xref: /linux/kernel/pid.c (revision 18b19abc3709b109676ffd1f48dcd332c2e477d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <linux/seqlock.h>
47 #include <net/sock.h>
48 #include <uapi/linux/pidfd.h>
49 
50 struct pid init_struct_pid = {
51 	.count		= REFCOUNT_INIT(1),
52 	.tasks		= {
53 		{ .first = NULL },
54 		{ .first = NULL },
55 		{ .first = NULL },
56 	},
57 	.level		= 0,
58 	.numbers	= { {
59 		.nr		= 0,
60 		.ns		= &init_pid_ns,
61 	}, }
62 };
63 
64 static int pid_max_min = RESERVED_PIDS + 1;
65 static int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.ns.__ns_ref = REFCOUNT_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = ns_init_inum(&init_pid_ns),
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 	.pid_max = PID_MAX_DEFAULT,
85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
86 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
87 #endif
88 	.ns.ns_type = ns_common_type(&init_pid_ns),
89 };
90 EXPORT_SYMBOL_GPL(init_pid_ns);
91 
92 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
93 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock);
94 
put_pid(struct pid * pid)95 void put_pid(struct pid *pid)
96 {
97 	struct pid_namespace *ns;
98 
99 	if (!pid)
100 		return;
101 
102 	ns = pid->numbers[pid->level].ns;
103 	if (refcount_dec_and_test(&pid->count)) {
104 		pidfs_free_pid(pid);
105 		kmem_cache_free(ns->pid_cachep, pid);
106 		put_pid_ns(ns);
107 	}
108 }
109 EXPORT_SYMBOL_GPL(put_pid);
110 
delayed_put_pid(struct rcu_head * rhp)111 static void delayed_put_pid(struct rcu_head *rhp)
112 {
113 	struct pid *pid = container_of(rhp, struct pid, rcu);
114 	put_pid(pid);
115 }
116 
free_pid(struct pid * pid)117 void free_pid(struct pid *pid)
118 {
119 	int i;
120 
121 	lockdep_assert_not_held(&tasklist_lock);
122 
123 	spin_lock(&pidmap_lock);
124 	for (i = 0; i <= pid->level; i++) {
125 		struct upid *upid = pid->numbers + i;
126 		struct pid_namespace *ns = upid->ns;
127 		switch (--ns->pid_allocated) {
128 		case 2:
129 		case 1:
130 			/* When all that is left in the pid namespace
131 			 * is the reaper wake up the reaper.  The reaper
132 			 * may be sleeping in zap_pid_ns_processes().
133 			 */
134 			wake_up_process(ns->child_reaper);
135 			break;
136 		case PIDNS_ADDING:
137 			/* Handle a fork failure of the first process */
138 			WARN_ON(ns->child_reaper);
139 			ns->pid_allocated = 0;
140 			break;
141 		}
142 
143 		idr_remove(&ns->idr, upid->nr);
144 	}
145 	pidfs_remove_pid(pid);
146 	spin_unlock(&pidmap_lock);
147 
148 	call_rcu(&pid->rcu, delayed_put_pid);
149 }
150 
free_pids(struct pid ** pids)151 void free_pids(struct pid **pids)
152 {
153 	int tmp;
154 
155 	/*
156 	 * This can batch pidmap_lock.
157 	 */
158 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
159 		if (pids[tmp])
160 			free_pid(pids[tmp]);
161 }
162 
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)163 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
164 		      size_t set_tid_size)
165 {
166 	struct pid *pid;
167 	enum pid_type type;
168 	int i, nr;
169 	struct pid_namespace *tmp;
170 	struct upid *upid;
171 	int retval = -ENOMEM;
172 
173 	/*
174 	 * set_tid_size contains the size of the set_tid array. Starting at
175 	 * the most nested currently active PID namespace it tells alloc_pid()
176 	 * which PID to set for a process in that most nested PID namespace
177 	 * up to set_tid_size PID namespaces. It does not have to set the PID
178 	 * for a process in all nested PID namespaces but set_tid_size must
179 	 * never be greater than the current ns->level + 1.
180 	 */
181 	if (set_tid_size > ns->level + 1)
182 		return ERR_PTR(-EINVAL);
183 
184 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
185 	if (!pid)
186 		return ERR_PTR(retval);
187 
188 	tmp = ns;
189 	pid->level = ns->level;
190 
191 	for (i = ns->level; i >= 0; i--) {
192 		int tid = 0;
193 		int pid_max = READ_ONCE(tmp->pid_max);
194 
195 		if (set_tid_size) {
196 			tid = set_tid[ns->level - i];
197 
198 			retval = -EINVAL;
199 			if (tid < 1 || tid >= pid_max)
200 				goto out_free;
201 			/*
202 			 * Also fail if a PID != 1 is requested and
203 			 * no PID 1 exists.
204 			 */
205 			if (tid != 1 && !tmp->child_reaper)
206 				goto out_free;
207 			retval = -EPERM;
208 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
209 				goto out_free;
210 			set_tid_size--;
211 		}
212 
213 		idr_preload(GFP_KERNEL);
214 		spin_lock(&pidmap_lock);
215 
216 		if (tid) {
217 			nr = idr_alloc(&tmp->idr, NULL, tid,
218 				       tid + 1, GFP_ATOMIC);
219 			/*
220 			 * If ENOSPC is returned it means that the PID is
221 			 * alreay in use. Return EEXIST in that case.
222 			 */
223 			if (nr == -ENOSPC)
224 				nr = -EEXIST;
225 		} else {
226 			int pid_min = 1;
227 			/*
228 			 * init really needs pid 1, but after reaching the
229 			 * maximum wrap back to RESERVED_PIDS
230 			 */
231 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
232 				pid_min = RESERVED_PIDS;
233 
234 			/*
235 			 * Store a null pointer so find_pid_ns does not find
236 			 * a partially initialized PID (see below).
237 			 */
238 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
239 					      pid_max, GFP_ATOMIC);
240 		}
241 		spin_unlock(&pidmap_lock);
242 		idr_preload_end();
243 
244 		if (nr < 0) {
245 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
246 			goto out_free;
247 		}
248 
249 		pid->numbers[i].nr = nr;
250 		pid->numbers[i].ns = tmp;
251 		tmp = tmp->parent;
252 	}
253 
254 	/*
255 	 * ENOMEM is not the most obvious choice especially for the case
256 	 * where the child subreaper has already exited and the pid
257 	 * namespace denies the creation of any new processes. But ENOMEM
258 	 * is what we have exposed to userspace for a long time and it is
259 	 * documented behavior for pid namespaces. So we can't easily
260 	 * change it even if there were an error code better suited.
261 	 */
262 	retval = -ENOMEM;
263 
264 	get_pid_ns(ns);
265 	refcount_set(&pid->count, 1);
266 	spin_lock_init(&pid->lock);
267 	for (type = 0; type < PIDTYPE_MAX; ++type)
268 		INIT_HLIST_HEAD(&pid->tasks[type]);
269 
270 	init_waitqueue_head(&pid->wait_pidfd);
271 	INIT_HLIST_HEAD(&pid->inodes);
272 
273 	upid = pid->numbers + ns->level;
274 	idr_preload(GFP_KERNEL);
275 	spin_lock(&pidmap_lock);
276 	if (!(ns->pid_allocated & PIDNS_ADDING))
277 		goto out_unlock;
278 	pidfs_add_pid(pid);
279 	for ( ; upid >= pid->numbers; --upid) {
280 		/* Make the PID visible to find_pid_ns. */
281 		idr_replace(&upid->ns->idr, pid, upid->nr);
282 		upid->ns->pid_allocated++;
283 	}
284 	spin_unlock(&pidmap_lock);
285 	idr_preload_end();
286 
287 	return pid;
288 
289 out_unlock:
290 	spin_unlock(&pidmap_lock);
291 	idr_preload_end();
292 	put_pid_ns(ns);
293 
294 out_free:
295 	spin_lock(&pidmap_lock);
296 	while (++i <= ns->level) {
297 		upid = pid->numbers + i;
298 		idr_remove(&upid->ns->idr, upid->nr);
299 	}
300 
301 	/* On failure to allocate the first pid, reset the state */
302 	if (ns->pid_allocated == PIDNS_ADDING)
303 		idr_set_cursor(&ns->idr, 0);
304 
305 	spin_unlock(&pidmap_lock);
306 
307 	kmem_cache_free(ns->pid_cachep, pid);
308 	return ERR_PTR(retval);
309 }
310 
disable_pid_allocation(struct pid_namespace * ns)311 void disable_pid_allocation(struct pid_namespace *ns)
312 {
313 	spin_lock(&pidmap_lock);
314 	ns->pid_allocated &= ~PIDNS_ADDING;
315 	spin_unlock(&pidmap_lock);
316 }
317 
find_pid_ns(int nr,struct pid_namespace * ns)318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319 {
320 	return idr_find(&ns->idr, nr);
321 }
322 EXPORT_SYMBOL_GPL(find_pid_ns);
323 
find_vpid(int nr)324 struct pid *find_vpid(int nr)
325 {
326 	return find_pid_ns(nr, task_active_pid_ns(current));
327 }
328 EXPORT_SYMBOL_GPL(find_vpid);
329 
task_pid_ptr(struct task_struct * task,enum pid_type type)330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331 {
332 	return (type == PIDTYPE_PID) ?
333 		&task->thread_pid :
334 		&task->signal->pids[type];
335 }
336 
337 /*
338  * attach_pid() must be called with the tasklist_lock write-held.
339  */
attach_pid(struct task_struct * task,enum pid_type type)340 void attach_pid(struct task_struct *task, enum pid_type type)
341 {
342 	struct pid *pid;
343 
344 	lockdep_assert_held_write(&tasklist_lock);
345 
346 	pid = *task_pid_ptr(task, type);
347 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
348 }
349 
__change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * new)350 static void __change_pid(struct pid **pids, struct task_struct *task,
351 			 enum pid_type type, struct pid *new)
352 {
353 	struct pid **pid_ptr, *pid;
354 	int tmp;
355 
356 	lockdep_assert_held_write(&tasklist_lock);
357 
358 	pid_ptr = task_pid_ptr(task, type);
359 	pid = *pid_ptr;
360 
361 	hlist_del_rcu(&task->pid_links[type]);
362 	*pid_ptr = new;
363 
364 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
365 		if (pid_has_task(pid, tmp))
366 			return;
367 
368 	WARN_ON(pids[type]);
369 	pids[type] = pid;
370 }
371 
detach_pid(struct pid ** pids,struct task_struct * task,enum pid_type type)372 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type)
373 {
374 	__change_pid(pids, task, type, NULL);
375 }
376 
change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * pid)377 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type,
378 		struct pid *pid)
379 {
380 	__change_pid(pids, task, type, pid);
381 	attach_pid(task, type);
382 }
383 
exchange_tids(struct task_struct * left,struct task_struct * right)384 void exchange_tids(struct task_struct *left, struct task_struct *right)
385 {
386 	struct pid *pid1 = left->thread_pid;
387 	struct pid *pid2 = right->thread_pid;
388 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
389 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
390 
391 	lockdep_assert_held_write(&tasklist_lock);
392 
393 	/* Swap the single entry tid lists */
394 	hlists_swap_heads_rcu(head1, head2);
395 
396 	/* Swap the per task_struct pid */
397 	rcu_assign_pointer(left->thread_pid, pid2);
398 	rcu_assign_pointer(right->thread_pid, pid1);
399 
400 	/* Swap the cached value */
401 	WRITE_ONCE(left->pid, pid_nr(pid2));
402 	WRITE_ONCE(right->pid, pid_nr(pid1));
403 }
404 
405 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)406 void transfer_pid(struct task_struct *old, struct task_struct *new,
407 			   enum pid_type type)
408 {
409 	WARN_ON_ONCE(type == PIDTYPE_PID);
410 	lockdep_assert_held_write(&tasklist_lock);
411 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
412 }
413 
pid_task(struct pid * pid,enum pid_type type)414 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
415 {
416 	struct task_struct *result = NULL;
417 	if (pid) {
418 		struct hlist_node *first;
419 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
420 					      lockdep_tasklist_lock_is_held());
421 		if (first)
422 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
423 	}
424 	return result;
425 }
426 EXPORT_SYMBOL(pid_task);
427 
428 /*
429  * Must be called under rcu_read_lock().
430  */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)431 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
432 {
433 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
434 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
435 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
436 }
437 
find_task_by_vpid(pid_t vnr)438 struct task_struct *find_task_by_vpid(pid_t vnr)
439 {
440 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
441 }
442 
find_get_task_by_vpid(pid_t nr)443 struct task_struct *find_get_task_by_vpid(pid_t nr)
444 {
445 	struct task_struct *task;
446 
447 	rcu_read_lock();
448 	task = find_task_by_vpid(nr);
449 	if (task)
450 		get_task_struct(task);
451 	rcu_read_unlock();
452 
453 	return task;
454 }
455 
get_task_pid(struct task_struct * task,enum pid_type type)456 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
457 {
458 	struct pid *pid;
459 	rcu_read_lock();
460 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
461 	rcu_read_unlock();
462 	return pid;
463 }
464 EXPORT_SYMBOL_GPL(get_task_pid);
465 
get_pid_task(struct pid * pid,enum pid_type type)466 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
467 {
468 	struct task_struct *result;
469 	rcu_read_lock();
470 	result = pid_task(pid, type);
471 	if (result)
472 		get_task_struct(result);
473 	rcu_read_unlock();
474 	return result;
475 }
476 EXPORT_SYMBOL_GPL(get_pid_task);
477 
find_get_pid(pid_t nr)478 struct pid *find_get_pid(pid_t nr)
479 {
480 	struct pid *pid;
481 
482 	rcu_read_lock();
483 	pid = get_pid(find_vpid(nr));
484 	rcu_read_unlock();
485 
486 	return pid;
487 }
488 EXPORT_SYMBOL_GPL(find_get_pid);
489 
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)490 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
491 {
492 	struct upid *upid;
493 	pid_t nr = 0;
494 
495 	if (pid && ns && ns->level <= pid->level) {
496 		upid = &pid->numbers[ns->level];
497 		if (upid->ns == ns)
498 			nr = upid->nr;
499 	}
500 	return nr;
501 }
502 EXPORT_SYMBOL_GPL(pid_nr_ns);
503 
pid_vnr(struct pid * pid)504 pid_t pid_vnr(struct pid *pid)
505 {
506 	return pid_nr_ns(pid, task_active_pid_ns(current));
507 }
508 EXPORT_SYMBOL_GPL(pid_vnr);
509 
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)510 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
511 			struct pid_namespace *ns)
512 {
513 	pid_t nr = 0;
514 
515 	rcu_read_lock();
516 	if (!ns)
517 		ns = task_active_pid_ns(current);
518 	if (ns)
519 		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
520 	rcu_read_unlock();
521 
522 	return nr;
523 }
524 EXPORT_SYMBOL(__task_pid_nr_ns);
525 
task_active_pid_ns(struct task_struct * tsk)526 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
527 {
528 	return ns_of_pid(task_pid(tsk));
529 }
530 EXPORT_SYMBOL_GPL(task_active_pid_ns);
531 
532 /*
533  * Used by proc to find the first pid that is greater than or equal to nr.
534  *
535  * If there is a pid at nr this function is exactly the same as find_pid_ns.
536  */
find_ge_pid(int nr,struct pid_namespace * ns)537 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
538 {
539 	return idr_get_next(&ns->idr, &nr);
540 }
541 EXPORT_SYMBOL_GPL(find_ge_pid);
542 
pidfd_get_pid(unsigned int fd,unsigned int * flags)543 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
544 {
545 	CLASS(fd, f)(fd);
546 	struct pid *pid;
547 
548 	if (fd_empty(f))
549 		return ERR_PTR(-EBADF);
550 
551 	pid = pidfd_pid(fd_file(f));
552 	if (!IS_ERR(pid)) {
553 		get_pid(pid);
554 		*flags = fd_file(f)->f_flags;
555 	}
556 	return pid;
557 }
558 
559 /**
560  * pidfd_get_task() - Get the task associated with a pidfd
561  *
562  * @pidfd: pidfd for which to get the task
563  * @flags: flags associated with this pidfd
564  *
565  * Return the task associated with @pidfd. The function takes a reference on
566  * the returned task. The caller is responsible for releasing that reference.
567  *
568  * Return: On success, the task_struct associated with the pidfd.
569  *	   On error, a negative errno number will be returned.
570  */
pidfd_get_task(int pidfd,unsigned int * flags)571 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
572 {
573 	unsigned int f_flags = 0;
574 	struct pid *pid;
575 	struct task_struct *task;
576 	enum pid_type type;
577 
578 	switch (pidfd) {
579 	case  PIDFD_SELF_THREAD:
580 		type = PIDTYPE_PID;
581 		pid = get_task_pid(current, type);
582 		break;
583 	case  PIDFD_SELF_THREAD_GROUP:
584 		type = PIDTYPE_TGID;
585 		pid = get_task_pid(current, type);
586 		break;
587 	default:
588 		pid = pidfd_get_pid(pidfd, &f_flags);
589 		if (IS_ERR(pid))
590 			return ERR_CAST(pid);
591 		type = PIDTYPE_TGID;
592 		break;
593 	}
594 
595 	task = get_pid_task(pid, type);
596 	put_pid(pid);
597 	if (!task)
598 		return ERR_PTR(-ESRCH);
599 
600 	*flags = f_flags;
601 	return task;
602 }
603 
604 /**
605  * pidfd_create() - Create a new pid file descriptor.
606  *
607  * @pid:   struct pid that the pidfd will reference
608  * @flags: flags to pass
609  *
610  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
611  *
612  * Note, that this function can only be called after the fd table has
613  * been unshared to avoid leaking the pidfd to the new process.
614  *
615  * This symbol should not be explicitly exported to loadable modules.
616  *
617  * Return: On success, a cloexec pidfd is returned.
618  *         On error, a negative errno number will be returned.
619  */
pidfd_create(struct pid * pid,unsigned int flags)620 static int pidfd_create(struct pid *pid, unsigned int flags)
621 {
622 	int pidfd;
623 	struct file *pidfd_file;
624 
625 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
626 	if (pidfd < 0)
627 		return pidfd;
628 
629 	fd_install(pidfd, pidfd_file);
630 	return pidfd;
631 }
632 
633 /**
634  * sys_pidfd_open() - Open new pid file descriptor.
635  *
636  * @pid:   pid for which to retrieve a pidfd
637  * @flags: flags to pass
638  *
639  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
640  * the task identified by @pid. Without PIDFD_THREAD flag the target task
641  * must be a thread-group leader.
642  *
643  * Return: On success, a cloexec pidfd is returned.
644  *         On error, a negative errno number will be returned.
645  */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)646 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
647 {
648 	int fd;
649 	struct pid *p;
650 
651 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
652 		return -EINVAL;
653 
654 	if (pid <= 0)
655 		return -EINVAL;
656 
657 	p = find_get_pid(pid);
658 	if (!p)
659 		return -ESRCH;
660 
661 	fd = pidfd_create(p, flags);
662 
663 	put_pid(p);
664 	return fd;
665 }
666 
667 #ifdef CONFIG_SYSCTL
pid_table_root_lookup(struct ctl_table_root * root)668 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root)
669 {
670 	return &task_active_pid_ns(current)->set;
671 }
672 
set_is_seen(struct ctl_table_set * set)673 static int set_is_seen(struct ctl_table_set *set)
674 {
675 	return &task_active_pid_ns(current)->set == set;
676 }
677 
pid_table_root_permissions(struct ctl_table_header * head,const struct ctl_table * table)678 static int pid_table_root_permissions(struct ctl_table_header *head,
679 				      const struct ctl_table *table)
680 {
681 	struct pid_namespace *pidns =
682 		container_of(head->set, struct pid_namespace, set);
683 	int mode = table->mode;
684 
685 	if (ns_capable_noaudit(pidns->user_ns, CAP_SYS_ADMIN) ||
686 	    uid_eq(current_euid(), make_kuid(pidns->user_ns, 0)))
687 		mode = (mode & S_IRWXU) >> 6;
688 	else if (in_egroup_p(make_kgid(pidns->user_ns, 0)))
689 		mode = (mode & S_IRWXG) >> 3;
690 	else
691 		mode = mode & S_IROTH;
692 	return (mode << 6) | (mode << 3) | mode;
693 }
694 
pid_table_root_set_ownership(struct ctl_table_header * head,kuid_t * uid,kgid_t * gid)695 static void pid_table_root_set_ownership(struct ctl_table_header *head,
696 					 kuid_t *uid, kgid_t *gid)
697 {
698 	struct pid_namespace *pidns =
699 		container_of(head->set, struct pid_namespace, set);
700 	kuid_t ns_root_uid;
701 	kgid_t ns_root_gid;
702 
703 	ns_root_uid = make_kuid(pidns->user_ns, 0);
704 	if (uid_valid(ns_root_uid))
705 		*uid = ns_root_uid;
706 
707 	ns_root_gid = make_kgid(pidns->user_ns, 0);
708 	if (gid_valid(ns_root_gid))
709 		*gid = ns_root_gid;
710 }
711 
712 static struct ctl_table_root pid_table_root = {
713 	.lookup		= pid_table_root_lookup,
714 	.permissions	= pid_table_root_permissions,
715 	.set_ownership	= pid_table_root_set_ownership,
716 };
717 
proc_do_cad_pid(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)718 static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer,
719 		size_t *lenp, loff_t *ppos)
720 {
721 	struct pid *new_pid;
722 	pid_t tmp_pid;
723 	int r;
724 	struct ctl_table tmp_table = *table;
725 
726 	tmp_pid = pid_vnr(cad_pid);
727 	tmp_table.data = &tmp_pid;
728 
729 	r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
730 	if (r || !write)
731 		return r;
732 
733 	new_pid = find_get_pid(tmp_pid);
734 	if (!new_pid)
735 		return -ESRCH;
736 
737 	put_pid(xchg(&cad_pid, new_pid));
738 	return 0;
739 }
740 
741 static const struct ctl_table pid_table[] = {
742 	{
743 		.procname	= "pid_max",
744 		.data		= &init_pid_ns.pid_max,
745 		.maxlen		= sizeof(int),
746 		.mode		= 0644,
747 		.proc_handler	= proc_dointvec_minmax,
748 		.extra1		= &pid_max_min,
749 		.extra2		= &pid_max_max,
750 	},
751 #ifdef CONFIG_PROC_SYSCTL
752 	{
753 		.procname	= "cad_pid",
754 		.maxlen		= sizeof(int),
755 		.mode		= 0600,
756 		.proc_handler	= proc_do_cad_pid,
757 	},
758 #endif
759 };
760 #endif
761 
register_pidns_sysctls(struct pid_namespace * pidns)762 int register_pidns_sysctls(struct pid_namespace *pidns)
763 {
764 #ifdef CONFIG_SYSCTL
765 	struct ctl_table *tbl;
766 
767 	setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen);
768 
769 	tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL);
770 	if (!tbl)
771 		return -ENOMEM;
772 	tbl->data = &pidns->pid_max;
773 	pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max,
774 			     PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
775 
776 	pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl,
777 						 ARRAY_SIZE(pid_table));
778 	if (!pidns->sysctls) {
779 		kfree(tbl);
780 		retire_sysctl_set(&pidns->set);
781 		return -ENOMEM;
782 	}
783 #endif
784 	return 0;
785 }
786 
unregister_pidns_sysctls(struct pid_namespace * pidns)787 void unregister_pidns_sysctls(struct pid_namespace *pidns)
788 {
789 #ifdef CONFIG_SYSCTL
790 	const struct ctl_table *tbl;
791 
792 	tbl = pidns->sysctls->ctl_table_arg;
793 	unregister_sysctl_table(pidns->sysctls);
794 	retire_sysctl_set(&pidns->set);
795 	kfree(tbl);
796 #endif
797 }
798 
pid_idr_init(void)799 void __init pid_idr_init(void)
800 {
801 	/* Verify no one has done anything silly: */
802 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
803 
804 	/* bump default and minimum pid_max based on number of cpus */
805 	init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max,
806 				  PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
807 	pid_max_min = max_t(int, pid_max_min,
808 				PIDS_PER_CPU_MIN * num_possible_cpus());
809 	pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min);
810 
811 	idr_init(&init_pid_ns.idr);
812 
813 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
814 			struct_size_t(struct pid, numbers, 1),
815 			__alignof__(struct pid),
816 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
817 			NULL);
818 }
819 
pid_namespace_sysctl_init(void)820 static __init int pid_namespace_sysctl_init(void)
821 {
822 #ifdef CONFIG_SYSCTL
823 	/* "kernel" directory will have already been initialized. */
824 	BUG_ON(register_pidns_sysctls(&init_pid_ns));
825 #endif
826 	return 0;
827 }
828 subsys_initcall(pid_namespace_sysctl_init);
829 
__pidfd_fget(struct task_struct * task,int fd)830 static struct file *__pidfd_fget(struct task_struct *task, int fd)
831 {
832 	struct file *file;
833 	int ret;
834 
835 	ret = down_read_killable(&task->signal->exec_update_lock);
836 	if (ret)
837 		return ERR_PTR(ret);
838 
839 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
840 		file = fget_task(task, fd);
841 	else
842 		file = ERR_PTR(-EPERM);
843 
844 	up_read(&task->signal->exec_update_lock);
845 
846 	if (!file) {
847 		/*
848 		 * It is possible that the target thread is exiting; it can be
849 		 * either:
850 		 * 1. before exit_signals(), which gives a real fd
851 		 * 2. before exit_files() takes the task_lock() gives a real fd
852 		 * 3. after exit_files() releases task_lock(), ->files is NULL;
853 		 *    this has PF_EXITING, since it was set in exit_signals(),
854 		 *    __pidfd_fget() returns EBADF.
855 		 * In case 3 we get EBADF, but that really means ESRCH, since
856 		 * the task is currently exiting and has freed its files
857 		 * struct, so we fix it up.
858 		 */
859 		if (task->flags & PF_EXITING)
860 			file = ERR_PTR(-ESRCH);
861 		else
862 			file = ERR_PTR(-EBADF);
863 	}
864 
865 	return file;
866 }
867 
pidfd_getfd(struct pid * pid,int fd)868 static int pidfd_getfd(struct pid *pid, int fd)
869 {
870 	struct task_struct *task;
871 	struct file *file;
872 	int ret;
873 
874 	task = get_pid_task(pid, PIDTYPE_PID);
875 	if (!task)
876 		return -ESRCH;
877 
878 	file = __pidfd_fget(task, fd);
879 	put_task_struct(task);
880 	if (IS_ERR(file))
881 		return PTR_ERR(file);
882 
883 	ret = receive_fd(file, NULL, O_CLOEXEC);
884 	fput(file);
885 
886 	return ret;
887 }
888 
889 /**
890  * sys_pidfd_getfd() - Get a file descriptor from another process
891  *
892  * @pidfd:	the pidfd file descriptor of the process
893  * @fd:		the file descriptor number to get
894  * @flags:	flags on how to get the fd (reserved)
895  *
896  * This syscall gets a copy of a file descriptor from another process
897  * based on the pidfd, and file descriptor number. It requires that
898  * the calling process has the ability to ptrace the process represented
899  * by the pidfd. The process which is having its file descriptor copied
900  * is otherwise unaffected.
901  *
902  * Return: On success, a cloexec file descriptor is returned.
903  *         On error, a negative errno number will be returned.
904  */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)905 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
906 		unsigned int, flags)
907 {
908 	struct pid *pid;
909 
910 	/* flags is currently unused - make sure it's unset */
911 	if (flags)
912 		return -EINVAL;
913 
914 	CLASS(fd, f)(pidfd);
915 	if (fd_empty(f))
916 		return -EBADF;
917 
918 	pid = pidfd_pid(fd_file(f));
919 	if (IS_ERR(pid))
920 		return PTR_ERR(pid);
921 
922 	return pidfd_getfd(pid, fd);
923 }
924