xref: /linux/kernel/locking/mutex.c (revision 72b8944f147e151e845d976e7f48beff38967499)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 #include <linux/hung_task.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/lock.h>
36 
37 #ifndef CONFIG_PREEMPT_RT
38 #include "mutex.h"
39 
40 #ifdef CONFIG_DEBUG_MUTEXES
41 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
42 #else
43 # define MUTEX_WARN_ON(cond)
44 #endif
45 
46 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)47 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
48 {
49 	atomic_long_set(&lock->owner, 0);
50 	raw_spin_lock_init(&lock->wait_lock);
51 	INIT_LIST_HEAD(&lock->wait_list);
52 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
53 	osq_lock_init(&lock->osq);
54 #endif
55 
56 	debug_mutex_init(lock, name, key);
57 }
58 EXPORT_SYMBOL(__mutex_init);
59 
__owner_task(unsigned long owner)60 static inline struct task_struct *__owner_task(unsigned long owner)
61 {
62 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
63 }
64 
mutex_is_locked(struct mutex * lock)65 bool mutex_is_locked(struct mutex *lock)
66 {
67 	return __mutex_owner(lock) != NULL;
68 }
69 EXPORT_SYMBOL(mutex_is_locked);
70 
__owner_flags(unsigned long owner)71 static inline unsigned long __owner_flags(unsigned long owner)
72 {
73 	return owner & MUTEX_FLAGS;
74 }
75 
76 /* Do not use the return value as a pointer directly. */
mutex_get_owner(struct mutex * lock)77 unsigned long mutex_get_owner(struct mutex *lock)
78 {
79 	unsigned long owner = atomic_long_read(&lock->owner);
80 
81 	return (unsigned long)__owner_task(owner);
82 }
83 
84 /*
85  * Returns: __mutex_owner(lock) on failure or NULL on success.
86  */
__mutex_trylock_common(struct mutex * lock,bool handoff)87 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
88 {
89 	unsigned long owner, curr = (unsigned long)current;
90 
91 	owner = atomic_long_read(&lock->owner);
92 	for (;;) { /* must loop, can race against a flag */
93 		unsigned long flags = __owner_flags(owner);
94 		unsigned long task = owner & ~MUTEX_FLAGS;
95 
96 		if (task) {
97 			if (flags & MUTEX_FLAG_PICKUP) {
98 				if (task != curr)
99 					break;
100 				flags &= ~MUTEX_FLAG_PICKUP;
101 			} else if (handoff) {
102 				if (flags & MUTEX_FLAG_HANDOFF)
103 					break;
104 				flags |= MUTEX_FLAG_HANDOFF;
105 			} else {
106 				break;
107 			}
108 		} else {
109 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
110 			task = curr;
111 		}
112 
113 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
114 			if (task == curr)
115 				return NULL;
116 			break;
117 		}
118 	}
119 
120 	return __owner_task(owner);
121 }
122 
123 /*
124  * Trylock or set HANDOFF
125  */
__mutex_trylock_or_handoff(struct mutex * lock,bool handoff)126 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
127 {
128 	return !__mutex_trylock_common(lock, handoff);
129 }
130 
131 /*
132  * Actual trylock that will work on any unlocked state.
133  */
__mutex_trylock(struct mutex * lock)134 static inline bool __mutex_trylock(struct mutex *lock)
135 {
136 	return !__mutex_trylock_common(lock, false);
137 }
138 
139 #ifndef CONFIG_DEBUG_LOCK_ALLOC
140 /*
141  * Lockdep annotations are contained to the slow paths for simplicity.
142  * There is nothing that would stop spreading the lockdep annotations outwards
143  * except more code.
144  */
145 
146 /*
147  * Optimistic trylock that only works in the uncontended case. Make sure to
148  * follow with a __mutex_trylock() before failing.
149  */
__mutex_trylock_fast(struct mutex * lock)150 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
151 {
152 	unsigned long curr = (unsigned long)current;
153 	unsigned long zero = 0UL;
154 
155 	MUTEX_WARN_ON(lock->magic != lock);
156 
157 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
158 		return true;
159 
160 	return false;
161 }
162 
__mutex_unlock_fast(struct mutex * lock)163 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
164 {
165 	unsigned long curr = (unsigned long)current;
166 
167 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
168 }
169 #endif
170 
__mutex_set_flag(struct mutex * lock,unsigned long flag)171 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
172 {
173 	atomic_long_or(flag, &lock->owner);
174 }
175 
__mutex_clear_flag(struct mutex * lock,unsigned long flag)176 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
177 {
178 	atomic_long_andnot(flag, &lock->owner);
179 }
180 
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)181 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
182 {
183 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
184 }
185 
186 /*
187  * Add @waiter to a given location in the lock wait_list and set the
188  * FLAG_WAITERS flag if it's the first waiter.
189  */
190 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)191 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
192 		   struct list_head *list)
193 {
194 	hung_task_set_blocker(lock, BLOCKER_TYPE_MUTEX);
195 	debug_mutex_add_waiter(lock, waiter, current);
196 
197 	list_add_tail(&waiter->list, list);
198 	if (__mutex_waiter_is_first(lock, waiter))
199 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
200 }
201 
202 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)203 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
204 {
205 	list_del(&waiter->list);
206 	if (likely(list_empty(&lock->wait_list)))
207 		__mutex_clear_flag(lock, MUTEX_FLAGS);
208 
209 	debug_mutex_remove_waiter(lock, waiter, current);
210 	hung_task_clear_blocker();
211 }
212 
213 /*
214  * Give up ownership to a specific task, when @task = NULL, this is equivalent
215  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
216  * WAITERS. Provides RELEASE semantics like a regular unlock, the
217  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
218  */
__mutex_handoff(struct mutex * lock,struct task_struct * task)219 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
220 {
221 	unsigned long owner = atomic_long_read(&lock->owner);
222 
223 	for (;;) {
224 		unsigned long new;
225 
226 		MUTEX_WARN_ON(__owner_task(owner) != current);
227 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
228 
229 		new = (owner & MUTEX_FLAG_WAITERS);
230 		new |= (unsigned long)task;
231 		if (task)
232 			new |= MUTEX_FLAG_PICKUP;
233 
234 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
235 			break;
236 	}
237 }
238 
239 #ifndef CONFIG_DEBUG_LOCK_ALLOC
240 /*
241  * We split the mutex lock/unlock logic into separate fastpath and
242  * slowpath functions, to reduce the register pressure on the fastpath.
243  * We also put the fastpath first in the kernel image, to make sure the
244  * branch is predicted by the CPU as default-untaken.
245  */
246 static void __sched __mutex_lock_slowpath(struct mutex *lock);
247 
248 /**
249  * mutex_lock - acquire the mutex
250  * @lock: the mutex to be acquired
251  *
252  * Lock the mutex exclusively for this task. If the mutex is not
253  * available right now, it will sleep until it can get it.
254  *
255  * The mutex must later on be released by the same task that
256  * acquired it. Recursive locking is not allowed. The task
257  * may not exit without first unlocking the mutex. Also, kernel
258  * memory where the mutex resides must not be freed with
259  * the mutex still locked. The mutex must first be initialized
260  * (or statically defined) before it can be locked. memset()-ing
261  * the mutex to 0 is not allowed.
262  *
263  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
264  * checks that will enforce the restrictions and will also do
265  * deadlock debugging)
266  *
267  * This function is similar to (but not equivalent to) down().
268  */
mutex_lock(struct mutex * lock)269 void __sched mutex_lock(struct mutex *lock)
270 {
271 	might_sleep();
272 
273 	if (!__mutex_trylock_fast(lock))
274 		__mutex_lock_slowpath(lock);
275 }
276 EXPORT_SYMBOL(mutex_lock);
277 #endif
278 
279 #include "ww_mutex.h"
280 
281 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
282 
283 /*
284  * Trylock variant that returns the owning task on failure.
285  */
__mutex_trylock_or_owner(struct mutex * lock)286 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
287 {
288 	return __mutex_trylock_common(lock, false);
289 }
290 
291 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)292 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
293 			    struct mutex_waiter *waiter)
294 {
295 	struct ww_mutex *ww;
296 
297 	ww = container_of(lock, struct ww_mutex, base);
298 
299 	/*
300 	 * If ww->ctx is set the contents are undefined, only
301 	 * by acquiring wait_lock there is a guarantee that
302 	 * they are not invalid when reading.
303 	 *
304 	 * As such, when deadlock detection needs to be
305 	 * performed the optimistic spinning cannot be done.
306 	 *
307 	 * Check this in every inner iteration because we may
308 	 * be racing against another thread's ww_mutex_lock.
309 	 */
310 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
311 		return false;
312 
313 	/*
314 	 * If we aren't on the wait list yet, cancel the spin
315 	 * if there are waiters. We want  to avoid stealing the
316 	 * lock from a waiter with an earlier stamp, since the
317 	 * other thread may already own a lock that we also
318 	 * need.
319 	 */
320 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
321 		return false;
322 
323 	/*
324 	 * Similarly, stop spinning if we are no longer the
325 	 * first waiter.
326 	 */
327 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
328 		return false;
329 
330 	return true;
331 }
332 
333 /*
334  * Look out! "owner" is an entirely speculative pointer access and not
335  * reliable.
336  *
337  * "noinline" so that this function shows up on perf profiles.
338  */
339 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)340 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
341 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
342 {
343 	bool ret = true;
344 
345 	lockdep_assert_preemption_disabled();
346 
347 	while (__mutex_owner(lock) == owner) {
348 		/*
349 		 * Ensure we emit the owner->on_cpu, dereference _after_
350 		 * checking lock->owner still matches owner. And we already
351 		 * disabled preemption which is equal to the RCU read-side
352 		 * crital section in optimistic spinning code. Thus the
353 		 * task_strcut structure won't go away during the spinning
354 		 * period
355 		 */
356 		barrier();
357 
358 		/*
359 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
360 		 */
361 		if (!owner_on_cpu(owner) || need_resched()) {
362 			ret = false;
363 			break;
364 		}
365 
366 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
367 			ret = false;
368 			break;
369 		}
370 
371 		cpu_relax();
372 	}
373 
374 	return ret;
375 }
376 
377 /*
378  * Initial check for entering the mutex spinning loop
379  */
mutex_can_spin_on_owner(struct mutex * lock)380 static inline int mutex_can_spin_on_owner(struct mutex *lock)
381 {
382 	struct task_struct *owner;
383 	int retval = 1;
384 
385 	lockdep_assert_preemption_disabled();
386 
387 	if (need_resched())
388 		return 0;
389 
390 	/*
391 	 * We already disabled preemption which is equal to the RCU read-side
392 	 * crital section in optimistic spinning code. Thus the task_strcut
393 	 * structure won't go away during the spinning period.
394 	 */
395 	owner = __mutex_owner(lock);
396 	if (owner)
397 		retval = owner_on_cpu(owner);
398 
399 	/*
400 	 * If lock->owner is not set, the mutex has been released. Return true
401 	 * such that we'll trylock in the spin path, which is a faster option
402 	 * than the blocking slow path.
403 	 */
404 	return retval;
405 }
406 
407 /*
408  * Optimistic spinning.
409  *
410  * We try to spin for acquisition when we find that the lock owner
411  * is currently running on a (different) CPU and while we don't
412  * need to reschedule. The rationale is that if the lock owner is
413  * running, it is likely to release the lock soon.
414  *
415  * The mutex spinners are queued up using MCS lock so that only one
416  * spinner can compete for the mutex. However, if mutex spinning isn't
417  * going to happen, there is no point in going through the lock/unlock
418  * overhead.
419  *
420  * Returns true when the lock was taken, otherwise false, indicating
421  * that we need to jump to the slowpath and sleep.
422  *
423  * The waiter flag is set to true if the spinner is a waiter in the wait
424  * queue. The waiter-spinner will spin on the lock directly and concurrently
425  * with the spinner at the head of the OSQ, if present, until the owner is
426  * changed to itself.
427  */
428 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)429 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
430 		      struct mutex_waiter *waiter)
431 {
432 	if (!waiter) {
433 		/*
434 		 * The purpose of the mutex_can_spin_on_owner() function is
435 		 * to eliminate the overhead of osq_lock() and osq_unlock()
436 		 * in case spinning isn't possible. As a waiter-spinner
437 		 * is not going to take OSQ lock anyway, there is no need
438 		 * to call mutex_can_spin_on_owner().
439 		 */
440 		if (!mutex_can_spin_on_owner(lock))
441 			goto fail;
442 
443 		/*
444 		 * In order to avoid a stampede of mutex spinners trying to
445 		 * acquire the mutex all at once, the spinners need to take a
446 		 * MCS (queued) lock first before spinning on the owner field.
447 		 */
448 		if (!osq_lock(&lock->osq))
449 			goto fail;
450 	}
451 
452 	for (;;) {
453 		struct task_struct *owner;
454 
455 		/* Try to acquire the mutex... */
456 		owner = __mutex_trylock_or_owner(lock);
457 		if (!owner)
458 			break;
459 
460 		/*
461 		 * There's an owner, wait for it to either
462 		 * release the lock or go to sleep.
463 		 */
464 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
465 			goto fail_unlock;
466 
467 		/*
468 		 * The cpu_relax() call is a compiler barrier which forces
469 		 * everything in this loop to be re-loaded. We don't need
470 		 * memory barriers as we'll eventually observe the right
471 		 * values at the cost of a few extra spins.
472 		 */
473 		cpu_relax();
474 	}
475 
476 	if (!waiter)
477 		osq_unlock(&lock->osq);
478 
479 	return true;
480 
481 
482 fail_unlock:
483 	if (!waiter)
484 		osq_unlock(&lock->osq);
485 
486 fail:
487 	/*
488 	 * If we fell out of the spin path because of need_resched(),
489 	 * reschedule now, before we try-lock the mutex. This avoids getting
490 	 * scheduled out right after we obtained the mutex.
491 	 */
492 	if (need_resched()) {
493 		/*
494 		 * We _should_ have TASK_RUNNING here, but just in case
495 		 * we do not, make it so, otherwise we might get stuck.
496 		 */
497 		__set_current_state(TASK_RUNNING);
498 		schedule_preempt_disabled();
499 	}
500 
501 	return false;
502 }
503 #else
504 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)505 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
506 		      struct mutex_waiter *waiter)
507 {
508 	return false;
509 }
510 #endif
511 
512 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
513 
514 /**
515  * mutex_unlock - release the mutex
516  * @lock: the mutex to be released
517  *
518  * Unlock a mutex that has been locked by this task previously.
519  *
520  * This function must not be used in interrupt context. Unlocking
521  * of a not locked mutex is not allowed.
522  *
523  * The caller must ensure that the mutex stays alive until this function has
524  * returned - mutex_unlock() can NOT directly be used to release an object such
525  * that another concurrent task can free it.
526  * Mutexes are different from spinlocks & refcounts in this aspect.
527  *
528  * This function is similar to (but not equivalent to) up().
529  */
mutex_unlock(struct mutex * lock)530 void __sched mutex_unlock(struct mutex *lock)
531 {
532 #ifndef CONFIG_DEBUG_LOCK_ALLOC
533 	if (__mutex_unlock_fast(lock))
534 		return;
535 #endif
536 	__mutex_unlock_slowpath(lock, _RET_IP_);
537 }
538 EXPORT_SYMBOL(mutex_unlock);
539 
540 /**
541  * ww_mutex_unlock - release the w/w mutex
542  * @lock: the mutex to be released
543  *
544  * Unlock a mutex that has been locked by this task previously with any of the
545  * ww_mutex_lock* functions (with or without an acquire context). It is
546  * forbidden to release the locks after releasing the acquire context.
547  *
548  * This function must not be used in interrupt context. Unlocking
549  * of a unlocked mutex is not allowed.
550  */
ww_mutex_unlock(struct ww_mutex * lock)551 void __sched ww_mutex_unlock(struct ww_mutex *lock)
552 {
553 	__ww_mutex_unlock(lock);
554 	mutex_unlock(&lock->base);
555 }
556 EXPORT_SYMBOL(ww_mutex_unlock);
557 
558 /*
559  * Lock a mutex (possibly interruptible), slowpath:
560  */
561 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)562 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
563 		    struct lockdep_map *nest_lock, unsigned long ip,
564 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
565 {
566 	DEFINE_WAKE_Q(wake_q);
567 	struct mutex_waiter waiter;
568 	struct ww_mutex *ww;
569 	unsigned long flags;
570 	int ret;
571 
572 	if (!use_ww_ctx)
573 		ww_ctx = NULL;
574 
575 	might_sleep();
576 
577 	MUTEX_WARN_ON(lock->magic != lock);
578 
579 	ww = container_of(lock, struct ww_mutex, base);
580 	if (ww_ctx) {
581 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
582 			return -EALREADY;
583 
584 		/*
585 		 * Reset the wounded flag after a kill. No other process can
586 		 * race and wound us here since they can't have a valid owner
587 		 * pointer if we don't have any locks held.
588 		 */
589 		if (ww_ctx->acquired == 0)
590 			ww_ctx->wounded = 0;
591 
592 #ifdef CONFIG_DEBUG_LOCK_ALLOC
593 		nest_lock = &ww_ctx->dep_map;
594 #endif
595 	}
596 
597 	preempt_disable();
598 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
599 
600 	trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
601 	if (__mutex_trylock(lock) ||
602 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
603 		/* got the lock, yay! */
604 		lock_acquired(&lock->dep_map, ip);
605 		if (ww_ctx)
606 			ww_mutex_set_context_fastpath(ww, ww_ctx);
607 		trace_contention_end(lock, 0);
608 		preempt_enable();
609 		return 0;
610 	}
611 
612 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
613 	/*
614 	 * After waiting to acquire the wait_lock, try again.
615 	 */
616 	if (__mutex_trylock(lock)) {
617 		if (ww_ctx)
618 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
619 
620 		goto skip_wait;
621 	}
622 
623 	debug_mutex_lock_common(lock, &waiter);
624 	waiter.task = current;
625 	if (use_ww_ctx)
626 		waiter.ww_ctx = ww_ctx;
627 
628 	lock_contended(&lock->dep_map, ip);
629 
630 	if (!use_ww_ctx) {
631 		/* add waiting tasks to the end of the waitqueue (FIFO): */
632 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
633 	} else {
634 		/*
635 		 * Add in stamp order, waking up waiters that must kill
636 		 * themselves.
637 		 */
638 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
639 		if (ret)
640 			goto err_early_kill;
641 	}
642 
643 	__set_task_blocked_on(current, lock);
644 	set_current_state(state);
645 	trace_contention_begin(lock, LCB_F_MUTEX);
646 	for (;;) {
647 		bool first;
648 
649 		/*
650 		 * Once we hold wait_lock, we're serialized against
651 		 * mutex_unlock() handing the lock off to us, do a trylock
652 		 * before testing the error conditions to make sure we pick up
653 		 * the handoff.
654 		 */
655 		if (__mutex_trylock(lock))
656 			goto acquired;
657 
658 		/*
659 		 * Check for signals and kill conditions while holding
660 		 * wait_lock. This ensures the lock cancellation is ordered
661 		 * against mutex_unlock() and wake-ups do not go missing.
662 		 */
663 		if (signal_pending_state(state, current)) {
664 			ret = -EINTR;
665 			goto err;
666 		}
667 
668 		if (ww_ctx) {
669 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
670 			if (ret)
671 				goto err;
672 		}
673 
674 		raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
675 
676 		schedule_preempt_disabled();
677 
678 		first = __mutex_waiter_is_first(lock, &waiter);
679 
680 		/*
681 		 * As we likely have been woken up by task
682 		 * that has cleared our blocked_on state, re-set
683 		 * it to the lock we are trying to acquire.
684 		 */
685 		set_task_blocked_on(current, lock);
686 		set_current_state(state);
687 		/*
688 		 * Here we order against unlock; we must either see it change
689 		 * state back to RUNNING and fall through the next schedule(),
690 		 * or we must see its unlock and acquire.
691 		 */
692 		if (__mutex_trylock_or_handoff(lock, first))
693 			break;
694 
695 		if (first) {
696 			trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
697 			/*
698 			 * mutex_optimistic_spin() can call schedule(), so
699 			 * clear blocked on so we don't become unselectable
700 			 * to run.
701 			 */
702 			clear_task_blocked_on(current, lock);
703 			if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
704 				break;
705 			set_task_blocked_on(current, lock);
706 			trace_contention_begin(lock, LCB_F_MUTEX);
707 		}
708 
709 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
710 	}
711 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
712 acquired:
713 	__clear_task_blocked_on(current, lock);
714 	__set_current_state(TASK_RUNNING);
715 
716 	if (ww_ctx) {
717 		/*
718 		 * Wound-Wait; we stole the lock (!first_waiter), check the
719 		 * waiters as anyone might want to wound us.
720 		 */
721 		if (!ww_ctx->is_wait_die &&
722 		    !__mutex_waiter_is_first(lock, &waiter))
723 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
724 	}
725 
726 	__mutex_remove_waiter(lock, &waiter);
727 
728 	debug_mutex_free_waiter(&waiter);
729 
730 skip_wait:
731 	/* got the lock - cleanup and rejoice! */
732 	lock_acquired(&lock->dep_map, ip);
733 	trace_contention_end(lock, 0);
734 
735 	if (ww_ctx)
736 		ww_mutex_lock_acquired(ww, ww_ctx);
737 
738 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
739 	preempt_enable();
740 	return 0;
741 
742 err:
743 	__clear_task_blocked_on(current, lock);
744 	__set_current_state(TASK_RUNNING);
745 	__mutex_remove_waiter(lock, &waiter);
746 err_early_kill:
747 	WARN_ON(__get_task_blocked_on(current));
748 	trace_contention_end(lock, ret);
749 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
750 	debug_mutex_free_waiter(&waiter);
751 	mutex_release(&lock->dep_map, ip);
752 	preempt_enable();
753 	return ret;
754 }
755 
756 static int __sched
__mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)757 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
758 	     struct lockdep_map *nest_lock, unsigned long ip)
759 {
760 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
761 }
762 
763 static int __sched
__ww_mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,unsigned long ip,struct ww_acquire_ctx * ww_ctx)764 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
765 		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
766 {
767 	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
768 }
769 
770 /**
771  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
772  * @ww: mutex to lock
773  * @ww_ctx: optional w/w acquire context
774  *
775  * Trylocks a mutex with the optional acquire context; no deadlock detection is
776  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
777  *
778  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
779  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
780  *
781  * A mutex acquired with this function must be released with ww_mutex_unlock.
782  */
ww_mutex_trylock(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)783 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
784 {
785 	if (!ww_ctx)
786 		return mutex_trylock(&ww->base);
787 
788 	MUTEX_WARN_ON(ww->base.magic != &ww->base);
789 
790 	/*
791 	 * Reset the wounded flag after a kill. No other process can
792 	 * race and wound us here, since they can't have a valid owner
793 	 * pointer if we don't have any locks held.
794 	 */
795 	if (ww_ctx->acquired == 0)
796 		ww_ctx->wounded = 0;
797 
798 	if (__mutex_trylock(&ww->base)) {
799 		ww_mutex_set_context_fastpath(ww, ww_ctx);
800 		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
801 		return 1;
802 	}
803 
804 	return 0;
805 }
806 EXPORT_SYMBOL(ww_mutex_trylock);
807 
808 #ifdef CONFIG_DEBUG_LOCK_ALLOC
809 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)810 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
811 {
812 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
813 }
814 
815 EXPORT_SYMBOL_GPL(mutex_lock_nested);
816 
817 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)818 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
819 {
820 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
821 }
822 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
823 
824 int __sched
_mutex_lock_killable(struct mutex * lock,unsigned int subclass,struct lockdep_map * nest)825 _mutex_lock_killable(struct mutex *lock, unsigned int subclass,
826 				      struct lockdep_map *nest)
827 {
828 	return __mutex_lock(lock, TASK_KILLABLE, subclass, nest, _RET_IP_);
829 }
830 EXPORT_SYMBOL_GPL(_mutex_lock_killable);
831 
832 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)833 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
834 {
835 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
836 }
837 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
838 
839 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)840 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
841 {
842 	int token;
843 
844 	might_sleep();
845 
846 	token = io_schedule_prepare();
847 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
848 			    subclass, NULL, _RET_IP_, NULL, 0);
849 	io_schedule_finish(token);
850 }
851 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
852 
853 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)854 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
855 {
856 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
857 	unsigned tmp;
858 
859 	if (ctx->deadlock_inject_countdown-- == 0) {
860 		tmp = ctx->deadlock_inject_interval;
861 		if (tmp > UINT_MAX/4)
862 			tmp = UINT_MAX;
863 		else
864 			tmp = tmp*2 + tmp + tmp/2;
865 
866 		ctx->deadlock_inject_interval = tmp;
867 		ctx->deadlock_inject_countdown = tmp;
868 		ctx->contending_lock = lock;
869 
870 		ww_mutex_unlock(lock);
871 
872 		return -EDEADLK;
873 	}
874 #endif
875 
876 	return 0;
877 }
878 
879 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)880 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
881 {
882 	int ret;
883 
884 	might_sleep();
885 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
886 			       0, _RET_IP_, ctx);
887 	if (!ret && ctx && ctx->acquired > 1)
888 		return ww_mutex_deadlock_injection(lock, ctx);
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_GPL(ww_mutex_lock);
893 
894 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)895 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
896 {
897 	int ret;
898 
899 	might_sleep();
900 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
901 			      0, _RET_IP_, ctx);
902 
903 	if (!ret && ctx && ctx->acquired > 1)
904 		return ww_mutex_deadlock_injection(lock, ctx);
905 
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
909 
910 #endif
911 
912 /*
913  * Release the lock, slowpath:
914  */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)915 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
916 {
917 	struct task_struct *next = NULL;
918 	DEFINE_WAKE_Q(wake_q);
919 	unsigned long owner;
920 	unsigned long flags;
921 
922 	mutex_release(&lock->dep_map, ip);
923 
924 	/*
925 	 * Release the lock before (potentially) taking the spinlock such that
926 	 * other contenders can get on with things ASAP.
927 	 *
928 	 * Except when HANDOFF, in that case we must not clear the owner field,
929 	 * but instead set it to the top waiter.
930 	 */
931 	owner = atomic_long_read(&lock->owner);
932 	for (;;) {
933 		MUTEX_WARN_ON(__owner_task(owner) != current);
934 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
935 
936 		if (owner & MUTEX_FLAG_HANDOFF)
937 			break;
938 
939 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
940 			if (owner & MUTEX_FLAG_WAITERS)
941 				break;
942 
943 			return;
944 		}
945 	}
946 
947 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
948 	debug_mutex_unlock(lock);
949 	if (!list_empty(&lock->wait_list)) {
950 		/* get the first entry from the wait-list: */
951 		struct mutex_waiter *waiter =
952 			list_first_entry(&lock->wait_list,
953 					 struct mutex_waiter, list);
954 
955 		next = waiter->task;
956 
957 		debug_mutex_wake_waiter(lock, waiter);
958 		__clear_task_blocked_on(next, lock);
959 		wake_q_add(&wake_q, next);
960 	}
961 
962 	if (owner & MUTEX_FLAG_HANDOFF)
963 		__mutex_handoff(lock, next);
964 
965 	raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
966 }
967 
968 #ifndef CONFIG_DEBUG_LOCK_ALLOC
969 /*
970  * Here come the less common (and hence less performance-critical) APIs:
971  * mutex_lock_interruptible() and mutex_trylock().
972  */
973 static noinline int __sched
974 __mutex_lock_killable_slowpath(struct mutex *lock);
975 
976 static noinline int __sched
977 __mutex_lock_interruptible_slowpath(struct mutex *lock);
978 
979 /**
980  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
981  * @lock: The mutex to be acquired.
982  *
983  * Lock the mutex like mutex_lock().  If a signal is delivered while the
984  * process is sleeping, this function will return without acquiring the
985  * mutex.
986  *
987  * Context: Process context.
988  * Return: 0 if the lock was successfully acquired or %-EINTR if a
989  * signal arrived.
990  */
mutex_lock_interruptible(struct mutex * lock)991 int __sched mutex_lock_interruptible(struct mutex *lock)
992 {
993 	might_sleep();
994 
995 	if (__mutex_trylock_fast(lock))
996 		return 0;
997 
998 	return __mutex_lock_interruptible_slowpath(lock);
999 }
1000 
1001 EXPORT_SYMBOL(mutex_lock_interruptible);
1002 
1003 /**
1004  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1005  * @lock: The mutex to be acquired.
1006  *
1007  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1008  * the current process is delivered while the process is sleeping, this
1009  * function will return without acquiring the mutex.
1010  *
1011  * Context: Process context.
1012  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1013  * fatal signal arrived.
1014  */
mutex_lock_killable(struct mutex * lock)1015 int __sched mutex_lock_killable(struct mutex *lock)
1016 {
1017 	might_sleep();
1018 
1019 	if (__mutex_trylock_fast(lock))
1020 		return 0;
1021 
1022 	return __mutex_lock_killable_slowpath(lock);
1023 }
1024 EXPORT_SYMBOL(mutex_lock_killable);
1025 
1026 /**
1027  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1028  * @lock: The mutex to be acquired.
1029  *
1030  * Lock the mutex like mutex_lock().  While the task is waiting for this
1031  * mutex, it will be accounted as being in the IO wait state by the
1032  * scheduler.
1033  *
1034  * Context: Process context.
1035  */
mutex_lock_io(struct mutex * lock)1036 void __sched mutex_lock_io(struct mutex *lock)
1037 {
1038 	int token;
1039 
1040 	token = io_schedule_prepare();
1041 	mutex_lock(lock);
1042 	io_schedule_finish(token);
1043 }
1044 EXPORT_SYMBOL_GPL(mutex_lock_io);
1045 
1046 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1047 __mutex_lock_slowpath(struct mutex *lock)
1048 {
1049 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1050 }
1051 
1052 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1053 __mutex_lock_killable_slowpath(struct mutex *lock)
1054 {
1055 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1056 }
1057 
1058 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1059 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1060 {
1061 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1062 }
1063 
1064 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1065 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1066 {
1067 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1068 			       _RET_IP_, ctx);
1069 }
1070 
1071 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1072 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1073 					    struct ww_acquire_ctx *ctx)
1074 {
1075 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1076 			       _RET_IP_, ctx);
1077 }
1078 
1079 #endif
1080 
1081 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1082 /**
1083  * mutex_trylock - try to acquire the mutex, without waiting
1084  * @lock: the mutex to be acquired
1085  *
1086  * Try to acquire the mutex atomically. Returns 1 if the mutex
1087  * has been acquired successfully, and 0 on contention.
1088  *
1089  * NOTE: this function follows the spin_trylock() convention, so
1090  * it is negated from the down_trylock() return values! Be careful
1091  * about this when converting semaphore users to mutexes.
1092  *
1093  * This function must not be used in interrupt context. The
1094  * mutex must be released by the same task that acquired it.
1095  */
mutex_trylock(struct mutex * lock)1096 int __sched mutex_trylock(struct mutex *lock)
1097 {
1098 	MUTEX_WARN_ON(lock->magic != lock);
1099 	return __mutex_trylock(lock);
1100 }
1101 EXPORT_SYMBOL(mutex_trylock);
1102 #else
_mutex_trylock_nest_lock(struct mutex * lock,struct lockdep_map * nest_lock)1103 int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock)
1104 {
1105 	bool locked;
1106 
1107 	MUTEX_WARN_ON(lock->magic != lock);
1108 	locked = __mutex_trylock(lock);
1109 	if (locked)
1110 		mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_);
1111 
1112 	return locked;
1113 }
1114 EXPORT_SYMBOL(_mutex_trylock_nest_lock);
1115 #endif
1116 
1117 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1118 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1119 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1120 {
1121 	might_sleep();
1122 
1123 	if (__mutex_trylock_fast(&lock->base)) {
1124 		if (ctx)
1125 			ww_mutex_set_context_fastpath(lock, ctx);
1126 		return 0;
1127 	}
1128 
1129 	return __ww_mutex_lock_slowpath(lock, ctx);
1130 }
1131 EXPORT_SYMBOL(ww_mutex_lock);
1132 
1133 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1134 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1135 {
1136 	might_sleep();
1137 
1138 	if (__mutex_trylock_fast(&lock->base)) {
1139 		if (ctx)
1140 			ww_mutex_set_context_fastpath(lock, ctx);
1141 		return 0;
1142 	}
1143 
1144 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1145 }
1146 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1147 
1148 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1149 #endif /* !CONFIG_PREEMPT_RT */
1150 
1151 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1152 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1153 
1154 /**
1155  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1156  * @cnt: the atomic which we are to dec
1157  * @lock: the mutex to return holding if we dec to 0
1158  *
1159  * return true and hold lock if we dec to 0, return false otherwise
1160  */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1161 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1162 {
1163 	/* dec if we can't possibly hit 0 */
1164 	if (atomic_add_unless(cnt, -1, 1))
1165 		return 0;
1166 	/* we might hit 0, so take the lock */
1167 	mutex_lock(lock);
1168 	if (!atomic_dec_and_test(cnt)) {
1169 		/* when we actually did the dec, we didn't hit 0 */
1170 		mutex_unlock(lock);
1171 		return 0;
1172 	}
1173 	/* we hit 0, and we hold the lock */
1174 	return 1;
1175 }
1176 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1177