xref: /linux/kernel/sched/wait.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic waiting primitives.
4  *
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  */
7 #include "sched.h"
8 
__init_waitqueue_head(struct wait_queue_head * wq_head,const char * name,struct lock_class_key * key)9 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
10 {
11 	spin_lock_init(&wq_head->lock);
12 	lockdep_set_class_and_name(&wq_head->lock, key, name);
13 	INIT_LIST_HEAD(&wq_head->head);
14 }
15 
16 EXPORT_SYMBOL(__init_waitqueue_head);
17 
add_wait_queue(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)18 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
19 {
20 	unsigned long flags;
21 
22 	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
23 	spin_lock_irqsave(&wq_head->lock, flags);
24 	__add_wait_queue(wq_head, wq_entry);
25 	spin_unlock_irqrestore(&wq_head->lock, flags);
26 }
27 EXPORT_SYMBOL(add_wait_queue);
28 
add_wait_queue_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)29 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
30 {
31 	unsigned long flags;
32 
33 	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
34 	spin_lock_irqsave(&wq_head->lock, flags);
35 	__add_wait_queue_entry_tail(wq_head, wq_entry);
36 	spin_unlock_irqrestore(&wq_head->lock, flags);
37 }
38 EXPORT_SYMBOL(add_wait_queue_exclusive);
39 
add_wait_queue_priority(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)40 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
41 {
42 	unsigned long flags;
43 
44 	wq_entry->flags |= WQ_FLAG_PRIORITY;
45 	spin_lock_irqsave(&wq_head->lock, flags);
46 	__add_wait_queue(wq_head, wq_entry);
47 	spin_unlock_irqrestore(&wq_head->lock, flags);
48 }
49 EXPORT_SYMBOL_GPL(add_wait_queue_priority);
50 
add_wait_queue_priority_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)51 int add_wait_queue_priority_exclusive(struct wait_queue_head *wq_head,
52 				      struct wait_queue_entry *wq_entry)
53 {
54 	struct list_head *head = &wq_head->head;
55 
56 	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
57 
58 	guard(spinlock_irqsave)(&wq_head->lock);
59 
60 	if (!list_empty(head) &&
61 	    (list_first_entry(head, typeof(*wq_entry), entry)->flags & WQ_FLAG_PRIORITY))
62 		return -EBUSY;
63 
64 	list_add(&wq_entry->entry, head);
65 	return 0;
66 }
67 EXPORT_SYMBOL_GPL(add_wait_queue_priority_exclusive);
68 
remove_wait_queue(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)69 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
70 {
71 	unsigned long flags;
72 
73 	spin_lock_irqsave(&wq_head->lock, flags);
74 	__remove_wait_queue(wq_head, wq_entry);
75 	spin_unlock_irqrestore(&wq_head->lock, flags);
76 }
77 EXPORT_SYMBOL(remove_wait_queue);
78 
79 /*
80  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
81  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
82  * number) then we wake that number of exclusive tasks, and potentially all
83  * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
84  * the list and any non-exclusive tasks will be woken first. A priority task
85  * may be at the head of the list, and can consume the event without any other
86  * tasks being woken if it's also an exclusive task.
87  *
88  * There are circumstances in which we can try to wake a task which has already
89  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
90  * zero in this (rare) case, and we handle it by continuing to scan the queue.
91  */
__wake_up_common(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,int wake_flags,void * key)92 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
93 			int nr_exclusive, int wake_flags, void *key)
94 {
95 	wait_queue_entry_t *curr, *next;
96 
97 	lockdep_assert_held(&wq_head->lock);
98 
99 	curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
100 
101 	if (&curr->entry == &wq_head->head)
102 		return nr_exclusive;
103 
104 	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
105 		unsigned flags = curr->flags;
106 		int ret;
107 
108 		ret = curr->func(curr, mode, wake_flags, key);
109 		if (ret < 0)
110 			break;
111 		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
112 			break;
113 	}
114 
115 	return nr_exclusive;
116 }
117 
__wake_up_common_lock(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,int wake_flags,void * key)118 static int __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
119 			int nr_exclusive, int wake_flags, void *key)
120 {
121 	unsigned long flags;
122 	int remaining;
123 
124 	spin_lock_irqsave(&wq_head->lock, flags);
125 	remaining = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags,
126 			key);
127 	spin_unlock_irqrestore(&wq_head->lock, flags);
128 
129 	return nr_exclusive - remaining;
130 }
131 
132 /**
133  * __wake_up - wake up threads blocked on a waitqueue.
134  * @wq_head: the waitqueue
135  * @mode: which threads
136  * @nr_exclusive: how many wake-one or wake-many threads to wake up
137  * @key: is directly passed to the wakeup function
138  *
139  * If this function wakes up a task, it executes a full memory barrier
140  * before accessing the task state.  Returns the number of exclusive
141  * tasks that were awaken.
142  */
__wake_up(struct wait_queue_head * wq_head,unsigned int mode,int nr_exclusive,void * key)143 int __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
144 	      int nr_exclusive, void *key)
145 {
146 	return __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
147 }
148 EXPORT_SYMBOL(__wake_up);
149 
__wake_up_on_current_cpu(struct wait_queue_head * wq_head,unsigned int mode,void * key)150 void __wake_up_on_current_cpu(struct wait_queue_head *wq_head, unsigned int mode, void *key)
151 {
152 	__wake_up_common_lock(wq_head, mode, 1, WF_CURRENT_CPU, key);
153 }
154 
155 /*
156  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
157  */
__wake_up_locked(struct wait_queue_head * wq_head,unsigned int mode,int nr)158 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
159 {
160 	__wake_up_common(wq_head, mode, nr, 0, NULL);
161 }
162 EXPORT_SYMBOL_GPL(__wake_up_locked);
163 
__wake_up_locked_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)164 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
165 {
166 	__wake_up_common(wq_head, mode, 1, 0, key);
167 }
168 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
169 
170 /**
171  * __wake_up_sync_key - wake up threads blocked on a waitqueue.
172  * @wq_head: the waitqueue
173  * @mode: which threads
174  * @key: opaque value to be passed to wakeup targets
175  *
176  * The sync wakeup differs that the waker knows that it will schedule
177  * away soon, so while the target thread will be woken up, it will not
178  * be migrated to another CPU - ie. the two threads are 'synchronized'
179  * with each other. This can prevent needless bouncing between CPUs.
180  *
181  * On UP it can prevent extra preemption.
182  *
183  * If this function wakes up a task, it executes a full memory barrier before
184  * accessing the task state.
185  */
__wake_up_sync_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)186 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
187 			void *key)
188 {
189 	if (unlikely(!wq_head))
190 		return;
191 
192 	__wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
193 }
194 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
195 
196 /**
197  * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
198  * @wq_head: the waitqueue
199  * @mode: which threads
200  * @key: opaque value to be passed to wakeup targets
201  *
202  * The sync wakeup differs in that the waker knows that it will schedule
203  * away soon, so while the target thread will be woken up, it will not
204  * be migrated to another CPU - ie. the two threads are 'synchronized'
205  * with each other. This can prevent needless bouncing between CPUs.
206  *
207  * On UP it can prevent extra preemption.
208  *
209  * If this function wakes up a task, it executes a full memory barrier before
210  * accessing the task state.
211  */
__wake_up_locked_sync_key(struct wait_queue_head * wq_head,unsigned int mode,void * key)212 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
213 			       unsigned int mode, void *key)
214 {
215         __wake_up_common(wq_head, mode, 1, WF_SYNC, key);
216 }
217 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
218 
219 /*
220  * __wake_up_sync - see __wake_up_sync_key()
221  */
__wake_up_sync(struct wait_queue_head * wq_head,unsigned int mode)222 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
223 {
224 	__wake_up_sync_key(wq_head, mode, NULL);
225 }
226 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
227 
__wake_up_pollfree(struct wait_queue_head * wq_head)228 void __wake_up_pollfree(struct wait_queue_head *wq_head)
229 {
230 	__wake_up(wq_head, TASK_NORMAL, 0, poll_to_key(EPOLLHUP | POLLFREE));
231 	/* POLLFREE must have cleared the queue. */
232 	WARN_ON_ONCE(waitqueue_active(wq_head));
233 }
234 
235 /*
236  * Note: we use "set_current_state()" _after_ the wait-queue add,
237  * because we need a memory barrier there on SMP, so that any
238  * wake-function that tests for the wait-queue being active
239  * will be guaranteed to see waitqueue addition _or_ subsequent
240  * tests in this thread will see the wakeup having taken place.
241  *
242  * The spin_unlock() itself is semi-permeable and only protects
243  * one way (it only protects stuff inside the critical region and
244  * stops them from bleeding out - it would still allow subsequent
245  * loads to move into the critical region).
246  */
247 void
prepare_to_wait(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)248 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
249 {
250 	unsigned long flags;
251 
252 	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
253 	spin_lock_irqsave(&wq_head->lock, flags);
254 	if (list_empty(&wq_entry->entry))
255 		__add_wait_queue(wq_head, wq_entry);
256 	set_current_state(state);
257 	spin_unlock_irqrestore(&wq_head->lock, flags);
258 }
259 EXPORT_SYMBOL(prepare_to_wait);
260 
261 /* Returns true if we are the first waiter in the queue, false otherwise. */
262 bool
prepare_to_wait_exclusive(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)263 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
264 {
265 	unsigned long flags;
266 	bool was_empty = false;
267 
268 	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
269 	spin_lock_irqsave(&wq_head->lock, flags);
270 	if (list_empty(&wq_entry->entry)) {
271 		was_empty = list_empty(&wq_head->head);
272 		__add_wait_queue_entry_tail(wq_head, wq_entry);
273 	}
274 	set_current_state(state);
275 	spin_unlock_irqrestore(&wq_head->lock, flags);
276 	return was_empty;
277 }
278 EXPORT_SYMBOL(prepare_to_wait_exclusive);
279 
init_wait_entry(struct wait_queue_entry * wq_entry,int flags)280 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
281 {
282 	wq_entry->flags = flags;
283 	wq_entry->private = current;
284 	wq_entry->func = autoremove_wake_function;
285 	INIT_LIST_HEAD(&wq_entry->entry);
286 }
287 EXPORT_SYMBOL(init_wait_entry);
288 
prepare_to_wait_event(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry,int state)289 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
290 {
291 	unsigned long flags;
292 	long ret = 0;
293 
294 	spin_lock_irqsave(&wq_head->lock, flags);
295 	if (signal_pending_state(state, current)) {
296 		/*
297 		 * Exclusive waiter must not fail if it was selected by wakeup,
298 		 * it should "consume" the condition we were waiting for.
299 		 *
300 		 * The caller will recheck the condition and return success if
301 		 * we were already woken up, we can not miss the event because
302 		 * wakeup locks/unlocks the same wq_head->lock.
303 		 *
304 		 * But we need to ensure that set-condition + wakeup after that
305 		 * can't see us, it should wake up another exclusive waiter if
306 		 * we fail.
307 		 */
308 		list_del_init(&wq_entry->entry);
309 		ret = -ERESTARTSYS;
310 	} else {
311 		if (list_empty(&wq_entry->entry)) {
312 			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
313 				__add_wait_queue_entry_tail(wq_head, wq_entry);
314 			else
315 				__add_wait_queue(wq_head, wq_entry);
316 		}
317 		set_current_state(state);
318 	}
319 	spin_unlock_irqrestore(&wq_head->lock, flags);
320 
321 	return ret;
322 }
323 EXPORT_SYMBOL(prepare_to_wait_event);
324 
325 /*
326  * Note! These two wait functions are entered with the
327  * wait-queue lock held (and interrupts off in the _irq
328  * case), so there is no race with testing the wakeup
329  * condition in the caller before they add the wait
330  * entry to the wake queue.
331  */
do_wait_intr(wait_queue_head_t * wq,wait_queue_entry_t * wait)332 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
333 {
334 	if (likely(list_empty(&wait->entry)))
335 		__add_wait_queue_entry_tail(wq, wait);
336 
337 	set_current_state(TASK_INTERRUPTIBLE);
338 	if (signal_pending(current))
339 		return -ERESTARTSYS;
340 
341 	spin_unlock(&wq->lock);
342 	schedule();
343 	spin_lock(&wq->lock);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(do_wait_intr);
348 
do_wait_intr_irq(wait_queue_head_t * wq,wait_queue_entry_t * wait)349 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
350 {
351 	if (likely(list_empty(&wait->entry)))
352 		__add_wait_queue_entry_tail(wq, wait);
353 
354 	set_current_state(TASK_INTERRUPTIBLE);
355 	if (signal_pending(current))
356 		return -ERESTARTSYS;
357 
358 	spin_unlock_irq(&wq->lock);
359 	schedule();
360 	spin_lock_irq(&wq->lock);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL(do_wait_intr_irq);
365 
366 /**
367  * finish_wait - clean up after waiting in a queue
368  * @wq_head: waitqueue waited on
369  * @wq_entry: wait descriptor
370  *
371  * Sets current thread back to running state and removes
372  * the wait descriptor from the given waitqueue if still
373  * queued.
374  */
finish_wait(struct wait_queue_head * wq_head,struct wait_queue_entry * wq_entry)375 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
376 {
377 	unsigned long flags;
378 
379 	__set_current_state(TASK_RUNNING);
380 	/*
381 	 * We can check for list emptiness outside the lock
382 	 * IFF:
383 	 *  - we use the "careful" check that verifies both
384 	 *    the next and prev pointers, so that there cannot
385 	 *    be any half-pending updates in progress on other
386 	 *    CPU's that we haven't seen yet (and that might
387 	 *    still change the stack area.
388 	 * and
389 	 *  - all other users take the lock (ie we can only
390 	 *    have _one_ other CPU that looks at or modifies
391 	 *    the list).
392 	 */
393 	if (!list_empty_careful(&wq_entry->entry)) {
394 		spin_lock_irqsave(&wq_head->lock, flags);
395 		list_del_init(&wq_entry->entry);
396 		spin_unlock_irqrestore(&wq_head->lock, flags);
397 	}
398 }
399 EXPORT_SYMBOL(finish_wait);
400 
autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned mode,int sync,void * key)401 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
402 {
403 	int ret = default_wake_function(wq_entry, mode, sync, key);
404 
405 	if (ret)
406 		list_del_init_careful(&wq_entry->entry);
407 
408 	return ret;
409 }
410 EXPORT_SYMBOL(autoremove_wake_function);
411 
412 /*
413  * DEFINE_WAIT_FUNC(wait, woken_wake_func);
414  *
415  * add_wait_queue(&wq_head, &wait);
416  * for (;;) {
417  *     if (condition)
418  *         break;
419  *
420  *     // in wait_woken()			// in woken_wake_function()
421  *
422  *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
423  *     smp_mb(); // A				try_to_wake_up():
424  *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
425  *         schedule()				   if (p->state & mode)
426  *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
427  *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
428  *     smp_mb(); // B				condition = true;
429  * }						smp_mb(); // C
430  * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
431  */
wait_woken(struct wait_queue_entry * wq_entry,unsigned mode,long timeout)432 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
433 {
434 	/*
435 	 * The below executes an smp_mb(), which matches with the full barrier
436 	 * executed by the try_to_wake_up() in woken_wake_function() such that
437 	 * either we see the store to wq_entry->flags in woken_wake_function()
438 	 * or woken_wake_function() sees our store to current->state.
439 	 */
440 	set_current_state(mode); /* A */
441 	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !kthread_should_stop_or_park())
442 		timeout = schedule_timeout(timeout);
443 	__set_current_state(TASK_RUNNING);
444 
445 	/*
446 	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
447 	 * in woken_wake_function() such that either we see the wait condition
448 	 * being true or the store to wq_entry->flags in woken_wake_function()
449 	 * follows ours in the coherence order.
450 	 */
451 	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
452 
453 	return timeout;
454 }
455 EXPORT_SYMBOL(wait_woken);
456 
woken_wake_function(struct wait_queue_entry * wq_entry,unsigned mode,int sync,void * key)457 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
458 {
459 	/* Pairs with the smp_store_mb() in wait_woken(). */
460 	smp_mb(); /* C */
461 	wq_entry->flags |= WQ_FLAG_WOKEN;
462 
463 	return default_wake_function(wq_entry, mode, sync, key);
464 }
465 EXPORT_SYMBOL(woken_wake_function);
466