1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2023
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/machine.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include <linux/atomic.h>
33 #include <asm/isc.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <asm/facility.h>
37 #include <linux/crypto.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/debugfs.h>
40 #include <linux/ctype.h>
41 #include <linux/module.h>
42 #include <asm/uv.h>
43 #include <asm/chsc.h>
44 #include <linux/mempool.h>
45
46 #include "ap_bus.h"
47 #include "ap_debug.h"
48
49 MODULE_AUTHOR("IBM Corporation");
50 MODULE_DESCRIPTION("Adjunct Processor Bus driver");
51 MODULE_LICENSE("GPL");
52
53 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
54 static DEFINE_SPINLOCK(ap_domain_lock);
55 module_param_named(domain, ap_domain_index, int, 0440);
56 MODULE_PARM_DESC(domain, "domain index for ap devices");
57 EXPORT_SYMBOL(ap_domain_index);
58
59 static int ap_thread_flag;
60 module_param_named(poll_thread, ap_thread_flag, int, 0440);
61 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
62
63 static char *apm_str;
64 module_param_named(apmask, apm_str, charp, 0440);
65 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
66
67 static char *aqm_str;
68 module_param_named(aqmask, aqm_str, charp, 0440);
69 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
70
71 static int ap_useirq = 1;
72 module_param_named(useirq, ap_useirq, int, 0440);
73 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
74
75 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
76 EXPORT_SYMBOL(ap_max_msg_size);
77
78 static struct device *ap_root_device;
79
80 /* Hashtable of all queue devices on the AP bus */
81 DEFINE_HASHTABLE(ap_queues, 8);
82 /* lock used for the ap_queues hashtable */
83 DEFINE_SPINLOCK(ap_queues_lock);
84
85 /* Default permissions (ioctl, card and domain masking) */
86 struct ap_perms ap_perms;
87 EXPORT_SYMBOL(ap_perms);
88 DEFINE_MUTEX(ap_perms_mutex);
89 EXPORT_SYMBOL(ap_perms_mutex);
90
91 /* # of bindings complete since init */
92 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
93
94 /* completion for APQN bindings complete */
95 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
96
97 static struct ap_config_info qci[2];
98 static struct ap_config_info *const ap_qci_info = &qci[0];
99 static struct ap_config_info *const ap_qci_info_old = &qci[1];
100
101 /*
102 * AP bus related debug feature things.
103 */
104 debug_info_t *ap_dbf_info;
105
106 /*
107 * There is a need for a do-not-allocate-memory path through the AP bus
108 * layer. The pkey layer may be triggered via the in-kernel interface from
109 * a protected key crypto algorithm (namely PAES) to convert a secure key
110 * into a protected key. This happens in a workqueue context, so sleeping
111 * is allowed but memory allocations causing IO operations are not permitted.
112 * To accomplish this, an AP message memory pool with pre-allocated space
113 * is established. When ap_init_apmsg() with use_mempool set to true is
114 * called, instead of kmalloc() the ap message buffer is allocated from
115 * the ap_msg_pool. This pool only holds a limited amount of buffers:
116 * ap_msg_pool_min_items with the item size AP_DEFAULT_MAX_MSG_SIZE and
117 * exactly one of these items (if available) is returned if ap_init_apmsg()
118 * with the use_mempool arg set to true is called. When this pool is exhausted
119 * and use_mempool is set true, ap_init_apmsg() returns -ENOMEM without
120 * any attempt to allocate memory and the caller has to deal with that.
121 */
122 static mempool_t *ap_msg_pool;
123 static unsigned int ap_msg_pool_min_items = 8;
124 module_param_named(msgpool_min_items, ap_msg_pool_min_items, uint, 0440);
125 MODULE_PARM_DESC(msgpool_min_items, "AP message pool minimal items");
126
127 /*
128 * AP bus rescan related things.
129 */
130 static bool ap_scan_bus(void);
131 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
132 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
133 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */
134 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
135 static int ap_scan_bus_time = AP_CONFIG_TIME;
136 static struct timer_list ap_scan_bus_timer;
137 static void ap_scan_bus_wq_callback(struct work_struct *);
138 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
139
140 /*
141 * Tasklet & timer for AP request polling and interrupts
142 */
143 static void ap_tasklet_fn(unsigned long);
144 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
145 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
146 static struct task_struct *ap_poll_kthread;
147 static DEFINE_MUTEX(ap_poll_thread_mutex);
148 static DEFINE_SPINLOCK(ap_poll_timer_lock);
149 static struct hrtimer ap_poll_timer;
150 /*
151 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
152 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
153 */
154 static unsigned long poll_high_timeout = 250000UL;
155
156 /*
157 * Some state machine states only require a low frequency polling.
158 * We use 25 Hz frequency for these.
159 */
160 static unsigned long poll_low_timeout = 40000000UL;
161
162 /* Maximum domain id, if not given via qci */
163 static int ap_max_domain_id = 15;
164 /* Maximum adapter id, if not given via qci */
165 static int ap_max_adapter_id = 63;
166
167 static const struct bus_type ap_bus_type;
168
169 /* Adapter interrupt definitions */
170 static void ap_interrupt_handler(struct airq_struct *airq,
171 struct tpi_info *tpi_info);
172
173 static bool ap_irq_flag;
174
175 static struct airq_struct ap_airq = {
176 .handler = ap_interrupt_handler,
177 .isc = AP_ISC,
178 };
179
180 /**
181 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
182 *
183 * Returns the address of the local-summary-indicator of the adapter
184 * interrupt handler for AP, or NULL if adapter interrupts are not
185 * available.
186 */
ap_airq_ptr(void)187 void *ap_airq_ptr(void)
188 {
189 if (ap_irq_flag)
190 return ap_airq.lsi_ptr;
191 return NULL;
192 }
193
194 /**
195 * ap_interrupts_available(): Test if AP interrupts are available.
196 *
197 * Returns 1 if AP interrupts are available.
198 */
ap_interrupts_available(void)199 static int ap_interrupts_available(void)
200 {
201 return test_facility(65);
202 }
203
204 /**
205 * ap_qci_available(): Test if AP configuration
206 * information can be queried via QCI subfunction.
207 *
208 * Returns 1 if subfunction PQAP(QCI) is available.
209 */
ap_qci_available(void)210 static int ap_qci_available(void)
211 {
212 return test_facility(12);
213 }
214
215 /**
216 * ap_apft_available(): Test if AP facilities test (APFT)
217 * facility is available.
218 *
219 * Returns 1 if APFT is available.
220 */
ap_apft_available(void)221 static int ap_apft_available(void)
222 {
223 return test_facility(15);
224 }
225
226 /*
227 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
228 *
229 * Returns 1 if the QACT subfunction is available.
230 */
ap_qact_available(void)231 static inline int ap_qact_available(void)
232 {
233 return ap_qci_info->qact;
234 }
235
236 /*
237 * ap_sb_available(): Test if the AP secure binding facility is available.
238 *
239 * Returns 1 if secure binding facility is available.
240 */
ap_sb_available(void)241 int ap_sb_available(void)
242 {
243 return ap_qci_info->apsb;
244 }
245
246 /*
247 * ap_is_se_guest(): Check for SE guest with AP pass-through support.
248 */
ap_is_se_guest(void)249 bool ap_is_se_guest(void)
250 {
251 return is_prot_virt_guest() && ap_sb_available();
252 }
253 EXPORT_SYMBOL(ap_is_se_guest);
254
255 /**
256 * ap_init_qci_info(): Allocate and query qci config info.
257 * Does also update the static variables ap_max_domain_id
258 * and ap_max_adapter_id if this info is available.
259 */
ap_init_qci_info(void)260 static void __init ap_init_qci_info(void)
261 {
262 if (!ap_qci_available() ||
263 ap_qci(ap_qci_info)) {
264 AP_DBF_INFO("%s QCI not supported\n", __func__);
265 return;
266 }
267 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
268 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
269
270 if (ap_qci_info->apxa) {
271 if (ap_qci_info->na) {
272 ap_max_adapter_id = ap_qci_info->na;
273 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
274 __func__, ap_max_adapter_id);
275 }
276 if (ap_qci_info->nd) {
277 ap_max_domain_id = ap_qci_info->nd;
278 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
279 __func__, ap_max_domain_id);
280 }
281 }
282 }
283
284 /*
285 * ap_test_config(): helper function to extract the nrth bit
286 * within the unsigned int array field.
287 */
ap_test_config(unsigned int * field,unsigned int nr)288 static inline int ap_test_config(unsigned int *field, unsigned int nr)
289 {
290 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
291 }
292
293 /*
294 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
295 *
296 * Returns 0 if the card is not configured
297 * 1 if the card is configured or
298 * if the configuration information is not available
299 */
ap_test_config_card_id(unsigned int id)300 static inline int ap_test_config_card_id(unsigned int id)
301 {
302 if (id > ap_max_adapter_id)
303 return 0;
304 if (ap_qci_info->flags)
305 return ap_test_config(ap_qci_info->apm, id);
306 return 1;
307 }
308
309 /*
310 * ap_test_config_usage_domain(): Test, whether an AP usage domain
311 * is configured.
312 *
313 * Returns 0 if the usage domain is not configured
314 * 1 if the usage domain is configured or
315 * if the configuration information is not available
316 */
ap_test_config_usage_domain(unsigned int domain)317 int ap_test_config_usage_domain(unsigned int domain)
318 {
319 if (domain > ap_max_domain_id)
320 return 0;
321 if (ap_qci_info->flags)
322 return ap_test_config(ap_qci_info->aqm, domain);
323 return 1;
324 }
325 EXPORT_SYMBOL(ap_test_config_usage_domain);
326
327 /*
328 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
329 * is configured.
330 * @domain AP control domain ID
331 *
332 * Returns 1 if the control domain is configured
333 * 0 in all other cases
334 */
ap_test_config_ctrl_domain(unsigned int domain)335 int ap_test_config_ctrl_domain(unsigned int domain)
336 {
337 if (!ap_qci_info || domain > ap_max_domain_id)
338 return 0;
339 return ap_test_config(ap_qci_info->adm, domain);
340 }
341 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
342
343 /*
344 * ap_queue_info(): Check and get AP queue info.
345 * Returns: 1 if APQN exists and info is filled,
346 * 0 if APQN seems to exist but there is no info
347 * available (eg. caused by an asynch pending error)
348 * -1 invalid APQN, TAPQ error or AP queue status which
349 * indicates there is no APQN.
350 */
ap_queue_info(ap_qid_t qid,struct ap_tapq_hwinfo * hwinfo,bool * decfg,bool * cstop)351 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
352 bool *decfg, bool *cstop)
353 {
354 struct ap_queue_status status;
355
356 hwinfo->value = 0;
357
358 /* make sure we don't run into a specifiation exception */
359 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
360 AP_QID_QUEUE(qid) > ap_max_domain_id)
361 return -1;
362
363 /* call TAPQ on this APQN */
364 status = ap_test_queue(qid, ap_apft_available(), hwinfo);
365
366 switch (status.response_code) {
367 case AP_RESPONSE_NORMAL:
368 case AP_RESPONSE_RESET_IN_PROGRESS:
369 case AP_RESPONSE_DECONFIGURED:
370 case AP_RESPONSE_CHECKSTOPPED:
371 case AP_RESPONSE_BUSY:
372 /* For all these RCs the tapq info should be available */
373 break;
374 default:
375 /* On a pending async error the info should be available */
376 if (!status.async)
377 return -1;
378 break;
379 }
380
381 /* There should be at least one of the mode bits set */
382 if (WARN_ON_ONCE(!hwinfo->value))
383 return 0;
384
385 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
386 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
387
388 return 1;
389 }
390
ap_wait(enum ap_sm_wait wait)391 void ap_wait(enum ap_sm_wait wait)
392 {
393 ktime_t hr_time;
394
395 switch (wait) {
396 case AP_SM_WAIT_AGAIN:
397 case AP_SM_WAIT_INTERRUPT:
398 if (ap_irq_flag)
399 break;
400 if (ap_poll_kthread) {
401 wake_up(&ap_poll_wait);
402 break;
403 }
404 fallthrough;
405 case AP_SM_WAIT_LOW_TIMEOUT:
406 case AP_SM_WAIT_HIGH_TIMEOUT:
407 spin_lock_bh(&ap_poll_timer_lock);
408 if (!hrtimer_is_queued(&ap_poll_timer)) {
409 hr_time =
410 wait == AP_SM_WAIT_LOW_TIMEOUT ?
411 poll_low_timeout : poll_high_timeout;
412 hrtimer_forward_now(&ap_poll_timer, hr_time);
413 hrtimer_restart(&ap_poll_timer);
414 }
415 spin_unlock_bh(&ap_poll_timer_lock);
416 break;
417 case AP_SM_WAIT_NONE:
418 default:
419 break;
420 }
421 }
422
423 /**
424 * ap_request_timeout(): Handling of request timeouts
425 * @t: timer making this callback
426 *
427 * Handles request timeouts.
428 */
ap_request_timeout(struct timer_list * t)429 void ap_request_timeout(struct timer_list *t)
430 {
431 struct ap_queue *aq = timer_container_of(aq, t, timeout);
432
433 spin_lock_bh(&aq->lock);
434 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
435 spin_unlock_bh(&aq->lock);
436 }
437
438 /**
439 * ap_poll_timeout(): AP receive polling for finished AP requests.
440 * @unused: Unused pointer.
441 *
442 * Schedules the AP tasklet using a high resolution timer.
443 */
ap_poll_timeout(struct hrtimer * unused)444 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
445 {
446 tasklet_schedule(&ap_tasklet);
447 return HRTIMER_NORESTART;
448 }
449
450 /**
451 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
452 * @airq: pointer to adapter interrupt descriptor
453 * @tpi_info: ignored
454 */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)455 static void ap_interrupt_handler(struct airq_struct *airq,
456 struct tpi_info *tpi_info)
457 {
458 inc_irq_stat(IRQIO_APB);
459 tasklet_schedule(&ap_tasklet);
460 }
461
462 /**
463 * ap_tasklet_fn(): Tasklet to poll all AP devices.
464 * @dummy: Unused variable
465 *
466 * Poll all AP devices on the bus.
467 */
ap_tasklet_fn(unsigned long dummy)468 static void ap_tasklet_fn(unsigned long dummy)
469 {
470 int bkt;
471 struct ap_queue *aq;
472 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
473
474 /* Reset the indicator if interrupts are used. Thus new interrupts can
475 * be received. Doing it in the beginning of the tasklet is therefore
476 * important that no requests on any AP get lost.
477 */
478 if (ap_irq_flag)
479 WRITE_ONCE(*ap_airq.lsi_ptr, 0);
480
481 spin_lock_bh(&ap_queues_lock);
482 hash_for_each(ap_queues, bkt, aq, hnode) {
483 spin_lock_bh(&aq->lock);
484 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
485 spin_unlock_bh(&aq->lock);
486 }
487 spin_unlock_bh(&ap_queues_lock);
488
489 ap_wait(wait);
490 }
491
ap_pending_requests(void)492 static int ap_pending_requests(void)
493 {
494 int bkt;
495 struct ap_queue *aq;
496
497 spin_lock_bh(&ap_queues_lock);
498 hash_for_each(ap_queues, bkt, aq, hnode) {
499 if (aq->queue_count == 0)
500 continue;
501 spin_unlock_bh(&ap_queues_lock);
502 return 1;
503 }
504 spin_unlock_bh(&ap_queues_lock);
505 return 0;
506 }
507
508 /**
509 * ap_poll_thread(): Thread that polls for finished requests.
510 * @data: Unused pointer
511 *
512 * AP bus poll thread. The purpose of this thread is to poll for
513 * finished requests in a loop if there is a "free" cpu - that is
514 * a cpu that doesn't have anything better to do. The polling stops
515 * as soon as there is another task or if all messages have been
516 * delivered.
517 */
ap_poll_thread(void * data)518 static int ap_poll_thread(void *data)
519 {
520 DECLARE_WAITQUEUE(wait, current);
521
522 set_user_nice(current, MAX_NICE);
523 set_freezable();
524 while (!kthread_should_stop()) {
525 add_wait_queue(&ap_poll_wait, &wait);
526 set_current_state(TASK_INTERRUPTIBLE);
527 if (!ap_pending_requests()) {
528 schedule();
529 try_to_freeze();
530 }
531 set_current_state(TASK_RUNNING);
532 remove_wait_queue(&ap_poll_wait, &wait);
533 if (need_resched()) {
534 schedule();
535 try_to_freeze();
536 continue;
537 }
538 ap_tasklet_fn(0);
539 }
540
541 return 0;
542 }
543
ap_poll_thread_start(void)544 static int ap_poll_thread_start(void)
545 {
546 int rc;
547
548 if (ap_irq_flag || ap_poll_kthread)
549 return 0;
550 mutex_lock(&ap_poll_thread_mutex);
551 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
552 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
553 if (rc)
554 ap_poll_kthread = NULL;
555 mutex_unlock(&ap_poll_thread_mutex);
556 return rc;
557 }
558
ap_poll_thread_stop(void)559 static void ap_poll_thread_stop(void)
560 {
561 if (!ap_poll_kthread)
562 return;
563 mutex_lock(&ap_poll_thread_mutex);
564 kthread_stop(ap_poll_kthread);
565 ap_poll_kthread = NULL;
566 mutex_unlock(&ap_poll_thread_mutex);
567 }
568
569 #define is_card_dev(x) ((x)->parent == ap_root_device)
570 #define is_queue_dev(x) ((x)->parent != ap_root_device)
571
572 /*
573 * ap_init_apmsg() - Initialize ap_message.
574 */
ap_init_apmsg(struct ap_message * ap_msg,u32 flags)575 int ap_init_apmsg(struct ap_message *ap_msg, u32 flags)
576 {
577 unsigned int maxmsgsize;
578
579 memset(ap_msg, 0, sizeof(*ap_msg));
580 ap_msg->flags = flags;
581
582 if (flags & AP_MSG_FLAG_MEMPOOL) {
583 ap_msg->msg = mempool_alloc_preallocated(ap_msg_pool);
584 if (!ap_msg->msg)
585 return -ENOMEM;
586 ap_msg->bufsize = AP_DEFAULT_MAX_MSG_SIZE;
587 return 0;
588 }
589
590 maxmsgsize = atomic_read(&ap_max_msg_size);
591 ap_msg->msg = kmalloc(maxmsgsize, GFP_KERNEL);
592 if (!ap_msg->msg)
593 return -ENOMEM;
594 ap_msg->bufsize = maxmsgsize;
595
596 return 0;
597 }
598 EXPORT_SYMBOL(ap_init_apmsg);
599
600 /*
601 * ap_release_apmsg() - Release ap_message.
602 */
ap_release_apmsg(struct ap_message * ap_msg)603 void ap_release_apmsg(struct ap_message *ap_msg)
604 {
605 if (ap_msg->flags & AP_MSG_FLAG_MEMPOOL) {
606 memzero_explicit(ap_msg->msg, ap_msg->bufsize);
607 mempool_free(ap_msg->msg, ap_msg_pool);
608 } else {
609 kfree_sensitive(ap_msg->msg);
610 }
611 }
612 EXPORT_SYMBOL(ap_release_apmsg);
613
614 /**
615 * ap_bus_match()
616 * @dev: Pointer to device
617 * @drv: Pointer to device_driver
618 *
619 * AP bus driver registration/unregistration.
620 */
ap_bus_match(struct device * dev,const struct device_driver * drv)621 static int ap_bus_match(struct device *dev, const struct device_driver *drv)
622 {
623 const struct ap_driver *ap_drv = to_ap_drv(drv);
624 struct ap_device_id *id;
625
626 /*
627 * Compare device type of the device with the list of
628 * supported types of the device_driver.
629 */
630 for (id = ap_drv->ids; id->match_flags; id++) {
631 if (is_card_dev(dev) &&
632 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
633 id->dev_type == to_ap_dev(dev)->device_type)
634 return 1;
635 if (is_queue_dev(dev) &&
636 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
637 id->dev_type == to_ap_dev(dev)->device_type)
638 return 1;
639 }
640 return 0;
641 }
642
643 /**
644 * ap_uevent(): Uevent function for AP devices.
645 * @dev: Pointer to device
646 * @env: Pointer to kobj_uevent_env
647 *
648 * It sets up a single environment variable DEV_TYPE which contains the
649 * hardware device type.
650 */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)651 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
652 {
653 int rc = 0;
654 const struct ap_device *ap_dev = to_ap_dev(dev);
655
656 /* Uevents from ap bus core don't need extensions to the env */
657 if (dev == ap_root_device)
658 return 0;
659
660 if (is_card_dev(dev)) {
661 struct ap_card *ac = to_ap_card(&ap_dev->device);
662
663 /* Set up DEV_TYPE environment variable. */
664 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
665 if (rc)
666 return rc;
667 /* Add MODALIAS= */
668 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
669 if (rc)
670 return rc;
671
672 /* Add MODE=<accel|cca|ep11> */
673 if (ac->hwinfo.accel)
674 rc = add_uevent_var(env, "MODE=accel");
675 else if (ac->hwinfo.cca)
676 rc = add_uevent_var(env, "MODE=cca");
677 else if (ac->hwinfo.ep11)
678 rc = add_uevent_var(env, "MODE=ep11");
679 if (rc)
680 return rc;
681 } else {
682 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
683
684 /* Add MODE=<accel|cca|ep11> */
685 if (aq->card->hwinfo.accel)
686 rc = add_uevent_var(env, "MODE=accel");
687 else if (aq->card->hwinfo.cca)
688 rc = add_uevent_var(env, "MODE=cca");
689 else if (aq->card->hwinfo.ep11)
690 rc = add_uevent_var(env, "MODE=ep11");
691 if (rc)
692 return rc;
693 }
694
695 return 0;
696 }
697
ap_send_init_scan_done_uevent(void)698 static void ap_send_init_scan_done_uevent(void)
699 {
700 char *envp[] = { "INITSCAN=done", NULL };
701
702 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
703 }
704
ap_send_bindings_complete_uevent(void)705 static void ap_send_bindings_complete_uevent(void)
706 {
707 char buf[32];
708 char *envp[] = { "BINDINGS=complete", buf, NULL };
709
710 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
711 atomic64_inc_return(&ap_bindings_complete_count));
712 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
713 }
714
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)715 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
716 {
717 char buf[16];
718 char *envp[] = { buf, NULL };
719
720 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
721
722 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
723 }
724 EXPORT_SYMBOL(ap_send_config_uevent);
725
ap_send_online_uevent(struct ap_device * ap_dev,int online)726 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
727 {
728 char buf[16];
729 char *envp[] = { buf, NULL };
730
731 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
732
733 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
734 }
735 EXPORT_SYMBOL(ap_send_online_uevent);
736
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)737 static void ap_send_mask_changed_uevent(unsigned long *newapm,
738 unsigned long *newaqm)
739 {
740 char buf[100];
741 char *envp[] = { buf, NULL };
742
743 if (newapm)
744 snprintf(buf, sizeof(buf),
745 "APMASK=0x%016lx%016lx%016lx%016lx\n",
746 newapm[0], newapm[1], newapm[2], newapm[3]);
747 else
748 snprintf(buf, sizeof(buf),
749 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
750 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
751
752 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
753 }
754
755 /*
756 * calc # of bound APQNs
757 */
758
759 struct __ap_calc_ctrs {
760 unsigned int apqns;
761 unsigned int bound;
762 };
763
__ap_calc_helper(struct device * dev,void * arg)764 static int __ap_calc_helper(struct device *dev, void *arg)
765 {
766 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
767
768 if (is_queue_dev(dev)) {
769 pctrs->apqns++;
770 if (dev->driver)
771 pctrs->bound++;
772 }
773
774 return 0;
775 }
776
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)777 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
778 {
779 struct __ap_calc_ctrs ctrs;
780
781 memset(&ctrs, 0, sizeof(ctrs));
782 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
783
784 *apqns = ctrs.apqns;
785 *bound = ctrs.bound;
786 }
787
788 /*
789 * After ap bus scan do check if all existing APQNs are
790 * bound to device drivers.
791 */
ap_check_bindings_complete(void)792 static void ap_check_bindings_complete(void)
793 {
794 unsigned int apqns, bound;
795
796 if (atomic64_read(&ap_scan_bus_count) >= 1) {
797 ap_calc_bound_apqns(&apqns, &bound);
798 if (bound == apqns) {
799 if (!completion_done(&ap_apqn_bindings_complete)) {
800 complete_all(&ap_apqn_bindings_complete);
801 ap_send_bindings_complete_uevent();
802 pr_debug("all apqn bindings complete\n");
803 }
804 }
805 }
806 }
807
808 /*
809 * Interface to wait for the AP bus to have done one initial ap bus
810 * scan and all detected APQNs have been bound to device drivers.
811 * If these both conditions are not fulfilled, this function blocks
812 * on a condition with wait_for_completion_interruptible_timeout().
813 * If these both conditions are fulfilled (before the timeout hits)
814 * the return value is 0. If the timeout (in jiffies) hits instead
815 * -ETIME is returned. On failures negative return values are
816 * returned to the caller.
817 */
ap_wait_apqn_bindings_complete(unsigned long timeout)818 int ap_wait_apqn_bindings_complete(unsigned long timeout)
819 {
820 int rc = 0;
821 long l;
822
823 if (completion_done(&ap_apqn_bindings_complete))
824 return 0;
825
826 if (timeout)
827 l = wait_for_completion_interruptible_timeout(
828 &ap_apqn_bindings_complete, timeout);
829 else
830 l = wait_for_completion_interruptible(
831 &ap_apqn_bindings_complete);
832 if (l < 0)
833 rc = l == -ERESTARTSYS ? -EINTR : l;
834 else if (l == 0 && timeout)
835 rc = -ETIME;
836
837 pr_debug("rc=%d\n", rc);
838 return rc;
839 }
840 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
841
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)842 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
843 {
844 if (is_queue_dev(dev) &&
845 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
846 device_unregister(dev);
847 return 0;
848 }
849
__ap_revise_reserved(struct device * dev,void * dummy)850 static int __ap_revise_reserved(struct device *dev, void *dummy)
851 {
852 int rc, card, queue, devres, drvres;
853
854 if (is_queue_dev(dev)) {
855 card = AP_QID_CARD(to_ap_queue(dev)->qid);
856 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
857 mutex_lock(&ap_perms_mutex);
858 devres = test_bit_inv(card, ap_perms.apm) &&
859 test_bit_inv(queue, ap_perms.aqm);
860 mutex_unlock(&ap_perms_mutex);
861 drvres = to_ap_drv(dev->driver)->flags
862 & AP_DRIVER_FLAG_DEFAULT;
863 if (!!devres != !!drvres) {
864 pr_debug("reprobing queue=%02x.%04x\n", card, queue);
865 rc = device_reprobe(dev);
866 if (rc)
867 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
868 __func__, card, queue);
869 }
870 }
871
872 return 0;
873 }
874
ap_bus_revise_bindings(void)875 static void ap_bus_revise_bindings(void)
876 {
877 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
878 }
879
880 /**
881 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
882 * default host driver or not.
883 * @card: the APID of the adapter card to check
884 * @queue: the APQI of the queue to check
885 *
886 * Note: the ap_perms_mutex must be locked by the caller of this function.
887 *
888 * Return: an int specifying whether the AP adapter is reserved for the host (1)
889 * or not (0).
890 */
ap_owned_by_def_drv(int card,int queue)891 int ap_owned_by_def_drv(int card, int queue)
892 {
893 int rc = 0;
894
895 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
896 return -EINVAL;
897
898 if (test_bit_inv(card, ap_perms.apm) &&
899 test_bit_inv(queue, ap_perms.aqm))
900 rc = 1;
901
902 return rc;
903 }
904 EXPORT_SYMBOL(ap_owned_by_def_drv);
905
906 /**
907 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
908 * a set is reserved for the host drivers
909 * or not.
910 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
911 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
912 *
913 * Note: the ap_perms_mutex must be locked by the caller of this function.
914 *
915 * Return: an int specifying whether each APQN is reserved for the host (1) or
916 * not (0)
917 */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)918 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
919 unsigned long *aqm)
920 {
921 int card, queue, rc = 0;
922
923 for (card = 0; !rc && card < AP_DEVICES; card++)
924 if (test_bit_inv(card, apm) &&
925 test_bit_inv(card, ap_perms.apm))
926 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
927 if (test_bit_inv(queue, aqm) &&
928 test_bit_inv(queue, ap_perms.aqm))
929 rc = 1;
930
931 return rc;
932 }
933 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
934
ap_device_probe(struct device * dev)935 static int ap_device_probe(struct device *dev)
936 {
937 struct ap_device *ap_dev = to_ap_dev(dev);
938 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
939 int card, queue, devres, drvres, rc = -ENODEV;
940
941 if (!get_device(dev))
942 return rc;
943
944 if (is_queue_dev(dev)) {
945 /*
946 * If the apqn is marked as reserved/used by ap bus and
947 * default drivers, only probe with drivers with the default
948 * flag set. If it is not marked, only probe with drivers
949 * with the default flag not set.
950 */
951 card = AP_QID_CARD(to_ap_queue(dev)->qid);
952 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
953 mutex_lock(&ap_perms_mutex);
954 devres = test_bit_inv(card, ap_perms.apm) &&
955 test_bit_inv(queue, ap_perms.aqm);
956 mutex_unlock(&ap_perms_mutex);
957 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
958 if (!!devres != !!drvres)
959 goto out;
960 }
961
962 /*
963 * Rearm the bindings complete completion to trigger
964 * bindings complete when all devices are bound again
965 */
966 reinit_completion(&ap_apqn_bindings_complete);
967
968 /* Add queue/card to list of active queues/cards */
969 spin_lock_bh(&ap_queues_lock);
970 if (is_queue_dev(dev))
971 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
972 to_ap_queue(dev)->qid);
973 spin_unlock_bh(&ap_queues_lock);
974
975 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
976
977 if (rc) {
978 spin_lock_bh(&ap_queues_lock);
979 if (is_queue_dev(dev))
980 hash_del(&to_ap_queue(dev)->hnode);
981 spin_unlock_bh(&ap_queues_lock);
982 }
983
984 out:
985 if (rc)
986 put_device(dev);
987 return rc;
988 }
989
ap_device_remove(struct device * dev)990 static void ap_device_remove(struct device *dev)
991 {
992 struct ap_device *ap_dev = to_ap_dev(dev);
993 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
994
995 /* prepare ap queue device removal */
996 if (is_queue_dev(dev))
997 ap_queue_prepare_remove(to_ap_queue(dev));
998
999 /* driver's chance to clean up gracefully */
1000 if (ap_drv->remove)
1001 ap_drv->remove(ap_dev);
1002
1003 /* now do the ap queue device remove */
1004 if (is_queue_dev(dev))
1005 ap_queue_remove(to_ap_queue(dev));
1006
1007 /* Remove queue/card from list of active queues/cards */
1008 spin_lock_bh(&ap_queues_lock);
1009 if (is_queue_dev(dev))
1010 hash_del(&to_ap_queue(dev)->hnode);
1011 spin_unlock_bh(&ap_queues_lock);
1012
1013 put_device(dev);
1014 }
1015
ap_get_qdev(ap_qid_t qid)1016 struct ap_queue *ap_get_qdev(ap_qid_t qid)
1017 {
1018 int bkt;
1019 struct ap_queue *aq;
1020
1021 spin_lock_bh(&ap_queues_lock);
1022 hash_for_each(ap_queues, bkt, aq, hnode) {
1023 if (aq->qid == qid) {
1024 get_device(&aq->ap_dev.device);
1025 spin_unlock_bh(&ap_queues_lock);
1026 return aq;
1027 }
1028 }
1029 spin_unlock_bh(&ap_queues_lock);
1030
1031 return NULL;
1032 }
1033 EXPORT_SYMBOL(ap_get_qdev);
1034
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)1035 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1036 char *name)
1037 {
1038 struct device_driver *drv = &ap_drv->driver;
1039 int rc;
1040
1041 drv->bus = &ap_bus_type;
1042 drv->owner = owner;
1043 drv->name = name;
1044 rc = driver_register(drv);
1045
1046 ap_check_bindings_complete();
1047
1048 return rc;
1049 }
1050 EXPORT_SYMBOL(ap_driver_register);
1051
ap_driver_unregister(struct ap_driver * ap_drv)1052 void ap_driver_unregister(struct ap_driver *ap_drv)
1053 {
1054 driver_unregister(&ap_drv->driver);
1055 }
1056 EXPORT_SYMBOL(ap_driver_unregister);
1057
1058 /*
1059 * Enforce a synchronous AP bus rescan.
1060 * Returns true if the bus scan finds a change in the AP configuration
1061 * and AP devices have been added or deleted when this function returns.
1062 */
ap_bus_force_rescan(void)1063 bool ap_bus_force_rescan(void)
1064 {
1065 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1066 bool rc = false;
1067
1068 pr_debug("> scan counter=%lu\n", scan_counter);
1069
1070 /* Only trigger AP bus scans after the initial scan is done */
1071 if (scan_counter <= 0)
1072 goto out;
1073
1074 /*
1075 * There is one unlikely but nevertheless valid scenario where the
1076 * thread holding the mutex may try to send some crypto load but
1077 * all cards are offline so a rescan is triggered which causes
1078 * a recursive call of ap_bus_force_rescan(). A simple return if
1079 * the mutex is already locked by this thread solves this.
1080 */
1081 if (mutex_is_locked(&ap_scan_bus_mutex)) {
1082 if (ap_scan_bus_task == current)
1083 goto out;
1084 }
1085
1086 /* Try to acquire the AP scan bus mutex */
1087 if (mutex_trylock(&ap_scan_bus_mutex)) {
1088 /* mutex acquired, run the AP bus scan */
1089 ap_scan_bus_task = current;
1090 ap_scan_bus_result = ap_scan_bus();
1091 rc = ap_scan_bus_result;
1092 ap_scan_bus_task = NULL;
1093 mutex_unlock(&ap_scan_bus_mutex);
1094 goto out;
1095 }
1096
1097 /*
1098 * Mutex acquire failed. So there is currently another task
1099 * already running the AP bus scan. Then let's simple wait
1100 * for the lock which means the other task has finished and
1101 * stored the result in ap_scan_bus_result.
1102 */
1103 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1104 /* some error occurred, ignore and go out */
1105 goto out;
1106 }
1107 rc = ap_scan_bus_result;
1108 mutex_unlock(&ap_scan_bus_mutex);
1109
1110 out:
1111 pr_debug("rc=%d\n", rc);
1112 return rc;
1113 }
1114 EXPORT_SYMBOL(ap_bus_force_rescan);
1115
1116 /*
1117 * A config change has happened, force an ap bus rescan.
1118 */
ap_bus_cfg_chg(struct notifier_block * nb,unsigned long action,void * data)1119 static int ap_bus_cfg_chg(struct notifier_block *nb,
1120 unsigned long action, void *data)
1121 {
1122 if (action != CHSC_NOTIFY_AP_CFG)
1123 return NOTIFY_DONE;
1124
1125 pr_debug("config change, forcing bus rescan\n");
1126
1127 ap_bus_force_rescan();
1128
1129 return NOTIFY_OK;
1130 }
1131
1132 static struct notifier_block ap_bus_nb = {
1133 .notifier_call = ap_bus_cfg_chg,
1134 };
1135
ap_hex2bitmap(const char * str,unsigned long * bitmap,int bits)1136 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1137 {
1138 int i, n, b;
1139
1140 /* bits needs to be a multiple of 8 */
1141 if (bits & 0x07)
1142 return -EINVAL;
1143
1144 if (str[0] == '0' && str[1] == 'x')
1145 str++;
1146 if (*str == 'x')
1147 str++;
1148
1149 for (i = 0; isxdigit(*str) && i < bits; str++) {
1150 b = hex_to_bin(*str);
1151 for (n = 0; n < 4; n++)
1152 if (b & (0x08 >> n))
1153 set_bit_inv(i + n, bitmap);
1154 i += 4;
1155 }
1156
1157 if (*str == '\n')
1158 str++;
1159 if (*str)
1160 return -EINVAL;
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(ap_hex2bitmap);
1164
1165 /*
1166 * modify_bitmap() - parse bitmask argument and modify an existing
1167 * bit mask accordingly. A concatenation (done with ',') of these
1168 * terms is recognized:
1169 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1170 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1171 * 0...bits-1; the leading + or - is required. Here are some examples:
1172 * +0-15,+32,-128,-0xFF
1173 * -0-255,+1-16,+0x128
1174 * +1,+2,+3,+4,-5,-7-10
1175 * Returns the new bitmap after all changes have been applied. Every
1176 * positive value in the string will set a bit and every negative value
1177 * in the string will clear a bit. As a bit may be touched more than once,
1178 * the last 'operation' wins:
1179 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1180 * cleared again. All other bits are unmodified.
1181 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1182 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1183 {
1184 unsigned long a, i, z;
1185 char *np, sign;
1186
1187 /* bits needs to be a multiple of 8 */
1188 if (bits & 0x07)
1189 return -EINVAL;
1190
1191 while (*str) {
1192 sign = *str++;
1193 if (sign != '+' && sign != '-')
1194 return -EINVAL;
1195 a = z = simple_strtoul(str, &np, 0);
1196 if (str == np || a >= bits)
1197 return -EINVAL;
1198 str = np;
1199 if (*str == '-') {
1200 z = simple_strtoul(++str, &np, 0);
1201 if (str == np || a > z || z >= bits)
1202 return -EINVAL;
1203 str = np;
1204 }
1205 for (i = a; i <= z; i++)
1206 if (sign == '+')
1207 set_bit_inv(i, bitmap);
1208 else
1209 clear_bit_inv(i, bitmap);
1210 while (*str == ',' || *str == '\n')
1211 str++;
1212 }
1213
1214 return 0;
1215 }
1216
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1217 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1218 unsigned long *newmap)
1219 {
1220 unsigned long size;
1221 int rc;
1222
1223 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1224 if (*str == '+' || *str == '-') {
1225 memcpy(newmap, bitmap, size);
1226 rc = modify_bitmap(str, newmap, bits);
1227 } else {
1228 memset(newmap, 0, size);
1229 rc = ap_hex2bitmap(str, newmap, bits);
1230 }
1231 return rc;
1232 }
1233
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1234 int ap_parse_mask_str(const char *str,
1235 unsigned long *bitmap, int bits,
1236 struct mutex *lock)
1237 {
1238 unsigned long *newmap, size;
1239 int rc;
1240
1241 /* bits needs to be a multiple of 8 */
1242 if (bits & 0x07)
1243 return -EINVAL;
1244
1245 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1246 newmap = kmalloc(size, GFP_KERNEL);
1247 if (!newmap)
1248 return -ENOMEM;
1249 if (mutex_lock_interruptible(lock)) {
1250 kfree(newmap);
1251 return -ERESTARTSYS;
1252 }
1253 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1254 if (rc == 0)
1255 memcpy(bitmap, newmap, size);
1256 mutex_unlock(lock);
1257 kfree(newmap);
1258 return rc;
1259 }
1260 EXPORT_SYMBOL(ap_parse_mask_str);
1261
1262 /*
1263 * AP bus attributes.
1264 */
1265
ap_domain_show(const struct bus_type * bus,char * buf)1266 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1267 {
1268 return sysfs_emit(buf, "%d\n", ap_domain_index);
1269 }
1270
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1271 static ssize_t ap_domain_store(const struct bus_type *bus,
1272 const char *buf, size_t count)
1273 {
1274 int domain;
1275
1276 if (sscanf(buf, "%i\n", &domain) != 1 ||
1277 domain < 0 || domain > ap_max_domain_id ||
1278 !test_bit_inv(domain, ap_perms.aqm))
1279 return -EINVAL;
1280
1281 spin_lock_bh(&ap_domain_lock);
1282 ap_domain_index = domain;
1283 spin_unlock_bh(&ap_domain_lock);
1284
1285 AP_DBF_INFO("%s stored new default domain=%d\n",
1286 __func__, domain);
1287
1288 return count;
1289 }
1290
1291 static BUS_ATTR_RW(ap_domain);
1292
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1293 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1294 {
1295 if (!ap_qci_info->flags) /* QCI not supported */
1296 return sysfs_emit(buf, "not supported\n");
1297
1298 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1299 ap_qci_info->adm[0], ap_qci_info->adm[1],
1300 ap_qci_info->adm[2], ap_qci_info->adm[3],
1301 ap_qci_info->adm[4], ap_qci_info->adm[5],
1302 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1303 }
1304
1305 static BUS_ATTR_RO(ap_control_domain_mask);
1306
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1307 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1308 {
1309 if (!ap_qci_info->flags) /* QCI not supported */
1310 return sysfs_emit(buf, "not supported\n");
1311
1312 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1313 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1314 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1315 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1316 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1317 }
1318
1319 static BUS_ATTR_RO(ap_usage_domain_mask);
1320
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1321 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1322 {
1323 if (!ap_qci_info->flags) /* QCI not supported */
1324 return sysfs_emit(buf, "not supported\n");
1325
1326 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1327 ap_qci_info->apm[0], ap_qci_info->apm[1],
1328 ap_qci_info->apm[2], ap_qci_info->apm[3],
1329 ap_qci_info->apm[4], ap_qci_info->apm[5],
1330 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1331 }
1332
1333 static BUS_ATTR_RO(ap_adapter_mask);
1334
ap_interrupts_show(const struct bus_type * bus,char * buf)1335 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1336 {
1337 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1338 }
1339
1340 static BUS_ATTR_RO(ap_interrupts);
1341
config_time_show(const struct bus_type * bus,char * buf)1342 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1343 {
1344 return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1345 }
1346
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1347 static ssize_t config_time_store(const struct bus_type *bus,
1348 const char *buf, size_t count)
1349 {
1350 int time;
1351
1352 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1353 return -EINVAL;
1354 ap_scan_bus_time = time;
1355 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1356 return count;
1357 }
1358
1359 static BUS_ATTR_RW(config_time);
1360
poll_thread_show(const struct bus_type * bus,char * buf)1361 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1362 {
1363 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1364 }
1365
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1366 static ssize_t poll_thread_store(const struct bus_type *bus,
1367 const char *buf, size_t count)
1368 {
1369 bool value;
1370 int rc;
1371
1372 rc = kstrtobool(buf, &value);
1373 if (rc)
1374 return rc;
1375
1376 if (value) {
1377 rc = ap_poll_thread_start();
1378 if (rc)
1379 count = rc;
1380 } else {
1381 ap_poll_thread_stop();
1382 }
1383 return count;
1384 }
1385
1386 static BUS_ATTR_RW(poll_thread);
1387
poll_timeout_show(const struct bus_type * bus,char * buf)1388 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1389 {
1390 return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1391 }
1392
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1393 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1394 size_t count)
1395 {
1396 unsigned long value;
1397 ktime_t hr_time;
1398 int rc;
1399
1400 rc = kstrtoul(buf, 0, &value);
1401 if (rc)
1402 return rc;
1403
1404 /* 120 seconds = maximum poll interval */
1405 if (value > 120000000000UL)
1406 return -EINVAL;
1407 poll_high_timeout = value;
1408 hr_time = poll_high_timeout;
1409
1410 spin_lock_bh(&ap_poll_timer_lock);
1411 hrtimer_cancel(&ap_poll_timer);
1412 hrtimer_set_expires(&ap_poll_timer, hr_time);
1413 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1414 spin_unlock_bh(&ap_poll_timer_lock);
1415
1416 return count;
1417 }
1418
1419 static BUS_ATTR_RW(poll_timeout);
1420
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1421 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1422 {
1423 return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1424 }
1425
1426 static BUS_ATTR_RO(ap_max_domain_id);
1427
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1428 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1429 {
1430 return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1431 }
1432
1433 static BUS_ATTR_RO(ap_max_adapter_id);
1434
apmask_show(const struct bus_type * bus,char * buf)1435 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1436 {
1437 int rc;
1438
1439 if (mutex_lock_interruptible(&ap_perms_mutex))
1440 return -ERESTARTSYS;
1441 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1442 ap_perms.apm[0], ap_perms.apm[1],
1443 ap_perms.apm[2], ap_perms.apm[3]);
1444 mutex_unlock(&ap_perms_mutex);
1445
1446 return rc;
1447 }
1448
__verify_card_reservations(struct device_driver * drv,void * data)1449 static int __verify_card_reservations(struct device_driver *drv, void *data)
1450 {
1451 int rc = 0;
1452 struct ap_driver *ap_drv = to_ap_drv(drv);
1453 unsigned long *newapm = (unsigned long *)data;
1454
1455 /*
1456 * increase the driver's module refcounter to be sure it is not
1457 * going away when we invoke the callback function.
1458 */
1459 if (!try_module_get(drv->owner))
1460 return 0;
1461
1462 if (ap_drv->in_use) {
1463 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1464 if (rc)
1465 rc = -EBUSY;
1466 }
1467
1468 /* release the driver's module */
1469 module_put(drv->owner);
1470
1471 return rc;
1472 }
1473
apmask_commit(unsigned long * newapm)1474 static int apmask_commit(unsigned long *newapm)
1475 {
1476 int rc;
1477 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1478
1479 /*
1480 * Check if any bits in the apmask have been set which will
1481 * result in queues being removed from non-default drivers
1482 */
1483 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1484 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1485 __verify_card_reservations);
1486 if (rc)
1487 return rc;
1488 }
1489
1490 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1491
1492 return 0;
1493 }
1494
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1495 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1496 size_t count)
1497 {
1498 int rc, changes = 0;
1499 DECLARE_BITMAP(newapm, AP_DEVICES);
1500
1501 if (mutex_lock_interruptible(&ap_perms_mutex))
1502 return -ERESTARTSYS;
1503
1504 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1505 if (rc)
1506 goto done;
1507
1508 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1509 if (changes)
1510 rc = apmask_commit(newapm);
1511
1512 done:
1513 mutex_unlock(&ap_perms_mutex);
1514 if (rc)
1515 return rc;
1516
1517 if (changes) {
1518 ap_bus_revise_bindings();
1519 ap_send_mask_changed_uevent(newapm, NULL);
1520 }
1521
1522 return count;
1523 }
1524
1525 static BUS_ATTR_RW(apmask);
1526
aqmask_show(const struct bus_type * bus,char * buf)1527 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1528 {
1529 int rc;
1530
1531 if (mutex_lock_interruptible(&ap_perms_mutex))
1532 return -ERESTARTSYS;
1533 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1534 ap_perms.aqm[0], ap_perms.aqm[1],
1535 ap_perms.aqm[2], ap_perms.aqm[3]);
1536 mutex_unlock(&ap_perms_mutex);
1537
1538 return rc;
1539 }
1540
__verify_queue_reservations(struct device_driver * drv,void * data)1541 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1542 {
1543 int rc = 0;
1544 struct ap_driver *ap_drv = to_ap_drv(drv);
1545 unsigned long *newaqm = (unsigned long *)data;
1546
1547 /*
1548 * increase the driver's module refcounter to be sure it is not
1549 * going away when we invoke the callback function.
1550 */
1551 if (!try_module_get(drv->owner))
1552 return 0;
1553
1554 if (ap_drv->in_use) {
1555 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1556 if (rc)
1557 rc = -EBUSY;
1558 }
1559
1560 /* release the driver's module */
1561 module_put(drv->owner);
1562
1563 return rc;
1564 }
1565
aqmask_commit(unsigned long * newaqm)1566 static int aqmask_commit(unsigned long *newaqm)
1567 {
1568 int rc;
1569 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1570
1571 /*
1572 * Check if any bits in the aqmask have been set which will
1573 * result in queues being removed from non-default drivers
1574 */
1575 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1576 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1577 __verify_queue_reservations);
1578 if (rc)
1579 return rc;
1580 }
1581
1582 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1583
1584 return 0;
1585 }
1586
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1587 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1588 size_t count)
1589 {
1590 int rc, changes = 0;
1591 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1592
1593 if (mutex_lock_interruptible(&ap_perms_mutex))
1594 return -ERESTARTSYS;
1595
1596 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1597 if (rc)
1598 goto done;
1599
1600 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1601 if (changes)
1602 rc = aqmask_commit(newaqm);
1603
1604 done:
1605 mutex_unlock(&ap_perms_mutex);
1606 if (rc)
1607 return rc;
1608
1609 if (changes) {
1610 ap_bus_revise_bindings();
1611 ap_send_mask_changed_uevent(NULL, newaqm);
1612 }
1613
1614 return count;
1615 }
1616
1617 static BUS_ATTR_RW(aqmask);
1618
scans_show(const struct bus_type * bus,char * buf)1619 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1620 {
1621 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1622 }
1623
scans_store(const struct bus_type * bus,const char * buf,size_t count)1624 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1625 size_t count)
1626 {
1627 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1628
1629 ap_bus_force_rescan();
1630
1631 return count;
1632 }
1633
1634 static BUS_ATTR_RW(scans);
1635
bindings_show(const struct bus_type * bus,char * buf)1636 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1637 {
1638 int rc;
1639 unsigned int apqns, n;
1640
1641 ap_calc_bound_apqns(&apqns, &n);
1642 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1643 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1644 else
1645 rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1646
1647 return rc;
1648 }
1649
1650 static BUS_ATTR_RO(bindings);
1651
features_show(const struct bus_type * bus,char * buf)1652 static ssize_t features_show(const struct bus_type *bus, char *buf)
1653 {
1654 int n = 0;
1655
1656 if (!ap_qci_info->flags) /* QCI not supported */
1657 return sysfs_emit(buf, "-\n");
1658
1659 if (ap_qci_info->apsc)
1660 n += sysfs_emit_at(buf, n, "APSC ");
1661 if (ap_qci_info->apxa)
1662 n += sysfs_emit_at(buf, n, "APXA ");
1663 if (ap_qci_info->qact)
1664 n += sysfs_emit_at(buf, n, "QACT ");
1665 if (ap_qci_info->rc8a)
1666 n += sysfs_emit_at(buf, n, "RC8A ");
1667 if (ap_qci_info->apsb)
1668 n += sysfs_emit_at(buf, n, "APSB ");
1669
1670 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1671
1672 return n;
1673 }
1674
1675 static BUS_ATTR_RO(features);
1676
1677 static struct attribute *ap_bus_attrs[] = {
1678 &bus_attr_ap_domain.attr,
1679 &bus_attr_ap_control_domain_mask.attr,
1680 &bus_attr_ap_usage_domain_mask.attr,
1681 &bus_attr_ap_adapter_mask.attr,
1682 &bus_attr_config_time.attr,
1683 &bus_attr_poll_thread.attr,
1684 &bus_attr_ap_interrupts.attr,
1685 &bus_attr_poll_timeout.attr,
1686 &bus_attr_ap_max_domain_id.attr,
1687 &bus_attr_ap_max_adapter_id.attr,
1688 &bus_attr_apmask.attr,
1689 &bus_attr_aqmask.attr,
1690 &bus_attr_scans.attr,
1691 &bus_attr_bindings.attr,
1692 &bus_attr_features.attr,
1693 NULL,
1694 };
1695 ATTRIBUTE_GROUPS(ap_bus);
1696
1697 static const struct bus_type ap_bus_type = {
1698 .name = "ap",
1699 .bus_groups = ap_bus_groups,
1700 .match = &ap_bus_match,
1701 .uevent = &ap_uevent,
1702 .probe = ap_device_probe,
1703 .remove = ap_device_remove,
1704 };
1705
1706 /**
1707 * ap_select_domain(): Select an AP domain if possible and we haven't
1708 * already done so before.
1709 */
ap_select_domain(void)1710 static void ap_select_domain(void)
1711 {
1712 struct ap_queue_status status;
1713 int card, dom;
1714
1715 /*
1716 * Choose the default domain. Either the one specified with
1717 * the "domain=" parameter or the first domain with at least
1718 * one valid APQN.
1719 */
1720 spin_lock_bh(&ap_domain_lock);
1721 if (ap_domain_index >= 0) {
1722 /* Domain has already been selected. */
1723 goto out;
1724 }
1725 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1726 if (!ap_test_config_usage_domain(dom) ||
1727 !test_bit_inv(dom, ap_perms.aqm))
1728 continue;
1729 for (card = 0; card <= ap_max_adapter_id; card++) {
1730 if (!ap_test_config_card_id(card) ||
1731 !test_bit_inv(card, ap_perms.apm))
1732 continue;
1733 status = ap_test_queue(AP_MKQID(card, dom),
1734 ap_apft_available(),
1735 NULL);
1736 if (status.response_code == AP_RESPONSE_NORMAL)
1737 break;
1738 }
1739 if (card <= ap_max_adapter_id)
1740 break;
1741 }
1742 if (dom <= ap_max_domain_id) {
1743 ap_domain_index = dom;
1744 AP_DBF_INFO("%s new default domain is %d\n",
1745 __func__, ap_domain_index);
1746 }
1747 out:
1748 spin_unlock_bh(&ap_domain_lock);
1749 }
1750
1751 /*
1752 * This function checks the type and returns either 0 for not
1753 * supported or the highest compatible type value (which may
1754 * include the input type value).
1755 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1756 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1757 {
1758 int comp_type = 0;
1759
1760 /* < CEX4 is not supported */
1761 if (rawtype < AP_DEVICE_TYPE_CEX4) {
1762 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1763 __func__, AP_QID_CARD(qid),
1764 AP_QID_QUEUE(qid), rawtype);
1765 return 0;
1766 }
1767 /* up to CEX8 known and fully supported */
1768 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1769 return rawtype;
1770 /*
1771 * unknown new type > CEX8, check for compatibility
1772 * to the highest known and supported type which is
1773 * currently CEX8 with the help of the QACT function.
1774 */
1775 if (ap_qact_available()) {
1776 struct ap_queue_status status;
1777 union ap_qact_ap_info apinfo = {0};
1778
1779 apinfo.mode = (func >> 26) & 0x07;
1780 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1781 status = ap_qact(qid, 0, &apinfo);
1782 if (status.response_code == AP_RESPONSE_NORMAL &&
1783 apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1784 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1785 comp_type = apinfo.cat;
1786 }
1787 if (!comp_type)
1788 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1789 __func__, AP_QID_CARD(qid),
1790 AP_QID_QUEUE(qid), rawtype);
1791 else if (comp_type != rawtype)
1792 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1793 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1794 rawtype, comp_type);
1795 return comp_type;
1796 }
1797
1798 /*
1799 * Helper function to be used with bus_find_dev
1800 * matches for the card device with the given id
1801 */
__match_card_device_with_id(struct device * dev,const void * data)1802 static int __match_card_device_with_id(struct device *dev, const void *data)
1803 {
1804 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1805 }
1806
1807 /*
1808 * Helper function to be used with bus_find_dev
1809 * matches for the queue device with a given qid
1810 */
__match_queue_device_with_qid(struct device * dev,const void * data)1811 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1812 {
1813 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1814 }
1815
1816 /*
1817 * Helper function to be used with bus_find_dev
1818 * matches any queue device with given queue id
1819 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1820 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1821 {
1822 return is_queue_dev(dev) &&
1823 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1824 }
1825
1826 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1827 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1828 {
1829 struct ap_driver *ap_drv = to_ap_drv(drv);
1830
1831 if (try_module_get(drv->owner)) {
1832 if (ap_drv->on_config_changed)
1833 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1834 module_put(drv->owner);
1835 }
1836
1837 return 0;
1838 }
1839
1840 /* Notify all drivers about an qci config change */
notify_config_changed(void)1841 static inline void notify_config_changed(void)
1842 {
1843 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1844 __drv_notify_config_changed);
1845 }
1846
1847 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1848 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1849 {
1850 struct ap_driver *ap_drv = to_ap_drv(drv);
1851
1852 if (try_module_get(drv->owner)) {
1853 if (ap_drv->on_scan_complete)
1854 ap_drv->on_scan_complete(ap_qci_info,
1855 ap_qci_info_old);
1856 module_put(drv->owner);
1857 }
1858
1859 return 0;
1860 }
1861
1862 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1863 static inline void notify_scan_complete(void)
1864 {
1865 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1866 __drv_notify_scan_complete);
1867 }
1868
1869 /*
1870 * Helper function for ap_scan_bus().
1871 * Remove card device and associated queue devices.
1872 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1873 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1874 {
1875 bus_for_each_dev(&ap_bus_type, NULL,
1876 (void *)(long)ac->id,
1877 __ap_queue_devices_with_id_unregister);
1878 device_unregister(&ac->ap_dev.device);
1879 }
1880
1881 /*
1882 * Helper function for ap_scan_bus().
1883 * Does the scan bus job for all the domains within
1884 * a valid adapter given by an ap_card ptr.
1885 */
ap_scan_domains(struct ap_card * ac)1886 static inline void ap_scan_domains(struct ap_card *ac)
1887 {
1888 struct ap_tapq_hwinfo hwinfo;
1889 bool decfg, chkstop;
1890 struct ap_queue *aq;
1891 struct device *dev;
1892 ap_qid_t qid;
1893 int rc, dom;
1894
1895 /*
1896 * Go through the configuration for the domains and compare them
1897 * to the existing queue devices. Also take care of the config
1898 * and error state for the queue devices.
1899 */
1900
1901 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1902 qid = AP_MKQID(ac->id, dom);
1903 dev = bus_find_device(&ap_bus_type, NULL,
1904 (void *)(long)qid,
1905 __match_queue_device_with_qid);
1906 aq = dev ? to_ap_queue(dev) : NULL;
1907 if (!ap_test_config_usage_domain(dom)) {
1908 if (dev) {
1909 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1910 __func__, ac->id, dom);
1911 device_unregister(dev);
1912 }
1913 goto put_dev_and_continue;
1914 }
1915 /* domain is valid, get info from this APQN */
1916 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1917 switch (rc) {
1918 case -1:
1919 if (dev) {
1920 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1921 __func__, ac->id, dom);
1922 device_unregister(dev);
1923 }
1924 fallthrough;
1925 case 0:
1926 goto put_dev_and_continue;
1927 default:
1928 break;
1929 }
1930 /* if no queue device exists, create a new one */
1931 if (!aq) {
1932 aq = ap_queue_create(qid, ac);
1933 if (!aq) {
1934 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1935 __func__, ac->id, dom);
1936 continue;
1937 }
1938 aq->config = !decfg;
1939 aq->chkstop = chkstop;
1940 aq->se_bstate = hwinfo.bs;
1941 dev = &aq->ap_dev.device;
1942 dev->bus = &ap_bus_type;
1943 dev->parent = &ac->ap_dev.device;
1944 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1945 /* register queue device */
1946 rc = device_register(dev);
1947 if (rc) {
1948 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1949 __func__, ac->id, dom);
1950 goto put_dev_and_continue;
1951 }
1952 /* get it and thus adjust reference counter */
1953 get_device(dev);
1954 if (decfg) {
1955 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1956 __func__, ac->id, dom);
1957 } else if (chkstop) {
1958 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1959 __func__, ac->id, dom);
1960 } else {
1961 /* nudge the queue's state machine */
1962 ap_queue_init_state(aq);
1963 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1964 __func__, ac->id, dom);
1965 }
1966 goto put_dev_and_continue;
1967 }
1968 /* handle state changes on already existing queue device */
1969 spin_lock_bh(&aq->lock);
1970 /* SE bind state */
1971 aq->se_bstate = hwinfo.bs;
1972 /* checkstop state */
1973 if (chkstop && !aq->chkstop) {
1974 /* checkstop on */
1975 aq->chkstop = true;
1976 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1977 aq->dev_state = AP_DEV_STATE_ERROR;
1978 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1979 }
1980 spin_unlock_bh(&aq->lock);
1981 pr_debug("(%d,%d) queue dev checkstop on\n",
1982 ac->id, dom);
1983 /* 'receive' pending messages with -EAGAIN */
1984 ap_flush_queue(aq);
1985 goto put_dev_and_continue;
1986 } else if (!chkstop && aq->chkstop) {
1987 /* checkstop off */
1988 aq->chkstop = false;
1989 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1990 _ap_queue_init_state(aq);
1991 spin_unlock_bh(&aq->lock);
1992 pr_debug("(%d,%d) queue dev checkstop off\n",
1993 ac->id, dom);
1994 goto put_dev_and_continue;
1995 }
1996 /* config state change */
1997 if (decfg && aq->config) {
1998 /* config off this queue device */
1999 aq->config = false;
2000 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
2001 aq->dev_state = AP_DEV_STATE_ERROR;
2002 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
2003 }
2004 spin_unlock_bh(&aq->lock);
2005 pr_debug("(%d,%d) queue dev config off\n",
2006 ac->id, dom);
2007 ap_send_config_uevent(&aq->ap_dev, aq->config);
2008 /* 'receive' pending messages with -EAGAIN */
2009 ap_flush_queue(aq);
2010 goto put_dev_and_continue;
2011 } else if (!decfg && !aq->config) {
2012 /* config on this queue device */
2013 aq->config = true;
2014 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
2015 _ap_queue_init_state(aq);
2016 spin_unlock_bh(&aq->lock);
2017 pr_debug("(%d,%d) queue dev config on\n",
2018 ac->id, dom);
2019 ap_send_config_uevent(&aq->ap_dev, aq->config);
2020 goto put_dev_and_continue;
2021 }
2022 /* handle other error states */
2023 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
2024 spin_unlock_bh(&aq->lock);
2025 /* 'receive' pending messages with -EAGAIN */
2026 ap_flush_queue(aq);
2027 /* re-init (with reset) the queue device */
2028 ap_queue_init_state(aq);
2029 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
2030 __func__, ac->id, dom);
2031 goto put_dev_and_continue;
2032 }
2033 spin_unlock_bh(&aq->lock);
2034 put_dev_and_continue:
2035 put_device(dev);
2036 }
2037 }
2038
2039 /*
2040 * Helper function for ap_scan_bus().
2041 * Does the scan bus job for the given adapter id.
2042 */
ap_scan_adapter(int ap)2043 static inline void ap_scan_adapter(int ap)
2044 {
2045 struct ap_tapq_hwinfo hwinfo;
2046 int rc, dom, comp_type;
2047 bool decfg, chkstop;
2048 struct ap_card *ac;
2049 struct device *dev;
2050 ap_qid_t qid;
2051
2052 /* Is there currently a card device for this adapter ? */
2053 dev = bus_find_device(&ap_bus_type, NULL,
2054 (void *)(long)ap,
2055 __match_card_device_with_id);
2056 ac = dev ? to_ap_card(dev) : NULL;
2057
2058 /* Adapter not in configuration ? */
2059 if (!ap_test_config_card_id(ap)) {
2060 if (ac) {
2061 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
2062 __func__, ap);
2063 ap_scan_rm_card_dev_and_queue_devs(ac);
2064 put_device(dev);
2065 }
2066 return;
2067 }
2068
2069 /*
2070 * Adapter ap is valid in the current configuration. So do some checks:
2071 * If no card device exists, build one. If a card device exists, check
2072 * for type and functions changed. For all this we need to find a valid
2073 * APQN first.
2074 */
2075
2076 for (dom = 0; dom <= ap_max_domain_id; dom++)
2077 if (ap_test_config_usage_domain(dom)) {
2078 qid = AP_MKQID(ap, dom);
2079 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2080 break;
2081 }
2082 if (dom > ap_max_domain_id) {
2083 /* Could not find one valid APQN for this adapter */
2084 if (ac) {
2085 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2086 __func__, ap);
2087 ap_scan_rm_card_dev_and_queue_devs(ac);
2088 put_device(dev);
2089 } else {
2090 pr_debug("(%d) no type info (no APQN found), ignored\n",
2091 ap);
2092 }
2093 return;
2094 }
2095 if (!hwinfo.at) {
2096 /* No apdater type info available, an unusable adapter */
2097 if (ac) {
2098 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2099 __func__, ap);
2100 ap_scan_rm_card_dev_and_queue_devs(ac);
2101 put_device(dev);
2102 } else {
2103 pr_debug("(%d) no valid type (0) info, ignored\n", ap);
2104 }
2105 return;
2106 }
2107 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2108 if (ac) {
2109 /* Check APQN against existing card device for changes */
2110 if (ac->hwinfo.at != hwinfo.at) {
2111 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2112 __func__, ap, hwinfo.at);
2113 ap_scan_rm_card_dev_and_queue_devs(ac);
2114 put_device(dev);
2115 ac = NULL;
2116 } else if (ac->hwinfo.fac != hwinfo.fac) {
2117 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2118 __func__, ap, hwinfo.fac);
2119 ap_scan_rm_card_dev_and_queue_devs(ac);
2120 put_device(dev);
2121 ac = NULL;
2122 } else {
2123 /* handle checkstop state change */
2124 if (chkstop && !ac->chkstop) {
2125 /* checkstop on */
2126 ac->chkstop = true;
2127 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2128 __func__, ap);
2129 } else if (!chkstop && ac->chkstop) {
2130 /* checkstop off */
2131 ac->chkstop = false;
2132 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2133 __func__, ap);
2134 }
2135 /* handle config state change */
2136 if (decfg && ac->config) {
2137 ac->config = false;
2138 AP_DBF_INFO("%s(%d) card dev config off\n",
2139 __func__, ap);
2140 ap_send_config_uevent(&ac->ap_dev, ac->config);
2141 } else if (!decfg && !ac->config) {
2142 ac->config = true;
2143 AP_DBF_INFO("%s(%d) card dev config on\n",
2144 __func__, ap);
2145 ap_send_config_uevent(&ac->ap_dev, ac->config);
2146 }
2147 }
2148 }
2149
2150 if (!ac) {
2151 /* Build a new card device */
2152 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2153 if (!comp_type) {
2154 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2155 __func__, ap, hwinfo.at);
2156 return;
2157 }
2158 ac = ap_card_create(ap, hwinfo, comp_type);
2159 if (!ac) {
2160 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2161 __func__, ap);
2162 return;
2163 }
2164 ac->config = !decfg;
2165 ac->chkstop = chkstop;
2166 dev = &ac->ap_dev.device;
2167 dev->bus = &ap_bus_type;
2168 dev->parent = ap_root_device;
2169 dev_set_name(dev, "card%02x", ap);
2170 /* maybe enlarge ap_max_msg_size to support this card */
2171 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2172 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2173 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2174 __func__, ap,
2175 atomic_read(&ap_max_msg_size));
2176 }
2177 /* Register the new card device with AP bus */
2178 rc = device_register(dev);
2179 if (rc) {
2180 AP_DBF_WARN("%s(%d) device_register() failed\n",
2181 __func__, ap);
2182 put_device(dev);
2183 return;
2184 }
2185 /* get it and thus adjust reference counter */
2186 get_device(dev);
2187 if (decfg)
2188 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2189 __func__, ap, hwinfo.at, hwinfo.fac);
2190 else if (chkstop)
2191 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2192 __func__, ap, hwinfo.at, hwinfo.fac);
2193 else
2194 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2195 __func__, ap, hwinfo.at, hwinfo.fac);
2196 }
2197
2198 /* Verify the domains and the queue devices for this card */
2199 ap_scan_domains(ac);
2200
2201 /* release the card device */
2202 put_device(&ac->ap_dev.device);
2203 }
2204
2205 /**
2206 * ap_get_configuration - get the host AP configuration
2207 *
2208 * Stores the host AP configuration information returned from the previous call
2209 * to Query Configuration Information (QCI), then retrieves and stores the
2210 * current AP configuration returned from QCI.
2211 *
2212 * Return: true if the host AP configuration changed between calls to QCI;
2213 * otherwise, return false.
2214 */
ap_get_configuration(void)2215 static bool ap_get_configuration(void)
2216 {
2217 if (!ap_qci_info->flags) /* QCI not supported */
2218 return false;
2219
2220 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2221 ap_qci(ap_qci_info);
2222
2223 return memcmp(ap_qci_info, ap_qci_info_old,
2224 sizeof(struct ap_config_info)) != 0;
2225 }
2226
2227 /*
2228 * ap_config_has_new_aps - Check current against old qci info if
2229 * new adapters have appeared. Returns true if at least one new
2230 * adapter in the apm mask is showing up. Existing adapters or
2231 * receding adapters are not counted.
2232 */
ap_config_has_new_aps(void)2233 static bool ap_config_has_new_aps(void)
2234 {
2235
2236 unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2237
2238 if (!ap_qci_info->flags)
2239 return false;
2240
2241 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2242 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2243 if (!bitmap_empty(m, AP_DEVICES))
2244 return true;
2245
2246 return false;
2247 }
2248
2249 /*
2250 * ap_config_has_new_doms - Check current against old qci info if
2251 * new (usage) domains have appeared. Returns true if at least one
2252 * new domain in the aqm mask is showing up. Existing domains or
2253 * receding domains are not counted.
2254 */
ap_config_has_new_doms(void)2255 static bool ap_config_has_new_doms(void)
2256 {
2257 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2258
2259 if (!ap_qci_info->flags)
2260 return false;
2261
2262 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2263 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2264 if (!bitmap_empty(m, AP_DOMAINS))
2265 return true;
2266
2267 return false;
2268 }
2269
2270 /**
2271 * ap_scan_bus(): Scan the AP bus for new devices
2272 * Always run under mutex ap_scan_bus_mutex protection
2273 * which needs to get locked/unlocked by the caller!
2274 * Returns true if any config change has been detected
2275 * during the scan, otherwise false.
2276 */
ap_scan_bus(void)2277 static bool ap_scan_bus(void)
2278 {
2279 bool config_changed;
2280 int ap;
2281
2282 pr_debug(">\n");
2283
2284 /* (re-)fetch configuration via QCI */
2285 config_changed = ap_get_configuration();
2286 if (config_changed) {
2287 if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2288 /*
2289 * Appearance of new adapters and/or domains need to
2290 * build new ap devices which need to get bound to an
2291 * device driver. Thus reset the APQN bindings complete
2292 * completion.
2293 */
2294 reinit_completion(&ap_apqn_bindings_complete);
2295 }
2296 /* post a config change notify */
2297 notify_config_changed();
2298 }
2299 ap_select_domain();
2300
2301 /* loop over all possible adapters */
2302 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2303 ap_scan_adapter(ap);
2304
2305 /* scan complete notify */
2306 if (config_changed)
2307 notify_scan_complete();
2308
2309 /* check if there is at least one queue available with default domain */
2310 if (ap_domain_index >= 0) {
2311 struct device *dev =
2312 bus_find_device(&ap_bus_type, NULL,
2313 (void *)(long)ap_domain_index,
2314 __match_queue_device_with_queue_id);
2315 if (dev)
2316 put_device(dev);
2317 else
2318 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2319 __func__, ap_domain_index);
2320 }
2321
2322 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2323 pr_debug("init scan complete\n");
2324 ap_send_init_scan_done_uevent();
2325 }
2326
2327 ap_check_bindings_complete();
2328
2329 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2330
2331 pr_debug("< config_changed=%d\n", config_changed);
2332
2333 return config_changed;
2334 }
2335
2336 /*
2337 * Callback for the ap_scan_bus_timer
2338 * Runs periodically, workqueue timer (ap_scan_bus_time)
2339 */
ap_scan_bus_timer_callback(struct timer_list * unused)2340 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2341 {
2342 /*
2343 * schedule work into the system long wq which when
2344 * the work is finally executed, calls the AP bus scan.
2345 */
2346 queue_work(system_long_wq, &ap_scan_bus_work);
2347 }
2348
2349 /*
2350 * Callback for the ap_scan_bus_work
2351 */
ap_scan_bus_wq_callback(struct work_struct * unused)2352 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2353 {
2354 /*
2355 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2356 * fails there is currently another task already running the
2357 * AP scan bus and there is no need to wait and re-trigger the
2358 * scan again. Please note at the end of the scan bus function
2359 * the AP scan bus timer is re-armed which triggers then the
2360 * ap_scan_bus_timer_callback which enqueues a work into the
2361 * system_long_wq which invokes this function here again.
2362 */
2363 if (mutex_trylock(&ap_scan_bus_mutex)) {
2364 ap_scan_bus_task = current;
2365 ap_scan_bus_result = ap_scan_bus();
2366 ap_scan_bus_task = NULL;
2367 mutex_unlock(&ap_scan_bus_mutex);
2368 }
2369 }
2370
ap_async_exit(void)2371 static inline void __exit ap_async_exit(void)
2372 {
2373 if (ap_thread_flag)
2374 ap_poll_thread_stop();
2375 chsc_notifier_unregister(&ap_bus_nb);
2376 cancel_work(&ap_scan_bus_work);
2377 hrtimer_cancel(&ap_poll_timer);
2378 timer_delete(&ap_scan_bus_timer);
2379 }
2380
ap_async_init(void)2381 static inline int __init ap_async_init(void)
2382 {
2383 int rc;
2384
2385 /* Setup the AP bus rescan timer. */
2386 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2387
2388 /*
2389 * Setup the high resolution poll timer.
2390 * If we are running under z/VM adjust polling to z/VM polling rate.
2391 */
2392 if (machine_is_vm())
2393 poll_high_timeout = 1500000;
2394 hrtimer_setup(&ap_poll_timer, ap_poll_timeout, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2395
2396 queue_work(system_long_wq, &ap_scan_bus_work);
2397
2398 rc = chsc_notifier_register(&ap_bus_nb);
2399 if (rc)
2400 goto out;
2401
2402 /* Start the low priority AP bus poll thread. */
2403 if (!ap_thread_flag)
2404 return 0;
2405
2406 rc = ap_poll_thread_start();
2407 if (rc)
2408 goto out_notifier;
2409
2410 return 0;
2411
2412 out_notifier:
2413 chsc_notifier_unregister(&ap_bus_nb);
2414 out:
2415 cancel_work(&ap_scan_bus_work);
2416 hrtimer_cancel(&ap_poll_timer);
2417 timer_delete(&ap_scan_bus_timer);
2418 return rc;
2419 }
2420
ap_irq_exit(void)2421 static inline void ap_irq_exit(void)
2422 {
2423 if (ap_irq_flag)
2424 unregister_adapter_interrupt(&ap_airq);
2425 }
2426
ap_irq_init(void)2427 static inline int __init ap_irq_init(void)
2428 {
2429 int rc;
2430
2431 if (!ap_interrupts_available() || !ap_useirq)
2432 return 0;
2433
2434 rc = register_adapter_interrupt(&ap_airq);
2435 ap_irq_flag = (rc == 0);
2436
2437 return rc;
2438 }
2439
ap_debug_exit(void)2440 static inline void ap_debug_exit(void)
2441 {
2442 debug_unregister(ap_dbf_info);
2443 }
2444
ap_debug_init(void)2445 static inline int __init ap_debug_init(void)
2446 {
2447 ap_dbf_info = debug_register("ap", 2, 1,
2448 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2449 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2450 debug_set_level(ap_dbf_info, DBF_ERR);
2451
2452 return 0;
2453 }
2454
ap_perms_init(void)2455 static void __init ap_perms_init(void)
2456 {
2457 /* all resources usable if no kernel parameter string given */
2458 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2459 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2460 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2461
2462 /* apm kernel parameter string */
2463 if (apm_str) {
2464 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2465 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2466 &ap_perms_mutex);
2467 }
2468
2469 /* aqm kernel parameter string */
2470 if (aqm_str) {
2471 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2472 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2473 &ap_perms_mutex);
2474 }
2475 }
2476
2477 /**
2478 * ap_module_init(): The module initialization code.
2479 *
2480 * Initializes the module.
2481 */
ap_module_init(void)2482 static int __init ap_module_init(void)
2483 {
2484 int rc;
2485
2486 rc = ap_debug_init();
2487 if (rc)
2488 return rc;
2489
2490 if (!ap_instructions_available()) {
2491 pr_warn("The hardware system does not support AP instructions\n");
2492 return -ENODEV;
2493 }
2494
2495 /* init ap_queue hashtable */
2496 hash_init(ap_queues);
2497
2498 /* create ap msg buffer memory pool */
2499 ap_msg_pool = mempool_create_kmalloc_pool(ap_msg_pool_min_items,
2500 AP_DEFAULT_MAX_MSG_SIZE);
2501 if (!ap_msg_pool) {
2502 rc = -ENOMEM;
2503 goto out;
2504 }
2505
2506 /* set up the AP permissions (ioctls, ap and aq masks) */
2507 ap_perms_init();
2508
2509 /* Get AP configuration data if available */
2510 ap_init_qci_info();
2511
2512 /* check default domain setting */
2513 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2514 (ap_domain_index >= 0 &&
2515 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2516 pr_warn("%d is not a valid cryptographic domain\n",
2517 ap_domain_index);
2518 ap_domain_index = -1;
2519 }
2520
2521 /* Create /sys/bus/ap. */
2522 rc = bus_register(&ap_bus_type);
2523 if (rc)
2524 goto out;
2525
2526 /* Create /sys/devices/ap. */
2527 ap_root_device = root_device_register("ap");
2528 rc = PTR_ERR_OR_ZERO(ap_root_device);
2529 if (rc)
2530 goto out_bus;
2531 ap_root_device->bus = &ap_bus_type;
2532
2533 /* enable interrupts if available */
2534 rc = ap_irq_init();
2535 if (rc)
2536 goto out_device;
2537
2538 /* Setup asynchronous work (timers, workqueue, etc). */
2539 rc = ap_async_init();
2540 if (rc)
2541 goto out_irq;
2542
2543 return 0;
2544
2545 out_irq:
2546 ap_irq_exit();
2547 out_device:
2548 root_device_unregister(ap_root_device);
2549 out_bus:
2550 bus_unregister(&ap_bus_type);
2551 out:
2552 mempool_destroy(ap_msg_pool);
2553 ap_debug_exit();
2554 return rc;
2555 }
2556
ap_module_exit(void)2557 static void __exit ap_module_exit(void)
2558 {
2559 ap_async_exit();
2560 ap_irq_exit();
2561 root_device_unregister(ap_root_device);
2562 bus_unregister(&ap_bus_type);
2563 mempool_destroy(ap_msg_pool);
2564 ap_debug_exit();
2565 }
2566
2567 module_init(ap_module_init);
2568 module_exit(ap_module_exit);
2569