1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implement cfg80211 ("iw") support.
4 *
5 * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany
6 * Holger Schurig <hs4233@mail.mn-solutions.de>
7 *
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/hardirq.h>
13 #include <linux/sched.h>
14 #include <linux/wait.h>
15 #include <linux/slab.h>
16 #include <linux/ieee80211.h>
17 #include <net/cfg80211.h>
18 #include <linux/unaligned.h>
19
20 #include "decl.h"
21 #include "cfg.h"
22 #include "cmd.h"
23 #include "mesh.h"
24
25
26 #define CHAN2G(_channel, _freq, _flags) { \
27 .band = NL80211_BAND_2GHZ, \
28 .center_freq = (_freq), \
29 .hw_value = (_channel), \
30 .flags = (_flags), \
31 .max_antenna_gain = 0, \
32 .max_power = 30, \
33 }
34
35 static struct ieee80211_channel lbs_2ghz_channels[] = {
36 CHAN2G(1, 2412, 0),
37 CHAN2G(2, 2417, 0),
38 CHAN2G(3, 2422, 0),
39 CHAN2G(4, 2427, 0),
40 CHAN2G(5, 2432, 0),
41 CHAN2G(6, 2437, 0),
42 CHAN2G(7, 2442, 0),
43 CHAN2G(8, 2447, 0),
44 CHAN2G(9, 2452, 0),
45 CHAN2G(10, 2457, 0),
46 CHAN2G(11, 2462, 0),
47 CHAN2G(12, 2467, 0),
48 CHAN2G(13, 2472, 0),
49 CHAN2G(14, 2484, 0),
50 };
51
52 #define RATETAB_ENT(_rate, _hw_value, _flags) { \
53 .bitrate = (_rate), \
54 .hw_value = (_hw_value), \
55 .flags = (_flags), \
56 }
57
58
59 /* Table 6 in section 3.2.1.1 */
60 static struct ieee80211_rate lbs_rates[] = {
61 RATETAB_ENT(10, 0, 0),
62 RATETAB_ENT(20, 1, 0),
63 RATETAB_ENT(55, 2, 0),
64 RATETAB_ENT(110, 3, 0),
65 RATETAB_ENT(60, 9, 0),
66 RATETAB_ENT(90, 6, 0),
67 RATETAB_ENT(120, 7, 0),
68 RATETAB_ENT(180, 8, 0),
69 RATETAB_ENT(240, 9, 0),
70 RATETAB_ENT(360, 10, 0),
71 RATETAB_ENT(480, 11, 0),
72 RATETAB_ENT(540, 12, 0),
73 };
74
75 static struct ieee80211_supported_band lbs_band_2ghz = {
76 .channels = lbs_2ghz_channels,
77 .n_channels = ARRAY_SIZE(lbs_2ghz_channels),
78 .bitrates = lbs_rates,
79 .n_bitrates = ARRAY_SIZE(lbs_rates),
80 };
81
82
83 static const u32 cipher_suites[] = {
84 WLAN_CIPHER_SUITE_WEP40,
85 WLAN_CIPHER_SUITE_WEP104,
86 WLAN_CIPHER_SUITE_TKIP,
87 WLAN_CIPHER_SUITE_CCMP,
88 };
89
90 /* Time to stay on the channel */
91 #define LBS_DWELL_PASSIVE 100
92 #define LBS_DWELL_ACTIVE 40
93
94
95 /***************************************************************************
96 * Misc utility functions
97 *
98 * TLVs are Marvell specific. They are very similar to IEs, they have the
99 * same structure: type, length, data*. The only difference: for IEs, the
100 * type and length are u8, but for TLVs they're __le16.
101 */
102
103 /*
104 * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1
105 * in the firmware spec
106 */
lbs_auth_to_authtype(enum nl80211_auth_type auth_type)107 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type)
108 {
109 int ret = -ENOTSUPP;
110
111 switch (auth_type) {
112 case NL80211_AUTHTYPE_OPEN_SYSTEM:
113 case NL80211_AUTHTYPE_SHARED_KEY:
114 ret = auth_type;
115 break;
116 case NL80211_AUTHTYPE_AUTOMATIC:
117 ret = NL80211_AUTHTYPE_OPEN_SYSTEM;
118 break;
119 case NL80211_AUTHTYPE_NETWORK_EAP:
120 ret = 0x80;
121 break;
122 default:
123 /* silence compiler */
124 break;
125 }
126 return ret;
127 }
128
129
130 /*
131 * Various firmware commands need the list of supported rates, but with
132 * the hight-bit set for basic rates
133 */
lbs_add_rates(u8 * rates)134 static int lbs_add_rates(u8 *rates)
135 {
136 size_t i;
137
138 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) {
139 u8 rate = lbs_rates[i].bitrate / 5;
140 if (rate == 0x02 || rate == 0x04 ||
141 rate == 0x0b || rate == 0x16)
142 rate |= 0x80;
143 rates[i] = rate;
144 }
145 return ARRAY_SIZE(lbs_rates);
146 }
147
148
149 /***************************************************************************
150 * TLV utility functions
151 *
152 * TLVs are Marvell specific. They are very similar to IEs, they have the
153 * same structure: type, length, data*. The only difference: for IEs, the
154 * type and length are u8, but for TLVs they're __le16.
155 */
156
157
158 /*
159 * Add ssid TLV
160 */
161 #define LBS_MAX_SSID_TLV_SIZE \
162 (sizeof(struct mrvl_ie_header) \
163 + IEEE80211_MAX_SSID_LEN)
164
lbs_add_ssid_tlv(u8 * tlv,const u8 * ssid,int ssid_len)165 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len)
166 {
167 struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv;
168
169 /*
170 * TLV-ID SSID 00 00
171 * length 06 00
172 * ssid 4d 4e 54 45 53 54
173 */
174 ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID);
175 ssid_tlv->header.len = cpu_to_le16(ssid_len);
176 memcpy(ssid_tlv->ssid, ssid, ssid_len);
177 return sizeof(ssid_tlv->header) + ssid_len;
178 }
179
180
181 /*
182 * Add channel list TLV (section 8.4.2)
183 *
184 * Actual channel data comes from priv->wdev->wiphy->channels.
185 */
186 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \
187 (sizeof(struct mrvl_ie_header) \
188 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset)))
189
lbs_add_channel_list_tlv(struct lbs_private * priv,u8 * tlv,int last_channel,int active_scan)190 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv,
191 int last_channel, int active_scan)
192 {
193 int chanscanparamsize = sizeof(struct chanscanparamset) *
194 (last_channel - priv->scan_channel);
195
196 struct mrvl_ie_header *header = (void *) tlv;
197
198 /*
199 * TLV-ID CHANLIST 01 01
200 * length 0e 00
201 * channel 00 01 00 00 00 64 00
202 * radio type 00
203 * channel 01
204 * scan type 00
205 * min scan time 00 00
206 * max scan time 64 00
207 * channel 2 00 02 00 00 00 64 00
208 *
209 */
210
211 header->type = cpu_to_le16(TLV_TYPE_CHANLIST);
212 header->len = cpu_to_le16(chanscanparamsize);
213 tlv += sizeof(struct mrvl_ie_header);
214
215 /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel,
216 last_channel); */
217 memset(tlv, 0, chanscanparamsize);
218
219 while (priv->scan_channel < last_channel) {
220 struct chanscanparamset *param = (void *) tlv;
221
222 param->radiotype = CMD_SCAN_RADIO_TYPE_BG;
223 param->channumber =
224 priv->scan_req->channels[priv->scan_channel]->hw_value;
225 if (active_scan) {
226 param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE);
227 } else {
228 param->chanscanmode.passivescan = 1;
229 param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE);
230 }
231 tlv += sizeof(struct chanscanparamset);
232 priv->scan_channel++;
233 }
234 return sizeof(struct mrvl_ie_header) + chanscanparamsize;
235 }
236
237
238 /*
239 * Add rates TLV
240 *
241 * The rates are in lbs_bg_rates[], but for the 802.11b
242 * rates the high bit is set. We add this TLV only because
243 * there's a firmware which otherwise doesn't report all
244 * APs in range.
245 */
246 #define LBS_MAX_RATES_TLV_SIZE \
247 (sizeof(struct mrvl_ie_header) \
248 + (ARRAY_SIZE(lbs_rates)))
249
250 /* Adds a TLV with all rates the hardware supports */
lbs_add_supported_rates_tlv(u8 * tlv)251 static int lbs_add_supported_rates_tlv(u8 *tlv)
252 {
253 size_t i;
254 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv;
255
256 /*
257 * TLV-ID RATES 01 00
258 * length 0e 00
259 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c
260 */
261 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES);
262 tlv += sizeof(rate_tlv->header);
263 i = lbs_add_rates(tlv);
264 tlv += i;
265 rate_tlv->header.len = cpu_to_le16(i);
266 return sizeof(rate_tlv->header) + i;
267 }
268
269 /* Add common rates from a TLV and return the new end of the TLV */
270 static u8 *
add_ie_rates(u8 * tlv,const u8 * ie,int * nrates)271 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates)
272 {
273 int hw, ap, ap_max = ie[1];
274 u8 hw_rate;
275
276 if (ap_max > MAX_RATES) {
277 lbs_deb_assoc("invalid rates\n");
278 return tlv;
279 }
280 /* Advance past IE header */
281 ie += 2;
282
283 lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max);
284
285 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) {
286 hw_rate = lbs_rates[hw].bitrate / 5;
287 for (ap = 0; ap < ap_max; ap++) {
288 if (hw_rate == (ie[ap] & 0x7f)) {
289 *tlv++ = ie[ap];
290 *nrates = *nrates + 1;
291 }
292 }
293 }
294 return tlv;
295 }
296
297 /*
298 * Adds a TLV with all rates the hardware *and* BSS supports.
299 */
lbs_add_common_rates_tlv(u8 * tlv,struct cfg80211_bss * bss)300 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss)
301 {
302 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv;
303 const u8 *rates_eid, *ext_rates_eid;
304 int n = 0;
305
306 rcu_read_lock();
307 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES);
308 ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES);
309
310 /*
311 * 01 00 TLV_TYPE_RATES
312 * 04 00 len
313 * 82 84 8b 96 rates
314 */
315 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES);
316 tlv += sizeof(rate_tlv->header);
317
318 /* Add basic rates */
319 if (rates_eid) {
320 tlv = add_ie_rates(tlv, rates_eid, &n);
321
322 /* Add extended rates, if any */
323 if (ext_rates_eid)
324 tlv = add_ie_rates(tlv, ext_rates_eid, &n);
325 } else {
326 lbs_deb_assoc("assoc: bss had no basic rate IE\n");
327 /* Fallback: add basic 802.11b rates */
328 *tlv++ = 0x82;
329 *tlv++ = 0x84;
330 *tlv++ = 0x8b;
331 *tlv++ = 0x96;
332 n = 4;
333 }
334 rcu_read_unlock();
335
336 rate_tlv->header.len = cpu_to_le16(n);
337 return sizeof(rate_tlv->header) + n;
338 }
339
340
341 /*
342 * Add auth type TLV.
343 *
344 * This is only needed for newer firmware (V9 and up).
345 */
346 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \
347 sizeof(struct mrvl_ie_auth_type)
348
lbs_add_auth_type_tlv(u8 * tlv,enum nl80211_auth_type auth_type)349 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type)
350 {
351 struct mrvl_ie_auth_type *auth = (void *) tlv;
352
353 /*
354 * 1f 01 TLV_TYPE_AUTH_TYPE
355 * 01 00 len
356 * 01 auth type
357 */
358 auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE);
359 auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header));
360 auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type));
361 return sizeof(*auth);
362 }
363
364
365 /*
366 * Add channel (phy ds) TLV
367 */
368 #define LBS_MAX_CHANNEL_TLV_SIZE \
369 sizeof(struct mrvl_ie_header)
370
lbs_add_channel_tlv(u8 * tlv,u8 channel)371 static int lbs_add_channel_tlv(u8 *tlv, u8 channel)
372 {
373 struct mrvl_ie_ds_param_set *ds = (void *) tlv;
374
375 /*
376 * 03 00 TLV_TYPE_PHY_DS
377 * 01 00 len
378 * 06 channel
379 */
380 ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS);
381 ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header));
382 ds->channel = channel;
383 return sizeof(*ds);
384 }
385
386
387 /*
388 * Add (empty) CF param TLV of the form:
389 */
390 #define LBS_MAX_CF_PARAM_TLV_SIZE \
391 sizeof(struct mrvl_ie_header)
392
lbs_add_cf_param_tlv(u8 * tlv)393 static int lbs_add_cf_param_tlv(u8 *tlv)
394 {
395 struct mrvl_ie_cf_param_set *cf = (void *)tlv;
396
397 /*
398 * 04 00 TLV_TYPE_CF
399 * 06 00 len
400 * 00 cfpcnt
401 * 00 cfpperiod
402 * 00 00 cfpmaxduration
403 * 00 00 cfpdurationremaining
404 */
405 cf->header.type = cpu_to_le16(TLV_TYPE_CF);
406 cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header));
407 return sizeof(*cf);
408 }
409
410 /*
411 * Add WPA TLV
412 */
413 #define LBS_MAX_WPA_TLV_SIZE \
414 (sizeof(struct mrvl_ie_header) \
415 + 128 /* TODO: I guessed the size */)
416
lbs_add_wpa_tlv(u8 * tlv,const u8 * ie,u8 ie_len)417 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len)
418 {
419 struct mrvl_ie_data *wpatlv = (struct mrvl_ie_data *)tlv;
420 const struct element *wpaie;
421
422 /* Find the first RSN or WPA IE to use */
423 wpaie = cfg80211_find_elem(WLAN_EID_RSN, ie, ie_len);
424 if (!wpaie)
425 wpaie = cfg80211_find_vendor_elem(WLAN_OUI_MICROSOFT,
426 WLAN_OUI_TYPE_MICROSOFT_WPA,
427 ie, ie_len);
428 if (!wpaie || wpaie->datalen > 128)
429 return 0;
430
431 /*
432 * Convert the found IE to a TLV. IEs use u8 for the header,
433 * u8 type
434 * u8 len
435 * u8[] data
436 * but TLVs use __le16 instead:
437 * __le16 type
438 * __le16 len
439 * u8[] data
440 */
441 wpatlv->header.type = cpu_to_le16(wpaie->id);
442 wpatlv->header.len = cpu_to_le16(wpaie->datalen);
443 memcpy(wpatlv->data, wpaie->data, wpaie->datalen);
444
445 /* Return the total number of bytes added to the TLV buffer */
446 return sizeof(struct mrvl_ie_header) + wpaie->datalen;
447 }
448
449 /* Add WPS enrollee TLV
450 */
451 #define LBS_MAX_WPS_ENROLLEE_TLV_SIZE \
452 (sizeof(struct mrvl_ie_header) \
453 + 256)
454
lbs_add_wps_enrollee_tlv(u8 * tlv,const u8 * ie,size_t ie_len)455 static int lbs_add_wps_enrollee_tlv(u8 *tlv, const u8 *ie, size_t ie_len)
456 {
457 struct mrvl_ie_data *wpstlv = (struct mrvl_ie_data *)tlv;
458 const struct element *wpsie;
459
460 /* Look for a WPS IE and add it to the probe request */
461 wpsie = cfg80211_find_vendor_elem(WLAN_OUI_MICROSOFT,
462 WLAN_OUI_TYPE_MICROSOFT_WPS,
463 ie, ie_len);
464 if (!wpsie)
465 return 0;
466
467 /* Convert the WPS IE to a TLV. The IE looks like this:
468 * u8 type (WLAN_EID_VENDOR_SPECIFIC)
469 * u8 len
470 * u8[] data
471 * but the TLV will look like this instead:
472 * __le16 type (TLV_TYPE_WPS_ENROLLEE)
473 * __le16 len
474 * u8[] data
475 */
476 wpstlv->header.type = cpu_to_le16(TLV_TYPE_WPS_ENROLLEE);
477 wpstlv->header.len = cpu_to_le16(wpsie->datalen);
478 memcpy(wpstlv->data, wpsie->data, wpsie->datalen);
479
480 /* Return the total number of bytes added to the TLV buffer */
481 return sizeof(struct mrvl_ie_header) + wpsie->datalen;
482 }
483
484 /*
485 * Set Channel
486 */
487
lbs_cfg_set_monitor_channel(struct wiphy * wiphy,struct net_device * dev,struct cfg80211_chan_def * chandef)488 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy,
489 struct net_device *dev,
490 struct cfg80211_chan_def *chandef)
491 {
492 struct lbs_private *priv = wiphy_priv(wiphy);
493 int ret = -ENOTSUPP;
494
495 if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT)
496 goto out;
497
498 ret = lbs_set_channel(priv, chandef->chan->hw_value);
499
500 out:
501 return ret;
502 }
503
lbs_cfg_set_mesh_channel(struct wiphy * wiphy,struct net_device * netdev,struct ieee80211_channel * channel)504 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy,
505 struct net_device *netdev,
506 struct ieee80211_channel *channel)
507 {
508 struct lbs_private *priv = wiphy_priv(wiphy);
509 int ret = -ENOTSUPP;
510
511 if (netdev != priv->mesh_dev)
512 goto out;
513
514 ret = lbs_mesh_set_channel(priv, channel->hw_value);
515
516 out:
517 return ret;
518 }
519
520
521
522 /*
523 * Scanning
524 */
525
526 /*
527 * When scanning, the firmware doesn't send a nul packet with the power-safe
528 * bit to the AP. So we cannot stay away from our current channel too long,
529 * otherwise we loose data. So take a "nap" while scanning every other
530 * while.
531 */
532 #define LBS_SCAN_BEFORE_NAP 4
533
534
535 /*
536 * When the firmware reports back a scan-result, it gives us an "u8 rssi",
537 * which isn't really an RSSI, as it becomes larger when moving away from
538 * the AP. Anyway, we need to convert that into mBm.
539 */
540 #define LBS_SCAN_RSSI_TO_MBM(rssi) \
541 ((-(int)rssi + 3)*100)
542
lbs_ret_scan(struct lbs_private * priv,unsigned long dummy,struct cmd_header * resp)543 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy,
544 struct cmd_header *resp)
545 {
546 struct cfg80211_bss *bss;
547 struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp;
548 int bsssize;
549 const u8 *pos;
550 const u8 *tsfdesc;
551 int tsfsize;
552 int i;
553 int ret = -EILSEQ;
554
555 bsssize = get_unaligned_le16(&scanresp->bssdescriptsize);
556
557 lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n",
558 scanresp->nr_sets, bsssize, le16_to_cpu(resp->size));
559
560 if (scanresp->nr_sets == 0) {
561 ret = 0;
562 goto done;
563 }
564
565 /*
566 * The general layout of the scan response is described in chapter
567 * 5.7.1. Basically we have a common part, then any number of BSS
568 * descriptor sections. Finally we have section with the same number
569 * of TSFs.
570 *
571 * cmd_ds_802_11_scan_rsp
572 * cmd_header
573 * pos_size
574 * nr_sets
575 * bssdesc 1
576 * bssid
577 * rssi
578 * timestamp
579 * intvl
580 * capa
581 * IEs
582 * bssdesc 2
583 * bssdesc n
584 * MrvlIEtypes_TsfFimestamp_t
585 * TSF for BSS 1
586 * TSF for BSS 2
587 * TSF for BSS n
588 */
589
590 pos = scanresp->bssdesc_and_tlvbuffer;
591
592 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer,
593 bsssize);
594
595 tsfdesc = pos + bsssize;
596 tsfsize = 4 + 8 * scanresp->nr_sets;
597 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize);
598
599 /* Validity check: we expect a Marvell-Local TLV */
600 i = get_unaligned_le16(tsfdesc);
601 tsfdesc += 2;
602 if (i != TLV_TYPE_TSFTIMESTAMP) {
603 lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i);
604 goto done;
605 }
606
607 /*
608 * Validity check: the TLV holds TSF values with 8 bytes each, so
609 * the size in the TLV must match the nr_sets value
610 */
611 i = get_unaligned_le16(tsfdesc);
612 tsfdesc += 2;
613 if (i / 8 != scanresp->nr_sets) {
614 lbs_deb_scan("scan response: invalid number of TSF timestamp "
615 "sets (expected %d got %d)\n", scanresp->nr_sets,
616 i / 8);
617 goto done;
618 }
619
620 for (i = 0; i < scanresp->nr_sets; i++) {
621 const u8 *bssid;
622 const u8 *ie;
623 int left;
624 int ielen;
625 int rssi;
626 u16 intvl;
627 u16 capa;
628 int chan_no = -1;
629 const u8 *ssid = NULL;
630 u8 ssid_len = 0;
631
632 int len = get_unaligned_le16(pos);
633 pos += 2;
634
635 /* BSSID */
636 bssid = pos;
637 pos += ETH_ALEN;
638 /* RSSI */
639 rssi = *pos++;
640 /* Packet time stamp */
641 pos += 8;
642 /* Beacon interval */
643 intvl = get_unaligned_le16(pos);
644 pos += 2;
645 /* Capabilities */
646 capa = get_unaligned_le16(pos);
647 pos += 2;
648
649 /* To find out the channel, we must parse the IEs */
650 ie = pos;
651 /*
652 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon
653 * interval, capabilities
654 */
655 ielen = left = len - (6 + 1 + 8 + 2 + 2);
656 while (left >= 2) {
657 u8 id, elen;
658 id = *pos++;
659 elen = *pos++;
660 left -= 2;
661 if (elen > left) {
662 lbs_deb_scan("scan response: invalid IE fmt\n");
663 goto done;
664 }
665
666 if (id == WLAN_EID_DS_PARAMS)
667 chan_no = *pos;
668 if (id == WLAN_EID_SSID) {
669 ssid = pos;
670 ssid_len = elen;
671 }
672 left -= elen;
673 pos += elen;
674 }
675
676 /* No channel, no luck */
677 if (chan_no != -1) {
678 struct wiphy *wiphy = priv->wdev->wiphy;
679 int freq = ieee80211_channel_to_frequency(chan_no,
680 NL80211_BAND_2GHZ);
681 struct ieee80211_channel *channel =
682 ieee80211_get_channel(wiphy, freq);
683
684 lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n",
685 bssid, capa, chan_no, ssid_len, ssid,
686 LBS_SCAN_RSSI_TO_MBM(rssi)/100);
687
688 if (channel &&
689 !(channel->flags & IEEE80211_CHAN_DISABLED)) {
690 bss = cfg80211_inform_bss(wiphy, channel,
691 CFG80211_BSS_FTYPE_UNKNOWN,
692 bssid, get_unaligned_le64(tsfdesc),
693 capa, intvl, ie, ielen,
694 LBS_SCAN_RSSI_TO_MBM(rssi),
695 GFP_KERNEL);
696 cfg80211_put_bss(wiphy, bss);
697 }
698 } else
699 lbs_deb_scan("scan response: missing BSS channel IE\n");
700
701 tsfdesc += 8;
702 }
703 ret = 0;
704
705 done:
706 return ret;
707 }
708
709
710 /*
711 * Our scan command contains a TLV, consisting of a SSID TLV, a channel list
712 * TLV, a rates TLV, and an optional WPS IE. Determine the maximum size of them:
713 */
714 #define LBS_SCAN_MAX_CMD_SIZE \
715 (sizeof(struct cmd_ds_802_11_scan) \
716 + LBS_MAX_SSID_TLV_SIZE \
717 + LBS_MAX_CHANNEL_LIST_TLV_SIZE \
718 + LBS_MAX_RATES_TLV_SIZE \
719 + LBS_MAX_WPS_ENROLLEE_TLV_SIZE)
720
721 /*
722 * Assumes priv->scan_req is initialized and valid
723 * Assumes priv->scan_channel is initialized
724 */
lbs_scan_worker(struct work_struct * work)725 static void lbs_scan_worker(struct work_struct *work)
726 {
727 struct lbs_private *priv =
728 container_of(work, struct lbs_private, scan_work.work);
729 struct cmd_ds_802_11_scan *scan_cmd;
730 u8 *tlv; /* pointer into our current, growing TLV storage area */
731 int last_channel;
732 int running, carrier;
733
734 scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL);
735 if (scan_cmd == NULL)
736 return;
737
738 /* prepare fixed part of scan command */
739 scan_cmd->bsstype = CMD_BSS_TYPE_ANY;
740
741 /* stop network while we're away from our main channel */
742 running = !netif_queue_stopped(priv->dev);
743 carrier = netif_carrier_ok(priv->dev);
744 if (running)
745 netif_stop_queue(priv->dev);
746 if (carrier)
747 netif_carrier_off(priv->dev);
748
749 /* prepare fixed part of scan command */
750 tlv = scan_cmd->tlvbuffer;
751
752 /* add SSID TLV */
753 if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0)
754 tlv += lbs_add_ssid_tlv(tlv,
755 priv->scan_req->ssids[0].ssid,
756 priv->scan_req->ssids[0].ssid_len);
757
758 /* add channel TLVs */
759 last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP;
760 if (last_channel > priv->scan_req->n_channels)
761 last_channel = priv->scan_req->n_channels;
762 tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel,
763 priv->scan_req->n_ssids);
764
765 /* add rates TLV */
766 tlv += lbs_add_supported_rates_tlv(tlv);
767
768 /* add optional WPS enrollee TLV */
769 if (priv->scan_req->ie && priv->scan_req->ie_len)
770 tlv += lbs_add_wps_enrollee_tlv(tlv, priv->scan_req->ie,
771 priv->scan_req->ie_len);
772
773 if (priv->scan_channel < priv->scan_req->n_channels) {
774 cancel_delayed_work(&priv->scan_work);
775 if (netif_running(priv->dev))
776 queue_delayed_work(priv->work_thread, &priv->scan_work,
777 msecs_to_jiffies(300));
778 }
779
780 /* This is the final data we are about to send */
781 scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd);
782 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd,
783 sizeof(*scan_cmd));
784 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer,
785 tlv - scan_cmd->tlvbuffer);
786
787 __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr,
788 le16_to_cpu(scan_cmd->hdr.size),
789 lbs_ret_scan, 0);
790
791 if (priv->scan_channel >= priv->scan_req->n_channels) {
792 /* Mark scan done */
793 cancel_delayed_work(&priv->scan_work);
794 lbs_scan_done(priv);
795 }
796
797 /* Restart network */
798 if (carrier)
799 netif_carrier_on(priv->dev);
800 if (running && !priv->tx_pending_len)
801 netif_wake_queue(priv->dev);
802
803 kfree(scan_cmd);
804
805 /* Wake up anything waiting on scan completion */
806 if (priv->scan_req == NULL) {
807 lbs_deb_scan("scan: waking up waiters\n");
808 wake_up_all(&priv->scan_q);
809 }
810 }
811
_internal_start_scan(struct lbs_private * priv,bool internal,struct cfg80211_scan_request * request)812 static void _internal_start_scan(struct lbs_private *priv, bool internal,
813 struct cfg80211_scan_request *request)
814 {
815 lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n",
816 request->n_ssids, request->n_channels, request->ie_len);
817
818 priv->scan_channel = 0;
819 priv->scan_req = request;
820 priv->internal_scan = internal;
821
822 queue_delayed_work(priv->work_thread, &priv->scan_work,
823 msecs_to_jiffies(50));
824 }
825
826 /*
827 * Clean up priv->scan_req. Should be used to handle the allocation details.
828 */
lbs_scan_done(struct lbs_private * priv)829 void lbs_scan_done(struct lbs_private *priv)
830 {
831 WARN_ON(!priv->scan_req);
832
833 if (priv->internal_scan) {
834 kfree(priv->scan_req);
835 } else {
836 struct cfg80211_scan_info info = {
837 .aborted = false,
838 };
839
840 cfg80211_scan_done(priv->scan_req, &info);
841 }
842
843 priv->scan_req = NULL;
844 }
845
lbs_cfg_scan(struct wiphy * wiphy,struct cfg80211_scan_request * request)846 static int lbs_cfg_scan(struct wiphy *wiphy,
847 struct cfg80211_scan_request *request)
848 {
849 struct lbs_private *priv = wiphy_priv(wiphy);
850 int ret = 0;
851
852 if (priv->scan_req || delayed_work_pending(&priv->scan_work)) {
853 /* old scan request not yet processed */
854 ret = -EAGAIN;
855 goto out;
856 }
857
858 _internal_start_scan(priv, false, request);
859
860 if (priv->surpriseremoved)
861 ret = -EIO;
862
863 out:
864 return ret;
865 }
866
867
868
869
870 /*
871 * Events
872 */
873
lbs_send_disconnect_notification(struct lbs_private * priv,bool locally_generated)874 void lbs_send_disconnect_notification(struct lbs_private *priv,
875 bool locally_generated)
876 {
877 cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated,
878 GFP_KERNEL);
879 }
880
lbs_send_mic_failureevent(struct lbs_private * priv,u32 event)881 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event)
882 {
883 cfg80211_michael_mic_failure(priv->dev,
884 priv->assoc_bss,
885 event == MACREG_INT_CODE_MIC_ERR_MULTICAST ?
886 NL80211_KEYTYPE_GROUP :
887 NL80211_KEYTYPE_PAIRWISE,
888 -1,
889 NULL,
890 GFP_KERNEL);
891 }
892
893
894
895
896 /*
897 * Connect/disconnect
898 */
899
900
901 /*
902 * This removes all WEP keys
903 */
lbs_remove_wep_keys(struct lbs_private * priv)904 static int lbs_remove_wep_keys(struct lbs_private *priv)
905 {
906 struct cmd_ds_802_11_set_wep cmd;
907 int ret;
908
909 memset(&cmd, 0, sizeof(cmd));
910 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
911 cmd.keyindex = cpu_to_le16(priv->wep_tx_key);
912 cmd.action = cpu_to_le16(CMD_ACT_REMOVE);
913
914 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd);
915
916 return ret;
917 }
918
919 /*
920 * Set WEP keys
921 */
lbs_set_wep_keys(struct lbs_private * priv)922 static int lbs_set_wep_keys(struct lbs_private *priv)
923 {
924 struct cmd_ds_802_11_set_wep cmd;
925 int i;
926 int ret;
927
928 /*
929 * command 13 00
930 * size 50 00
931 * sequence xx xx
932 * result 00 00
933 * action 02 00 ACT_ADD
934 * transmit key 00 00
935 * type for key 1 01 WEP40
936 * type for key 2 00
937 * type for key 3 00
938 * type for key 4 00
939 * key 1 39 39 39 39 39 00 00 00
940 * 00 00 00 00 00 00 00 00
941 * key 2 00 00 00 00 00 00 00 00
942 * 00 00 00 00 00 00 00 00
943 * key 3 00 00 00 00 00 00 00 00
944 * 00 00 00 00 00 00 00 00
945 * key 4 00 00 00 00 00 00 00 00
946 */
947 if (priv->wep_key_len[0] || priv->wep_key_len[1] ||
948 priv->wep_key_len[2] || priv->wep_key_len[3]) {
949 /* Only set wep keys if we have at least one of them */
950 memset(&cmd, 0, sizeof(cmd));
951 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
952 cmd.keyindex = cpu_to_le16(priv->wep_tx_key);
953 cmd.action = cpu_to_le16(CMD_ACT_ADD);
954
955 for (i = 0; i < 4; i++) {
956 switch (priv->wep_key_len[i]) {
957 case WLAN_KEY_LEN_WEP40:
958 cmd.keytype[i] = CMD_TYPE_WEP_40_BIT;
959 break;
960 case WLAN_KEY_LEN_WEP104:
961 cmd.keytype[i] = CMD_TYPE_WEP_104_BIT;
962 break;
963 default:
964 cmd.keytype[i] = 0;
965 break;
966 }
967 memcpy(cmd.keymaterial[i], priv->wep_key[i],
968 priv->wep_key_len[i]);
969 }
970
971 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd);
972 } else {
973 /* Otherwise remove all wep keys */
974 ret = lbs_remove_wep_keys(priv);
975 }
976
977 return ret;
978 }
979
980
981 /*
982 * Enable/Disable RSN status
983 */
lbs_enable_rsn(struct lbs_private * priv,int enable)984 static int lbs_enable_rsn(struct lbs_private *priv, int enable)
985 {
986 struct cmd_ds_802_11_enable_rsn cmd;
987 int ret;
988
989 /*
990 * cmd 2f 00
991 * size 0c 00
992 * sequence xx xx
993 * result 00 00
994 * action 01 00 ACT_SET
995 * enable 01 00
996 */
997 memset(&cmd, 0, sizeof(cmd));
998 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
999 cmd.action = cpu_to_le16(CMD_ACT_SET);
1000 cmd.enable = cpu_to_le16(enable);
1001
1002 ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd);
1003
1004 return ret;
1005 }
1006
1007
1008 /*
1009 * Set WPA/WPA key material
1010 */
1011
1012 /*
1013 * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we
1014 * get rid of WEXT, this should go into host.h
1015 */
1016
1017 struct cmd_key_material {
1018 struct cmd_header hdr;
1019
1020 __le16 action;
1021 struct MrvlIEtype_keyParamSet param;
1022 } __packed;
1023
lbs_set_key_material(struct lbs_private * priv,int key_type,int key_info,const u8 * key,u16 key_len)1024 static int lbs_set_key_material(struct lbs_private *priv,
1025 int key_type, int key_info,
1026 const u8 *key, u16 key_len)
1027 {
1028 struct cmd_key_material cmd;
1029 int ret;
1030
1031 /*
1032 * Example for WPA (TKIP):
1033 *
1034 * cmd 5e 00
1035 * size 34 00
1036 * sequence xx xx
1037 * result 00 00
1038 * action 01 00
1039 * TLV type 00 01 key param
1040 * length 00 26
1041 * key type 01 00 TKIP
1042 * key info 06 00 UNICAST | ENABLED
1043 * key len 20 00
1044 * key 32 bytes
1045 */
1046 memset(&cmd, 0, sizeof(cmd));
1047 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1048 cmd.action = cpu_to_le16(CMD_ACT_SET);
1049 cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL);
1050 cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4);
1051 cmd.param.keytypeid = cpu_to_le16(key_type);
1052 cmd.param.keyinfo = cpu_to_le16(key_info);
1053 cmd.param.keylen = cpu_to_le16(key_len);
1054 if (key && key_len)
1055 memcpy(cmd.param.key, key, key_len);
1056
1057 ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd);
1058
1059 return ret;
1060 }
1061
1062
1063 /*
1064 * Sets the auth type (open, shared, etc) in the firmware. That
1065 * we use CMD_802_11_AUTHENTICATE is misleading, this firmware
1066 * command doesn't send an authentication frame at all, it just
1067 * stores the auth_type.
1068 */
lbs_set_authtype(struct lbs_private * priv,struct cfg80211_connect_params * sme)1069 static int lbs_set_authtype(struct lbs_private *priv,
1070 struct cfg80211_connect_params *sme)
1071 {
1072 struct cmd_ds_802_11_authenticate cmd;
1073 int ret;
1074
1075 /*
1076 * cmd 11 00
1077 * size 19 00
1078 * sequence xx xx
1079 * result 00 00
1080 * BSS id 00 13 19 80 da 30
1081 * auth type 00
1082 * reserved 00 00 00 00 00 00 00 00 00 00
1083 */
1084 memset(&cmd, 0, sizeof(cmd));
1085 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1086 if (sme->bssid)
1087 memcpy(cmd.bssid, sme->bssid, ETH_ALEN);
1088 /* convert auth_type */
1089 ret = lbs_auth_to_authtype(sme->auth_type);
1090 if (ret < 0)
1091 goto done;
1092
1093 cmd.authtype = ret;
1094 ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd);
1095
1096 done:
1097 return ret;
1098 }
1099
1100
1101 /*
1102 * Create association request
1103 */
1104 #define LBS_ASSOC_MAX_CMD_SIZE \
1105 (sizeof(struct cmd_ds_802_11_associate) \
1106 + LBS_MAX_SSID_TLV_SIZE \
1107 + LBS_MAX_CHANNEL_TLV_SIZE \
1108 + LBS_MAX_CF_PARAM_TLV_SIZE \
1109 + LBS_MAX_AUTH_TYPE_TLV_SIZE \
1110 + LBS_MAX_WPA_TLV_SIZE)
1111
lbs_associate(struct lbs_private * priv,struct cfg80211_bss * bss,struct cfg80211_connect_params * sme)1112 static int lbs_associate(struct lbs_private *priv,
1113 struct cfg80211_bss *bss,
1114 struct cfg80211_connect_params *sme)
1115 {
1116 struct cmd_ds_802_11_associate_response *resp;
1117 struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE,
1118 GFP_KERNEL);
1119 const u8 *ssid_eid;
1120 size_t len, resp_ie_len;
1121 int status;
1122 int ret;
1123 u8 *pos;
1124 u8 *tmp;
1125
1126 if (!cmd) {
1127 ret = -ENOMEM;
1128 goto done;
1129 }
1130 pos = &cmd->iebuf[0];
1131
1132 /*
1133 * cmd 50 00
1134 * length 34 00
1135 * sequence xx xx
1136 * result 00 00
1137 * BSS id 00 13 19 80 da 30
1138 * capabilities 11 00
1139 * listen interval 0a 00
1140 * beacon interval 00 00
1141 * DTIM period 00
1142 * TLVs xx (up to 512 bytes)
1143 */
1144 cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE);
1145
1146 /* Fill in static fields */
1147 memcpy(cmd->bssid, bss->bssid, ETH_ALEN);
1148 cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL);
1149 cmd->capability = cpu_to_le16(bss->capability);
1150
1151 /* add SSID TLV */
1152 rcu_read_lock();
1153 ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID);
1154 if (ssid_eid) {
1155 u32 ssid_len = min(ssid_eid[1], IEEE80211_MAX_SSID_LEN);
1156
1157 pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_len);
1158 } else {
1159 lbs_deb_assoc("no SSID\n");
1160 }
1161 rcu_read_unlock();
1162
1163 /* add DS param TLV */
1164 if (bss->channel)
1165 pos += lbs_add_channel_tlv(pos, bss->channel->hw_value);
1166 else
1167 lbs_deb_assoc("no channel\n");
1168
1169 /* add (empty) CF param TLV */
1170 pos += lbs_add_cf_param_tlv(pos);
1171
1172 /* add rates TLV */
1173 tmp = pos + 4; /* skip Marvell IE header */
1174 pos += lbs_add_common_rates_tlv(pos, bss);
1175 lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp);
1176
1177 /* add auth type TLV */
1178 if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9)
1179 pos += lbs_add_auth_type_tlv(pos, sme->auth_type);
1180
1181 /* add WPA/WPA2 TLV */
1182 if (sme->ie && sme->ie_len)
1183 pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len);
1184
1185 len = sizeof(*cmd) + (u16)(pos - (u8 *) &cmd->iebuf);
1186 cmd->hdr.size = cpu_to_le16(len);
1187
1188 lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd,
1189 le16_to_cpu(cmd->hdr.size));
1190
1191 /* store for later use */
1192 memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN);
1193
1194 ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd);
1195 if (ret)
1196 goto done;
1197
1198 /* generate connect message to cfg80211 */
1199
1200 resp = (void *) cmd; /* recast for easier field access */
1201 status = le16_to_cpu(resp->statuscode);
1202
1203 /* Older FW versions map the IEEE 802.11 Status Code in the association
1204 * response to the following values returned in resp->statuscode:
1205 *
1206 * IEEE Status Code Marvell Status Code
1207 * 0 -> 0x0000 ASSOC_RESULT_SUCCESS
1208 * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
1209 * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
1210 * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
1211 * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED
1212 * others -> 0x0003 ASSOC_RESULT_REFUSED
1213 *
1214 * Other response codes:
1215 * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused)
1216 * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for
1217 * association response from the AP)
1218 */
1219 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) {
1220 switch (status) {
1221 case 0:
1222 break;
1223 case 1:
1224 lbs_deb_assoc("invalid association parameters\n");
1225 status = WLAN_STATUS_CAPS_UNSUPPORTED;
1226 break;
1227 case 2:
1228 lbs_deb_assoc("timer expired while waiting for AP\n");
1229 status = WLAN_STATUS_AUTH_TIMEOUT;
1230 break;
1231 case 3:
1232 lbs_deb_assoc("association refused by AP\n");
1233 status = WLAN_STATUS_ASSOC_DENIED_UNSPEC;
1234 break;
1235 case 4:
1236 lbs_deb_assoc("authentication refused by AP\n");
1237 status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION;
1238 break;
1239 default:
1240 lbs_deb_assoc("association failure %d\n", status);
1241 /* v5 OLPC firmware does return the AP status code if
1242 * it's not one of the values above. Let that through.
1243 */
1244 break;
1245 }
1246 }
1247
1248 lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, "
1249 "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode),
1250 le16_to_cpu(resp->capability), le16_to_cpu(resp->aid));
1251
1252 resp_ie_len = le16_to_cpu(resp->hdr.size)
1253 - sizeof(resp->hdr)
1254 - 6;
1255 cfg80211_connect_result(priv->dev,
1256 priv->assoc_bss,
1257 sme->ie, sme->ie_len,
1258 resp->iebuf, resp_ie_len,
1259 status,
1260 GFP_KERNEL);
1261
1262 if (status == 0) {
1263 /* TODO: get rid of priv->connect_status */
1264 priv->connect_status = LBS_CONNECTED;
1265 netif_carrier_on(priv->dev);
1266 if (!priv->tx_pending_len)
1267 netif_tx_wake_all_queues(priv->dev);
1268 }
1269
1270 kfree(cmd);
1271 done:
1272 return ret;
1273 }
1274
1275 static struct cfg80211_scan_request *
_new_connect_scan_req(struct wiphy * wiphy,struct cfg80211_connect_params * sme)1276 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme)
1277 {
1278 struct cfg80211_scan_request *creq = NULL;
1279 int i, n_channels = ieee80211_get_num_supported_channels(wiphy);
1280 enum nl80211_band band;
1281
1282 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1283 n_channels * sizeof(void *),
1284 GFP_ATOMIC);
1285 if (!creq)
1286 return NULL;
1287
1288 /* SSIDs come after channels */
1289 creq->ssids = (void *)&creq->channels[n_channels];
1290 creq->n_channels = n_channels;
1291 creq->n_ssids = 1;
1292
1293 /* Scan all available channels */
1294 i = 0;
1295 for (band = 0; band < NUM_NL80211_BANDS; band++) {
1296 int j;
1297
1298 if (!wiphy->bands[band])
1299 continue;
1300
1301 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1302 /* ignore disabled channels */
1303 if (wiphy->bands[band]->channels[j].flags &
1304 IEEE80211_CHAN_DISABLED)
1305 continue;
1306
1307 creq->channels[i] = &wiphy->bands[band]->channels[j];
1308 i++;
1309 }
1310 }
1311 if (i) {
1312 /* Set real number of channels specified in creq->channels[] */
1313 creq->n_channels = i;
1314
1315 /* Scan for the SSID we're going to connect to */
1316 memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len);
1317 creq->ssids[0].ssid_len = sme->ssid_len;
1318 } else {
1319 /* No channels found... */
1320 kfree(creq);
1321 creq = NULL;
1322 }
1323
1324 return creq;
1325 }
1326
lbs_cfg_connect(struct wiphy * wiphy,struct net_device * dev,struct cfg80211_connect_params * sme)1327 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev,
1328 struct cfg80211_connect_params *sme)
1329 {
1330 struct lbs_private *priv = wiphy_priv(wiphy);
1331 struct cfg80211_bss *bss = NULL;
1332 int ret = 0;
1333 u8 preamble = RADIO_PREAMBLE_SHORT;
1334
1335 if (dev == priv->mesh_dev)
1336 return -EOPNOTSUPP;
1337
1338 if (!sme->bssid) {
1339 struct cfg80211_scan_request *creq;
1340
1341 /*
1342 * Scan for the requested network after waiting for existing
1343 * scans to finish.
1344 */
1345 lbs_deb_assoc("assoc: waiting for existing scans\n");
1346 wait_event_interruptible_timeout(priv->scan_q,
1347 (priv->scan_req == NULL),
1348 (15 * HZ));
1349
1350 creq = _new_connect_scan_req(wiphy, sme);
1351 if (!creq) {
1352 ret = -EINVAL;
1353 goto done;
1354 }
1355
1356 lbs_deb_assoc("assoc: scanning for compatible AP\n");
1357 _internal_start_scan(priv, true, creq);
1358
1359 lbs_deb_assoc("assoc: waiting for scan to complete\n");
1360 wait_event_interruptible_timeout(priv->scan_q,
1361 (priv->scan_req == NULL),
1362 (15 * HZ));
1363 lbs_deb_assoc("assoc: scanning completed\n");
1364 }
1365
1366 /* Find the BSS we want using available scan results */
1367 bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid,
1368 sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS,
1369 IEEE80211_PRIVACY_ANY);
1370 if (!bss) {
1371 wiphy_err(wiphy, "assoc: bss %pM not in scan results\n",
1372 sme->bssid);
1373 ret = -ENOENT;
1374 goto done;
1375 }
1376 lbs_deb_assoc("trying %pM\n", bss->bssid);
1377 lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n",
1378 sme->crypto.cipher_group,
1379 sme->key_idx, sme->key_len);
1380
1381 /* As this is a new connection, clear locally stored WEP keys */
1382 priv->wep_tx_key = 0;
1383 memset(priv->wep_key, 0, sizeof(priv->wep_key));
1384 memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len));
1385
1386 /* set/remove WEP keys */
1387 switch (sme->crypto.cipher_group) {
1388 case WLAN_CIPHER_SUITE_WEP40:
1389 case WLAN_CIPHER_SUITE_WEP104:
1390 /* Store provided WEP keys in priv-> */
1391 priv->wep_tx_key = sme->key_idx;
1392 priv->wep_key_len[sme->key_idx] = sme->key_len;
1393 memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len);
1394 /* Set WEP keys and WEP mode */
1395 lbs_set_wep_keys(priv);
1396 priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE;
1397 lbs_set_mac_control(priv);
1398 /* No RSN mode for WEP */
1399 lbs_enable_rsn(priv, 0);
1400 break;
1401 case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */
1402 /*
1403 * If we don't have no WEP, no WPA and no WPA2,
1404 * we remove all keys like in the WPA/WPA2 setup,
1405 * we just don't set RSN.
1406 *
1407 * Therefore: fall-through
1408 */
1409 case WLAN_CIPHER_SUITE_TKIP:
1410 case WLAN_CIPHER_SUITE_CCMP:
1411 /* Remove WEP keys and WEP mode */
1412 lbs_remove_wep_keys(priv);
1413 priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE;
1414 lbs_set_mac_control(priv);
1415
1416 /* clear the WPA/WPA2 keys */
1417 lbs_set_key_material(priv,
1418 KEY_TYPE_ID_WEP, /* doesn't matter */
1419 KEY_INFO_WPA_UNICAST,
1420 NULL, 0);
1421 lbs_set_key_material(priv,
1422 KEY_TYPE_ID_WEP, /* doesn't matter */
1423 KEY_INFO_WPA_MCAST,
1424 NULL, 0);
1425 /* RSN mode for WPA/WPA2 */
1426 lbs_enable_rsn(priv, sme->crypto.cipher_group != 0);
1427 break;
1428 default:
1429 wiphy_err(wiphy, "unsupported cipher group 0x%x\n",
1430 sme->crypto.cipher_group);
1431 ret = -ENOTSUPP;
1432 goto done;
1433 }
1434
1435 ret = lbs_set_authtype(priv, sme);
1436 if (ret == -ENOTSUPP) {
1437 wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type);
1438 goto done;
1439 }
1440
1441 lbs_set_radio(priv, preamble, 1);
1442
1443 /* Do the actual association */
1444 ret = lbs_associate(priv, bss, sme);
1445
1446 done:
1447 if (bss)
1448 cfg80211_put_bss(wiphy, bss);
1449 return ret;
1450 }
1451
lbs_disconnect(struct lbs_private * priv,u16 reason)1452 int lbs_disconnect(struct lbs_private *priv, u16 reason)
1453 {
1454 struct cmd_ds_802_11_deauthenticate cmd;
1455 int ret;
1456
1457 memset(&cmd, 0, sizeof(cmd));
1458 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1459 /* Mildly ugly to use a locally store my own BSSID ... */
1460 memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN);
1461 cmd.reasoncode = cpu_to_le16(reason);
1462
1463 ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd);
1464 if (ret)
1465 return ret;
1466
1467 cfg80211_disconnected(priv->dev,
1468 reason,
1469 NULL, 0, true,
1470 GFP_KERNEL);
1471 priv->connect_status = LBS_DISCONNECTED;
1472
1473 return 0;
1474 }
1475
lbs_cfg_disconnect(struct wiphy * wiphy,struct net_device * dev,u16 reason_code)1476 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev,
1477 u16 reason_code)
1478 {
1479 struct lbs_private *priv = wiphy_priv(wiphy);
1480
1481 if (dev == priv->mesh_dev)
1482 return -EOPNOTSUPP;
1483
1484 /* store for lbs_cfg_ret_disconnect() */
1485 priv->disassoc_reason = reason_code;
1486
1487 return lbs_disconnect(priv, reason_code);
1488 }
1489
lbs_cfg_set_default_key(struct wiphy * wiphy,struct net_device * netdev,int link_id,u8 key_index,bool unicast,bool multicast)1490 static int lbs_cfg_set_default_key(struct wiphy *wiphy,
1491 struct net_device *netdev, int link_id,
1492 u8 key_index, bool unicast,
1493 bool multicast)
1494 {
1495 struct lbs_private *priv = wiphy_priv(wiphy);
1496
1497 if (netdev == priv->mesh_dev)
1498 return -EOPNOTSUPP;
1499
1500 if (key_index != priv->wep_tx_key) {
1501 lbs_deb_assoc("set_default_key: to %d\n", key_index);
1502 priv->wep_tx_key = key_index;
1503 lbs_set_wep_keys(priv);
1504 }
1505
1506 return 0;
1507 }
1508
1509
lbs_cfg_add_key(struct wiphy * wiphy,struct net_device * netdev,int link_id,u8 idx,bool pairwise,const u8 * mac_addr,struct key_params * params)1510 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev,
1511 int link_id, u8 idx, bool pairwise,
1512 const u8 *mac_addr, struct key_params *params)
1513 {
1514 struct lbs_private *priv = wiphy_priv(wiphy);
1515 u16 key_info;
1516 u16 key_type;
1517 int ret = 0;
1518
1519 if (netdev == priv->mesh_dev)
1520 return -EOPNOTSUPP;
1521
1522 lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n",
1523 params->cipher, mac_addr);
1524 lbs_deb_assoc("add_key: key index %d, key len %d\n",
1525 idx, params->key_len);
1526 if (params->key_len)
1527 lbs_deb_hex(LBS_DEB_CFG80211, "KEY",
1528 params->key, params->key_len);
1529
1530 lbs_deb_assoc("add_key: seq len %d\n", params->seq_len);
1531 if (params->seq_len)
1532 lbs_deb_hex(LBS_DEB_CFG80211, "SEQ",
1533 params->seq, params->seq_len);
1534
1535 switch (params->cipher) {
1536 case WLAN_CIPHER_SUITE_WEP40:
1537 case WLAN_CIPHER_SUITE_WEP104:
1538 /* actually compare if something has changed ... */
1539 if ((priv->wep_key_len[idx] != params->key_len) ||
1540 memcmp(priv->wep_key[idx],
1541 params->key, params->key_len) != 0) {
1542 priv->wep_key_len[idx] = params->key_len;
1543 memcpy(priv->wep_key[idx],
1544 params->key, params->key_len);
1545 lbs_set_wep_keys(priv);
1546 }
1547 break;
1548 case WLAN_CIPHER_SUITE_TKIP:
1549 case WLAN_CIPHER_SUITE_CCMP:
1550 key_info = KEY_INFO_WPA_ENABLED | ((idx == 0)
1551 ? KEY_INFO_WPA_UNICAST
1552 : KEY_INFO_WPA_MCAST);
1553 key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP)
1554 ? KEY_TYPE_ID_TKIP
1555 : KEY_TYPE_ID_AES;
1556 lbs_set_key_material(priv,
1557 key_type,
1558 key_info,
1559 params->key, params->key_len);
1560 break;
1561 default:
1562 wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher);
1563 ret = -ENOTSUPP;
1564 break;
1565 }
1566
1567 return ret;
1568 }
1569
1570
lbs_cfg_del_key(struct wiphy * wiphy,struct net_device * netdev,int link_id,u8 key_index,bool pairwise,const u8 * mac_addr)1571 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev,
1572 int link_id, u8 key_index, bool pairwise,
1573 const u8 *mac_addr)
1574 {
1575
1576 lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n",
1577 key_index, mac_addr);
1578
1579 #ifdef TODO
1580 struct lbs_private *priv = wiphy_priv(wiphy);
1581 /*
1582 * I think can keep this a NO-OP, because:
1583
1584 * - we clear all keys whenever we do lbs_cfg_connect() anyway
1585 * - neither "iw" nor "wpa_supplicant" won't call this during
1586 * an ongoing connection
1587 * - TODO: but I have to check if this is still true when
1588 * I set the AP to periodic re-keying
1589 * - we've not kzallec() something when we've added a key at
1590 * lbs_cfg_connect() or lbs_cfg_add_key().
1591 *
1592 * This causes lbs_cfg_del_key() only called at disconnect time,
1593 * where we'd just waste time deleting a key that is not going
1594 * to be used anyway.
1595 */
1596 if (key_index < 3 && priv->wep_key_len[key_index]) {
1597 priv->wep_key_len[key_index] = 0;
1598 lbs_set_wep_keys(priv);
1599 }
1600 #endif
1601
1602 return 0;
1603 }
1604
1605
1606 /*
1607 * Get station
1608 */
1609
lbs_cfg_get_station(struct wiphy * wiphy,struct net_device * dev,const u8 * mac,struct station_info * sinfo)1610 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev,
1611 const u8 *mac, struct station_info *sinfo)
1612 {
1613 struct lbs_private *priv = wiphy_priv(wiphy);
1614 s8 signal, noise;
1615 int ret;
1616 size_t i;
1617
1618 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) |
1619 BIT_ULL(NL80211_STA_INFO_TX_PACKETS) |
1620 BIT_ULL(NL80211_STA_INFO_RX_BYTES) |
1621 BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
1622 sinfo->tx_bytes = priv->dev->stats.tx_bytes;
1623 sinfo->tx_packets = priv->dev->stats.tx_packets;
1624 sinfo->rx_bytes = priv->dev->stats.rx_bytes;
1625 sinfo->rx_packets = priv->dev->stats.rx_packets;
1626
1627 /* Get current RSSI */
1628 ret = lbs_get_rssi(priv, &signal, &noise);
1629 if (ret == 0) {
1630 sinfo->signal = signal;
1631 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
1632 }
1633
1634 /* Convert priv->cur_rate from hw_value to NL80211 value */
1635 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) {
1636 if (priv->cur_rate == lbs_rates[i].hw_value) {
1637 sinfo->txrate.legacy = lbs_rates[i].bitrate;
1638 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
1639 break;
1640 }
1641 }
1642
1643 return 0;
1644 }
1645
1646
1647
1648
1649 /*
1650 * Change interface
1651 */
1652
lbs_change_intf(struct wiphy * wiphy,struct net_device * dev,enum nl80211_iftype type,struct vif_params * params)1653 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev,
1654 enum nl80211_iftype type,
1655 struct vif_params *params)
1656 {
1657 struct lbs_private *priv = wiphy_priv(wiphy);
1658 int ret = 0;
1659
1660 if (dev == priv->mesh_dev)
1661 return -EOPNOTSUPP;
1662
1663 switch (type) {
1664 case NL80211_IFTYPE_MONITOR:
1665 case NL80211_IFTYPE_STATION:
1666 case NL80211_IFTYPE_ADHOC:
1667 break;
1668 default:
1669 return -EOPNOTSUPP;
1670 }
1671
1672 if (priv->iface_running)
1673 ret = lbs_set_iface_type(priv, type);
1674
1675 if (!ret)
1676 priv->wdev->iftype = type;
1677
1678 return ret;
1679 }
1680
1681
1682
1683 /*
1684 * IBSS (Ad-Hoc)
1685 */
1686
1687 /*
1688 * The firmware needs the following bits masked out of the beacon-derived
1689 * capability field when associating/joining to a BSS:
1690 * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused)
1691 */
1692 #define CAPINFO_MASK (~(0xda00))
1693
1694
lbs_join_post(struct lbs_private * priv,struct cfg80211_ibss_params * params,u8 * bssid,u16 capability)1695 static void lbs_join_post(struct lbs_private *priv,
1696 struct cfg80211_ibss_params *params,
1697 u8 *bssid, u16 capability)
1698 {
1699 u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */
1700 2 + 4 + /* basic rates */
1701 2 + 1 + /* DS parameter */
1702 2 + 2 + /* atim */
1703 2 + 8]; /* extended rates */
1704 u8 *fake = fake_ie;
1705 struct cfg80211_bss *bss;
1706
1707 /*
1708 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get
1709 * the real IE from the firmware. So we fabricate a fake IE based on
1710 * what the firmware actually sends (sniffed with wireshark).
1711 */
1712 /* Fake SSID IE */
1713 *fake++ = WLAN_EID_SSID;
1714 *fake++ = params->ssid_len;
1715 memcpy(fake, params->ssid, params->ssid_len);
1716 fake += params->ssid_len;
1717 /* Fake supported basic rates IE */
1718 *fake++ = WLAN_EID_SUPP_RATES;
1719 *fake++ = 4;
1720 *fake++ = 0x82;
1721 *fake++ = 0x84;
1722 *fake++ = 0x8b;
1723 *fake++ = 0x96;
1724 /* Fake DS channel IE */
1725 *fake++ = WLAN_EID_DS_PARAMS;
1726 *fake++ = 1;
1727 *fake++ = params->chandef.chan->hw_value;
1728 /* Fake IBSS params IE */
1729 *fake++ = WLAN_EID_IBSS_PARAMS;
1730 *fake++ = 2;
1731 *fake++ = 0; /* ATIM=0 */
1732 *fake++ = 0;
1733 /* Fake extended rates IE, TODO: don't add this for 802.11b only,
1734 * but I don't know how this could be checked */
1735 *fake++ = WLAN_EID_EXT_SUPP_RATES;
1736 *fake++ = 8;
1737 *fake++ = 0x0c;
1738 *fake++ = 0x12;
1739 *fake++ = 0x18;
1740 *fake++ = 0x24;
1741 *fake++ = 0x30;
1742 *fake++ = 0x48;
1743 *fake++ = 0x60;
1744 *fake++ = 0x6c;
1745 lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie);
1746
1747 bss = cfg80211_inform_bss(priv->wdev->wiphy,
1748 params->chandef.chan,
1749 CFG80211_BSS_FTYPE_UNKNOWN,
1750 bssid,
1751 0,
1752 capability,
1753 params->beacon_interval,
1754 fake_ie, fake - fake_ie,
1755 0, GFP_KERNEL);
1756 cfg80211_put_bss(priv->wdev->wiphy, bss);
1757
1758 cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan,
1759 GFP_KERNEL);
1760
1761 /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */
1762 priv->connect_status = LBS_CONNECTED;
1763 netif_carrier_on(priv->dev);
1764 if (!priv->tx_pending_len)
1765 netif_wake_queue(priv->dev);
1766 }
1767
lbs_ibss_join_existing(struct lbs_private * priv,struct cfg80211_ibss_params * params,struct cfg80211_bss * bss)1768 static int lbs_ibss_join_existing(struct lbs_private *priv,
1769 struct cfg80211_ibss_params *params,
1770 struct cfg80211_bss *bss)
1771 {
1772 const u8 *rates_eid;
1773 struct cmd_ds_802_11_ad_hoc_join cmd;
1774 u8 preamble = RADIO_PREAMBLE_SHORT;
1775 int ret = 0;
1776 int hw, i;
1777 u8 rates_max;
1778 u8 *rates;
1779
1780 /* TODO: set preamble based on scan result */
1781 ret = lbs_set_radio(priv, preamble, 1);
1782 if (ret)
1783 goto out;
1784
1785 /*
1786 * Example CMD_802_11_AD_HOC_JOIN command:
1787 *
1788 * command 2c 00 CMD_802_11_AD_HOC_JOIN
1789 * size 65 00
1790 * sequence xx xx
1791 * result 00 00
1792 * bssid 02 27 27 97 2f 96
1793 * ssid 49 42 53 53 00 00 00 00
1794 * 00 00 00 00 00 00 00 00
1795 * 00 00 00 00 00 00 00 00
1796 * 00 00 00 00 00 00 00 00
1797 * type 02 CMD_BSS_TYPE_IBSS
1798 * beacon period 64 00
1799 * dtim period 00
1800 * timestamp 00 00 00 00 00 00 00 00
1801 * localtime 00 00 00 00 00 00 00 00
1802 * IE DS 03
1803 * IE DS len 01
1804 * IE DS channel 01
1805 * reserveed 00 00 00 00
1806 * IE IBSS 06
1807 * IE IBSS len 02
1808 * IE IBSS atim 00 00
1809 * reserved 00 00 00 00
1810 * capability 02 00
1811 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00
1812 * fail timeout ff 00
1813 * probe delay 00 00
1814 */
1815 memset(&cmd, 0, sizeof(cmd));
1816 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1817
1818 memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN);
1819 memcpy(cmd.bss.ssid, params->ssid, params->ssid_len);
1820 cmd.bss.type = CMD_BSS_TYPE_IBSS;
1821 cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval);
1822 cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS;
1823 cmd.bss.ds.header.len = 1;
1824 cmd.bss.ds.channel = params->chandef.chan->hw_value;
1825 cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS;
1826 cmd.bss.ibss.header.len = 2;
1827 cmd.bss.ibss.atimwindow = 0;
1828 cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK);
1829
1830 /* set rates to the intersection of our rates and the rates in the
1831 bss */
1832 rcu_read_lock();
1833 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES);
1834 if (!rates_eid) {
1835 lbs_add_rates(cmd.bss.rates);
1836 } else {
1837 rates_max = rates_eid[1];
1838 if (rates_max > MAX_RATES) {
1839 lbs_deb_join("invalid rates");
1840 rcu_read_unlock();
1841 ret = -EINVAL;
1842 goto out;
1843 }
1844 rates = cmd.bss.rates;
1845 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) {
1846 u8 hw_rate = lbs_rates[hw].bitrate / 5;
1847 for (i = 0; i < rates_max; i++) {
1848 if (hw_rate == (rates_eid[i+2] & 0x7f)) {
1849 u8 rate = rates_eid[i+2];
1850 if (rate == 0x02 || rate == 0x04 ||
1851 rate == 0x0b || rate == 0x16)
1852 rate |= 0x80;
1853 *rates++ = rate;
1854 }
1855 }
1856 }
1857 }
1858 rcu_read_unlock();
1859
1860 /* Only v8 and below support setting this */
1861 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) {
1862 cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT);
1863 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME);
1864 }
1865 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd);
1866 if (ret)
1867 goto out;
1868
1869 /*
1870 * This is a sample response to CMD_802_11_AD_HOC_JOIN:
1871 *
1872 * response 2c 80
1873 * size 09 00
1874 * sequence xx xx
1875 * result 00 00
1876 * reserved 00
1877 */
1878 lbs_join_post(priv, params, bss->bssid, bss->capability);
1879
1880 out:
1881 return ret;
1882 }
1883
1884
1885
lbs_ibss_start_new(struct lbs_private * priv,struct cfg80211_ibss_params * params)1886 static int lbs_ibss_start_new(struct lbs_private *priv,
1887 struct cfg80211_ibss_params *params)
1888 {
1889 struct cmd_ds_802_11_ad_hoc_start cmd;
1890 struct cmd_ds_802_11_ad_hoc_result *resp =
1891 (struct cmd_ds_802_11_ad_hoc_result *) &cmd;
1892 u8 preamble = RADIO_PREAMBLE_SHORT;
1893 int ret = 0;
1894 u16 capability;
1895
1896 ret = lbs_set_radio(priv, preamble, 1);
1897 if (ret)
1898 goto out;
1899
1900 /*
1901 * Example CMD_802_11_AD_HOC_START command:
1902 *
1903 * command 2b 00 CMD_802_11_AD_HOC_START
1904 * size b1 00
1905 * sequence xx xx
1906 * result 00 00
1907 * ssid 54 45 53 54 00 00 00 00
1908 * 00 00 00 00 00 00 00 00
1909 * 00 00 00 00 00 00 00 00
1910 * 00 00 00 00 00 00 00 00
1911 * bss type 02
1912 * beacon period 64 00
1913 * dtim period 00
1914 * IE IBSS 06
1915 * IE IBSS len 02
1916 * IE IBSS atim 00 00
1917 * reserved 00 00 00 00
1918 * IE DS 03
1919 * IE DS len 01
1920 * IE DS channel 01
1921 * reserved 00 00 00 00
1922 * probe delay 00 00
1923 * capability 02 00
1924 * rates 82 84 8b 96 (basic rates with have bit 7 set)
1925 * 0c 12 18 24 30 48 60 6c
1926 * padding 100 bytes
1927 */
1928 memset(&cmd, 0, sizeof(cmd));
1929 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
1930 memcpy(cmd.ssid, params->ssid, params->ssid_len);
1931 cmd.bsstype = CMD_BSS_TYPE_IBSS;
1932 cmd.beaconperiod = cpu_to_le16(params->beacon_interval);
1933 cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS;
1934 cmd.ibss.header.len = 2;
1935 cmd.ibss.atimwindow = 0;
1936 cmd.ds.header.id = WLAN_EID_DS_PARAMS;
1937 cmd.ds.header.len = 1;
1938 cmd.ds.channel = params->chandef.chan->hw_value;
1939 /* Only v8 and below support setting probe delay */
1940 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8)
1941 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME);
1942 /* TODO: mix in WLAN_CAPABILITY_PRIVACY */
1943 capability = WLAN_CAPABILITY_IBSS;
1944 cmd.capability = cpu_to_le16(capability);
1945 lbs_add_rates(cmd.rates);
1946
1947
1948 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd);
1949 if (ret)
1950 goto out;
1951
1952 /*
1953 * This is a sample response to CMD_802_11_AD_HOC_JOIN:
1954 *
1955 * response 2b 80
1956 * size 14 00
1957 * sequence xx xx
1958 * result 00 00
1959 * reserved 00
1960 * bssid 02 2b 7b 0f 86 0e
1961 */
1962 lbs_join_post(priv, params, resp->bssid, capability);
1963
1964 out:
1965 return ret;
1966 }
1967
1968
lbs_join_ibss(struct wiphy * wiphy,struct net_device * dev,struct cfg80211_ibss_params * params)1969 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev,
1970 struct cfg80211_ibss_params *params)
1971 {
1972 struct lbs_private *priv = wiphy_priv(wiphy);
1973 int ret = 0;
1974 struct cfg80211_bss *bss;
1975
1976 if (dev == priv->mesh_dev)
1977 return -EOPNOTSUPP;
1978
1979 if (!params->chandef.chan) {
1980 ret = -ENOTSUPP;
1981 goto out;
1982 }
1983
1984 ret = lbs_set_channel(priv, params->chandef.chan->hw_value);
1985 if (ret)
1986 goto out;
1987
1988 /* Search if someone is beaconing. This assumes that the
1989 * bss list is populated already */
1990 bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid,
1991 params->ssid, params->ssid_len,
1992 IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY);
1993
1994 if (bss) {
1995 ret = lbs_ibss_join_existing(priv, params, bss);
1996 cfg80211_put_bss(wiphy, bss);
1997 } else
1998 ret = lbs_ibss_start_new(priv, params);
1999
2000
2001 out:
2002 return ret;
2003 }
2004
2005
lbs_leave_ibss(struct wiphy * wiphy,struct net_device * dev)2006 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
2007 {
2008 struct lbs_private *priv = wiphy_priv(wiphy);
2009 struct cmd_ds_802_11_ad_hoc_stop cmd;
2010 int ret = 0;
2011
2012 if (dev == priv->mesh_dev)
2013 return -EOPNOTSUPP;
2014
2015 memset(&cmd, 0, sizeof(cmd));
2016 cmd.hdr.size = cpu_to_le16(sizeof(cmd));
2017 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd);
2018
2019 /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */
2020 lbs_mac_event_disconnected(priv, true);
2021
2022 return ret;
2023 }
2024
2025
2026
lbs_set_power_mgmt(struct wiphy * wiphy,struct net_device * dev,bool enabled,int timeout)2027 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
2028 bool enabled, int timeout)
2029 {
2030 struct lbs_private *priv = wiphy_priv(wiphy);
2031
2032 if (!(priv->fwcapinfo & FW_CAPINFO_PS)) {
2033 if (!enabled)
2034 return 0;
2035 else
2036 return -EINVAL;
2037 }
2038 /* firmware does not work well with too long latency with power saving
2039 * enabled, so do not enable it if there is only polling, no
2040 * interrupts (like in some sdio hosts which can only
2041 * poll for sdio irqs)
2042 */
2043 if (priv->is_polling) {
2044 if (!enabled)
2045 return 0;
2046 else
2047 return -EINVAL;
2048 }
2049 if (!enabled) {
2050 priv->psmode = LBS802_11POWERMODECAM;
2051 if (priv->psstate != PS_STATE_FULL_POWER)
2052 lbs_set_ps_mode(priv,
2053 PS_MODE_ACTION_EXIT_PS,
2054 true);
2055 return 0;
2056 }
2057 if (priv->psmode != LBS802_11POWERMODECAM)
2058 return 0;
2059 priv->psmode = LBS802_11POWERMODEMAX_PSP;
2060 if (priv->connect_status == LBS_CONNECTED)
2061 lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true);
2062 return 0;
2063 }
2064
2065 /*
2066 * Initialization
2067 */
2068
2069 static const struct cfg80211_ops lbs_cfg80211_ops = {
2070 .set_monitor_channel = lbs_cfg_set_monitor_channel,
2071 .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel,
2072 .scan = lbs_cfg_scan,
2073 .connect = lbs_cfg_connect,
2074 .disconnect = lbs_cfg_disconnect,
2075 .add_key = lbs_cfg_add_key,
2076 .del_key = lbs_cfg_del_key,
2077 .set_default_key = lbs_cfg_set_default_key,
2078 .get_station = lbs_cfg_get_station,
2079 .change_virtual_intf = lbs_change_intf,
2080 .join_ibss = lbs_join_ibss,
2081 .leave_ibss = lbs_leave_ibss,
2082 .set_power_mgmt = lbs_set_power_mgmt,
2083 };
2084
2085
2086 /*
2087 * At this time lbs_private *priv doesn't even exist, so we just allocate
2088 * memory and don't initialize the wiphy further. This is postponed until we
2089 * can talk to the firmware and happens at registration time in
2090 * lbs_cfg_wiphy_register().
2091 */
lbs_cfg_alloc(struct device * dev)2092 struct wireless_dev *lbs_cfg_alloc(struct device *dev)
2093 {
2094 int ret = 0;
2095 struct wireless_dev *wdev;
2096
2097 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
2098 if (!wdev)
2099 return ERR_PTR(-ENOMEM);
2100
2101 wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private));
2102 if (!wdev->wiphy) {
2103 dev_err(dev, "cannot allocate wiphy\n");
2104 ret = -ENOMEM;
2105 goto err_wiphy_new;
2106 }
2107
2108 return wdev;
2109
2110 err_wiphy_new:
2111 kfree(wdev);
2112 return ERR_PTR(ret);
2113 }
2114
2115
lbs_cfg_set_regulatory_hint(struct lbs_private * priv)2116 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv)
2117 {
2118 struct region_code_mapping {
2119 const char *cn;
2120 int code;
2121 };
2122
2123 /* Section 5.17.2 */
2124 static const struct region_code_mapping regmap[] = {
2125 {"US ", 0x10}, /* US FCC */
2126 {"CA ", 0x20}, /* Canada */
2127 {"EU ", 0x30}, /* ETSI */
2128 {"ES ", 0x31}, /* Spain */
2129 {"FR ", 0x32}, /* France */
2130 {"JP ", 0x40}, /* Japan */
2131 };
2132 size_t i;
2133
2134 for (i = 0; i < ARRAY_SIZE(regmap); i++)
2135 if (regmap[i].code == priv->regioncode) {
2136 regulatory_hint(priv->wdev->wiphy, regmap[i].cn);
2137 break;
2138 }
2139 }
2140
lbs_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)2141 static void lbs_reg_notifier(struct wiphy *wiphy,
2142 struct regulatory_request *request)
2143 {
2144 struct lbs_private *priv = wiphy_priv(wiphy);
2145
2146 memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2));
2147 if (lbs_iface_active(priv))
2148 lbs_set_11d_domain_info(priv);
2149 }
2150
2151 /*
2152 * This function gets called after lbs_setup_firmware() determined the
2153 * firmware capabilities. So we can setup the wiphy according to our
2154 * hardware/firmware.
2155 */
lbs_cfg_register(struct lbs_private * priv)2156 int lbs_cfg_register(struct lbs_private *priv)
2157 {
2158 struct wireless_dev *wdev = priv->wdev;
2159 int ret;
2160
2161 wdev->wiphy->max_scan_ssids = 1;
2162 wdev->wiphy->max_scan_ie_len = 256;
2163 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
2164
2165 wdev->wiphy->interface_modes =
2166 BIT(NL80211_IFTYPE_STATION) |
2167 BIT(NL80211_IFTYPE_ADHOC);
2168 if (lbs_rtap_supported(priv))
2169 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR);
2170 if (lbs_mesh_activated(priv))
2171 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT);
2172
2173 wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz;
2174
2175 /*
2176 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have
2177 * never seen a firmware without WPA
2178 */
2179 wdev->wiphy->cipher_suites = cipher_suites;
2180 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
2181 wdev->wiphy->reg_notifier = lbs_reg_notifier;
2182
2183 ret = wiphy_register(wdev->wiphy);
2184 if (ret < 0)
2185 pr_err("cannot register wiphy device\n");
2186
2187 priv->wiphy_registered = true;
2188
2189 ret = register_netdev(priv->dev);
2190 if (ret)
2191 pr_err("cannot register network device\n");
2192
2193 INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker);
2194
2195 lbs_cfg_set_regulatory_hint(priv);
2196
2197 return ret;
2198 }
2199
lbs_scan_deinit(struct lbs_private * priv)2200 void lbs_scan_deinit(struct lbs_private *priv)
2201 {
2202 cancel_delayed_work_sync(&priv->scan_work);
2203 }
2204
2205
lbs_cfg_free(struct lbs_private * priv)2206 void lbs_cfg_free(struct lbs_private *priv)
2207 {
2208 struct wireless_dev *wdev = priv->wdev;
2209
2210 if (!wdev)
2211 return;
2212
2213 if (priv->wiphy_registered)
2214 wiphy_unregister(wdev->wiphy);
2215
2216 if (wdev->wiphy)
2217 wiphy_free(wdev->wiphy);
2218
2219 kfree(wdev);
2220 }
2221