1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36 #include "nvd.h"
37
38 /* delay 0.1 second to enable gfx off feature */
39 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
40
41 #define GFX_OFF_NO_DELAY 0
42
43 /*
44 * GPU GFX IP block helpers function.
45 */
46
amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device * adev,int mec,int pipe,int queue)47 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
48 int pipe, int queue)
49 {
50 int bit = 0;
51
52 bit += mec * adev->gfx.mec.num_pipe_per_mec
53 * adev->gfx.mec.num_queue_per_pipe;
54 bit += pipe * adev->gfx.mec.num_queue_per_pipe;
55 bit += queue;
56
57 return bit;
58 }
59
amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device * adev,int bit,int * mec,int * pipe,int * queue)60 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
61 int *mec, int *pipe, int *queue)
62 {
63 *queue = bit % adev->gfx.mec.num_queue_per_pipe;
64 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
65 % adev->gfx.mec.num_pipe_per_mec;
66 *mec = (bit / adev->gfx.mec.num_queue_per_pipe)
67 / adev->gfx.mec.num_pipe_per_mec;
68
69 }
70
amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device * adev,int xcc_id,int mec,int pipe,int queue)71 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
72 int xcc_id, int mec, int pipe, int queue)
73 {
74 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
75 adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
76 }
77
amdgpu_gfx_me_queue_to_bit(struct amdgpu_device * adev,int me,int pipe,int queue)78 static int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
79 int me, int pipe, int queue)
80 {
81 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */
82 int bit = 0;
83
84 bit += me * adev->gfx.me.num_pipe_per_me
85 * num_queue_per_pipe;
86 bit += pipe * num_queue_per_pipe;
87 bit += queue;
88
89 return bit;
90 }
91
amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device * adev,int me,int pipe,int queue)92 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
93 int me, int pipe, int queue)
94 {
95 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
96 adev->gfx.me.queue_bitmap);
97 }
98
99 /**
100 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
101 *
102 * @mask: array in which the per-shader array disable masks will be stored
103 * @max_se: number of SEs
104 * @max_sh: number of SHs
105 *
106 * The bitmask of CUs to be disabled in the shader array determined by se and
107 * sh is stored in mask[se * max_sh + sh].
108 */
amdgpu_gfx_parse_disable_cu(unsigned int * mask,unsigned int max_se,unsigned int max_sh)109 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
110 {
111 unsigned int se, sh, cu;
112 const char *p;
113
114 memset(mask, 0, sizeof(*mask) * max_se * max_sh);
115
116 if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
117 return;
118
119 p = amdgpu_disable_cu;
120 for (;;) {
121 char *next;
122 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
123
124 if (ret < 3) {
125 DRM_ERROR("amdgpu: could not parse disable_cu\n");
126 return;
127 }
128
129 if (se < max_se && sh < max_sh && cu < 16) {
130 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
131 mask[se * max_sh + sh] |= 1u << cu;
132 } else {
133 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
134 se, sh, cu);
135 }
136
137 next = strchr(p, ',');
138 if (!next)
139 break;
140 p = next + 1;
141 }
142 }
143
amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device * adev)144 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
145 {
146 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
147 }
148
amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device * adev)149 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
150 {
151 if (amdgpu_compute_multipipe != -1) {
152 dev_info(adev->dev, "amdgpu: forcing compute pipe policy %d\n",
153 amdgpu_compute_multipipe);
154 return amdgpu_compute_multipipe == 1;
155 }
156
157 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
158 return true;
159
160 /* FIXME: spreading the queues across pipes causes perf regressions
161 * on POLARIS11 compute workloads */
162 if (adev->asic_type == CHIP_POLARIS11)
163 return false;
164
165 return adev->gfx.mec.num_mec > 1;
166 }
167
amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)168 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
169 struct amdgpu_ring *ring)
170 {
171 int queue = ring->queue;
172 int pipe = ring->pipe;
173
174 /* Policy: use pipe1 queue0 as high priority graphics queue if we
175 * have more than one gfx pipe.
176 */
177 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
178 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
179 int me = ring->me;
180 int bit;
181
182 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
183 if (ring == &adev->gfx.gfx_ring[bit])
184 return true;
185 }
186
187 return false;
188 }
189
amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)190 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
191 struct amdgpu_ring *ring)
192 {
193 /* Policy: use 1st queue as high priority compute queue if we
194 * have more than one compute queue.
195 */
196 if (adev->gfx.num_compute_rings > 1 &&
197 ring == &adev->gfx.compute_ring[0])
198 return true;
199
200 return false;
201 }
202
amdgpu_gfx_compute_queue_acquire(struct amdgpu_device * adev)203 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
204 {
205 int i, j, queue, pipe;
206 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
207 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
208 adev->gfx.mec.num_queue_per_pipe,
209 adev->gfx.num_compute_rings);
210 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
211
212 if (multipipe_policy) {
213 /* policy: make queues evenly cross all pipes on MEC1 only
214 * for multiple xcc, just use the original policy for simplicity */
215 for (j = 0; j < num_xcc; j++) {
216 for (i = 0; i < max_queues_per_mec; i++) {
217 pipe = i % adev->gfx.mec.num_pipe_per_mec;
218 queue = (i / adev->gfx.mec.num_pipe_per_mec) %
219 adev->gfx.mec.num_queue_per_pipe;
220
221 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
222 adev->gfx.mec_bitmap[j].queue_bitmap);
223 }
224 }
225 } else {
226 /* policy: amdgpu owns all queues in the given pipe */
227 for (j = 0; j < num_xcc; j++) {
228 for (i = 0; i < max_queues_per_mec; ++i)
229 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
230 }
231 }
232
233 for (j = 0; j < num_xcc; j++) {
234 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
235 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
236 }
237 }
238
amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device * adev)239 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
240 {
241 int i, queue, pipe;
242 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
243 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */
244 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * num_queue_per_pipe;
245
246 if (multipipe_policy) {
247 /* policy: amdgpu owns the first queue per pipe at this stage
248 * will extend to mulitple queues per pipe later */
249 for (i = 0; i < max_queues_per_me; i++) {
250 pipe = i % adev->gfx.me.num_pipe_per_me;
251 queue = (i / adev->gfx.me.num_pipe_per_me) %
252 num_queue_per_pipe;
253
254 set_bit(pipe * num_queue_per_pipe + queue,
255 adev->gfx.me.queue_bitmap);
256 }
257 } else {
258 for (i = 0; i < max_queues_per_me; ++i)
259 set_bit(i, adev->gfx.me.queue_bitmap);
260 }
261
262 /* update the number of active graphics rings */
263 if (adev->gfx.num_gfx_rings)
264 adev->gfx.num_gfx_rings =
265 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
266 }
267
amdgpu_gfx_kiq_acquire(struct amdgpu_device * adev,struct amdgpu_ring * ring,int xcc_id)268 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
269 struct amdgpu_ring *ring, int xcc_id)
270 {
271 int queue_bit;
272 int mec, pipe, queue;
273
274 queue_bit = adev->gfx.mec.num_mec
275 * adev->gfx.mec.num_pipe_per_mec
276 * adev->gfx.mec.num_queue_per_pipe;
277
278 while (--queue_bit >= 0) {
279 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
280 continue;
281
282 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
283
284 /*
285 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
286 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
287 * only can be issued on queue 0.
288 */
289 if ((mec == 1 && pipe > 1) || queue != 0)
290 continue;
291
292 ring->me = mec + 1;
293 ring->pipe = pipe;
294 ring->queue = queue;
295
296 return 0;
297 }
298
299 dev_err(adev->dev, "Failed to find a queue for KIQ\n");
300 return -EINVAL;
301 }
302
amdgpu_gfx_kiq_init_ring(struct amdgpu_device * adev,int xcc_id)303 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
304 {
305 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
306 struct amdgpu_irq_src *irq = &kiq->irq;
307 struct amdgpu_ring *ring = &kiq->ring;
308 int r = 0;
309
310 spin_lock_init(&kiq->ring_lock);
311
312 ring->adev = NULL;
313 ring->ring_obj = NULL;
314 ring->use_doorbell = true;
315 ring->xcc_id = xcc_id;
316 ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
317 ring->doorbell_index =
318 (adev->doorbell_index.kiq +
319 xcc_id * adev->doorbell_index.xcc_doorbell_range)
320 << 1;
321
322 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
323 if (r)
324 return r;
325
326 ring->eop_gpu_addr = kiq->eop_gpu_addr;
327 ring->no_scheduler = true;
328 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
329 (unsigned char)xcc_id, (unsigned char)ring->me,
330 (unsigned char)ring->pipe, (unsigned char)ring->queue);
331 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
332 AMDGPU_RING_PRIO_DEFAULT, NULL);
333 if (r)
334 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
335
336 return r;
337 }
338
amdgpu_gfx_kiq_free_ring(struct amdgpu_ring * ring)339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
340 {
341 amdgpu_ring_fini(ring);
342 }
343
amdgpu_gfx_kiq_fini(struct amdgpu_device * adev,int xcc_id)344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
345 {
346 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
347
348 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
349 }
350
amdgpu_gfx_kiq_init(struct amdgpu_device * adev,unsigned int hpd_size,int xcc_id)351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
352 unsigned int hpd_size, int xcc_id)
353 {
354 int r;
355 u32 *hpd;
356 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
357
358 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
359 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
360 &kiq->eop_gpu_addr, (void **)&hpd);
361 if (r) {
362 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
363 return r;
364 }
365
366 memset(hpd, 0, hpd_size);
367
368 r = amdgpu_bo_reserve(kiq->eop_obj, true);
369 if (unlikely(r != 0))
370 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
371 amdgpu_bo_kunmap(kiq->eop_obj);
372 amdgpu_bo_unreserve(kiq->eop_obj);
373
374 return 0;
375 }
376
377 /* create MQD for each compute/gfx queue */
amdgpu_gfx_mqd_sw_init(struct amdgpu_device * adev,unsigned int mqd_size,int xcc_id)378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
379 unsigned int mqd_size, int xcc_id)
380 {
381 int r, i, j;
382 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
383 struct amdgpu_ring *ring = &kiq->ring;
384 u32 domain = AMDGPU_GEM_DOMAIN_GTT;
385
386 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
387 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
388 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
389 domain |= AMDGPU_GEM_DOMAIN_VRAM;
390 #endif
391
392 /* create MQD for KIQ */
393 if (!adev->enable_mes_kiq && !ring->mqd_obj) {
394 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
395 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
396 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
397 * KIQ MQD no matter SRIOV or Bare-metal
398 */
399 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
400 AMDGPU_GEM_DOMAIN_VRAM |
401 AMDGPU_GEM_DOMAIN_GTT,
402 &ring->mqd_obj,
403 &ring->mqd_gpu_addr,
404 &ring->mqd_ptr);
405 if (r) {
406 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
407 return r;
408 }
409
410 /* prepare MQD backup */
411 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL);
412 if (!kiq->mqd_backup) {
413 dev_warn(adev->dev,
414 "no memory to create MQD backup for ring %s\n", ring->name);
415 return -ENOMEM;
416 }
417 }
418
419 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
420 /* create MQD for each KGQ */
421 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
422 ring = &adev->gfx.gfx_ring[i];
423 if (!ring->mqd_obj) {
424 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
425 domain, &ring->mqd_obj,
426 &ring->mqd_gpu_addr, &ring->mqd_ptr);
427 if (r) {
428 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
429 return r;
430 }
431
432 ring->mqd_size = mqd_size;
433 /* prepare MQD backup */
434 adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL);
435 if (!adev->gfx.me.mqd_backup[i]) {
436 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
437 return -ENOMEM;
438 }
439 }
440 }
441 }
442
443 /* create MQD for each KCQ */
444 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
445 j = i + xcc_id * adev->gfx.num_compute_rings;
446 ring = &adev->gfx.compute_ring[j];
447 if (!ring->mqd_obj) {
448 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
449 domain, &ring->mqd_obj,
450 &ring->mqd_gpu_addr, &ring->mqd_ptr);
451 if (r) {
452 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
453 return r;
454 }
455
456 ring->mqd_size = mqd_size;
457 /* prepare MQD backup */
458 adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL);
459 if (!adev->gfx.mec.mqd_backup[j]) {
460 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
461 return -ENOMEM;
462 }
463 }
464 }
465
466 return 0;
467 }
468
amdgpu_gfx_mqd_sw_fini(struct amdgpu_device * adev,int xcc_id)469 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
470 {
471 struct amdgpu_ring *ring = NULL;
472 int i, j;
473 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
474
475 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
476 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
477 ring = &adev->gfx.gfx_ring[i];
478 kfree(adev->gfx.me.mqd_backup[i]);
479 amdgpu_bo_free_kernel(&ring->mqd_obj,
480 &ring->mqd_gpu_addr,
481 &ring->mqd_ptr);
482 }
483 }
484
485 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
486 j = i + xcc_id * adev->gfx.num_compute_rings;
487 ring = &adev->gfx.compute_ring[j];
488 kfree(adev->gfx.mec.mqd_backup[j]);
489 amdgpu_bo_free_kernel(&ring->mqd_obj,
490 &ring->mqd_gpu_addr,
491 &ring->mqd_ptr);
492 }
493
494 ring = &kiq->ring;
495 kfree(kiq->mqd_backup);
496 amdgpu_bo_free_kernel(&ring->mqd_obj,
497 &ring->mqd_gpu_addr,
498 &ring->mqd_ptr);
499 }
500
amdgpu_gfx_disable_kcq(struct amdgpu_device * adev,int xcc_id)501 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
502 {
503 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
504 struct amdgpu_ring *kiq_ring = &kiq->ring;
505 int i, r = 0;
506 int j;
507
508 if (adev->enable_mes) {
509 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
510 j = i + xcc_id * adev->gfx.num_compute_rings;
511 amdgpu_mes_unmap_legacy_queue(adev,
512 &adev->gfx.compute_ring[j],
513 RESET_QUEUES, 0, 0);
514 }
515 return 0;
516 }
517
518 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
519 return -EINVAL;
520
521 if (!kiq_ring->sched.ready || amdgpu_in_reset(adev))
522 return 0;
523
524 spin_lock(&kiq->ring_lock);
525 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
526 adev->gfx.num_compute_rings)) {
527 spin_unlock(&kiq->ring_lock);
528 return -ENOMEM;
529 }
530
531 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
532 j = i + xcc_id * adev->gfx.num_compute_rings;
533 kiq->pmf->kiq_unmap_queues(kiq_ring,
534 &adev->gfx.compute_ring[j],
535 RESET_QUEUES, 0, 0);
536 }
537 /* Submit unmap queue packet */
538 amdgpu_ring_commit(kiq_ring);
539 /*
540 * Ring test will do a basic scratch register change check. Just run
541 * this to ensure that unmap queues that is submitted before got
542 * processed successfully before returning.
543 */
544 r = amdgpu_ring_test_helper(kiq_ring);
545
546 spin_unlock(&kiq->ring_lock);
547
548 return r;
549 }
550
amdgpu_gfx_disable_kgq(struct amdgpu_device * adev,int xcc_id)551 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
552 {
553 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
554 struct amdgpu_ring *kiq_ring = &kiq->ring;
555 int i, r = 0;
556 int j;
557
558 if (adev->enable_mes) {
559 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
560 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
561 j = i + xcc_id * adev->gfx.num_gfx_rings;
562 amdgpu_mes_unmap_legacy_queue(adev,
563 &adev->gfx.gfx_ring[j],
564 PREEMPT_QUEUES, 0, 0);
565 }
566 }
567 return 0;
568 }
569
570 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
571 return -EINVAL;
572
573 if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev))
574 return 0;
575
576 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
577 spin_lock(&kiq->ring_lock);
578 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
579 adev->gfx.num_gfx_rings)) {
580 spin_unlock(&kiq->ring_lock);
581 return -ENOMEM;
582 }
583
584 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
585 j = i + xcc_id * adev->gfx.num_gfx_rings;
586 kiq->pmf->kiq_unmap_queues(kiq_ring,
587 &adev->gfx.gfx_ring[j],
588 PREEMPT_QUEUES, 0, 0);
589 }
590 /* Submit unmap queue packet */
591 amdgpu_ring_commit(kiq_ring);
592
593 /*
594 * Ring test will do a basic scratch register change check.
595 * Just run this to ensure that unmap queues that is submitted
596 * before got processed successfully before returning.
597 */
598 r = amdgpu_ring_test_helper(kiq_ring);
599 spin_unlock(&kiq->ring_lock);
600 }
601
602 return r;
603 }
604
amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device * adev,int queue_bit)605 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
606 int queue_bit)
607 {
608 int mec, pipe, queue;
609 int set_resource_bit = 0;
610
611 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
612
613 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
614
615 return set_resource_bit;
616 }
617
amdgpu_gfx_mes_enable_kcq(struct amdgpu_device * adev,int xcc_id)618 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
619 {
620 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
621 struct amdgpu_ring *kiq_ring = &kiq->ring;
622 uint64_t queue_mask = ~0ULL;
623 int r, i, j;
624
625 amdgpu_device_flush_hdp(adev, NULL);
626
627 if (!adev->enable_uni_mes) {
628 spin_lock(&kiq->ring_lock);
629 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
630 if (r) {
631 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
632 spin_unlock(&kiq->ring_lock);
633 return r;
634 }
635
636 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
637 r = amdgpu_ring_test_helper(kiq_ring);
638 spin_unlock(&kiq->ring_lock);
639 if (r)
640 dev_err(adev->dev, "KIQ failed to set resources\n");
641 }
642
643 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
644 j = i + xcc_id * adev->gfx.num_compute_rings;
645 r = amdgpu_mes_map_legacy_queue(adev,
646 &adev->gfx.compute_ring[j]);
647 if (r) {
648 dev_err(adev->dev, "failed to map compute queue\n");
649 return r;
650 }
651 }
652
653 return 0;
654 }
655
amdgpu_gfx_enable_kcq(struct amdgpu_device * adev,int xcc_id)656 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
657 {
658 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
659 struct amdgpu_ring *kiq_ring = &kiq->ring;
660 uint64_t queue_mask = 0;
661 int r, i, j;
662
663 if (adev->mes.enable_legacy_queue_map)
664 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
665
666 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
667 return -EINVAL;
668
669 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
670 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
671 continue;
672
673 /* This situation may be hit in the future if a new HW
674 * generation exposes more than 64 queues. If so, the
675 * definition of queue_mask needs updating */
676 if (WARN_ON(i > (sizeof(queue_mask)*8))) {
677 dev_err(adev->dev, "Invalid KCQ enabled: %d\n", i);
678 break;
679 }
680
681 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
682 }
683
684 amdgpu_device_flush_hdp(adev, NULL);
685
686 dev_info(adev->dev, "kiq ring mec %d pipe %d q %d\n", kiq_ring->me,
687 kiq_ring->pipe, kiq_ring->queue);
688
689 spin_lock(&kiq->ring_lock);
690 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
691 adev->gfx.num_compute_rings +
692 kiq->pmf->set_resources_size);
693 if (r) {
694 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
695 spin_unlock(&kiq->ring_lock);
696 return r;
697 }
698
699 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
700 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
701 j = i + xcc_id * adev->gfx.num_compute_rings;
702 kiq->pmf->kiq_map_queues(kiq_ring,
703 &adev->gfx.compute_ring[j]);
704 }
705 /* Submit map queue packet */
706 amdgpu_ring_commit(kiq_ring);
707 /*
708 * Ring test will do a basic scratch register change check. Just run
709 * this to ensure that map queues that is submitted before got
710 * processed successfully before returning.
711 */
712 r = amdgpu_ring_test_helper(kiq_ring);
713 spin_unlock(&kiq->ring_lock);
714 if (r)
715 dev_err(adev->dev, "KCQ enable failed\n");
716
717 return r;
718 }
719
amdgpu_gfx_enable_kgq(struct amdgpu_device * adev,int xcc_id)720 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
721 {
722 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
723 struct amdgpu_ring *kiq_ring = &kiq->ring;
724 int r, i, j;
725
726 if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
727 return -EINVAL;
728
729 amdgpu_device_flush_hdp(adev, NULL);
730
731 if (adev->mes.enable_legacy_queue_map) {
732 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
733 j = i + xcc_id * adev->gfx.num_gfx_rings;
734 r = amdgpu_mes_map_legacy_queue(adev,
735 &adev->gfx.gfx_ring[j]);
736 if (r) {
737 dev_err(adev->dev, "failed to map gfx queue\n");
738 return r;
739 }
740 }
741
742 return 0;
743 }
744
745 spin_lock(&kiq->ring_lock);
746 /* No need to map kcq on the slave */
747 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
748 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
749 adev->gfx.num_gfx_rings);
750 if (r) {
751 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
752 spin_unlock(&kiq->ring_lock);
753 return r;
754 }
755
756 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
757 j = i + xcc_id * adev->gfx.num_gfx_rings;
758 kiq->pmf->kiq_map_queues(kiq_ring,
759 &adev->gfx.gfx_ring[j]);
760 }
761 }
762 /* Submit map queue packet */
763 amdgpu_ring_commit(kiq_ring);
764 /*
765 * Ring test will do a basic scratch register change check. Just run
766 * this to ensure that map queues that is submitted before got
767 * processed successfully before returning.
768 */
769 r = amdgpu_ring_test_helper(kiq_ring);
770 spin_unlock(&kiq->ring_lock);
771 if (r)
772 dev_err(adev->dev, "KGQ enable failed\n");
773
774 return r;
775 }
776
amdgpu_gfx_do_off_ctrl(struct amdgpu_device * adev,bool enable,bool no_delay)777 static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable,
778 bool no_delay)
779 {
780 unsigned long delay = GFX_OFF_DELAY_ENABLE;
781
782 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
783 return;
784
785 mutex_lock(&adev->gfx.gfx_off_mutex);
786
787 if (enable) {
788 /* If the count is already 0, it means there's an imbalance bug somewhere.
789 * Note that the bug may be in a different caller than the one which triggers the
790 * WARN_ON_ONCE.
791 */
792 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
793 goto unlock;
794
795 adev->gfx.gfx_off_req_count--;
796
797 if (adev->gfx.gfx_off_req_count == 0 &&
798 !adev->gfx.gfx_off_state) {
799 /* If going to s2idle, no need to wait */
800 if (no_delay) {
801 if (!amdgpu_dpm_set_powergating_by_smu(adev,
802 AMD_IP_BLOCK_TYPE_GFX, true, 0))
803 adev->gfx.gfx_off_state = true;
804 } else {
805 schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
806 delay);
807 }
808 }
809 } else {
810 if (adev->gfx.gfx_off_req_count == 0) {
811 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
812
813 if (adev->gfx.gfx_off_state &&
814 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) {
815 adev->gfx.gfx_off_state = false;
816
817 if (adev->gfx.funcs->init_spm_golden) {
818 dev_dbg(adev->dev,
819 "GFXOFF is disabled, re-init SPM golden settings\n");
820 amdgpu_gfx_init_spm_golden(adev);
821 }
822 }
823 }
824
825 adev->gfx.gfx_off_req_count++;
826 }
827
828 unlock:
829 mutex_unlock(&adev->gfx.gfx_off_mutex);
830 }
831
832 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
833 *
834 * @adev: amdgpu_device pointer
835 * @bool enable true: enable gfx off feature, false: disable gfx off feature
836 *
837 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled.
838 * 2. other client can send request to disable gfx off feature, the request should be honored.
839 * 3. other client can cancel their request of disable gfx off feature
840 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
841 *
842 * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms.
843 */
amdgpu_gfx_off_ctrl(struct amdgpu_device * adev,bool enable)844 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
845 {
846 /* If going to s2idle, no need to wait */
847 bool no_delay = adev->in_s0ix ? true : false;
848
849 amdgpu_gfx_do_off_ctrl(adev, enable, no_delay);
850 }
851
852 /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable
853 *
854 * @adev: amdgpu_device pointer
855 * @bool enable true: enable gfx off feature, false: disable gfx off feature
856 *
857 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled.
858 * 2. other client can send request to disable gfx off feature, the request should be honored.
859 * 3. other client can cancel their request of disable gfx off feature
860 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
861 *
862 * gfx off allow will be issued immediately.
863 */
amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device * adev,bool enable)864 void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable)
865 {
866 amdgpu_gfx_do_off_ctrl(adev, enable, true);
867 }
868
amdgpu_set_gfx_off_residency(struct amdgpu_device * adev,bool value)869 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
870 {
871 int r = 0;
872
873 mutex_lock(&adev->gfx.gfx_off_mutex);
874
875 r = amdgpu_dpm_set_residency_gfxoff(adev, value);
876
877 mutex_unlock(&adev->gfx.gfx_off_mutex);
878
879 return r;
880 }
881
amdgpu_get_gfx_off_residency(struct amdgpu_device * adev,u32 * value)882 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
883 {
884 int r = 0;
885
886 mutex_lock(&adev->gfx.gfx_off_mutex);
887
888 r = amdgpu_dpm_get_residency_gfxoff(adev, value);
889
890 mutex_unlock(&adev->gfx.gfx_off_mutex);
891
892 return r;
893 }
894
amdgpu_get_gfx_off_entrycount(struct amdgpu_device * adev,u64 * value)895 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
896 {
897 int r = 0;
898
899 mutex_lock(&adev->gfx.gfx_off_mutex);
900
901 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
902
903 mutex_unlock(&adev->gfx.gfx_off_mutex);
904
905 return r;
906 }
907
amdgpu_get_gfx_off_status(struct amdgpu_device * adev,uint32_t * value)908 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
909 {
910
911 int r = 0;
912
913 mutex_lock(&adev->gfx.gfx_off_mutex);
914
915 r = amdgpu_dpm_get_status_gfxoff(adev, value);
916
917 mutex_unlock(&adev->gfx.gfx_off_mutex);
918
919 return r;
920 }
921
amdgpu_gfx_ras_late_init(struct amdgpu_device * adev,struct ras_common_if * ras_block)922 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
923 {
924 int r;
925
926 if (amdgpu_ras_is_supported(adev, ras_block->block)) {
927 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
928 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
929 if (r)
930 return r;
931 }
932
933 r = amdgpu_ras_block_late_init(adev, ras_block);
934 if (r)
935 return r;
936
937 if (amdgpu_sriov_vf(adev))
938 return r;
939
940 if (adev->gfx.cp_ecc_error_irq.funcs) {
941 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
942 if (r)
943 goto late_fini;
944 }
945 } else {
946 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
947 }
948
949 return 0;
950 late_fini:
951 amdgpu_ras_block_late_fini(adev, ras_block);
952 return r;
953 }
954
amdgpu_gfx_ras_sw_init(struct amdgpu_device * adev)955 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
956 {
957 int err = 0;
958 struct amdgpu_gfx_ras *ras = NULL;
959
960 /* adev->gfx.ras is NULL, which means gfx does not
961 * support ras function, then do nothing here.
962 */
963 if (!adev->gfx.ras)
964 return 0;
965
966 ras = adev->gfx.ras;
967
968 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
969 if (err) {
970 dev_err(adev->dev, "Failed to register gfx ras block!\n");
971 return err;
972 }
973
974 strcpy(ras->ras_block.ras_comm.name, "gfx");
975 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
976 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
977 adev->gfx.ras_if = &ras->ras_block.ras_comm;
978
979 /* If not define special ras_late_init function, use gfx default ras_late_init */
980 if (!ras->ras_block.ras_late_init)
981 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
982
983 /* If not defined special ras_cb function, use default ras_cb */
984 if (!ras->ras_block.ras_cb)
985 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
986
987 return 0;
988 }
989
amdgpu_gfx_poison_consumption_handler(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)990 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
991 struct amdgpu_iv_entry *entry)
992 {
993 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
994 return adev->gfx.ras->poison_consumption_handler(adev, entry);
995
996 return 0;
997 }
998
amdgpu_gfx_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)999 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
1000 void *err_data,
1001 struct amdgpu_iv_entry *entry)
1002 {
1003 /* TODO ue will trigger an interrupt.
1004 *
1005 * When “Full RAS” is enabled, the per-IP interrupt sources should
1006 * be disabled and the driver should only look for the aggregated
1007 * interrupt via sync flood
1008 */
1009 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
1010 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1011 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
1012 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
1013 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
1014 amdgpu_ras_reset_gpu(adev);
1015 }
1016 return AMDGPU_RAS_SUCCESS;
1017 }
1018
amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1019 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
1020 struct amdgpu_irq_src *source,
1021 struct amdgpu_iv_entry *entry)
1022 {
1023 struct ras_common_if *ras_if = adev->gfx.ras_if;
1024 struct ras_dispatch_if ih_data = {
1025 .entry = entry,
1026 };
1027
1028 if (!ras_if)
1029 return 0;
1030
1031 ih_data.head = *ras_if;
1032
1033 dev_err(adev->dev, "CP ECC ERROR IRQ\n");
1034 amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1035 return 0;
1036 }
1037
amdgpu_gfx_ras_error_func(struct amdgpu_device * adev,void * ras_error_status,void (* func)(struct amdgpu_device * adev,void * ras_error_status,int xcc_id))1038 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
1039 void *ras_error_status,
1040 void (*func)(struct amdgpu_device *adev, void *ras_error_status,
1041 int xcc_id))
1042 {
1043 int i;
1044 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1045 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1046 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1047
1048 if (err_data) {
1049 err_data->ue_count = 0;
1050 err_data->ce_count = 0;
1051 }
1052
1053 for_each_inst(i, xcc_mask)
1054 func(adev, ras_error_status, i);
1055 }
1056
amdgpu_kiq_rreg(struct amdgpu_device * adev,uint32_t reg,uint32_t xcc_id)1057 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1058 {
1059 signed long r, cnt = 0;
1060 unsigned long flags;
1061 uint32_t seq, reg_val_offs = 0, value = 0;
1062 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1063 struct amdgpu_ring *ring = &kiq->ring;
1064
1065 if (amdgpu_device_skip_hw_access(adev))
1066 return 0;
1067
1068 if (adev->mes.ring[0].sched.ready)
1069 return amdgpu_mes_rreg(adev, reg);
1070
1071 BUG_ON(!ring->funcs->emit_rreg);
1072
1073 spin_lock_irqsave(&kiq->ring_lock, flags);
1074 if (amdgpu_device_wb_get(adev, ®_val_offs)) {
1075 pr_err("critical bug! too many kiq readers\n");
1076 goto failed_unlock;
1077 }
1078 r = amdgpu_ring_alloc(ring, 32);
1079 if (r)
1080 goto failed_unlock;
1081
1082 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1083 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1084 if (r)
1085 goto failed_undo;
1086
1087 amdgpu_ring_commit(ring);
1088 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1089
1090 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1091
1092 /* don't wait anymore for gpu reset case because this way may
1093 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1094 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1095 * never return if we keep waiting in virt_kiq_rreg, which cause
1096 * gpu_recover() hang there.
1097 *
1098 * also don't wait anymore for IRQ context
1099 * */
1100 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1101 goto failed_kiq_read;
1102
1103 might_sleep();
1104 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1105 if (amdgpu_in_reset(adev))
1106 goto failed_kiq_read;
1107
1108 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1109 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1110 }
1111
1112 if (cnt > MAX_KIQ_REG_TRY)
1113 goto failed_kiq_read;
1114
1115 mb();
1116 value = adev->wb.wb[reg_val_offs];
1117 amdgpu_device_wb_free(adev, reg_val_offs);
1118 return value;
1119
1120 failed_undo:
1121 amdgpu_ring_undo(ring);
1122 failed_unlock:
1123 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1124 failed_kiq_read:
1125 if (reg_val_offs)
1126 amdgpu_device_wb_free(adev, reg_val_offs);
1127 dev_err(adev->dev, "failed to read reg:%x\n", reg);
1128 return ~0;
1129 }
1130
amdgpu_kiq_wreg(struct amdgpu_device * adev,uint32_t reg,uint32_t v,uint32_t xcc_id)1131 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1132 {
1133 signed long r, cnt = 0;
1134 unsigned long flags;
1135 uint32_t seq;
1136 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1137 struct amdgpu_ring *ring = &kiq->ring;
1138
1139 BUG_ON(!ring->funcs->emit_wreg);
1140
1141 if (amdgpu_device_skip_hw_access(adev))
1142 return;
1143
1144 if (adev->mes.ring[0].sched.ready) {
1145 amdgpu_mes_wreg(adev, reg, v);
1146 return;
1147 }
1148
1149 spin_lock_irqsave(&kiq->ring_lock, flags);
1150 r = amdgpu_ring_alloc(ring, 32);
1151 if (r)
1152 goto failed_unlock;
1153
1154 amdgpu_ring_emit_wreg(ring, reg, v);
1155 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1156 if (r)
1157 goto failed_undo;
1158
1159 amdgpu_ring_commit(ring);
1160 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1161
1162 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1163
1164 /* don't wait anymore for gpu reset case because this way may
1165 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1166 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1167 * never return if we keep waiting in virt_kiq_rreg, which cause
1168 * gpu_recover() hang there.
1169 *
1170 * also don't wait anymore for IRQ context
1171 * */
1172 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1173 goto failed_kiq_write;
1174
1175 might_sleep();
1176 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1177 if (amdgpu_in_reset(adev))
1178 goto failed_kiq_write;
1179
1180 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1181 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1182 }
1183
1184 if (cnt > MAX_KIQ_REG_TRY)
1185 goto failed_kiq_write;
1186
1187 return;
1188
1189 failed_undo:
1190 amdgpu_ring_undo(ring);
1191 failed_unlock:
1192 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1193 failed_kiq_write:
1194 dev_err(adev->dev, "failed to write reg:%x\n", reg);
1195 }
1196
amdgpu_gfx_get_num_kcq(struct amdgpu_device * adev)1197 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1198 {
1199 if (amdgpu_num_kcq == -1) {
1200 return 8;
1201 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1202 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1203 return 8;
1204 }
1205 return amdgpu_num_kcq;
1206 }
1207
amdgpu_gfx_cp_init_microcode(struct amdgpu_device * adev,uint32_t ucode_id)1208 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1209 uint32_t ucode_id)
1210 {
1211 const struct gfx_firmware_header_v1_0 *cp_hdr;
1212 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1213 struct amdgpu_firmware_info *info = NULL;
1214 const struct firmware *ucode_fw;
1215 unsigned int fw_size;
1216
1217 switch (ucode_id) {
1218 case AMDGPU_UCODE_ID_CP_PFP:
1219 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1220 adev->gfx.pfp_fw->data;
1221 adev->gfx.pfp_fw_version =
1222 le32_to_cpu(cp_hdr->header.ucode_version);
1223 adev->gfx.pfp_feature_version =
1224 le32_to_cpu(cp_hdr->ucode_feature_version);
1225 ucode_fw = adev->gfx.pfp_fw;
1226 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1227 break;
1228 case AMDGPU_UCODE_ID_CP_RS64_PFP:
1229 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1230 adev->gfx.pfp_fw->data;
1231 adev->gfx.pfp_fw_version =
1232 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1233 adev->gfx.pfp_feature_version =
1234 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1235 ucode_fw = adev->gfx.pfp_fw;
1236 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1237 break;
1238 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1239 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1240 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1241 adev->gfx.pfp_fw->data;
1242 ucode_fw = adev->gfx.pfp_fw;
1243 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1244 break;
1245 case AMDGPU_UCODE_ID_CP_ME:
1246 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1247 adev->gfx.me_fw->data;
1248 adev->gfx.me_fw_version =
1249 le32_to_cpu(cp_hdr->header.ucode_version);
1250 adev->gfx.me_feature_version =
1251 le32_to_cpu(cp_hdr->ucode_feature_version);
1252 ucode_fw = adev->gfx.me_fw;
1253 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1254 break;
1255 case AMDGPU_UCODE_ID_CP_RS64_ME:
1256 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1257 adev->gfx.me_fw->data;
1258 adev->gfx.me_fw_version =
1259 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1260 adev->gfx.me_feature_version =
1261 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1262 ucode_fw = adev->gfx.me_fw;
1263 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1264 break;
1265 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1266 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1267 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1268 adev->gfx.me_fw->data;
1269 ucode_fw = adev->gfx.me_fw;
1270 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1271 break;
1272 case AMDGPU_UCODE_ID_CP_CE:
1273 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1274 adev->gfx.ce_fw->data;
1275 adev->gfx.ce_fw_version =
1276 le32_to_cpu(cp_hdr->header.ucode_version);
1277 adev->gfx.ce_feature_version =
1278 le32_to_cpu(cp_hdr->ucode_feature_version);
1279 ucode_fw = adev->gfx.ce_fw;
1280 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1281 break;
1282 case AMDGPU_UCODE_ID_CP_MEC1:
1283 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1284 adev->gfx.mec_fw->data;
1285 adev->gfx.mec_fw_version =
1286 le32_to_cpu(cp_hdr->header.ucode_version);
1287 adev->gfx.mec_feature_version =
1288 le32_to_cpu(cp_hdr->ucode_feature_version);
1289 ucode_fw = adev->gfx.mec_fw;
1290 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1291 le32_to_cpu(cp_hdr->jt_size) * 4;
1292 break;
1293 case AMDGPU_UCODE_ID_CP_MEC1_JT:
1294 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1295 adev->gfx.mec_fw->data;
1296 ucode_fw = adev->gfx.mec_fw;
1297 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1298 break;
1299 case AMDGPU_UCODE_ID_CP_MEC2:
1300 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1301 adev->gfx.mec2_fw->data;
1302 adev->gfx.mec2_fw_version =
1303 le32_to_cpu(cp_hdr->header.ucode_version);
1304 adev->gfx.mec2_feature_version =
1305 le32_to_cpu(cp_hdr->ucode_feature_version);
1306 ucode_fw = adev->gfx.mec2_fw;
1307 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1308 le32_to_cpu(cp_hdr->jt_size) * 4;
1309 break;
1310 case AMDGPU_UCODE_ID_CP_MEC2_JT:
1311 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1312 adev->gfx.mec2_fw->data;
1313 ucode_fw = adev->gfx.mec2_fw;
1314 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1315 break;
1316 case AMDGPU_UCODE_ID_CP_RS64_MEC:
1317 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1318 adev->gfx.mec_fw->data;
1319 adev->gfx.mec_fw_version =
1320 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1321 adev->gfx.mec_feature_version =
1322 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1323 ucode_fw = adev->gfx.mec_fw;
1324 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1325 break;
1326 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1327 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1328 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1329 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1330 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1331 adev->gfx.mec_fw->data;
1332 ucode_fw = adev->gfx.mec_fw;
1333 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1334 break;
1335 default:
1336 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1337 return;
1338 }
1339
1340 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1341 info = &adev->firmware.ucode[ucode_id];
1342 info->ucode_id = ucode_id;
1343 info->fw = ucode_fw;
1344 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1345 }
1346 }
1347
amdgpu_gfx_is_master_xcc(struct amdgpu_device * adev,int xcc_id)1348 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1349 {
1350 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1351 adev->gfx.num_xcc_per_xcp : 1));
1352 }
1353
amdgpu_gfx_get_current_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1354 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1355 struct device_attribute *addr,
1356 char *buf)
1357 {
1358 struct drm_device *ddev = dev_get_drvdata(dev);
1359 struct amdgpu_device *adev = drm_to_adev(ddev);
1360 int mode;
1361
1362 /* Only minimal precaution taken to reject requests while in reset.*/
1363 if (amdgpu_in_reset(adev))
1364 return -EPERM;
1365
1366 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1367 AMDGPU_XCP_FL_NONE);
1368
1369 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1370 }
1371
amdgpu_gfx_set_compute_partition(struct device * dev,struct device_attribute * addr,const char * buf,size_t count)1372 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1373 struct device_attribute *addr,
1374 const char *buf, size_t count)
1375 {
1376 struct drm_device *ddev = dev_get_drvdata(dev);
1377 struct amdgpu_device *adev = drm_to_adev(ddev);
1378 enum amdgpu_gfx_partition mode;
1379 int ret = 0, num_xcc;
1380
1381 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1382 if (num_xcc % 2 != 0)
1383 return -EINVAL;
1384
1385 if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1386 mode = AMDGPU_SPX_PARTITION_MODE;
1387 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1388 /*
1389 * DPX mode needs AIDs to be in multiple of 2.
1390 * Each AID connects 2 XCCs.
1391 */
1392 if (num_xcc%4)
1393 return -EINVAL;
1394 mode = AMDGPU_DPX_PARTITION_MODE;
1395 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1396 if (num_xcc != 6)
1397 return -EINVAL;
1398 mode = AMDGPU_TPX_PARTITION_MODE;
1399 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1400 if (num_xcc != 8)
1401 return -EINVAL;
1402 mode = AMDGPU_QPX_PARTITION_MODE;
1403 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1404 mode = AMDGPU_CPX_PARTITION_MODE;
1405 } else {
1406 return -EINVAL;
1407 }
1408
1409 /* Don't allow a switch while under reset */
1410 if (!down_read_trylock(&adev->reset_domain->sem))
1411 return -EPERM;
1412
1413 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1414
1415 up_read(&adev->reset_domain->sem);
1416
1417 if (ret)
1418 return ret;
1419
1420 return count;
1421 }
1422
1423 static const char *xcp_desc[] = {
1424 [AMDGPU_SPX_PARTITION_MODE] = "SPX",
1425 [AMDGPU_DPX_PARTITION_MODE] = "DPX",
1426 [AMDGPU_TPX_PARTITION_MODE] = "TPX",
1427 [AMDGPU_QPX_PARTITION_MODE] = "QPX",
1428 [AMDGPU_CPX_PARTITION_MODE] = "CPX",
1429 };
1430
amdgpu_gfx_get_available_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1431 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1432 struct device_attribute *addr,
1433 char *buf)
1434 {
1435 struct drm_device *ddev = dev_get_drvdata(dev);
1436 struct amdgpu_device *adev = drm_to_adev(ddev);
1437 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1438 int size = 0, mode;
1439 char *sep = "";
1440
1441 if (!xcp_mgr || !xcp_mgr->avail_xcp_modes)
1442 return sysfs_emit(buf, "Not supported\n");
1443
1444 for_each_inst(mode, xcp_mgr->avail_xcp_modes) {
1445 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]);
1446 sep = ", ";
1447 }
1448
1449 size += sysfs_emit_at(buf, size, "\n");
1450
1451 return size;
1452 }
1453
amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring * ring)1454 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1455 {
1456 struct amdgpu_device *adev = ring->adev;
1457 struct drm_gpu_scheduler *sched = &ring->sched;
1458 struct drm_sched_entity entity;
1459 static atomic_t counter;
1460 struct dma_fence *f;
1461 struct amdgpu_job *job;
1462 struct amdgpu_ib *ib;
1463 void *owner;
1464 int i, r;
1465
1466 /* Initialize the scheduler entity */
1467 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1468 &sched, 1, NULL);
1469 if (r) {
1470 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1471 goto err;
1472 }
1473
1474 /*
1475 * Use some unique dummy value as the owner to make sure we execute
1476 * the cleaner shader on each submission. The value just need to change
1477 * for each submission and is otherwise meaningless.
1478 */
1479 owner = (void *)(unsigned long)atomic_inc_return(&counter);
1480
1481 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, owner,
1482 64, 0, &job,
1483 AMDGPU_KERNEL_JOB_ID_CLEANER_SHADER);
1484 if (r)
1485 goto err;
1486
1487 job->enforce_isolation = true;
1488 /* always run the cleaner shader */
1489 job->run_cleaner_shader = true;
1490
1491 ib = &job->ibs[0];
1492 for (i = 0; i <= ring->funcs->align_mask; ++i)
1493 ib->ptr[i] = ring->funcs->nop;
1494 ib->length_dw = ring->funcs->align_mask + 1;
1495
1496 f = amdgpu_job_submit(job);
1497
1498 r = dma_fence_wait(f, false);
1499 if (r)
1500 goto err;
1501
1502 dma_fence_put(f);
1503
1504 /* Clean up the scheduler entity */
1505 drm_sched_entity_destroy(&entity);
1506 return 0;
1507
1508 err:
1509 return r;
1510 }
1511
amdgpu_gfx_run_cleaner_shader(struct amdgpu_device * adev,int xcp_id)1512 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1513 {
1514 int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1515 struct amdgpu_ring *ring;
1516 int num_xcc_to_clear;
1517 int i, r, xcc_id;
1518
1519 if (adev->gfx.num_xcc_per_xcp)
1520 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1521 else
1522 num_xcc_to_clear = 1;
1523
1524 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1525 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1526 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1527 if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1528 r = amdgpu_gfx_run_cleaner_shader_job(ring);
1529 if (r)
1530 return r;
1531 num_xcc_to_clear--;
1532 break;
1533 }
1534 }
1535 }
1536
1537 if (num_xcc_to_clear)
1538 return -ENOENT;
1539
1540 return 0;
1541 }
1542
1543 /**
1544 * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader
1545 * @dev: The device structure
1546 * @attr: The device attribute structure
1547 * @buf: The buffer containing the input data
1548 * @count: The size of the input data
1549 *
1550 * Provides the sysfs interface to manually run a cleaner shader, which is
1551 * used to clear the GPU state between different tasks. Writing a value to the
1552 * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution.
1553 * The value written corresponds to the partition index on multi-partition
1554 * devices. On single-partition devices, the value should be '0'.
1555 *
1556 * The cleaner shader clears the Local Data Store (LDS) and General Purpose
1557 * Registers (GPRs) to ensure data isolation between GPU workloads.
1558 *
1559 * Return: The number of bytes written to the sysfs file.
1560 */
amdgpu_gfx_set_run_cleaner_shader(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1561 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1562 struct device_attribute *attr,
1563 const char *buf,
1564 size_t count)
1565 {
1566 struct drm_device *ddev = dev_get_drvdata(dev);
1567 struct amdgpu_device *adev = drm_to_adev(ddev);
1568 int ret;
1569 long value;
1570
1571 if (amdgpu_in_reset(adev))
1572 return -EPERM;
1573 if (adev->in_suspend && !adev->in_runpm)
1574 return -EPERM;
1575
1576 if (adev->gfx.disable_kq)
1577 return -EPERM;
1578
1579 ret = kstrtol(buf, 0, &value);
1580
1581 if (ret)
1582 return -EINVAL;
1583
1584 if (value < 0)
1585 return -EINVAL;
1586
1587 if (adev->xcp_mgr) {
1588 if (value >= adev->xcp_mgr->num_xcps)
1589 return -EINVAL;
1590 } else {
1591 if (value > 1)
1592 return -EINVAL;
1593 }
1594
1595 ret = pm_runtime_get_sync(ddev->dev);
1596 if (ret < 0) {
1597 pm_runtime_put_autosuspend(ddev->dev);
1598 return ret;
1599 }
1600
1601 ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1602
1603 pm_runtime_mark_last_busy(ddev->dev);
1604 pm_runtime_put_autosuspend(ddev->dev);
1605
1606 if (ret)
1607 return ret;
1608
1609 return count;
1610 }
1611
1612 /**
1613 * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings
1614 * @dev: The device structure
1615 * @attr: The device attribute structure
1616 * @buf: The buffer to store the output data
1617 *
1618 * Provides the sysfs read interface to get the current settings of the 'enforce_isolation'
1619 * feature for each GPU partition. Reading from the 'enforce_isolation'
1620 * sysfs file returns the isolation settings for all partitions, where '0'
1621 * indicates disabled, '1' indicates enabled, and '2' indicates enabled in legacy mode,
1622 * and '3' indicates enabled without cleaner shader.
1623 *
1624 * Return: The number of bytes read from the sysfs file.
1625 */
amdgpu_gfx_get_enforce_isolation(struct device * dev,struct device_attribute * attr,char * buf)1626 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1627 struct device_attribute *attr,
1628 char *buf)
1629 {
1630 struct drm_device *ddev = dev_get_drvdata(dev);
1631 struct amdgpu_device *adev = drm_to_adev(ddev);
1632 int i;
1633 ssize_t size = 0;
1634
1635 if (adev->xcp_mgr) {
1636 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1637 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1638 if (i < (adev->xcp_mgr->num_xcps - 1))
1639 size += sysfs_emit_at(buf, size, " ");
1640 }
1641 buf[size++] = '\n';
1642 } else {
1643 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1644 }
1645
1646 return size;
1647 }
1648
1649 /**
1650 * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation
1651 * @dev: The device structure
1652 * @attr: The device attribute structure
1653 * @buf: The buffer containing the input data
1654 * @count: The size of the input data
1655 *
1656 * This function allows control over the 'enforce_isolation' feature, which
1657 * serializes access to the graphics engine. Writing '0' to disable, '1' to
1658 * enable isolation with cleaner shader, '2' to enable legacy isolation without
1659 * cleaner shader, or '3' to enable process isolation without submitting the
1660 * cleaner shader to the 'enforce_isolation' sysfs file sets the isolation mode
1661 * for each partition. The input should specify the setting for all
1662 * partitions.
1663 *
1664 * Return: The number of bytes written to the sysfs file.
1665 */
amdgpu_gfx_set_enforce_isolation(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1666 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1667 struct device_attribute *attr,
1668 const char *buf, size_t count)
1669 {
1670 struct drm_device *ddev = dev_get_drvdata(dev);
1671 struct amdgpu_device *adev = drm_to_adev(ddev);
1672 long partition_values[MAX_XCP] = {0};
1673 int ret, i, num_partitions;
1674 const char *input_buf = buf;
1675
1676 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1677 ret = sscanf(input_buf, "%ld", &partition_values[i]);
1678 if (ret <= 0)
1679 break;
1680
1681 /* Move the pointer to the next value in the string */
1682 input_buf = strchr(input_buf, ' ');
1683 if (input_buf) {
1684 input_buf++;
1685 } else {
1686 i++;
1687 break;
1688 }
1689 }
1690 num_partitions = i;
1691
1692 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1693 return -EINVAL;
1694
1695 if (!adev->xcp_mgr && num_partitions != 1)
1696 return -EINVAL;
1697
1698 for (i = 0; i < num_partitions; i++) {
1699 if (partition_values[i] != 0 &&
1700 partition_values[i] != 1 &&
1701 partition_values[i] != 2 &&
1702 partition_values[i] != 3)
1703 return -EINVAL;
1704 }
1705
1706 mutex_lock(&adev->enforce_isolation_mutex);
1707 for (i = 0; i < num_partitions; i++) {
1708 switch (partition_values[i]) {
1709 case 0:
1710 default:
1711 adev->enforce_isolation[i] = AMDGPU_ENFORCE_ISOLATION_DISABLE;
1712 break;
1713 case 1:
1714 adev->enforce_isolation[i] =
1715 AMDGPU_ENFORCE_ISOLATION_ENABLE;
1716 break;
1717 case 2:
1718 adev->enforce_isolation[i] =
1719 AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY;
1720 break;
1721 case 3:
1722 adev->enforce_isolation[i] =
1723 AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER;
1724 break;
1725 }
1726 }
1727 mutex_unlock(&adev->enforce_isolation_mutex);
1728
1729 amdgpu_mes_update_enforce_isolation(adev);
1730
1731 return count;
1732 }
1733
amdgpu_gfx_get_gfx_reset_mask(struct device * dev,struct device_attribute * attr,char * buf)1734 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev,
1735 struct device_attribute *attr,
1736 char *buf)
1737 {
1738 struct drm_device *ddev = dev_get_drvdata(dev);
1739 struct amdgpu_device *adev = drm_to_adev(ddev);
1740
1741 if (!adev)
1742 return -ENODEV;
1743
1744 return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset);
1745 }
1746
amdgpu_gfx_get_compute_reset_mask(struct device * dev,struct device_attribute * attr,char * buf)1747 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev,
1748 struct device_attribute *attr,
1749 char *buf)
1750 {
1751 struct drm_device *ddev = dev_get_drvdata(dev);
1752 struct amdgpu_device *adev = drm_to_adev(ddev);
1753
1754 if (!adev)
1755 return -ENODEV;
1756
1757 return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset);
1758 }
1759
1760 static DEVICE_ATTR(run_cleaner_shader, 0200,
1761 NULL, amdgpu_gfx_set_run_cleaner_shader);
1762
1763 static DEVICE_ATTR(enforce_isolation, 0644,
1764 amdgpu_gfx_get_enforce_isolation,
1765 amdgpu_gfx_set_enforce_isolation);
1766
1767 static DEVICE_ATTR(current_compute_partition, 0644,
1768 amdgpu_gfx_get_current_compute_partition,
1769 amdgpu_gfx_set_compute_partition);
1770
1771 static DEVICE_ATTR(available_compute_partition, 0444,
1772 amdgpu_gfx_get_available_compute_partition, NULL);
1773 static DEVICE_ATTR(gfx_reset_mask, 0444,
1774 amdgpu_gfx_get_gfx_reset_mask, NULL);
1775
1776 static DEVICE_ATTR(compute_reset_mask, 0444,
1777 amdgpu_gfx_get_compute_reset_mask, NULL);
1778
amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device * adev)1779 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev)
1780 {
1781 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1782 bool xcp_switch_supported;
1783 int r;
1784
1785 if (!xcp_mgr)
1786 return 0;
1787
1788 xcp_switch_supported =
1789 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1790
1791 if (!xcp_switch_supported)
1792 dev_attr_current_compute_partition.attr.mode &=
1793 ~(S_IWUSR | S_IWGRP | S_IWOTH);
1794
1795 r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1796 if (r)
1797 return r;
1798
1799 if (xcp_switch_supported)
1800 r = device_create_file(adev->dev,
1801 &dev_attr_available_compute_partition);
1802
1803 return r;
1804 }
1805
amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device * adev)1806 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev)
1807 {
1808 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1809 bool xcp_switch_supported;
1810
1811 if (!xcp_mgr)
1812 return;
1813
1814 xcp_switch_supported =
1815 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1816 device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1817
1818 if (xcp_switch_supported)
1819 device_remove_file(adev->dev,
1820 &dev_attr_available_compute_partition);
1821 }
1822
amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device * adev)1823 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1824 {
1825 int r;
1826
1827 r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1828 if (r)
1829 return r;
1830 if (adev->gfx.enable_cleaner_shader)
1831 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1832
1833 return r;
1834 }
1835
amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device * adev)1836 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1837 {
1838 device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1839 if (adev->gfx.enable_cleaner_shader)
1840 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1841 }
1842
amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device * adev)1843 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev)
1844 {
1845 int r = 0;
1846
1847 if (!amdgpu_gpu_recovery)
1848 return r;
1849
1850 if (adev->gfx.num_gfx_rings) {
1851 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask);
1852 if (r)
1853 return r;
1854 }
1855
1856 if (adev->gfx.num_compute_rings) {
1857 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask);
1858 if (r)
1859 return r;
1860 }
1861
1862 return r;
1863 }
1864
amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device * adev)1865 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev)
1866 {
1867 if (!amdgpu_gpu_recovery)
1868 return;
1869
1870 if (adev->gfx.num_gfx_rings)
1871 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask);
1872
1873 if (adev->gfx.num_compute_rings)
1874 device_remove_file(adev->dev, &dev_attr_compute_reset_mask);
1875 }
1876
amdgpu_gfx_sysfs_init(struct amdgpu_device * adev)1877 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1878 {
1879 int r;
1880
1881 r = amdgpu_gfx_sysfs_xcp_init(adev);
1882 if (r) {
1883 dev_err(adev->dev, "failed to create xcp sysfs files");
1884 return r;
1885 }
1886
1887 r = amdgpu_gfx_sysfs_isolation_shader_init(adev);
1888 if (r)
1889 dev_err(adev->dev, "failed to create isolation sysfs files");
1890
1891 r = amdgpu_gfx_sysfs_reset_mask_init(adev);
1892 if (r)
1893 dev_err(adev->dev, "failed to create reset mask sysfs files");
1894
1895 return r;
1896 }
1897
amdgpu_gfx_sysfs_fini(struct amdgpu_device * adev)1898 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1899 {
1900 if (adev->dev->kobj.sd) {
1901 amdgpu_gfx_sysfs_xcp_fini(adev);
1902 amdgpu_gfx_sysfs_isolation_shader_fini(adev);
1903 amdgpu_gfx_sysfs_reset_mask_fini(adev);
1904 }
1905 }
1906
amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size)1907 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1908 unsigned int cleaner_shader_size)
1909 {
1910 if (!adev->gfx.enable_cleaner_shader)
1911 return -EOPNOTSUPP;
1912
1913 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1914 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1915 &adev->gfx.cleaner_shader_obj,
1916 &adev->gfx.cleaner_shader_gpu_addr,
1917 (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1918 }
1919
amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device * adev)1920 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1921 {
1922 if (!adev->gfx.enable_cleaner_shader)
1923 return;
1924
1925 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1926 &adev->gfx.cleaner_shader_gpu_addr,
1927 (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1928 }
1929
amdgpu_gfx_cleaner_shader_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size,const void * cleaner_shader_ptr)1930 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1931 unsigned int cleaner_shader_size,
1932 const void *cleaner_shader_ptr)
1933 {
1934 if (!adev->gfx.enable_cleaner_shader)
1935 return;
1936
1937 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1938 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1939 cleaner_shader_size);
1940 }
1941
1942 /**
1943 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1944 * @adev: amdgpu_device pointer
1945 * @idx: Index of the scheduler to control
1946 * @enable: Whether to enable or disable the KFD scheduler
1947 *
1948 * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1949 * from the KGD. It is part of the cleaner shader feature. This function plays
1950 * a key role in enforcing process isolation on the GPU.
1951 *
1952 * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1953 * track of the number of requests to enable the KFD scheduler. When a request
1954 * to enable the KFD scheduler is made, the reference count is decremented.
1955 * When the reference count reaches zero, a delayed work is scheduled to
1956 * enforce isolation after a delay of GFX_SLICE_PERIOD.
1957 *
1958 * When a request to disable the KFD scheduler is made, the function first
1959 * checks if the reference count is zero. If it is, it cancels the delayed work
1960 * for enforcing isolation and checks if the KFD scheduler is active. If the
1961 * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1962 * sets the KFD scheduler state to inactive. Then, it increments the reference
1963 * count.
1964 *
1965 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1966 * scheduler state and reference count are updated atomically.
1967 *
1968 * Note: If the reference count is already zero when a request to enable the
1969 * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1970 * function triggers a warning in this case.
1971 */
amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device * adev,u32 idx,bool enable)1972 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1973 bool enable)
1974 {
1975 mutex_lock(&adev->gfx.userq_sch_mutex);
1976
1977 if (enable) {
1978 /* If the count is already 0, it means there's an imbalance bug somewhere.
1979 * Note that the bug may be in a different caller than the one which triggers the
1980 * WARN_ON_ONCE.
1981 */
1982 if (WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx] == 0)) {
1983 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1984 goto unlock;
1985 }
1986
1987 adev->gfx.userq_sch_req_count[idx]--;
1988
1989 if (adev->gfx.userq_sch_req_count[idx] == 0 &&
1990 adev->gfx.userq_sch_inactive[idx]) {
1991 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1992 msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx]));
1993 }
1994 } else {
1995 if (adev->gfx.userq_sch_req_count[idx] == 0) {
1996 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1997 if (!adev->gfx.userq_sch_inactive[idx]) {
1998 amdgpu_userq_stop_sched_for_enforce_isolation(adev, idx);
1999 if (adev->kfd.init_complete)
2000 amdgpu_amdkfd_stop_sched(adev, idx);
2001 adev->gfx.userq_sch_inactive[idx] = true;
2002 }
2003 }
2004
2005 adev->gfx.userq_sch_req_count[idx]++;
2006 }
2007
2008 unlock:
2009 mutex_unlock(&adev->gfx.userq_sch_mutex);
2010 }
2011
2012 /**
2013 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
2014 *
2015 * @work: work_struct.
2016 *
2017 * This function is the work handler for enforcing shader isolation on AMD GPUs.
2018 * It counts the number of emitted fences for each GFX and compute ring. If there
2019 * are any fences, it schedules the `enforce_isolation_work` to be run after a
2020 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
2021 * Driver (KFD) to resume the runqueue. The function is synchronized using the
2022 * `enforce_isolation_mutex`.
2023 */
amdgpu_gfx_enforce_isolation_handler(struct work_struct * work)2024 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
2025 {
2026 struct amdgpu_isolation_work *isolation_work =
2027 container_of(work, struct amdgpu_isolation_work, work.work);
2028 struct amdgpu_device *adev = isolation_work->adev;
2029 u32 i, idx, fences = 0;
2030
2031 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
2032 idx = 0;
2033 else
2034 idx = isolation_work->xcp_id;
2035
2036 if (idx >= MAX_XCP)
2037 return;
2038
2039 mutex_lock(&adev->enforce_isolation_mutex);
2040 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
2041 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
2042 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
2043 }
2044 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
2045 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
2046 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
2047 }
2048 if (fences) {
2049 /* we've already had our timeslice, so let's wrap this up */
2050 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
2051 msecs_to_jiffies(1));
2052 } else {
2053 /* Tell KFD to resume the runqueue */
2054 WARN_ON_ONCE(!adev->gfx.userq_sch_inactive[idx]);
2055 WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx]);
2056
2057 amdgpu_userq_start_sched_for_enforce_isolation(adev, idx);
2058 if (adev->kfd.init_complete)
2059 amdgpu_amdkfd_start_sched(adev, idx);
2060 adev->gfx.userq_sch_inactive[idx] = false;
2061 }
2062 mutex_unlock(&adev->enforce_isolation_mutex);
2063 }
2064
2065 /**
2066 * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation
2067 * @adev: amdgpu_device pointer
2068 * @idx: Index of the GPU partition
2069 *
2070 * When kernel submissions come in, the jobs are given a time slice and once
2071 * that time slice is up, if there are KFD user queues active, kernel
2072 * submissions are blocked until KFD has had its time slice. Once the KFD time
2073 * slice is up, KFD user queues are preempted and kernel submissions are
2074 * unblocked and allowed to run again.
2075 */
2076 static void
amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device * adev,u32 idx)2077 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev,
2078 u32 idx)
2079 {
2080 unsigned long cjiffies;
2081 bool wait = false;
2082
2083 mutex_lock(&adev->enforce_isolation_mutex);
2084 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) {
2085 /* set the initial values if nothing is set */
2086 if (!adev->gfx.enforce_isolation_jiffies[idx]) {
2087 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2088 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2089 }
2090 /* Make sure KFD gets a chance to run */
2091 if (amdgpu_amdkfd_compute_active(adev, idx)) {
2092 cjiffies = jiffies;
2093 if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) {
2094 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx];
2095 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) {
2096 /* if our time is up, let KGD work drain before scheduling more */
2097 wait = true;
2098 /* reset the timer period */
2099 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2100 } else {
2101 /* set the timer period to what's left in our time slice */
2102 adev->gfx.enforce_isolation_time[idx] =
2103 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies);
2104 }
2105 } else {
2106 /* if jiffies wrap around we will just wait a little longer */
2107 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2108 }
2109 } else {
2110 /* if there is no KFD work, then set the full slice period */
2111 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2112 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2113 }
2114 }
2115 mutex_unlock(&adev->enforce_isolation_mutex);
2116
2117 if (wait)
2118 msleep(GFX_SLICE_PERIOD_MS);
2119 }
2120
2121 /**
2122 * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation
2123 * @ring: Pointer to the amdgpu_ring structure
2124 *
2125 * Ring begin_use helper implementation for gfx which serializes access to the
2126 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2127 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2128 * each get a time slice when both are active.
2129 */
amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring * ring)2130 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
2131 {
2132 struct amdgpu_device *adev = ring->adev;
2133 u32 idx;
2134 bool sched_work = false;
2135
2136 if (!adev->gfx.enable_cleaner_shader)
2137 return;
2138
2139 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2140 idx = 0;
2141 else
2142 idx = ring->xcp_id;
2143
2144 if (idx >= MAX_XCP)
2145 return;
2146
2147 /* Don't submit more work until KFD has had some time */
2148 amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx);
2149
2150 mutex_lock(&adev->enforce_isolation_mutex);
2151 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) {
2152 if (adev->kfd.init_complete)
2153 sched_work = true;
2154 }
2155 mutex_unlock(&adev->enforce_isolation_mutex);
2156
2157 if (sched_work)
2158 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
2159 }
2160
2161 /**
2162 * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation
2163 * @ring: Pointer to the amdgpu_ring structure
2164 *
2165 * Ring end_use helper implementation for gfx which serializes access to the
2166 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2167 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2168 * each get a time slice when both are active.
2169 */
amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring * ring)2170 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
2171 {
2172 struct amdgpu_device *adev = ring->adev;
2173 u32 idx;
2174 bool sched_work = false;
2175
2176 if (!adev->gfx.enable_cleaner_shader)
2177 return;
2178
2179 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2180 idx = 0;
2181 else
2182 idx = ring->xcp_id;
2183
2184 if (idx >= MAX_XCP)
2185 return;
2186
2187 mutex_lock(&adev->enforce_isolation_mutex);
2188 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) {
2189 if (adev->kfd.init_complete)
2190 sched_work = true;
2191 }
2192 mutex_unlock(&adev->enforce_isolation_mutex);
2193
2194 if (sched_work)
2195 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
2196 }
2197
amdgpu_gfx_profile_idle_work_handler(struct work_struct * work)2198 void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work)
2199 {
2200 struct amdgpu_device *adev =
2201 container_of(work, struct amdgpu_device, gfx.idle_work.work);
2202 enum PP_SMC_POWER_PROFILE profile;
2203 u32 i, fences = 0;
2204 int r;
2205
2206 if (adev->gfx.num_gfx_rings)
2207 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
2208 else
2209 profile = PP_SMC_POWER_PROFILE_COMPUTE;
2210
2211 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i)
2212 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
2213 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i)
2214 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
2215 if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) {
2216 mutex_lock(&adev->gfx.workload_profile_mutex);
2217 if (adev->gfx.workload_profile_active) {
2218 r = amdgpu_dpm_switch_power_profile(adev, profile, false);
2219 if (r)
2220 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r,
2221 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ?
2222 "fullscreen 3D" : "compute");
2223 adev->gfx.workload_profile_active = false;
2224 }
2225 mutex_unlock(&adev->gfx.workload_profile_mutex);
2226 } else {
2227 schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT);
2228 }
2229 }
2230
amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring * ring)2231 void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring)
2232 {
2233 struct amdgpu_device *adev = ring->adev;
2234 enum PP_SMC_POWER_PROFILE profile;
2235 int r;
2236
2237 if (amdgpu_dpm_is_overdrive_enabled(adev))
2238 return;
2239
2240 if (adev->gfx.num_gfx_rings)
2241 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
2242 else
2243 profile = PP_SMC_POWER_PROFILE_COMPUTE;
2244
2245 atomic_inc(&adev->gfx.total_submission_cnt);
2246
2247 cancel_delayed_work_sync(&adev->gfx.idle_work);
2248
2249 /* We can safely return early here because we've cancelled the
2250 * the delayed work so there is no one else to set it to false
2251 * and we don't care if someone else sets it to true.
2252 */
2253 if (adev->gfx.workload_profile_active)
2254 return;
2255
2256 mutex_lock(&adev->gfx.workload_profile_mutex);
2257 if (!adev->gfx.workload_profile_active) {
2258 r = amdgpu_dpm_switch_power_profile(adev, profile, true);
2259 if (r)
2260 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r,
2261 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ?
2262 "fullscreen 3D" : "compute");
2263 adev->gfx.workload_profile_active = true;
2264 }
2265 mutex_unlock(&adev->gfx.workload_profile_mutex);
2266 }
2267
amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring * ring)2268 void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring)
2269 {
2270 struct amdgpu_device *adev = ring->adev;
2271
2272 if (amdgpu_dpm_is_overdrive_enabled(adev))
2273 return;
2274
2275 atomic_dec(&ring->adev->gfx.total_submission_cnt);
2276
2277 schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT);
2278 }
2279
2280 /**
2281 * amdgpu_gfx_csb_preamble_start - Set CSB preamble start
2282 *
2283 * @buffer: This is an output variable that gets the PACKET3 preamble setup.
2284 *
2285 * Return:
2286 * return the latest index.
2287 */
amdgpu_gfx_csb_preamble_start(u32 * buffer)2288 u32 amdgpu_gfx_csb_preamble_start(u32 *buffer)
2289 {
2290 u32 count = 0;
2291
2292 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
2293 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
2294
2295 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
2296 buffer[count++] = cpu_to_le32(0x80000000);
2297 buffer[count++] = cpu_to_le32(0x80000000);
2298
2299 return count;
2300 }
2301
2302 /**
2303 * amdgpu_gfx_csb_data_parser - Parser CS data
2304 *
2305 * @adev: amdgpu_device pointer used to get the CS data and other gfx info.
2306 * @buffer: This is an output variable that gets the PACKET3 preamble end.
2307 * @count: Index to start set the preemble end.
2308 *
2309 * Return:
2310 * return the latest index.
2311 */
amdgpu_gfx_csb_data_parser(struct amdgpu_device * adev,u32 * buffer,u32 count)2312 u32 amdgpu_gfx_csb_data_parser(struct amdgpu_device *adev, u32 *buffer, u32 count)
2313 {
2314 const struct cs_section_def *sect = NULL;
2315 const struct cs_extent_def *ext = NULL;
2316 u32 i;
2317
2318 for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
2319 for (ext = sect->section; ext->extent != NULL; ++ext) {
2320 if (sect->id == SECT_CONTEXT) {
2321 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
2322 buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START);
2323
2324 for (i = 0; i < ext->reg_count; i++)
2325 buffer[count++] = cpu_to_le32(ext->extent[i]);
2326 }
2327 }
2328 }
2329
2330 return count;
2331 }
2332
2333 /**
2334 * amdgpu_gfx_csb_preamble_end - Set CSB preamble end
2335 *
2336 * @buffer: This is an output variable that gets the PACKET3 preamble end.
2337 * @count: Index to start set the preemble end.
2338 */
amdgpu_gfx_csb_preamble_end(u32 * buffer,u32 count)2339 void amdgpu_gfx_csb_preamble_end(u32 *buffer, u32 count)
2340 {
2341 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
2342 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
2343
2344 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
2345 buffer[count++] = cpu_to_le32(0);
2346 }
2347
2348 /*
2349 * debugfs for to enable/disable gfx job submission to specific core.
2350 */
2351 #if defined(CONFIG_DEBUG_FS)
amdgpu_debugfs_gfx_sched_mask_set(void * data,u64 val)2352 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val)
2353 {
2354 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2355 u32 i;
2356 u64 mask = 0;
2357 struct amdgpu_ring *ring;
2358
2359 if (!adev)
2360 return -ENODEV;
2361
2362 mask = (1ULL << adev->gfx.num_gfx_rings) - 1;
2363 if ((val & mask) == 0)
2364 return -EINVAL;
2365
2366 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2367 ring = &adev->gfx.gfx_ring[i];
2368 if (val & (1 << i))
2369 ring->sched.ready = true;
2370 else
2371 ring->sched.ready = false;
2372 }
2373 /* publish sched.ready flag update effective immediately across smp */
2374 smp_rmb();
2375 return 0;
2376 }
2377
amdgpu_debugfs_gfx_sched_mask_get(void * data,u64 * val)2378 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val)
2379 {
2380 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2381 u32 i;
2382 u64 mask = 0;
2383 struct amdgpu_ring *ring;
2384
2385 if (!adev)
2386 return -ENODEV;
2387 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2388 ring = &adev->gfx.gfx_ring[i];
2389 if (ring->sched.ready)
2390 mask |= 1ULL << i;
2391 }
2392
2393 *val = mask;
2394 return 0;
2395 }
2396
2397 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops,
2398 amdgpu_debugfs_gfx_sched_mask_get,
2399 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n");
2400
2401 #endif
2402
amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device * adev)2403 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev)
2404 {
2405 #if defined(CONFIG_DEBUG_FS)
2406 struct drm_minor *minor = adev_to_drm(adev)->primary;
2407 struct dentry *root = minor->debugfs_root;
2408 char name[32];
2409
2410 if (!(adev->gfx.num_gfx_rings > 1))
2411 return;
2412 sprintf(name, "amdgpu_gfx_sched_mask");
2413 debugfs_create_file(name, 0600, root, adev,
2414 &amdgpu_debugfs_gfx_sched_mask_fops);
2415 #endif
2416 }
2417
2418 /*
2419 * debugfs for to enable/disable compute job submission to specific core.
2420 */
2421 #if defined(CONFIG_DEBUG_FS)
amdgpu_debugfs_compute_sched_mask_set(void * data,u64 val)2422 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val)
2423 {
2424 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2425 u32 i;
2426 u64 mask = 0;
2427 struct amdgpu_ring *ring;
2428
2429 if (!adev)
2430 return -ENODEV;
2431
2432 mask = (1ULL << adev->gfx.num_compute_rings) - 1;
2433 if ((val & mask) == 0)
2434 return -EINVAL;
2435
2436 for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2437 ring = &adev->gfx.compute_ring[i];
2438 if (val & (1 << i))
2439 ring->sched.ready = true;
2440 else
2441 ring->sched.ready = false;
2442 }
2443
2444 /* publish sched.ready flag update effective immediately across smp */
2445 smp_rmb();
2446 return 0;
2447 }
2448
amdgpu_debugfs_compute_sched_mask_get(void * data,u64 * val)2449 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val)
2450 {
2451 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2452 u32 i;
2453 u64 mask = 0;
2454 struct amdgpu_ring *ring;
2455
2456 if (!adev)
2457 return -ENODEV;
2458 for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2459 ring = &adev->gfx.compute_ring[i];
2460 if (ring->sched.ready)
2461 mask |= 1ULL << i;
2462 }
2463
2464 *val = mask;
2465 return 0;
2466 }
2467
2468 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops,
2469 amdgpu_debugfs_compute_sched_mask_get,
2470 amdgpu_debugfs_compute_sched_mask_set, "%llx\n");
2471
2472 #endif
2473
amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device * adev)2474 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev)
2475 {
2476 #if defined(CONFIG_DEBUG_FS)
2477 struct drm_minor *minor = adev_to_drm(adev)->primary;
2478 struct dentry *root = minor->debugfs_root;
2479 char name[32];
2480
2481 if (!(adev->gfx.num_compute_rings > 1))
2482 return;
2483 sprintf(name, "amdgpu_compute_sched_mask");
2484 debugfs_create_file(name, 0600, root, adev,
2485 &amdgpu_debugfs_compute_sched_mask_fops);
2486 #endif
2487 }
2488