1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/perf_event.h>
7 #include <linux/mutex.h>
8 #include <linux/list.h>
9 #include <linux/stringify.h>
10 #include <linux/highmem.h>
11 #include <linux/mm.h>
12 #include <linux/vmalloc.h>
13 #include <linux/memory.h>
14 #include <linux/stop_machine.h>
15 #include <linux/slab.h>
16 #include <linux/kdebug.h>
17 #include <linux/kprobes.h>
18 #include <linux/mmu_context.h>
19 #include <linux/bsearch.h>
20 #include <linux/sync_core.h>
21 #include <asm/text-patching.h>
22 #include <asm/alternative.h>
23 #include <asm/sections.h>
24 #include <asm/mce.h>
25 #include <asm/nmi.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/insn.h>
29 #include <asm/io.h>
30 #include <asm/fixmap.h>
31 #include <asm/paravirt.h>
32 #include <asm/asm-prototypes.h>
33 #include <asm/cfi.h>
34
35 int __read_mostly alternatives_patched;
36
37 EXPORT_SYMBOL_GPL(alternatives_patched);
38
39 #define MAX_PATCH_LEN (255-1)
40
41 #define DA_ALL (~0)
42 #define DA_ALT 0x01
43 #define DA_RET 0x02
44 #define DA_RETPOLINE 0x04
45 #define DA_ENDBR 0x08
46 #define DA_SMP 0x10
47
48 static unsigned int debug_alternative;
49
debug_alt(char * str)50 static int __init debug_alt(char *str)
51 {
52 if (str && *str == '=')
53 str++;
54
55 if (!str || kstrtouint(str, 0, &debug_alternative))
56 debug_alternative = DA_ALL;
57
58 return 1;
59 }
60 __setup("debug-alternative", debug_alt);
61
62 static int noreplace_smp;
63
setup_noreplace_smp(char * str)64 static int __init setup_noreplace_smp(char *str)
65 {
66 noreplace_smp = 1;
67 return 1;
68 }
69 __setup("noreplace-smp", setup_noreplace_smp);
70
71 #define DPRINTK(type, fmt, args...) \
72 do { \
73 if (debug_alternative & DA_##type) \
74 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
75 } while (0)
76
77 #define DUMP_BYTES(type, buf, len, fmt, args...) \
78 do { \
79 if (unlikely(debug_alternative & DA_##type)) { \
80 int j; \
81 \
82 if (!(len)) \
83 break; \
84 \
85 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
86 for (j = 0; j < (len) - 1; j++) \
87 printk(KERN_CONT "%02hhx ", buf[j]); \
88 printk(KERN_CONT "%02hhx\n", buf[j]); \
89 } \
90 } while (0)
91
92 static const unsigned char x86nops[] =
93 {
94 BYTES_NOP1,
95 BYTES_NOP2,
96 BYTES_NOP3,
97 BYTES_NOP4,
98 BYTES_NOP5,
99 BYTES_NOP6,
100 BYTES_NOP7,
101 BYTES_NOP8,
102 #ifdef CONFIG_64BIT
103 BYTES_NOP9,
104 BYTES_NOP10,
105 BYTES_NOP11,
106 #endif
107 };
108
109 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
110 {
111 NULL,
112 x86nops,
113 x86nops + 1,
114 x86nops + 1 + 2,
115 x86nops + 1 + 2 + 3,
116 x86nops + 1 + 2 + 3 + 4,
117 x86nops + 1 + 2 + 3 + 4 + 5,
118 x86nops + 1 + 2 + 3 + 4 + 5 + 6,
119 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
120 #ifdef CONFIG_64BIT
121 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
122 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
123 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
124 #endif
125 };
126
127 /*
128 * Nomenclature for variable names to simplify and clarify this code and ease
129 * any potential staring at it:
130 *
131 * @instr: source address of the original instructions in the kernel text as
132 * generated by the compiler.
133 *
134 * @buf: temporary buffer on which the patching operates. This buffer is
135 * eventually text-poked into the kernel image.
136 *
137 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
138 * in the .altinstr_replacement section.
139 */
140
141 /*
142 * Fill the buffer with a single effective instruction of size @len.
143 *
144 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
145 * for every single-byte NOP, try to generate the maximally available NOP of
146 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
147 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
148 * *jump* over instead of executing long and daft NOPs.
149 */
add_nop(u8 * buf,unsigned int len)150 static void add_nop(u8 *buf, unsigned int len)
151 {
152 u8 *target = buf + len;
153
154 if (!len)
155 return;
156
157 if (len <= ASM_NOP_MAX) {
158 memcpy(buf, x86_nops[len], len);
159 return;
160 }
161
162 if (len < 128) {
163 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
164 buf += JMP8_INSN_SIZE;
165 } else {
166 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
167 buf += JMP32_INSN_SIZE;
168 }
169
170 for (;buf < target; buf++)
171 *buf = INT3_INSN_OPCODE;
172 }
173
174 extern s32 __retpoline_sites[], __retpoline_sites_end[];
175 extern s32 __return_sites[], __return_sites_end[];
176 extern s32 __cfi_sites[], __cfi_sites_end[];
177 extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
178 extern s32 __smp_locks[], __smp_locks_end[];
179 void text_poke_early(void *addr, const void *opcode, size_t len);
180
181 /*
182 * Matches NOP and NOPL, not any of the other possible NOPs.
183 */
insn_is_nop(struct insn * insn)184 static bool insn_is_nop(struct insn *insn)
185 {
186 /* Anything NOP, but no REP NOP */
187 if (insn->opcode.bytes[0] == 0x90 &&
188 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
189 return true;
190
191 /* NOPL */
192 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
193 return true;
194
195 /* TODO: more nops */
196
197 return false;
198 }
199
200 /*
201 * Find the offset of the first non-NOP instruction starting at @offset
202 * but no further than @len.
203 */
skip_nops(u8 * buf,int offset,int len)204 static int skip_nops(u8 *buf, int offset, int len)
205 {
206 struct insn insn;
207
208 for (; offset < len; offset += insn.length) {
209 if (insn_decode_kernel(&insn, &buf[offset]))
210 break;
211
212 if (!insn_is_nop(&insn))
213 break;
214 }
215
216 return offset;
217 }
218
219 /*
220 * "noinline" to cause control flow change and thus invalidate I$ and
221 * cause refetch after modification.
222 */
optimize_nops(const u8 * const instr,u8 * buf,size_t len)223 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
224 {
225 for (int next, i = 0; i < len; i = next) {
226 struct insn insn;
227
228 if (insn_decode_kernel(&insn, &buf[i]))
229 return;
230
231 next = i + insn.length;
232
233 if (insn_is_nop(&insn)) {
234 int nop = i;
235
236 /* Has the NOP already been optimized? */
237 if (i + insn.length == len)
238 return;
239
240 next = skip_nops(buf, next, len);
241
242 add_nop(buf + nop, next - nop);
243 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
244 }
245 }
246 }
247
248 /*
249 * In this context, "source" is where the instructions are placed in the
250 * section .altinstr_replacement, for example during kernel build by the
251 * toolchain.
252 * "Destination" is where the instructions are being patched in by this
253 * machinery.
254 *
255 * The source offset is:
256 *
257 * src_imm = target - src_next_ip (1)
258 *
259 * and the target offset is:
260 *
261 * dst_imm = target - dst_next_ip (2)
262 *
263 * so rework (1) as an expression for target like:
264 *
265 * target = src_imm + src_next_ip (1a)
266 *
267 * and substitute in (2) to get:
268 *
269 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
270 *
271 * Now, since the instruction stream is 'identical' at src and dst (it
272 * is being copied after all) it can be stated that:
273 *
274 * src_next_ip = src + ip_offset
275 * dst_next_ip = dst + ip_offset (4)
276 *
277 * Substitute (4) in (3) and observe ip_offset being cancelled out to
278 * obtain:
279 *
280 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
281 * = src_imm + src - dst + ip_offset - ip_offset
282 * = src_imm + src - dst (5)
283 *
284 * IOW, only the relative displacement of the code block matters.
285 */
286
287 #define apply_reloc_n(n_, p_, d_) \
288 do { \
289 s32 v = *(s##n_ *)(p_); \
290 v += (d_); \
291 BUG_ON((v >> 31) != (v >> (n_-1))); \
292 *(s##n_ *)(p_) = (s##n_)v; \
293 } while (0)
294
295
296 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)297 void apply_reloc(int n, void *ptr, uintptr_t diff)
298 {
299 switch (n) {
300 case 1: apply_reloc_n(8, ptr, diff); break;
301 case 2: apply_reloc_n(16, ptr, diff); break;
302 case 4: apply_reloc_n(32, ptr, diff); break;
303 default: BUG();
304 }
305 }
306
307 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)308 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
309 {
310 u8 *target = src + offset;
311 /*
312 * If the target is inside the patched block, it's relative to the
313 * block itself and does not need relocation.
314 */
315 return (target < src || target > src + src_len);
316 }
317
__apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)318 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
319 {
320 for (int next, i = 0; i < instrlen; i = next) {
321 struct insn insn;
322
323 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
324 return;
325
326 next = i + insn.length;
327
328 switch (insn.opcode.bytes[0]) {
329 case 0x0f:
330 if (insn.opcode.bytes[1] < 0x80 ||
331 insn.opcode.bytes[1] > 0x8f)
332 break;
333
334 fallthrough; /* Jcc.d32 */
335 case 0x70 ... 0x7f: /* Jcc.d8 */
336 case JMP8_INSN_OPCODE:
337 case JMP32_INSN_OPCODE:
338 case CALL_INSN_OPCODE:
339 if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
340 apply_reloc(insn.immediate.nbytes,
341 buf + i + insn_offset_immediate(&insn),
342 repl - instr);
343 }
344
345 /*
346 * Where possible, convert JMP.d32 into JMP.d8.
347 */
348 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
349 s32 imm = insn.immediate.value;
350 imm += repl - instr;
351 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
352 if ((imm >> 31) == (imm >> 7)) {
353 buf[i+0] = JMP8_INSN_OPCODE;
354 buf[i+1] = (s8)imm;
355
356 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
357 }
358 }
359 break;
360 }
361
362 if (insn_rip_relative(&insn)) {
363 if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
364 apply_reloc(insn.displacement.nbytes,
365 buf + i + insn_offset_displacement(&insn),
366 repl - instr);
367 }
368 }
369 }
370 }
371
apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)372 void apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
373 {
374 __apply_relocation(buf, instr, instrlen, repl, repl_len);
375 optimize_nops(instr, buf, instrlen);
376 }
377
378 /* Low-level backend functions usable from alternative code replacements. */
379 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
380 EXPORT_SYMBOL_GPL(nop_func);
381
BUG_func(void)382 noinstr void BUG_func(void)
383 {
384 BUG();
385 }
386 EXPORT_SYMBOL(BUG_func);
387
388 #define CALL_RIP_REL_OPCODE 0xff
389 #define CALL_RIP_REL_MODRM 0x15
390
391 /*
392 * Rewrite the "call BUG_func" replacement to point to the target of the
393 * indirect pv_ops call "call *disp(%ip)".
394 */
alt_replace_call(u8 * instr,u8 * insn_buff,struct alt_instr * a)395 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
396 {
397 void *target, *bug = &BUG_func;
398 s32 disp;
399
400 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
401 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
402 BUG();
403 }
404
405 if (a->instrlen != 6 ||
406 instr[0] != CALL_RIP_REL_OPCODE ||
407 instr[1] != CALL_RIP_REL_MODRM) {
408 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
409 BUG();
410 }
411
412 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
413 disp = *(s32 *)(instr + 2);
414 #ifdef CONFIG_X86_64
415 /* ff 15 00 00 00 00 call *0x0(%rip) */
416 /* target address is stored at "next instruction + disp". */
417 target = *(void **)(instr + a->instrlen + disp);
418 #else
419 /* ff 15 00 00 00 00 call *0x0 */
420 /* target address is stored at disp. */
421 target = *(void **)disp;
422 #endif
423 if (!target)
424 target = bug;
425
426 /* (BUG_func - .) + (target - BUG_func) := target - . */
427 *(s32 *)(insn_buff + 1) += target - bug;
428
429 if (target == &nop_func)
430 return 0;
431
432 return 5;
433 }
434
instr_va(struct alt_instr * i)435 static inline u8 * instr_va(struct alt_instr *i)
436 {
437 return (u8 *)&i->instr_offset + i->instr_offset;
438 }
439
440 /*
441 * Replace instructions with better alternatives for this CPU type. This runs
442 * before SMP is initialized to avoid SMP problems with self modifying code.
443 * This implies that asymmetric systems where APs have less capabilities than
444 * the boot processor are not handled. Tough. Make sure you disable such
445 * features by hand.
446 *
447 * Marked "noinline" to cause control flow change and thus insn cache
448 * to refetch changed I$ lines.
449 */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)450 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
451 struct alt_instr *end)
452 {
453 u8 insn_buff[MAX_PATCH_LEN];
454 u8 *instr, *replacement;
455 struct alt_instr *a, *b;
456
457 DPRINTK(ALT, "alt table %px, -> %px", start, end);
458
459 /*
460 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
461 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
462 * During the process, KASAN becomes confused seeing partial LA57
463 * conversion and triggers a false-positive out-of-bound report.
464 *
465 * Disable KASAN until the patching is complete.
466 */
467 kasan_disable_current();
468
469 /*
470 * The scan order should be from start to end. A later scanned
471 * alternative code can overwrite previously scanned alternative code.
472 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
473 * patch code.
474 *
475 * So be careful if you want to change the scan order to any other
476 * order.
477 */
478 for (a = start; a < end; a++) {
479 int insn_buff_sz = 0;
480
481 /*
482 * In case of nested ALTERNATIVE()s the outer alternative might
483 * add more padding. To ensure consistent patching find the max
484 * padding for all alt_instr entries for this site (nested
485 * alternatives result in consecutive entries).
486 */
487 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
488 u8 len = max(a->instrlen, b->instrlen);
489 a->instrlen = b->instrlen = len;
490 }
491
492 instr = instr_va(a);
493 replacement = (u8 *)&a->repl_offset + a->repl_offset;
494 BUG_ON(a->instrlen > sizeof(insn_buff));
495 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
496
497 /*
498 * Patch if either:
499 * - feature is present
500 * - feature not present but ALT_FLAG_NOT is set to mean,
501 * patch if feature is *NOT* present.
502 */
503 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
504 memcpy(insn_buff, instr, a->instrlen);
505 optimize_nops(instr, insn_buff, a->instrlen);
506 text_poke_early(instr, insn_buff, a->instrlen);
507 continue;
508 }
509
510 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
511 a->cpuid >> 5,
512 a->cpuid & 0x1f,
513 instr, instr, a->instrlen,
514 replacement, a->replacementlen, a->flags);
515
516 memcpy(insn_buff, replacement, a->replacementlen);
517 insn_buff_sz = a->replacementlen;
518
519 if (a->flags & ALT_FLAG_DIRECT_CALL) {
520 insn_buff_sz = alt_replace_call(instr, insn_buff, a);
521 if (insn_buff_sz < 0)
522 continue;
523 }
524
525 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
526 insn_buff[insn_buff_sz] = 0x90;
527
528 apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
529
530 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
531 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
532 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
533
534 text_poke_early(instr, insn_buff, insn_buff_sz);
535 }
536
537 kasan_enable_current();
538 }
539
is_jcc32(struct insn * insn)540 static inline bool is_jcc32(struct insn *insn)
541 {
542 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
543 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
544 }
545
546 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
547
548 /*
549 * CALL/JMP *%\reg
550 */
emit_indirect(int op,int reg,u8 * bytes)551 static int emit_indirect(int op, int reg, u8 *bytes)
552 {
553 int i = 0;
554 u8 modrm;
555
556 switch (op) {
557 case CALL_INSN_OPCODE:
558 modrm = 0x10; /* Reg = 2; CALL r/m */
559 break;
560
561 case JMP32_INSN_OPCODE:
562 modrm = 0x20; /* Reg = 4; JMP r/m */
563 break;
564
565 default:
566 WARN_ON_ONCE(1);
567 return -1;
568 }
569
570 if (reg >= 8) {
571 bytes[i++] = 0x41; /* REX.B prefix */
572 reg -= 8;
573 }
574
575 modrm |= 0xc0; /* Mod = 3 */
576 modrm += reg;
577
578 bytes[i++] = 0xff; /* opcode */
579 bytes[i++] = modrm;
580
581 return i;
582 }
583
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)584 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
585 {
586 u8 op = insn->opcode.bytes[0];
587 int i = 0;
588
589 /*
590 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
591 * tail-calls. Deal with them.
592 */
593 if (is_jcc32(insn)) {
594 bytes[i++] = op;
595 op = insn->opcode.bytes[1];
596 goto clang_jcc;
597 }
598
599 if (insn->length == 6)
600 bytes[i++] = 0x2e; /* CS-prefix */
601
602 switch (op) {
603 case CALL_INSN_OPCODE:
604 __text_gen_insn(bytes+i, op, addr+i,
605 __x86_indirect_call_thunk_array[reg],
606 CALL_INSN_SIZE);
607 i += CALL_INSN_SIZE;
608 break;
609
610 case JMP32_INSN_OPCODE:
611 clang_jcc:
612 __text_gen_insn(bytes+i, op, addr+i,
613 __x86_indirect_jump_thunk_array[reg],
614 JMP32_INSN_SIZE);
615 i += JMP32_INSN_SIZE;
616 break;
617
618 default:
619 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
620 return -1;
621 }
622
623 WARN_ON_ONCE(i != insn->length);
624
625 return i;
626 }
627
628 /*
629 * Rewrite the compiler generated retpoline thunk calls.
630 *
631 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
632 * indirect instructions, avoiding the extra indirection.
633 *
634 * For example, convert:
635 *
636 * CALL __x86_indirect_thunk_\reg
637 *
638 * into:
639 *
640 * CALL *%\reg
641 *
642 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
643 */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)644 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
645 {
646 retpoline_thunk_t *target;
647 int reg, ret, i = 0;
648 u8 op, cc;
649
650 target = addr + insn->length + insn->immediate.value;
651 reg = target - __x86_indirect_thunk_array;
652
653 if (WARN_ON_ONCE(reg & ~0xf))
654 return -1;
655
656 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
657 BUG_ON(reg == 4);
658
659 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
660 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
661 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
662 return emit_call_track_retpoline(addr, insn, reg, bytes);
663
664 return -1;
665 }
666
667 op = insn->opcode.bytes[0];
668
669 /*
670 * Convert:
671 *
672 * Jcc.d32 __x86_indirect_thunk_\reg
673 *
674 * into:
675 *
676 * Jncc.d8 1f
677 * [ LFENCE ]
678 * JMP *%\reg
679 * [ NOP ]
680 * 1:
681 */
682 if (is_jcc32(insn)) {
683 cc = insn->opcode.bytes[1] & 0xf;
684 cc ^= 1; /* invert condition */
685
686 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
687 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
688
689 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
690 op = JMP32_INSN_OPCODE;
691 }
692
693 /*
694 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
695 */
696 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
697 bytes[i++] = 0x0f;
698 bytes[i++] = 0xae;
699 bytes[i++] = 0xe8; /* LFENCE */
700 }
701
702 ret = emit_indirect(op, reg, bytes + i);
703 if (ret < 0)
704 return ret;
705 i += ret;
706
707 /*
708 * The compiler is supposed to EMIT an INT3 after every unconditional
709 * JMP instruction due to AMD BTC. However, if the compiler is too old
710 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
711 * indirect JMPs even on Intel.
712 */
713 if (op == JMP32_INSN_OPCODE && i < insn->length)
714 bytes[i++] = INT3_INSN_OPCODE;
715
716 for (; i < insn->length;)
717 bytes[i++] = BYTES_NOP1;
718
719 return i;
720 }
721
722 /*
723 * Generated by 'objtool --retpoline'.
724 */
apply_retpolines(s32 * start,s32 * end)725 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
726 {
727 s32 *s;
728
729 for (s = start; s < end; s++) {
730 void *addr = (void *)s + *s;
731 struct insn insn;
732 int len, ret;
733 u8 bytes[16];
734 u8 op1, op2;
735
736 ret = insn_decode_kernel(&insn, addr);
737 if (WARN_ON_ONCE(ret < 0))
738 continue;
739
740 op1 = insn.opcode.bytes[0];
741 op2 = insn.opcode.bytes[1];
742
743 switch (op1) {
744 case 0x70 ... 0x7f: /* Jcc.d8 */
745 /* See cfi_paranoid. */
746 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
747 continue;
748
749 case CALL_INSN_OPCODE:
750 case JMP32_INSN_OPCODE:
751 break;
752
753 case 0x0f: /* escape */
754 if (op2 >= 0x80 && op2 <= 0x8f)
755 break;
756 fallthrough;
757 default:
758 WARN_ON_ONCE(1);
759 continue;
760 }
761
762 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
763 addr, addr, insn.length,
764 addr + insn.length + insn.immediate.value);
765
766 len = patch_retpoline(addr, &insn, bytes);
767 if (len == insn.length) {
768 optimize_nops(addr, bytes, len);
769 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
770 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
771 text_poke_early(addr, bytes, len);
772 }
773 }
774 }
775
776 #ifdef CONFIG_MITIGATION_RETHUNK
777
778 /*
779 * Rewrite the compiler generated return thunk tail-calls.
780 *
781 * For example, convert:
782 *
783 * JMP __x86_return_thunk
784 *
785 * into:
786 *
787 * RET
788 */
patch_return(void * addr,struct insn * insn,u8 * bytes)789 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
790 {
791 int i = 0;
792
793 /* Patch the custom return thunks... */
794 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
795 i = JMP32_INSN_SIZE;
796 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
797 } else {
798 /* ... or patch them out if not needed. */
799 bytes[i++] = RET_INSN_OPCODE;
800 }
801
802 for (; i < insn->length;)
803 bytes[i++] = INT3_INSN_OPCODE;
804 return i;
805 }
806
apply_returns(s32 * start,s32 * end)807 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
808 {
809 s32 *s;
810
811 if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
812 static_call_force_reinit();
813
814 for (s = start; s < end; s++) {
815 void *dest = NULL, *addr = (void *)s + *s;
816 struct insn insn;
817 int len, ret;
818 u8 bytes[16];
819 u8 op;
820
821 ret = insn_decode_kernel(&insn, addr);
822 if (WARN_ON_ONCE(ret < 0))
823 continue;
824
825 op = insn.opcode.bytes[0];
826 if (op == JMP32_INSN_OPCODE)
827 dest = addr + insn.length + insn.immediate.value;
828
829 if (__static_call_fixup(addr, op, dest) ||
830 WARN_ONCE(dest != &__x86_return_thunk,
831 "missing return thunk: %pS-%pS: %*ph",
832 addr, dest, 5, addr))
833 continue;
834
835 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
836 addr, addr, insn.length,
837 addr + insn.length + insn.immediate.value);
838
839 len = patch_return(addr, &insn, bytes);
840 if (len == insn.length) {
841 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
842 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
843 text_poke_early(addr, bytes, len);
844 }
845 }
846 }
847 #else /* !CONFIG_MITIGATION_RETHUNK: */
apply_returns(s32 * start,s32 * end)848 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
849 #endif /* !CONFIG_MITIGATION_RETHUNK */
850
851 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
852
apply_retpolines(s32 * start,s32 * end)853 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)854 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
855
856 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
857
858 #ifdef CONFIG_X86_KERNEL_IBT
859
is_endbr(u32 * val)860 __noendbr bool is_endbr(u32 *val)
861 {
862 u32 endbr;
863
864 __get_kernel_nofault(&endbr, val, u32, Efault);
865 return __is_endbr(endbr);
866
867 Efault:
868 return false;
869 }
870
871 #ifdef CONFIG_FINEIBT
872
exact_endbr(u32 * val)873 static __noendbr bool exact_endbr(u32 *val)
874 {
875 u32 endbr;
876
877 __get_kernel_nofault(&endbr, val, u32, Efault);
878 return endbr == gen_endbr();
879
880 Efault:
881 return false;
882 }
883
884 #endif
885
886 static void poison_cfi(void *addr);
887
poison_endbr(void * addr)888 static void __init_or_module poison_endbr(void *addr)
889 {
890 u32 poison = gen_endbr_poison();
891
892 if (WARN_ON_ONCE(!is_endbr(addr)))
893 return;
894
895 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
896
897 /*
898 * When we have IBT, the lack of ENDBR will trigger #CP
899 */
900 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
901 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
902 text_poke_early(addr, &poison, 4);
903 }
904
905 /*
906 * Generated by: objtool --ibt
907 *
908 * Seal the functions for indirect calls by clobbering the ENDBR instructions
909 * and the kCFI hash value.
910 */
apply_seal_endbr(s32 * start,s32 * end)911 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
912 {
913 s32 *s;
914
915 for (s = start; s < end; s++) {
916 void *addr = (void *)s + *s;
917
918 poison_endbr(addr);
919 if (IS_ENABLED(CONFIG_FINEIBT))
920 poison_cfi(addr - 16);
921 }
922 }
923
924 #else /* !CONFIG_X86_KERNEL_IBT: */
925
apply_seal_endbr(s32 * start,s32 * end)926 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
927
928 #endif /* !CONFIG_X86_KERNEL_IBT */
929
930 #ifdef CONFIG_CFI_AUTO_DEFAULT
931 # define __CFI_DEFAULT CFI_AUTO
932 #elif defined(CONFIG_CFI_CLANG)
933 # define __CFI_DEFAULT CFI_KCFI
934 #else
935 # define __CFI_DEFAULT CFI_OFF
936 #endif
937
938 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
939
940 #ifdef CONFIG_FINEIBT_BHI
941 bool cfi_bhi __ro_after_init = false;
942 #endif
943
944 #ifdef CONFIG_CFI_CLANG
945 struct bpf_insn;
946
947 /* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
948 extern unsigned int __bpf_prog_runX(const void *ctx,
949 const struct bpf_insn *insn);
950
951 KCFI_REFERENCE(__bpf_prog_runX);
952
953 /* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
954 asm (
955 " .pushsection .data..ro_after_init,\"aw\",@progbits \n"
956 " .type cfi_bpf_hash,@object \n"
957 " .globl cfi_bpf_hash \n"
958 " .p2align 2, 0x0 \n"
959 "cfi_bpf_hash: \n"
960 " .long __kcfi_typeid___bpf_prog_runX \n"
961 " .size cfi_bpf_hash, 4 \n"
962 " .popsection \n"
963 );
964
965 /* Must match bpf_callback_t */
966 extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
967
968 KCFI_REFERENCE(__bpf_callback_fn);
969
970 /* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
971 asm (
972 " .pushsection .data..ro_after_init,\"aw\",@progbits \n"
973 " .type cfi_bpf_subprog_hash,@object \n"
974 " .globl cfi_bpf_subprog_hash \n"
975 " .p2align 2, 0x0 \n"
976 "cfi_bpf_subprog_hash: \n"
977 " .long __kcfi_typeid___bpf_callback_fn \n"
978 " .size cfi_bpf_subprog_hash, 4 \n"
979 " .popsection \n"
980 );
981
cfi_get_func_hash(void * func)982 u32 cfi_get_func_hash(void *func)
983 {
984 u32 hash;
985
986 func -= cfi_get_offset();
987 switch (cfi_mode) {
988 case CFI_FINEIBT:
989 func += 7;
990 break;
991 case CFI_KCFI:
992 func += 1;
993 break;
994 default:
995 return 0;
996 }
997
998 if (get_kernel_nofault(hash, func))
999 return 0;
1000
1001 return hash;
1002 }
1003
cfi_get_func_arity(void * func)1004 int cfi_get_func_arity(void *func)
1005 {
1006 bhi_thunk *target;
1007 s32 disp;
1008
1009 if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1010 return 0;
1011
1012 if (get_kernel_nofault(disp, func - 4))
1013 return 0;
1014
1015 target = func + disp;
1016 return target - __bhi_args;
1017 }
1018 #endif
1019
1020 #ifdef CONFIG_FINEIBT
1021
1022 static bool cfi_rand __ro_after_init = true;
1023 static u32 cfi_seed __ro_after_init;
1024
1025 static bool cfi_paranoid __ro_after_init = false;
1026
1027 /*
1028 * Re-hash the CFI hash with a boot-time seed while making sure the result is
1029 * not a valid ENDBR instruction.
1030 */
cfi_rehash(u32 hash)1031 static u32 cfi_rehash(u32 hash)
1032 {
1033 hash ^= cfi_seed;
1034 while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1035 bool lsb = hash & 1;
1036 hash >>= 1;
1037 if (lsb)
1038 hash ^= 0x80200003;
1039 }
1040 return hash;
1041 }
1042
cfi_parse_cmdline(char * str)1043 static __init int cfi_parse_cmdline(char *str)
1044 {
1045 if (!str)
1046 return -EINVAL;
1047
1048 while (str) {
1049 char *next = strchr(str, ',');
1050 if (next) {
1051 *next = 0;
1052 next++;
1053 }
1054
1055 if (!strcmp(str, "auto")) {
1056 cfi_mode = CFI_AUTO;
1057 } else if (!strcmp(str, "off")) {
1058 cfi_mode = CFI_OFF;
1059 cfi_rand = false;
1060 } else if (!strcmp(str, "kcfi")) {
1061 cfi_mode = CFI_KCFI;
1062 } else if (!strcmp(str, "fineibt")) {
1063 cfi_mode = CFI_FINEIBT;
1064 } else if (!strcmp(str, "norand")) {
1065 cfi_rand = false;
1066 } else if (!strcmp(str, "warn")) {
1067 pr_alert("CFI mismatch non-fatal!\n");
1068 cfi_warn = true;
1069 } else if (!strcmp(str, "paranoid")) {
1070 if (cfi_mode == CFI_FINEIBT) {
1071 cfi_paranoid = true;
1072 } else {
1073 pr_err("Ignoring paranoid; depends on fineibt.\n");
1074 }
1075 } else if (!strcmp(str, "bhi")) {
1076 #ifdef CONFIG_FINEIBT_BHI
1077 if (cfi_mode == CFI_FINEIBT) {
1078 cfi_bhi = true;
1079 } else {
1080 pr_err("Ignoring bhi; depends on fineibt.\n");
1081 }
1082 #else
1083 pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n");
1084 #endif
1085 } else {
1086 pr_err("Ignoring unknown cfi option (%s).", str);
1087 }
1088
1089 str = next;
1090 }
1091
1092 return 0;
1093 }
1094 early_param("cfi", cfi_parse_cmdline);
1095
1096 /*
1097 * kCFI FineIBT
1098 *
1099 * __cfi_\func: __cfi_\func:
1100 * movl $0x12345678,%eax // 5 endbr64 // 4
1101 * nop subl $0x12345678,%r10d // 7
1102 * nop jne __cfi_\func+6 // 2
1103 * nop nop3 // 3
1104 * nop
1105 * nop
1106 * nop
1107 * nop
1108 * nop
1109 * nop
1110 * nop
1111 * nop
1112 *
1113 *
1114 * caller: caller:
1115 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
1116 * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4
1117 * je 1f // 2 nop4 // 4
1118 * ud2 // 2
1119 * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6
1120 *
1121 */
1122
1123 /*
1124 * <fineibt_preamble_start>:
1125 * 0: f3 0f 1e fa endbr64
1126 * 4: 41 81 <ea> 78 56 34 12 sub $0x12345678, %r10d
1127 * b: 75 f9 jne 6 <fineibt_preamble_start+0x6>
1128 * d: 0f 1f 00 nopl (%rax)
1129 *
1130 * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as
1131 * (bad) on x86_64 and raises #UD.
1132 */
1133 asm( ".pushsection .rodata \n"
1134 "fineibt_preamble_start: \n"
1135 " endbr64 \n"
1136 " subl $0x12345678, %r10d \n"
1137 "fineibt_preamble_bhi: \n"
1138 " jne fineibt_preamble_start+6 \n"
1139 ASM_NOP3
1140 "fineibt_preamble_end: \n"
1141 ".popsection\n"
1142 );
1143
1144 extern u8 fineibt_preamble_start[];
1145 extern u8 fineibt_preamble_bhi[];
1146 extern u8 fineibt_preamble_end[];
1147
1148 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1149 #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start)
1150 #define fineibt_preamble_ud 6
1151 #define fineibt_preamble_hash 7
1152
1153 /*
1154 * <fineibt_caller_start>:
1155 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
1156 * 6: 4d 8d 5b f0 lea -0x10(%r11), %r11
1157 * a: 0f 1f 40 00 nopl 0x0(%rax)
1158 */
1159 asm( ".pushsection .rodata \n"
1160 "fineibt_caller_start: \n"
1161 " movl $0x12345678, %r10d \n"
1162 " lea -0x10(%r11), %r11 \n"
1163 ASM_NOP4
1164 "fineibt_caller_end: \n"
1165 ".popsection \n"
1166 );
1167
1168 extern u8 fineibt_caller_start[];
1169 extern u8 fineibt_caller_end[];
1170
1171 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1172 #define fineibt_caller_hash 2
1173
1174 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1175
1176 /*
1177 * Since FineIBT does hash validation on the callee side it is prone to
1178 * circumvention attacks where a 'naked' ENDBR instruction exists that
1179 * is not part of the fineibt_preamble sequence.
1180 *
1181 * Notably the x86 entry points must be ENDBR and equally cannot be
1182 * fineibt_preamble.
1183 *
1184 * The fineibt_paranoid caller sequence adds additional caller side
1185 * hash validation. This stops such circumvention attacks dead, but at the cost
1186 * of adding a load.
1187 *
1188 * <fineibt_paranoid_start>:
1189 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
1190 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d
1191 * a: 4d 8d 5b <f0> lea -0x10(%r11), %r11
1192 * e: 75 fd jne d <fineibt_paranoid_start+0xd>
1193 * 10: 41 ff d3 call *%r11
1194 * 13: 90 nop
1195 *
1196 * Notably LEA does not modify flags and can be reordered with the CMP,
1197 * avoiding a dependency. Again, using a non-taken (backwards) branch
1198 * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1199 * Jcc.d8, causing #UD.
1200 */
1201 asm( ".pushsection .rodata \n"
1202 "fineibt_paranoid_start: \n"
1203 " movl $0x12345678, %r10d \n"
1204 " cmpl -9(%r11), %r10d \n"
1205 " lea -0x10(%r11), %r11 \n"
1206 " jne fineibt_paranoid_start+0xd \n"
1207 "fineibt_paranoid_ind: \n"
1208 " call *%r11 \n"
1209 " nop \n"
1210 "fineibt_paranoid_end: \n"
1211 ".popsection \n"
1212 );
1213
1214 extern u8 fineibt_paranoid_start[];
1215 extern u8 fineibt_paranoid_ind[];
1216 extern u8 fineibt_paranoid_end[];
1217
1218 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1219 #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start)
1220 #define fineibt_paranoid_ud 0xd
1221
decode_preamble_hash(void * addr,int * reg)1222 static u32 decode_preamble_hash(void *addr, int *reg)
1223 {
1224 u8 *p = addr;
1225
1226 /* b8+reg 78 56 34 12 movl $0x12345678,\reg */
1227 if (p[0] >= 0xb8 && p[0] < 0xc0) {
1228 if (reg)
1229 *reg = p[0] - 0xb8;
1230 return *(u32 *)(addr + 1);
1231 }
1232
1233 return 0; /* invalid hash value */
1234 }
1235
decode_caller_hash(void * addr)1236 static u32 decode_caller_hash(void *addr)
1237 {
1238 u8 *p = addr;
1239
1240 /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */
1241 if (p[0] == 0x41 && p[1] == 0xba)
1242 return -*(u32 *)(addr + 2);
1243
1244 /* e8 0c 88 a9 cb ed jmp.d8 +12 */
1245 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1246 return -*(u32 *)(addr + 2);
1247
1248 return 0; /* invalid hash value */
1249 }
1250
1251 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1252 static int cfi_disable_callers(s32 *start, s32 *end)
1253 {
1254 /*
1255 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1256 * in tact for later usage. Also see decode_caller_hash() and
1257 * cfi_rewrite_callers().
1258 */
1259 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1260 s32 *s;
1261
1262 for (s = start; s < end; s++) {
1263 void *addr = (void *)s + *s;
1264 u32 hash;
1265
1266 addr -= fineibt_caller_size;
1267 hash = decode_caller_hash(addr);
1268 if (!hash) /* nocfi callers */
1269 continue;
1270
1271 text_poke_early(addr, jmp, 2);
1272 }
1273
1274 return 0;
1275 }
1276
cfi_enable_callers(s32 * start,s32 * end)1277 static int cfi_enable_callers(s32 *start, s32 *end)
1278 {
1279 /*
1280 * Re-enable kCFI, undo what cfi_disable_callers() did.
1281 */
1282 const u8 mov[] = { 0x41, 0xba };
1283 s32 *s;
1284
1285 for (s = start; s < end; s++) {
1286 void *addr = (void *)s + *s;
1287 u32 hash;
1288
1289 addr -= fineibt_caller_size;
1290 hash = decode_caller_hash(addr);
1291 if (!hash) /* nocfi callers */
1292 continue;
1293
1294 text_poke_early(addr, mov, 2);
1295 }
1296
1297 return 0;
1298 }
1299
1300 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1301 static int cfi_rand_preamble(s32 *start, s32 *end)
1302 {
1303 s32 *s;
1304
1305 for (s = start; s < end; s++) {
1306 void *addr = (void *)s + *s;
1307 u32 hash;
1308
1309 hash = decode_preamble_hash(addr, NULL);
1310 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1311 addr, addr, 5, addr))
1312 return -EINVAL;
1313
1314 hash = cfi_rehash(hash);
1315 text_poke_early(addr + 1, &hash, 4);
1316 }
1317
1318 return 0;
1319 }
1320
cfi_fineibt_bhi_preamble(void * addr,int arity)1321 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1322 {
1323 if (!arity)
1324 return;
1325
1326 if (!cfi_warn && arity == 1) {
1327 /*
1328 * Crazy scheme to allow arity-1 inline:
1329 *
1330 * __cfi_foo:
1331 * 0: f3 0f 1e fa endbr64
1332 * 4: 41 81 <ea> 78 56 34 12 sub 0x12345678, %r10d
1333 * b: 49 0f 45 fa cmovne %r10, %rdi
1334 * f: 75 f5 jne __cfi_foo+6
1335 * 11: 0f 1f 00 nopl (%rax)
1336 *
1337 * Code that direct calls to foo()+0, decodes the tail end as:
1338 *
1339 * foo:
1340 * 0: f5 cmc
1341 * 1: 0f 1f 00 nopl (%rax)
1342 *
1343 * which clobbers CF, but does not affect anything ABI
1344 * wise.
1345 *
1346 * Notably, this scheme is incompatible with permissive CFI
1347 * because the CMOVcc is unconditional and RDI will have been
1348 * clobbered.
1349 */
1350 const u8 magic[9] = {
1351 0x49, 0x0f, 0x45, 0xfa,
1352 0x75, 0xf5,
1353 BYTES_NOP3,
1354 };
1355
1356 text_poke_early(addr + fineibt_preamble_bhi, magic, 9);
1357
1358 return;
1359 }
1360
1361 text_poke_early(addr + fineibt_preamble_bhi,
1362 text_gen_insn(CALL_INSN_OPCODE,
1363 addr + fineibt_preamble_bhi,
1364 __bhi_args[arity]),
1365 CALL_INSN_SIZE);
1366 }
1367
cfi_rewrite_preamble(s32 * start,s32 * end)1368 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1369 {
1370 s32 *s;
1371
1372 for (s = start; s < end; s++) {
1373 void *addr = (void *)s + *s;
1374 int arity;
1375 u32 hash;
1376
1377 /*
1378 * When the function doesn't start with ENDBR the compiler will
1379 * have determined there are no indirect calls to it and we
1380 * don't need no CFI either.
1381 */
1382 if (!is_endbr(addr + 16))
1383 continue;
1384
1385 hash = decode_preamble_hash(addr, &arity);
1386 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1387 addr, addr, 5, addr))
1388 return -EINVAL;
1389
1390 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1391 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1392 text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1393
1394 WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1395 "kCFI preamble has wrong register at: %pS %*ph\n",
1396 addr, 5, addr);
1397
1398 if (cfi_bhi)
1399 cfi_fineibt_bhi_preamble(addr, arity);
1400 }
1401
1402 return 0;
1403 }
1404
cfi_rewrite_endbr(s32 * start,s32 * end)1405 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1406 {
1407 s32 *s;
1408
1409 for (s = start; s < end; s++) {
1410 void *addr = (void *)s + *s;
1411
1412 if (!exact_endbr(addr + 16))
1413 continue;
1414
1415 poison_endbr(addr + 16);
1416 }
1417 }
1418
1419 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1420 static int cfi_rand_callers(s32 *start, s32 *end)
1421 {
1422 s32 *s;
1423
1424 for (s = start; s < end; s++) {
1425 void *addr = (void *)s + *s;
1426 u32 hash;
1427
1428 addr -= fineibt_caller_size;
1429 hash = decode_caller_hash(addr);
1430 if (hash) {
1431 hash = -cfi_rehash(hash);
1432 text_poke_early(addr + 2, &hash, 4);
1433 }
1434 }
1435
1436 return 0;
1437 }
1438
cfi_rewrite_callers(s32 * start,s32 * end)1439 static int cfi_rewrite_callers(s32 *start, s32 *end)
1440 {
1441 s32 *s;
1442
1443 BUG_ON(fineibt_paranoid_size != 20);
1444
1445 for (s = start; s < end; s++) {
1446 void *addr = (void *)s + *s;
1447 struct insn insn;
1448 u8 bytes[20];
1449 u32 hash;
1450 int ret;
1451 u8 op;
1452
1453 addr -= fineibt_caller_size;
1454 hash = decode_caller_hash(addr);
1455 if (!hash)
1456 continue;
1457
1458 if (!cfi_paranoid) {
1459 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1460 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1461 text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1462 /* rely on apply_retpolines() */
1463 continue;
1464 }
1465
1466 /* cfi_paranoid */
1467 ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1468 if (WARN_ON_ONCE(ret < 0))
1469 continue;
1470
1471 op = insn.opcode.bytes[0];
1472 if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1473 WARN_ON_ONCE(1);
1474 continue;
1475 }
1476
1477 memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1478 memcpy(bytes + fineibt_caller_hash, &hash, 4);
1479
1480 ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind);
1481 if (WARN_ON_ONCE(ret != 3))
1482 continue;
1483
1484 text_poke_early(addr, bytes, fineibt_paranoid_size);
1485 }
1486
1487 return 0;
1488 }
1489
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1490 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1491 s32 *start_cfi, s32 *end_cfi, bool builtin)
1492 {
1493 int ret;
1494
1495 if (WARN_ONCE(fineibt_preamble_size != 16,
1496 "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1497 return;
1498
1499 if (cfi_mode == CFI_AUTO) {
1500 cfi_mode = CFI_KCFI;
1501 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1502 /*
1503 * FRED has much saner context on exception entry and
1504 * is less easy to take advantage of.
1505 */
1506 if (!cpu_feature_enabled(X86_FEATURE_FRED))
1507 cfi_paranoid = true;
1508 cfi_mode = CFI_FINEIBT;
1509 }
1510 }
1511
1512 /*
1513 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1514 * rewrite them. This disables all CFI. If this succeeds but any of the
1515 * later stages fails, we're without CFI.
1516 */
1517 ret = cfi_disable_callers(start_retpoline, end_retpoline);
1518 if (ret)
1519 goto err;
1520
1521 if (cfi_rand) {
1522 if (builtin) {
1523 cfi_seed = get_random_u32();
1524 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1525 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1526 }
1527
1528 ret = cfi_rand_preamble(start_cfi, end_cfi);
1529 if (ret)
1530 goto err;
1531
1532 ret = cfi_rand_callers(start_retpoline, end_retpoline);
1533 if (ret)
1534 goto err;
1535 }
1536
1537 switch (cfi_mode) {
1538 case CFI_OFF:
1539 if (builtin)
1540 pr_info("Disabling CFI\n");
1541 return;
1542
1543 case CFI_KCFI:
1544 ret = cfi_enable_callers(start_retpoline, end_retpoline);
1545 if (ret)
1546 goto err;
1547
1548 if (builtin)
1549 pr_info("Using kCFI\n");
1550 return;
1551
1552 case CFI_FINEIBT:
1553 /* place the FineIBT preamble at func()-16 */
1554 ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1555 if (ret)
1556 goto err;
1557
1558 /* rewrite the callers to target func()-16 */
1559 ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1560 if (ret)
1561 goto err;
1562
1563 /* now that nobody targets func()+0, remove ENDBR there */
1564 cfi_rewrite_endbr(start_cfi, end_cfi);
1565
1566 if (builtin) {
1567 pr_info("Using %sFineIBT%s CFI\n",
1568 cfi_paranoid ? "paranoid " : "",
1569 cfi_bhi ? "+BHI" : "");
1570 }
1571 return;
1572
1573 default:
1574 break;
1575 }
1576
1577 err:
1578 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1579 }
1580
poison_hash(void * addr)1581 static inline void poison_hash(void *addr)
1582 {
1583 *(u32 *)addr = 0;
1584 }
1585
poison_cfi(void * addr)1586 static void poison_cfi(void *addr)
1587 {
1588 /*
1589 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1590 * some (static) functions for which they can determine the address
1591 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1592 *
1593 * As such, these functions will get sealed, but we need to be careful
1594 * to not unconditionally scribble the previous function.
1595 */
1596 switch (cfi_mode) {
1597 case CFI_FINEIBT:
1598 /*
1599 * FineIBT prefix should start with an ENDBR.
1600 */
1601 if (!is_endbr(addr))
1602 break;
1603
1604 /*
1605 * __cfi_\func:
1606 * osp nopl (%rax)
1607 * subl $0, %r10d
1608 * jz 1f
1609 * ud2
1610 * 1: nop
1611 */
1612 poison_endbr(addr);
1613 poison_hash(addr + fineibt_preamble_hash);
1614 break;
1615
1616 case CFI_KCFI:
1617 /*
1618 * kCFI prefix should start with a valid hash.
1619 */
1620 if (!decode_preamble_hash(addr, NULL))
1621 break;
1622
1623 /*
1624 * __cfi_\func:
1625 * movl $0, %eax
1626 * .skip 11, 0x90
1627 */
1628 poison_hash(addr + 1);
1629 break;
1630
1631 default:
1632 break;
1633 }
1634 }
1635
1636 /*
1637 * When regs->ip points to a 0xEA byte in the FineIBT preamble,
1638 * return true and fill out target and type.
1639 *
1640 * We check the preamble by checking for the ENDBR instruction relative to the
1641 * 0xEA instruction.
1642 */
decode_fineibt_preamble(struct pt_regs * regs,unsigned long * target,u32 * type)1643 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1644 {
1645 unsigned long addr = regs->ip - fineibt_preamble_ud;
1646 u32 hash;
1647
1648 if (!exact_endbr((void *)addr))
1649 return false;
1650
1651 *target = addr + fineibt_preamble_size;
1652
1653 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1654 *type = (u32)regs->r10 + hash;
1655
1656 /*
1657 * Since regs->ip points to the middle of an instruction; it cannot
1658 * continue with the normal fixup.
1659 */
1660 regs->ip = *target;
1661
1662 return true;
1663
1664 Efault:
1665 return false;
1666 }
1667
1668 /*
1669 * regs->ip points to one of the UD2 in __bhi_args[].
1670 */
decode_fineibt_bhi(struct pt_regs * regs,unsigned long * target,u32 * type)1671 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1672 {
1673 unsigned long addr;
1674 u32 hash;
1675
1676 if (!cfi_bhi)
1677 return false;
1678
1679 if (regs->ip < (unsigned long)__bhi_args ||
1680 regs->ip >= (unsigned long)__bhi_args_end)
1681 return false;
1682
1683 /*
1684 * Fetch the return address from the stack, this points to the
1685 * FineIBT preamble. Since the CALL instruction is in the 5 last
1686 * bytes of the preamble, the return address is in fact the target
1687 * address.
1688 */
1689 __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1690 *target = addr;
1691
1692 addr -= fineibt_preamble_size;
1693 if (!exact_endbr((void *)addr))
1694 return false;
1695
1696 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1697 *type = (u32)regs->r10 + hash;
1698
1699 /*
1700 * The UD2 sites are constructed with a RET immediately following,
1701 * as such the non-fatal case can use the regular fixup.
1702 */
1703 return true;
1704
1705 Efault:
1706 return false;
1707 }
1708
1709 /*
1710 * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
1711 * sequence.
1712 */
decode_fineibt_paranoid(struct pt_regs * regs,unsigned long * target,u32 * type)1713 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
1714 {
1715 unsigned long addr = regs->ip - fineibt_paranoid_ud;
1716 u32 hash;
1717
1718 if (!cfi_paranoid || !is_cfi_trap(addr + fineibt_caller_size - LEN_UD2))
1719 return false;
1720
1721 __get_kernel_nofault(&hash, addr + fineibt_caller_hash, u32, Efault);
1722 *target = regs->r11 + fineibt_preamble_size;
1723 *type = regs->r10;
1724
1725 /*
1726 * Since the trapping instruction is the exact, but LOCK prefixed,
1727 * Jcc.d8 that got us here, the normal fixup will work.
1728 */
1729 return true;
1730
1731 Efault:
1732 return false;
1733 }
1734
decode_fineibt_insn(struct pt_regs * regs,unsigned long * target,u32 * type)1735 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
1736 {
1737 if (decode_fineibt_paranoid(regs, target, type))
1738 return true;
1739
1740 if (decode_fineibt_bhi(regs, target, type))
1741 return true;
1742
1743 return decode_fineibt_preamble(regs, target, type);
1744 }
1745
1746 #else /* !CONFIG_FINEIBT: */
1747
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1748 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1749 s32 *start_cfi, s32 *end_cfi, bool builtin)
1750 {
1751 }
1752
1753 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)1754 static void poison_cfi(void *addr) { }
1755 #endif
1756
1757 #endif /* !CONFIG_FINEIBT */
1758
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)1759 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1760 s32 *start_cfi, s32 *end_cfi)
1761 {
1762 return __apply_fineibt(start_retpoline, end_retpoline,
1763 start_cfi, end_cfi,
1764 /* .builtin = */ false);
1765 }
1766
1767 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)1768 static void alternatives_smp_lock(const s32 *start, const s32 *end,
1769 u8 *text, u8 *text_end)
1770 {
1771 const s32 *poff;
1772
1773 for (poff = start; poff < end; poff++) {
1774 u8 *ptr = (u8 *)poff + *poff;
1775
1776 if (!*poff || ptr < text || ptr >= text_end)
1777 continue;
1778 /* turn DS segment override prefix into lock prefix */
1779 if (*ptr == 0x3e)
1780 text_poke(ptr, ((unsigned char []){0xf0}), 1);
1781 }
1782 }
1783
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)1784 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1785 u8 *text, u8 *text_end)
1786 {
1787 const s32 *poff;
1788
1789 for (poff = start; poff < end; poff++) {
1790 u8 *ptr = (u8 *)poff + *poff;
1791
1792 if (!*poff || ptr < text || ptr >= text_end)
1793 continue;
1794 /* turn lock prefix into DS segment override prefix */
1795 if (*ptr == 0xf0)
1796 text_poke(ptr, ((unsigned char []){0x3E}), 1);
1797 }
1798 }
1799
1800 struct smp_alt_module {
1801 /* what is this ??? */
1802 struct module *mod;
1803 char *name;
1804
1805 /* ptrs to lock prefixes */
1806 const s32 *locks;
1807 const s32 *locks_end;
1808
1809 /* .text segment, needed to avoid patching init code ;) */
1810 u8 *text;
1811 u8 *text_end;
1812
1813 struct list_head next;
1814 };
1815 static LIST_HEAD(smp_alt_modules);
1816 static bool uniproc_patched = false; /* protected by text_mutex */
1817
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)1818 void __init_or_module alternatives_smp_module_add(struct module *mod,
1819 char *name,
1820 void *locks, void *locks_end,
1821 void *text, void *text_end)
1822 {
1823 struct smp_alt_module *smp;
1824
1825 mutex_lock(&text_mutex);
1826 if (!uniproc_patched)
1827 goto unlock;
1828
1829 if (num_possible_cpus() == 1)
1830 /* Don't bother remembering, we'll never have to undo it. */
1831 goto smp_unlock;
1832
1833 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1834 if (NULL == smp)
1835 /* we'll run the (safe but slow) SMP code then ... */
1836 goto unlock;
1837
1838 smp->mod = mod;
1839 smp->name = name;
1840 smp->locks = locks;
1841 smp->locks_end = locks_end;
1842 smp->text = text;
1843 smp->text_end = text_end;
1844 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1845 smp->locks, smp->locks_end,
1846 smp->text, smp->text_end, smp->name);
1847
1848 list_add_tail(&smp->next, &smp_alt_modules);
1849 smp_unlock:
1850 alternatives_smp_unlock(locks, locks_end, text, text_end);
1851 unlock:
1852 mutex_unlock(&text_mutex);
1853 }
1854
alternatives_smp_module_del(struct module * mod)1855 void __init_or_module alternatives_smp_module_del(struct module *mod)
1856 {
1857 struct smp_alt_module *item;
1858
1859 mutex_lock(&text_mutex);
1860 list_for_each_entry(item, &smp_alt_modules, next) {
1861 if (mod != item->mod)
1862 continue;
1863 list_del(&item->next);
1864 kfree(item);
1865 break;
1866 }
1867 mutex_unlock(&text_mutex);
1868 }
1869
alternatives_enable_smp(void)1870 void alternatives_enable_smp(void)
1871 {
1872 struct smp_alt_module *mod;
1873
1874 /* Why bother if there are no other CPUs? */
1875 BUG_ON(num_possible_cpus() == 1);
1876
1877 mutex_lock(&text_mutex);
1878
1879 if (uniproc_patched) {
1880 pr_info("switching to SMP code\n");
1881 BUG_ON(num_online_cpus() != 1);
1882 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1883 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1884 list_for_each_entry(mod, &smp_alt_modules, next)
1885 alternatives_smp_lock(mod->locks, mod->locks_end,
1886 mod->text, mod->text_end);
1887 uniproc_patched = false;
1888 }
1889 mutex_unlock(&text_mutex);
1890 }
1891
1892 /*
1893 * Return 1 if the address range is reserved for SMP-alternatives.
1894 * Must hold text_mutex.
1895 */
alternatives_text_reserved(void * start,void * end)1896 int alternatives_text_reserved(void *start, void *end)
1897 {
1898 struct smp_alt_module *mod;
1899 const s32 *poff;
1900 u8 *text_start = start;
1901 u8 *text_end = end;
1902
1903 lockdep_assert_held(&text_mutex);
1904
1905 list_for_each_entry(mod, &smp_alt_modules, next) {
1906 if (mod->text > text_end || mod->text_end < text_start)
1907 continue;
1908 for (poff = mod->locks; poff < mod->locks_end; poff++) {
1909 const u8 *ptr = (const u8 *)poff + *poff;
1910
1911 if (text_start <= ptr && text_end > ptr)
1912 return 1;
1913 }
1914 }
1915
1916 return 0;
1917 }
1918 #endif /* CONFIG_SMP */
1919
1920 /*
1921 * Self-test for the INT3 based CALL emulation code.
1922 *
1923 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1924 * properly and that there is a stack gap between the INT3 frame and the
1925 * previous context. Without this gap doing a virtual PUSH on the interrupted
1926 * stack would corrupt the INT3 IRET frame.
1927 *
1928 * See entry_{32,64}.S for more details.
1929 */
1930
1931 /*
1932 * We define the int3_magic() function in assembly to control the calling
1933 * convention such that we can 'call' it from assembly.
1934 */
1935
1936 extern void int3_magic(unsigned int *ptr); /* defined in asm */
1937
1938 asm (
1939 " .pushsection .init.text, \"ax\", @progbits\n"
1940 " .type int3_magic, @function\n"
1941 "int3_magic:\n"
1942 ANNOTATE_NOENDBR
1943 " movl $1, (%" _ASM_ARG1 ")\n"
1944 ASM_RET
1945 " .size int3_magic, .-int3_magic\n"
1946 " .popsection\n"
1947 );
1948
1949 extern void int3_selftest_ip(void); /* defined in asm below */
1950
1951 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)1952 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1953 {
1954 unsigned long selftest = (unsigned long)&int3_selftest_ip;
1955 struct die_args *args = data;
1956 struct pt_regs *regs = args->regs;
1957
1958 OPTIMIZER_HIDE_VAR(selftest);
1959
1960 if (!regs || user_mode(regs))
1961 return NOTIFY_DONE;
1962
1963 if (val != DIE_INT3)
1964 return NOTIFY_DONE;
1965
1966 if (regs->ip - INT3_INSN_SIZE != selftest)
1967 return NOTIFY_DONE;
1968
1969 int3_emulate_call(regs, (unsigned long)&int3_magic);
1970 return NOTIFY_STOP;
1971 }
1972
1973 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)1974 static noinline void __init int3_selftest(void)
1975 {
1976 static __initdata struct notifier_block int3_exception_nb = {
1977 .notifier_call = int3_exception_notify,
1978 .priority = INT_MAX-1, /* last */
1979 };
1980 unsigned int val = 0;
1981
1982 BUG_ON(register_die_notifier(&int3_exception_nb));
1983
1984 /*
1985 * Basically: int3_magic(&val); but really complicated :-)
1986 *
1987 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1988 * notifier above will emulate CALL for us.
1989 */
1990 asm volatile ("int3_selftest_ip:\n\t"
1991 ANNOTATE_NOENDBR
1992 " int3; nop; nop; nop; nop\n\t"
1993 : ASM_CALL_CONSTRAINT
1994 : __ASM_SEL_RAW(a, D) (&val)
1995 : "memory");
1996
1997 BUG_ON(val != 1);
1998
1999 unregister_die_notifier(&int3_exception_nb);
2000 }
2001
2002 static __initdata int __alt_reloc_selftest_addr;
2003
2004 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)2005 __visible noinline void __init __alt_reloc_selftest(void *arg)
2006 {
2007 WARN_ON(arg != &__alt_reloc_selftest_addr);
2008 }
2009
alt_reloc_selftest(void)2010 static noinline void __init alt_reloc_selftest(void)
2011 {
2012 /*
2013 * Tests apply_relocation().
2014 *
2015 * This has a relative immediate (CALL) in a place other than the first
2016 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2017 *
2018 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
2019 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
2020 *
2021 * Getting this wrong will either crash and burn or tickle the WARN
2022 * above.
2023 */
2024 asm_inline volatile (
2025 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2026 : ASM_CALL_CONSTRAINT
2027 : [mem] "m" (__alt_reloc_selftest_addr)
2028 : _ASM_ARG1
2029 );
2030 }
2031
alternative_instructions(void)2032 void __init alternative_instructions(void)
2033 {
2034 int3_selftest();
2035
2036 /*
2037 * The patching is not fully atomic, so try to avoid local
2038 * interruptions that might execute the to be patched code.
2039 * Other CPUs are not running.
2040 */
2041 stop_nmi();
2042
2043 /*
2044 * Don't stop machine check exceptions while patching.
2045 * MCEs only happen when something got corrupted and in this
2046 * case we must do something about the corruption.
2047 * Ignoring it is worse than an unlikely patching race.
2048 * Also machine checks tend to be broadcast and if one CPU
2049 * goes into machine check the others follow quickly, so we don't
2050 * expect a machine check to cause undue problems during to code
2051 * patching.
2052 */
2053
2054 /*
2055 * Make sure to set (artificial) features depending on used paravirt
2056 * functions which can later influence alternative patching.
2057 */
2058 paravirt_set_cap();
2059
2060 __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2061 __cfi_sites, __cfi_sites_end, true);
2062
2063 /*
2064 * Rewrite the retpolines, must be done before alternatives since
2065 * those can rewrite the retpoline thunks.
2066 */
2067 apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2068 apply_returns(__return_sites, __return_sites_end);
2069
2070 /*
2071 * Adjust all CALL instructions to point to func()-10, including
2072 * those in .altinstr_replacement.
2073 */
2074 callthunks_patch_builtin_calls();
2075
2076 apply_alternatives(__alt_instructions, __alt_instructions_end);
2077
2078 /*
2079 * Seal all functions that do not have their address taken.
2080 */
2081 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2082
2083 #ifdef CONFIG_SMP
2084 /* Patch to UP if other cpus not imminent. */
2085 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2086 uniproc_patched = true;
2087 alternatives_smp_module_add(NULL, "core kernel",
2088 __smp_locks, __smp_locks_end,
2089 _text, _etext);
2090 }
2091
2092 if (!uniproc_patched || num_possible_cpus() == 1) {
2093 free_init_pages("SMP alternatives",
2094 (unsigned long)__smp_locks,
2095 (unsigned long)__smp_locks_end);
2096 }
2097 #endif
2098
2099 restart_nmi();
2100 alternatives_patched = 1;
2101
2102 alt_reloc_selftest();
2103 }
2104
2105 /**
2106 * text_poke_early - Update instructions on a live kernel at boot time
2107 * @addr: address to modify
2108 * @opcode: source of the copy
2109 * @len: length to copy
2110 *
2111 * When you use this code to patch more than one byte of an instruction
2112 * you need to make sure that other CPUs cannot execute this code in parallel.
2113 * Also no thread must be currently preempted in the middle of these
2114 * instructions. And on the local CPU you need to be protected against NMI or
2115 * MCE handlers seeing an inconsistent instruction while you patch.
2116 */
text_poke_early(void * addr,const void * opcode,size_t len)2117 void __init_or_module text_poke_early(void *addr, const void *opcode,
2118 size_t len)
2119 {
2120 unsigned long flags;
2121
2122 if (boot_cpu_has(X86_FEATURE_NX) &&
2123 is_module_text_address((unsigned long)addr)) {
2124 /*
2125 * Modules text is marked initially as non-executable, so the
2126 * code cannot be running and speculative code-fetches are
2127 * prevented. Just change the code.
2128 */
2129 memcpy(addr, opcode, len);
2130 } else {
2131 local_irq_save(flags);
2132 memcpy(addr, opcode, len);
2133 sync_core();
2134 local_irq_restore(flags);
2135
2136 /*
2137 * Could also do a CLFLUSH here to speed up CPU recovery; but
2138 * that causes hangs on some VIA CPUs.
2139 */
2140 }
2141 }
2142
2143 typedef struct {
2144 struct mm_struct *mm;
2145 } temp_mm_state_t;
2146
2147 /*
2148 * Using a temporary mm allows to set temporary mappings that are not accessible
2149 * by other CPUs. Such mappings are needed to perform sensitive memory writes
2150 * that override the kernel memory protections (e.g., W^X), without exposing the
2151 * temporary page-table mappings that are required for these write operations to
2152 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
2153 * mapping is torn down.
2154 *
2155 * Context: The temporary mm needs to be used exclusively by a single core. To
2156 * harden security IRQs must be disabled while the temporary mm is
2157 * loaded, thereby preventing interrupt handler bugs from overriding
2158 * the kernel memory protection.
2159 */
use_temporary_mm(struct mm_struct * mm)2160 static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
2161 {
2162 temp_mm_state_t temp_state;
2163
2164 lockdep_assert_irqs_disabled();
2165
2166 /*
2167 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
2168 * with a stale address space WITHOUT being in lazy mode after
2169 * restoring the previous mm.
2170 */
2171 if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
2172 leave_mm();
2173
2174 temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
2175 switch_mm_irqs_off(NULL, mm, current);
2176
2177 /*
2178 * If breakpoints are enabled, disable them while the temporary mm is
2179 * used. Userspace might set up watchpoints on addresses that are used
2180 * in the temporary mm, which would lead to wrong signals being sent or
2181 * crashes.
2182 *
2183 * Note that breakpoints are not disabled selectively, which also causes
2184 * kernel breakpoints (e.g., perf's) to be disabled. This might be
2185 * undesirable, but still seems reasonable as the code that runs in the
2186 * temporary mm should be short.
2187 */
2188 if (hw_breakpoint_active())
2189 hw_breakpoint_disable();
2190
2191 return temp_state;
2192 }
2193
2194 __ro_after_init struct mm_struct *poking_mm;
2195 __ro_after_init unsigned long poking_addr;
2196
unuse_temporary_mm(temp_mm_state_t prev_state)2197 static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
2198 {
2199 lockdep_assert_irqs_disabled();
2200
2201 switch_mm_irqs_off(NULL, prev_state.mm, current);
2202
2203 /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
2204 cpumask_clear_cpu(raw_smp_processor_id(), mm_cpumask(poking_mm));
2205
2206 /*
2207 * Restore the breakpoints if they were disabled before the temporary mm
2208 * was loaded.
2209 */
2210 if (hw_breakpoint_active())
2211 hw_breakpoint_restore();
2212 }
2213
text_poke_memcpy(void * dst,const void * src,size_t len)2214 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2215 {
2216 memcpy(dst, src, len);
2217 }
2218
text_poke_memset(void * dst,const void * src,size_t len)2219 static void text_poke_memset(void *dst, const void *src, size_t len)
2220 {
2221 int c = *(const int *)src;
2222
2223 memset(dst, c, len);
2224 }
2225
2226 typedef void text_poke_f(void *dst, const void *src, size_t len);
2227
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)2228 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2229 {
2230 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2231 struct page *pages[2] = {NULL};
2232 temp_mm_state_t prev;
2233 unsigned long flags;
2234 pte_t pte, *ptep;
2235 spinlock_t *ptl;
2236 pgprot_t pgprot;
2237
2238 /*
2239 * While boot memory allocator is running we cannot use struct pages as
2240 * they are not yet initialized. There is no way to recover.
2241 */
2242 BUG_ON(!after_bootmem);
2243
2244 if (!core_kernel_text((unsigned long)addr)) {
2245 pages[0] = vmalloc_to_page(addr);
2246 if (cross_page_boundary)
2247 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2248 } else {
2249 pages[0] = virt_to_page(addr);
2250 WARN_ON(!PageReserved(pages[0]));
2251 if (cross_page_boundary)
2252 pages[1] = virt_to_page(addr + PAGE_SIZE);
2253 }
2254 /*
2255 * If something went wrong, crash and burn since recovery paths are not
2256 * implemented.
2257 */
2258 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2259
2260 /*
2261 * Map the page without the global bit, as TLB flushing is done with
2262 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2263 */
2264 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2265
2266 /*
2267 * The lock is not really needed, but this allows to avoid open-coding.
2268 */
2269 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
2270
2271 /*
2272 * This must not fail; preallocated in poking_init().
2273 */
2274 VM_BUG_ON(!ptep);
2275
2276 local_irq_save(flags);
2277
2278 pte = mk_pte(pages[0], pgprot);
2279 set_pte_at(poking_mm, poking_addr, ptep, pte);
2280
2281 if (cross_page_boundary) {
2282 pte = mk_pte(pages[1], pgprot);
2283 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
2284 }
2285
2286 /*
2287 * Loading the temporary mm behaves as a compiler barrier, which
2288 * guarantees that the PTE will be set at the time memcpy() is done.
2289 */
2290 prev = use_temporary_mm(poking_mm);
2291
2292 kasan_disable_current();
2293 func((u8 *)poking_addr + offset_in_page(addr), src, len);
2294 kasan_enable_current();
2295
2296 /*
2297 * Ensure that the PTE is only cleared after the instructions of memcpy
2298 * were issued by using a compiler barrier.
2299 */
2300 barrier();
2301
2302 pte_clear(poking_mm, poking_addr, ptep);
2303 if (cross_page_boundary)
2304 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
2305
2306 /*
2307 * Loading the previous page-table hierarchy requires a serializing
2308 * instruction that already allows the core to see the updated version.
2309 * Xen-PV is assumed to serialize execution in a similar manner.
2310 */
2311 unuse_temporary_mm(prev);
2312
2313 /*
2314 * Flushing the TLB might involve IPIs, which would require enabled
2315 * IRQs, but not if the mm is not used, as it is in this point.
2316 */
2317 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
2318 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2319 PAGE_SHIFT, false);
2320
2321 if (func == text_poke_memcpy) {
2322 /*
2323 * If the text does not match what we just wrote then something is
2324 * fundamentally screwy; there's nothing we can really do about that.
2325 */
2326 BUG_ON(memcmp(addr, src, len));
2327 }
2328
2329 local_irq_restore(flags);
2330 pte_unmap_unlock(ptep, ptl);
2331 return addr;
2332 }
2333
2334 /**
2335 * text_poke - Update instructions on a live kernel
2336 * @addr: address to modify
2337 * @opcode: source of the copy
2338 * @len: length to copy
2339 *
2340 * Only atomic text poke/set should be allowed when not doing early patching.
2341 * It means the size must be writable atomically and the address must be aligned
2342 * in a way that permits an atomic write. It also makes sure we fit on a single
2343 * page.
2344 *
2345 * Note that the caller must ensure that if the modified code is part of a
2346 * module, the module would not be removed during poking. This can be achieved
2347 * by registering a module notifier, and ordering module removal and patching
2348 * through a mutex.
2349 */
text_poke(void * addr,const void * opcode,size_t len)2350 void *text_poke(void *addr, const void *opcode, size_t len)
2351 {
2352 lockdep_assert_held(&text_mutex);
2353
2354 return __text_poke(text_poke_memcpy, addr, opcode, len);
2355 }
2356
2357 /**
2358 * text_poke_kgdb - Update instructions on a live kernel by kgdb
2359 * @addr: address to modify
2360 * @opcode: source of the copy
2361 * @len: length to copy
2362 *
2363 * Only atomic text poke/set should be allowed when not doing early patching.
2364 * It means the size must be writable atomically and the address must be aligned
2365 * in a way that permits an atomic write. It also makes sure we fit on a single
2366 * page.
2367 *
2368 * Context: should only be used by kgdb, which ensures no other core is running,
2369 * despite the fact it does not hold the text_mutex.
2370 */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2371 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2372 {
2373 return __text_poke(text_poke_memcpy, addr, opcode, len);
2374 }
2375
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2376 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2377 bool core_ok)
2378 {
2379 unsigned long start = (unsigned long)addr;
2380 size_t patched = 0;
2381
2382 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2383 return NULL;
2384
2385 while (patched < len) {
2386 unsigned long ptr = start + patched;
2387 size_t s;
2388
2389 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2390
2391 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2392 patched += s;
2393 }
2394 return addr;
2395 }
2396
2397 /**
2398 * text_poke_copy - Copy instructions into (an unused part of) RX memory
2399 * @addr: address to modify
2400 * @opcode: source of the copy
2401 * @len: length to copy, could be more than 2x PAGE_SIZE
2402 *
2403 * Not safe against concurrent execution; useful for JITs to dump
2404 * new code blocks into unused regions of RX memory. Can be used in
2405 * conjunction with synchronize_rcu_tasks() to wait for existing
2406 * execution to quiesce after having made sure no existing functions
2407 * pointers are live.
2408 */
text_poke_copy(void * addr,const void * opcode,size_t len)2409 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2410 {
2411 mutex_lock(&text_mutex);
2412 addr = text_poke_copy_locked(addr, opcode, len, false);
2413 mutex_unlock(&text_mutex);
2414 return addr;
2415 }
2416
2417 /**
2418 * text_poke_set - memset into (an unused part of) RX memory
2419 * @addr: address to modify
2420 * @c: the byte to fill the area with
2421 * @len: length to copy, could be more than 2x PAGE_SIZE
2422 *
2423 * This is useful to overwrite unused regions of RX memory with illegal
2424 * instructions.
2425 */
text_poke_set(void * addr,int c,size_t len)2426 void *text_poke_set(void *addr, int c, size_t len)
2427 {
2428 unsigned long start = (unsigned long)addr;
2429 size_t patched = 0;
2430
2431 if (WARN_ON_ONCE(core_kernel_text(start)))
2432 return NULL;
2433
2434 mutex_lock(&text_mutex);
2435 while (patched < len) {
2436 unsigned long ptr = start + patched;
2437 size_t s;
2438
2439 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2440
2441 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2442 patched += s;
2443 }
2444 mutex_unlock(&text_mutex);
2445 return addr;
2446 }
2447
do_sync_core(void * info)2448 static void do_sync_core(void *info)
2449 {
2450 sync_core();
2451 }
2452
text_poke_sync(void)2453 void text_poke_sync(void)
2454 {
2455 on_each_cpu(do_sync_core, NULL, 1);
2456 }
2457
2458 /*
2459 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2460 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2461 * opcode to Jcc.d8, using len to distinguish.
2462 */
2463 struct text_poke_loc {
2464 /* addr := _stext + rel_addr */
2465 s32 rel_addr;
2466 s32 disp;
2467 u8 len;
2468 u8 opcode;
2469 const u8 text[POKE_MAX_OPCODE_SIZE];
2470 /* see text_poke_bp_batch() */
2471 u8 old;
2472 };
2473
2474 struct bp_patching_desc {
2475 struct text_poke_loc *vec;
2476 int nr_entries;
2477 atomic_t refs;
2478 };
2479
2480 static struct bp_patching_desc bp_desc;
2481
2482 static __always_inline
try_get_desc(void)2483 struct bp_patching_desc *try_get_desc(void)
2484 {
2485 struct bp_patching_desc *desc = &bp_desc;
2486
2487 if (!raw_atomic_inc_not_zero(&desc->refs))
2488 return NULL;
2489
2490 return desc;
2491 }
2492
put_desc(void)2493 static __always_inline void put_desc(void)
2494 {
2495 struct bp_patching_desc *desc = &bp_desc;
2496
2497 smp_mb__before_atomic();
2498 raw_atomic_dec(&desc->refs);
2499 }
2500
text_poke_addr(struct text_poke_loc * tp)2501 static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2502 {
2503 return _stext + tp->rel_addr;
2504 }
2505
patch_cmp(const void * key,const void * elt)2506 static __always_inline int patch_cmp(const void *key, const void *elt)
2507 {
2508 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2509
2510 if (key < text_poke_addr(tp))
2511 return -1;
2512 if (key > text_poke_addr(tp))
2513 return 1;
2514 return 0;
2515 }
2516
poke_int3_handler(struct pt_regs * regs)2517 noinstr int poke_int3_handler(struct pt_regs *regs)
2518 {
2519 struct bp_patching_desc *desc;
2520 struct text_poke_loc *tp;
2521 int ret = 0;
2522 void *ip;
2523
2524 if (user_mode(regs))
2525 return 0;
2526
2527 /*
2528 * Having observed our INT3 instruction, we now must observe
2529 * bp_desc with non-zero refcount:
2530 *
2531 * bp_desc.refs = 1 INT3
2532 * WMB RMB
2533 * write INT3 if (bp_desc.refs != 0)
2534 */
2535 smp_rmb();
2536
2537 desc = try_get_desc();
2538 if (!desc)
2539 return 0;
2540
2541 /*
2542 * Discount the INT3. See text_poke_bp_batch().
2543 */
2544 ip = (void *) regs->ip - INT3_INSN_SIZE;
2545
2546 /*
2547 * Skip the binary search if there is a single member in the vector.
2548 */
2549 if (unlikely(desc->nr_entries > 1)) {
2550 tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2551 sizeof(struct text_poke_loc),
2552 patch_cmp);
2553 if (!tp)
2554 goto out_put;
2555 } else {
2556 tp = desc->vec;
2557 if (text_poke_addr(tp) != ip)
2558 goto out_put;
2559 }
2560
2561 ip += tp->len;
2562
2563 switch (tp->opcode) {
2564 case INT3_INSN_OPCODE:
2565 /*
2566 * Someone poked an explicit INT3, they'll want to handle it,
2567 * do not consume.
2568 */
2569 goto out_put;
2570
2571 case RET_INSN_OPCODE:
2572 int3_emulate_ret(regs);
2573 break;
2574
2575 case CALL_INSN_OPCODE:
2576 int3_emulate_call(regs, (long)ip + tp->disp);
2577 break;
2578
2579 case JMP32_INSN_OPCODE:
2580 case JMP8_INSN_OPCODE:
2581 int3_emulate_jmp(regs, (long)ip + tp->disp);
2582 break;
2583
2584 case 0x70 ... 0x7f: /* Jcc */
2585 int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2586 break;
2587
2588 default:
2589 BUG();
2590 }
2591
2592 ret = 1;
2593
2594 out_put:
2595 put_desc();
2596 return ret;
2597 }
2598
2599 #define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2600 static struct text_poke_loc tp_vec[TP_VEC_MAX];
2601 static int tp_vec_nr;
2602
2603 /**
2604 * text_poke_bp_batch() -- update instructions on live kernel on SMP
2605 * @tp: vector of instructions to patch
2606 * @nr_entries: number of entries in the vector
2607 *
2608 * Modify multi-byte instruction by using int3 breakpoint on SMP.
2609 * We completely avoid stop_machine() here, and achieve the
2610 * synchronization using int3 breakpoint.
2611 *
2612 * The way it is done:
2613 * - For each entry in the vector:
2614 * - add a int3 trap to the address that will be patched
2615 * - sync cores
2616 * - For each entry in the vector:
2617 * - update all but the first byte of the patched range
2618 * - sync cores
2619 * - For each entry in the vector:
2620 * - replace the first byte (int3) by the first byte of
2621 * replacing opcode
2622 * - sync cores
2623 */
text_poke_bp_batch(struct text_poke_loc * tp,unsigned int nr_entries)2624 static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2625 {
2626 unsigned char int3 = INT3_INSN_OPCODE;
2627 unsigned int i;
2628 int do_sync;
2629
2630 lockdep_assert_held(&text_mutex);
2631
2632 bp_desc.vec = tp;
2633 bp_desc.nr_entries = nr_entries;
2634
2635 /*
2636 * Corresponds to the implicit memory barrier in try_get_desc() to
2637 * ensure reading a non-zero refcount provides up to date bp_desc data.
2638 */
2639 atomic_set_release(&bp_desc.refs, 1);
2640
2641 /*
2642 * Function tracing can enable thousands of places that need to be
2643 * updated. This can take quite some time, and with full kernel debugging
2644 * enabled, this could cause the softlockup watchdog to trigger.
2645 * This function gets called every 256 entries added to be patched.
2646 * Call cond_resched() here to make sure that other tasks can get scheduled
2647 * while processing all the functions being patched.
2648 */
2649 cond_resched();
2650
2651 /*
2652 * Corresponding read barrier in int3 notifier for making sure the
2653 * nr_entries and handler are correctly ordered wrt. patching.
2654 */
2655 smp_wmb();
2656
2657 /*
2658 * First step: add a int3 trap to the address that will be patched.
2659 */
2660 for (i = 0; i < nr_entries; i++) {
2661 tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2662 text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2663 }
2664
2665 text_poke_sync();
2666
2667 /*
2668 * Second step: update all but the first byte of the patched range.
2669 */
2670 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2671 u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2672 u8 _new[POKE_MAX_OPCODE_SIZE+1];
2673 const u8 *new = tp[i].text;
2674 int len = tp[i].len;
2675
2676 if (len - INT3_INSN_SIZE > 0) {
2677 memcpy(old + INT3_INSN_SIZE,
2678 text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2679 len - INT3_INSN_SIZE);
2680
2681 if (len == 6) {
2682 _new[0] = 0x0f;
2683 memcpy(_new + 1, new, 5);
2684 new = _new;
2685 }
2686
2687 text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2688 new + INT3_INSN_SIZE,
2689 len - INT3_INSN_SIZE);
2690
2691 do_sync++;
2692 }
2693
2694 /*
2695 * Emit a perf event to record the text poke, primarily to
2696 * support Intel PT decoding which must walk the executable code
2697 * to reconstruct the trace. The flow up to here is:
2698 * - write INT3 byte
2699 * - IPI-SYNC
2700 * - write instruction tail
2701 * At this point the actual control flow will be through the
2702 * INT3 and handler and not hit the old or new instruction.
2703 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2704 * can still be decoded. Subsequently:
2705 * - emit RECORD_TEXT_POKE with the new instruction
2706 * - IPI-SYNC
2707 * - write first byte
2708 * - IPI-SYNC
2709 * So before the text poke event timestamp, the decoder will see
2710 * either the old instruction flow or FUP/TIP of INT3. After the
2711 * text poke event timestamp, the decoder will see either the
2712 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2713 * use the timestamp as the point at which to modify the
2714 * executable code.
2715 * The old instruction is recorded so that the event can be
2716 * processed forwards or backwards.
2717 */
2718 perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
2719 }
2720
2721 if (do_sync) {
2722 /*
2723 * According to Intel, this core syncing is very likely
2724 * not necessary and we'd be safe even without it. But
2725 * better safe than sorry (plus there's not only Intel).
2726 */
2727 text_poke_sync();
2728 }
2729
2730 /*
2731 * Third step: replace the first byte (int3) by the first byte of
2732 * replacing opcode.
2733 */
2734 for (do_sync = 0, i = 0; i < nr_entries; i++) {
2735 u8 byte = tp[i].text[0];
2736
2737 if (tp[i].len == 6)
2738 byte = 0x0f;
2739
2740 if (byte == INT3_INSN_OPCODE)
2741 continue;
2742
2743 text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2744 do_sync++;
2745 }
2746
2747 if (do_sync)
2748 text_poke_sync();
2749
2750 /*
2751 * Remove and wait for refs to be zero.
2752 */
2753 if (!atomic_dec_and_test(&bp_desc.refs))
2754 atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2755 }
2756
text_poke_loc_init(struct text_poke_loc * tp,void * addr,const void * opcode,size_t len,const void * emulate)2757 static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2758 const void *opcode, size_t len, const void *emulate)
2759 {
2760 struct insn insn;
2761 int ret, i = 0;
2762
2763 if (len == 6)
2764 i = 1;
2765 memcpy((void *)tp->text, opcode+i, len-i);
2766 if (!emulate)
2767 emulate = opcode;
2768
2769 ret = insn_decode_kernel(&insn, emulate);
2770 BUG_ON(ret < 0);
2771
2772 tp->rel_addr = addr - (void *)_stext;
2773 tp->len = len;
2774 tp->opcode = insn.opcode.bytes[0];
2775
2776 if (is_jcc32(&insn)) {
2777 /*
2778 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2779 */
2780 tp->opcode = insn.opcode.bytes[1] - 0x10;
2781 }
2782
2783 switch (tp->opcode) {
2784 case RET_INSN_OPCODE:
2785 case JMP32_INSN_OPCODE:
2786 case JMP8_INSN_OPCODE:
2787 /*
2788 * Control flow instructions without implied execution of the
2789 * next instruction can be padded with INT3.
2790 */
2791 for (i = insn.length; i < len; i++)
2792 BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2793 break;
2794
2795 default:
2796 BUG_ON(len != insn.length);
2797 }
2798
2799 switch (tp->opcode) {
2800 case INT3_INSN_OPCODE:
2801 case RET_INSN_OPCODE:
2802 break;
2803
2804 case CALL_INSN_OPCODE:
2805 case JMP32_INSN_OPCODE:
2806 case JMP8_INSN_OPCODE:
2807 case 0x70 ... 0x7f: /* Jcc */
2808 tp->disp = insn.immediate.value;
2809 break;
2810
2811 default: /* assume NOP */
2812 switch (len) {
2813 case 2: /* NOP2 -- emulate as JMP8+0 */
2814 BUG_ON(memcmp(emulate, x86_nops[len], len));
2815 tp->opcode = JMP8_INSN_OPCODE;
2816 tp->disp = 0;
2817 break;
2818
2819 case 5: /* NOP5 -- emulate as JMP32+0 */
2820 BUG_ON(memcmp(emulate, x86_nops[len], len));
2821 tp->opcode = JMP32_INSN_OPCODE;
2822 tp->disp = 0;
2823 break;
2824
2825 default: /* unknown instruction */
2826 BUG();
2827 }
2828 break;
2829 }
2830 }
2831
2832 /*
2833 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2834 * early if needed.
2835 */
tp_order_fail(void * addr)2836 static bool tp_order_fail(void *addr)
2837 {
2838 struct text_poke_loc *tp;
2839
2840 if (!tp_vec_nr)
2841 return false;
2842
2843 if (!addr) /* force */
2844 return true;
2845
2846 tp = &tp_vec[tp_vec_nr - 1];
2847 if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2848 return true;
2849
2850 return false;
2851 }
2852
text_poke_flush(void * addr)2853 static void text_poke_flush(void *addr)
2854 {
2855 if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2856 text_poke_bp_batch(tp_vec, tp_vec_nr);
2857 tp_vec_nr = 0;
2858 }
2859 }
2860
text_poke_finish(void)2861 void text_poke_finish(void)
2862 {
2863 text_poke_flush(NULL);
2864 }
2865
text_poke_queue(void * addr,const void * opcode,size_t len,const void * emulate)2866 void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2867 {
2868 struct text_poke_loc *tp;
2869
2870 text_poke_flush(addr);
2871
2872 tp = &tp_vec[tp_vec_nr++];
2873 text_poke_loc_init(tp, addr, opcode, len, emulate);
2874 }
2875
2876 /**
2877 * text_poke_bp() -- update instructions on live kernel on SMP
2878 * @addr: address to patch
2879 * @opcode: opcode of new instruction
2880 * @len: length to copy
2881 * @emulate: instruction to be emulated
2882 *
2883 * Update a single instruction with the vector in the stack, avoiding
2884 * dynamically allocated memory. This function should be used when it is
2885 * not possible to allocate memory.
2886 */
text_poke_bp(void * addr,const void * opcode,size_t len,const void * emulate)2887 void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2888 {
2889 struct text_poke_loc tp;
2890
2891 text_poke_loc_init(&tp, addr, opcode, len, emulate);
2892 text_poke_bp_batch(&tp, 1);
2893 }
2894