xref: /linux/drivers/perf/arm_pmu.c (revision 6fb44438a5e1897a72dd11139274735256be8069)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 		return GENMASK_ULL(62, 0);
114 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 		return GENMASK_ULL(46, 0);
116 	else
117 		return GENMASK_ULL(31, 0);
118 }
119 
120 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)121 armpmu_map_cache_event(const unsigned (*cache_map)
122 				      [PERF_COUNT_HW_CACHE_MAX]
123 				      [PERF_COUNT_HW_CACHE_OP_MAX]
124 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 		       u64 config)
126 {
127 	unsigned int cache_type, cache_op, cache_result, ret;
128 
129 	cache_type = (config >>  0) & 0xff;
130 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131 		return -EINVAL;
132 
133 	cache_op = (config >>  8) & 0xff;
134 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 		return -EINVAL;
136 
137 	cache_result = (config >> 16) & 0xff;
138 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139 		return -EINVAL;
140 
141 	if (!cache_map)
142 		return -ENOENT;
143 
144 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145 
146 	if (ret == CACHE_OP_UNSUPPORTED)
147 		return -ENOENT;
148 
149 	return ret;
150 }
151 
152 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155 	int mapping;
156 
157 	if (config >= PERF_COUNT_HW_MAX)
158 		return -EINVAL;
159 
160 	if (!event_map)
161 		return -ENOENT;
162 
163 	mapping = (*event_map)[config];
164 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166 
167 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170 	return (int)(config & raw_event_mask);
171 }
172 
173 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)174 armpmu_map_event(struct perf_event *event,
175 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 		 const unsigned (*cache_map)
177 				[PERF_COUNT_HW_CACHE_MAX]
178 				[PERF_COUNT_HW_CACHE_OP_MAX]
179 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
180 		 u32 raw_event_mask)
181 {
182 	u64 config = event->attr.config;
183 	int type = event->attr.type;
184 
185 	if (type == event->pmu->type)
186 		return armpmu_map_raw_event(raw_event_mask, config);
187 
188 	switch (type) {
189 	case PERF_TYPE_HARDWARE:
190 		return armpmu_map_hw_event(event_map, config);
191 	case PERF_TYPE_HW_CACHE:
192 		return armpmu_map_cache_event(cache_map, config);
193 	case PERF_TYPE_RAW:
194 		return armpmu_map_raw_event(raw_event_mask, config);
195 	}
196 
197 	return -ENOENT;
198 }
199 
armpmu_event_set_period(struct perf_event * event)200 int armpmu_event_set_period(struct perf_event *event)
201 {
202 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 	struct hw_perf_event *hwc = &event->hw;
204 	s64 left = local64_read(&hwc->period_left);
205 	s64 period = hwc->sample_period;
206 	u64 max_period;
207 	int ret = 0;
208 
209 	max_period = arm_pmu_event_max_period(event);
210 	if (unlikely(left <= -period)) {
211 		left = period;
212 		local64_set(&hwc->period_left, left);
213 		hwc->last_period = period;
214 		ret = 1;
215 	}
216 
217 	if (unlikely(left <= 0)) {
218 		left += period;
219 		local64_set(&hwc->period_left, left);
220 		hwc->last_period = period;
221 		ret = 1;
222 	}
223 
224 	/*
225 	 * Limit the maximum period to prevent the counter value
226 	 * from overtaking the one we are about to program. In
227 	 * effect we are reducing max_period to account for
228 	 * interrupt latency (and we are being very conservative).
229 	 */
230 	if (left > (max_period >> 1))
231 		left = (max_period >> 1);
232 
233 	local64_set(&hwc->prev_count, (u64)-left);
234 
235 	armpmu->write_counter(event, (u64)(-left) & max_period);
236 
237 	perf_event_update_userpage(event);
238 
239 	return ret;
240 }
241 
armpmu_event_update(struct perf_event * event)242 u64 armpmu_event_update(struct perf_event *event)
243 {
244 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 	struct hw_perf_event *hwc = &event->hw;
246 	u64 delta, prev_raw_count, new_raw_count;
247 	u64 max_period = arm_pmu_event_max_period(event);
248 
249 again:
250 	prev_raw_count = local64_read(&hwc->prev_count);
251 	new_raw_count = armpmu->read_counter(event);
252 
253 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 			     new_raw_count) != prev_raw_count)
255 		goto again;
256 
257 	delta = (new_raw_count - prev_raw_count) & max_period;
258 
259 	local64_add(delta, &event->count);
260 	local64_sub(delta, &hwc->period_left);
261 
262 	return new_raw_count;
263 }
264 
265 static void
armpmu_read(struct perf_event * event)266 armpmu_read(struct perf_event *event)
267 {
268 	armpmu_event_update(event);
269 }
270 
271 static void
armpmu_stop(struct perf_event * event,int flags)272 armpmu_stop(struct perf_event *event, int flags)
273 {
274 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 	struct hw_perf_event *hwc = &event->hw;
276 
277 	/*
278 	 * ARM pmu always has to update the counter, so ignore
279 	 * PERF_EF_UPDATE, see comments in armpmu_start().
280 	 */
281 	if (!(hwc->state & PERF_HES_STOPPED)) {
282 		armpmu->disable(event);
283 		armpmu_event_update(event);
284 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285 	}
286 }
287 
armpmu_start(struct perf_event * event,int flags)288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 	struct hw_perf_event *hwc = &event->hw;
292 
293 	/*
294 	 * ARM pmu always has to reprogram the period, so ignore
295 	 * PERF_EF_RELOAD, see the comment below.
296 	 */
297 	if (flags & PERF_EF_RELOAD)
298 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299 
300 	hwc->state = 0;
301 	/*
302 	 * Set the period again. Some counters can't be stopped, so when we
303 	 * were stopped we simply disabled the IRQ source and the counter
304 	 * may have been left counting. If we don't do this step then we may
305 	 * get an interrupt too soon or *way* too late if the overflow has
306 	 * happened since disabling.
307 	 */
308 	armpmu_event_set_period(event);
309 	armpmu->enable(event);
310 }
311 
312 static void
armpmu_del(struct perf_event * event,int flags)313 armpmu_del(struct perf_event *event, int flags)
314 {
315 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 	struct hw_perf_event *hwc = &event->hw;
318 	int idx = hwc->idx;
319 
320 	armpmu_stop(event, PERF_EF_UPDATE);
321 
322 	if (has_branch_stack(event)) {
323 		hw_events->branch_users--;
324 		perf_sched_cb_dec(event->pmu);
325 	}
326 
327 	hw_events->events[idx] = NULL;
328 	armpmu->clear_event_idx(hw_events, event);
329 	perf_event_update_userpage(event);
330 	/* Clear the allocated counter */
331 	hwc->idx = -1;
332 }
333 
334 static int
armpmu_add(struct perf_event * event,int flags)335 armpmu_add(struct perf_event *event, int flags)
336 {
337 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
338 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
339 	struct hw_perf_event *hwc = &event->hw;
340 	int idx;
341 
342 	/* An event following a process won't be stopped earlier */
343 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
344 		return -ENOENT;
345 
346 	/* If we don't have a space for the counter then finish early. */
347 	idx = armpmu->get_event_idx(hw_events, event);
348 	if (idx < 0)
349 		return idx;
350 
351 	/* The newly-allocated counter should be empty */
352 	WARN_ON_ONCE(hw_events->events[idx]);
353 
354 	if (has_branch_stack(event)) {
355 		hw_events->branch_users++;
356 		perf_sched_cb_inc(event->pmu);
357 	}
358 
359 	event->hw.idx = idx;
360 	hw_events->events[idx] = event;
361 
362 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
363 	if (flags & PERF_EF_START)
364 		armpmu_start(event, PERF_EF_RELOAD);
365 
366 	/* Propagate our changes to the userspace mapping. */
367 	perf_event_update_userpage(event);
368 
369 	return 0;
370 }
371 
372 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)373 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
374 			       struct perf_event *event)
375 {
376 	struct arm_pmu *armpmu;
377 
378 	if (is_software_event(event))
379 		return 1;
380 
381 	/*
382 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
383 	 * core perf code won't check that the pmu->ctx == leader->ctx
384 	 * until after pmu->event_init(event).
385 	 */
386 	if (event->pmu != pmu)
387 		return 0;
388 
389 	if (event->state < PERF_EVENT_STATE_OFF)
390 		return 1;
391 
392 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
393 		return 1;
394 
395 	armpmu = to_arm_pmu(event->pmu);
396 	return armpmu->get_event_idx(hw_events, event) >= 0;
397 }
398 
399 static int
validate_group(struct perf_event * event)400 validate_group(struct perf_event *event)
401 {
402 	struct perf_event *sibling, *leader = event->group_leader;
403 	struct pmu_hw_events fake_pmu;
404 
405 	/*
406 	 * Initialise the fake PMU. We only need to populate the
407 	 * used_mask for the purposes of validation.
408 	 */
409 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
410 
411 	if (!validate_event(event->pmu, &fake_pmu, leader))
412 		return -EINVAL;
413 
414 	if (event == leader)
415 		return 0;
416 
417 	for_each_sibling_event(sibling, leader) {
418 		if (!validate_event(event->pmu, &fake_pmu, sibling))
419 			return -EINVAL;
420 	}
421 
422 	if (!validate_event(event->pmu, &fake_pmu, event))
423 		return -EINVAL;
424 
425 	return 0;
426 }
427 
armpmu_dispatch_irq(int irq,void * dev)428 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
429 {
430 	struct arm_pmu *armpmu;
431 	int ret;
432 	u64 start_clock, finish_clock;
433 
434 	/*
435 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
436 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
437 	 * do any necessary shifting, we just need to perform the first
438 	 * dereference.
439 	 */
440 	armpmu = *(void **)dev;
441 	if (WARN_ON_ONCE(!armpmu))
442 		return IRQ_NONE;
443 
444 	start_clock = sched_clock();
445 	ret = armpmu->handle_irq(armpmu);
446 	finish_clock = sched_clock();
447 
448 	perf_sample_event_took(finish_clock - start_clock);
449 	return ret;
450 }
451 
452 static int
__hw_perf_event_init(struct perf_event * event)453 __hw_perf_event_init(struct perf_event *event)
454 {
455 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456 	struct hw_perf_event *hwc = &event->hw;
457 	int mapping, ret;
458 
459 	hwc->flags = 0;
460 	mapping = armpmu->map_event(event);
461 
462 	if (mapping < 0) {
463 		pr_debug("event %x:%llx not supported\n", event->attr.type,
464 			 event->attr.config);
465 		return mapping;
466 	}
467 
468 	/*
469 	 * We don't assign an index until we actually place the event onto
470 	 * hardware. Use -1 to signify that we haven't decided where to put it
471 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
472 	 * clever allocation or constraints checking at this point.
473 	 */
474 	hwc->idx		= -1;
475 	hwc->config_base	= 0;
476 	hwc->config		= 0;
477 	hwc->event_base		= 0;
478 
479 	/*
480 	 * Check whether we need to exclude the counter from certain modes.
481 	 */
482 	if (armpmu->set_event_filter) {
483 		ret = armpmu->set_event_filter(hwc, &event->attr);
484 		if (ret)
485 			return ret;
486 	}
487 
488 	/*
489 	 * Store the event encoding into the config_base field.
490 	 */
491 	hwc->config_base	    |= (unsigned long)mapping;
492 
493 	if (!is_sampling_event(event)) {
494 		/*
495 		 * For non-sampling runs, limit the sample_period to half
496 		 * of the counter width. That way, the new counter value
497 		 * is far less likely to overtake the previous one unless
498 		 * you have some serious IRQ latency issues.
499 		 */
500 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
501 		hwc->last_period    = hwc->sample_period;
502 		local64_set(&hwc->period_left, hwc->sample_period);
503 	}
504 
505 	return validate_group(event);
506 }
507 
armpmu_event_init(struct perf_event * event)508 static int armpmu_event_init(struct perf_event *event)
509 {
510 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
511 
512 	/*
513 	 * Reject CPU-affine events for CPUs that are of a different class to
514 	 * that which this PMU handles. Process-following events (where
515 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
516 	 * reject them later (in armpmu_add) if they're scheduled on a
517 	 * different class of CPU.
518 	 */
519 	if (event->cpu != -1 &&
520 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
521 		return -ENOENT;
522 
523 	if (has_branch_stack(event) && !armpmu->reg_brbidr)
524 		return -EOPNOTSUPP;
525 
526 	return __hw_perf_event_init(event);
527 }
528 
armpmu_enable(struct pmu * pmu)529 static void armpmu_enable(struct pmu *pmu)
530 {
531 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
532 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
533 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
534 
535 	/* For task-bound events we may be called on other CPUs */
536 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
537 		return;
538 
539 	if (enabled)
540 		armpmu->start(armpmu);
541 }
542 
armpmu_disable(struct pmu * pmu)543 static void armpmu_disable(struct pmu *pmu)
544 {
545 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
546 
547 	/* For task-bound events we may be called on other CPUs */
548 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
549 		return;
550 
551 	armpmu->stop(armpmu);
552 }
553 
554 /*
555  * In heterogeneous systems, events are specific to a particular
556  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
557  * the same microarchitecture.
558  */
armpmu_filter(struct pmu * pmu,int cpu)559 static bool armpmu_filter(struct pmu *pmu, int cpu)
560 {
561 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
562 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
563 }
564 
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)565 static ssize_t cpus_show(struct device *dev,
566 			 struct device_attribute *attr, char *buf)
567 {
568 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
569 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
570 }
571 
572 static DEVICE_ATTR_RO(cpus);
573 
574 static struct attribute *armpmu_common_attrs[] = {
575 	&dev_attr_cpus.attr,
576 	NULL,
577 };
578 
579 static const struct attribute_group armpmu_common_attr_group = {
580 	.attrs = armpmu_common_attrs,
581 };
582 
armpmu_count_irq_users(const int irq)583 static int armpmu_count_irq_users(const int irq)
584 {
585 	int cpu, count = 0;
586 
587 	for_each_possible_cpu(cpu) {
588 		if (per_cpu(cpu_irq, cpu) == irq)
589 			count++;
590 	}
591 
592 	return count;
593 }
594 
armpmu_find_irq_ops(int irq)595 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
596 {
597 	const struct pmu_irq_ops *ops = NULL;
598 	int cpu;
599 
600 	for_each_possible_cpu(cpu) {
601 		if (per_cpu(cpu_irq, cpu) != irq)
602 			continue;
603 
604 		ops = per_cpu(cpu_irq_ops, cpu);
605 		if (ops)
606 			break;
607 	}
608 
609 	return ops;
610 }
611 
armpmu_free_irq(int irq,int cpu)612 void armpmu_free_irq(int irq, int cpu)
613 {
614 	if (per_cpu(cpu_irq, cpu) == 0)
615 		return;
616 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
617 		return;
618 
619 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
620 
621 	per_cpu(cpu_irq, cpu) = 0;
622 	per_cpu(cpu_irq_ops, cpu) = NULL;
623 }
624 
armpmu_request_irq(int irq,int cpu)625 int armpmu_request_irq(int irq, int cpu)
626 {
627 	int err = 0;
628 	const irq_handler_t handler = armpmu_dispatch_irq;
629 	const struct pmu_irq_ops *irq_ops;
630 
631 	if (!irq)
632 		return 0;
633 
634 	if (!irq_is_percpu_devid(irq)) {
635 		unsigned long irq_flags;
636 
637 		err = irq_force_affinity(irq, cpumask_of(cpu));
638 
639 		if (err && num_possible_cpus() > 1) {
640 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
641 				irq, cpu);
642 			goto err_out;
643 		}
644 
645 		irq_flags = IRQF_PERCPU |
646 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
647 			    IRQF_NO_THREAD;
648 
649 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
650 				  per_cpu_ptr(&cpu_armpmu, cpu));
651 
652 		/* If cannot get an NMI, get a normal interrupt */
653 		if (err) {
654 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
655 					  per_cpu_ptr(&cpu_armpmu, cpu));
656 			irq_ops = &pmuirq_ops;
657 		} else {
658 			has_nmi = true;
659 			irq_ops = &pmunmi_ops;
660 		}
661 	} else if (armpmu_count_irq_users(irq) == 0) {
662 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
663 
664 		/* If cannot get an NMI, get a normal interrupt */
665 		if (err) {
666 			err = request_percpu_irq(irq, handler, "arm-pmu",
667 						 &cpu_armpmu);
668 			irq_ops = &percpu_pmuirq_ops;
669 		} else {
670 			has_nmi = true;
671 			irq_ops = &percpu_pmunmi_ops;
672 		}
673 	} else {
674 		/* Per cpudevid irq was already requested by another CPU */
675 		irq_ops = armpmu_find_irq_ops(irq);
676 
677 		if (WARN_ON(!irq_ops))
678 			err = -EINVAL;
679 	}
680 
681 	if (err)
682 		goto err_out;
683 
684 	per_cpu(cpu_irq, cpu) = irq;
685 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
686 	return 0;
687 
688 err_out:
689 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
690 	return err;
691 }
692 
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)693 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
694 {
695 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
696 	return per_cpu(hw_events->irq, cpu);
697 }
698 
arm_pmu_irq_is_nmi(void)699 bool arm_pmu_irq_is_nmi(void)
700 {
701 	return has_nmi;
702 }
703 
704 /*
705  * PMU hardware loses all context when a CPU goes offline.
706  * When a CPU is hotplugged back in, since some hardware registers are
707  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
708  * junk values out of them.
709  */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)710 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
711 {
712 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
713 	int irq;
714 
715 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
716 		return 0;
717 	if (pmu->reset)
718 		pmu->reset(pmu);
719 
720 	per_cpu(cpu_armpmu, cpu) = pmu;
721 
722 	irq = armpmu_get_cpu_irq(pmu, cpu);
723 	if (irq)
724 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
725 
726 	return 0;
727 }
728 
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)729 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
730 {
731 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
732 	int irq;
733 
734 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
735 		return 0;
736 
737 	irq = armpmu_get_cpu_irq(pmu, cpu);
738 	if (irq)
739 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
740 
741 	per_cpu(cpu_armpmu, cpu) = NULL;
742 
743 	return 0;
744 }
745 
746 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)747 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
748 {
749 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
750 	struct perf_event *event;
751 	int idx;
752 
753 	for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
754 		event = hw_events->events[idx];
755 		if (!event)
756 			continue;
757 
758 		switch (cmd) {
759 		case CPU_PM_ENTER:
760 			/*
761 			 * Stop and update the counter
762 			 */
763 			armpmu_stop(event, PERF_EF_UPDATE);
764 			break;
765 		case CPU_PM_EXIT:
766 		case CPU_PM_ENTER_FAILED:
767 			 /*
768 			  * Restore and enable the counter.
769 			  */
770 			armpmu_start(event, PERF_EF_RELOAD);
771 			break;
772 		default:
773 			break;
774 		}
775 	}
776 }
777 
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)778 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
779 			     void *v)
780 {
781 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
782 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
783 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
784 
785 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
786 		return NOTIFY_DONE;
787 
788 	/*
789 	 * Always reset the PMU registers on power-up even if
790 	 * there are no events running.
791 	 */
792 	if (cmd == CPU_PM_EXIT && armpmu->reset)
793 		armpmu->reset(armpmu);
794 
795 	if (!enabled)
796 		return NOTIFY_OK;
797 
798 	switch (cmd) {
799 	case CPU_PM_ENTER:
800 		armpmu->stop(armpmu);
801 		cpu_pm_pmu_setup(armpmu, cmd);
802 		break;
803 	case CPU_PM_EXIT:
804 	case CPU_PM_ENTER_FAILED:
805 		cpu_pm_pmu_setup(armpmu, cmd);
806 		armpmu->start(armpmu);
807 		break;
808 	default:
809 		return NOTIFY_DONE;
810 	}
811 
812 	return NOTIFY_OK;
813 }
814 
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)815 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
816 {
817 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
818 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
819 }
820 
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)821 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
822 {
823 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
824 }
825 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)826 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)827 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
828 #endif
829 
cpu_pmu_init(struct arm_pmu * cpu_pmu)830 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
831 {
832 	int err;
833 
834 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
835 				       &cpu_pmu->node);
836 	if (err)
837 		goto out;
838 
839 	err = cpu_pm_pmu_register(cpu_pmu);
840 	if (err)
841 		goto out_unregister;
842 
843 	return 0;
844 
845 out_unregister:
846 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
847 					    &cpu_pmu->node);
848 out:
849 	return err;
850 }
851 
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)852 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
853 {
854 	cpu_pm_pmu_unregister(cpu_pmu);
855 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
856 					    &cpu_pmu->node);
857 }
858 
armpmu_alloc(void)859 struct arm_pmu *armpmu_alloc(void)
860 {
861 	struct arm_pmu *pmu;
862 	int cpu;
863 
864 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
865 	if (!pmu)
866 		goto out;
867 
868 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
869 	if (!pmu->hw_events) {
870 		pr_info("failed to allocate per-cpu PMU data.\n");
871 		goto out_free_pmu;
872 	}
873 
874 	pmu->pmu = (struct pmu) {
875 		.pmu_enable	= armpmu_enable,
876 		.pmu_disable	= armpmu_disable,
877 		.event_init	= armpmu_event_init,
878 		.add		= armpmu_add,
879 		.del		= armpmu_del,
880 		.start		= armpmu_start,
881 		.stop		= armpmu_stop,
882 		.read		= armpmu_read,
883 		.filter		= armpmu_filter,
884 		.attr_groups	= pmu->attr_groups,
885 		/*
886 		 * This is a CPU PMU potentially in a heterogeneous
887 		 * configuration (e.g. big.LITTLE) so
888 		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
889 		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
890 		 * specific PMU.
891 		 */
892 		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
893 				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
894 	};
895 
896 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
897 		&armpmu_common_attr_group;
898 
899 	for_each_possible_cpu(cpu) {
900 		struct pmu_hw_events *events;
901 
902 		events = per_cpu_ptr(pmu->hw_events, cpu);
903 		events->percpu_pmu = pmu;
904 	}
905 
906 	return pmu;
907 
908 out_free_pmu:
909 	kfree(pmu);
910 out:
911 	return NULL;
912 }
913 
armpmu_free(struct arm_pmu * pmu)914 void armpmu_free(struct arm_pmu *pmu)
915 {
916 	free_percpu(pmu->hw_events);
917 	kfree(pmu);
918 }
919 
armpmu_register(struct arm_pmu * pmu)920 int armpmu_register(struct arm_pmu *pmu)
921 {
922 	int ret;
923 
924 	ret = cpu_pmu_init(pmu);
925 	if (ret)
926 		return ret;
927 
928 	if (!pmu->set_event_filter)
929 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
930 
931 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
932 	if (ret)
933 		goto out_destroy;
934 
935 	pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
936 		pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
937 		ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
938 		has_nmi ? ", using NMIs" : "");
939 
940 	kvm_host_pmu_init(pmu);
941 
942 	return 0;
943 
944 out_destroy:
945 	cpu_pmu_destroy(pmu);
946 	return ret;
947 }
948 
arm_pmu_hp_init(void)949 static int arm_pmu_hp_init(void)
950 {
951 	int ret;
952 
953 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
954 				      "perf/arm/pmu:starting",
955 				      arm_perf_starting_cpu,
956 				      arm_perf_teardown_cpu);
957 	if (ret)
958 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
959 		       ret);
960 	return ret;
961 }
962 subsys_initcall(arm_pmu_hp_init);
963