1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5 #include <linux/entry-virt.h>
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/uapi/linux/kvm.h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58 #define KVM_MEMSLOT_GMEM_ONLY (1UL << 17)
59
60 /*
61 * Bit 63 of the memslot generation number is an "update in-progress flag",
62 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
63 * This flag effectively creates a unique generation number that is used to
64 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
65 * i.e. may (or may not) have come from the previous memslots generation.
66 *
67 * This is necessary because the actual memslots update is not atomic with
68 * respect to the generation number update. Updating the generation number
69 * first would allow a vCPU to cache a spte from the old memslots using the
70 * new generation number, and updating the generation number after switching
71 * to the new memslots would allow cache hits using the old generation number
72 * to reference the defunct memslots.
73 *
74 * This mechanism is used to prevent getting hits in KVM's caches while a
75 * memslot update is in-progress, and to prevent cache hits *after* updating
76 * the actual generation number against accesses that were inserted into the
77 * cache *before* the memslots were updated.
78 */
79 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
80
81 /* Two fragments for cross MMIO pages. */
82 #define KVM_MAX_MMIO_FRAGMENTS 2
83
84 #ifndef KVM_MAX_NR_ADDRESS_SPACES
85 #define KVM_MAX_NR_ADDRESS_SPACES 1
86 #endif
87
88 /*
89 * For the normal pfn, the highest 12 bits should be zero,
90 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
91 * mask bit 63 to indicate the noslot pfn.
92 */
93 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
94 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
95 #define KVM_PFN_NOSLOT (0x1ULL << 63)
96
97 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
98 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
99 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
100 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
101 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
102
103 /*
104 * error pfns indicate that the gfn is in slot but faild to
105 * translate it to pfn on host.
106 */
is_error_pfn(kvm_pfn_t pfn)107 static inline bool is_error_pfn(kvm_pfn_t pfn)
108 {
109 return !!(pfn & KVM_PFN_ERR_MASK);
110 }
111
112 /*
113 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
114 * by a pending signal. Note, the signal may or may not be fatal.
115 */
is_sigpending_pfn(kvm_pfn_t pfn)116 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
117 {
118 return pfn == KVM_PFN_ERR_SIGPENDING;
119 }
120
121 /*
122 * error_noslot pfns indicate that the gfn can not be
123 * translated to pfn - it is not in slot or failed to
124 * translate it to pfn.
125 */
is_error_noslot_pfn(kvm_pfn_t pfn)126 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
127 {
128 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
129 }
130
131 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)132 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
133 {
134 return pfn == KVM_PFN_NOSLOT;
135 }
136
137 /*
138 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
139 * provide own defines and kvm_is_error_hva
140 */
141 #ifndef KVM_HVA_ERR_BAD
142
143 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
144 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
145
kvm_is_error_hva(unsigned long addr)146 static inline bool kvm_is_error_hva(unsigned long addr)
147 {
148 return addr >= PAGE_OFFSET;
149 }
150
151 #endif
152
kvm_is_error_gpa(gpa_t gpa)153 static inline bool kvm_is_error_gpa(gpa_t gpa)
154 {
155 return gpa == INVALID_GPA;
156 }
157
158 #define KVM_REQUEST_MASK GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP BIT(8)
160 #define KVM_REQUEST_WAIT BIT(9)
161 #define KVM_REQUEST_NO_ACTION BIT(10)
162 /*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK 2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170 #define KVM_REQUEST_ARCH_BASE 8
171
172 /*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191
192 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
193 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
194 #define KVM_PIT_IRQ_SOURCE_ID 2
195
196 extern struct mutex kvm_lock;
197 extern struct list_head vm_list;
198
199 struct kvm_io_range {
200 gpa_t addr;
201 int len;
202 struct kvm_io_device *dev;
203 };
204
205 #define NR_IOBUS_DEVS 1000
206
207 struct kvm_io_bus {
208 int dev_count;
209 int ioeventfd_count;
210 struct rcu_head rcu;
211 struct kvm_io_range range[];
212 };
213
214 enum kvm_bus {
215 KVM_MMIO_BUS,
216 KVM_PIO_BUS,
217 KVM_VIRTIO_CCW_NOTIFY_BUS,
218 KVM_FAST_MMIO_BUS,
219 KVM_IOCSR_BUS,
220 KVM_NR_BUSES
221 };
222
223 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
224 int len, const void *val);
225 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
226 gpa_t addr, int len, const void *val, long cookie);
227 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 int len, void *val);
229 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
230 int len, struct kvm_io_device *dev);
231 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
232 struct kvm_io_device *dev);
233 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 gpa_t addr);
235
236 #ifdef CONFIG_KVM_ASYNC_PF
237 struct kvm_async_pf {
238 struct work_struct work;
239 struct list_head link;
240 struct list_head queue;
241 struct kvm_vcpu *vcpu;
242 gpa_t cr2_or_gpa;
243 unsigned long addr;
244 struct kvm_arch_async_pf arch;
245 bool wakeup_all;
246 bool notpresent_injected;
247 };
248
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255
256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 unsigned long attributes;
259 };
260
261 enum kvm_gfn_range_filter {
262 KVM_FILTER_SHARED = BIT(0),
263 KVM_FILTER_PRIVATE = BIT(1),
264 };
265
266 struct kvm_gfn_range {
267 struct kvm_memory_slot *slot;
268 gfn_t start;
269 gfn_t end;
270 union kvm_mmu_notifier_arg arg;
271 enum kvm_gfn_range_filter attr_filter;
272 bool may_block;
273 bool lockless;
274 };
275 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
276 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
277 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
278 #endif
279
280 enum {
281 OUTSIDE_GUEST_MODE,
282 IN_GUEST_MODE,
283 EXITING_GUEST_MODE,
284 READING_SHADOW_PAGE_TABLES,
285 };
286
287 struct kvm_host_map {
288 /*
289 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
290 * a 'struct page' for it. When using mem= kernel parameter some memory
291 * can be used as guest memory but they are not managed by host
292 * kernel).
293 */
294 struct page *pinned_page;
295 struct page *page;
296 void *hva;
297 kvm_pfn_t pfn;
298 kvm_pfn_t gfn;
299 bool writable;
300 };
301
302 /*
303 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
304 * directly to check for that.
305 */
kvm_vcpu_mapped(struct kvm_host_map * map)306 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
307 {
308 return !!map->hva;
309 }
310
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)311 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
312 {
313 return single_task_running() && !need_resched() && ktime_before(cur, stop);
314 }
315
316 /*
317 * Sometimes a large or cross-page mmio needs to be broken up into separate
318 * exits for userspace servicing.
319 */
320 struct kvm_mmio_fragment {
321 gpa_t gpa;
322 void *data;
323 unsigned len;
324 };
325
326 struct kvm_vcpu {
327 struct kvm *kvm;
328 #ifdef CONFIG_PREEMPT_NOTIFIERS
329 struct preempt_notifier preempt_notifier;
330 #endif
331 int cpu;
332 int vcpu_id; /* id given by userspace at creation */
333 int vcpu_idx; /* index into kvm->vcpu_array */
334 int ____srcu_idx; /* Don't use this directly. You've been warned. */
335 #ifdef CONFIG_PROVE_RCU
336 int srcu_depth;
337 #endif
338 int mode;
339 u64 requests;
340 unsigned long guest_debug;
341
342 struct mutex mutex;
343 struct kvm_run *run;
344
345 #ifndef __KVM_HAVE_ARCH_WQP
346 struct rcuwait wait;
347 #endif
348 struct pid *pid;
349 rwlock_t pid_lock;
350 int sigset_active;
351 sigset_t sigset;
352 unsigned int halt_poll_ns;
353 bool valid_wakeup;
354
355 #ifdef CONFIG_HAS_IOMEM
356 int mmio_needed;
357 int mmio_read_completed;
358 int mmio_is_write;
359 int mmio_cur_fragment;
360 int mmio_nr_fragments;
361 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
362 #endif
363
364 #ifdef CONFIG_KVM_ASYNC_PF
365 struct {
366 u32 queued;
367 struct list_head queue;
368 struct list_head done;
369 spinlock_t lock;
370 } async_pf;
371 #endif
372
373 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
374 /*
375 * Cpu relax intercept or pause loop exit optimization
376 * in_spin_loop: set when a vcpu does a pause loop exit
377 * or cpu relax intercepted.
378 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 */
380 struct {
381 bool in_spin_loop;
382 bool dy_eligible;
383 } spin_loop;
384 #endif
385 bool wants_to_run;
386 bool preempted;
387 bool ready;
388 bool scheduled_out;
389 struct kvm_vcpu_arch arch;
390 struct kvm_vcpu_stat stat;
391 char stats_id[KVM_STATS_NAME_SIZE];
392 struct kvm_dirty_ring dirty_ring;
393
394 /*
395 * The most recently used memslot by this vCPU and the slots generation
396 * for which it is valid.
397 * No wraparound protection is needed since generations won't overflow in
398 * thousands of years, even assuming 1M memslot operations per second.
399 */
400 struct kvm_memory_slot *last_used_slot;
401 u64 last_used_slot_gen;
402 };
403
404 /*
405 * Start accounting time towards a guest.
406 * Must be called before entering guest context.
407 */
guest_timing_enter_irqoff(void)408 static __always_inline void guest_timing_enter_irqoff(void)
409 {
410 /*
411 * This is running in ioctl context so its safe to assume that it's the
412 * stime pending cputime to flush.
413 */
414 instrumentation_begin();
415 vtime_account_guest_enter();
416 instrumentation_end();
417 }
418
419 /*
420 * Enter guest context and enter an RCU extended quiescent state.
421 *
422 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
423 * unsafe to use any code which may directly or indirectly use RCU, tracing
424 * (including IRQ flag tracing), or lockdep. All code in this period must be
425 * non-instrumentable.
426 */
guest_context_enter_irqoff(void)427 static __always_inline void guest_context_enter_irqoff(void)
428 {
429 /*
430 * KVM does not hold any references to rcu protected data when it
431 * switches CPU into a guest mode. In fact switching to a guest mode
432 * is very similar to exiting to userspace from rcu point of view. In
433 * addition CPU may stay in a guest mode for quite a long time (up to
434 * one time slice). Lets treat guest mode as quiescent state, just like
435 * we do with user-mode execution.
436 */
437 if (!context_tracking_guest_enter()) {
438 instrumentation_begin();
439 rcu_virt_note_context_switch();
440 instrumentation_end();
441 }
442 }
443
444 /*
445 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
446 * guest_state_enter_irqoff().
447 */
guest_enter_irqoff(void)448 static __always_inline void guest_enter_irqoff(void)
449 {
450 guest_timing_enter_irqoff();
451 guest_context_enter_irqoff();
452 }
453
454 /**
455 * guest_state_enter_irqoff - Fixup state when entering a guest
456 *
457 * Entry to a guest will enable interrupts, but the kernel state is interrupts
458 * disabled when this is invoked. Also tell RCU about it.
459 *
460 * 1) Trace interrupts on state
461 * 2) Invoke context tracking if enabled to adjust RCU state
462 * 3) Tell lockdep that interrupts are enabled
463 *
464 * Invoked from architecture specific code before entering a guest.
465 * Must be called with interrupts disabled and the caller must be
466 * non-instrumentable.
467 * The caller has to invoke guest_timing_enter_irqoff() before this.
468 *
469 * Note: this is analogous to exit_to_user_mode().
470 */
guest_state_enter_irqoff(void)471 static __always_inline void guest_state_enter_irqoff(void)
472 {
473 instrumentation_begin();
474 trace_hardirqs_on_prepare();
475 lockdep_hardirqs_on_prepare();
476 instrumentation_end();
477
478 guest_context_enter_irqoff();
479 lockdep_hardirqs_on(CALLER_ADDR0);
480 }
481
482 /*
483 * Exit guest context and exit an RCU extended quiescent state.
484 *
485 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
486 * unsafe to use any code which may directly or indirectly use RCU, tracing
487 * (including IRQ flag tracing), or lockdep. All code in this period must be
488 * non-instrumentable.
489 */
guest_context_exit_irqoff(void)490 static __always_inline void guest_context_exit_irqoff(void)
491 {
492 /*
493 * Guest mode is treated as a quiescent state, see
494 * guest_context_enter_irqoff() for more details.
495 */
496 if (!context_tracking_guest_exit()) {
497 instrumentation_begin();
498 rcu_virt_note_context_switch();
499 instrumentation_end();
500 }
501 }
502
503 /*
504 * Stop accounting time towards a guest.
505 * Must be called after exiting guest context.
506 */
guest_timing_exit_irqoff(void)507 static __always_inline void guest_timing_exit_irqoff(void)
508 {
509 instrumentation_begin();
510 /* Flush the guest cputime we spent on the guest */
511 vtime_account_guest_exit();
512 instrumentation_end();
513 }
514
515 /*
516 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
517 * guest_timing_exit_irqoff().
518 */
guest_exit_irqoff(void)519 static __always_inline void guest_exit_irqoff(void)
520 {
521 guest_context_exit_irqoff();
522 guest_timing_exit_irqoff();
523 }
524
guest_exit(void)525 static inline void guest_exit(void)
526 {
527 unsigned long flags;
528
529 local_irq_save(flags);
530 guest_exit_irqoff();
531 local_irq_restore(flags);
532 }
533
534 /**
535 * guest_state_exit_irqoff - Establish state when returning from guest mode
536 *
537 * Entry from a guest disables interrupts, but guest mode is traced as
538 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
539 *
540 * 1) Tell lockdep that interrupts are disabled
541 * 2) Invoke context tracking if enabled to reactivate RCU
542 * 3) Trace interrupts off state
543 *
544 * Invoked from architecture specific code after exiting a guest.
545 * Must be invoked with interrupts disabled and the caller must be
546 * non-instrumentable.
547 * The caller has to invoke guest_timing_exit_irqoff() after this.
548 *
549 * Note: this is analogous to enter_from_user_mode().
550 */
guest_state_exit_irqoff(void)551 static __always_inline void guest_state_exit_irqoff(void)
552 {
553 lockdep_hardirqs_off(CALLER_ADDR0);
554 guest_context_exit_irqoff();
555
556 instrumentation_begin();
557 trace_hardirqs_off_finish();
558 instrumentation_end();
559 }
560
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)561 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
562 {
563 /*
564 * The memory barrier ensures a previous write to vcpu->requests cannot
565 * be reordered with the read of vcpu->mode. It pairs with the general
566 * memory barrier following the write of vcpu->mode in VCPU RUN.
567 */
568 smp_mb__before_atomic();
569 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
570 }
571
572 /*
573 * Some of the bitops functions do not support too long bitmaps.
574 * This number must be determined not to exceed such limits.
575 */
576 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
577
578 /*
579 * Since at idle each memslot belongs to two memslot sets it has to contain
580 * two embedded nodes for each data structure that it forms a part of.
581 *
582 * Two memslot sets (one active and one inactive) are necessary so the VM
583 * continues to run on one memslot set while the other is being modified.
584 *
585 * These two memslot sets normally point to the same set of memslots.
586 * They can, however, be desynchronized when performing a memslot management
587 * operation by replacing the memslot to be modified by its copy.
588 * After the operation is complete, both memslot sets once again point to
589 * the same, common set of memslot data.
590 *
591 * The memslots themselves are independent of each other so they can be
592 * individually added or deleted.
593 */
594 struct kvm_memory_slot {
595 struct hlist_node id_node[2];
596 struct interval_tree_node hva_node[2];
597 struct rb_node gfn_node[2];
598 gfn_t base_gfn;
599 unsigned long npages;
600 unsigned long *dirty_bitmap;
601 struct kvm_arch_memory_slot arch;
602 unsigned long userspace_addr;
603 u32 flags;
604 short id;
605 u16 as_id;
606
607 #ifdef CONFIG_KVM_GUEST_MEMFD
608 struct {
609 /*
610 * Writes protected by kvm->slots_lock. Acquiring a
611 * reference via kvm_gmem_get_file() is protected by
612 * either kvm->slots_lock or kvm->srcu.
613 */
614 struct file *file;
615 pgoff_t pgoff;
616 } gmem;
617 #endif
618 };
619
kvm_slot_has_gmem(const struct kvm_memory_slot * slot)620 static inline bool kvm_slot_has_gmem(const struct kvm_memory_slot *slot)
621 {
622 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
623 }
624
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)625 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
626 {
627 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
628 }
629
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)630 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
631 {
632 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
633 }
634
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)635 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
638
639 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
640 }
641
642 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
643 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
644 #endif
645
646 struct kvm_s390_adapter_int {
647 u64 ind_addr;
648 u64 summary_addr;
649 u64 ind_offset;
650 u32 summary_offset;
651 u32 adapter_id;
652 };
653
654 struct kvm_hv_sint {
655 u32 vcpu;
656 u32 sint;
657 };
658
659 struct kvm_xen_evtchn {
660 u32 port;
661 u32 vcpu_id;
662 int vcpu_idx;
663 u32 priority;
664 };
665
666 struct kvm_kernel_irq_routing_entry {
667 u32 gsi;
668 u32 type;
669 int (*set)(struct kvm_kernel_irq_routing_entry *e,
670 struct kvm *kvm, int irq_source_id, int level,
671 bool line_status);
672 union {
673 struct {
674 unsigned irqchip;
675 unsigned pin;
676 } irqchip;
677 struct {
678 u32 address_lo;
679 u32 address_hi;
680 u32 data;
681 u32 flags;
682 u32 devid;
683 } msi;
684 struct kvm_s390_adapter_int adapter;
685 struct kvm_hv_sint hv_sint;
686 struct kvm_xen_evtchn xen_evtchn;
687 };
688 struct hlist_node link;
689 };
690
691 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
692 struct kvm_irq_routing_table {
693 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
694 u32 nr_rt_entries;
695 /*
696 * Array indexed by gsi. Each entry contains list of irq chips
697 * the gsi is connected to.
698 */
699 struct hlist_head map[] __counted_by(nr_rt_entries);
700 };
701 #endif
702
703 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
704
705 #ifndef KVM_INTERNAL_MEM_SLOTS
706 #define KVM_INTERNAL_MEM_SLOTS 0
707 #endif
708
709 #define KVM_MEM_SLOTS_NUM SHRT_MAX
710 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
711
712 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)713 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
714 {
715 return KVM_MAX_NR_ADDRESS_SPACES;
716 }
717
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)718 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
719 {
720 return 0;
721 }
722 #endif
723
724 #ifndef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_arch_has_private_mem(struct kvm * kvm)725 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
726 {
727 return false;
728 }
729 #endif
730
731 #ifdef CONFIG_KVM_GUEST_MEMFD
732 bool kvm_arch_supports_gmem_mmap(struct kvm *kvm);
733 #endif
734
735 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)736 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
737 {
738 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
739 }
740 #endif
741
742 struct kvm_memslots {
743 u64 generation;
744 atomic_long_t last_used_slot;
745 struct rb_root_cached hva_tree;
746 struct rb_root gfn_tree;
747 /*
748 * The mapping table from slot id to memslot.
749 *
750 * 7-bit bucket count matches the size of the old id to index array for
751 * 512 slots, while giving good performance with this slot count.
752 * Higher bucket counts bring only small performance improvements but
753 * always result in higher memory usage (even for lower memslot counts).
754 */
755 DECLARE_HASHTABLE(id_hash, 7);
756 int node_idx;
757 };
758
759 struct kvm {
760 #ifdef KVM_HAVE_MMU_RWLOCK
761 rwlock_t mmu_lock;
762 #else
763 spinlock_t mmu_lock;
764 #endif /* KVM_HAVE_MMU_RWLOCK */
765
766 struct mutex slots_lock;
767
768 /*
769 * Protects the arch-specific fields of struct kvm_memory_slots in
770 * use by the VM. To be used under the slots_lock (above) or in a
771 * kvm->srcu critical section where acquiring the slots_lock would
772 * lead to deadlock with the synchronize_srcu in
773 * kvm_swap_active_memslots().
774 */
775 struct mutex slots_arch_lock;
776 struct mm_struct *mm; /* userspace tied to this vm */
777 unsigned long nr_memslot_pages;
778 /* The two memslot sets - active and inactive (per address space) */
779 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
780 /* The current active memslot set for each address space */
781 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
782 struct xarray vcpu_array;
783 /*
784 * Protected by slots_lock, but can be read outside if an
785 * incorrect answer is acceptable.
786 */
787 atomic_t nr_memslots_dirty_logging;
788
789 /* Used to wait for completion of MMU notifiers. */
790 spinlock_t mn_invalidate_lock;
791 unsigned long mn_active_invalidate_count;
792 struct rcuwait mn_memslots_update_rcuwait;
793
794 /* For management / invalidation of gfn_to_pfn_caches */
795 spinlock_t gpc_lock;
796 struct list_head gpc_list;
797
798 /*
799 * created_vcpus is protected by kvm->lock, and is incremented
800 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
801 * incremented after storing the kvm_vcpu pointer in vcpus,
802 * and is accessed atomically.
803 */
804 atomic_t online_vcpus;
805 int max_vcpus;
806 int created_vcpus;
807 int last_boosted_vcpu;
808 struct list_head vm_list;
809 struct mutex lock;
810 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
811 #ifdef CONFIG_HAVE_KVM_IRQCHIP
812 struct {
813 spinlock_t lock;
814 struct list_head items;
815 /* resampler_list update side is protected by resampler_lock. */
816 struct list_head resampler_list;
817 struct mutex resampler_lock;
818 } irqfds;
819 #endif
820 struct list_head ioeventfds;
821 struct kvm_vm_stat stat;
822 struct kvm_arch arch;
823 refcount_t users_count;
824 #ifdef CONFIG_KVM_MMIO
825 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
826 spinlock_t ring_lock;
827 struct list_head coalesced_zones;
828 #endif
829
830 struct mutex irq_lock;
831 #ifdef CONFIG_HAVE_KVM_IRQCHIP
832 /*
833 * Update side is protected by irq_lock.
834 */
835 struct kvm_irq_routing_table __rcu *irq_routing;
836
837 struct hlist_head irq_ack_notifier_list;
838 #endif
839
840 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
841 struct mmu_notifier mmu_notifier;
842 unsigned long mmu_invalidate_seq;
843 long mmu_invalidate_in_progress;
844 gfn_t mmu_invalidate_range_start;
845 gfn_t mmu_invalidate_range_end;
846 #endif
847 struct list_head devices;
848 u64 manual_dirty_log_protect;
849 struct dentry *debugfs_dentry;
850 struct kvm_stat_data **debugfs_stat_data;
851 struct srcu_struct srcu;
852 struct srcu_struct irq_srcu;
853 pid_t userspace_pid;
854 bool override_halt_poll_ns;
855 unsigned int max_halt_poll_ns;
856 u32 dirty_ring_size;
857 bool dirty_ring_with_bitmap;
858 bool vm_bugged;
859 bool vm_dead;
860
861 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
862 struct notifier_block pm_notifier;
863 #endif
864 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
865 /* Protected by slots_lock (for writes) and RCU (for reads) */
866 struct xarray mem_attr_array;
867 #endif
868 char stats_id[KVM_STATS_NAME_SIZE];
869 };
870
871 #define kvm_err(fmt, ...) \
872 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
873 #define kvm_info(fmt, ...) \
874 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
875 #define kvm_debug(fmt, ...) \
876 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
877 #define kvm_debug_ratelimited(fmt, ...) \
878 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
879 ## __VA_ARGS__)
880 #define kvm_pr_unimpl(fmt, ...) \
881 pr_err_ratelimited("kvm [%i]: " fmt, \
882 task_tgid_nr(current), ## __VA_ARGS__)
883
884 /* The guest did something we don't support. */
885 #define vcpu_unimpl(vcpu, fmt, ...) \
886 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
887 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
888
889 #define vcpu_debug(vcpu, fmt, ...) \
890 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
891 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
892 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
893 ## __VA_ARGS__)
894 #define vcpu_err(vcpu, fmt, ...) \
895 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
896
kvm_vm_dead(struct kvm * kvm)897 static inline void kvm_vm_dead(struct kvm *kvm)
898 {
899 kvm->vm_dead = true;
900 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
901 }
902
kvm_vm_bugged(struct kvm * kvm)903 static inline void kvm_vm_bugged(struct kvm *kvm)
904 {
905 kvm->vm_bugged = true;
906 kvm_vm_dead(kvm);
907 }
908
909
910 #define KVM_BUG(cond, kvm, fmt...) \
911 ({ \
912 bool __ret = !!(cond); \
913 \
914 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
915 kvm_vm_bugged(kvm); \
916 unlikely(__ret); \
917 })
918
919 #define KVM_BUG_ON(cond, kvm) \
920 ({ \
921 bool __ret = !!(cond); \
922 \
923 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
924 kvm_vm_bugged(kvm); \
925 unlikely(__ret); \
926 })
927
928 /*
929 * Note, "data corruption" refers to corruption of host kernel data structures,
930 * not guest data. Guest data corruption, suspected or confirmed, that is tied
931 * and contained to a single VM should *never* BUG() and potentially panic the
932 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
933 * is corrupted and that corruption can have a cascading effect to other parts
934 * of the hosts and/or to other VMs.
935 */
936 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
937 ({ \
938 bool __ret = !!(cond); \
939 \
940 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
941 BUG_ON(__ret); \
942 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
943 kvm_vm_bugged(kvm); \
944 unlikely(__ret); \
945 })
946
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)947 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
948 {
949 #ifdef CONFIG_PROVE_RCU
950 WARN_ONCE(vcpu->srcu_depth++,
951 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
952 #endif
953 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
954 }
955
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)956 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
957 {
958 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
959
960 #ifdef CONFIG_PROVE_RCU
961 WARN_ONCE(--vcpu->srcu_depth,
962 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
963 #endif
964 }
965
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)966 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
967 {
968 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
969 }
970
971 /*
972 * Get a bus reference under the update-side lock. No long-term SRCU reader
973 * references are permitted, to avoid stale reads vs concurrent IO
974 * registrations.
975 */
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)976 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
977 {
978 return rcu_dereference_protected(kvm->buses[idx],
979 lockdep_is_held(&kvm->slots_lock));
980 }
981
kvm_get_vcpu(struct kvm * kvm,int i)982 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
983 {
984 int num_vcpus = atomic_read(&kvm->online_vcpus);
985
986 /*
987 * Explicitly verify the target vCPU is online, as the anti-speculation
988 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
989 * index, clamping the index to 0 would return vCPU0, not NULL.
990 */
991 if (i >= num_vcpus)
992 return NULL;
993
994 i = array_index_nospec(i, num_vcpus);
995
996 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
997 smp_rmb();
998 return xa_load(&kvm->vcpu_array, i);
999 }
1000
1001 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
1002 if (atomic_read(&kvm->online_vcpus)) \
1003 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
1004 (atomic_read(&kvm->online_vcpus) - 1))
1005
kvm_get_vcpu_by_id(struct kvm * kvm,int id)1006 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1007 {
1008 struct kvm_vcpu *vcpu = NULL;
1009 unsigned long i;
1010
1011 if (id < 0)
1012 return NULL;
1013 if (id < KVM_MAX_VCPUS)
1014 vcpu = kvm_get_vcpu(kvm, id);
1015 if (vcpu && vcpu->vcpu_id == id)
1016 return vcpu;
1017 kvm_for_each_vcpu(i, vcpu, kvm)
1018 if (vcpu->vcpu_id == id)
1019 return vcpu;
1020 return NULL;
1021 }
1022
1023 void kvm_destroy_vcpus(struct kvm *kvm);
1024
1025 int kvm_trylock_all_vcpus(struct kvm *kvm);
1026 int kvm_lock_all_vcpus(struct kvm *kvm);
1027 void kvm_unlock_all_vcpus(struct kvm *kvm);
1028
1029 void vcpu_load(struct kvm_vcpu *vcpu);
1030 void vcpu_put(struct kvm_vcpu *vcpu);
1031
1032 #ifdef CONFIG_KVM_IOAPIC
1033 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1034 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1035 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1036 {
1037 }
1038 #endif
1039
1040 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1041 int kvm_irqfd_init(void);
1042 void kvm_irqfd_exit(void);
1043 #else
kvm_irqfd_init(void)1044 static inline int kvm_irqfd_init(void)
1045 {
1046 return 0;
1047 }
1048
kvm_irqfd_exit(void)1049 static inline void kvm_irqfd_exit(void)
1050 {
1051 }
1052 #endif
1053 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1054 void kvm_exit(void);
1055
1056 void kvm_get_kvm(struct kvm *kvm);
1057 bool kvm_get_kvm_safe(struct kvm *kvm);
1058 void kvm_put_kvm(struct kvm *kvm);
1059 bool file_is_kvm(struct file *file);
1060 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1061
__kvm_memslots(struct kvm * kvm,int as_id)1062 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1063 {
1064 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1065 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1066 lockdep_is_held(&kvm->slots_lock) ||
1067 !refcount_read(&kvm->users_count));
1068 }
1069
kvm_memslots(struct kvm * kvm)1070 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1071 {
1072 return __kvm_memslots(kvm, 0);
1073 }
1074
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1075 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1076 {
1077 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1078
1079 return __kvm_memslots(vcpu->kvm, as_id);
1080 }
1081
kvm_memslots_empty(struct kvm_memslots * slots)1082 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1083 {
1084 return RB_EMPTY_ROOT(&slots->gfn_tree);
1085 }
1086
1087 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1088
1089 #define kvm_for_each_memslot(memslot, bkt, slots) \
1090 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1091 if (WARN_ON_ONCE(!memslot->npages)) { \
1092 } else
1093
1094 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1095 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1096 {
1097 struct kvm_memory_slot *slot;
1098 int idx = slots->node_idx;
1099
1100 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1101 if (slot->id == id)
1102 return slot;
1103 }
1104
1105 return NULL;
1106 }
1107
1108 /* Iterator used for walking memslots that overlap a gfn range. */
1109 struct kvm_memslot_iter {
1110 struct kvm_memslots *slots;
1111 struct rb_node *node;
1112 struct kvm_memory_slot *slot;
1113 };
1114
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1115 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1116 {
1117 iter->node = rb_next(iter->node);
1118 if (!iter->node)
1119 return;
1120
1121 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1122 }
1123
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1124 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1125 struct kvm_memslots *slots,
1126 gfn_t start)
1127 {
1128 int idx = slots->node_idx;
1129 struct rb_node *tmp;
1130 struct kvm_memory_slot *slot;
1131
1132 iter->slots = slots;
1133
1134 /*
1135 * Find the so called "upper bound" of a key - the first node that has
1136 * its key strictly greater than the searched one (the start gfn in our case).
1137 */
1138 iter->node = NULL;
1139 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1140 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1141 if (start < slot->base_gfn) {
1142 iter->node = tmp;
1143 tmp = tmp->rb_left;
1144 } else {
1145 tmp = tmp->rb_right;
1146 }
1147 }
1148
1149 /*
1150 * Find the slot with the lowest gfn that can possibly intersect with
1151 * the range, so we'll ideally have slot start <= range start
1152 */
1153 if (iter->node) {
1154 /*
1155 * A NULL previous node means that the very first slot
1156 * already has a higher start gfn.
1157 * In this case slot start > range start.
1158 */
1159 tmp = rb_prev(iter->node);
1160 if (tmp)
1161 iter->node = tmp;
1162 } else {
1163 /* a NULL node below means no slots */
1164 iter->node = rb_last(&slots->gfn_tree);
1165 }
1166
1167 if (iter->node) {
1168 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1169
1170 /*
1171 * It is possible in the slot start < range start case that the
1172 * found slot ends before or at range start (slot end <= range start)
1173 * and so it does not overlap the requested range.
1174 *
1175 * In such non-overlapping case the next slot (if it exists) will
1176 * already have slot start > range start, otherwise the logic above
1177 * would have found it instead of the current slot.
1178 */
1179 if (iter->slot->base_gfn + iter->slot->npages <= start)
1180 kvm_memslot_iter_next(iter);
1181 }
1182 }
1183
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1184 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1185 {
1186 if (!iter->node)
1187 return false;
1188
1189 /*
1190 * If this slot starts beyond or at the end of the range so does
1191 * every next one
1192 */
1193 return iter->slot->base_gfn < end;
1194 }
1195
1196 /* Iterate over each memslot at least partially intersecting [start, end) range */
1197 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1198 for (kvm_memslot_iter_start(iter, slots, start); \
1199 kvm_memslot_iter_is_valid(iter, end); \
1200 kvm_memslot_iter_next(iter))
1201
1202 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1203 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1204 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1205
1206 /*
1207 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1208 * - create a new memory slot
1209 * - delete an existing memory slot
1210 * - modify an existing memory slot
1211 * -- move it in the guest physical memory space
1212 * -- just change its flags
1213 *
1214 * Since flags can be changed by some of these operations, the following
1215 * differentiation is the best we can do for kvm_set_memory_region():
1216 */
1217 enum kvm_mr_change {
1218 KVM_MR_CREATE,
1219 KVM_MR_DELETE,
1220 KVM_MR_MOVE,
1221 KVM_MR_FLAGS_ONLY,
1222 };
1223
1224 int kvm_set_internal_memslot(struct kvm *kvm,
1225 const struct kvm_userspace_memory_region2 *mem);
1226 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1227 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1228 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1229 const struct kvm_memory_slot *old,
1230 struct kvm_memory_slot *new,
1231 enum kvm_mr_change change);
1232 void kvm_arch_commit_memory_region(struct kvm *kvm,
1233 struct kvm_memory_slot *old,
1234 const struct kvm_memory_slot *new,
1235 enum kvm_mr_change change);
1236 /* flush all memory translations */
1237 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1238 /* flush memory translations pointing to 'slot' */
1239 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1240 struct kvm_memory_slot *slot);
1241
1242 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1243 struct page **pages, int nr_pages);
1244
1245 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
gfn_to_page(struct kvm * kvm,gfn_t gfn)1246 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1247 {
1248 return __gfn_to_page(kvm, gfn, true);
1249 }
1250
1251 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1252 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1253 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1254 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1255 bool *writable);
1256
kvm_release_page_unused(struct page * page)1257 static inline void kvm_release_page_unused(struct page *page)
1258 {
1259 if (!page)
1260 return;
1261
1262 put_page(page);
1263 }
1264
1265 void kvm_release_page_clean(struct page *page);
1266 void kvm_release_page_dirty(struct page *page);
1267
kvm_release_faultin_page(struct kvm * kvm,struct page * page,bool unused,bool dirty)1268 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1269 bool unused, bool dirty)
1270 {
1271 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1272
1273 if (!page)
1274 return;
1275
1276 /*
1277 * If the page that KVM got from the *primary MMU* is writable, and KVM
1278 * installed or reused a SPTE, mark the page/folio dirty. Note, this
1279 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1280 * the GFN is write-protected. Folios can't be safely marked dirty
1281 * outside of mmu_lock as doing so could race with writeback on the
1282 * folio. As a result, KVM can't mark folios dirty in the fast page
1283 * fault handler, and so KVM must (somewhat) speculatively mark the
1284 * folio dirty if KVM could locklessly make the SPTE writable.
1285 */
1286 if (unused)
1287 kvm_release_page_unused(page);
1288 else if (dirty)
1289 kvm_release_page_dirty(page);
1290 else
1291 kvm_release_page_clean(page);
1292 }
1293
1294 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1295 unsigned int foll, bool *writable,
1296 struct page **refcounted_page);
1297
kvm_faultin_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool write,bool * writable,struct page ** refcounted_page)1298 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1299 bool write, bool *writable,
1300 struct page **refcounted_page)
1301 {
1302 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1303 write ? FOLL_WRITE : 0, writable, refcounted_page);
1304 }
1305
1306 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1307 int len);
1308 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1309 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1310 void *data, unsigned long len);
1311 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1312 void *data, unsigned int offset,
1313 unsigned long len);
1314 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1315 int offset, int len);
1316 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1317 unsigned long len);
1318 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1319 void *data, unsigned long len);
1320 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1321 void *data, unsigned int offset,
1322 unsigned long len);
1323 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1324 gpa_t gpa, unsigned long len);
1325
1326 #define __kvm_get_guest(kvm, gfn, offset, v) \
1327 ({ \
1328 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1329 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1330 int __ret = -EFAULT; \
1331 \
1332 if (!kvm_is_error_hva(__addr)) \
1333 __ret = get_user(v, __uaddr); \
1334 __ret; \
1335 })
1336
1337 #define kvm_get_guest(kvm, gpa, v) \
1338 ({ \
1339 gpa_t __gpa = gpa; \
1340 struct kvm *__kvm = kvm; \
1341 \
1342 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1343 offset_in_page(__gpa), v); \
1344 })
1345
1346 #define __kvm_put_guest(kvm, gfn, offset, v) \
1347 ({ \
1348 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1349 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1350 int __ret = -EFAULT; \
1351 \
1352 if (!kvm_is_error_hva(__addr)) \
1353 __ret = put_user(v, __uaddr); \
1354 if (!__ret) \
1355 mark_page_dirty(kvm, gfn); \
1356 __ret; \
1357 })
1358
1359 #define kvm_put_guest(kvm, gpa, v) \
1360 ({ \
1361 gpa_t __gpa = gpa; \
1362 struct kvm *__kvm = kvm; \
1363 \
1364 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1365 offset_in_page(__gpa), v); \
1366 })
1367
1368 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1369 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1370 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1372 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1373 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1374
1375 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1376 bool writable);
1377 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1378
kvm_vcpu_map(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1379 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1380 struct kvm_host_map *map)
1381 {
1382 return __kvm_vcpu_map(vcpu, gpa, map, true);
1383 }
1384
kvm_vcpu_map_readonly(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1385 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1386 struct kvm_host_map *map)
1387 {
1388 return __kvm_vcpu_map(vcpu, gpa, map, false);
1389 }
1390
1391 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1392 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1393 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1394 int len);
1395 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1396 unsigned long len);
1397 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1398 unsigned long len);
1399 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1400 int offset, int len);
1401 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1402 unsigned long len);
1403 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1404
1405 /**
1406 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1407 *
1408 * @gpc: struct gfn_to_pfn_cache object.
1409 * @kvm: pointer to kvm instance.
1410 *
1411 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1412 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1413 * the caller before init).
1414 */
1415 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1416
1417 /**
1418 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1419 * physical address.
1420 *
1421 * @gpc: struct gfn_to_pfn_cache object.
1422 * @gpa: guest physical address to map.
1423 * @len: sanity check; the range being access must fit a single page.
1424 *
1425 * @return: 0 for success.
1426 * -EINVAL for a mapping which would cross a page boundary.
1427 * -EFAULT for an untranslatable guest physical address.
1428 *
1429 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1430 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1431 * to ensure that the cache is valid before accessing the target page.
1432 */
1433 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1434
1435 /**
1436 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1437 *
1438 * @gpc: struct gfn_to_pfn_cache object.
1439 * @hva: userspace virtual address to map.
1440 * @len: sanity check; the range being access must fit a single page.
1441 *
1442 * @return: 0 for success.
1443 * -EINVAL for a mapping which would cross a page boundary.
1444 * -EFAULT for an untranslatable guest physical address.
1445 *
1446 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1447 * merely bypasses a layer of address translation.
1448 */
1449 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1450
1451 /**
1452 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1453 *
1454 * @gpc: struct gfn_to_pfn_cache object.
1455 * @len: sanity check; the range being access must fit a single page.
1456 *
1457 * @return: %true if the cache is still valid and the address matches.
1458 * %false if the cache is not valid.
1459 *
1460 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1461 * while calling this function, and then continue to hold the lock until the
1462 * access is complete.
1463 *
1464 * Callers in IN_GUEST_MODE may do so without locking, although they should
1465 * still hold a read lock on kvm->scru for the memslot checks.
1466 */
1467 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1468
1469 /**
1470 * kvm_gpc_refresh - update a previously initialized cache.
1471 *
1472 * @gpc: struct gfn_to_pfn_cache object.
1473 * @len: sanity check; the range being access must fit a single page.
1474 *
1475 * @return: 0 for success.
1476 * -EINVAL for a mapping which would cross a page boundary.
1477 * -EFAULT for an untranslatable guest physical address.
1478 *
1479 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1480 * return from this function does not mean the page can be immediately
1481 * accessed because it may have raced with an invalidation. Callers must
1482 * still lock and check the cache status, as this function does not return
1483 * with the lock still held to permit access.
1484 */
1485 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1486
1487 /**
1488 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1489 *
1490 * @gpc: struct gfn_to_pfn_cache object.
1491 *
1492 * This removes a cache from the VM's list to be processed on MMU notifier
1493 * invocation.
1494 */
1495 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1496
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1497 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1498 {
1499 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1500 }
1501
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1502 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1503 {
1504 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1505 }
1506
1507 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1508 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1509
1510 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1511 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1512 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1513 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1514 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1515
1516 #ifndef CONFIG_S390
1517 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1518
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1519 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1520 {
1521 __kvm_vcpu_kick(vcpu, false);
1522 }
1523 #endif
1524
1525 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1526 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1527
1528 void kvm_flush_remote_tlbs(struct kvm *kvm);
1529 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1530 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1531 const struct kvm_memory_slot *memslot);
1532
1533 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1534 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1535 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1536 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1537 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1538 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1539 #endif
1540
1541 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1542 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1543 void kvm_mmu_invalidate_end(struct kvm *kvm);
1544 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1545
1546 long kvm_arch_dev_ioctl(struct file *filp,
1547 unsigned int ioctl, unsigned long arg);
1548 long kvm_arch_vcpu_ioctl(struct file *filp,
1549 unsigned int ioctl, unsigned long arg);
1550 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1551
1552 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1553
1554 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1555 struct kvm_memory_slot *slot,
1556 gfn_t gfn_offset,
1557 unsigned long mask);
1558 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1559
1560 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1561 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1562 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1563 int *is_dirty, struct kvm_memory_slot **memslot);
1564 #endif
1565
1566 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1567 bool line_status);
1568 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1569 struct kvm_enable_cap *cap);
1570 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1571 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1572 unsigned long arg);
1573
1574 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1575 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1576
1577 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1578 struct kvm_translation *tr);
1579
1580 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1581 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1582 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1583 struct kvm_sregs *sregs);
1584 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1585 struct kvm_sregs *sregs);
1586 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1587 struct kvm_mp_state *mp_state);
1588 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1589 struct kvm_mp_state *mp_state);
1590 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1591 struct kvm_guest_debug *dbg);
1592 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1593
1594 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1595 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1596 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1597 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1598 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1599 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1600
1601 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1602 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1603 #endif
1604
1605 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1606 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1607 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1608 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1609 #endif
1610
1611 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1612 /*
1613 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1614 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1615 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1616 * sequence, and at the end of the generic hardware disabling sequence.
1617 */
1618 void kvm_arch_enable_virtualization(void);
1619 void kvm_arch_disable_virtualization(void);
1620 /*
1621 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1622 * do the actual twiddling of hardware bits. The hooks are called on all
1623 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1624 * when that CPU is onlined/offlined (including for Resume/Suspend).
1625 */
1626 int kvm_arch_enable_virtualization_cpu(void);
1627 void kvm_arch_disable_virtualization_cpu(void);
1628 #endif
1629 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1630 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1631 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1632 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1633 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1634 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1635 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1636 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1637 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1638
1639 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1640 /*
1641 * All architectures that want to use vzalloc currently also
1642 * need their own kvm_arch_alloc_vm implementation.
1643 */
kvm_arch_alloc_vm(void)1644 static inline struct kvm *kvm_arch_alloc_vm(void)
1645 {
1646 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1647 }
1648 #endif
1649
__kvm_arch_free_vm(struct kvm * kvm)1650 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1651 {
1652 kvfree(kvm);
1653 }
1654
1655 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1656 static inline void kvm_arch_free_vm(struct kvm *kvm)
1657 {
1658 __kvm_arch_free_vm(kvm);
1659 }
1660 #endif
1661
1662 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1663 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1664 {
1665 return -ENOTSUPP;
1666 }
1667 #else
1668 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1669 #endif
1670
1671 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1672 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1673 gfn_t gfn, u64 nr_pages)
1674 {
1675 return -EOPNOTSUPP;
1676 }
1677 #else
1678 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1679 #endif
1680
1681 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1682 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1683 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1684 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1685 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1686 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1687 {
1688 }
1689
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1690 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1691 {
1692 }
1693
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1694 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1695 {
1696 return false;
1697 }
1698 #endif
1699
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1700 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1701 {
1702 #ifdef __KVM_HAVE_ARCH_WQP
1703 return vcpu->arch.waitp;
1704 #else
1705 return &vcpu->wait;
1706 #endif
1707 }
1708
1709 /*
1710 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1711 * true if the vCPU was blocking and was awakened, false otherwise.
1712 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1713 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1714 {
1715 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1716 }
1717
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1718 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1719 {
1720 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1721 }
1722
1723 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1724 /*
1725 * returns true if the virtual interrupt controller is initialized and
1726 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1727 * controller is dynamically instantiated and this is not always true.
1728 */
1729 bool kvm_arch_intc_initialized(struct kvm *kvm);
1730 #else
kvm_arch_intc_initialized(struct kvm * kvm)1731 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1732 {
1733 return true;
1734 }
1735 #endif
1736
1737 #ifdef CONFIG_GUEST_PERF_EVENTS
1738 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1739
1740 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1741 void kvm_unregister_perf_callbacks(void);
1742 #else
kvm_register_perf_callbacks(void * ign)1743 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1744 static inline void kvm_unregister_perf_callbacks(void) {}
1745 #endif /* CONFIG_GUEST_PERF_EVENTS */
1746
1747 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1748 void kvm_arch_destroy_vm(struct kvm *kvm);
1749
1750 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1751
1752 struct kvm_irq_ack_notifier {
1753 struct hlist_node link;
1754 unsigned gsi;
1755 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1756 };
1757
1758 int kvm_irq_map_gsi(struct kvm *kvm,
1759 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1760 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1761
1762 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1763 bool line_status);
1764 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1765 int irq_source_id, int level, bool line_status);
1766 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1767 struct kvm *kvm, int irq_source_id,
1768 int level, bool line_status);
1769 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1770 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1771 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1772 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1773 struct kvm_irq_ack_notifier *kian);
1774 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1775 struct kvm_irq_ack_notifier *kian);
1776 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1777
1778 /*
1779 * Returns a pointer to the memslot if it contains gfn.
1780 * Otherwise returns NULL.
1781 */
1782 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1783 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1784 {
1785 if (!slot)
1786 return NULL;
1787
1788 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1789 return slot;
1790 else
1791 return NULL;
1792 }
1793
1794 /*
1795 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1796 *
1797 * With "approx" set returns the memslot also when the address falls
1798 * in a hole. In that case one of the memslots bordering the hole is
1799 * returned.
1800 */
1801 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1802 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1803 {
1804 struct kvm_memory_slot *slot;
1805 struct rb_node *node;
1806 int idx = slots->node_idx;
1807
1808 slot = NULL;
1809 for (node = slots->gfn_tree.rb_node; node; ) {
1810 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1811 if (gfn >= slot->base_gfn) {
1812 if (gfn < slot->base_gfn + slot->npages)
1813 return slot;
1814 node = node->rb_right;
1815 } else
1816 node = node->rb_left;
1817 }
1818
1819 return approx ? slot : NULL;
1820 }
1821
1822 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1823 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1824 {
1825 struct kvm_memory_slot *slot;
1826
1827 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1828 slot = try_get_memslot(slot, gfn);
1829 if (slot)
1830 return slot;
1831
1832 slot = search_memslots(slots, gfn, approx);
1833 if (slot) {
1834 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1835 return slot;
1836 }
1837
1838 return NULL;
1839 }
1840
1841 /*
1842 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1843 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1844 * because that would bloat other code too much.
1845 */
1846 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1847 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1848 {
1849 return ____gfn_to_memslot(slots, gfn, false);
1850 }
1851
1852 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1853 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1854 {
1855 /*
1856 * The index was checked originally in search_memslots. To avoid
1857 * that a malicious guest builds a Spectre gadget out of e.g. page
1858 * table walks, do not let the processor speculate loads outside
1859 * the guest's registered memslots.
1860 */
1861 unsigned long offset = gfn - slot->base_gfn;
1862 offset = array_index_nospec(offset, slot->npages);
1863 return slot->userspace_addr + offset * PAGE_SIZE;
1864 }
1865
memslot_id(struct kvm * kvm,gfn_t gfn)1866 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1867 {
1868 return gfn_to_memslot(kvm, gfn)->id;
1869 }
1870
1871 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1872 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1873 {
1874 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1875
1876 return slot->base_gfn + gfn_offset;
1877 }
1878
gfn_to_gpa(gfn_t gfn)1879 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1880 {
1881 return (gpa_t)gfn << PAGE_SHIFT;
1882 }
1883
gpa_to_gfn(gpa_t gpa)1884 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1885 {
1886 return (gfn_t)(gpa >> PAGE_SHIFT);
1887 }
1888
pfn_to_hpa(kvm_pfn_t pfn)1889 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1890 {
1891 return (hpa_t)pfn << PAGE_SHIFT;
1892 }
1893
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1894 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1895 {
1896 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1897
1898 return !kvm_is_error_hva(hva);
1899 }
1900
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1901 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1902 {
1903 lockdep_assert_held(&gpc->lock);
1904
1905 if (!gpc->memslot)
1906 return;
1907
1908 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1909 }
1910
1911 enum kvm_stat_kind {
1912 KVM_STAT_VM,
1913 KVM_STAT_VCPU,
1914 };
1915
1916 struct kvm_stat_data {
1917 struct kvm *kvm;
1918 const struct _kvm_stats_desc *desc;
1919 enum kvm_stat_kind kind;
1920 };
1921
1922 struct _kvm_stats_desc {
1923 struct kvm_stats_desc desc;
1924 char name[KVM_STATS_NAME_SIZE];
1925 };
1926
1927 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1928 .flags = type | unit | base | \
1929 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1930 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1931 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1932 .exponent = exp, \
1933 .size = sz, \
1934 .bucket_size = bsz
1935
1936 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1937 { \
1938 { \
1939 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1940 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1941 }, \
1942 .name = #stat, \
1943 }
1944 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1945 { \
1946 { \
1947 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1948 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1949 }, \
1950 .name = #stat, \
1951 }
1952 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1953 { \
1954 { \
1955 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1956 .offset = offsetof(struct kvm_vm_stat, stat) \
1957 }, \
1958 .name = #stat, \
1959 }
1960 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1961 { \
1962 { \
1963 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1964 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1965 }, \
1966 .name = #stat, \
1967 }
1968 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1969 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1970 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1971
1972 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1973 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1974 unit, base, exponent, 1, 0)
1975 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1976 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1977 unit, base, exponent, 1, 0)
1978 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1979 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1980 unit, base, exponent, 1, 0)
1981 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1982 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1983 unit, base, exponent, sz, bsz)
1984 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1985 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1986 unit, base, exponent, sz, 0)
1987
1988 /* Cumulative counter, read/write */
1989 #define STATS_DESC_COUNTER(SCOPE, name) \
1990 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1991 KVM_STATS_BASE_POW10, 0)
1992 /* Instantaneous counter, read only */
1993 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1994 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1995 KVM_STATS_BASE_POW10, 0)
1996 /* Peak counter, read/write */
1997 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1998 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1999 KVM_STATS_BASE_POW10, 0)
2000
2001 /* Instantaneous boolean value, read only */
2002 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
2003 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2004 KVM_STATS_BASE_POW10, 0)
2005 /* Peak (sticky) boolean value, read/write */
2006 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
2007 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2008 KVM_STATS_BASE_POW10, 0)
2009
2010 /* Cumulative time in nanosecond */
2011 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
2012 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2013 KVM_STATS_BASE_POW10, -9)
2014 /* Linear histogram for time in nanosecond */
2015 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2016 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2017 KVM_STATS_BASE_POW10, -9, sz, bsz)
2018 /* Logarithmic histogram for time in nanosecond */
2019 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2020 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2021 KVM_STATS_BASE_POW10, -9, sz)
2022
2023 #define KVM_GENERIC_VM_STATS() \
2024 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2025 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2026
2027 #define KVM_GENERIC_VCPU_STATS() \
2028 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2029 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2030 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2031 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2032 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2033 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2034 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2035 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2036 HALT_POLL_HIST_COUNT), \
2037 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2038 HALT_POLL_HIST_COUNT), \
2039 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2040 HALT_POLL_HIST_COUNT), \
2041 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2042
2043 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2044 const struct _kvm_stats_desc *desc,
2045 void *stats, size_t size_stats,
2046 char __user *user_buffer, size_t size, loff_t *offset);
2047
2048 /**
2049 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2050 * statistics data.
2051 *
2052 * @data: start address of the stats data
2053 * @size: the number of bucket of the stats data
2054 * @value: the new value used to update the linear histogram's bucket
2055 * @bucket_size: the size (width) of a bucket
2056 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2057 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2058 u64 value, size_t bucket_size)
2059 {
2060 size_t index = div64_u64(value, bucket_size);
2061
2062 index = min(index, size - 1);
2063 ++data[index];
2064 }
2065
2066 /**
2067 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2068 * statistics data.
2069 *
2070 * @data: start address of the stats data
2071 * @size: the number of bucket of the stats data
2072 * @value: the new value used to update the logarithmic histogram's bucket
2073 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2074 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2075 {
2076 size_t index = fls64(value);
2077
2078 index = min(index, size - 1);
2079 ++data[index];
2080 }
2081
2082 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2083 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2084 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2085 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2086
2087
2088 extern const struct kvm_stats_header kvm_vm_stats_header;
2089 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2090 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2091 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2092
2093 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2094 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2095 {
2096 if (unlikely(kvm->mmu_invalidate_in_progress))
2097 return 1;
2098 /*
2099 * Ensure the read of mmu_invalidate_in_progress happens before
2100 * the read of mmu_invalidate_seq. This interacts with the
2101 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2102 * that the caller either sees the old (non-zero) value of
2103 * mmu_invalidate_in_progress or the new (incremented) value of
2104 * mmu_invalidate_seq.
2105 *
2106 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2107 * than under kvm->mmu_lock, for scalability, so can't rely on
2108 * kvm->mmu_lock to keep things ordered.
2109 */
2110 smp_rmb();
2111 if (kvm->mmu_invalidate_seq != mmu_seq)
2112 return 1;
2113 return 0;
2114 }
2115
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2116 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2117 unsigned long mmu_seq,
2118 gfn_t gfn)
2119 {
2120 lockdep_assert_held(&kvm->mmu_lock);
2121 /*
2122 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2123 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2124 * that might be being invalidated. Note that it may include some false
2125 * positives, due to shortcuts when handing concurrent invalidations.
2126 */
2127 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2128 /*
2129 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2130 * but before updating the range is a KVM bug.
2131 */
2132 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2133 kvm->mmu_invalidate_range_end == INVALID_GPA))
2134 return 1;
2135
2136 if (gfn >= kvm->mmu_invalidate_range_start &&
2137 gfn < kvm->mmu_invalidate_range_end)
2138 return 1;
2139 }
2140
2141 if (kvm->mmu_invalidate_seq != mmu_seq)
2142 return 1;
2143 return 0;
2144 }
2145
2146 /*
2147 * This lockless version of the range-based retry check *must* be paired with a
2148 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2149 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2150 * get false negatives and false positives.
2151 */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2152 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2153 unsigned long mmu_seq,
2154 gfn_t gfn)
2155 {
2156 /*
2157 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2158 * are always read from memory, e.g. so that checking for retry in a
2159 * loop won't result in an infinite retry loop. Don't force loads for
2160 * start+end, as the key to avoiding infinite retry loops is observing
2161 * the 1=>0 transition of in-progress, i.e. getting false negatives
2162 * due to stale start+end values is acceptable.
2163 */
2164 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2165 gfn >= kvm->mmu_invalidate_range_start &&
2166 gfn < kvm->mmu_invalidate_range_end)
2167 return true;
2168
2169 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2170 }
2171 #endif
2172
2173 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2174
2175 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2176
2177 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2178 int kvm_set_irq_routing(struct kvm *kvm,
2179 const struct kvm_irq_routing_entry *entries,
2180 unsigned nr,
2181 unsigned flags);
2182 int kvm_init_irq_routing(struct kvm *kvm);
2183 int kvm_set_routing_entry(struct kvm *kvm,
2184 struct kvm_kernel_irq_routing_entry *e,
2185 const struct kvm_irq_routing_entry *ue);
2186 void kvm_free_irq_routing(struct kvm *kvm);
2187
2188 #else
2189
kvm_free_irq_routing(struct kvm * kvm)2190 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2191
kvm_init_irq_routing(struct kvm * kvm)2192 static inline int kvm_init_irq_routing(struct kvm *kvm)
2193 {
2194 return 0;
2195 }
2196
2197 #endif
2198
2199 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2200
2201 void kvm_eventfd_init(struct kvm *kvm);
2202 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2203
2204 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2205 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2206 void kvm_irqfd_release(struct kvm *kvm);
2207 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2208 unsigned int irqchip,
2209 unsigned int pin);
2210 void kvm_irq_routing_update(struct kvm *);
2211 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2212 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2213 {
2214 return -EINVAL;
2215 }
2216
kvm_irqfd_release(struct kvm * kvm)2217 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2218
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2219 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2220 unsigned int irqchip,
2221 unsigned int pin)
2222 {
2223 return false;
2224 }
2225 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2226
2227 void kvm_arch_irq_routing_update(struct kvm *kvm);
2228
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2229 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2230 {
2231 /*
2232 * Ensure the rest of the request is published to kvm_check_request's
2233 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2234 */
2235 smp_wmb();
2236 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2237 }
2238
kvm_make_request(int req,struct kvm_vcpu * vcpu)2239 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2240 {
2241 /*
2242 * Request that don't require vCPU action should never be logged in
2243 * vcpu->requests. The vCPU won't clear the request, so it will stay
2244 * logged indefinitely and prevent the vCPU from entering the guest.
2245 */
2246 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2247 (req & KVM_REQUEST_NO_ACTION));
2248
2249 __kvm_make_request(req, vcpu);
2250 }
2251
2252 #ifndef CONFIG_S390
kvm_make_request_and_kick(int req,struct kvm_vcpu * vcpu)2253 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2254 {
2255 kvm_make_request(req, vcpu);
2256 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2257 }
2258 #endif
2259
kvm_request_pending(struct kvm_vcpu * vcpu)2260 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2261 {
2262 return READ_ONCE(vcpu->requests);
2263 }
2264
kvm_test_request(int req,struct kvm_vcpu * vcpu)2265 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2266 {
2267 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2268 }
2269
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2270 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2271 {
2272 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2273 }
2274
kvm_check_request(int req,struct kvm_vcpu * vcpu)2275 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2276 {
2277 if (kvm_test_request(req, vcpu)) {
2278 kvm_clear_request(req, vcpu);
2279
2280 /*
2281 * Ensure the rest of the request is visible to kvm_check_request's
2282 * caller. Paired with the smp_wmb in kvm_make_request.
2283 */
2284 smp_mb__after_atomic();
2285 return true;
2286 } else {
2287 return false;
2288 }
2289 }
2290
2291 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2292 extern bool enable_virt_at_load;
2293 extern bool kvm_rebooting;
2294 #endif
2295
2296 extern unsigned int halt_poll_ns;
2297 extern unsigned int halt_poll_ns_grow;
2298 extern unsigned int halt_poll_ns_grow_start;
2299 extern unsigned int halt_poll_ns_shrink;
2300
2301 struct kvm_device {
2302 const struct kvm_device_ops *ops;
2303 struct kvm *kvm;
2304 void *private;
2305 struct list_head vm_node;
2306 };
2307
2308 /* create, destroy, and name are mandatory */
2309 struct kvm_device_ops {
2310 const char *name;
2311
2312 /*
2313 * create is called holding kvm->lock and any operations not suitable
2314 * to do while holding the lock should be deferred to init (see
2315 * below).
2316 */
2317 int (*create)(struct kvm_device *dev, u32 type);
2318
2319 /*
2320 * init is called after create if create is successful and is called
2321 * outside of holding kvm->lock.
2322 */
2323 void (*init)(struct kvm_device *dev);
2324
2325 /*
2326 * Destroy is responsible for freeing dev.
2327 *
2328 * Destroy may be called before or after destructors are called
2329 * on emulated I/O regions, depending on whether a reference is
2330 * held by a vcpu or other kvm component that gets destroyed
2331 * after the emulated I/O.
2332 */
2333 void (*destroy)(struct kvm_device *dev);
2334
2335 /*
2336 * Release is an alternative method to free the device. It is
2337 * called when the device file descriptor is closed. Once
2338 * release is called, the destroy method will not be called
2339 * anymore as the device is removed from the device list of
2340 * the VM. kvm->lock is held.
2341 */
2342 void (*release)(struct kvm_device *dev);
2343
2344 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2345 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2346 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2347 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2348 unsigned long arg);
2349 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2350 };
2351
2352 struct kvm_device *kvm_device_from_filp(struct file *filp);
2353 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2354 void kvm_unregister_device_ops(u32 type);
2355
2356 extern struct kvm_device_ops kvm_mpic_ops;
2357 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2358 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2359
2360 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2361
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2362 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2363 {
2364 vcpu->spin_loop.in_spin_loop = val;
2365 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2366 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2367 {
2368 vcpu->spin_loop.dy_eligible = val;
2369 }
2370
2371 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2372
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2373 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2374 {
2375 }
2376
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2377 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2378 {
2379 }
2380 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2381
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2382 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2383 {
2384 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2385 !(memslot->flags & KVM_MEMSLOT_INVALID));
2386 }
2387
2388 struct kvm_vcpu *kvm_get_running_vcpu(void);
2389 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2390
2391 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2392 struct kvm_kernel_irqfd;
2393
2394 bool kvm_arch_has_irq_bypass(void);
2395 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2396 struct irq_bypass_producer *);
2397 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2398 struct irq_bypass_producer *);
2399 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2400 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2401 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2402 struct kvm_kernel_irq_routing_entry *old,
2403 struct kvm_kernel_irq_routing_entry *new);
2404 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2405
2406 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2407 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2408 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2409 {
2410 return vcpu->valid_wakeup;
2411 }
2412
2413 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2414 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2415 {
2416 return true;
2417 }
2418 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2419
2420 #ifdef CONFIG_HAVE_KVM_NO_POLL
2421 /* Callback that tells if we must not poll */
2422 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2423 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2424 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2425 {
2426 return false;
2427 }
2428 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2429
2430 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2431 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2432 unsigned int ioctl, unsigned long arg);
2433 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2434 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2435 unsigned int ioctl,
2436 unsigned long arg)
2437 {
2438 return -ENOIOCTLCMD;
2439 }
2440 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2441
2442 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2443
2444 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2445 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2446 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2447 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2448 {
2449 return 0;
2450 }
2451 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2452
2453 #ifdef CONFIG_VIRT_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2454 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2455 {
2456 vcpu->run->exit_reason = KVM_EXIT_INTR;
2457 vcpu->stat.signal_exits++;
2458 }
2459
kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu * vcpu)2460 static inline int kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu *vcpu)
2461 {
2462 int r = xfer_to_guest_mode_handle_work();
2463
2464 if (r) {
2465 WARN_ON_ONCE(r != -EINTR);
2466 kvm_handle_signal_exit(vcpu);
2467 }
2468 return r;
2469 }
2470 #endif /* CONFIG_VIRT_XFER_TO_GUEST_WORK */
2471
2472 /*
2473 * If more than one page is being (un)accounted, @virt must be the address of
2474 * the first page of a block of pages what were allocated together (i.e
2475 * accounted together).
2476 *
2477 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2478 * is thread-safe.
2479 */
kvm_account_pgtable_pages(void * virt,int nr)2480 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2481 {
2482 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2483 }
2484
2485 /*
2486 * This defines how many reserved entries we want to keep before we
2487 * kick the vcpu to the userspace to avoid dirty ring full. This
2488 * value can be tuned to higher if e.g. PML is enabled on the host.
2489 */
2490 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2491
2492 /* Max number of entries allowed for each kvm dirty ring */
2493 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2494
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2495 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2496 gpa_t gpa, gpa_t size,
2497 bool is_write, bool is_exec,
2498 bool is_private)
2499 {
2500 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2501 vcpu->run->memory_fault.gpa = gpa;
2502 vcpu->run->memory_fault.size = size;
2503
2504 /* RWX flags are not (yet) defined or communicated to userspace. */
2505 vcpu->run->memory_fault.flags = 0;
2506 if (is_private)
2507 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2508 }
2509
kvm_memslot_is_gmem_only(const struct kvm_memory_slot * slot)2510 static inline bool kvm_memslot_is_gmem_only(const struct kvm_memory_slot *slot)
2511 {
2512 if (!IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
2513 return false;
2514
2515 return slot->flags & KVM_MEMSLOT_GMEM_ONLY;
2516 }
2517
2518 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2519 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2520 {
2521 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2522 }
2523
2524 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2525 unsigned long mask, unsigned long attrs);
2526 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2527 struct kvm_gfn_range *range);
2528 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2529 struct kvm_gfn_range *range);
2530
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2531 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2532 {
2533 return kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2534 }
2535 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2536 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2537 {
2538 return false;
2539 }
2540 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2541
2542 #ifdef CONFIG_KVM_GUEST_MEMFD
2543 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2544 gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2545 int *max_order);
2546 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,struct page ** page,int * max_order)2547 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2548 struct kvm_memory_slot *slot, gfn_t gfn,
2549 kvm_pfn_t *pfn, struct page **page,
2550 int *max_order)
2551 {
2552 KVM_BUG_ON(1, kvm);
2553 return -EIO;
2554 }
2555 #endif /* CONFIG_KVM_GUEST_MEMFD */
2556
2557 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2558 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2559 #endif
2560
2561 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_POPULATE
2562 /**
2563 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2564 *
2565 * @kvm: KVM instance
2566 * @gfn: starting GFN to be populated
2567 * @src: userspace-provided buffer containing data to copy into GFN range
2568 * (passed to @post_populate, and incremented on each iteration
2569 * if not NULL)
2570 * @npages: number of pages to copy from userspace-buffer
2571 * @post_populate: callback to issue for each gmem page that backs the GPA
2572 * range
2573 * @opaque: opaque data to pass to @post_populate callback
2574 *
2575 * This is primarily intended for cases where a gmem-backed GPA range needs
2576 * to be initialized with userspace-provided data prior to being mapped into
2577 * the guest as a private page. This should be called with the slots->lock
2578 * held so that caller-enforced invariants regarding the expected memory
2579 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2580 *
2581 * Returns the number of pages that were populated.
2582 */
2583 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2584 void __user *src, int order, void *opaque);
2585
2586 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2587 kvm_gmem_populate_cb post_populate, void *opaque);
2588 #endif
2589
2590 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2591 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2592 #endif
2593
2594 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2595 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2596 struct kvm_pre_fault_memory *range);
2597 #endif
2598
2599 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2600 int kvm_enable_virtualization(void);
2601 void kvm_disable_virtualization(void);
2602 #else
kvm_enable_virtualization(void)2603 static inline int kvm_enable_virtualization(void) { return 0; }
kvm_disable_virtualization(void)2604 static inline void kvm_disable_virtualization(void) { }
2605 #endif
2606
2607 #endif
2608