_dir;
4723
4724 WARN_ON_ONCE(sg == NULL);
4725
4726 if (qc->n_elem)
4727 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4728
4729 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4730 qc->sg = NULL;
4731 }
4732
4733 /**
4734 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4735 * @qc: Command with scatter-gather table to be mapped.
4736 *
4737 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4738 *
4739 * LOCKING:
4740 * spin_lock_irqsave(host lock)
4741 *
4742 * RETURNS:
4743 * Zero on success, negative on error.
4744 *
4745 */
ata_sg_setup(struct ata_queued_cmd * qc)4746 static int ata_sg_setup(struct ata_queued_cmd *qc)
4747 {
4748 struct ata_port *ap = qc->ap;
4749 unsigned int n_elem;
4750
4751 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4752 if (n_elem < 1)
4753 return -1;
4754
4755 qc->orig_n_elem = qc->n_elem;
4756 qc->n_elem = n_elem;
4757 qc->flags |= ATA_QCFLAG_DMAMAP;
4758
4759 return 0;
4760 }
4761
4762 #else /* !CONFIG_HAS_DMA */
4763
ata_sg_clean(struct ata_queued_cmd * qc)4764 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4765 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4766
4767 #endif /* !CONFIG_HAS_DMA */
4768
4769 /**
4770 * swap_buf_le16 - swap halves of 16-bit words in place
4771 * @buf: Buffer to swap
4772 * @buf_words: Number of 16-bit words in buffer.
4773 *
4774 * Swap halves of 16-bit words if needed to convert from
4775 * little-endian byte order to native cpu byte order, or
4776 * vice-versa.
4777 *
4778 * LOCKING:
4779 * Inherited from caller.
4780 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4781 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4782 {
4783 #ifdef __BIG_ENDIAN
4784 unsigned int i;
4785
4786 for (i = 0; i < buf_words; i++)
4787 buf[i] = le16_to_cpu(buf[i]);
4788 #endif /* __BIG_ENDIAN */
4789 }
4790
4791 /**
4792 * ata_qc_free - free unused ata_queued_cmd
4793 * @qc: Command to complete
4794 *
4795 * Designed to free unused ata_queued_cmd object
4796 * in case something prevents using it.
4797 *
4798 * LOCKING:
4799 * spin_lock_irqsave(host lock)
4800 */
ata_qc_free(struct ata_queued_cmd * qc)4801 void ata_qc_free(struct ata_queued_cmd *qc)
4802 {
4803 qc->flags = 0;
4804 if (ata_tag_valid(qc->tag))
4805 qc->tag = ATA_TAG_POISON;
4806 }
4807
__ata_qc_complete(struct ata_queued_cmd * qc)4808 void __ata_qc_complete(struct ata_queued_cmd *qc)
4809 {
4810 struct ata_port *ap;
4811 struct ata_link *link;
4812
4813 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4814 return;
4815
4816 ap = qc->ap;
4817 link = qc->dev->link;
4818
4819 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4820 ata_sg_clean(qc);
4821
4822 /* command should be marked inactive atomically with qc completion */
4823 if (ata_is_ncq(qc->tf.protocol)) {
4824 link->sactive &= ~(1 << qc->hw_tag);
4825 if (!link->sactive)
4826 ap->nr_active_links--;
4827 } else {
4828 link->active_tag = ATA_TAG_POISON;
4829 ap->nr_active_links--;
4830 }
4831
4832 /* clear exclusive status */
4833 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4834 ap->excl_link == link))
4835 ap->excl_link = NULL;
4836
4837 /*
4838 * Mark qc as inactive to prevent the port interrupt handler from
4839 * completing the command twice later, before the error handler is
4840 * called.
4841 */
4842 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4843 ap->qc_active &= ~(1ULL << qc->tag);
4844
4845 /* call completion callback */
4846 qc->complete_fn(qc);
4847 }
4848
fill_result_tf(struct ata_queued_cmd * qc)4849 static void fill_result_tf(struct ata_queued_cmd *qc)
4850 {
4851 struct ata_port *ap = qc->ap;
4852
4853 /*
4854 * rtf may already be filled (e.g. for successful NCQ commands).
4855 * If that is the case, we have nothing to do.
4856 */
4857 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4858 return;
4859
4860 qc->result_tf.flags = qc->tf.flags;
4861 ap->ops->qc_fill_rtf(qc);
4862 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4863 }
4864
ata_verify_xfer(struct ata_queued_cmd * qc)4865 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4866 {
4867 struct ata_device *dev = qc->dev;
4868
4869 if (!ata_is_data(qc->tf.protocol))
4870 return;
4871
4872 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4873 return;
4874
4875 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4876 }
4877
4878 /**
4879 * ata_qc_complete - Complete an active ATA command
4880 * @qc: Command to complete
4881 *
4882 * Indicate to the mid and upper layers that an ATA command has
4883 * completed, with either an ok or not-ok status.
4884 *
4885 * Refrain from calling this function multiple times when
4886 * successfully completing multiple NCQ commands.
4887 * ata_qc_complete_multiple() should be used instead, which will
4888 * properly update IRQ expect state.
4889 *
4890 * LOCKING:
4891 * spin_lock_irqsave(host lock)
4892 */
ata_qc_complete(struct ata_queued_cmd * qc)4893 void ata_qc_complete(struct ata_queued_cmd *qc)
4894 {
4895 struct ata_port *ap = qc->ap;
4896 struct ata_device *dev = qc->dev;
4897 struct ata_eh_info *ehi = &dev->link->eh_info;
4898
4899 /* Trigger the LED (if available) */
4900 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4901
4902 /*
4903 * In order to synchronize EH with the regular execution path, a qc that
4904 * is owned by EH is marked with ATA_QCFLAG_EH.
4905 *
4906 * The normal execution path is responsible for not accessing a qc owned
4907 * by EH. libata core enforces the rule by returning NULL from
4908 * ata_qc_from_tag() for qcs owned by EH.
4909 */
4910 if (unlikely(qc->err_mask))
4911 qc->flags |= ATA_QCFLAG_EH;
4912
4913 /*
4914 * Finish internal commands without any further processing and always
4915 * with the result TF filled.
4916 */
4917 if (unlikely(ata_tag_internal(qc->tag))) {
4918 fill_result_tf(qc);
4919 trace_ata_qc_complete_internal(qc);
4920 __ata_qc_complete(qc);
4921 return;
4922 }
4923
4924 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4925 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4926 fill_result_tf(qc);
4927 trace_ata_qc_complete_failed(qc);
4928 ata_qc_schedule_eh(qc);
4929 return;
4930 }
4931
4932 WARN_ON_ONCE(ata_port_is_frozen(ap));
4933
4934 /* read result TF if requested */
4935 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4936 fill_result_tf(qc);
4937
4938 trace_ata_qc_complete_done(qc);
4939
4940 /*
4941 * For CDL commands that completed without an error, check if we have
4942 * sense data (ATA_SENSE is set). If we do, then the command may have
4943 * been aborted by the device due to a limit timeout using the policy
4944 * 0xD. For these commands, invoke EH to get the command sense data.
4945 */
4946 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4947 qc->result_tf.status & ATA_SENSE) {
4948 /*
4949 * Tell SCSI EH to not overwrite scmd->result even if this
4950 * command is finished with result SAM_STAT_GOOD.
4951 */
4952 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4953 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4954 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4955
4956 /*
4957 * set pending so that ata_qc_schedule_eh() does not trigger
4958 * fast drain, and freeze the port.
4959 */
4960 ap->pflags |= ATA_PFLAG_EH_PENDING;
4961 ata_qc_schedule_eh(qc);
4962 return;
4963 }
4964
4965 /* Some commands need post-processing after successful completion. */
4966 switch (qc->tf.command) {
4967 case ATA_CMD_SET_FEATURES:
4968 if (qc->tf.feature != SETFEATURES_WC_ON &&
4969 qc->tf.feature != SETFEATURES_WC_OFF &&
4970 qc->tf.feature != SETFEATURES_RA_ON &&
4971 qc->tf.feature != SETFEATURES_RA_OFF)
4972 break;
4973 fallthrough;
4974 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4975 case ATA_CMD_SET_MULTI: /* multi_count changed */
4976 /* revalidate device */
4977 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4978 ata_port_schedule_eh(ap);
4979 break;
4980
4981 case ATA_CMD_SLEEP:
4982 dev->flags |= ATA_DFLAG_SLEEPING;
4983 break;
4984 }
4985
4986 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4987 ata_verify_xfer(qc);
4988
4989 __ata_qc_complete(qc);
4990 }
4991 EXPORT_SYMBOL_GPL(ata_qc_complete);
4992
4993 /**
4994 * ata_qc_get_active - get bitmask of active qcs
4995 * @ap: port in question
4996 *
4997 * LOCKING:
4998 * spin_lock_irqsave(host lock)
4999 *
5000 * RETURNS:
5001 * Bitmask of active qcs
5002 */
ata_qc_get_active(struct ata_port * ap)5003 u64 ata_qc_get_active(struct ata_port *ap)
5004 {
5005 u64 qc_active = ap->qc_active;
5006
5007 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5008 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5009 qc_active |= (1 << 0);
5010 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5011 }
5012
5013 return qc_active;
5014 }
5015 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5016
5017 /**
5018 * ata_qc_issue - issue taskfile to device
5019 * @qc: command to issue to device
5020 *
5021 * Prepare an ATA command to submission to device.
5022 * This includes mapping the data into a DMA-able
5023 * area, filling in the S/G table, and finally
5024 * writing the taskfile to hardware, starting the command.
5025 *
5026 * LOCKING:
5027 * spin_lock_irqsave(host lock)
5028 */
ata_qc_issue(struct ata_queued_cmd * qc)5029 void ata_qc_issue(struct ata_queued_cmd *qc)
5030 {
5031 struct ata_port *ap = qc->ap;
5032 struct ata_link *link = qc->dev->link;
5033 u8 prot = qc->tf.protocol;
5034
5035 /* Make sure only one non-NCQ command is outstanding. */
5036 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5037
5038 if (ata_is_ncq(prot)) {
5039 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5040
5041 if (!link->sactive)
5042 ap->nr_active_links++;
5043 link->sactive |= 1 << qc->hw_tag;
5044 } else {
5045 WARN_ON_ONCE(link->sactive);
5046
5047 ap->nr_active_links++;
5048 link->active_tag = qc->tag;
5049 }
5050
5051 qc->flags |= ATA_QCFLAG_ACTIVE;
5052 ap->qc_active |= 1ULL << qc->tag;
5053
5054 /*
5055 * We guarantee to LLDs that they will have at least one
5056 * non-zero sg if the command is a data command.
5057 */
5058 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5059 goto sys_err;
5060
5061 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5062 (ap->flags & ATA_FLAG_PIO_DMA)))
5063 if (ata_sg_setup(qc))
5064 goto sys_err;
5065
5066 /* if device is sleeping, schedule reset and abort the link */
5067 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5068 link->eh_info.action |= ATA_EH_RESET;
5069 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5070 ata_link_abort(link);
5071 return;
5072 }
5073
5074 if (ap->ops->qc_prep) {
5075 trace_ata_qc_prep(qc);
5076 qc->err_mask |= ap->ops->qc_prep(qc);
5077 if (unlikely(qc->err_mask))
5078 goto err;
5079 }
5080
5081 trace_ata_qc_issue(qc);
5082 qc->err_mask |= ap->ops->qc_issue(qc);
5083 if (unlikely(qc->err_mask))
5084 goto err;
5085 return;
5086
5087 sys_err:
5088 qc->err_mask |= AC_ERR_SYSTEM;
5089 err:
5090 ata_qc_complete(qc);
5091 }
5092
5093 /**
5094 * ata_phys_link_online - test whether the given link is online
5095 * @link: ATA link to test
5096 *
5097 * Test whether @link is online. Note that this function returns
5098 * 0 if online status of @link cannot be obtained, so
5099 * ata_link_online(link) != !ata_link_offline(link).
5100 *
5101 * LOCKING:
5102 * None.
5103 *
5104 * RETURNS:
5105 * True if the port online status is available and online.
5106 */
ata_phys_link_online(struct ata_link * link)5107 bool ata_phys_link_online(struct ata_link *link)
5108 {
5109 u32 sstatus;
5110
5111 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5112 ata_sstatus_online(sstatus))
5113 return true;
5114 return false;
5115 }
5116
5117 /**
5118 * ata_phys_link_offline - test whether the given link is offline
5119 * @link: ATA link to test
5120 *
5121 * Test whether @link is offline. Note that this function
5122 * returns 0 if offline status of @link cannot be obtained, so
5123 * ata_link_online(link) != !ata_link_offline(link).
5124 *
5125 * LOCKING:
5126 * None.
5127 *
5128 * RETURNS:
5129 * True if the port offline status is available and offline.
5130 */
ata_phys_link_offline(struct ata_link * link)5131 bool ata_phys_link_offline(struct ata_link *link)
5132 {
5133 u32 sstatus;
5134
5135 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5136 !ata_sstatus_online(sstatus))
5137 return true;
5138 return false;
5139 }
5140
5141 /**
5142 * ata_link_online - test whether the given link is online
5143 * @link: ATA link to test
5144 *
5145 * Test whether @link is online. This is identical to
5146 * ata_phys_link_online() when there's no slave link. When
5147 * there's a slave link, this function should only be called on
5148 * the master link and will return true if any of M/S links is
5149 * online.
5150 *
5151 * LOCKING:
5152 * None.
5153 *
5154 * RETURNS:
5155 * True if the port online status is available and online.
5156 */
ata_link_online(struct ata_link * link)5157 bool ata_link_online(struct ata_link *link)
5158 {
5159 struct ata_link *slave = link->ap->slave_link;
5160
5161 WARN_ON(link == slave); /* shouldn't be called on slave link */
5162
5163 return ata_phys_link_online(link) ||
5164 (slave && ata_phys_link_online(slave));
5165 }
5166 EXPORT_SYMBOL_GPL(ata_link_online);
5167
5168 /**
5169 * ata_link_offline - test whether the given link is offline
5170 * @link: ATA link to test
5171 *
5172 * Test whether @link is offline. This is identical to
5173 * ata_phys_link_offline() when there's no slave link. When
5174 * there's a slave link, this function should only be called on
5175 * the master link and will return true if both M/S links are
5176 * offline.
5177 *
5178 * LOCKING:
5179 * None.
5180 *
5181 * RETURNS:
5182 * True if the port offline status is available and offline.
5183 */
ata_link_offline(struct ata_link * link)5184 bool ata_link_offline(struct ata_link *link)
5185 {
5186 struct ata_link *slave = link->ap->slave_link;
5187
5188 WARN_ON(link == slave); /* shouldn't be called on slave link */
5189
5190 return ata_phys_link_offline(link) &&
5191 (!slave || ata_phys_link_offline(slave));
5192 }
5193 EXPORT_SYMBOL_GPL(ata_link_offline);
5194
5195 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5196 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5197 unsigned int action, unsigned int ehi_flags,
5198 bool async)
5199 {
5200 struct ata_link *link;
5201 unsigned long flags;
5202
5203 spin_lock_irqsave(ap->lock, flags);
5204
5205 /*
5206 * A previous PM operation might still be in progress. Wait for
5207 * ATA_PFLAG_PM_PENDING to clear.
5208 */
5209 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5210 spin_unlock_irqrestore(ap->lock, flags);
5211 ata_port_wait_eh(ap);
5212 spin_lock_irqsave(ap->lock, flags);
5213 }
5214
5215 /* Request PM operation to EH */
5216 ap->pm_mesg = mesg;
5217 ap->pflags |= ATA_PFLAG_PM_PENDING;
5218 ata_for_each_link(link, ap, HOST_FIRST) {
5219 link->eh_info.action |= action;
5220 link->eh_info.flags |= ehi_flags;
5221 }
5222
5223 ata_port_schedule_eh(ap);
5224
5225 spin_unlock_irqrestore(ap->lock, flags);
5226
5227 if (!async)
5228 ata_port_wait_eh(ap);
5229 }
5230
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5231 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5232 bool async)
5233 {
5234 /*
5235 * We are about to suspend the port, so we do not care about
5236 * scsi_rescan_device() calls scheduled by previous resume operations.
5237 * The next resume will schedule the rescan again. So cancel any rescan
5238 * that is not done yet.
5239 */
5240 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5241
5242 /*
5243 * On some hardware, device fails to respond after spun down for
5244 * suspend. As the device will not be used until being resumed, we
5245 * do not need to touch the device. Ask EH to skip the usual stuff
5246 * and proceed directly to suspend.
5247 *
5248 * http://thread.gmane.org/gmane.linux.ide/46764
5249 */
5250 ata_port_request_pm(ap, mesg, 0,
5251 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5252 ATA_EHI_NO_RECOVERY,
5253 async);
5254 }
5255
ata_port_pm_suspend(struct device * dev)5256 static int ata_port_pm_suspend(struct device *dev)
5257 {
5258 struct ata_port *ap = to_ata_port(dev);
5259
5260 if (pm_runtime_suspended(dev))
5261 return 0;
5262
5263 ata_port_suspend(ap, PMSG_SUSPEND, false);
5264 return 0;
5265 }
5266
ata_port_pm_freeze(struct device * dev)5267 static int ata_port_pm_freeze(struct device *dev)
5268 {
5269 struct ata_port *ap = to_ata_port(dev);
5270
5271 if (pm_runtime_suspended(dev))
5272 return 0;
5273
5274 ata_port_suspend(ap, PMSG_FREEZE, false);
5275 return 0;
5276 }
5277
ata_port_pm_poweroff(struct device * dev)5278 static int ata_port_pm_poweroff(struct device *dev)
5279 {
5280 if (!pm_runtime_suspended(dev))
5281 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5282 return 0;
5283 }
5284
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5285 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5286 bool async)
5287 {
5288 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5289 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5290 async);
5291 }
5292
ata_port_pm_resume(struct device * dev)5293 static int ata_port_pm_resume(struct device *dev)
5294 {
5295 if (!pm_runtime_suspended(dev))
5296 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5297 return 0;
5298 }
5299
5300 /*
5301 * For ODDs, the upper layer will poll for media change every few seconds,
5302 * which will make it enter and leave suspend state every few seconds. And
5303 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5304 * is very little and the ODD may malfunction after constantly being reset.
5305 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5306 * ODD is attached to the port.
5307 */
ata_port_runtime_idle(struct device * dev)5308 static int ata_port_runtime_idle(struct device *dev)
5309 {
5310 struct ata_port *ap = to_ata_port(dev);
5311 struct ata_link *link;
5312 struct ata_device *adev;
5313
5314 ata_for_each_link(link, ap, HOST_FIRST) {
5315 ata_for_each_dev(adev, link, ENABLED)
5316 if (adev->class == ATA_DEV_ATAPI &&
5317 !zpodd_dev_enabled(adev))
5318 return -EBUSY;
5319 }
5320
5321 return 0;
5322 }
5323
ata_port_runtime_suspend(struct device * dev)5324 static int ata_port_runtime_suspend(struct device *dev)
5325 {
5326 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5327 return 0;
5328 }
5329
ata_port_runtime_resume(struct device * dev)5330 static int ata_port_runtime_resume(struct device *dev)
5331 {
5332 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5333 return 0;
5334 }
5335
5336 static const struct dev_pm_ops ata_port_pm_ops = {
5337 .suspend = ata_port_pm_suspend,
5338 .resume = ata_port_pm_resume,
5339 .freeze = ata_port_pm_freeze,
5340 .thaw = ata_port_pm_resume,
5341 .poweroff = ata_port_pm_poweroff,
5342 .restore = ata_port_pm_resume,
5343
5344 .runtime_suspend = ata_port_runtime_suspend,
5345 .runtime_resume = ata_port_runtime_resume,
5346 .runtime_idle = ata_port_runtime_idle,
5347 };
5348
5349 /* sas ports don't participate in pm runtime management of ata_ports,
5350 * and need to resume ata devices at the domain level, not the per-port
5351 * level. sas suspend/resume is async to allow parallel port recovery
5352 * since sas has multiple ata_port instances per Scsi_Host.
5353 */
ata_sas_port_suspend(struct ata_port * ap)5354 void ata_sas_port_suspend(struct ata_port *ap)
5355 {
5356 ata_port_suspend(ap, PMSG_SUSPEND, true);
5357 }
5358 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5359
ata_sas_port_resume(struct ata_port * ap)5360 void ata_sas_port_resume(struct ata_port *ap)
5361 {
5362 ata_port_resume(ap, PMSG_RESUME, true);
5363 }
5364 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5365
5366 /**
5367 * ata_host_suspend - suspend host
5368 * @host: host to suspend
5369 * @mesg: PM message
5370 *
5371 * Suspend @host. Actual operation is performed by port suspend.
5372 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5373 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5374 {
5375 host->dev->power.power_state = mesg;
5376 }
5377 EXPORT_SYMBOL_GPL(ata_host_suspend);
5378
5379 /**
5380 * ata_host_resume - resume host
5381 * @host: host to resume
5382 *
5383 * Resume @host. Actual operation is performed by port resume.
5384 */
ata_host_resume(struct ata_host * host)5385 void ata_host_resume(struct ata_host *host)
5386 {
5387 host->dev->power.power_state = PMSG_ON;
5388 }
5389 EXPORT_SYMBOL_GPL(ata_host_resume);
5390 #endif
5391
5392 const struct device_type ata_port_type = {
5393 .name = ATA_PORT_TYPE_NAME,
5394 #ifdef CONFIG_PM
5395 .pm = &ata_port_pm_ops,
5396 #endif
5397 };
5398
5399 /**
5400 * ata_dev_init - Initialize an ata_device structure
5401 * @dev: Device structure to initialize
5402 *
5403 * Initialize @dev in preparation for probing.
5404 *
5405 * LOCKING:
5406 * Inherited from caller.
5407 */
ata_dev_init(struct ata_device * dev)5408 void ata_dev_init(struct ata_device *dev)
5409 {
5410 struct ata_link *link = ata_dev_phys_link(dev);
5411 struct ata_port *ap = link->ap;
5412 unsigned long flags;
5413
5414 /* SATA spd limit is bound to the attached device, reset together */
5415 link->sata_spd_limit = link->hw_sata_spd_limit;
5416 link->sata_spd = 0;
5417
5418 /* High bits of dev->flags are used to record warm plug
5419 * requests which occur asynchronously. Synchronize using
5420 * host lock.
5421 */
5422 spin_lock_irqsave(ap->lock, flags);
5423 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5424 dev->quirks = 0;
5425 spin_unlock_irqrestore(ap->lock, flags);
5426
5427 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5428 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5429 dev->pio_mask = UINT_MAX;
5430 dev->mwdma_mask = UINT_MAX;
5431 dev->udma_mask = UINT_MAX;
5432 }
5433
5434 /**
5435 * ata_link_init - Initialize an ata_link structure
5436 * @ap: ATA port link is attached to
5437 * @link: Link structure to initialize
5438 * @pmp: Port multiplier port number
5439 *
5440 * Initialize @link.
5441 *
5442 * LOCKING:
5443 * Kernel thread context (may sleep)
5444 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5445 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5446 {
5447 int i;
5448
5449 /* clear everything except for devices */
5450 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5451 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5452
5453 link->ap = ap;
5454 link->pmp = pmp;
5455 link->active_tag = ATA_TAG_POISON;
5456 link->hw_sata_spd_limit = UINT_MAX;
5457
5458 /* can't use iterator, ap isn't initialized yet */
5459 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5460 struct ata_device *dev = &link->device[i];
5461
5462 dev->link = link;
5463 dev->devno = dev - link->device;
5464 #ifdef CONFIG_ATA_ACPI
5465 dev->gtf_filter = ata_acpi_gtf_filter;
5466 #endif
5467 ata_dev_init(dev);
5468 }
5469 }
5470
5471 /**
5472 * sata_link_init_spd - Initialize link->sata_spd_limit
5473 * @link: Link to configure sata_spd_limit for
5474 *
5475 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5476 * configured value.
5477 *
5478 * LOCKING:
5479 * Kernel thread context (may sleep).
5480 *
5481 * RETURNS:
5482 * 0 on success, -errno on failure.
5483 */
sata_link_init_spd(struct ata_link * link)5484 int sata_link_init_spd(struct ata_link *link)
5485 {
5486 u8 spd;
5487 int rc;
5488
5489 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5490 if (rc)
5491 return rc;
5492
5493 spd = (link->saved_scontrol >> 4) & 0xf;
5494 if (spd)
5495 link->hw_sata_spd_limit &= (1 << spd) - 1;
5496
5497 ata_force_link_limits(link);
5498
5499 link->sata_spd_limit = link->hw_sata_spd_limit;
5500
5501 return 0;
5502 }
5503
5504 /**
5505 * ata_port_alloc - allocate and initialize basic ATA port resources
5506 * @host: ATA host this allocated port belongs to
5507 *
5508 * Allocate and initialize basic ATA port resources.
5509 *
5510 * RETURNS:
5511 * Allocate ATA port on success, NULL on failure.
5512 *
5513 * LOCKING:
5514 * Inherited from calling layer (may sleep).
5515 */
ata_port_alloc(struct ata_host * host)5516 struct ata_port *ata_port_alloc(struct ata_host *host)
5517 {
5518 struct ata_port *ap;
5519 int id;
5520
5521 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5522 if (!ap)
5523 return NULL;
5524
5525 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5526 ap->lock = &host->lock;
5527 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5528 if (id < 0) {
5529 kfree(ap);
5530 return NULL;
5531 }
5532 ap->print_id = id;
5533 ap->host = host;
5534 ap->dev = host->dev;
5535
5536 mutex_init(&ap->scsi_scan_mutex);
5537 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5538 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5539 INIT_LIST_HEAD(&ap->eh_done_q);
5540 init_waitqueue_head(&ap->eh_wait_q);
5541 init_completion(&ap->park_req_pending);
5542 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5543 TIMER_DEFERRABLE);
5544
5545 ap->cbl = ATA_CBL_NONE;
5546
5547 ata_link_init(ap, &ap->link, 0);
5548
5549 #ifdef ATA_IRQ_TRAP
5550 ap->stats.unhandled_irq = 1;
5551 ap->stats.idle_irq = 1;
5552 #endif
5553 ata_sff_port_init(ap);
5554
5555 ata_force_pflags(ap);
5556
5557 return ap;
5558 }
5559 EXPORT_SYMBOL_GPL(ata_port_alloc);
5560
ata_port_free(struct ata_port * ap)5561 void ata_port_free(struct ata_port *ap)
5562 {
5563 if (!ap)
5564 return;
5565
5566 kfree(ap->pmp_link);
5567 kfree(ap->slave_link);
5568 ida_free(&ata_ida, ap->print_id);
5569 kfree(ap);
5570 }
5571 EXPORT_SYMBOL_GPL(ata_port_free);
5572
ata_devres_release(struct device * gendev,void * res)5573 static void ata_devres_release(struct device *gendev, void *res)
5574 {
5575 struct ata_host *host = dev_get_drvdata(gendev);
5576 int i;
5577
5578 for (i = 0; i < host->n_ports; i++) {
5579 struct ata_port *ap = host->ports[i];
5580
5581 if (!ap)
5582 continue;
5583
5584 if (ap->scsi_host)
5585 scsi_host_put(ap->scsi_host);
5586
5587 }
5588
5589 dev_set_drvdata(gendev, NULL);
5590 ata_host_put(host);
5591 }
5592
ata_host_release(struct kref * kref)5593 static void ata_host_release(struct kref *kref)
5594 {
5595 struct ata_host *host = container_of(kref, struct ata_host, kref);
5596 int i;
5597
5598 for (i = 0; i < host->n_ports; i++) {
5599 ata_port_free(host->ports[i]);
5600 host->ports[i] = NULL;
5601 }
5602 kfree(host);
5603 }
5604
ata_host_get(struct ata_host * host)5605 void ata_host_get(struct ata_host *host)
5606 {
5607 kref_get(&host->kref);
5608 }
5609
ata_host_put(struct ata_host * host)5610 void ata_host_put(struct ata_host *host)
5611 {
5612 kref_put(&host->kref, ata_host_release);
5613 }
5614 EXPORT_SYMBOL_GPL(ata_host_put);
5615
5616 /**
5617 * ata_host_alloc - allocate and init basic ATA host resources
5618 * @dev: generic device this host is associated with
5619 * @n_ports: the number of ATA ports associated with this host
5620 *
5621 * Allocate and initialize basic ATA host resources. LLD calls
5622 * this function to allocate a host, initializes it fully and
5623 * attaches it using ata_host_register().
5624 *
5625 * RETURNS:
5626 * Allocate ATA host on success, NULL on failure.
5627 *
5628 * LOCKING:
5629 * Inherited from calling layer (may sleep).
5630 */
ata_host_alloc(struct device * dev,int n_ports)5631 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5632 {
5633 struct ata_host *host;
5634 size_t sz;
5635 int i;
5636 void *dr;
5637
5638 /* alloc a container for our list of ATA ports (buses) */
5639 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5640 host = kzalloc(sz, GFP_KERNEL);
5641 if (!host)
5642 return NULL;
5643
5644 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5645 kfree(host);
5646 return NULL;
5647 }
5648
5649 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5650 if (!dr) {
5651 kfree(host);
5652 goto err_out;
5653 }
5654
5655 devres_add(dev, dr);
5656 dev_set_drvdata(dev, host);
5657
5658 spin_lock_init(&host->lock);
5659 mutex_init(&host->eh_mutex);
5660 host->dev = dev;
5661 host->n_ports = n_ports;
5662 kref_init(&host->kref);
5663
5664 /* allocate ports bound to this host */
5665 for (i = 0; i < n_ports; i++) {
5666 struct ata_port *ap;
5667
5668 ap = ata_port_alloc(host);
5669 if (!ap)
5670 goto err_out;
5671
5672 ap->port_no = i;
5673 host->ports[i] = ap;
5674 }
5675
5676 devres_remove_group(dev, NULL);
5677 return host;
5678
5679 err_out:
5680 devres_release_group(dev, NULL);
5681 return NULL;
5682 }
5683 EXPORT_SYMBOL_GPL(ata_host_alloc);
5684
5685 /**
5686 * ata_host_alloc_pinfo - alloc host and init with port_info array
5687 * @dev: generic device this host is associated with
5688 * @ppi: array of ATA port_info to initialize host with
5689 * @n_ports: number of ATA ports attached to this host
5690 *
5691 * Allocate ATA host and initialize with info from @ppi. If NULL
5692 * terminated, @ppi may contain fewer entries than @n_ports. The
5693 * last entry will be used for the remaining ports.
5694 *
5695 * RETURNS:
5696 * Allocate ATA host on success, NULL on failure.
5697 *
5698 * LOCKING:
5699 * Inherited from calling layer (may sleep).
5700 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5701 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5702 const struct ata_port_info * const * ppi,
5703 int n_ports)
5704 {
5705 const struct ata_port_info *pi = &ata_dummy_port_info;
5706 struct ata_host *host;
5707 int i, j;
5708
5709 host = ata_host_alloc(dev, n_ports);
5710 if (!host)
5711 return NULL;
5712
5713 for (i = 0, j = 0; i < host->n_ports; i++) {
5714 struct ata_port *ap = host->ports[i];
5715
5716 if (ppi[j])
5717 pi = ppi[j++];
5718
5719 ap->pio_mask = pi->pio_mask;
5720 ap->mwdma_mask = pi->mwdma_mask;
5721 ap->udma_mask = pi->udma_mask;
5722 ap->flags |= pi->flags;
5723 ap->link.flags |= pi->link_flags;
5724 ap->ops = pi->port_ops;
5725
5726 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5727 host->ops = pi->port_ops;
5728 }
5729
5730 return host;
5731 }
5732 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5733
ata_host_stop(struct device * gendev,void * res)5734 static void ata_host_stop(struct device *gendev, void *res)
5735 {
5736 struct ata_host *host = dev_get_drvdata(gendev);
5737 int i;
5738
5739 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5740
5741 for (i = 0; i < host->n_ports; i++) {
5742 struct ata_port *ap = host->ports[i];
5743
5744 if (ap->ops->port_stop)
5745 ap->ops->port_stop(ap);
5746 }
5747
5748 if (host->ops->host_stop)
5749 host->ops->host_stop(host);
5750 }
5751
5752 /**
5753 * ata_finalize_port_ops - finalize ata_port_operations
5754 * @ops: ata_port_operations to finalize
5755 *
5756 * An ata_port_operations can inherit from another ops and that
5757 * ops can again inherit from another. This can go on as many
5758 * times as necessary as long as there is no loop in the
5759 * inheritance chain.
5760 *
5761 * Ops tables are finalized when the host is started. NULL or
5762 * unspecified entries are inherited from the closet ancestor
5763 * which has the method and the entry is populated with it.
5764 * After finalization, the ops table directly points to all the
5765 * methods and ->inherits is no longer necessary and cleared.
5766 *
5767 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5768 *
5769 * LOCKING:
5770 * None.
5771 */
ata_finalize_port_ops(struct ata_port_operations * ops)5772 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5773 {
5774 static DEFINE_SPINLOCK(lock);
5775 const struct ata_port_operations *cur;
5776 void **begin = (void **)ops;
5777 void **end = (void **)&ops->inherits;
5778 void **pp;
5779
5780 if (!ops || !ops->inherits)
5781 return;
5782
5783 spin_lock(&lock);
5784
5785 for (cur = ops->inherits; cur; cur = cur->inherits) {
5786 void **inherit = (void **)cur;
5787
5788 for (pp = begin; pp < end; pp++, inherit++)
5789 if (!*pp)
5790 *pp = *inherit;
5791 }
5792
5793 for (pp = begin; pp < end; pp++)
5794 if (IS_ERR(*pp))
5795 *pp = NULL;
5796
5797 ops->inherits = NULL;
5798
5799 spin_unlock(&lock);
5800 }
5801
5802 /**
5803 * ata_host_start - start and freeze ports of an ATA host
5804 * @host: ATA host to start ports for
5805 *
5806 * Start and then freeze ports of @host. Started status is
5807 * recorded in host->flags, so this function can be called
5808 * multiple times. Ports are guaranteed to get started only
5809 * once. If host->ops is not initialized yet, it is set to the
5810 * first non-dummy port ops.
5811 *
5812 * LOCKING:
5813 * Inherited from calling layer (may sleep).
5814 *
5815 * RETURNS:
5816 * 0 if all ports are started successfully, -errno otherwise.
5817 */
ata_host_start(struct ata_host * host)5818 int ata_host_start(struct ata_host *host)
5819 {
5820 int have_stop = 0;
5821 void *start_dr = NULL;
5822 int i, rc;
5823
5824 if (host->flags & ATA_HOST_STARTED)
5825 return 0;
5826
5827 ata_finalize_port_ops(host->ops);
5828
5829 for (i = 0; i < host->n_ports; i++) {
5830 struct ata_port *ap = host->ports[i];
5831
5832 ata_finalize_port_ops(ap->ops);
5833
5834 if (!host->ops && !ata_port_is_dummy(ap))
5835 host->ops = ap->ops;
5836
5837 if (ap->ops->port_stop)
5838 have_stop = 1;
5839 }
5840
5841 if (host->ops && host->ops->host_stop)
5842 have_stop = 1;
5843
5844 if (have_stop) {
5845 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5846 if (!start_dr)
5847 return -ENOMEM;
5848 }
5849
5850 for (i = 0; i < host->n_ports; i++) {
5851 struct ata_port *ap = host->ports[i];
5852
5853 if (ap->ops->port_start) {
5854 rc = ap->ops->port_start(ap);
5855 if (rc) {
5856 if (rc != -ENODEV)
5857 dev_err(host->dev,
5858 "failed to start port %d (errno=%d)\n",
5859 i, rc);
5860 goto err_out;
5861 }
5862 }
5863 ata_eh_freeze_port(ap);
5864 }
5865
5866 if (start_dr)
5867 devres_add(host->dev, start_dr);
5868 host->flags |= ATA_HOST_STARTED;
5869 return 0;
5870
5871 err_out:
5872 while (--i >= 0) {
5873 struct ata_port *ap = host->ports[i];
5874
5875 if (ap->ops->port_stop)
5876 ap->ops->port_stop(ap);
5877 }
5878 devres_free(start_dr);
5879 return rc;
5880 }
5881 EXPORT_SYMBOL_GPL(ata_host_start);
5882
5883 /**
5884 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5885 * @host: host to initialize
5886 * @dev: device host is attached to
5887 * @ops: port_ops
5888 *
5889 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5890 void ata_host_init(struct ata_host *host, struct device *dev,
5891 struct ata_port_operations *ops)
5892 {
5893 spin_lock_init(&host->lock);
5894 mutex_init(&host->eh_mutex);
5895 host->n_tags = ATA_MAX_QUEUE;
5896 host->dev = dev;
5897 host->ops = ops;
5898 kref_init(&host->kref);
5899 }
5900 EXPORT_SYMBOL_GPL(ata_host_init);
5901
ata_port_probe(struct ata_port * ap)5902 void ata_port_probe(struct ata_port *ap)
5903 {
5904 struct ata_eh_info *ehi = &ap->link.eh_info;
5905 unsigned long flags;
5906
5907 /* kick EH for boot probing */
5908 spin_lock_irqsave(ap->lock, flags);
5909
5910 ehi->probe_mask |= ATA_ALL_DEVICES;
5911 ehi->action |= ATA_EH_RESET;
5912 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5913
5914 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5915 ap->pflags |= ATA_PFLAG_LOADING;
5916 ata_port_schedule_eh(ap);
5917
5918 spin_unlock_irqrestore(ap->lock, flags);
5919 }
5920 EXPORT_SYMBOL_GPL(ata_port_probe);
5921
async_port_probe(void * data,async_cookie_t cookie)5922 static void async_port_probe(void *data, async_cookie_t cookie)
5923 {
5924 struct ata_port *ap = data;
5925
5926 /*
5927 * If we're not allowed to scan this host in parallel,
5928 * we need to wait until all previous scans have completed
5929 * before going further.
5930 * Jeff Garzik says this is only within a controller, so we
5931 * don't need to wait for port 0, only for later ports.
5932 */
5933 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5934 async_synchronize_cookie(cookie);
5935
5936 ata_port_probe(ap);
5937 ata_port_wait_eh(ap);
5938
5939 /* in order to keep device order, we need to synchronize at this point */
5940 async_synchronize_cookie(cookie);
5941
5942 ata_scsi_scan_host(ap, 1);
5943 }
5944
5945 /**
5946 * ata_host_register - register initialized ATA host
5947 * @host: ATA host to register
5948 * @sht: template for SCSI host
5949 *
5950 * Register initialized ATA host. @host is allocated using
5951 * ata_host_alloc() and fully initialized by LLD. This function
5952 * starts ports, registers @host with ATA and SCSI layers and
5953 * probe registered devices.
5954 *
5955 * LOCKING:
5956 * Inherited from calling layer (may sleep).
5957 *
5958 * RETURNS:
5959 * 0 on success, -errno otherwise.
5960 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5961 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5962 {
5963 int i, rc;
5964
5965 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5966
5967 /* host must have been started */
5968 if (!(host->flags & ATA_HOST_STARTED)) {
5969 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5970 WARN_ON(1);
5971 return -EINVAL;
5972 }
5973
5974 /* Create associated sysfs transport objects */
5975 for (i = 0; i < host->n_ports; i++) {
5976 rc = ata_tport_add(host->dev,host->ports[i]);
5977 if (rc) {
5978 goto err_tadd;
5979 }
5980 }
5981
5982 rc = ata_scsi_add_hosts(host, sht);
5983 if (rc)
5984 goto err_tadd;
5985
5986 /* set cable, sata_spd_limit and report */
5987 for (i = 0; i < host->n_ports; i++) {
5988 struct ata_port *ap = host->ports[i];
5989 unsigned int xfer_mask;
5990
5991 /* set SATA cable type if still unset */
5992 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5993 ap->cbl = ATA_CBL_SATA;
5994
5995 /* init sata_spd_limit to the current value */
5996 sata_link_init_spd(&ap->link);
5997 if (ap->slave_link)
5998 sata_link_init_spd(ap->slave_link);
5999
6000 /* print per-port info to dmesg */
6001 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6002 ap->udma_mask);
6003
6004 if (!ata_port_is_dummy(ap)) {
6005 ata_port_info(ap, "%cATA max %s %s\n",
6006 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6007 ata_mode_string(xfer_mask),
6008 ap->link.eh_info.desc);
6009 ata_ehi_clear_desc(&ap->link.eh_info);
6010 } else
6011 ata_port_info(ap, "DUMMY\n");
6012 }
6013
6014 /* perform each probe asynchronously */
6015 for (i = 0; i < host->n_ports; i++) {
6016 struct ata_port *ap = host->ports[i];
6017 ap->cookie = async_schedule(async_port_probe, ap);
6018 }
6019
6020 return 0;
6021
6022 err_tadd:
6023 while (--i >= 0) {
6024 ata_tport_delete(host->ports[i]);
6025 }
6026 return rc;
6027
6028 }
6029 EXPORT_SYMBOL_GPL(ata_host_register);
6030
6031 /**
6032 * ata_host_activate - start host, request IRQ and register it
6033 * @host: target ATA host
6034 * @irq: IRQ to request
6035 * @irq_handler: irq_handler used when requesting IRQ
6036 * @irq_flags: irq_flags used when requesting IRQ
6037 * @sht: scsi_host_template to use when registering the host
6038 *
6039 * After allocating an ATA host and initializing it, most libata
6040 * LLDs perform three steps to activate the host - start host,
6041 * request IRQ and register it. This helper takes necessary
6042 * arguments and performs the three steps in one go.
6043 *
6044 * An invalid IRQ skips the IRQ registration and expects the host to
6045 * have set polling mode on the port. In this case, @irq_handler
6046 * should be NULL.
6047 *
6048 * LOCKING:
6049 * Inherited from calling layer (may sleep).
6050 *
6051 * RETURNS:
6052 * 0 on success, -errno otherwise.
6053 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6054 int ata_host_activate(struct ata_host *host, int irq,
6055 irq_handler_t irq_handler, unsigned long irq_flags,
6056 const struct scsi_host_template *sht)
6057 {
6058 int i, rc;
6059 char *irq_desc;
6060
6061 rc = ata_host_start(host);
6062 if (rc)
6063 return rc;
6064
6065 /* Special case for polling mode */
6066 if (!irq) {
6067 WARN_ON(irq_handler);
6068 return ata_host_register(host, sht);
6069 }
6070
6071 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6072 dev_driver_string(host->dev),
6073 dev_name(host->dev));
6074 if (!irq_desc)
6075 return -ENOMEM;
6076
6077 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6078 irq_desc, host);
6079 if (rc)
6080 return rc;
6081
6082 for (i = 0; i < host->n_ports; i++)
6083 ata_port_desc_misc(host->ports[i], irq);
6084
6085 rc = ata_host_register(host, sht);
6086 /* if failed, just free the IRQ and leave ports alone */
6087 if (rc)
6088 devm_free_irq(host->dev, irq, host);
6089
6090 return rc;
6091 }
6092 EXPORT_SYMBOL_GPL(ata_host_activate);
6093
6094 /**
6095 * ata_dev_free_resources - Free a device resources
6096 * @dev: Target ATA device
6097 *
6098 * Free resources allocated to support a device features.
6099 *
6100 * LOCKING:
6101 * Kernel thread context (may sleep).
6102 */
ata_dev_free_resources(struct ata_device * dev)6103 void ata_dev_free_resources(struct ata_device *dev)
6104 {
6105 if (zpodd_dev_enabled(dev))
6106 zpodd_exit(dev);
6107
6108 ata_dev_cleanup_cdl_resources(dev);
6109 }
6110
6111 /**
6112 * ata_port_detach - Detach ATA port in preparation of device removal
6113 * @ap: ATA port to be detached
6114 *
6115 * Detach all ATA devices and the associated SCSI devices of @ap;
6116 * then, remove the associated SCSI host. @ap is guaranteed to
6117 * be quiescent on return from this function.
6118 *
6119 * LOCKING:
6120 * Kernel thread context (may sleep).
6121 */
ata_port_detach(struct ata_port * ap)6122 static void ata_port_detach(struct ata_port *ap)
6123 {
6124 unsigned long flags;
6125 struct ata_link *link;
6126 struct ata_device *dev;
6127
6128 /* Ensure ata_port probe has completed */
6129 async_synchronize_cookie(ap->cookie + 1);
6130
6131 /* Wait for any ongoing EH */
6132 ata_port_wait_eh(ap);
6133
6134 mutex_lock(&ap->scsi_scan_mutex);
6135 spin_lock_irqsave(ap->lock, flags);
6136
6137 /* Remove scsi devices */
6138 ata_for_each_link(link, ap, HOST_FIRST) {
6139 ata_for_each_dev(dev, link, ALL) {
6140 if (dev->sdev) {
6141 spin_unlock_irqrestore(ap->lock, flags);
6142 scsi_remove_device(dev->sdev);
6143 spin_lock_irqsave(ap->lock, flags);
6144 dev->sdev = NULL;
6145 }
6146 }
6147 }
6148
6149 /* Tell EH to disable all devices */
6150 ap->pflags |= ATA_PFLAG_UNLOADING;
6151 ata_port_schedule_eh(ap);
6152
6153 spin_unlock_irqrestore(ap->lock, flags);
6154 mutex_unlock(&ap->scsi_scan_mutex);
6155
6156 /* wait till EH commits suicide */
6157 ata_port_wait_eh(ap);
6158
6159 /* it better be dead now */
6160 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6161
6162 cancel_delayed_work_sync(&ap->hotplug_task);
6163 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6164
6165 /* Delete port multiplier link transport devices */
6166 if (ap->pmp_link) {
6167 int i;
6168
6169 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6170 ata_tlink_delete(&ap->pmp_link[i]);
6171 }
6172
6173 /* Remove the associated SCSI host */
6174 scsi_remove_host(ap->scsi_host);
6175 ata_tport_delete(ap);
6176 }
6177
6178 /**
6179 * ata_host_detach - Detach all ports of an ATA host
6180 * @host: Host to detach
6181 *
6182 * Detach all ports of @host.
6183 *
6184 * LOCKING:
6185 * Kernel thread context (may sleep).
6186 */
ata_host_detach(struct ata_host * host)6187 void ata_host_detach(struct ata_host *host)
6188 {
6189 int i;
6190
6191 for (i = 0; i < host->n_ports; i++)
6192 ata_port_detach(host->ports[i]);
6193
6194 /* the host is dead now, dissociate ACPI */
6195 ata_acpi_dissociate(host);
6196 }
6197 EXPORT_SYMBOL_GPL(ata_host_detach);
6198
6199 #ifdef CONFIG_PCI
6200
6201 /**
6202 * ata_pci_remove_one - PCI layer callback for device removal
6203 * @pdev: PCI device that was removed
6204 *
6205 * PCI layer indicates to libata via this hook that hot-unplug or
6206 * module unload event has occurred. Detach all ports. Resource
6207 * release is handled via devres.
6208 *
6209 * LOCKING:
6210 * Inherited from PCI layer (may sleep).
6211 */
ata_pci_remove_one(struct pci_dev * pdev)6212 void ata_pci_remove_one(struct pci_dev *pdev)
6213 {
6214 struct ata_host *host = pci_get_drvdata(pdev);
6215
6216 ata_host_detach(host);
6217 }
6218 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6219
ata_pci_shutdown_one(struct pci_dev * pdev)6220 void ata_pci_shutdown_one(struct pci_dev *pdev)
6221 {
6222 struct ata_host *host = pci_get_drvdata(pdev);
6223 int i;
6224
6225 for (i = 0; i < host->n_ports; i++) {
6226 struct ata_port *ap = host->ports[i];
6227
6228 ap->pflags |= ATA_PFLAG_FROZEN;
6229
6230 /* Disable port interrupts */
6231 if (ap->ops->freeze)
6232 ap->ops->freeze(ap);
6233
6234 /* Stop the port DMA engines */
6235 if (ap->ops->port_stop)
6236 ap->ops->port_stop(ap);
6237 }
6238 }
6239 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6240
6241 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6242 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6243 {
6244 unsigned long tmp = 0;
6245
6246 switch (bits->width) {
6247 case 1: {
6248 u8 tmp8 = 0;
6249 pci_read_config_byte(pdev, bits->reg, &tmp8);
6250 tmp = tmp8;
6251 break;
6252 }
6253 case 2: {
6254 u16 tmp16 = 0;
6255 pci_read_config_word(pdev, bits->reg, &tmp16);
6256 tmp = tmp16;
6257 break;
6258 }
6259 case 4: {
6260 u32 tmp32 = 0;
6261 pci_read_config_dword(pdev, bits->reg, &tmp32);
6262 tmp = tmp32;
6263 break;
6264 }
6265
6266 default:
6267 return -EINVAL;
6268 }
6269
6270 tmp &= bits->mask;
6271
6272 return (tmp == bits->val) ? 1 : 0;
6273 }
6274 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6275
6276 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6277 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6278 {
6279 pci_save_state(pdev);
6280 pci_disable_device(pdev);
6281
6282 if (mesg.event & PM_EVENT_SLEEP)
6283 pci_set_power_state(pdev, PCI_D3hot);
6284 }
6285 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6286
ata_pci_device_do_resume(struct pci_dev * pdev)6287 int ata_pci_device_do_resume(struct pci_dev *pdev)
6288 {
6289 int rc;
6290
6291 pci_set_power_state(pdev, PCI_D0);
6292 pci_restore_state(pdev);
6293
6294 rc = pcim_enable_device(pdev);
6295 if (rc) {
6296 dev_err(&pdev->dev,
6297 "failed to enable device after resume (%d)\n", rc);
6298 return rc;
6299 }
6300
6301 pci_set_master(pdev);
6302 return 0;
6303 }
6304 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6305
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6306 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6307 {
6308 struct ata_host *host = pci_get_drvdata(pdev);
6309
6310 ata_host_suspend(host, mesg);
6311
6312 ata_pci_device_do_suspend(pdev, mesg);
6313
6314 return 0;
6315 }
6316 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6317
ata_pci_device_resume(struct pci_dev * pdev)6318 int ata_pci_device_resume(struct pci_dev *pdev)
6319 {
6320 struct ata_host *host = pci_get_drvdata(pdev);
6321 int rc;
6322
6323 rc = ata_pci_device_do_resume(pdev);
6324 if (rc == 0)
6325 ata_host_resume(host);
6326 return rc;
6327 }
6328 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6329 #endif /* CONFIG_PM */
6330 #endif /* CONFIG_PCI */
6331
6332 /**
6333 * ata_platform_remove_one - Platform layer callback for device removal
6334 * @pdev: Platform device that was removed
6335 *
6336 * Platform layer indicates to libata via this hook that hot-unplug or
6337 * module unload event has occurred. Detach all ports. Resource
6338 * release is handled via devres.
6339 *
6340 * LOCKING:
6341 * Inherited from platform layer (may sleep).
6342 */
ata_platform_remove_one(struct platform_device * pdev)6343 void ata_platform_remove_one(struct platform_device *pdev)
6344 {
6345 struct ata_host *host = platform_get_drvdata(pdev);
6346
6347 ata_host_detach(host);
6348 }
6349 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6350
6351 #ifdef CONFIG_ATA_FORCE
6352
6353 #define force_cbl(name, flag) \
6354 { #name, .cbl = (flag) }
6355
6356 #define force_spd_limit(spd, val) \
6357 { #spd, .spd_limit = (val) }
6358
6359 #define force_xfer(mode, shift) \
6360 { #mode, .xfer_mask = (1UL << (shift)) }
6361
6362 #define force_lflag_on(name, flags) \
6363 { #name, .lflags_on = (flags) }
6364
6365 #define force_lflag_onoff(name, flags) \
6366 { "no" #name, .lflags_on = (flags) }, \
6367 { #name, .lflags_off = (flags) }
6368
6369 #define force_pflag_on(name, flags) \
6370 { #name, .pflags_on = (flags) }
6371
6372 #define force_quirk_on(name, flag) \
6373 { #name, .quirk_on = (flag) }
6374
6375 #define force_quirk_onoff(name, flag) \
6376 { "no" #name, .quirk_on = (flag) }, \
6377 { #name, .quirk_off = (flag) }
6378
6379 static const struct ata_force_param force_tbl[] __initconst = {
6380 force_cbl(40c, ATA_CBL_PATA40),
6381 force_cbl(80c, ATA_CBL_PATA80),
6382 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6383 force_cbl(unk, ATA_CBL_PATA_UNK),
6384 force_cbl(ign, ATA_CBL_PATA_IGN),
6385 force_cbl(sata, ATA_CBL_SATA),
6386
6387 force_spd_limit(1.5Gbps, 1),
6388 force_spd_limit(3.0Gbps, 2),
6389
6390 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6391 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6392 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6393 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6394 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6395 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6396 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6397 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6398 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6399 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6400 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6401 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6402 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6403 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6404 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6405 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6406 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6407 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6408 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6409 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6410 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6411 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6412 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6413 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6414 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6415 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6416 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6417 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6418 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6419 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6420 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6421 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6422 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6423 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6424
6425 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6426 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6427 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6428 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6429 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6430
6431 force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6432
6433 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6434 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6435 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6436
6437 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6438 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6439 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6440
6441 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6442 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6443 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6444
6445 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6446 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6447 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6448
6449 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6450 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6451 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6452
6453 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6454 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6455 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6456 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6457
6458 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6459 };
6460
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6461 static int __init ata_parse_force_one(char **cur,
6462 struct ata_force_ent *force_ent,
6463 const char **reason)
6464 {
6465 char *start = *cur, *p = *cur;
6466 char *id, *val, *endp;
6467 const struct ata_force_param *match_fp = NULL;
6468 int nr_matches = 0, i;
6469
6470 /* find where this param ends and update *cur */
6471 while (*p != '\0' && *p != ',')
6472 p++;
6473
6474 if (*p == '\0')
6475 *cur = p;
6476 else
6477 *cur = p + 1;
6478
6479 *p = '\0';
6480
6481 /* parse */
6482 p = strchr(start, ':');
6483 if (!p) {
6484 val = strstrip(start);
6485 goto parse_val;
6486 }
6487 *p = '\0';
6488
6489 id = strstrip(start);
6490 val = strstrip(p + 1);
6491
6492 /* parse id */
6493 p = strchr(id, '.');
6494 if (p) {
6495 *p++ = '\0';
6496 force_ent->device = simple_strtoul(p, &endp, 10);
6497 if (p == endp || *endp != '\0') {
6498 *reason = "invalid device";
6499 return -EINVAL;
6500 }
6501 }
6502
6503 force_ent->port = simple_strtoul(id, &endp, 10);
6504 if (id == endp || *endp != '\0') {
6505 *reason = "invalid port/link";
6506 return -EINVAL;
6507 }
6508
6509 parse_val:
6510 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6511 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6512 const struct ata_force_param *fp = &force_tbl[i];
6513
6514 if (strncasecmp(val, fp->name, strlen(val)))
6515 continue;
6516
6517 nr_matches++;
6518 match_fp = fp;
6519
6520 if (strcasecmp(val, fp->name) == 0) {
6521 nr_matches = 1;
6522 break;
6523 }
6524 }
6525
6526 if (!nr_matches) {
6527 *reason = "unknown value";
6528 return -EINVAL;
6529 }
6530 if (nr_matches > 1) {
6531 *reason = "ambiguous value";
6532 return -EINVAL;
6533 }
6534
6535 force_ent->param = *match_fp;
6536
6537 return 0;
6538 }
6539
ata_parse_force_param(void)6540 static void __init ata_parse_force_param(void)
6541 {
6542 int idx = 0, size = 1;
6543 int last_port = -1, last_device = -1;
6544 char *p, *cur, *next;
6545
6546 /* Calculate maximum number of params and allocate ata_force_tbl */
6547 for (p = ata_force_param_buf; *p; p++)
6548 if (*p == ',')
6549 size++;
6550
6551 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6552 if (!ata_force_tbl) {
6553 printk(KERN_WARNING "ata: failed to extend force table, "
6554 "libata.force ignored\n");
6555 return;
6556 }
6557
6558 /* parse and populate the table */
6559 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6560 const char *reason = "";
6561 struct ata_force_ent te = { .port = -1, .device = -1 };
6562
6563 next = cur;
6564 if (ata_parse_force_one(&next, &te, &reason)) {
6565 printk(KERN_WARNING "ata: failed to parse force "
6566 "parameter \"%s\" (%s)\n",
6567 cur, reason);
6568 continue;
6569 }
6570
6571 if (te.port == -1) {
6572 te.port = last_port;
6573 te.device = last_device;
6574 }
6575
6576 ata_force_tbl[idx++] = te;
6577
6578 last_port = te.port;
6579 last_device = te.device;
6580 }
6581
6582 ata_force_tbl_size = idx;
6583 }
6584
ata_free_force_param(void)6585 static void ata_free_force_param(void)
6586 {
6587 kfree(ata_force_tbl);
6588 }
6589 #else
ata_parse_force_param(void)6590 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6591 static inline void ata_free_force_param(void) { }
6592 #endif
6593
ata_init(void)6594 static int __init ata_init(void)
6595 {
6596 int rc;
6597
6598 ata_parse_force_param();
6599
6600 rc = ata_sff_init();
6601 if (rc) {
6602 ata_free_force_param();
6603 return rc;
6604 }
6605
6606 libata_transport_init();
6607 ata_scsi_transport_template = ata_attach_transport();
6608 if (!ata_scsi_transport_template) {
6609 ata_sff_exit();
6610 rc = -ENOMEM;
6611 goto err_out;
6612 }
6613
6614 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6615 return 0;
6616
6617 err_out:
6618 return rc;
6619 }
6620
ata_exit(void)6621 static void __exit ata_exit(void)
6622 {
6623 ata_release_transport(ata_scsi_transport_template);
6624 libata_transport_exit();
6625 ata_sff_exit();
6626 ata_free_force_param();
6627 }
6628
6629 subsys_initcall(ata_init);
6630 module_exit(ata_exit);
6631
6632 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6633
ata_ratelimit(void)6634 int ata_ratelimit(void)
6635 {
6636 return __ratelimit(&ratelimit);
6637 }
6638 EXPORT_SYMBOL_GPL(ata_ratelimit);
6639
6640 /**
6641 * ata_msleep - ATA EH owner aware msleep
6642 * @ap: ATA port to attribute the sleep to
6643 * @msecs: duration to sleep in milliseconds
6644 *
6645 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6646 * ownership is released before going to sleep and reacquired
6647 * after the sleep is complete. IOW, other ports sharing the
6648 * @ap->host will be allowed to own the EH while this task is
6649 * sleeping.
6650 *
6651 * LOCKING:
6652 * Might sleep.
6653 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6654 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6655 {
6656 bool owns_eh = ap && ap->host->eh_owner == current;
6657
6658 if (owns_eh)
6659 ata_eh_release(ap);
6660
6661 if (msecs < 20) {
6662 unsigned long usecs = msecs * USEC_PER_MSEC;
6663 usleep_range(usecs, usecs + 50);
6664 } else {
6665 msleep(msecs);
6666 }
6667
6668 if (owns_eh)
6669 ata_eh_acquire(ap);
6670 }
6671 EXPORT_SYMBOL_GPL(ata_msleep);
6672
6673 /**
6674 * ata_wait_register - wait until register value changes
6675 * @ap: ATA port to wait register for, can be NULL
6676 * @reg: IO-mapped register
6677 * @mask: Mask to apply to read register value
6678 * @val: Wait condition
6679 * @interval: polling interval in milliseconds
6680 * @timeout: timeout in milliseconds
6681 *
6682 * Waiting for some bits of register to change is a common
6683 * operation for ATA controllers. This function reads 32bit LE
6684 * IO-mapped register @reg and tests for the following condition.
6685 *
6686 * (*@reg & mask) != val
6687 *
6688 * If the condition is met, it returns; otherwise, the process is
6689 * repeated after @interval_msec until timeout.
6690 *
6691 * LOCKING:
6692 * Kernel thread context (may sleep)
6693 *
6694 * RETURNS:
6695 * The final register value.
6696 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6697 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6698 unsigned int interval, unsigned int timeout)
6699 {
6700 unsigned long deadline;
6701 u32 tmp;
6702
6703 tmp = ioread32(reg);
6704
6705 /* Calculate timeout _after_ the first read to make sure
6706 * preceding writes reach the controller before starting to
6707 * eat away the timeout.
6708 */
6709 deadline = ata_deadline(jiffies, timeout);
6710
6711 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6712 ata_msleep(ap, interval);
6713 tmp = ioread32(reg);
6714 }
6715
6716 return tmp;
6717 }
6718 EXPORT_SYMBOL_GPL(ata_wait_register);
6719
6720 /*
6721 * Dummy port_ops
6722 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6724 {
6725 return AC_ERR_SYSTEM;
6726 }
6727
ata_dummy_error_handler(struct ata_port * ap)6728 static void ata_dummy_error_handler(struct ata_port *ap)
6729 {
6730 /* truly dummy */
6731 }
6732
6733 struct ata_port_operations ata_dummy_port_ops = {
6734 .qc_issue = ata_dummy_qc_issue,
6735 .error_handler = ata_dummy_error_handler,
6736 .sched_eh = ata_std_sched_eh,
6737 .end_eh = ata_std_end_eh,
6738 };
6739 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6740
6741 const struct ata_port_info ata_dummy_port_info = {
6742 .port_ops = &ata_dummy_port_ops,
6743 };
6744 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6745
6746 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6747 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6748 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6749 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6750 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6751