1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37
38 static struct kmem_cache *extent_buffer_cache;
39
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 btrfs_err(fs_info,
79 "buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80 eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
91 #endif
92
93 /*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97 struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 /* Last byte contained in bbio + 1 . */
100 loff_t next_file_offset;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 /*
105 * For data read bios, we attempt to optimize csum lookups if the extent
106 * generation is older than the current one. To make this possible, we
107 * need to track the maximum generation of an extent in a bio_ctrl to
108 * make the decision when submitting the bio.
109 *
110 * The pattern between do_readpage(), submit_one_bio() and
111 * submit_extent_folio() is quite subtle, so tracking this is tricky.
112 *
113 * As we process extent E, we might submit a bio with existing built up
114 * extents before adding E to a new bio, or we might just add E to the
115 * bio. As a result, E's generation could apply to the current bio or
116 * to the next one, so we need to be careful to update the bio_ctrl's
117 * generation with E's only when we are sure E is added to bio_ctrl->bbio
118 * in submit_extent_folio().
119 *
120 * See the comment in btrfs_lookup_bio_sums() for more detail on the
121 * need for this optimization.
122 */
123 u64 generation;
124 btrfs_bio_end_io_t end_io_func;
125 struct writeback_control *wbc;
126
127 /*
128 * The sectors of the page which are going to be submitted by
129 * extent_writepage_io().
130 * This is to avoid touching ranges covered by compression/inline.
131 */
132 unsigned long submit_bitmap;
133 struct readahead_control *ractl;
134
135 /*
136 * The start offset of the last used extent map by a read operation.
137 *
138 * This is for proper compressed read merge.
139 * U64_MAX means we are starting the read and have made no progress yet.
140 *
141 * The current btrfs_bio_is_contig() only uses disk_bytenr as
142 * the condition to check if the read can be merged with previous
143 * bio, which is not correct. E.g. two file extents pointing to the
144 * same extent but with different offset.
145 *
146 * So here we need to do extra checks to only merge reads that are
147 * covered by the same extent map.
148 * Just extent_map::start will be enough, as they are unique
149 * inside the same inode.
150 */
151 u64 last_em_start;
152 };
153
154 /*
155 * Helper to set the csum search commit root option for a bio_ctrl's bbio
156 * before submitting the bio.
157 *
158 * Only for use by submit_one_bio().
159 */
bio_set_csum_search_commit_root(struct btrfs_bio_ctrl * bio_ctrl)160 static void bio_set_csum_search_commit_root(struct btrfs_bio_ctrl *bio_ctrl)
161 {
162 struct btrfs_bio *bbio = bio_ctrl->bbio;
163
164 ASSERT(bbio);
165
166 if (!(btrfs_op(&bbio->bio) == BTRFS_MAP_READ && is_data_inode(bbio->inode)))
167 return;
168
169 bio_ctrl->bbio->csum_search_commit_root =
170 (bio_ctrl->generation &&
171 bio_ctrl->generation < btrfs_get_fs_generation(bbio->inode->root->fs_info));
172 }
173
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)174 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
175 {
176 struct btrfs_bio *bbio = bio_ctrl->bbio;
177
178 if (!bbio)
179 return;
180
181 /* Caller should ensure the bio has at least some range added */
182 ASSERT(bbio->bio.bi_iter.bi_size);
183
184 bio_set_csum_search_commit_root(bio_ctrl);
185
186 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
187 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
188 btrfs_submit_compressed_read(bbio);
189 else
190 btrfs_submit_bbio(bbio, 0);
191
192 /* The bbio is owned by the end_io handler now */
193 bio_ctrl->bbio = NULL;
194 /*
195 * We used the generation to decide whether to lookup csums in the
196 * commit_root or not when we called bio_set_csum_search_commit_root()
197 * above. Now, reset the generation for the next bio.
198 */
199 bio_ctrl->generation = 0;
200 }
201
202 /*
203 * Submit or fail the current bio in the bio_ctrl structure.
204 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)205 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
206 {
207 struct btrfs_bio *bbio = bio_ctrl->bbio;
208
209 if (!bbio)
210 return;
211
212 if (ret) {
213 ASSERT(ret < 0);
214 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
215 /* The bio is owned by the end_io handler now */
216 bio_ctrl->bbio = NULL;
217 } else {
218 submit_one_bio(bio_ctrl);
219 }
220 }
221
extent_buffer_init_cachep(void)222 int __init extent_buffer_init_cachep(void)
223 {
224 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
225 sizeof(struct extent_buffer), 0, 0,
226 NULL);
227 if (!extent_buffer_cache)
228 return -ENOMEM;
229
230 return 0;
231 }
232
extent_buffer_free_cachep(void)233 void __cold extent_buffer_free_cachep(void)
234 {
235 /*
236 * Make sure all delayed rcu free are flushed before we
237 * destroy caches.
238 */
239 rcu_barrier();
240 kmem_cache_destroy(extent_buffer_cache);
241 }
242
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)243 static void process_one_folio(struct btrfs_fs_info *fs_info,
244 struct folio *folio, const struct folio *locked_folio,
245 unsigned long page_ops, u64 start, u64 end)
246 {
247 u32 len;
248
249 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
250 len = end + 1 - start;
251
252 if (page_ops & PAGE_SET_ORDERED)
253 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
254 if (page_ops & PAGE_START_WRITEBACK) {
255 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
256 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
257 }
258 if (page_ops & PAGE_END_WRITEBACK)
259 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
260
261 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
262 btrfs_folio_end_lock(fs_info, folio, start, len);
263 }
264
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)265 static void __process_folios_contig(struct address_space *mapping,
266 const struct folio *locked_folio, u64 start,
267 u64 end, unsigned long page_ops)
268 {
269 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
270 pgoff_t index = start >> PAGE_SHIFT;
271 pgoff_t end_index = end >> PAGE_SHIFT;
272 struct folio_batch fbatch;
273 int i;
274
275 folio_batch_init(&fbatch);
276 while (index <= end_index) {
277 int found_folios;
278
279 found_folios = filemap_get_folios_contig(mapping, &index,
280 end_index, &fbatch);
281 for (i = 0; i < found_folios; i++) {
282 struct folio *folio = fbatch.folios[i];
283
284 process_one_folio(fs_info, folio, locked_folio,
285 page_ops, start, end);
286 }
287 folio_batch_release(&fbatch);
288 cond_resched();
289 }
290 }
291
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)292 static noinline void unlock_delalloc_folio(const struct inode *inode,
293 struct folio *locked_folio,
294 u64 start, u64 end)
295 {
296 ASSERT(locked_folio);
297
298 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
299 PAGE_UNLOCK);
300 }
301
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)302 static noinline int lock_delalloc_folios(struct inode *inode,
303 struct folio *locked_folio,
304 u64 start, u64 end)
305 {
306 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
307 struct address_space *mapping = inode->i_mapping;
308 pgoff_t index = start >> PAGE_SHIFT;
309 pgoff_t end_index = end >> PAGE_SHIFT;
310 u64 processed_end = start;
311 struct folio_batch fbatch;
312
313 folio_batch_init(&fbatch);
314 while (index <= end_index) {
315 unsigned int found_folios, i;
316
317 found_folios = filemap_get_folios_contig(mapping, &index,
318 end_index, &fbatch);
319 if (found_folios == 0)
320 goto out;
321
322 for (i = 0; i < found_folios; i++) {
323 struct folio *folio = fbatch.folios[i];
324 u64 range_start;
325 u32 range_len;
326
327 if (folio == locked_folio)
328 continue;
329
330 folio_lock(folio);
331 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
332 folio_unlock(folio);
333 goto out;
334 }
335 range_start = max_t(u64, folio_pos(folio), start);
336 range_len = min_t(u64, folio_next_pos(folio), end + 1) - range_start;
337 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
338
339 processed_end = range_start + range_len - 1;
340 }
341 folio_batch_release(&fbatch);
342 cond_resched();
343 }
344
345 return 0;
346 out:
347 folio_batch_release(&fbatch);
348 if (processed_end > start)
349 unlock_delalloc_folio(inode, locked_folio, start, processed_end);
350 return -EAGAIN;
351 }
352
353 /*
354 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
355 * more than @max_bytes.
356 *
357 * @start: The original start bytenr to search.
358 * Will store the extent range start bytenr.
359 * @end: The original end bytenr of the search range
360 * Will store the extent range end bytenr.
361 *
362 * Return true if we find a delalloc range which starts inside the original
363 * range, and @start/@end will store the delalloc range start/end.
364 *
365 * Return false if we can't find any delalloc range which starts inside the
366 * original range, and @start/@end will be the non-delalloc range start/end.
367 */
368 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)369 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
370 struct folio *locked_folio,
371 u64 *start, u64 *end)
372 {
373 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
375 const u64 orig_start = *start;
376 const u64 orig_end = *end;
377 u64 max_bytes = fs_info->max_extent_size;
378 u64 delalloc_start;
379 u64 delalloc_end;
380 bool found;
381 struct extent_state *cached_state = NULL;
382 int ret;
383 int loops = 0;
384
385 /* Caller should pass a valid @end to indicate the search range end */
386 ASSERT(orig_end > orig_start);
387
388 /* The range should at least cover part of the folio */
389 ASSERT(!(orig_start >= folio_next_pos(locked_folio) ||
390 orig_end <= folio_pos(locked_folio)));
391 again:
392 /* step one, find a bunch of delalloc bytes starting at start */
393 delalloc_start = *start;
394 delalloc_end = 0;
395
396 /*
397 * If @max_bytes is smaller than a block, btrfs_find_delalloc_range() can
398 * return early without handling any dirty ranges.
399 */
400 ASSERT(max_bytes >= fs_info->sectorsize);
401
402 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
403 max_bytes, &cached_state);
404 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
405 *start = delalloc_start;
406
407 /* @delalloc_end can be -1, never go beyond @orig_end */
408 *end = min(delalloc_end, orig_end);
409 btrfs_free_extent_state(cached_state);
410 return false;
411 }
412
413 /*
414 * start comes from the offset of locked_folio. We have to lock
415 * folios in order, so we can't process delalloc bytes before
416 * locked_folio
417 */
418 if (delalloc_start < *start)
419 delalloc_start = *start;
420
421 /*
422 * make sure to limit the number of folios we try to lock down
423 */
424 if (delalloc_end + 1 - delalloc_start > max_bytes)
425 delalloc_end = delalloc_start + max_bytes - 1;
426
427 /* step two, lock all the folios after the folios that has start */
428 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
429 delalloc_end);
430 ASSERT(!ret || ret == -EAGAIN);
431 if (ret == -EAGAIN) {
432 /*
433 * Some of the folios are gone, lets avoid looping by
434 * shortening the size of the delalloc range we're searching.
435 */
436 btrfs_free_extent_state(cached_state);
437 cached_state = NULL;
438 if (!loops) {
439 max_bytes = fs_info->sectorsize;
440 loops = 1;
441 goto again;
442 } else {
443 return false;
444 }
445 }
446
447 /* step three, lock the state bits for the whole range */
448 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
449
450 /* then test to make sure it is all still delalloc */
451 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
452 EXTENT_DELALLOC, cached_state);
453
454 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
455 if (!ret) {
456 unlock_delalloc_folio(inode, locked_folio, delalloc_start,
457 delalloc_end);
458 cond_resched();
459 goto again;
460 }
461 *start = delalloc_start;
462 *end = delalloc_end;
463
464 return found;
465 }
466
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)467 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
468 const struct folio *locked_folio,
469 struct extent_state **cached,
470 u32 clear_bits, unsigned long page_ops)
471 {
472 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
473
474 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
475 end, page_ops);
476 }
477
btrfs_verify_folio(struct fsverity_info * vi,struct folio * folio,u64 start,u32 len)478 static bool btrfs_verify_folio(struct fsverity_info *vi, struct folio *folio,
479 u64 start, u32 len)
480 {
481 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
482
483 if (!vi || btrfs_folio_test_uptodate(fs_info, folio, start, len))
484 return true;
485 return fsverity_verify_folio(vi, folio);
486 }
487
end_folio_read(struct fsverity_info * vi,struct folio * folio,bool uptodate,u64 start,u32 len)488 static void end_folio_read(struct fsverity_info *vi, struct folio *folio,
489 bool uptodate, u64 start, u32 len)
490 {
491 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
492
493 ASSERT(folio_pos(folio) <= start &&
494 start + len <= folio_next_pos(folio));
495
496 if (uptodate && btrfs_verify_folio(vi, folio, start, len))
497 btrfs_folio_set_uptodate(fs_info, folio, start, len);
498 else
499 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
500
501 if (!btrfs_is_subpage(fs_info, folio))
502 folio_unlock(folio);
503 else
504 btrfs_folio_end_lock(fs_info, folio, start, len);
505 }
506
507 /*
508 * After a write IO is done, we need to:
509 *
510 * - clear the uptodate bits on error
511 * - clear the writeback bits in the extent tree for the range
512 * - filio_end_writeback() if there is no more pending io for the folio
513 *
514 * Scheduling is not allowed, so the extent state tree is expected
515 * to have one and only one object corresponding to this IO.
516 */
end_bbio_data_write(struct btrfs_bio * bbio)517 static void end_bbio_data_write(struct btrfs_bio *bbio)
518 {
519 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
520 struct bio *bio = &bbio->bio;
521 int error = blk_status_to_errno(bio->bi_status);
522 struct folio_iter fi;
523 const u32 sectorsize = fs_info->sectorsize;
524
525 ASSERT(!bio_flagged(bio, BIO_CLONED));
526 bio_for_each_folio_all(fi, bio) {
527 struct folio *folio = fi.folio;
528 u64 start = folio_pos(folio) + fi.offset;
529 u32 len = fi.length;
530
531 /* Our read/write should always be sector aligned. */
532 if (!IS_ALIGNED(fi.offset, sectorsize))
533 btrfs_err(fs_info,
534 "partial page write in btrfs with offset %zu and length %zu",
535 fi.offset, fi.length);
536 else if (!IS_ALIGNED(fi.length, sectorsize))
537 btrfs_info(fs_info,
538 "incomplete page write with offset %zu and length %zu",
539 fi.offset, fi.length);
540
541 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
542 !error);
543 if (error)
544 mapping_set_error(folio->mapping, error);
545 btrfs_folio_clear_writeback(fs_info, folio, start, len);
546 }
547
548 bio_put(bio);
549 }
550
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)551 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
552 {
553 ASSERT(folio_test_locked(folio));
554 if (!btrfs_is_subpage(fs_info, folio))
555 return;
556
557 ASSERT(folio_test_private(folio));
558 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
559 }
560
561 /*
562 * After a data read IO is done, we need to:
563 *
564 * - clear the uptodate bits on error
565 * - set the uptodate bits if things worked
566 * - set the folio up to date if all extents in the tree are uptodate
567 * - clear the lock bit in the extent tree
568 * - unlock the folio if there are no other extents locked for it
569 *
570 * Scheduling is not allowed, so the extent state tree is expected
571 * to have one and only one object corresponding to this IO.
572 */
end_bbio_data_read(struct btrfs_bio * bbio)573 static void end_bbio_data_read(struct btrfs_bio *bbio)
574 {
575 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
576 struct inode *inode = &bbio->inode->vfs_inode;
577 struct bio *bio = &bbio->bio;
578 struct fsverity_info *vi = NULL;
579 struct folio_iter fi;
580
581 ASSERT(!bio_flagged(bio, BIO_CLONED));
582
583 if (bbio->file_offset < i_size_read(inode))
584 vi = fsverity_get_info(inode);
585
586 bio_for_each_folio_all(fi, &bbio->bio) {
587 bool uptodate = !bio->bi_status;
588 struct folio *folio = fi.folio;
589 u64 start = folio_pos(folio) + fi.offset;
590
591 btrfs_debug(fs_info,
592 "%s: bi_sector=%llu, err=%d, mirror=%u",
593 __func__, bio->bi_iter.bi_sector, bio->bi_status,
594 bbio->mirror_num);
595
596
597 if (likely(uptodate)) {
598 u64 end = start + fi.length - 1;
599 loff_t i_size = i_size_read(inode);
600
601 /*
602 * Zero out the remaining part if this range straddles
603 * i_size.
604 *
605 * Here we should only zero the range inside the folio,
606 * not touch anything else.
607 *
608 * NOTE: i_size is exclusive while end is inclusive and
609 * folio_contains() takes PAGE_SIZE units.
610 */
611 if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
612 i_size <= end) {
613 u32 zero_start = max(offset_in_folio(folio, i_size),
614 offset_in_folio(folio, start));
615 u32 zero_len = offset_in_folio(folio, end) + 1 -
616 zero_start;
617
618 folio_zero_range(folio, zero_start, zero_len);
619 }
620 }
621
622 /* Update page status and unlock. */
623 end_folio_read(vi, folio, uptodate, start, fi.length);
624 }
625 bio_put(bio);
626 }
627
628 /*
629 * Populate every free slot in a provided array with folios using GFP_NOFS.
630 *
631 * @nr_folios: number of folios to allocate
632 * @order: the order of the folios to be allocated
633 * @folio_array: the array to fill with folios; any existing non-NULL entries in
634 * the array will be skipped
635 *
636 * Return: 0 if all folios were able to be allocated;
637 * -ENOMEM otherwise, the partially allocated folios would be freed and
638 * the array slots zeroed
639 */
btrfs_alloc_folio_array(unsigned int nr_folios,unsigned int order,struct folio ** folio_array)640 int btrfs_alloc_folio_array(unsigned int nr_folios, unsigned int order,
641 struct folio **folio_array)
642 {
643 for (int i = 0; i < nr_folios; i++) {
644 if (folio_array[i])
645 continue;
646 folio_array[i] = folio_alloc(GFP_NOFS, order);
647 if (!folio_array[i])
648 goto error;
649 }
650 return 0;
651 error:
652 for (int i = 0; i < nr_folios; i++) {
653 if (folio_array[i])
654 folio_put(folio_array[i]);
655 folio_array[i] = NULL;
656 }
657 return -ENOMEM;
658 }
659
660 /*
661 * Populate every free slot in a provided array with pages, using GFP_NOFS.
662 *
663 * @nr_pages: number of pages to allocate
664 * @page_array: the array to fill with pages; any existing non-null entries in
665 * the array will be skipped
666 * @nofail: whether using __GFP_NOFAIL flag
667 *
668 * Return: 0 if all pages were able to be allocated;
669 * -ENOMEM otherwise, the partially allocated pages would be freed and
670 * the array slots zeroed
671 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)672 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
673 bool nofail)
674 {
675 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
676 unsigned int allocated;
677
678 for (allocated = 0; allocated < nr_pages;) {
679 unsigned int last = allocated;
680
681 allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
682 if (unlikely(allocated == last)) {
683 /* No progress, fail and do cleanup. */
684 for (int i = 0; i < allocated; i++) {
685 __free_page(page_array[i]);
686 page_array[i] = NULL;
687 }
688 return -ENOMEM;
689 }
690 }
691 return 0;
692 }
693
694 /*
695 * Populate needed folios for the extent buffer.
696 *
697 * For now, the folios populated are always in order 0 (aka, single page).
698 */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)699 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
700 {
701 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
702 int num_pages = num_extent_pages(eb);
703 int ret;
704
705 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
706 if (ret < 0)
707 return ret;
708
709 for (int i = 0; i < num_pages; i++)
710 eb->folios[i] = page_folio(page_array[i]);
711 eb->folio_size = PAGE_SIZE;
712 eb->folio_shift = PAGE_SHIFT;
713 return 0;
714 }
715
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)716 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
717 u64 disk_bytenr, loff_t file_offset)
718 {
719 struct bio *bio = &bio_ctrl->bbio->bio;
720 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
721
722 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
723 /*
724 * For compression, all IO should have its logical bytenr set
725 * to the starting bytenr of the compressed extent.
726 */
727 return bio->bi_iter.bi_sector == sector;
728 }
729
730 /*
731 * To merge into a bio both the disk sector and the logical offset in
732 * the file need to be contiguous.
733 */
734 return bio_ctrl->next_file_offset == file_offset &&
735 bio_end_sector(bio) == sector;
736 }
737
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)738 static void alloc_new_bio(struct btrfs_inode *inode,
739 struct btrfs_bio_ctrl *bio_ctrl,
740 u64 disk_bytenr, u64 file_offset)
741 {
742 struct btrfs_fs_info *fs_info = inode->root->fs_info;
743 struct btrfs_bio *bbio;
744
745 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, inode,
746 file_offset, bio_ctrl->end_io_func, NULL);
747 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
748 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
749 bio_ctrl->bbio = bbio;
750 bio_ctrl->len_to_oe_boundary = U32_MAX;
751 bio_ctrl->next_file_offset = file_offset;
752
753 /* Limit data write bios to the ordered boundary. */
754 if (bio_ctrl->wbc) {
755 struct btrfs_ordered_extent *ordered;
756
757 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
758 if (ordered) {
759 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
760 ordered->file_offset +
761 ordered->disk_num_bytes - file_offset);
762 bbio->ordered = ordered;
763 }
764
765 /*
766 * Pick the last added device to support cgroup writeback. For
767 * multi-device file systems this means blk-cgroup policies have
768 * to always be set on the last added/replaced device.
769 * This is a bit odd but has been like that for a long time.
770 */
771 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
772 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
773 }
774 }
775
776 /*
777 * @disk_bytenr: logical bytenr where the write will be
778 * @page: page to add to the bio
779 * @size: portion of page that we want to write to
780 * @pg_offset: offset of the new bio or to check whether we are adding
781 * a contiguous page to the previous one
782 * @read_em_generation: generation of the extent_map we are submitting
783 * (only used for read)
784 *
785 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
786 * new one in @bio_ctrl->bbio.
787 * The mirror number for this IO should already be initialized in
788 * @bio_ctrl->mirror_num.
789 */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset,u64 read_em_generation)790 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
791 u64 disk_bytenr, struct folio *folio,
792 size_t size, unsigned long pg_offset,
793 u64 read_em_generation)
794 {
795 struct btrfs_inode *inode = folio_to_inode(folio);
796 loff_t file_offset = folio_pos(folio) + pg_offset;
797
798 ASSERT(pg_offset + size <= folio_size(folio));
799 ASSERT(bio_ctrl->end_io_func);
800
801 if (bio_ctrl->bbio &&
802 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
803 submit_one_bio(bio_ctrl);
804
805 do {
806 u32 len = size;
807
808 /* Allocate new bio if needed */
809 if (!bio_ctrl->bbio)
810 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
811
812 /* Cap to the current ordered extent boundary if there is one. */
813 if (len > bio_ctrl->len_to_oe_boundary) {
814 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
815 ASSERT(is_data_inode(inode));
816 len = bio_ctrl->len_to_oe_boundary;
817 }
818
819 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
820 /* bio full: move on to a new one */
821 submit_one_bio(bio_ctrl);
822 continue;
823 }
824 /*
825 * Now that the folio is definitely added to the bio, include its
826 * generation in the max generation calculation.
827 */
828 bio_ctrl->generation = max(bio_ctrl->generation, read_em_generation);
829 bio_ctrl->next_file_offset += len;
830
831 if (bio_ctrl->wbc)
832 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
833
834 size -= len;
835 pg_offset += len;
836 disk_bytenr += len;
837 file_offset += len;
838
839 /*
840 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
841 * sector aligned. alloc_new_bio() then sets it to the end of
842 * our ordered extent for writes into zoned devices.
843 *
844 * When len_to_oe_boundary is tracking an ordered extent, we
845 * trust the ordered extent code to align things properly, and
846 * the check above to cap our write to the ordered extent
847 * boundary is correct.
848 *
849 * When len_to_oe_boundary is U32_MAX, the cap above would
850 * result in a 4095 byte IO for the last folio right before
851 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
852 * the checks required to make sure we don't overflow the bio,
853 * and we should just ignore len_to_oe_boundary completely
854 * unless we're using it to track an ordered extent.
855 *
856 * It's pretty hard to make a bio sized U32_MAX, but it can
857 * happen when the page cache is able to feed us contiguous
858 * folios for large extents.
859 */
860 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
861 bio_ctrl->len_to_oe_boundary -= len;
862
863 /* Ordered extent boundary: move on to a new bio. */
864 if (bio_ctrl->len_to_oe_boundary == 0)
865 submit_one_bio(bio_ctrl);
866 } while (size);
867 }
868
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_folio_state * prealloc)869 static int attach_extent_buffer_folio(struct extent_buffer *eb,
870 struct folio *folio,
871 struct btrfs_folio_state *prealloc)
872 {
873 struct btrfs_fs_info *fs_info = eb->fs_info;
874 int ret = 0;
875
876 /*
877 * If the page is mapped to btree inode, we should hold the private
878 * lock to prevent race.
879 * For cloned or dummy extent buffers, their pages are not mapped and
880 * will not race with any other ebs.
881 */
882 if (folio->mapping)
883 lockdep_assert_held(&folio->mapping->i_private_lock);
884
885 if (!btrfs_meta_is_subpage(fs_info)) {
886 if (!folio_test_private(folio))
887 folio_attach_private(folio, eb);
888 else
889 WARN_ON(folio_get_private(folio) != eb);
890 return 0;
891 }
892
893 /* Already mapped, just free prealloc */
894 if (folio_test_private(folio)) {
895 btrfs_free_folio_state(prealloc);
896 return 0;
897 }
898
899 if (prealloc)
900 /* Has preallocated memory for subpage */
901 folio_attach_private(folio, prealloc);
902 else
903 /* Do new allocation to attach subpage */
904 ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
905 return ret;
906 }
907
set_folio_extent_mapped(struct folio * folio)908 int set_folio_extent_mapped(struct folio *folio)
909 {
910 struct btrfs_fs_info *fs_info;
911
912 ASSERT(folio->mapping);
913
914 if (folio_test_private(folio))
915 return 0;
916
917 fs_info = folio_to_fs_info(folio);
918
919 if (btrfs_is_subpage(fs_info, folio))
920 return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
921
922 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
923 return 0;
924 }
925
clear_folio_extent_mapped(struct folio * folio)926 void clear_folio_extent_mapped(struct folio *folio)
927 {
928 struct btrfs_fs_info *fs_info;
929
930 ASSERT(folio->mapping);
931
932 if (!folio_test_private(folio))
933 return;
934
935 fs_info = folio_to_fs_info(folio);
936 if (btrfs_is_subpage(fs_info, folio))
937 return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
938
939 folio_detach_private(folio);
940 }
941
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)942 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
943 struct folio *folio, u64 start,
944 u64 len, struct extent_map **em_cached)
945 {
946 struct extent_map *em;
947
948 ASSERT(em_cached);
949
950 if (*em_cached) {
951 em = *em_cached;
952 if (btrfs_extent_map_in_tree(em) && start >= em->start &&
953 start < btrfs_extent_map_end(em)) {
954 refcount_inc(&em->refs);
955 return em;
956 }
957
958 btrfs_free_extent_map(em);
959 *em_cached = NULL;
960 }
961
962 em = btrfs_get_extent(inode, folio, start, len);
963 if (!IS_ERR(em)) {
964 BUG_ON(*em_cached);
965 refcount_inc(&em->refs);
966 *em_cached = em;
967 }
968
969 return em;
970 }
971
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)972 static void btrfs_readahead_expand(struct readahead_control *ractl,
973 const struct extent_map *em)
974 {
975 const u64 ra_pos = readahead_pos(ractl);
976 const u64 ra_end = ra_pos + readahead_length(ractl);
977 const u64 em_end = btrfs_extent_map_end(em);
978
979 /* No expansion for holes and inline extents. */
980 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
981 return;
982
983 ASSERT(em_end >= ra_pos,
984 "extent_map %llu %llu ends before current readahead position %llu",
985 em->start, em->len, ra_pos);
986 if (em_end > ra_end)
987 readahead_expand(ractl, ra_pos, em_end - ra_pos);
988 }
989
990 /*
991 * basic readpage implementation. Locked extent state structs are inserted
992 * into the tree that are removed when the IO is done (by the end_io
993 * handlers)
994 * XXX JDM: This needs looking at to ensure proper page locking
995 * return 0 on success, otherwise return error
996 */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,struct fsverity_info * vi)997 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
998 struct btrfs_bio_ctrl *bio_ctrl,
999 struct fsverity_info *vi)
1000 {
1001 struct inode *inode = folio->mapping->host;
1002 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1003 u64 start = folio_pos(folio);
1004 const u64 end = start + folio_size(folio) - 1;
1005 u64 extent_offset;
1006 u64 locked_end;
1007 u64 last_byte = i_size_read(inode);
1008 struct extent_map *em;
1009 int ret = 0;
1010 const size_t blocksize = fs_info->sectorsize;
1011
1012 if (bio_ctrl->ractl)
1013 locked_end = readahead_pos(bio_ctrl->ractl) + readahead_length(bio_ctrl->ractl) - 1;
1014 else
1015 locked_end = end;
1016
1017 ret = set_folio_extent_mapped(folio);
1018 if (ret < 0) {
1019 folio_unlock(folio);
1020 return ret;
1021 }
1022
1023 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
1024 size_t zero_offset = offset_in_folio(folio, last_byte);
1025
1026 if (zero_offset)
1027 folio_zero_range(folio, zero_offset,
1028 folio_size(folio) - zero_offset);
1029 }
1030 bio_ctrl->end_io_func = end_bbio_data_read;
1031 begin_folio_read(fs_info, folio);
1032 for (u64 cur = start; cur <= end; cur += blocksize) {
1033 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1034 unsigned long pg_offset = offset_in_folio(folio, cur);
1035 bool force_bio_submit = false;
1036 u64 disk_bytenr;
1037 u64 block_start;
1038 u64 em_gen;
1039
1040 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1041 if (cur >= last_byte) {
1042 folio_zero_range(folio, pg_offset, end - cur + 1);
1043 end_folio_read(vi, folio, true, cur, end - cur + 1);
1044 break;
1045 }
1046 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1047 end_folio_read(vi, folio, true, cur, blocksize);
1048 continue;
1049 }
1050 /*
1051 * Search extent map for the whole locked range.
1052 * This will allow btrfs_get_extent() to return a larger hole
1053 * when possible.
1054 * This can reduce duplicated btrfs_get_extent() calls for large
1055 * holes.
1056 */
1057 em = get_extent_map(BTRFS_I(inode), folio, cur, locked_end - cur + 1, em_cached);
1058 if (IS_ERR(em)) {
1059 end_folio_read(vi, folio, false, cur, end + 1 - cur);
1060 return PTR_ERR(em);
1061 }
1062 extent_offset = cur - em->start;
1063 BUG_ON(btrfs_extent_map_end(em) <= cur);
1064 BUG_ON(end < cur);
1065
1066 compress_type = btrfs_extent_map_compression(em);
1067
1068 /*
1069 * Only expand readahead for extents which are already creating
1070 * the pages anyway in add_ra_bio_pages, which is compressed
1071 * extents in the non subpage case.
1072 */
1073 if (bio_ctrl->ractl &&
1074 !btrfs_is_subpage(fs_info, folio) &&
1075 compress_type != BTRFS_COMPRESS_NONE)
1076 btrfs_readahead_expand(bio_ctrl->ractl, em);
1077
1078 if (compress_type != BTRFS_COMPRESS_NONE)
1079 disk_bytenr = em->disk_bytenr;
1080 else
1081 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1082
1083 if (em->flags & EXTENT_FLAG_PREALLOC)
1084 block_start = EXTENT_MAP_HOLE;
1085 else
1086 block_start = btrfs_extent_map_block_start(em);
1087
1088 /*
1089 * If we have a file range that points to a compressed extent
1090 * and it's followed by a consecutive file range that points
1091 * to the same compressed extent (possibly with a different
1092 * offset and/or length, so it either points to the whole extent
1093 * or only part of it), we must make sure we do not submit a
1094 * single bio to populate the folios for the 2 ranges because
1095 * this makes the compressed extent read zero out the folios
1096 * belonging to the 2nd range. Imagine the following scenario:
1097 *
1098 * File layout
1099 * [0 - 8K] [8K - 24K]
1100 * | |
1101 * | |
1102 * points to extent X, points to extent X,
1103 * offset 4K, length of 8K offset 0, length 16K
1104 *
1105 * [extent X, compressed length = 4K uncompressed length = 16K]
1106 *
1107 * If the bio to read the compressed extent covers both ranges,
1108 * it will decompress extent X into the folios belonging to the
1109 * first range and then it will stop, zeroing out the remaining
1110 * folios that belong to the other range that points to extent X.
1111 * So here we make sure we submit 2 bios, one for the first
1112 * range and another one for the third range. Both will target
1113 * the same physical extent from disk, but we can't currently
1114 * make the compressed bio endio callback populate the folios
1115 * for both ranges because each compressed bio is tightly
1116 * coupled with a single extent map, and each range can have
1117 * an extent map with a different offset value relative to the
1118 * uncompressed data of our extent and different lengths. This
1119 * is a corner case so we prioritize correctness over
1120 * non-optimal behavior (submitting 2 bios for the same extent).
1121 */
1122 if (compress_type != BTRFS_COMPRESS_NONE &&
1123 bio_ctrl->last_em_start != U64_MAX &&
1124 bio_ctrl->last_em_start != em->start)
1125 force_bio_submit = true;
1126
1127 bio_ctrl->last_em_start = em->start;
1128
1129 em_gen = em->generation;
1130 btrfs_free_extent_map(em);
1131 em = NULL;
1132
1133 /* we've found a hole, just zero and go on */
1134 if (block_start == EXTENT_MAP_HOLE) {
1135 folio_zero_range(folio, pg_offset, blocksize);
1136 end_folio_read(vi, folio, true, cur, blocksize);
1137 continue;
1138 }
1139 /* the get_extent function already copied into the folio */
1140 if (block_start == EXTENT_MAP_INLINE) {
1141 end_folio_read(vi, folio, true, cur, blocksize);
1142 continue;
1143 }
1144
1145 if (bio_ctrl->compress_type != compress_type) {
1146 submit_one_bio(bio_ctrl);
1147 bio_ctrl->compress_type = compress_type;
1148 }
1149
1150 if (force_bio_submit)
1151 submit_one_bio(bio_ctrl);
1152 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1153 pg_offset, em_gen);
1154 }
1155 return 0;
1156 }
1157
1158 /*
1159 * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1160 *
1161 * @fileoff: Both input and output.
1162 * Input as the file offset where the check should start at.
1163 * Output as where the next check should start at,
1164 * if the function returns true.
1165 *
1166 * Return true if we can skip to @fileoff. The caller needs to check the new
1167 * @fileoff value to make sure it covers the full range, before skipping the
1168 * full OE.
1169 *
1170 * Return false if we must wait for the ordered extent.
1171 */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1172 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1173 struct btrfs_ordered_extent *ordered,
1174 u64 *fileoff)
1175 {
1176 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1177 struct folio *folio;
1178 const u32 blocksize = fs_info->sectorsize;
1179 u64 cur = *fileoff;
1180 bool ret;
1181
1182 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1183
1184 /*
1185 * We should have locked the folio(s) for range [start, end], thus
1186 * there must be a folio and it must be locked.
1187 */
1188 ASSERT(!IS_ERR(folio));
1189 ASSERT(folio_test_locked(folio));
1190
1191 /*
1192 * There are several cases for the folio and OE combination:
1193 *
1194 * 1) Folio has no private flag
1195 * The OE has all its IO done but not yet finished, and folio got
1196 * invalidated.
1197 *
1198 * Have we have to wait for the OE to finish, as it may contain the
1199 * to-be-inserted data checksum.
1200 * Without the data checksum inserted into the csum tree, read will
1201 * just fail with missing csum.
1202 */
1203 if (!folio_test_private(folio)) {
1204 ret = false;
1205 goto out;
1206 }
1207
1208 /*
1209 * 2) The first block is DIRTY.
1210 *
1211 * This means the OE is created by some other folios whose file pos is
1212 * before this one. And since we are holding the folio lock, the writeback
1213 * of this folio cannot start.
1214 *
1215 * We must skip the whole OE, because it will never start until we
1216 * finished our folio read and unlocked the folio.
1217 */
1218 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1219 u64 range_len = umin(folio_next_pos(folio),
1220 ordered->file_offset + ordered->num_bytes) - cur;
1221
1222 ret = true;
1223 /*
1224 * At least inside the folio, all the remaining blocks should
1225 * also be dirty.
1226 */
1227 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1228 *fileoff = ordered->file_offset + ordered->num_bytes;
1229 goto out;
1230 }
1231
1232 /*
1233 * 3) The first block is uptodate.
1234 *
1235 * At least the first block can be skipped, but we are still not fully
1236 * sure. E.g. if the OE has some other folios in the range that cannot
1237 * be skipped.
1238 * So we return true and update @next_ret to the OE/folio boundary.
1239 */
1240 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1241 u64 range_len = umin(folio_next_pos(folio),
1242 ordered->file_offset + ordered->num_bytes) - cur;
1243
1244 /*
1245 * The whole range to the OE end or folio boundary should also
1246 * be uptodate.
1247 */
1248 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1249 ret = true;
1250 *fileoff = cur + range_len;
1251 goto out;
1252 }
1253
1254 /*
1255 * 4) The first block is not uptodate.
1256 *
1257 * This means the folio is invalidated after the writeback was finished,
1258 * but by some other operations (e.g. block aligned buffered write) the
1259 * folio is inserted into filemap.
1260 * Very much the same as case 1).
1261 */
1262 ret = false;
1263 out:
1264 folio_put(folio);
1265 return ret;
1266 }
1267
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1268 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1269 struct btrfs_ordered_extent *ordered,
1270 u64 start, u64 end)
1271 {
1272 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1273 u64 cur = max(start, ordered->file_offset);
1274
1275 while (cur < range_end) {
1276 bool can_skip;
1277
1278 can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1279 if (!can_skip)
1280 return false;
1281 }
1282 return true;
1283 }
1284
1285 /*
1286 * Locking helper to make sure we get a stable view of extent maps for the
1287 * involved range.
1288 *
1289 * This is for folio read paths (read and readahead), thus the involved range
1290 * should have all the folios locked.
1291 */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1292 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1293 struct extent_state **cached_state)
1294 {
1295 u64 cur_pos;
1296
1297 /* Caller must provide a valid @cached_state. */
1298 ASSERT(cached_state);
1299
1300 /* The range must at least be page aligned, as all read paths are folio based. */
1301 ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1302 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1303
1304 again:
1305 btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1306 cur_pos = start;
1307 while (cur_pos < end) {
1308 struct btrfs_ordered_extent *ordered;
1309
1310 ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1311 end - cur_pos + 1);
1312 /*
1313 * No ordered extents in the range, and we hold the extent lock,
1314 * no one can modify the extent maps in the range, we're safe to return.
1315 */
1316 if (!ordered)
1317 break;
1318
1319 /* Check if we can skip waiting for the whole OE. */
1320 if (can_skip_ordered_extent(inode, ordered, start, end)) {
1321 cur_pos = min(ordered->file_offset + ordered->num_bytes,
1322 end + 1);
1323 btrfs_put_ordered_extent(ordered);
1324 continue;
1325 }
1326
1327 /* Now wait for the OE to finish. */
1328 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1329 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1330 btrfs_put_ordered_extent(ordered);
1331 /* We have unlocked the whole range, restart from the beginning. */
1332 goto again;
1333 }
1334 }
1335
btrfs_read_folio(struct file * file,struct folio * folio)1336 int btrfs_read_folio(struct file *file, struct folio *folio)
1337 {
1338 struct inode *vfs_inode = folio->mapping->host;
1339 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1340 const u64 start = folio_pos(folio);
1341 const u64 end = start + folio_size(folio) - 1;
1342 struct extent_state *cached_state = NULL;
1343 struct btrfs_bio_ctrl bio_ctrl = {
1344 .opf = REQ_OP_READ,
1345 .last_em_start = U64_MAX,
1346 };
1347 struct extent_map *em_cached = NULL;
1348 struct fsverity_info *vi = NULL;
1349 int ret;
1350
1351 lock_extents_for_read(inode, start, end, &cached_state);
1352 if (folio_pos(folio) < i_size_read(vfs_inode))
1353 vi = fsverity_get_info(vfs_inode);
1354 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, vi);
1355 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1356
1357 btrfs_free_extent_map(em_cached);
1358
1359 /*
1360 * If btrfs_do_readpage() failed we will want to submit the assembled
1361 * bio to do the cleanup.
1362 */
1363 submit_one_bio(&bio_ctrl);
1364 return ret;
1365 }
1366
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1367 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1368 u64 start, u32 len)
1369 {
1370 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1371 const u64 folio_start = folio_pos(folio);
1372 unsigned int start_bit;
1373 unsigned int nbits;
1374
1375 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1376 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1377 nbits = len >> fs_info->sectorsize_bits;
1378 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1379 bitmap_set(delalloc_bitmap, start_bit, nbits);
1380 }
1381
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1382 static bool find_next_delalloc_bitmap(struct folio *folio,
1383 unsigned long *delalloc_bitmap, u64 start,
1384 u64 *found_start, u32 *found_len)
1385 {
1386 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1387 const u64 folio_start = folio_pos(folio);
1388 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1389 unsigned int start_bit;
1390 unsigned int first_zero;
1391 unsigned int first_set;
1392
1393 ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1394
1395 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1396 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1397 if (first_set >= bitmap_size)
1398 return false;
1399
1400 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1401 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1402 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1403 return true;
1404 }
1405
1406 /*
1407 * Do all of the delayed allocation setup.
1408 *
1409 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1410 * The @folio should no longer be touched (treat it as already unlocked).
1411 *
1412 * Return 0 if there is still dirty block that needs to be submitted through
1413 * extent_writepage_io().
1414 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1415 * submitted, and @folio is still kept locked.
1416 *
1417 * Return <0 if there is any error hit.
1418 * Any allocated ordered extent range covering this folio will be marked
1419 * finished (IOERR), and @folio is still kept locked.
1420 */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1421 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1422 struct folio *folio,
1423 struct btrfs_bio_ctrl *bio_ctrl)
1424 {
1425 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1426 struct writeback_control *wbc = bio_ctrl->wbc;
1427 const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1428 const u64 page_start = folio_pos(folio);
1429 const u64 page_end = page_start + folio_size(folio) - 1;
1430 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1431 unsigned long delalloc_bitmap = 0;
1432 /*
1433 * Save the last found delalloc end. As the delalloc end can go beyond
1434 * page boundary, thus we cannot rely on subpage bitmap to locate the
1435 * last delalloc end.
1436 */
1437 u64 last_delalloc_end = 0;
1438 /*
1439 * The range end (exclusive) of the last successfully finished delalloc
1440 * range.
1441 * Any range covered by ordered extent must either be manually marked
1442 * finished (error handling), or has IO submitted (and finish the
1443 * ordered extent normally).
1444 *
1445 * This records the end of ordered extent cleanup if we hit an error.
1446 */
1447 u64 last_finished_delalloc_end = page_start;
1448 u64 delalloc_start = page_start;
1449 u64 delalloc_end = page_end;
1450 u64 delalloc_to_write = 0;
1451 unsigned int start_bit;
1452 unsigned int end_bit;
1453 int ret = 0;
1454
1455 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1456 if (btrfs_is_subpage(fs_info, folio)) {
1457 ASSERT(blocks_per_folio > 1);
1458 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1459 } else {
1460 bio_ctrl->submit_bitmap = 1;
1461 }
1462
1463 for_each_set_bitrange(start_bit, end_bit, &bio_ctrl->submit_bitmap,
1464 blocks_per_folio) {
1465 u64 start = page_start + (start_bit << fs_info->sectorsize_bits);
1466 u32 len = (end_bit - start_bit) << fs_info->sectorsize_bits;
1467
1468 btrfs_folio_set_lock(fs_info, folio, start, len);
1469 }
1470
1471 /* Lock all (subpage) delalloc ranges inside the folio first. */
1472 while (delalloc_start < page_end) {
1473 delalloc_end = page_end;
1474 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1475 &delalloc_start, &delalloc_end)) {
1476 delalloc_start = delalloc_end + 1;
1477 continue;
1478 }
1479 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1480 min(delalloc_end, page_end) + 1 - delalloc_start);
1481 last_delalloc_end = delalloc_end;
1482 delalloc_start = delalloc_end + 1;
1483 }
1484 delalloc_start = page_start;
1485
1486 if (!last_delalloc_end)
1487 goto out;
1488
1489 /* Run the delalloc ranges for the above locked ranges. */
1490 while (delalloc_start < page_end) {
1491 u64 found_start;
1492 u32 found_len;
1493 bool found;
1494
1495 if (!is_subpage) {
1496 /*
1497 * For non-subpage case, the found delalloc range must
1498 * cover this folio and there must be only one locked
1499 * delalloc range.
1500 */
1501 found_start = page_start;
1502 found_len = last_delalloc_end + 1 - found_start;
1503 found = true;
1504 } else {
1505 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1506 delalloc_start, &found_start, &found_len);
1507 }
1508 if (!found)
1509 break;
1510 /*
1511 * The subpage range covers the last sector, the delalloc range may
1512 * end beyond the folio boundary, use the saved delalloc_end
1513 * instead.
1514 */
1515 if (found_start + found_len >= page_end)
1516 found_len = last_delalloc_end + 1 - found_start;
1517
1518 if (ret >= 0) {
1519 /*
1520 * Some delalloc range may be created by previous folios.
1521 * Thus we still need to clean up this range during error
1522 * handling.
1523 */
1524 last_finished_delalloc_end = found_start;
1525 /* No errors hit so far, run the current delalloc range. */
1526 ret = btrfs_run_delalloc_range(inode, folio,
1527 found_start,
1528 found_start + found_len - 1,
1529 wbc);
1530 if (ret >= 0)
1531 last_finished_delalloc_end = found_start + found_len;
1532 if (unlikely(ret < 0))
1533 btrfs_err_rl(fs_info,
1534 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1535 btrfs_root_id(inode->root),
1536 btrfs_ino(inode),
1537 folio_pos(folio),
1538 blocks_per_folio,
1539 &bio_ctrl->submit_bitmap,
1540 found_start, found_len, ret);
1541 } else {
1542 /*
1543 * We've hit an error during previous delalloc range,
1544 * have to cleanup the remaining locked ranges.
1545 */
1546 btrfs_unlock_extent(&inode->io_tree, found_start,
1547 found_start + found_len - 1, NULL);
1548 unlock_delalloc_folio(&inode->vfs_inode, folio,
1549 found_start,
1550 found_start + found_len - 1);
1551 }
1552
1553 /*
1554 * We have some ranges that's going to be submitted asynchronously
1555 * (compression or inline). These range have their own control
1556 * on when to unlock the pages. We should not touch them
1557 * anymore, so clear the range from the submission bitmap.
1558 */
1559 if (ret > 0) {
1560 unsigned int start_bit = (found_start - page_start) >>
1561 fs_info->sectorsize_bits;
1562 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1563 page_start) >> fs_info->sectorsize_bits;
1564 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1565 }
1566 /*
1567 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1568 * thus for the last range, we cannot touch the folio anymore.
1569 */
1570 if (found_start + found_len >= last_delalloc_end + 1)
1571 break;
1572
1573 delalloc_start = found_start + found_len;
1574 }
1575 /*
1576 * It's possible we had some ordered extents created before we hit
1577 * an error, cleanup non-async successfully created delalloc ranges.
1578 */
1579 if (unlikely(ret < 0)) {
1580 unsigned int bitmap_size = min(
1581 (last_finished_delalloc_end - page_start) >>
1582 fs_info->sectorsize_bits,
1583 blocks_per_folio);
1584
1585 for_each_set_bitrange(start_bit, end_bit, &bio_ctrl->submit_bitmap,
1586 bitmap_size) {
1587 u64 start = page_start + (start_bit << fs_info->sectorsize_bits);
1588 u32 len = (end_bit - start_bit) << fs_info->sectorsize_bits;
1589
1590 btrfs_mark_ordered_io_finished(inode, folio, start, len, false);
1591 }
1592 return ret;
1593 }
1594 out:
1595 if (last_delalloc_end)
1596 delalloc_end = last_delalloc_end;
1597 else
1598 delalloc_end = page_end;
1599 /*
1600 * delalloc_end is already one less than the total length, so
1601 * we don't subtract one from PAGE_SIZE.
1602 */
1603 delalloc_to_write +=
1604 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1605
1606 /*
1607 * If all ranges are submitted asynchronously, we just need to account
1608 * for them here.
1609 */
1610 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1611 wbc->nr_to_write -= delalloc_to_write;
1612 return 1;
1613 }
1614
1615 if (wbc->nr_to_write < delalloc_to_write) {
1616 int thresh = 8192;
1617
1618 if (delalloc_to_write < thresh * 2)
1619 thresh = delalloc_to_write;
1620 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1621 thresh);
1622 }
1623
1624 return 0;
1625 }
1626
1627 /*
1628 * Return 0 if we have submitted or queued the sector for submission.
1629 * Return <0 for critical errors, and the involved sector will be cleaned up.
1630 *
1631 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1632 */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1633 static int submit_one_sector(struct btrfs_inode *inode,
1634 struct folio *folio,
1635 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1636 loff_t i_size)
1637 {
1638 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1639 struct extent_map *em;
1640 u64 block_start;
1641 u64 disk_bytenr;
1642 u64 extent_offset;
1643 u64 em_end;
1644 const u32 sectorsize = fs_info->sectorsize;
1645
1646 ASSERT(IS_ALIGNED(filepos, sectorsize));
1647
1648 /* @filepos >= i_size case should be handled by the caller. */
1649 ASSERT(filepos < i_size);
1650
1651 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1652 if (IS_ERR(em)) {
1653 /*
1654 * bio_ctrl may contain a bio crossing several folios.
1655 * Submit it immediately so that the bio has a chance
1656 * to finish normally, other than marked as error.
1657 */
1658 submit_one_bio(bio_ctrl);
1659
1660 /*
1661 * When submission failed, we should still clear the folio dirty.
1662 * Or the folio will be written back again but without any
1663 * ordered extent.
1664 */
1665 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1666 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1667 btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1668
1669 /*
1670 * Since there is no bio submitted to finish the ordered
1671 * extent, we have to manually finish this sector.
1672 */
1673 btrfs_mark_ordered_io_finished(inode, folio, filepos,
1674 fs_info->sectorsize, false);
1675 return PTR_ERR(em);
1676 }
1677
1678 extent_offset = filepos - em->start;
1679 em_end = btrfs_extent_map_end(em);
1680 ASSERT(filepos <= em_end);
1681 ASSERT(IS_ALIGNED(em->start, sectorsize));
1682 ASSERT(IS_ALIGNED(em->len, sectorsize));
1683
1684 block_start = btrfs_extent_map_block_start(em);
1685 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1686
1687 ASSERT(!btrfs_extent_map_is_compressed(em));
1688 ASSERT(block_start != EXTENT_MAP_HOLE);
1689 ASSERT(block_start != EXTENT_MAP_INLINE);
1690
1691 btrfs_free_extent_map(em);
1692 em = NULL;
1693
1694 /*
1695 * Although the PageDirty bit is cleared before entering this
1696 * function, subpage dirty bit is not cleared.
1697 * So clear subpage dirty bit here so next time we won't submit
1698 * a folio for a range already written to disk.
1699 */
1700 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1701 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1702 /*
1703 * Above call should set the whole folio with writeback flag, even
1704 * just for a single subpage sector.
1705 * As long as the folio is properly locked and the range is correct,
1706 * we should always get the folio with writeback flag.
1707 */
1708 ASSERT(folio_test_writeback(folio));
1709
1710 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1711 sectorsize, filepos - folio_pos(folio), 0);
1712 return 0;
1713 }
1714
1715 /*
1716 * Helper for extent_writepage(). This calls the writepage start hooks,
1717 * and does the loop to map the page into extents and bios.
1718 *
1719 * We return 1 if the IO is started and the page is unlocked,
1720 * 0 if all went well (page still locked)
1721 * < 0 if there were errors (page still locked)
1722 */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1723 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1724 struct folio *folio,
1725 u64 start, u32 len,
1726 struct btrfs_bio_ctrl *bio_ctrl,
1727 loff_t i_size)
1728 {
1729 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1730 unsigned long range_bitmap = 0;
1731 bool submitted_io = false;
1732 int found_error = 0;
1733 const u64 end = start + len;
1734 const u64 folio_start = folio_pos(folio);
1735 const u64 folio_end = folio_start + folio_size(folio);
1736 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1737 u64 cur;
1738 int bit;
1739 int ret = 0;
1740
1741 ASSERT(start >= folio_start, "start=%llu folio_start=%llu", start, folio_start);
1742 ASSERT(end <= folio_end, "start=%llu len=%u folio_start=%llu folio_size=%zu",
1743 start, len, folio_start, folio_size(folio));
1744
1745 ret = btrfs_writepage_cow_fixup(folio);
1746 if (ret == -EAGAIN) {
1747 /* Fixup worker will requeue */
1748 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1749 folio_unlock(folio);
1750 return 1;
1751 }
1752 if (ret < 0) {
1753 btrfs_folio_clear_dirty(fs_info, folio, start, len);
1754 btrfs_folio_set_writeback(fs_info, folio, start, len);
1755 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1756 return ret;
1757 }
1758
1759 bitmap_set(&range_bitmap, (start - folio_pos(folio)) >> fs_info->sectorsize_bits,
1760 len >> fs_info->sectorsize_bits);
1761 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1762 blocks_per_folio);
1763
1764 bio_ctrl->end_io_func = end_bbio_data_write;
1765
1766 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1767 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1768
1769 if (cur >= i_size) {
1770 struct btrfs_ordered_extent *ordered;
1771
1772 ordered = btrfs_lookup_first_ordered_range(inode, cur,
1773 fs_info->sectorsize);
1774 /*
1775 * We have just run delalloc before getting here, so
1776 * there must be an ordered extent.
1777 */
1778 ASSERT(ordered != NULL);
1779 spin_lock(&inode->ordered_tree_lock);
1780 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
1781 ordered->truncated_len = min(ordered->truncated_len,
1782 cur - ordered->file_offset);
1783 spin_unlock(&inode->ordered_tree_lock);
1784 btrfs_put_ordered_extent(ordered);
1785
1786 btrfs_mark_ordered_io_finished(inode, folio, cur,
1787 fs_info->sectorsize, true);
1788 /*
1789 * This range is beyond i_size, thus we don't need to
1790 * bother writing back.
1791 * But we still need to clear the dirty subpage bit, or
1792 * the next time the folio gets dirtied, we will try to
1793 * writeback the sectors with subpage dirty bits,
1794 * causing writeback without ordered extent.
1795 */
1796 btrfs_folio_clear_dirty(fs_info, folio, cur, fs_info->sectorsize);
1797 continue;
1798 }
1799 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1800 if (unlikely(ret < 0)) {
1801 if (!found_error)
1802 found_error = ret;
1803 continue;
1804 }
1805 submitted_io = true;
1806 }
1807
1808 /*
1809 * If we didn't submitted any sector (>= i_size), folio dirty get
1810 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1811 * by folio_start_writeback() if the folio is not dirty).
1812 *
1813 * Here we set writeback and clear for the range. If the full folio
1814 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1815 *
1816 * If we hit any error, the corresponding sector will have its dirty
1817 * flag cleared and writeback finished, thus no need to handle the error case.
1818 */
1819 if (!submitted_io && !found_error) {
1820 btrfs_folio_set_writeback(fs_info, folio, start, len);
1821 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1822 }
1823 return found_error;
1824 }
1825
1826 /*
1827 * the writepage semantics are similar to regular writepage. extent
1828 * records are inserted to lock ranges in the tree, and as dirty areas
1829 * are found, they are marked writeback. Then the lock bits are removed
1830 * and the end_io handler clears the writeback ranges
1831 *
1832 * Return 0 if everything goes well.
1833 * Return <0 for error.
1834 */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1835 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1836 {
1837 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1838 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1839 int ret;
1840 size_t pg_offset;
1841 loff_t i_size = i_size_read(&inode->vfs_inode);
1842 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1843 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1844
1845 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1846
1847 WARN_ON(!folio_test_locked(folio));
1848
1849 pg_offset = offset_in_folio(folio, i_size);
1850 if (folio->index > end_index ||
1851 (folio->index == end_index && !pg_offset)) {
1852 folio_invalidate(folio, 0, folio_size(folio));
1853 folio_unlock(folio);
1854 return 0;
1855 }
1856
1857 if (folio_contains(folio, end_index))
1858 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1859
1860 /*
1861 * Default to unlock the whole folio.
1862 * The proper bitmap can only be initialized until writepage_delalloc().
1863 */
1864 bio_ctrl->submit_bitmap = (unsigned long)-1;
1865
1866 /*
1867 * If the page is dirty but without private set, it's marked dirty
1868 * without informing the fs.
1869 * Nowadays that is a bug, since the introduction of
1870 * pin_user_pages*().
1871 *
1872 * So here we check if the page has private set to rule out such
1873 * case.
1874 * But we also have a long history of relying on the COW fixup,
1875 * so here we only enable this check for experimental builds until
1876 * we're sure it's safe.
1877 */
1878 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1879 unlikely(!folio_test_private(folio))) {
1880 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1881 btrfs_err_rl(fs_info,
1882 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1883 btrfs_root_id(inode->root),
1884 btrfs_ino(inode), folio_pos(folio));
1885 ret = -EUCLEAN;
1886 goto done;
1887 }
1888
1889 ret = set_folio_extent_mapped(folio);
1890 if (ret < 0)
1891 goto done;
1892
1893 ret = writepage_delalloc(inode, folio, bio_ctrl);
1894 if (ret == 1)
1895 return 0;
1896 if (ret)
1897 goto done;
1898
1899 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1900 folio_size(folio), bio_ctrl, i_size);
1901 if (ret == 1)
1902 return 0;
1903 if (unlikely(ret < 0))
1904 btrfs_err_rl(fs_info,
1905 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1906 btrfs_root_id(inode->root), btrfs_ino(inode),
1907 folio_pos(folio), blocks_per_folio,
1908 &bio_ctrl->submit_bitmap, ret);
1909
1910 bio_ctrl->wbc->nr_to_write--;
1911
1912 done:
1913 if (ret < 0)
1914 mapping_set_error(folio->mapping, ret);
1915 /*
1916 * Only unlock ranges that are submitted. As there can be some async
1917 * submitted ranges inside the folio.
1918 */
1919 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1920 ASSERT(ret <= 0);
1921 return ret;
1922 }
1923
1924 /*
1925 * Lock extent buffer status and pages for writeback.
1926 *
1927 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1928 * extent buffer is not dirty)
1929 * Return %true is the extent buffer is submitted to bio.
1930 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1931 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1932 struct writeback_control *wbc)
1933 {
1934 struct btrfs_fs_info *fs_info = eb->fs_info;
1935 bool ret = false;
1936
1937 btrfs_tree_lock(eb);
1938 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1939 btrfs_tree_unlock(eb);
1940 if (wbc->sync_mode != WB_SYNC_ALL)
1941 return false;
1942 wait_on_extent_buffer_writeback(eb);
1943 btrfs_tree_lock(eb);
1944 }
1945
1946 /*
1947 * We need to do this to prevent races in people who check if the eb is
1948 * under IO since we can end up having no IO bits set for a short period
1949 * of time.
1950 */
1951 spin_lock(&eb->refs_lock);
1952 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1953 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1954 unsigned long flags;
1955
1956 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1957 spin_unlock(&eb->refs_lock);
1958
1959 xas_lock_irqsave(&xas, flags);
1960 xas_load(&xas);
1961 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1962 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1963 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1964 xas_unlock_irqrestore(&xas, flags);
1965
1966 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1967 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1968 -eb->len,
1969 fs_info->dirty_metadata_batch);
1970 ret = true;
1971 } else {
1972 spin_unlock(&eb->refs_lock);
1973 }
1974 btrfs_tree_unlock(eb);
1975 return ret;
1976 }
1977
set_btree_ioerr(struct extent_buffer * eb)1978 static void set_btree_ioerr(struct extent_buffer *eb)
1979 {
1980 struct btrfs_fs_info *fs_info = eb->fs_info;
1981
1982 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1983
1984 /*
1985 * A read may stumble upon this buffer later, make sure that it gets an
1986 * error and knows there was an error.
1987 */
1988 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1989
1990 /*
1991 * We need to set the mapping with the io error as well because a write
1992 * error will flip the file system readonly, and then syncfs() will
1993 * return a 0 because we are readonly if we don't modify the err seq for
1994 * the superblock.
1995 */
1996 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1997
1998 /*
1999 * If writeback for a btree extent that doesn't belong to a log tree
2000 * failed, increment the counter transaction->eb_write_errors.
2001 * We do this because while the transaction is running and before it's
2002 * committing (when we call filemap_fdata[write|wait]_range against
2003 * the btree inode), we might have
2004 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2005 * returns an error or an error happens during writeback, when we're
2006 * committing the transaction we wouldn't know about it, since the pages
2007 * can be no longer dirty nor marked anymore for writeback (if a
2008 * subsequent modification to the extent buffer didn't happen before the
2009 * transaction commit), which makes filemap_fdata[write|wait]_range not
2010 * able to find the pages which contain errors at transaction
2011 * commit time. So if this happens we must abort the transaction,
2012 * otherwise we commit a super block with btree roots that point to
2013 * btree nodes/leafs whose content on disk is invalid - either garbage
2014 * or the content of some node/leaf from a past generation that got
2015 * cowed or deleted and is no longer valid.
2016 *
2017 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2018 * not be enough - we need to distinguish between log tree extents vs
2019 * non-log tree extents, and the next filemap_fdatawait_range() call
2020 * will catch and clear such errors in the mapping - and that call might
2021 * be from a log sync and not from a transaction commit. Also, checking
2022 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2023 * not done and would not be reliable - the eb might have been released
2024 * from memory and reading it back again means that flag would not be
2025 * set (since it's a runtime flag, not persisted on disk).
2026 *
2027 * Using the flags below in the btree inode also makes us achieve the
2028 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2029 * writeback for all dirty pages and before filemap_fdatawait_range()
2030 * is called, the writeback for all dirty pages had already finished
2031 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2032 * filemap_fdatawait_range() would return success, as it could not know
2033 * that writeback errors happened (the pages were no longer tagged for
2034 * writeback).
2035 */
2036 switch (eb->log_index) {
2037 case -1:
2038 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2039 break;
2040 case 0:
2041 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2042 break;
2043 case 1:
2044 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2045 break;
2046 default:
2047 BUG(); /* unexpected, logic error */
2048 }
2049 }
2050
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)2051 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
2052 {
2053 struct btrfs_fs_info *fs_info = eb->fs_info;
2054 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2055 unsigned long flags;
2056
2057 xas_lock_irqsave(&xas, flags);
2058 xas_load(&xas);
2059 xas_set_mark(&xas, mark);
2060 xas_unlock_irqrestore(&xas, flags);
2061 }
2062
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)2063 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
2064 {
2065 struct btrfs_fs_info *fs_info = eb->fs_info;
2066 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
2067 unsigned long flags;
2068
2069 xas_lock_irqsave(&xas, flags);
2070 xas_load(&xas);
2071 xas_clear_mark(&xas, mark);
2072 xas_unlock_irqrestore(&xas, flags);
2073 }
2074
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)2075 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
2076 unsigned long start, unsigned long end)
2077 {
2078 XA_STATE(xas, &fs_info->buffer_tree, start);
2079 unsigned int tagged = 0;
2080 void *eb;
2081
2082 xas_lock_irq(&xas);
2083 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
2084 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2085 if (++tagged % XA_CHECK_SCHED)
2086 continue;
2087 xas_pause(&xas);
2088 xas_unlock_irq(&xas);
2089 cond_resched();
2090 xas_lock_irq(&xas);
2091 }
2092 xas_unlock_irq(&xas);
2093 }
2094
2095 struct eb_batch {
2096 unsigned int nr;
2097 unsigned int cur;
2098 struct extent_buffer *ebs[PAGEVEC_SIZE];
2099 };
2100
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)2101 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
2102 {
2103 batch->ebs[batch->nr++] = eb;
2104 return (batch->nr < PAGEVEC_SIZE);
2105 }
2106
eb_batch_init(struct eb_batch * batch)2107 static inline void eb_batch_init(struct eb_batch *batch)
2108 {
2109 batch->nr = 0;
2110 batch->cur = 0;
2111 }
2112
eb_batch_next(struct eb_batch * batch)2113 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
2114 {
2115 if (batch->cur >= batch->nr)
2116 return NULL;
2117 return batch->ebs[batch->cur++];
2118 }
2119
eb_batch_release(struct eb_batch * batch)2120 static inline void eb_batch_release(struct eb_batch *batch)
2121 {
2122 for (unsigned int i = 0; i < batch->nr; i++)
2123 free_extent_buffer(batch->ebs[i]);
2124 eb_batch_init(batch);
2125 }
2126
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)2127 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
2128 xa_mark_t mark)
2129 {
2130 struct extent_buffer *eb;
2131
2132 retry:
2133 eb = xas_find_marked(xas, max, mark);
2134
2135 if (xas_retry(xas, eb))
2136 goto retry;
2137
2138 if (!eb)
2139 return NULL;
2140
2141 if (!refcount_inc_not_zero(&eb->refs)) {
2142 xas_reset(xas);
2143 goto retry;
2144 }
2145
2146 if (unlikely(eb != xas_reload(xas))) {
2147 free_extent_buffer(eb);
2148 xas_reset(xas);
2149 goto retry;
2150 }
2151
2152 return eb;
2153 }
2154
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)2155 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2156 unsigned long *start,
2157 unsigned long end, xa_mark_t tag,
2158 struct eb_batch *batch)
2159 {
2160 XA_STATE(xas, &fs_info->buffer_tree, *start);
2161 struct extent_buffer *eb;
2162
2163 rcu_read_lock();
2164 while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2165 if (!eb_batch_add(batch, eb)) {
2166 *start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2167 goto out;
2168 }
2169 }
2170 if (end == ULONG_MAX)
2171 *start = ULONG_MAX;
2172 else
2173 *start = end + 1;
2174 out:
2175 rcu_read_unlock();
2176
2177 return batch->nr;
2178 }
2179
2180 /*
2181 * The endio specific version which won't touch any unsafe spinlock in endio
2182 * context.
2183 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2184 static struct extent_buffer *find_extent_buffer_nolock(
2185 struct btrfs_fs_info *fs_info, u64 start)
2186 {
2187 struct extent_buffer *eb;
2188 unsigned long index = (start >> fs_info->nodesize_bits);
2189
2190 rcu_read_lock();
2191 eb = xa_load(&fs_info->buffer_tree, index);
2192 if (eb && !refcount_inc_not_zero(&eb->refs))
2193 eb = NULL;
2194 rcu_read_unlock();
2195 return eb;
2196 }
2197
end_bbio_meta_write(struct btrfs_bio * bbio)2198 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2199 {
2200 struct extent_buffer *eb = bbio->private;
2201 struct folio_iter fi;
2202
2203 if (bbio->bio.bi_status != BLK_STS_OK)
2204 set_btree_ioerr(eb);
2205
2206 bio_for_each_folio_all(fi, &bbio->bio) {
2207 btrfs_meta_folio_clear_writeback(fi.folio, eb);
2208 }
2209
2210 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2211 clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2212 bio_put(&bbio->bio);
2213 }
2214
prepare_eb_write(struct extent_buffer * eb)2215 static void prepare_eb_write(struct extent_buffer *eb)
2216 {
2217 u32 nritems;
2218 unsigned long start;
2219 unsigned long end;
2220
2221 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2222
2223 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2224 nritems = btrfs_header_nritems(eb);
2225 if (btrfs_header_level(eb) > 0) {
2226 end = btrfs_node_key_ptr_offset(eb, nritems);
2227 memzero_extent_buffer(eb, end, eb->len - end);
2228 } else {
2229 /*
2230 * Leaf:
2231 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2232 */
2233 start = btrfs_item_nr_offset(eb, nritems);
2234 end = btrfs_item_nr_offset(eb, 0);
2235 if (nritems == 0)
2236 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2237 else
2238 end += btrfs_item_offset(eb, nritems - 1);
2239 memzero_extent_buffer(eb, start, end - start);
2240 }
2241 }
2242
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2243 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2244 struct writeback_control *wbc)
2245 {
2246 struct btrfs_fs_info *fs_info = eb->fs_info;
2247 struct btrfs_bio *bbio;
2248
2249 prepare_eb_write(eb);
2250
2251 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2252 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2253 BTRFS_I(fs_info->btree_inode), eb->start,
2254 end_bbio_meta_write, eb);
2255 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2256 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2257 wbc_init_bio(wbc, &bbio->bio);
2258 for (int i = 0; i < num_extent_folios(eb); i++) {
2259 struct folio *folio = eb->folios[i];
2260 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2261 u32 range_len = min_t(u64, folio_next_pos(folio),
2262 eb->start + eb->len) - range_start;
2263
2264 folio_lock(folio);
2265 btrfs_meta_folio_clear_dirty(folio, eb);
2266 btrfs_meta_folio_set_writeback(folio, eb);
2267 if (!folio_test_dirty(folio))
2268 wbc->nr_to_write -= folio_nr_pages(folio);
2269 bio_add_folio_nofail(&bbio->bio, folio, range_len,
2270 offset_in_folio(folio, range_start));
2271 wbc_account_cgroup_owner(wbc, folio, range_len);
2272 folio_unlock(folio);
2273 }
2274 /*
2275 * If the fs is already in error status, do not submit any writeback
2276 * but immediately finish it.
2277 */
2278 if (unlikely(BTRFS_FS_ERROR(fs_info))) {
2279 btrfs_bio_end_io(bbio, errno_to_blk_status(BTRFS_FS_ERROR(fs_info)));
2280 return;
2281 }
2282 btrfs_submit_bbio(bbio, 0);
2283 }
2284
2285 /*
2286 * Wait for all eb writeback in the given range to finish.
2287 *
2288 * @fs_info: The fs_info for this file system.
2289 * @start: The offset of the range to start waiting on writeback.
2290 * @end: The end of the range, inclusive. This is meant to be used in
2291 * conjunction with wait_marked_extents, so this will usually be
2292 * the_next_eb->start - 1.
2293 */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2294 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2295 u64 end)
2296 {
2297 struct eb_batch batch;
2298 unsigned long start_index = (start >> fs_info->nodesize_bits);
2299 unsigned long end_index = (end >> fs_info->nodesize_bits);
2300
2301 eb_batch_init(&batch);
2302 while (start_index <= end_index) {
2303 struct extent_buffer *eb;
2304 unsigned int nr_ebs;
2305
2306 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2307 PAGECACHE_TAG_WRITEBACK, &batch);
2308 if (!nr_ebs)
2309 break;
2310
2311 while ((eb = eb_batch_next(&batch)) != NULL)
2312 wait_on_extent_buffer_writeback(eb);
2313 eb_batch_release(&batch);
2314 cond_resched();
2315 }
2316 }
2317
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)2318 int btree_writepages(struct address_space *mapping, struct writeback_control *wbc)
2319 {
2320 struct btrfs_eb_write_context ctx = { .wbc = wbc };
2321 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2322 int ret = 0;
2323 int done = 0;
2324 int nr_to_write_done = 0;
2325 struct eb_batch batch;
2326 unsigned int nr_ebs;
2327 unsigned long index;
2328 unsigned long end;
2329 int scanned = 0;
2330 xa_mark_t tag;
2331
2332 eb_batch_init(&batch);
2333 if (wbc->range_cyclic) {
2334 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2335 end = -1;
2336
2337 /*
2338 * Start from the beginning does not need to cycle over the
2339 * range, mark it as scanned.
2340 */
2341 scanned = (index == 0);
2342 } else {
2343 index = (wbc->range_start >> fs_info->nodesize_bits);
2344 end = (wbc->range_end >> fs_info->nodesize_bits);
2345
2346 scanned = 1;
2347 }
2348 if (wbc->sync_mode == WB_SYNC_ALL)
2349 tag = PAGECACHE_TAG_TOWRITE;
2350 else
2351 tag = PAGECACHE_TAG_DIRTY;
2352 btrfs_zoned_meta_io_lock(fs_info);
2353 retry:
2354 if (wbc->sync_mode == WB_SYNC_ALL)
2355 buffer_tree_tag_for_writeback(fs_info, index, end);
2356 while (!done && !nr_to_write_done && (index <= end) &&
2357 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2358 struct extent_buffer *eb;
2359
2360 while ((eb = eb_batch_next(&batch)) != NULL) {
2361 ctx.eb = eb;
2362
2363 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2364 if (ret) {
2365 if (ret == -EBUSY)
2366 ret = 0;
2367
2368 if (ret) {
2369 done = 1;
2370 break;
2371 }
2372 continue;
2373 }
2374
2375 if (!lock_extent_buffer_for_io(eb, wbc))
2376 continue;
2377
2378 /* Implies write in zoned mode. */
2379 if (ctx.zoned_bg) {
2380 /* Mark the last eb in the block group. */
2381 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2382 ctx.zoned_bg->meta_write_pointer += eb->len;
2383 }
2384 write_one_eb(eb, wbc);
2385 }
2386 nr_to_write_done = (wbc->nr_to_write <= 0);
2387 eb_batch_release(&batch);
2388 cond_resched();
2389 }
2390 if (!scanned && !done) {
2391 /*
2392 * We hit the last page and there is more work to be done: wrap
2393 * back to the start of the file
2394 */
2395 scanned = 1;
2396 index = 0;
2397 goto retry;
2398 }
2399 /*
2400 * If something went wrong, don't allow any metadata write bio to be
2401 * submitted.
2402 *
2403 * This would prevent use-after-free if we had dirty pages not
2404 * cleaned up, which can still happen by fuzzed images.
2405 *
2406 * - Bad extent tree
2407 * Allowing existing tree block to be allocated for other trees.
2408 *
2409 * - Log tree operations
2410 * Exiting tree blocks get allocated to log tree, bumps its
2411 * generation, then get cleaned in tree re-balance.
2412 * Such tree block will not be written back, since it's clean,
2413 * thus no WRITTEN flag set.
2414 * And after log writes back, this tree block is not traced by
2415 * any dirty extent_io_tree.
2416 *
2417 * - Offending tree block gets re-dirtied from its original owner
2418 * Since it has bumped generation, no WRITTEN flag, it can be
2419 * reused without COWing. This tree block will not be traced
2420 * by btrfs_transaction::dirty_pages.
2421 *
2422 * Now such dirty tree block will not be cleaned by any dirty
2423 * extent io tree. Thus we don't want to submit such wild eb
2424 * if the fs already has error.
2425 *
2426 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2427 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2428 */
2429 if (ret > 0)
2430 ret = 0;
2431 if (!ret && BTRFS_FS_ERROR(fs_info))
2432 ret = -EROFS;
2433
2434 if (ctx.zoned_bg)
2435 btrfs_put_block_group(ctx.zoned_bg);
2436 btrfs_zoned_meta_io_unlock(fs_info);
2437 return ret;
2438 }
2439
2440 /*
2441 * Walk the list of dirty pages of the given address space and write all of them.
2442 *
2443 * @mapping: address space structure to write
2444 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2445 * @bio_ctrl: holds context for the write, namely the bio
2446 *
2447 * If a page is already under I/O, write_cache_pages() skips it, even
2448 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2449 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2450 * and msync() need to guarantee that all the data which was dirty at the time
2451 * the call was made get new I/O started against them. If wbc->sync_mode is
2452 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2453 * existing IO to complete.
2454 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2455 static int extent_write_cache_pages(struct address_space *mapping,
2456 struct btrfs_bio_ctrl *bio_ctrl)
2457 {
2458 struct writeback_control *wbc = bio_ctrl->wbc;
2459 struct inode *inode = mapping->host;
2460 int ret = 0;
2461 int done = 0;
2462 int nr_to_write_done = 0;
2463 struct folio_batch fbatch;
2464 unsigned int nr_folios;
2465 pgoff_t index;
2466 pgoff_t end; /* Inclusive */
2467 pgoff_t done_index;
2468 int range_whole = 0;
2469 int scanned = 0;
2470 xa_mark_t tag;
2471
2472 /*
2473 * We have to hold onto the inode so that ordered extents can do their
2474 * work when the IO finishes. The alternative to this is failing to add
2475 * an ordered extent if the igrab() fails there and that is a huge pain
2476 * to deal with, so instead just hold onto the inode throughout the
2477 * writepages operation. If it fails here we are freeing up the inode
2478 * anyway and we'd rather not waste our time writing out stuff that is
2479 * going to be truncated anyway.
2480 */
2481 if (!igrab(inode))
2482 return 0;
2483
2484 folio_batch_init(&fbatch);
2485 if (wbc->range_cyclic) {
2486 index = mapping->writeback_index; /* Start from prev offset */
2487 end = -1;
2488 /*
2489 * Start from the beginning does not need to cycle over the
2490 * range, mark it as scanned.
2491 */
2492 scanned = (index == 0);
2493 } else {
2494 index = wbc->range_start >> PAGE_SHIFT;
2495 end = wbc->range_end >> PAGE_SHIFT;
2496 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2497 range_whole = 1;
2498 scanned = 1;
2499 }
2500
2501 /*
2502 * We do the tagged writepage as long as the snapshot flush bit is set
2503 * and we are the first one who do the filemap_flush() on this inode.
2504 *
2505 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2506 * not race in and drop the bit.
2507 */
2508 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2509 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2510 &BTRFS_I(inode)->runtime_flags))
2511 wbc->tagged_writepages = 1;
2512
2513 tag = wbc_to_tag(wbc);
2514 retry:
2515 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2516 tag_pages_for_writeback(mapping, index, end);
2517 done_index = index;
2518 while (!done && !nr_to_write_done && (index <= end) &&
2519 (nr_folios = filemap_get_folios_tag(mapping, &index,
2520 end, tag, &fbatch))) {
2521 unsigned i;
2522
2523 for (i = 0; i < nr_folios; i++) {
2524 struct folio *folio = fbatch.folios[i];
2525
2526 done_index = folio_next_index(folio);
2527 /*
2528 * At this point we hold neither the i_pages lock nor
2529 * the folio lock: the folio may be truncated or
2530 * invalidated (changing folio->mapping to NULL).
2531 */
2532 if (!folio_trylock(folio)) {
2533 submit_write_bio(bio_ctrl, 0);
2534 folio_lock(folio);
2535 }
2536
2537 if (unlikely(folio->mapping != mapping)) {
2538 folio_unlock(folio);
2539 continue;
2540 }
2541
2542 if (!folio_test_dirty(folio)) {
2543 /* Someone wrote it for us. */
2544 folio_unlock(folio);
2545 continue;
2546 }
2547
2548 /*
2549 * For subpage case, compression can lead to mixed
2550 * writeback and dirty flags, e.g:
2551 * 0 32K 64K 96K 128K
2552 * | |//////||/////| |//|
2553 *
2554 * In above case, [32K, 96K) is asynchronously submitted
2555 * for compression, and [124K, 128K) needs to be written back.
2556 *
2557 * If we didn't wait writeback for page 64K, [128K, 128K)
2558 * won't be submitted as the page still has writeback flag
2559 * and will be skipped in the next check.
2560 *
2561 * This mixed writeback and dirty case is only possible for
2562 * subpage case.
2563 *
2564 * TODO: Remove this check after migrating compression to
2565 * regular submission.
2566 */
2567 if (wbc->sync_mode != WB_SYNC_NONE ||
2568 btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2569 if (folio_test_writeback(folio))
2570 submit_write_bio(bio_ctrl, 0);
2571 folio_wait_writeback(folio);
2572 }
2573
2574 if (folio_test_writeback(folio) ||
2575 !folio_clear_dirty_for_io(folio)) {
2576 folio_unlock(folio);
2577 continue;
2578 }
2579
2580 ret = extent_writepage(folio, bio_ctrl);
2581 if (ret < 0) {
2582 done = 1;
2583 break;
2584 }
2585
2586 /*
2587 * The filesystem may choose to bump up nr_to_write.
2588 * We have to make sure to honor the new nr_to_write
2589 * at any time.
2590 */
2591 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2592 wbc->nr_to_write <= 0);
2593 }
2594 folio_batch_release(&fbatch);
2595 cond_resched();
2596 }
2597 if (!scanned && !done) {
2598 /*
2599 * We hit the last page and there is more work to be done: wrap
2600 * back to the start of the file
2601 */
2602 scanned = 1;
2603 index = 0;
2604
2605 /*
2606 * If we're looping we could run into a page that is locked by a
2607 * writer and that writer could be waiting on writeback for a
2608 * page in our current bio, and thus deadlock, so flush the
2609 * write bio here.
2610 */
2611 submit_write_bio(bio_ctrl, 0);
2612 goto retry;
2613 }
2614
2615 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2616 mapping->writeback_index = done_index;
2617
2618 btrfs_add_delayed_iput(BTRFS_I(inode));
2619 return ret;
2620 }
2621
2622 /*
2623 * Submit the pages in the range to bio for call sites which delalloc range has
2624 * already been ran (aka, ordered extent inserted) and all pages are still
2625 * locked.
2626 */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2627 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2628 u64 start, u64 end, struct writeback_control *wbc,
2629 bool pages_dirty)
2630 {
2631 bool found_error = false;
2632 int ret = 0;
2633 struct address_space *mapping = inode->i_mapping;
2634 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2635 const u32 sectorsize = fs_info->sectorsize;
2636 loff_t i_size = i_size_read(inode);
2637 u64 cur = start;
2638 struct btrfs_bio_ctrl bio_ctrl = {
2639 .wbc = wbc,
2640 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2641 };
2642
2643 if (wbc->no_cgroup_owner)
2644 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2645
2646 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2647
2648 while (cur <= end) {
2649 u64 cur_end;
2650 u32 cur_len;
2651 struct folio *folio;
2652
2653 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2654
2655 /*
2656 * This shouldn't happen, the pages are pinned and locked, this
2657 * code is just in case, but shouldn't actually be run.
2658 */
2659 if (IS_ERR(folio)) {
2660 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2661 cur_len = cur_end + 1 - cur;
2662 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2663 cur, cur_len, false);
2664 mapping_set_error(mapping, PTR_ERR(folio));
2665 cur = cur_end;
2666 continue;
2667 }
2668
2669 cur_end = min_t(u64, folio_next_pos(folio) - 1, end);
2670 cur_len = cur_end + 1 - cur;
2671
2672 ASSERT(folio_test_locked(folio));
2673 if (pages_dirty && folio != locked_folio)
2674 ASSERT(folio_test_dirty(folio));
2675
2676 /*
2677 * Set the submission bitmap to submit all sectors.
2678 * extent_writepage_io() will do the truncation correctly.
2679 */
2680 bio_ctrl.submit_bitmap = (unsigned long)-1;
2681 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2682 &bio_ctrl, i_size);
2683 if (ret == 1)
2684 goto next_page;
2685
2686 if (ret)
2687 mapping_set_error(mapping, ret);
2688 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2689 if (ret < 0)
2690 found_error = true;
2691 next_page:
2692 folio_put(folio);
2693 cur = cur_end + 1;
2694 }
2695
2696 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2697 }
2698
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2699 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2700 {
2701 struct inode *inode = mapping->host;
2702 int ret = 0;
2703 struct btrfs_bio_ctrl bio_ctrl = {
2704 .wbc = wbc,
2705 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2706 };
2707
2708 /*
2709 * Allow only a single thread to do the reloc work in zoned mode to
2710 * protect the write pointer updates.
2711 */
2712 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2713 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2714 submit_write_bio(&bio_ctrl, ret);
2715 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2716 return ret;
2717 }
2718
btrfs_readahead(struct readahead_control * rac)2719 void btrfs_readahead(struct readahead_control *rac)
2720 {
2721 struct btrfs_bio_ctrl bio_ctrl = {
2722 .opf = REQ_OP_READ | REQ_RAHEAD,
2723 .ractl = rac,
2724 .last_em_start = U64_MAX,
2725 };
2726 struct folio *folio;
2727 struct inode *vfs_inode = rac->mapping->host;
2728 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2729 const u64 start = readahead_pos(rac);
2730 const u64 end = start + readahead_length(rac) - 1;
2731 struct extent_state *cached_state = NULL;
2732 struct extent_map *em_cached = NULL;
2733 struct fsverity_info *vi = NULL;
2734
2735 lock_extents_for_read(inode, start, end, &cached_state);
2736 if (start < i_size_read(vfs_inode))
2737 vi = fsverity_get_info(vfs_inode);
2738 while ((folio = readahead_folio(rac)) != NULL)
2739 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, vi);
2740
2741 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2742
2743 if (em_cached)
2744 btrfs_free_extent_map(em_cached);
2745 submit_one_bio(&bio_ctrl);
2746 }
2747
2748 /*
2749 * basic invalidate_folio code, this waits on any locked or writeback
2750 * ranges corresponding to the folio, and then deletes any extent state
2751 * records from the tree
2752 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2753 int extent_invalidate_folio(struct extent_io_tree *tree,
2754 struct folio *folio, size_t offset)
2755 {
2756 struct extent_state *cached_state = NULL;
2757 u64 start = folio_pos(folio);
2758 u64 end = start + folio_size(folio) - 1;
2759 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2760
2761 /* This function is only called for the btree inode */
2762 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2763
2764 start += ALIGN(offset, blocksize);
2765 if (start > end)
2766 return 0;
2767
2768 btrfs_lock_extent(tree, start, end, &cached_state);
2769 folio_wait_writeback(folio);
2770
2771 /*
2772 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2773 * so here we only need to unlock the extent range to free any
2774 * existing extent state.
2775 */
2776 btrfs_unlock_extent(tree, start, end, &cached_state);
2777 return 0;
2778 }
2779
2780 /*
2781 * A helper for struct address_space_operations::release_folio, this tests for
2782 * areas of the folio that are locked or under IO and drops the related state
2783 * bits if it is safe to drop the folio.
2784 */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2785 static bool try_release_extent_state(struct extent_io_tree *tree,
2786 struct folio *folio)
2787 {
2788 struct extent_state *cached_state = NULL;
2789 u64 start = folio_pos(folio);
2790 u64 end = start + folio_size(folio) - 1;
2791 u32 range_bits;
2792 u32 clear_bits;
2793 bool ret = false;
2794 int ret2;
2795
2796 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2797
2798 /*
2799 * We can release the folio if it's locked only for ordered extent
2800 * completion, since that doesn't require using the folio.
2801 */
2802 if ((range_bits & EXTENT_LOCKED) &&
2803 !(range_bits & EXTENT_FINISHING_ORDERED))
2804 goto out;
2805
2806 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2807 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2808 EXTENT_FINISHING_ORDERED);
2809 /*
2810 * At this point we can safely clear everything except the locked,
2811 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2812 * bit will be cleared by ordered extent completion.
2813 */
2814 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2815 /*
2816 * If clear_extent_bit failed for enomem reasons, we can't allow the
2817 * release to continue.
2818 */
2819 if (ret2 == 0)
2820 ret = true;
2821 out:
2822 btrfs_free_extent_state(cached_state);
2823
2824 return ret;
2825 }
2826
2827 /*
2828 * a helper for release_folio. As long as there are no locked extents
2829 * in the range corresponding to the page, both state records and extent
2830 * map records are removed
2831 */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2832 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2833 {
2834 u64 start = folio_pos(folio);
2835 u64 end = start + folio_size(folio) - 1;
2836 struct btrfs_inode *inode = folio_to_inode(folio);
2837 struct extent_io_tree *io_tree = &inode->io_tree;
2838
2839 while (start <= end) {
2840 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2841 const u64 len = end - start + 1;
2842 struct extent_map_tree *extent_tree = &inode->extent_tree;
2843 struct extent_map *em;
2844
2845 write_lock(&extent_tree->lock);
2846 em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2847 if (!em) {
2848 write_unlock(&extent_tree->lock);
2849 break;
2850 }
2851 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2852 write_unlock(&extent_tree->lock);
2853 btrfs_free_extent_map(em);
2854 break;
2855 }
2856 if (btrfs_test_range_bit_exists(io_tree, em->start,
2857 btrfs_extent_map_end(em) - 1,
2858 EXTENT_LOCKED))
2859 goto next;
2860 /*
2861 * If it's not in the list of modified extents, used by a fast
2862 * fsync, we can remove it. If it's being logged we can safely
2863 * remove it since fsync took an extra reference on the em.
2864 */
2865 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2866 goto remove_em;
2867 /*
2868 * If it's in the list of modified extents, remove it only if
2869 * its generation is older then the current one, in which case
2870 * we don't need it for a fast fsync. Otherwise don't remove it,
2871 * we could be racing with an ongoing fast fsync that could miss
2872 * the new extent.
2873 */
2874 if (em->generation >= cur_gen)
2875 goto next;
2876 remove_em:
2877 /*
2878 * We only remove extent maps that are not in the list of
2879 * modified extents or that are in the list but with a
2880 * generation lower then the current generation, so there is no
2881 * need to set the full fsync flag on the inode (it hurts the
2882 * fsync performance for workloads with a data size that exceeds
2883 * or is close to the system's memory).
2884 */
2885 btrfs_remove_extent_mapping(inode, em);
2886 /* Once for the inode's extent map tree. */
2887 btrfs_free_extent_map(em);
2888 next:
2889 start = btrfs_extent_map_end(em);
2890 write_unlock(&extent_tree->lock);
2891
2892 /* Once for us, for the lookup_extent_mapping() reference. */
2893 btrfs_free_extent_map(em);
2894
2895 if (need_resched()) {
2896 /*
2897 * If we need to resched but we can't block just exit
2898 * and leave any remaining extent maps.
2899 */
2900 if (!gfpflags_allow_blocking(mask))
2901 break;
2902
2903 cond_resched();
2904 }
2905 }
2906 return try_release_extent_state(io_tree, folio);
2907 }
2908
extent_buffer_under_io(const struct extent_buffer * eb)2909 static int extent_buffer_under_io(const struct extent_buffer *eb)
2910 {
2911 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2912 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2913 }
2914
folio_range_has_eb(struct folio * folio)2915 static bool folio_range_has_eb(struct folio *folio)
2916 {
2917 struct btrfs_folio_state *bfs;
2918
2919 lockdep_assert_held(&folio->mapping->i_private_lock);
2920
2921 if (folio_test_private(folio)) {
2922 bfs = folio_get_private(folio);
2923 if (atomic_read(&bfs->eb_refs))
2924 return true;
2925 }
2926 return false;
2927 }
2928
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2929 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2930 {
2931 struct btrfs_fs_info *fs_info = eb->fs_info;
2932 struct address_space *mapping = folio->mapping;
2933 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2934
2935 /*
2936 * For mapped eb, we're going to change the folio private, which should
2937 * be done under the i_private_lock.
2938 */
2939 if (mapped)
2940 spin_lock(&mapping->i_private_lock);
2941
2942 if (!folio_test_private(folio)) {
2943 if (mapped)
2944 spin_unlock(&mapping->i_private_lock);
2945 return;
2946 }
2947
2948 if (!btrfs_meta_is_subpage(fs_info)) {
2949 /*
2950 * We do this since we'll remove the pages after we've removed
2951 * the eb from the xarray, so we could race and have this page
2952 * now attached to the new eb. So only clear folio if it's
2953 * still connected to this eb.
2954 */
2955 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2956 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2957 BUG_ON(folio_test_dirty(folio));
2958 BUG_ON(folio_test_writeback(folio));
2959 /* We need to make sure we haven't be attached to a new eb. */
2960 folio_detach_private(folio);
2961 }
2962 if (mapped)
2963 spin_unlock(&mapping->i_private_lock);
2964 return;
2965 }
2966
2967 /*
2968 * For subpage, we can have dummy eb with folio private attached. In
2969 * this case, we can directly detach the private as such folio is only
2970 * attached to one dummy eb, no sharing.
2971 */
2972 if (!mapped) {
2973 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2974 return;
2975 }
2976
2977 btrfs_folio_dec_eb_refs(fs_info, folio);
2978
2979 /*
2980 * We can only detach the folio private if there are no other ebs in the
2981 * page range and no unfinished IO.
2982 */
2983 if (!folio_range_has_eb(folio))
2984 btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2985
2986 spin_unlock(&mapping->i_private_lock);
2987 }
2988
2989 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2990 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2991 {
2992 ASSERT(!extent_buffer_under_io(eb));
2993
2994 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2995 struct folio *folio = eb->folios[i];
2996
2997 if (!folio)
2998 continue;
2999
3000 detach_extent_buffer_folio(eb, folio);
3001 }
3002 }
3003
3004 /*
3005 * Helper for releasing the extent buffer.
3006 */
btrfs_release_extent_buffer(struct extent_buffer * eb)3007 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3008 {
3009 btrfs_release_extent_buffer_folios(eb);
3010 btrfs_leak_debug_del_eb(eb);
3011 kmem_cache_free(extent_buffer_cache, eb);
3012 }
3013
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3014 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3015 u64 start)
3016 {
3017 struct extent_buffer *eb = NULL;
3018
3019 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3020 eb->start = start;
3021 eb->len = fs_info->nodesize;
3022 eb->fs_info = fs_info;
3023 init_rwsem(&eb->lock);
3024
3025 btrfs_leak_debug_add_eb(eb);
3026
3027 spin_lock_init(&eb->refs_lock);
3028 refcount_set(&eb->refs, 1);
3029
3030 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3031
3032 return eb;
3033 }
3034
3035 /*
3036 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
3037 * does not call folio_put(), and we need to set the folios to NULL so that
3038 * btrfs_release_extent_buffer() will not detach them a second time.
3039 */
cleanup_extent_buffer_folios(struct extent_buffer * eb)3040 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
3041 {
3042 const int num_folios = num_extent_folios(eb);
3043
3044 /* We cannot use num_extent_folios() as loop bound as eb->folios changes. */
3045 for (int i = 0; i < num_folios; i++) {
3046 ASSERT(eb->folios[i]);
3047 detach_extent_buffer_folio(eb, eb->folios[i]);
3048 folio_put(eb->folios[i]);
3049 eb->folios[i] = NULL;
3050 }
3051 }
3052
btrfs_clone_extent_buffer(const struct extent_buffer * src)3053 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3054 {
3055 struct extent_buffer *new;
3056 int num_folios;
3057 int ret;
3058
3059 new = __alloc_extent_buffer(src->fs_info, src->start);
3060 if (new == NULL)
3061 return NULL;
3062
3063 /*
3064 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3065 * btrfs_release_extent_buffer() have different behavior for
3066 * UNMAPPED subpage extent buffer.
3067 */
3068 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3069
3070 ret = alloc_eb_folio_array(new, false);
3071 if (ret)
3072 goto release_eb;
3073
3074 ASSERT(num_extent_folios(src) == num_extent_folios(new),
3075 "%d != %d", num_extent_folios(src), num_extent_folios(new));
3076 /* Explicitly use the cached num_extent value from now on. */
3077 num_folios = num_extent_folios(src);
3078 for (int i = 0; i < num_folios; i++) {
3079 struct folio *folio = new->folios[i];
3080
3081 ret = attach_extent_buffer_folio(new, folio, NULL);
3082 if (ret < 0)
3083 goto cleanup_folios;
3084 WARN_ON(folio_test_dirty(folio));
3085 }
3086 for (int i = 0; i < num_folios; i++)
3087 folio_put(new->folios[i]);
3088
3089 copy_extent_buffer_full(new, src);
3090 set_extent_buffer_uptodate(new);
3091
3092 return new;
3093
3094 cleanup_folios:
3095 cleanup_extent_buffer_folios(new);
3096 release_eb:
3097 btrfs_release_extent_buffer(new);
3098 return NULL;
3099 }
3100
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3101 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3102 u64 start)
3103 {
3104 struct extent_buffer *eb;
3105 int ret;
3106
3107 eb = __alloc_extent_buffer(fs_info, start);
3108 if (!eb)
3109 return NULL;
3110
3111 ret = alloc_eb_folio_array(eb, false);
3112 if (ret)
3113 goto release_eb;
3114
3115 for (int i = 0; i < num_extent_folios(eb); i++) {
3116 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3117 if (ret < 0)
3118 goto cleanup_folios;
3119 }
3120 for (int i = 0; i < num_extent_folios(eb); i++)
3121 folio_put(eb->folios[i]);
3122
3123 set_extent_buffer_uptodate(eb);
3124 btrfs_set_header_nritems(eb, 0);
3125 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3126
3127 return eb;
3128
3129 cleanup_folios:
3130 cleanup_extent_buffer_folios(eb);
3131 release_eb:
3132 btrfs_release_extent_buffer(eb);
3133 return NULL;
3134 }
3135
check_buffer_tree_ref(struct extent_buffer * eb)3136 static void check_buffer_tree_ref(struct extent_buffer *eb)
3137 {
3138 int refs;
3139 /*
3140 * The TREE_REF bit is first set when the extent_buffer is added to the
3141 * xarray. It is also reset, if unset, when a new reference is created
3142 * by find_extent_buffer.
3143 *
3144 * It is only cleared in two cases: freeing the last non-tree
3145 * reference to the extent_buffer when its STALE bit is set or
3146 * calling release_folio when the tree reference is the only reference.
3147 *
3148 * In both cases, care is taken to ensure that the extent_buffer's
3149 * pages are not under io. However, release_folio can be concurrently
3150 * called with creating new references, which is prone to race
3151 * conditions between the calls to check_buffer_tree_ref in those
3152 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3153 *
3154 * The actual lifetime of the extent_buffer in the xarray is adequately
3155 * protected by the refcount, but the TREE_REF bit and its corresponding
3156 * reference are not. To protect against this class of races, we call
3157 * check_buffer_tree_ref() from the code paths which trigger io. Note that
3158 * once io is initiated, TREE_REF can no longer be cleared, so that is
3159 * the moment at which any such race is best fixed.
3160 */
3161 refs = refcount_read(&eb->refs);
3162 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3163 return;
3164
3165 spin_lock(&eb->refs_lock);
3166 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3167 refcount_inc(&eb->refs);
3168 spin_unlock(&eb->refs_lock);
3169 }
3170
mark_extent_buffer_accessed(struct extent_buffer * eb)3171 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3172 {
3173 check_buffer_tree_ref(eb);
3174
3175 for (int i = 0; i < num_extent_folios(eb); i++)
3176 folio_mark_accessed(eb->folios[i]);
3177 }
3178
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3179 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3180 u64 start)
3181 {
3182 struct extent_buffer *eb;
3183
3184 eb = find_extent_buffer_nolock(fs_info, start);
3185 if (!eb)
3186 return NULL;
3187 /*
3188 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3189 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3190 * another task running free_extent_buffer() might have seen that flag
3191 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3192 * writeback flags not set) and it's still in the tree (flag
3193 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3194 * decrementing the extent buffer's reference count twice. So here we
3195 * could race and increment the eb's reference count, clear its stale
3196 * flag, mark it as dirty and drop our reference before the other task
3197 * finishes executing free_extent_buffer, which would later result in
3198 * an attempt to free an extent buffer that is dirty.
3199 */
3200 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3201 spin_lock(&eb->refs_lock);
3202 spin_unlock(&eb->refs_lock);
3203 }
3204 mark_extent_buffer_accessed(eb);
3205 return eb;
3206 }
3207
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3208 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3209 u64 start)
3210 {
3211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3212 struct extent_buffer *eb, *exists = NULL;
3213 int ret;
3214
3215 eb = find_extent_buffer(fs_info, start);
3216 if (eb)
3217 return eb;
3218 eb = alloc_dummy_extent_buffer(fs_info, start);
3219 if (!eb)
3220 return ERR_PTR(-ENOMEM);
3221 eb->fs_info = fs_info;
3222 again:
3223 xa_lock_irq(&fs_info->buffer_tree);
3224 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3225 NULL, eb, GFP_NOFS);
3226 if (xa_is_err(exists)) {
3227 ret = xa_err(exists);
3228 xa_unlock_irq(&fs_info->buffer_tree);
3229 btrfs_release_extent_buffer(eb);
3230 return ERR_PTR(ret);
3231 }
3232 if (exists) {
3233 if (!refcount_inc_not_zero(&exists->refs)) {
3234 /* The extent buffer is being freed, retry. */
3235 xa_unlock_irq(&fs_info->buffer_tree);
3236 goto again;
3237 }
3238 xa_unlock_irq(&fs_info->buffer_tree);
3239 btrfs_release_extent_buffer(eb);
3240 return exists;
3241 }
3242 xa_unlock_irq(&fs_info->buffer_tree);
3243 check_buffer_tree_ref(eb);
3244
3245 return eb;
3246 #else
3247 /* Stub to avoid linker error when compiled with optimizations turned off. */
3248 return NULL;
3249 #endif
3250 }
3251
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3252 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3253 struct folio *folio)
3254 {
3255 struct extent_buffer *exists;
3256
3257 lockdep_assert_held(&folio->mapping->i_private_lock);
3258
3259 /*
3260 * For subpage case, we completely rely on xarray to ensure we don't try
3261 * to insert two ebs for the same bytenr. So here we always return NULL
3262 * and just continue.
3263 */
3264 if (btrfs_meta_is_subpage(fs_info))
3265 return NULL;
3266
3267 /* Page not yet attached to an extent buffer */
3268 if (!folio_test_private(folio))
3269 return NULL;
3270
3271 /*
3272 * We could have already allocated an eb for this folio and attached one
3273 * so lets see if we can get a ref on the existing eb, and if we can we
3274 * know it's good and we can just return that one, else we know we can
3275 * just overwrite folio private.
3276 */
3277 exists = folio_get_private(folio);
3278 if (refcount_inc_not_zero(&exists->refs))
3279 return exists;
3280
3281 WARN_ON(folio_test_dirty(folio));
3282 folio_detach_private(folio);
3283 return NULL;
3284 }
3285
3286 /*
3287 * Validate alignment constraints of eb at logical address @start.
3288 */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3289 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3290 {
3291 const u32 nodesize = fs_info->nodesize;
3292
3293 if (unlikely(!IS_ALIGNED(start, fs_info->sectorsize))) {
3294 btrfs_err(fs_info, "bad tree block start %llu", start);
3295 return true;
3296 }
3297
3298 if (unlikely(nodesize < PAGE_SIZE && !IS_ALIGNED(start, nodesize))) {
3299 btrfs_err(fs_info,
3300 "tree block is not nodesize aligned, start %llu nodesize %u",
3301 start, nodesize);
3302 return true;
3303 }
3304 if (unlikely(nodesize >= PAGE_SIZE && !PAGE_ALIGNED(start))) {
3305 btrfs_err(fs_info,
3306 "tree block is not page aligned, start %llu nodesize %u",
3307 start, nodesize);
3308 return true;
3309 }
3310 if (unlikely(!IS_ALIGNED(start, nodesize) &&
3311 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags))) {
3312 btrfs_warn(fs_info,
3313 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3314 start, nodesize);
3315 }
3316 return false;
3317 }
3318
3319 /*
3320 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3321 * Return >0 if there is already another extent buffer for the range,
3322 * and @found_eb_ret would be updated.
3323 * Return -EAGAIN if the filemap has an existing folio but with different size
3324 * than @eb.
3325 * The caller needs to free the existing folios and retry using the same order.
3326 */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_folio_state * prealloc,struct extent_buffer ** found_eb_ret)3327 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3328 struct btrfs_folio_state *prealloc,
3329 struct extent_buffer **found_eb_ret)
3330 {
3331
3332 struct btrfs_fs_info *fs_info = eb->fs_info;
3333 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3334 const pgoff_t index = eb->start >> PAGE_SHIFT;
3335 struct folio *existing_folio;
3336 int ret;
3337
3338 ASSERT(found_eb_ret);
3339
3340 /* Caller should ensure the folio exists. */
3341 ASSERT(eb->folios[i]);
3342
3343 retry:
3344 existing_folio = NULL;
3345 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3346 GFP_NOFS | __GFP_NOFAIL);
3347 if (!ret)
3348 goto finish;
3349
3350 existing_folio = filemap_lock_folio(mapping, index + i);
3351 /* The page cache only exists for a very short time, just retry. */
3352 if (IS_ERR(existing_folio))
3353 goto retry;
3354
3355 /* For now, we should only have single-page folios for btree inode. */
3356 ASSERT(folio_nr_pages(existing_folio) == 1);
3357
3358 if (folio_size(existing_folio) != eb->folio_size) {
3359 folio_unlock(existing_folio);
3360 folio_put(existing_folio);
3361 return -EAGAIN;
3362 }
3363
3364 finish:
3365 spin_lock(&mapping->i_private_lock);
3366 if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3367 /* We're going to reuse the existing page, can drop our folio now. */
3368 __free_page(folio_page(eb->folios[i], 0));
3369 eb->folios[i] = existing_folio;
3370 } else if (existing_folio) {
3371 struct extent_buffer *existing_eb;
3372
3373 existing_eb = grab_extent_buffer(fs_info, existing_folio);
3374 if (existing_eb) {
3375 /* The extent buffer still exists, we can use it directly. */
3376 *found_eb_ret = existing_eb;
3377 spin_unlock(&mapping->i_private_lock);
3378 folio_unlock(existing_folio);
3379 folio_put(existing_folio);
3380 return 1;
3381 }
3382 /* The extent buffer no longer exists, we can reuse the folio. */
3383 __free_page(folio_page(eb->folios[i], 0));
3384 eb->folios[i] = existing_folio;
3385 }
3386 eb->folio_size = folio_size(eb->folios[i]);
3387 eb->folio_shift = folio_shift(eb->folios[i]);
3388 /* Should not fail, as we have preallocated the memory. */
3389 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3390 ASSERT(!ret);
3391 /*
3392 * To inform we have an extra eb under allocation, so that
3393 * detach_extent_buffer_page() won't release the folio private when the
3394 * eb hasn't been inserted into the xarray yet.
3395 *
3396 * The ref will be decreased when the eb releases the page, in
3397 * detach_extent_buffer_page(). Thus needs no special handling in the
3398 * error path.
3399 */
3400 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3401 spin_unlock(&mapping->i_private_lock);
3402 return 0;
3403 }
3404
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3405 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3406 u64 start, u64 owner_root, int level)
3407 {
3408 int attached = 0;
3409 struct extent_buffer *eb;
3410 struct extent_buffer *existing_eb = NULL;
3411 struct btrfs_folio_state *prealloc = NULL;
3412 u64 lockdep_owner = owner_root;
3413 bool page_contig = true;
3414 int uptodate = 1;
3415 int ret;
3416
3417 if (check_eb_alignment(fs_info, start))
3418 return ERR_PTR(-EINVAL);
3419
3420 #if BITS_PER_LONG == 32
3421 if (start >= MAX_LFS_FILESIZE) {
3422 btrfs_err_rl(fs_info,
3423 "extent buffer %llu is beyond 32bit page cache limit", start);
3424 btrfs_err_32bit_limit(fs_info);
3425 return ERR_PTR(-EOVERFLOW);
3426 }
3427 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3428 btrfs_warn_32bit_limit(fs_info);
3429 #endif
3430
3431 eb = find_extent_buffer(fs_info, start);
3432 if (eb)
3433 return eb;
3434
3435 eb = __alloc_extent_buffer(fs_info, start);
3436 if (!eb)
3437 return ERR_PTR(-ENOMEM);
3438
3439 /*
3440 * The reloc trees are just snapshots, so we need them to appear to be
3441 * just like any other fs tree WRT lockdep.
3442 */
3443 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3444 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3445
3446 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3447
3448 /*
3449 * Preallocate folio private for subpage case, so that we won't
3450 * allocate memory with i_private_lock nor page lock hold.
3451 *
3452 * The memory will be freed by attach_extent_buffer_page() or freed
3453 * manually if we exit earlier.
3454 */
3455 if (btrfs_meta_is_subpage(fs_info)) {
3456 prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3457 if (IS_ERR(prealloc)) {
3458 ret = PTR_ERR(prealloc);
3459 goto out;
3460 }
3461 }
3462
3463 reallocate:
3464 /* Allocate all pages first. */
3465 ret = alloc_eb_folio_array(eb, true);
3466 if (ret < 0) {
3467 btrfs_free_folio_state(prealloc);
3468 goto out;
3469 }
3470
3471 /* Attach all pages to the filemap. */
3472 for (int i = 0; i < num_extent_folios(eb); i++) {
3473 struct folio *folio;
3474
3475 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3476 if (ret > 0) {
3477 ASSERT(existing_eb);
3478 goto out;
3479 }
3480
3481 /*
3482 * TODO: Special handling for a corner case where the order of
3483 * folios mismatch between the new eb and filemap.
3484 *
3485 * This happens when:
3486 *
3487 * - the new eb is using higher order folio
3488 *
3489 * - the filemap is still using 0-order folios for the range
3490 * This can happen at the previous eb allocation, and we don't
3491 * have higher order folio for the call.
3492 *
3493 * - the existing eb has already been freed
3494 *
3495 * In this case, we have to free the existing folios first, and
3496 * re-allocate using the same order.
3497 * Thankfully this is not going to happen yet, as we're still
3498 * using 0-order folios.
3499 */
3500 if (unlikely(ret == -EAGAIN)) {
3501 DEBUG_WARN("folio order mismatch between new eb and filemap");
3502 goto reallocate;
3503 }
3504 attached++;
3505
3506 /*
3507 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3508 * reliable, as we may choose to reuse the existing page cache
3509 * and free the allocated page.
3510 */
3511 folio = eb->folios[i];
3512 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3513
3514 /*
3515 * Check if the current page is physically contiguous with previous eb
3516 * page.
3517 * At this stage, either we allocated a large folio, thus @i
3518 * would only be 0, or we fall back to per-page allocation.
3519 */
3520 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3521 page_contig = false;
3522
3523 if (!btrfs_meta_folio_test_uptodate(folio, eb))
3524 uptodate = 0;
3525
3526 /*
3527 * We can't unlock the pages just yet since the extent buffer
3528 * hasn't been properly inserted into the xarray, this opens a
3529 * race with btree_release_folio() which can free a page while we
3530 * are still filling in all pages for the buffer and we could crash.
3531 */
3532 }
3533 if (uptodate)
3534 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3535 /* All pages are physically contiguous, can skip cross page handling. */
3536 if (page_contig)
3537 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3538 again:
3539 xa_lock_irq(&fs_info->buffer_tree);
3540 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3541 start >> fs_info->nodesize_bits, NULL, eb,
3542 GFP_NOFS);
3543 if (xa_is_err(existing_eb)) {
3544 ret = xa_err(existing_eb);
3545 xa_unlock_irq(&fs_info->buffer_tree);
3546 goto out;
3547 }
3548 if (existing_eb) {
3549 if (!refcount_inc_not_zero(&existing_eb->refs)) {
3550 xa_unlock_irq(&fs_info->buffer_tree);
3551 goto again;
3552 }
3553 xa_unlock_irq(&fs_info->buffer_tree);
3554 goto out;
3555 }
3556 xa_unlock_irq(&fs_info->buffer_tree);
3557
3558 /* add one reference for the tree */
3559 check_buffer_tree_ref(eb);
3560
3561 /*
3562 * Now it's safe to unlock the pages because any calls to
3563 * btree_release_folio will correctly detect that a page belongs to a
3564 * live buffer and won't free them prematurely.
3565 */
3566 for (int i = 0; i < num_extent_folios(eb); i++) {
3567 folio_unlock(eb->folios[i]);
3568 /*
3569 * A folio that has been added to an address_space mapping
3570 * should not continue holding the refcount from its original
3571 * allocation indefinitely.
3572 */
3573 folio_put(eb->folios[i]);
3574 }
3575 return eb;
3576
3577 out:
3578 WARN_ON(!refcount_dec_and_test(&eb->refs));
3579
3580 /*
3581 * Any attached folios need to be detached before we unlock them. This
3582 * is because when we're inserting our new folios into the mapping, and
3583 * then attaching our eb to that folio. If we fail to insert our folio
3584 * we'll lookup the folio for that index, and grab that EB. We do not
3585 * want that to grab this eb, as we're getting ready to free it. So we
3586 * have to detach it first and then unlock it.
3587 *
3588 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3589 */
3590 for (int i = 0; i < num_extent_pages(eb); i++) {
3591 struct folio *folio = eb->folios[i];
3592
3593 if (i < attached) {
3594 ASSERT(folio);
3595 detach_extent_buffer_folio(eb, folio);
3596 folio_unlock(folio);
3597 } else if (!folio) {
3598 continue;
3599 }
3600
3601 folio_put(folio);
3602 eb->folios[i] = NULL;
3603 }
3604 btrfs_release_extent_buffer(eb);
3605 if (ret < 0)
3606 return ERR_PTR(ret);
3607 ASSERT(existing_eb);
3608 return existing_eb;
3609 }
3610
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3611 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3612 {
3613 struct extent_buffer *eb =
3614 container_of(head, struct extent_buffer, rcu_head);
3615
3616 kmem_cache_free(extent_buffer_cache, eb);
3617 }
3618
release_extent_buffer(struct extent_buffer * eb)3619 static int release_extent_buffer(struct extent_buffer *eb)
3620 __releases(&eb->refs_lock)
3621 {
3622 lockdep_assert_held(&eb->refs_lock);
3623
3624 if (refcount_dec_and_test(&eb->refs)) {
3625 struct btrfs_fs_info *fs_info = eb->fs_info;
3626
3627 spin_unlock(&eb->refs_lock);
3628
3629 /*
3630 * We're erasing, theoretically there will be no allocations, so
3631 * just use GFP_ATOMIC.
3632 *
3633 * We use cmpxchg instead of erase because we do not know if
3634 * this eb is actually in the tree or not, we could be cleaning
3635 * up an eb that we allocated but never inserted into the tree.
3636 * Thus use cmpxchg to remove it from the tree if it is there,
3637 * or leave the other entry if this isn't in the tree.
3638 *
3639 * The documentation says that putting a NULL value is the same
3640 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3641 * in this case.
3642 */
3643 xa_cmpxchg_irq(&fs_info->buffer_tree,
3644 eb->start >> fs_info->nodesize_bits, eb, NULL,
3645 GFP_ATOMIC);
3646
3647 btrfs_leak_debug_del_eb(eb);
3648 /* Should be safe to release folios at this point. */
3649 btrfs_release_extent_buffer_folios(eb);
3650 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3651 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3652 kmem_cache_free(extent_buffer_cache, eb);
3653 return 1;
3654 }
3655 #endif
3656 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3657 return 1;
3658 }
3659 spin_unlock(&eb->refs_lock);
3660
3661 return 0;
3662 }
3663
free_extent_buffer(struct extent_buffer * eb)3664 void free_extent_buffer(struct extent_buffer *eb)
3665 {
3666 int refs;
3667 if (!eb)
3668 return;
3669
3670 refs = refcount_read(&eb->refs);
3671 while (1) {
3672 if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3673 if (refs == 1)
3674 break;
3675 } else if (refs <= 3) {
3676 break;
3677 }
3678
3679 /* Optimization to avoid locking eb->refs_lock. */
3680 if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3681 return;
3682 }
3683
3684 spin_lock(&eb->refs_lock);
3685 if (refcount_read(&eb->refs) == 2 &&
3686 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3687 !extent_buffer_under_io(eb) &&
3688 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3689 refcount_dec(&eb->refs);
3690
3691 /*
3692 * I know this is terrible, but it's temporary until we stop tracking
3693 * the uptodate bits and such for the extent buffers.
3694 */
3695 release_extent_buffer(eb);
3696 }
3697
free_extent_buffer_stale(struct extent_buffer * eb)3698 void free_extent_buffer_stale(struct extent_buffer *eb)
3699 {
3700 if (!eb)
3701 return;
3702
3703 spin_lock(&eb->refs_lock);
3704 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3705
3706 if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3707 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3708 refcount_dec(&eb->refs);
3709 release_extent_buffer(eb);
3710 }
3711
btree_clear_folio_dirty_tag(struct folio * folio)3712 static void btree_clear_folio_dirty_tag(struct folio *folio)
3713 {
3714 ASSERT(!folio_test_dirty(folio));
3715 ASSERT(folio_test_locked(folio));
3716 xa_lock_irq(&folio->mapping->i_pages);
3717 if (!folio_test_dirty(folio))
3718 __xa_clear_mark(&folio->mapping->i_pages, folio->index,
3719 PAGECACHE_TAG_DIRTY);
3720 xa_unlock_irq(&folio->mapping->i_pages);
3721 }
3722
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3723 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3724 struct extent_buffer *eb)
3725 {
3726 struct btrfs_fs_info *fs_info = eb->fs_info;
3727
3728 btrfs_assert_tree_write_locked(eb);
3729
3730 if (trans && btrfs_header_generation(eb) != trans->transid)
3731 return;
3732
3733 /*
3734 * Instead of clearing the dirty flag off of the buffer, mark it as
3735 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3736 * write-ordering in zoned mode, without the need to later re-dirty
3737 * the extent_buffer.
3738 *
3739 * The actual zeroout of the buffer will happen later in
3740 * btree_csum_one_bio.
3741 */
3742 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3744 return;
3745 }
3746
3747 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3748 return;
3749
3750 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3751 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3752 fs_info->dirty_metadata_batch);
3753
3754 for (int i = 0; i < num_extent_folios(eb); i++) {
3755 struct folio *folio = eb->folios[i];
3756 bool last;
3757
3758 if (!folio_test_dirty(folio))
3759 continue;
3760 folio_lock(folio);
3761 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3762 if (last)
3763 btree_clear_folio_dirty_tag(folio);
3764 folio_unlock(folio);
3765 }
3766 WARN_ON(refcount_read(&eb->refs) == 0);
3767 }
3768
set_extent_buffer_dirty(struct extent_buffer * eb)3769 void set_extent_buffer_dirty(struct extent_buffer *eb)
3770 {
3771 bool was_dirty;
3772
3773 check_buffer_tree_ref(eb);
3774
3775 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3776
3777 WARN_ON(refcount_read(&eb->refs) == 0);
3778 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3779 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3780
3781 if (!was_dirty) {
3782 bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3783
3784 /*
3785 * For subpage case, we can have other extent buffers in the
3786 * same page, and in clear_extent_buffer_dirty() we
3787 * have to clear page dirty without subpage lock held.
3788 * This can cause race where our page gets dirty cleared after
3789 * we just set it.
3790 *
3791 * Thankfully, clear_extent_buffer_dirty() has locked
3792 * its page for other reasons, we can use page lock to prevent
3793 * the above race.
3794 */
3795 if (subpage)
3796 folio_lock(eb->folios[0]);
3797 for (int i = 0; i < num_extent_folios(eb); i++)
3798 btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3799 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3800 if (subpage)
3801 folio_unlock(eb->folios[0]);
3802 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3803 eb->len,
3804 eb->fs_info->dirty_metadata_batch);
3805 }
3806 #ifdef CONFIG_BTRFS_DEBUG
3807 for (int i = 0; i < num_extent_folios(eb); i++)
3808 ASSERT(folio_test_dirty(eb->folios[i]));
3809 #endif
3810 }
3811
clear_extent_buffer_uptodate(struct extent_buffer * eb)3812 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3813 {
3814
3815 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3816 for (int i = 0; i < num_extent_folios(eb); i++) {
3817 struct folio *folio = eb->folios[i];
3818
3819 if (!folio)
3820 continue;
3821
3822 btrfs_meta_folio_clear_uptodate(folio, eb);
3823 }
3824 }
3825
set_extent_buffer_uptodate(struct extent_buffer * eb)3826 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3827 {
3828
3829 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3830 for (int i = 0; i < num_extent_folios(eb); i++)
3831 btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3832 }
3833
clear_extent_buffer_reading(struct extent_buffer * eb)3834 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3835 {
3836 clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3837 }
3838
end_bbio_meta_read(struct btrfs_bio * bbio)3839 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3840 {
3841 struct extent_buffer *eb = bbio->private;
3842 bool uptodate = !bbio->bio.bi_status;
3843
3844 /*
3845 * If the extent buffer is marked UPTODATE before the read operation
3846 * completes, other calls to read_extent_buffer_pages() will return
3847 * early without waiting for the read to finish, causing data races.
3848 */
3849 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3850
3851 eb->read_mirror = bbio->mirror_num;
3852
3853 if (uptodate &&
3854 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3855 uptodate = false;
3856
3857 if (uptodate)
3858 set_extent_buffer_uptodate(eb);
3859 else
3860 clear_extent_buffer_uptodate(eb);
3861
3862 clear_extent_buffer_reading(eb);
3863 free_extent_buffer(eb);
3864
3865 bio_put(&bbio->bio);
3866 }
3867
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3868 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3869 const struct btrfs_tree_parent_check *check)
3870 {
3871 struct btrfs_fs_info *fs_info = eb->fs_info;
3872 struct btrfs_bio *bbio;
3873
3874 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3875 return 0;
3876
3877 /*
3878 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3879 * operation, which could potentially still be in flight. In this case
3880 * we simply want to return an error.
3881 */
3882 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3883 return -EIO;
3884
3885 /* Someone else is already reading the buffer, just wait for it. */
3886 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3887 return 0;
3888
3889 /*
3890 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3891 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3892 * started and finished reading the same eb. In this case, UPTODATE
3893 * will now be set, and we shouldn't read it in again.
3894 */
3895 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3896 clear_extent_buffer_reading(eb);
3897 return 0;
3898 }
3899
3900 eb->read_mirror = 0;
3901 check_buffer_tree_ref(eb);
3902 refcount_inc(&eb->refs);
3903
3904 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3905 REQ_OP_READ | REQ_META, BTRFS_I(fs_info->btree_inode),
3906 eb->start, end_bbio_meta_read, eb);
3907 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3908 memcpy(&bbio->parent_check, check, sizeof(*check));
3909 for (int i = 0; i < num_extent_folios(eb); i++) {
3910 struct folio *folio = eb->folios[i];
3911 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3912 u32 range_len = min_t(u64, folio_next_pos(folio),
3913 eb->start + eb->len) - range_start;
3914
3915 bio_add_folio_nofail(&bbio->bio, folio, range_len,
3916 offset_in_folio(folio, range_start));
3917 }
3918 btrfs_submit_bbio(bbio, mirror_num);
3919 return 0;
3920 }
3921
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3922 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3923 const struct btrfs_tree_parent_check *check)
3924 {
3925 int ret;
3926
3927 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3928 if (ret < 0)
3929 return ret;
3930
3931 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3932 if (unlikely(!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)))
3933 return -EIO;
3934 return 0;
3935 }
3936
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3937 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3938 unsigned long len)
3939 {
3940 btrfs_warn(eb->fs_info,
3941 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3942 eb->start, eb->len, start, len);
3943 DEBUG_WARN();
3944
3945 return true;
3946 }
3947
3948 /*
3949 * Check if the [start, start + len) range is valid before reading/writing
3950 * the eb.
3951 * NOTE: @start and @len are offset inside the eb, not logical address.
3952 *
3953 * Caller should not touch the dst/src memory if this function returns error.
3954 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3955 static inline int check_eb_range(const struct extent_buffer *eb,
3956 unsigned long start, unsigned long len)
3957 {
3958 unsigned long offset;
3959
3960 /* start, start + len should not go beyond eb->len nor overflow */
3961 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3962 return report_eb_range(eb, start, len);
3963
3964 return false;
3965 }
3966
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3967 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3968 unsigned long start, unsigned long len)
3969 {
3970 const int unit_size = eb->folio_size;
3971 size_t cur;
3972 size_t offset;
3973 char *dst = (char *)dstv;
3974 unsigned long i = get_eb_folio_index(eb, start);
3975
3976 if (check_eb_range(eb, start, len)) {
3977 /*
3978 * Invalid range hit, reset the memory, so callers won't get
3979 * some random garbage for their uninitialized memory.
3980 */
3981 memset(dstv, 0, len);
3982 return;
3983 }
3984
3985 if (eb->addr) {
3986 memcpy(dstv, eb->addr + start, len);
3987 return;
3988 }
3989
3990 offset = get_eb_offset_in_folio(eb, start);
3991
3992 while (len > 0) {
3993 char *kaddr;
3994
3995 cur = min(len, unit_size - offset);
3996 kaddr = folio_address(eb->folios[i]);
3997 memcpy(dst, kaddr + offset, cur);
3998
3999 dst += cur;
4000 len -= cur;
4001 offset = 0;
4002 i++;
4003 }
4004 }
4005
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)4006 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4007 void __user *dstv,
4008 unsigned long start, unsigned long len)
4009 {
4010 const int unit_size = eb->folio_size;
4011 size_t cur;
4012 size_t offset;
4013 char __user *dst = (char __user *)dstv;
4014 unsigned long i = get_eb_folio_index(eb, start);
4015 int ret = 0;
4016
4017 WARN_ON(start > eb->len);
4018 WARN_ON(start + len > eb->start + eb->len);
4019
4020 if (eb->addr) {
4021 if (copy_to_user_nofault(dstv, eb->addr + start, len))
4022 ret = -EFAULT;
4023 return ret;
4024 }
4025
4026 offset = get_eb_offset_in_folio(eb, start);
4027
4028 while (len > 0) {
4029 char *kaddr;
4030
4031 cur = min(len, unit_size - offset);
4032 kaddr = folio_address(eb->folios[i]);
4033 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4034 ret = -EFAULT;
4035 break;
4036 }
4037
4038 dst += cur;
4039 len -= cur;
4040 offset = 0;
4041 i++;
4042 }
4043
4044 return ret;
4045 }
4046
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)4047 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4048 unsigned long start, unsigned long len)
4049 {
4050 const int unit_size = eb->folio_size;
4051 size_t cur;
4052 size_t offset;
4053 char *kaddr;
4054 char *ptr = (char *)ptrv;
4055 unsigned long i = get_eb_folio_index(eb, start);
4056 int ret = 0;
4057
4058 if (check_eb_range(eb, start, len))
4059 return -EINVAL;
4060
4061 if (eb->addr)
4062 return memcmp(ptrv, eb->addr + start, len);
4063
4064 offset = get_eb_offset_in_folio(eb, start);
4065
4066 while (len > 0) {
4067 cur = min(len, unit_size - offset);
4068 kaddr = folio_address(eb->folios[i]);
4069 ret = memcmp(ptr, kaddr + offset, cur);
4070 if (ret)
4071 break;
4072
4073 ptr += cur;
4074 len -= cur;
4075 offset = 0;
4076 i++;
4077 }
4078 return ret;
4079 }
4080
4081 /*
4082 * Check that the extent buffer is uptodate.
4083 *
4084 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4085 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4086 */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)4087 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4088 {
4089 struct btrfs_fs_info *fs_info = eb->fs_info;
4090 struct folio *folio = eb->folios[i];
4091
4092 ASSERT(folio);
4093
4094 /*
4095 * If we are using the commit root we could potentially clear a page
4096 * Uptodate while we're using the extent buffer that we've previously
4097 * looked up. We don't want to complain in this case, as the page was
4098 * valid before, we just didn't write it out. Instead we want to catch
4099 * the case where we didn't actually read the block properly, which
4100 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4101 */
4102 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4103 return;
4104
4105 if (btrfs_meta_is_subpage(fs_info)) {
4106 folio = eb->folios[0];
4107 ASSERT(i == 0);
4108 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4109 eb->start, eb->len)))
4110 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4111 } else {
4112 WARN_ON(!folio_test_uptodate(folio));
4113 }
4114 }
4115
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)4116 static void __write_extent_buffer(const struct extent_buffer *eb,
4117 const void *srcv, unsigned long start,
4118 unsigned long len, bool use_memmove)
4119 {
4120 const int unit_size = eb->folio_size;
4121 size_t cur;
4122 size_t offset;
4123 char *kaddr;
4124 const char *src = (const char *)srcv;
4125 unsigned long i = get_eb_folio_index(eb, start);
4126 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4127 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4128
4129 if (check_eb_range(eb, start, len))
4130 return;
4131
4132 if (eb->addr) {
4133 if (use_memmove)
4134 memmove(eb->addr + start, srcv, len);
4135 else
4136 memcpy(eb->addr + start, srcv, len);
4137 return;
4138 }
4139
4140 offset = get_eb_offset_in_folio(eb, start);
4141
4142 while (len > 0) {
4143 if (check_uptodate)
4144 assert_eb_folio_uptodate(eb, i);
4145
4146 cur = min(len, unit_size - offset);
4147 kaddr = folio_address(eb->folios[i]);
4148 if (use_memmove)
4149 memmove(kaddr + offset, src, cur);
4150 else
4151 memcpy(kaddr + offset, src, cur);
4152
4153 src += cur;
4154 len -= cur;
4155 offset = 0;
4156 i++;
4157 }
4158 }
4159
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)4160 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4161 unsigned long start, unsigned long len)
4162 {
4163 return __write_extent_buffer(eb, srcv, start, len, false);
4164 }
4165
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)4166 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4167 unsigned long start, unsigned long len)
4168 {
4169 const int unit_size = eb->folio_size;
4170 unsigned long cur = start;
4171
4172 if (eb->addr) {
4173 memset(eb->addr + start, c, len);
4174 return;
4175 }
4176
4177 while (cur < start + len) {
4178 unsigned long index = get_eb_folio_index(eb, cur);
4179 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4180 unsigned int cur_len = min(start + len - cur, unit_size - offset);
4181
4182 assert_eb_folio_uptodate(eb, index);
4183 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4184
4185 cur += cur_len;
4186 }
4187 }
4188
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4189 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4190 unsigned long len)
4191 {
4192 if (check_eb_range(eb, start, len))
4193 return;
4194 return memset_extent_buffer(eb, 0, start, len);
4195 }
4196
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4197 void copy_extent_buffer_full(const struct extent_buffer *dst,
4198 const struct extent_buffer *src)
4199 {
4200 const int unit_size = src->folio_size;
4201 unsigned long cur = 0;
4202
4203 ASSERT(dst->len == src->len);
4204
4205 while (cur < src->len) {
4206 unsigned long index = get_eb_folio_index(src, cur);
4207 unsigned long offset = get_eb_offset_in_folio(src, cur);
4208 unsigned long cur_len = min(src->len, unit_size - offset);
4209 void *addr = folio_address(src->folios[index]) + offset;
4210
4211 write_extent_buffer(dst, addr, cur, cur_len);
4212
4213 cur += cur_len;
4214 }
4215 }
4216
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4217 void copy_extent_buffer(const struct extent_buffer *dst,
4218 const struct extent_buffer *src,
4219 unsigned long dst_offset, unsigned long src_offset,
4220 unsigned long len)
4221 {
4222 const int unit_size = dst->folio_size;
4223 u64 dst_len = dst->len;
4224 size_t cur;
4225 size_t offset;
4226 char *kaddr;
4227 unsigned long i = get_eb_folio_index(dst, dst_offset);
4228
4229 if (check_eb_range(dst, dst_offset, len) ||
4230 check_eb_range(src, src_offset, len))
4231 return;
4232
4233 WARN_ON(src->len != dst_len);
4234
4235 offset = get_eb_offset_in_folio(dst, dst_offset);
4236
4237 while (len > 0) {
4238 assert_eb_folio_uptodate(dst, i);
4239
4240 cur = min(len, (unsigned long)(unit_size - offset));
4241
4242 kaddr = folio_address(dst->folios[i]);
4243 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4244
4245 src_offset += cur;
4246 len -= cur;
4247 offset = 0;
4248 i++;
4249 }
4250 }
4251
4252 /*
4253 * Calculate the folio and offset of the byte containing the given bit number.
4254 *
4255 * @eb: the extent buffer
4256 * @start: offset of the bitmap item in the extent buffer
4257 * @nr: bit number
4258 * @folio_index: return index of the folio in the extent buffer that contains
4259 * the given bit number
4260 * @folio_offset: return offset into the folio given by folio_index
4261 *
4262 * This helper hides the ugliness of finding the byte in an extent buffer which
4263 * contains a given bit.
4264 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4265 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4266 unsigned long start, unsigned long nr,
4267 unsigned long *folio_index,
4268 size_t *folio_offset)
4269 {
4270 size_t byte_offset = BIT_BYTE(nr);
4271 size_t offset;
4272
4273 /*
4274 * The byte we want is the offset of the extent buffer + the offset of
4275 * the bitmap item in the extent buffer + the offset of the byte in the
4276 * bitmap item.
4277 */
4278 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4279
4280 *folio_index = offset >> eb->folio_shift;
4281 *folio_offset = offset_in_eb_folio(eb, offset);
4282 }
4283
4284 /*
4285 * Determine whether a bit in a bitmap item is set.
4286 *
4287 * @eb: the extent buffer
4288 * @start: offset of the bitmap item in the extent buffer
4289 * @nr: bit number to test
4290 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4291 bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4292 unsigned long nr)
4293 {
4294 unsigned long i;
4295 size_t offset;
4296 u8 *kaddr;
4297
4298 eb_bitmap_offset(eb, start, nr, &i, &offset);
4299 assert_eb_folio_uptodate(eb, i);
4300 kaddr = folio_address(eb->folios[i]);
4301 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4302 }
4303
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4304 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4305 {
4306 unsigned long index = get_eb_folio_index(eb, bytenr);
4307
4308 if (check_eb_range(eb, bytenr, 1))
4309 return NULL;
4310 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4311 }
4312
4313 /*
4314 * Set an area of a bitmap to 1.
4315 *
4316 * @eb: the extent buffer
4317 * @start: offset of the bitmap item in the extent buffer
4318 * @pos: bit number of the first bit
4319 * @len: number of bits to set
4320 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4321 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4322 unsigned long pos, unsigned long len)
4323 {
4324 unsigned int first_byte = start + BIT_BYTE(pos);
4325 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4326 const bool same_byte = (first_byte == last_byte);
4327 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4328 u8 *kaddr;
4329
4330 if (same_byte)
4331 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4332
4333 /* Handle the first byte. */
4334 kaddr = extent_buffer_get_byte(eb, first_byte);
4335 *kaddr |= mask;
4336 if (same_byte)
4337 return;
4338
4339 /* Handle the byte aligned part. */
4340 ASSERT(first_byte + 1 <= last_byte);
4341 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4342
4343 /* Handle the last byte. */
4344 kaddr = extent_buffer_get_byte(eb, last_byte);
4345 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4346 }
4347
4348
4349 /*
4350 * Clear an area of a bitmap.
4351 *
4352 * @eb: the extent buffer
4353 * @start: offset of the bitmap item in the extent buffer
4354 * @pos: bit number of the first bit
4355 * @len: number of bits to clear
4356 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4357 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4358 unsigned long start, unsigned long pos,
4359 unsigned long len)
4360 {
4361 unsigned int first_byte = start + BIT_BYTE(pos);
4362 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4363 const bool same_byte = (first_byte == last_byte);
4364 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4365 u8 *kaddr;
4366
4367 if (same_byte)
4368 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4369
4370 /* Handle the first byte. */
4371 kaddr = extent_buffer_get_byte(eb, first_byte);
4372 *kaddr &= ~mask;
4373 if (same_byte)
4374 return;
4375
4376 /* Handle the byte aligned part. */
4377 ASSERT(first_byte + 1 <= last_byte);
4378 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4379
4380 /* Handle the last byte. */
4381 kaddr = extent_buffer_get_byte(eb, last_byte);
4382 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4383 }
4384
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4385 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4386 {
4387 unsigned long distance = (src > dst) ? src - dst : dst - src;
4388 return distance < len;
4389 }
4390
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4391 void memcpy_extent_buffer(const struct extent_buffer *dst,
4392 unsigned long dst_offset, unsigned long src_offset,
4393 unsigned long len)
4394 {
4395 const int unit_size = dst->folio_size;
4396 unsigned long cur_off = 0;
4397
4398 if (check_eb_range(dst, dst_offset, len) ||
4399 check_eb_range(dst, src_offset, len))
4400 return;
4401
4402 if (dst->addr) {
4403 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4404
4405 if (use_memmove)
4406 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4407 else
4408 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4409 return;
4410 }
4411
4412 while (cur_off < len) {
4413 unsigned long cur_src = cur_off + src_offset;
4414 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4415 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4416 unsigned long cur_len = min(src_offset + len - cur_src,
4417 unit_size - folio_off);
4418 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4419 const bool use_memmove = areas_overlap(src_offset + cur_off,
4420 dst_offset + cur_off, cur_len);
4421
4422 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4423 use_memmove);
4424 cur_off += cur_len;
4425 }
4426 }
4427
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4428 void memmove_extent_buffer(const struct extent_buffer *dst,
4429 unsigned long dst_offset, unsigned long src_offset,
4430 unsigned long len)
4431 {
4432 unsigned long dst_end = dst_offset + len - 1;
4433 unsigned long src_end = src_offset + len - 1;
4434
4435 if (check_eb_range(dst, dst_offset, len) ||
4436 check_eb_range(dst, src_offset, len))
4437 return;
4438
4439 if (dst_offset < src_offset) {
4440 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4441 return;
4442 }
4443
4444 if (dst->addr) {
4445 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4446 return;
4447 }
4448
4449 while (len > 0) {
4450 unsigned long src_i;
4451 size_t cur;
4452 size_t dst_off_in_folio;
4453 size_t src_off_in_folio;
4454 void *src_addr;
4455 bool use_memmove;
4456
4457 src_i = get_eb_folio_index(dst, src_end);
4458
4459 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4460 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4461
4462 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4463 cur = min(cur, dst_off_in_folio + 1);
4464
4465 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4466 cur + 1;
4467 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4468 cur);
4469
4470 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4471 use_memmove);
4472
4473 dst_end -= cur;
4474 src_end -= cur;
4475 len -= cur;
4476 }
4477 }
4478
try_release_subpage_extent_buffer(struct folio * folio)4479 static int try_release_subpage_extent_buffer(struct folio *folio)
4480 {
4481 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4482 struct extent_buffer *eb;
4483 unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4484 unsigned long index = start;
4485 unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4486 int ret;
4487
4488 rcu_read_lock();
4489 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4490 /*
4491 * The same as try_release_extent_buffer(), to ensure the eb
4492 * won't disappear out from under us.
4493 */
4494 spin_lock(&eb->refs_lock);
4495 rcu_read_unlock();
4496
4497 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4498 spin_unlock(&eb->refs_lock);
4499 rcu_read_lock();
4500 continue;
4501 }
4502
4503 /*
4504 * If tree ref isn't set then we know the ref on this eb is a
4505 * real ref, so just return, this eb will likely be freed soon
4506 * anyway.
4507 */
4508 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4509 spin_unlock(&eb->refs_lock);
4510 break;
4511 }
4512
4513 /*
4514 * Here we don't care about the return value, we will always
4515 * check the folio private at the end. And
4516 * release_extent_buffer() will release the refs_lock.
4517 */
4518 release_extent_buffer(eb);
4519 rcu_read_lock();
4520 }
4521 rcu_read_unlock();
4522
4523 /*
4524 * Finally to check if we have cleared folio private, as if we have
4525 * released all ebs in the page, the folio private should be cleared now.
4526 */
4527 spin_lock(&folio->mapping->i_private_lock);
4528 if (!folio_test_private(folio))
4529 ret = 1;
4530 else
4531 ret = 0;
4532 spin_unlock(&folio->mapping->i_private_lock);
4533 return ret;
4534 }
4535
try_release_extent_buffer(struct folio * folio)4536 int try_release_extent_buffer(struct folio *folio)
4537 {
4538 struct extent_buffer *eb;
4539
4540 if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4541 return try_release_subpage_extent_buffer(folio);
4542
4543 /*
4544 * We need to make sure nobody is changing folio private, as we rely on
4545 * folio private as the pointer to extent buffer.
4546 */
4547 spin_lock(&folio->mapping->i_private_lock);
4548 if (!folio_test_private(folio)) {
4549 spin_unlock(&folio->mapping->i_private_lock);
4550 return 1;
4551 }
4552
4553 eb = folio_get_private(folio);
4554 BUG_ON(!eb);
4555
4556 /*
4557 * This is a little awful but should be ok, we need to make sure that
4558 * the eb doesn't disappear out from under us while we're looking at
4559 * this page.
4560 */
4561 spin_lock(&eb->refs_lock);
4562 if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4563 spin_unlock(&eb->refs_lock);
4564 spin_unlock(&folio->mapping->i_private_lock);
4565 return 0;
4566 }
4567 spin_unlock(&folio->mapping->i_private_lock);
4568
4569 /*
4570 * If tree ref isn't set then we know the ref on this eb is a real ref,
4571 * so just return, this page will likely be freed soon anyway.
4572 */
4573 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4574 spin_unlock(&eb->refs_lock);
4575 return 0;
4576 }
4577
4578 return release_extent_buffer(eb);
4579 }
4580
4581 /*
4582 * Attempt to readahead a child block.
4583 *
4584 * @fs_info: the fs_info
4585 * @bytenr: bytenr to read
4586 * @owner_root: objectid of the root that owns this eb
4587 * @gen: generation for the uptodate check, can be 0
4588 * @level: level for the eb
4589 *
4590 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4591 * normal uptodate check of the eb, without checking the generation. If we have
4592 * to read the block we will not block on anything.
4593 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4594 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4595 u64 bytenr, u64 owner_root, u64 gen, int level)
4596 {
4597 struct btrfs_tree_parent_check check = {
4598 .level = level,
4599 .transid = gen
4600 };
4601 struct extent_buffer *eb;
4602 int ret;
4603
4604 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4605 if (IS_ERR(eb))
4606 return;
4607
4608 if (btrfs_buffer_uptodate(eb, gen, true)) {
4609 free_extent_buffer(eb);
4610 return;
4611 }
4612
4613 ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4614 if (ret < 0)
4615 free_extent_buffer_stale(eb);
4616 else
4617 free_extent_buffer(eb);
4618 }
4619
4620 /*
4621 * Readahead a node's child block.
4622 *
4623 * @node: parent node we're reading from
4624 * @slot: slot in the parent node for the child we want to read
4625 *
4626 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4627 * the slot in the node provided.
4628 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4629 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4630 {
4631 btrfs_readahead_tree_block(node->fs_info,
4632 btrfs_node_blockptr(node, slot),
4633 btrfs_header_owner(node),
4634 btrfs_node_ptr_generation(node, slot),
4635 btrfs_header_level(node) - 1);
4636 }
4637