xref: /linux/net/vmw_vsock/af_vsock.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	lockdep_assert_held(&vsock_register_mutex);
411 
412 	if (!transport_local)
413 		return false;
414 
415 	if (remote_cid == VMADDR_CID_LOCAL)
416 		return true;
417 
418 	if (transport_g2h) {
419 		return remote_cid == transport_g2h->get_local_cid();
420 	} else {
421 		return remote_cid == VMADDR_CID_HOST;
422 	}
423 }
424 
vsock_deassign_transport(struct vsock_sock * vsk)425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 	if (!vsk->transport)
428 		return;
429 
430 	vsk->transport->destruct(vsk);
431 	module_put(vsk->transport->module);
432 	vsk->transport = NULL;
433 }
434 
435 /* Assign a transport to a socket and call the .init transport callback.
436  *
437  * Note: for connection oriented socket this must be called when vsk->remote_addr
438  * is set (e.g. during the connect() or when a connection request on a listener
439  * socket is received).
440  * The vsk->remote_addr is used to decide which transport to use:
441  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442  *    g2h is not loaded, will use local transport;
443  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
446  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 	const struct vsock_transport *new_transport;
450 	struct sock *sk = sk_vsock(vsk);
451 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 	__u8 remote_flags;
453 	int ret;
454 
455 	/* If the packet is coming with the source and destination CIDs higher
456 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 	 * forwarded to the host should be established. Then the host will
458 	 * need to forward the packets to the guest.
459 	 *
460 	 * The flag is set on the (listen) receive path (psk is not NULL). On
461 	 * the connect path the flag can be set by the user space application.
462 	 */
463 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466 
467 	remote_flags = vsk->remote_addr.svm_flags;
468 
469 	mutex_lock(&vsock_register_mutex);
470 
471 	switch (sk->sk_type) {
472 	case SOCK_DGRAM:
473 		new_transport = transport_dgram;
474 		break;
475 	case SOCK_STREAM:
476 	case SOCK_SEQPACKET:
477 		if (vsock_use_local_transport(remote_cid))
478 			new_transport = transport_local;
479 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 			 (remote_flags & VMADDR_FLAG_TO_HOST))
481 			new_transport = transport_g2h;
482 		else
483 			new_transport = transport_h2g;
484 		break;
485 	default:
486 		ret = -ESOCKTNOSUPPORT;
487 		goto err;
488 	}
489 
490 	if (vsk->transport) {
491 		if (vsk->transport == new_transport) {
492 			ret = 0;
493 			goto err;
494 		}
495 
496 		/* transport->release() must be called with sock lock acquired.
497 		 * This path can only be taken during vsock_connect(), where we
498 		 * have already held the sock lock. In the other cases, this
499 		 * function is called on a new socket which is not assigned to
500 		 * any transport.
501 		 */
502 		vsk->transport->release(vsk);
503 		vsock_deassign_transport(vsk);
504 
505 		/* transport's release() and destruct() can touch some socket
506 		 * state, since we are reassigning the socket to a new transport
507 		 * during vsock_connect(), let's reset these fields to have a
508 		 * clean state.
509 		 */
510 		sock_reset_flag(sk, SOCK_DONE);
511 		sk->sk_state = TCP_CLOSE;
512 		vsk->peer_shutdown = 0;
513 	}
514 
515 	/* We increase the module refcnt to prevent the transport unloading
516 	 * while there are open sockets assigned to it.
517 	 */
518 	if (!new_transport || !try_module_get(new_transport->module)) {
519 		ret = -ENODEV;
520 		goto err;
521 	}
522 
523 	/* It's safe to release the mutex after a successful try_module_get().
524 	 * Whichever transport `new_transport` points at, it won't go away until
525 	 * the last module_put() below or in vsock_deassign_transport().
526 	 */
527 	mutex_unlock(&vsock_register_mutex);
528 
529 	if (sk->sk_type == SOCK_SEQPACKET) {
530 		if (!new_transport->seqpacket_allow ||
531 		    !new_transport->seqpacket_allow(remote_cid)) {
532 			module_put(new_transport->module);
533 			return -ESOCKTNOSUPPORT;
534 		}
535 	}
536 
537 	ret = new_transport->init(vsk, psk);
538 	if (ret) {
539 		module_put(new_transport->module);
540 		return ret;
541 	}
542 
543 	vsk->transport = new_transport;
544 
545 	return 0;
546 err:
547 	mutex_unlock(&vsock_register_mutex);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551 
552 /*
553  * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554  * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555  */
vsock_registered_transport_cid(const struct vsock_transport ** transport)556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 	u32 cid = VMADDR_CID_ANY;
559 
560 	mutex_lock(&vsock_register_mutex);
561 	if (*transport)
562 		cid = (*transport)->get_local_cid();
563 	mutex_unlock(&vsock_register_mutex);
564 
565 	return cid;
566 }
567 
vsock_find_cid(unsigned int cid)568 bool vsock_find_cid(unsigned int cid)
569 {
570 	if (cid == vsock_registered_transport_cid(&transport_g2h))
571 		return true;
572 
573 	if (transport_h2g && cid == VMADDR_CID_HOST)
574 		return true;
575 
576 	if (transport_local && cid == VMADDR_CID_LOCAL)
577 		return true;
578 
579 	return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582 
vsock_dequeue_accept(struct sock * listener)583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 	struct vsock_sock *vlistener;
586 	struct vsock_sock *vconnected;
587 
588 	vlistener = vsock_sk(listener);
589 
590 	if (list_empty(&vlistener->accept_queue))
591 		return NULL;
592 
593 	vconnected = list_entry(vlistener->accept_queue.next,
594 				struct vsock_sock, accept_queue);
595 
596 	list_del_init(&vconnected->accept_queue);
597 	sock_put(listener);
598 	/* The caller will need a reference on the connected socket so we let
599 	 * it call sock_put().
600 	 */
601 
602 	return sk_vsock(vconnected);
603 }
604 
vsock_is_accept_queue_empty(struct sock * sk)605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 	struct vsock_sock *vsk = vsock_sk(sk);
608 	return list_empty(&vsk->accept_queue);
609 }
610 
vsock_is_pending(struct sock * sk)611 static bool vsock_is_pending(struct sock *sk)
612 {
613 	struct vsock_sock *vsk = vsock_sk(sk);
614 	return !list_empty(&vsk->pending_links);
615 }
616 
vsock_send_shutdown(struct sock * sk,int mode)617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 	struct vsock_sock *vsk = vsock_sk(sk);
620 
621 	if (!vsk->transport)
622 		return -ENODEV;
623 
624 	return vsk->transport->shutdown(vsk, mode);
625 }
626 
vsock_pending_work(struct work_struct * work)627 static void vsock_pending_work(struct work_struct *work)
628 {
629 	struct sock *sk;
630 	struct sock *listener;
631 	struct vsock_sock *vsk;
632 	bool cleanup;
633 
634 	vsk = container_of(work, struct vsock_sock, pending_work.work);
635 	sk = sk_vsock(vsk);
636 	listener = vsk->listener;
637 	cleanup = true;
638 
639 	lock_sock(listener);
640 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641 
642 	if (vsock_is_pending(sk)) {
643 		vsock_remove_pending(listener, sk);
644 
645 		sk_acceptq_removed(listener);
646 	} else if (!vsk->rejected) {
647 		/* We are not on the pending list and accept() did not reject
648 		 * us, so we must have been accepted by our user process.  We
649 		 * just need to drop our references to the sockets and be on
650 		 * our way.
651 		 */
652 		cleanup = false;
653 		goto out;
654 	}
655 
656 	/* We need to remove ourself from the global connected sockets list so
657 	 * incoming packets can't find this socket, and to reduce the reference
658 	 * count.
659 	 */
660 	vsock_remove_connected(vsk);
661 
662 	sk->sk_state = TCP_CLOSE;
663 
664 out:
665 	release_sock(sk);
666 	release_sock(listener);
667 	if (cleanup)
668 		sock_put(sk);
669 
670 	sock_put(sk);
671 	sock_put(listener);
672 }
673 
674 /**** SOCKET OPERATIONS ****/
675 
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 				    struct sockaddr_vm *addr)
678 {
679 	static u32 port;
680 	struct sockaddr_vm new_addr;
681 
682 	if (!port)
683 		port = get_random_u32_above(LAST_RESERVED_PORT);
684 
685 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686 
687 	if (addr->svm_port == VMADDR_PORT_ANY) {
688 		bool found = false;
689 		unsigned int i;
690 
691 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 			if (port <= LAST_RESERVED_PORT)
693 				port = LAST_RESERVED_PORT + 1;
694 
695 			new_addr.svm_port = port++;
696 
697 			if (!__vsock_find_bound_socket(&new_addr)) {
698 				found = true;
699 				break;
700 			}
701 		}
702 
703 		if (!found)
704 			return -EADDRNOTAVAIL;
705 	} else {
706 		/* If port is in reserved range, ensure caller
707 		 * has necessary privileges.
708 		 */
709 		if (addr->svm_port <= LAST_RESERVED_PORT &&
710 		    !capable(CAP_NET_BIND_SERVICE)) {
711 			return -EACCES;
712 		}
713 
714 		if (__vsock_find_bound_socket(&new_addr))
715 			return -EADDRINUSE;
716 	}
717 
718 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
719 
720 	/* Remove connection oriented sockets from the unbound list and add them
721 	 * to the hash table for easy lookup by its address.  The unbound list
722 	 * is simply an extra entry at the end of the hash table, a trick used
723 	 * by AF_UNIX.
724 	 */
725 	__vsock_remove_bound(vsk);
726 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
727 
728 	return 0;
729 }
730 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)731 static int __vsock_bind_dgram(struct vsock_sock *vsk,
732 			      struct sockaddr_vm *addr)
733 {
734 	return vsk->transport->dgram_bind(vsk, addr);
735 }
736 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)737 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
738 {
739 	struct vsock_sock *vsk = vsock_sk(sk);
740 	int retval;
741 
742 	/* First ensure this socket isn't already bound. */
743 	if (vsock_addr_bound(&vsk->local_addr))
744 		return -EINVAL;
745 
746 	/* Now bind to the provided address or select appropriate values if
747 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
748 	 * like AF_INET prevents binding to a non-local IP address (in most
749 	 * cases), we only allow binding to a local CID.
750 	 */
751 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
752 		return -EADDRNOTAVAIL;
753 
754 	switch (sk->sk_socket->type) {
755 	case SOCK_STREAM:
756 	case SOCK_SEQPACKET:
757 		spin_lock_bh(&vsock_table_lock);
758 		retval = __vsock_bind_connectible(vsk, addr);
759 		spin_unlock_bh(&vsock_table_lock);
760 		break;
761 
762 	case SOCK_DGRAM:
763 		retval = __vsock_bind_dgram(vsk, addr);
764 		break;
765 
766 	default:
767 		retval = -EINVAL;
768 		break;
769 	}
770 
771 	return retval;
772 }
773 
774 static void vsock_connect_timeout(struct work_struct *work);
775 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)776 static struct sock *__vsock_create(struct net *net,
777 				   struct socket *sock,
778 				   struct sock *parent,
779 				   gfp_t priority,
780 				   unsigned short type,
781 				   int kern)
782 {
783 	struct sock *sk;
784 	struct vsock_sock *psk;
785 	struct vsock_sock *vsk;
786 
787 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
788 	if (!sk)
789 		return NULL;
790 
791 	sock_init_data(sock, sk);
792 
793 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
794 	 * non-NULL. We make sure that our sockets always have a type by
795 	 * setting it here if needed.
796 	 */
797 	if (!sock)
798 		sk->sk_type = type;
799 
800 	vsk = vsock_sk(sk);
801 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 
804 	sk->sk_destruct = vsock_sk_destruct;
805 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
806 	sock_reset_flag(sk, SOCK_DONE);
807 
808 	INIT_LIST_HEAD(&vsk->bound_table);
809 	INIT_LIST_HEAD(&vsk->connected_table);
810 	vsk->listener = NULL;
811 	INIT_LIST_HEAD(&vsk->pending_links);
812 	INIT_LIST_HEAD(&vsk->accept_queue);
813 	vsk->rejected = false;
814 	vsk->sent_request = false;
815 	vsk->ignore_connecting_rst = false;
816 	vsk->peer_shutdown = 0;
817 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
818 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
819 
820 	psk = parent ? vsock_sk(parent) : NULL;
821 	if (parent) {
822 		vsk->trusted = psk->trusted;
823 		vsk->owner = get_cred(psk->owner);
824 		vsk->connect_timeout = psk->connect_timeout;
825 		vsk->buffer_size = psk->buffer_size;
826 		vsk->buffer_min_size = psk->buffer_min_size;
827 		vsk->buffer_max_size = psk->buffer_max_size;
828 		security_sk_clone(parent, sk);
829 	} else {
830 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
831 		vsk->owner = get_current_cred();
832 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
833 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
834 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
835 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
836 	}
837 
838 	return sk;
839 }
840 
sock_type_connectible(u16 type)841 static bool sock_type_connectible(u16 type)
842 {
843 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
844 }
845 
__vsock_release(struct sock * sk,int level)846 static void __vsock_release(struct sock *sk, int level)
847 {
848 	struct vsock_sock *vsk;
849 	struct sock *pending;
850 
851 	vsk = vsock_sk(sk);
852 	pending = NULL;	/* Compiler warning. */
853 
854 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
855 	 * version to avoid the warning "possible recursive locking
856 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
857 	 * is the same as lock_sock(sk).
858 	 */
859 	lock_sock_nested(sk, level);
860 
861 	/* Indicate to vsock_remove_sock() that the socket is being released and
862 	 * can be removed from the bound_table. Unlike transport reassignment
863 	 * case, where the socket must remain bound despite vsock_remove_sock()
864 	 * being called from the transport release() callback.
865 	 */
866 	sock_set_flag(sk, SOCK_DEAD);
867 
868 	if (vsk->transport)
869 		vsk->transport->release(vsk);
870 	else if (sock_type_connectible(sk->sk_type))
871 		vsock_remove_sock(vsk);
872 
873 	sock_orphan(sk);
874 	sk->sk_shutdown = SHUTDOWN_MASK;
875 
876 	skb_queue_purge(&sk->sk_receive_queue);
877 
878 	/* Clean up any sockets that never were accepted. */
879 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
880 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
881 		sock_put(pending);
882 	}
883 
884 	release_sock(sk);
885 	sock_put(sk);
886 }
887 
vsock_sk_destruct(struct sock * sk)888 static void vsock_sk_destruct(struct sock *sk)
889 {
890 	struct vsock_sock *vsk = vsock_sk(sk);
891 
892 	/* Flush MSG_ZEROCOPY leftovers. */
893 	__skb_queue_purge(&sk->sk_error_queue);
894 
895 	vsock_deassign_transport(vsk);
896 
897 	/* When clearing these addresses, there's no need to set the family and
898 	 * possibly register the address family with the kernel.
899 	 */
900 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
901 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 
903 	put_cred(vsk->owner);
904 }
905 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)906 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
907 {
908 	int err;
909 
910 	err = sock_queue_rcv_skb(sk, skb);
911 	if (err)
912 		kfree_skb(skb);
913 
914 	return err;
915 }
916 
vsock_create_connected(struct sock * parent)917 struct sock *vsock_create_connected(struct sock *parent)
918 {
919 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
920 			      parent->sk_type, 0);
921 }
922 EXPORT_SYMBOL_GPL(vsock_create_connected);
923 
vsock_stream_has_data(struct vsock_sock * vsk)924 s64 vsock_stream_has_data(struct vsock_sock *vsk)
925 {
926 	if (WARN_ON(!vsk->transport))
927 		return 0;
928 
929 	return vsk->transport->stream_has_data(vsk);
930 }
931 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
932 
vsock_connectible_has_data(struct vsock_sock * vsk)933 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
934 {
935 	struct sock *sk = sk_vsock(vsk);
936 
937 	if (WARN_ON(!vsk->transport))
938 		return 0;
939 
940 	if (sk->sk_type == SOCK_SEQPACKET)
941 		return vsk->transport->seqpacket_has_data(vsk);
942 	else
943 		return vsock_stream_has_data(vsk);
944 }
945 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
946 
vsock_stream_has_space(struct vsock_sock * vsk)947 s64 vsock_stream_has_space(struct vsock_sock *vsk)
948 {
949 	if (WARN_ON(!vsk->transport))
950 		return 0;
951 
952 	return vsk->transport->stream_has_space(vsk);
953 }
954 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
955 
vsock_data_ready(struct sock * sk)956 void vsock_data_ready(struct sock *sk)
957 {
958 	struct vsock_sock *vsk = vsock_sk(sk);
959 
960 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
961 	    sock_flag(sk, SOCK_DONE))
962 		sk->sk_data_ready(sk);
963 }
964 EXPORT_SYMBOL_GPL(vsock_data_ready);
965 
966 /* Dummy callback required by sockmap.
967  * See unconditional call of saved_close() in sock_map_close().
968  */
vsock_close(struct sock * sk,long timeout)969 static void vsock_close(struct sock *sk, long timeout)
970 {
971 }
972 
vsock_release(struct socket * sock)973 static int vsock_release(struct socket *sock)
974 {
975 	struct sock *sk = sock->sk;
976 
977 	if (!sk)
978 		return 0;
979 
980 	sk->sk_prot->close(sk, 0);
981 	__vsock_release(sk, 0);
982 	sock->sk = NULL;
983 	sock->state = SS_FREE;
984 
985 	return 0;
986 }
987 
988 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)989 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
990 {
991 	int err;
992 	struct sock *sk;
993 	struct sockaddr_vm *vm_addr;
994 
995 	sk = sock->sk;
996 
997 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
998 		return -EINVAL;
999 
1000 	lock_sock(sk);
1001 	err = __vsock_bind(sk, vm_addr);
1002 	release_sock(sk);
1003 
1004 	return err;
1005 }
1006 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1007 static int vsock_getname(struct socket *sock,
1008 			 struct sockaddr *addr, int peer)
1009 {
1010 	int err;
1011 	struct sock *sk;
1012 	struct vsock_sock *vsk;
1013 	struct sockaddr_vm *vm_addr;
1014 
1015 	sk = sock->sk;
1016 	vsk = vsock_sk(sk);
1017 	err = 0;
1018 
1019 	lock_sock(sk);
1020 
1021 	if (peer) {
1022 		if (sock->state != SS_CONNECTED) {
1023 			err = -ENOTCONN;
1024 			goto out;
1025 		}
1026 		vm_addr = &vsk->remote_addr;
1027 	} else {
1028 		vm_addr = &vsk->local_addr;
1029 	}
1030 
1031 	/* sys_getsockname() and sys_getpeername() pass us a
1032 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
1033 	 * that macro is defined in socket.c instead of .h, so we hardcode its
1034 	 * value here.
1035 	 */
1036 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1037 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1038 	err = sizeof(*vm_addr);
1039 
1040 out:
1041 	release_sock(sk);
1042 	return err;
1043 }
1044 
vsock_linger(struct sock * sk)1045 void vsock_linger(struct sock *sk)
1046 {
1047 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1048 	ssize_t (*unsent)(struct vsock_sock *vsk);
1049 	struct vsock_sock *vsk = vsock_sk(sk);
1050 	long timeout;
1051 
1052 	if (!sock_flag(sk, SOCK_LINGER))
1053 		return;
1054 
1055 	timeout = sk->sk_lingertime;
1056 	if (!timeout)
1057 		return;
1058 
1059 	/* Transports must implement `unsent_bytes` if they want to support
1060 	 * SOCK_LINGER through `vsock_linger()` since we use it to check when
1061 	 * the socket can be closed.
1062 	 */
1063 	unsent = vsk->transport->unsent_bytes;
1064 	if (!unsent)
1065 		return;
1066 
1067 	add_wait_queue(sk_sleep(sk), &wait);
1068 
1069 	do {
1070 		if (sk_wait_event(sk, &timeout, unsent(vsk) == 0, &wait))
1071 			break;
1072 	} while (!signal_pending(current) && timeout);
1073 
1074 	remove_wait_queue(sk_sleep(sk), &wait);
1075 }
1076 EXPORT_SYMBOL_GPL(vsock_linger);
1077 
vsock_shutdown(struct socket * sock,int mode)1078 static int vsock_shutdown(struct socket *sock, int mode)
1079 {
1080 	int err;
1081 	struct sock *sk;
1082 
1083 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1084 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1085 	 * here like the other address families do.  Note also that the
1086 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1087 	 * which is what we want.
1088 	 */
1089 	mode++;
1090 
1091 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1092 		return -EINVAL;
1093 
1094 	/* If this is a connection oriented socket and it is not connected then
1095 	 * bail out immediately.  If it is a DGRAM socket then we must first
1096 	 * kick the socket so that it wakes up from any sleeping calls, for
1097 	 * example recv(), and then afterwards return the error.
1098 	 */
1099 
1100 	sk = sock->sk;
1101 
1102 	lock_sock(sk);
1103 	if (sock->state == SS_UNCONNECTED) {
1104 		err = -ENOTCONN;
1105 		if (sock_type_connectible(sk->sk_type))
1106 			goto out;
1107 	} else {
1108 		sock->state = SS_DISCONNECTING;
1109 		err = 0;
1110 	}
1111 
1112 	/* Receive and send shutdowns are treated alike. */
1113 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1114 	if (mode) {
1115 		sk->sk_shutdown |= mode;
1116 		sk->sk_state_change(sk);
1117 
1118 		if (sock_type_connectible(sk->sk_type)) {
1119 			sock_reset_flag(sk, SOCK_DONE);
1120 			vsock_send_shutdown(sk, mode);
1121 		}
1122 	}
1123 
1124 out:
1125 	release_sock(sk);
1126 	return err;
1127 }
1128 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1129 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1130 			       poll_table *wait)
1131 {
1132 	struct sock *sk;
1133 	__poll_t mask;
1134 	struct vsock_sock *vsk;
1135 
1136 	sk = sock->sk;
1137 	vsk = vsock_sk(sk);
1138 
1139 	poll_wait(file, sk_sleep(sk), wait);
1140 	mask = 0;
1141 
1142 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1143 		/* Signify that there has been an error on this socket. */
1144 		mask |= EPOLLERR;
1145 
1146 	/* INET sockets treat local write shutdown and peer write shutdown as a
1147 	 * case of EPOLLHUP set.
1148 	 */
1149 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1150 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1151 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1152 		mask |= EPOLLHUP;
1153 	}
1154 
1155 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1156 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1157 		mask |= EPOLLRDHUP;
1158 	}
1159 
1160 	if (sk_is_readable(sk))
1161 		mask |= EPOLLIN | EPOLLRDNORM;
1162 
1163 	if (sock->type == SOCK_DGRAM) {
1164 		/* For datagram sockets we can read if there is something in
1165 		 * the queue and write as long as the socket isn't shutdown for
1166 		 * sending.
1167 		 */
1168 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1169 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1170 			mask |= EPOLLIN | EPOLLRDNORM;
1171 		}
1172 
1173 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1174 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1175 
1176 	} else if (sock_type_connectible(sk->sk_type)) {
1177 		const struct vsock_transport *transport;
1178 
1179 		lock_sock(sk);
1180 
1181 		transport = vsk->transport;
1182 
1183 		/* Listening sockets that have connections in their accept
1184 		 * queue can be read.
1185 		 */
1186 		if (sk->sk_state == TCP_LISTEN
1187 		    && !vsock_is_accept_queue_empty(sk))
1188 			mask |= EPOLLIN | EPOLLRDNORM;
1189 
1190 		/* If there is something in the queue then we can read. */
1191 		if (transport && transport->stream_is_active(vsk) &&
1192 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1193 			bool data_ready_now = false;
1194 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1195 			int ret = transport->notify_poll_in(
1196 					vsk, target, &data_ready_now);
1197 			if (ret < 0) {
1198 				mask |= EPOLLERR;
1199 			} else {
1200 				if (data_ready_now)
1201 					mask |= EPOLLIN | EPOLLRDNORM;
1202 
1203 			}
1204 		}
1205 
1206 		/* Sockets whose connections have been closed, reset, or
1207 		 * terminated should also be considered read, and we check the
1208 		 * shutdown flag for that.
1209 		 */
1210 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1211 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1212 			mask |= EPOLLIN | EPOLLRDNORM;
1213 		}
1214 
1215 		/* Connected sockets that can produce data can be written. */
1216 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1217 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1218 				bool space_avail_now = false;
1219 				int ret = transport->notify_poll_out(
1220 						vsk, 1, &space_avail_now);
1221 				if (ret < 0) {
1222 					mask |= EPOLLERR;
1223 				} else {
1224 					if (space_avail_now)
1225 						/* Remove EPOLLWRBAND since INET
1226 						 * sockets are not setting it.
1227 						 */
1228 						mask |= EPOLLOUT | EPOLLWRNORM;
1229 
1230 				}
1231 			}
1232 		}
1233 
1234 		/* Simulate INET socket poll behaviors, which sets
1235 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1236 		 * but local send is not shutdown.
1237 		 */
1238 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1239 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1240 				mask |= EPOLLOUT | EPOLLWRNORM;
1241 
1242 		}
1243 
1244 		release_sock(sk);
1245 	}
1246 
1247 	return mask;
1248 }
1249 
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1250 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1251 {
1252 	struct vsock_sock *vsk = vsock_sk(sk);
1253 
1254 	if (WARN_ON_ONCE(!vsk->transport))
1255 		return -ENODEV;
1256 
1257 	return vsk->transport->read_skb(vsk, read_actor);
1258 }
1259 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1260 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1261 			       size_t len)
1262 {
1263 	int err;
1264 	struct sock *sk;
1265 	struct vsock_sock *vsk;
1266 	struct sockaddr_vm *remote_addr;
1267 	const struct vsock_transport *transport;
1268 
1269 	if (msg->msg_flags & MSG_OOB)
1270 		return -EOPNOTSUPP;
1271 
1272 	/* For now, MSG_DONTWAIT is always assumed... */
1273 	err = 0;
1274 	sk = sock->sk;
1275 	vsk = vsock_sk(sk);
1276 
1277 	lock_sock(sk);
1278 
1279 	transport = vsk->transport;
1280 
1281 	err = vsock_auto_bind(vsk);
1282 	if (err)
1283 		goto out;
1284 
1285 
1286 	/* If the provided message contains an address, use that.  Otherwise
1287 	 * fall back on the socket's remote handle (if it has been connected).
1288 	 */
1289 	if (msg->msg_name &&
1290 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1291 			    &remote_addr) == 0) {
1292 		/* Ensure this address is of the right type and is a valid
1293 		 * destination.
1294 		 */
1295 
1296 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1297 			remote_addr->svm_cid = transport->get_local_cid();
1298 
1299 		if (!vsock_addr_bound(remote_addr)) {
1300 			err = -EINVAL;
1301 			goto out;
1302 		}
1303 	} else if (sock->state == SS_CONNECTED) {
1304 		remote_addr = &vsk->remote_addr;
1305 
1306 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1307 			remote_addr->svm_cid = transport->get_local_cid();
1308 
1309 		/* XXX Should connect() or this function ensure remote_addr is
1310 		 * bound?
1311 		 */
1312 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1313 			err = -EINVAL;
1314 			goto out;
1315 		}
1316 	} else {
1317 		err = -EINVAL;
1318 		goto out;
1319 	}
1320 
1321 	if (!transport->dgram_allow(remote_addr->svm_cid,
1322 				    remote_addr->svm_port)) {
1323 		err = -EINVAL;
1324 		goto out;
1325 	}
1326 
1327 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1328 
1329 out:
1330 	release_sock(sk);
1331 	return err;
1332 }
1333 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1334 static int vsock_dgram_connect(struct socket *sock,
1335 			       struct sockaddr *addr, int addr_len, int flags)
1336 {
1337 	int err;
1338 	struct sock *sk;
1339 	struct vsock_sock *vsk;
1340 	struct sockaddr_vm *remote_addr;
1341 
1342 	sk = sock->sk;
1343 	vsk = vsock_sk(sk);
1344 
1345 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1346 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1347 		lock_sock(sk);
1348 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1349 				VMADDR_PORT_ANY);
1350 		sock->state = SS_UNCONNECTED;
1351 		release_sock(sk);
1352 		return 0;
1353 	} else if (err != 0)
1354 		return -EINVAL;
1355 
1356 	lock_sock(sk);
1357 
1358 	err = vsock_auto_bind(vsk);
1359 	if (err)
1360 		goto out;
1361 
1362 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1363 					 remote_addr->svm_port)) {
1364 		err = -EINVAL;
1365 		goto out;
1366 	}
1367 
1368 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1369 	sock->state = SS_CONNECTED;
1370 
1371 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1372 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1373 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1374 	 *
1375 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1376 	 * same approach can be see in other datagram socket types as well
1377 	 * (such as unix sockets).
1378 	 */
1379 	sk->sk_state = TCP_ESTABLISHED;
1380 
1381 out:
1382 	release_sock(sk);
1383 	return err;
1384 }
1385 
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1386 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1387 			  size_t len, int flags)
1388 {
1389 	struct sock *sk = sock->sk;
1390 	struct vsock_sock *vsk = vsock_sk(sk);
1391 
1392 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1393 }
1394 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1395 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1396 			size_t len, int flags)
1397 {
1398 #ifdef CONFIG_BPF_SYSCALL
1399 	struct sock *sk = sock->sk;
1400 	const struct proto *prot;
1401 
1402 	prot = READ_ONCE(sk->sk_prot);
1403 	if (prot != &vsock_proto)
1404 		return prot->recvmsg(sk, msg, len, flags, NULL);
1405 #endif
1406 
1407 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1408 }
1409 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1410 
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1411 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1412 			  int __user *arg)
1413 {
1414 	struct sock *sk = sock->sk;
1415 	struct vsock_sock *vsk;
1416 	int ret;
1417 
1418 	vsk = vsock_sk(sk);
1419 
1420 	switch (cmd) {
1421 	case SIOCINQ: {
1422 		ssize_t n_bytes;
1423 
1424 		if (!vsk->transport) {
1425 			ret = -EOPNOTSUPP;
1426 			break;
1427 		}
1428 
1429 		if (sock_type_connectible(sk->sk_type) &&
1430 		    sk->sk_state == TCP_LISTEN) {
1431 			ret = -EINVAL;
1432 			break;
1433 		}
1434 
1435 		n_bytes = vsock_stream_has_data(vsk);
1436 		if (n_bytes < 0) {
1437 			ret = n_bytes;
1438 			break;
1439 		}
1440 		ret = put_user(n_bytes, arg);
1441 		break;
1442 	}
1443 	case SIOCOUTQ: {
1444 		ssize_t n_bytes;
1445 
1446 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1447 			ret = -EOPNOTSUPP;
1448 			break;
1449 		}
1450 
1451 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1452 			ret = -EINVAL;
1453 			break;
1454 		}
1455 
1456 		n_bytes = vsk->transport->unsent_bytes(vsk);
1457 		if (n_bytes < 0) {
1458 			ret = n_bytes;
1459 			break;
1460 		}
1461 
1462 		ret = put_user(n_bytes, arg);
1463 		break;
1464 	}
1465 	default:
1466 		ret = -ENOIOCTLCMD;
1467 	}
1468 
1469 	return ret;
1470 }
1471 
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1472 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1473 		       unsigned long arg)
1474 {
1475 	int ret;
1476 
1477 	lock_sock(sock->sk);
1478 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1479 	release_sock(sock->sk);
1480 
1481 	return ret;
1482 }
1483 
1484 static const struct proto_ops vsock_dgram_ops = {
1485 	.family = PF_VSOCK,
1486 	.owner = THIS_MODULE,
1487 	.release = vsock_release,
1488 	.bind = vsock_bind,
1489 	.connect = vsock_dgram_connect,
1490 	.socketpair = sock_no_socketpair,
1491 	.accept = sock_no_accept,
1492 	.getname = vsock_getname,
1493 	.poll = vsock_poll,
1494 	.ioctl = vsock_ioctl,
1495 	.listen = sock_no_listen,
1496 	.shutdown = vsock_shutdown,
1497 	.sendmsg = vsock_dgram_sendmsg,
1498 	.recvmsg = vsock_dgram_recvmsg,
1499 	.mmap = sock_no_mmap,
1500 	.read_skb = vsock_read_skb,
1501 };
1502 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1503 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1504 {
1505 	const struct vsock_transport *transport = vsk->transport;
1506 
1507 	if (!transport || !transport->cancel_pkt)
1508 		return -EOPNOTSUPP;
1509 
1510 	return transport->cancel_pkt(vsk);
1511 }
1512 
vsock_connect_timeout(struct work_struct * work)1513 static void vsock_connect_timeout(struct work_struct *work)
1514 {
1515 	struct sock *sk;
1516 	struct vsock_sock *vsk;
1517 
1518 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1519 	sk = sk_vsock(vsk);
1520 
1521 	lock_sock(sk);
1522 	if (sk->sk_state == TCP_SYN_SENT &&
1523 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1524 		sk->sk_state = TCP_CLOSE;
1525 		sk->sk_socket->state = SS_UNCONNECTED;
1526 		sk->sk_err = ETIMEDOUT;
1527 		sk_error_report(sk);
1528 		vsock_transport_cancel_pkt(vsk);
1529 	}
1530 	release_sock(sk);
1531 
1532 	sock_put(sk);
1533 }
1534 
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1535 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1536 			 int addr_len, int flags)
1537 {
1538 	int err;
1539 	struct sock *sk;
1540 	struct vsock_sock *vsk;
1541 	const struct vsock_transport *transport;
1542 	struct sockaddr_vm *remote_addr;
1543 	long timeout;
1544 	DEFINE_WAIT(wait);
1545 
1546 	err = 0;
1547 	sk = sock->sk;
1548 	vsk = vsock_sk(sk);
1549 
1550 	lock_sock(sk);
1551 
1552 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1553 	switch (sock->state) {
1554 	case SS_CONNECTED:
1555 		err = -EISCONN;
1556 		goto out;
1557 	case SS_DISCONNECTING:
1558 		err = -EINVAL;
1559 		goto out;
1560 	case SS_CONNECTING:
1561 		/* This continues on so we can move sock into the SS_CONNECTED
1562 		 * state once the connection has completed (at which point err
1563 		 * will be set to zero also).  Otherwise, we will either wait
1564 		 * for the connection or return -EALREADY should this be a
1565 		 * non-blocking call.
1566 		 */
1567 		err = -EALREADY;
1568 		if (flags & O_NONBLOCK)
1569 			goto out;
1570 		break;
1571 	default:
1572 		if ((sk->sk_state == TCP_LISTEN) ||
1573 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1574 			err = -EINVAL;
1575 			goto out;
1576 		}
1577 
1578 		/* Set the remote address that we are connecting to. */
1579 		memcpy(&vsk->remote_addr, remote_addr,
1580 		       sizeof(vsk->remote_addr));
1581 
1582 		err = vsock_assign_transport(vsk, NULL);
1583 		if (err)
1584 			goto out;
1585 
1586 		transport = vsk->transport;
1587 
1588 		/* The hypervisor and well-known contexts do not have socket
1589 		 * endpoints.
1590 		 */
1591 		if (!transport ||
1592 		    !transport->stream_allow(remote_addr->svm_cid,
1593 					     remote_addr->svm_port)) {
1594 			err = -ENETUNREACH;
1595 			goto out;
1596 		}
1597 
1598 		if (vsock_msgzerocopy_allow(transport)) {
1599 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1600 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1601 			/* If this option was set before 'connect()',
1602 			 * when transport was unknown, check that this
1603 			 * feature is supported here.
1604 			 */
1605 			err = -EOPNOTSUPP;
1606 			goto out;
1607 		}
1608 
1609 		err = vsock_auto_bind(vsk);
1610 		if (err)
1611 			goto out;
1612 
1613 		sk->sk_state = TCP_SYN_SENT;
1614 
1615 		err = transport->connect(vsk);
1616 		if (err < 0)
1617 			goto out;
1618 
1619 		/* sk_err might have been set as a result of an earlier
1620 		 * (failed) connect attempt.
1621 		 */
1622 		sk->sk_err = 0;
1623 
1624 		/* Mark sock as connecting and set the error code to in
1625 		 * progress in case this is a non-blocking connect.
1626 		 */
1627 		sock->state = SS_CONNECTING;
1628 		err = -EINPROGRESS;
1629 	}
1630 
1631 	/* The receive path will handle all communication until we are able to
1632 	 * enter the connected state.  Here we wait for the connection to be
1633 	 * completed or a notification of an error.
1634 	 */
1635 	timeout = vsk->connect_timeout;
1636 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1637 
1638 	/* If the socket is already closing or it is in an error state, there
1639 	 * is no point in waiting.
1640 	 */
1641 	while (sk->sk_state != TCP_ESTABLISHED &&
1642 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1643 		if (flags & O_NONBLOCK) {
1644 			/* If we're not going to block, we schedule a timeout
1645 			 * function to generate a timeout on the connection
1646 			 * attempt, in case the peer doesn't respond in a
1647 			 * timely manner. We hold on to the socket until the
1648 			 * timeout fires.
1649 			 */
1650 			sock_hold(sk);
1651 
1652 			/* If the timeout function is already scheduled,
1653 			 * reschedule it, then ungrab the socket refcount to
1654 			 * keep it balanced.
1655 			 */
1656 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1657 					     timeout))
1658 				sock_put(sk);
1659 
1660 			/* Skip ahead to preserve error code set above. */
1661 			goto out_wait;
1662 		}
1663 
1664 		release_sock(sk);
1665 		timeout = schedule_timeout(timeout);
1666 		lock_sock(sk);
1667 
1668 		if (signal_pending(current)) {
1669 			err = sock_intr_errno(timeout);
1670 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1671 			sock->state = SS_UNCONNECTED;
1672 			vsock_transport_cancel_pkt(vsk);
1673 			vsock_remove_connected(vsk);
1674 			goto out_wait;
1675 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1676 			err = -ETIMEDOUT;
1677 			sk->sk_state = TCP_CLOSE;
1678 			sock->state = SS_UNCONNECTED;
1679 			vsock_transport_cancel_pkt(vsk);
1680 			goto out_wait;
1681 		}
1682 
1683 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1684 	}
1685 
1686 	if (sk->sk_err) {
1687 		err = -sk->sk_err;
1688 		sk->sk_state = TCP_CLOSE;
1689 		sock->state = SS_UNCONNECTED;
1690 	} else {
1691 		err = 0;
1692 	}
1693 
1694 out_wait:
1695 	finish_wait(sk_sleep(sk), &wait);
1696 out:
1697 	release_sock(sk);
1698 	return err;
1699 }
1700 
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1701 static int vsock_accept(struct socket *sock, struct socket *newsock,
1702 			struct proto_accept_arg *arg)
1703 {
1704 	struct sock *listener;
1705 	int err;
1706 	struct sock *connected;
1707 	struct vsock_sock *vconnected;
1708 	long timeout;
1709 	DEFINE_WAIT(wait);
1710 
1711 	err = 0;
1712 	listener = sock->sk;
1713 
1714 	lock_sock(listener);
1715 
1716 	if (!sock_type_connectible(sock->type)) {
1717 		err = -EOPNOTSUPP;
1718 		goto out;
1719 	}
1720 
1721 	if (listener->sk_state != TCP_LISTEN) {
1722 		err = -EINVAL;
1723 		goto out;
1724 	}
1725 
1726 	/* Wait for children sockets to appear; these are the new sockets
1727 	 * created upon connection establishment.
1728 	 */
1729 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1730 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1731 
1732 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1733 	       listener->sk_err == 0) {
1734 		release_sock(listener);
1735 		timeout = schedule_timeout(timeout);
1736 		finish_wait(sk_sleep(listener), &wait);
1737 		lock_sock(listener);
1738 
1739 		if (signal_pending(current)) {
1740 			err = sock_intr_errno(timeout);
1741 			goto out;
1742 		} else if (timeout == 0) {
1743 			err = -EAGAIN;
1744 			goto out;
1745 		}
1746 
1747 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1748 	}
1749 	finish_wait(sk_sleep(listener), &wait);
1750 
1751 	if (listener->sk_err)
1752 		err = -listener->sk_err;
1753 
1754 	if (connected) {
1755 		sk_acceptq_removed(listener);
1756 
1757 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1758 		vconnected = vsock_sk(connected);
1759 
1760 		/* If the listener socket has received an error, then we should
1761 		 * reject this socket and return.  Note that we simply mark the
1762 		 * socket rejected, drop our reference, and let the cleanup
1763 		 * function handle the cleanup; the fact that we found it in
1764 		 * the listener's accept queue guarantees that the cleanup
1765 		 * function hasn't run yet.
1766 		 */
1767 		if (err) {
1768 			vconnected->rejected = true;
1769 		} else {
1770 			newsock->state = SS_CONNECTED;
1771 			sock_graft(connected, newsock);
1772 			if (vsock_msgzerocopy_allow(vconnected->transport))
1773 				set_bit(SOCK_SUPPORT_ZC,
1774 					&connected->sk_socket->flags);
1775 		}
1776 
1777 		release_sock(connected);
1778 		sock_put(connected);
1779 	}
1780 
1781 out:
1782 	release_sock(listener);
1783 	return err;
1784 }
1785 
vsock_listen(struct socket * sock,int backlog)1786 static int vsock_listen(struct socket *sock, int backlog)
1787 {
1788 	int err;
1789 	struct sock *sk;
1790 	struct vsock_sock *vsk;
1791 
1792 	sk = sock->sk;
1793 
1794 	lock_sock(sk);
1795 
1796 	if (!sock_type_connectible(sk->sk_type)) {
1797 		err = -EOPNOTSUPP;
1798 		goto out;
1799 	}
1800 
1801 	if (sock->state != SS_UNCONNECTED) {
1802 		err = -EINVAL;
1803 		goto out;
1804 	}
1805 
1806 	vsk = vsock_sk(sk);
1807 
1808 	if (!vsock_addr_bound(&vsk->local_addr)) {
1809 		err = -EINVAL;
1810 		goto out;
1811 	}
1812 
1813 	sk->sk_max_ack_backlog = backlog;
1814 	sk->sk_state = TCP_LISTEN;
1815 
1816 	err = 0;
1817 
1818 out:
1819 	release_sock(sk);
1820 	return err;
1821 }
1822 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1823 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1824 				     const struct vsock_transport *transport,
1825 				     u64 val)
1826 {
1827 	if (val > vsk->buffer_max_size)
1828 		val = vsk->buffer_max_size;
1829 
1830 	if (val < vsk->buffer_min_size)
1831 		val = vsk->buffer_min_size;
1832 
1833 	if (val != vsk->buffer_size &&
1834 	    transport && transport->notify_buffer_size)
1835 		transport->notify_buffer_size(vsk, &val);
1836 
1837 	vsk->buffer_size = val;
1838 }
1839 
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1840 static int vsock_connectible_setsockopt(struct socket *sock,
1841 					int level,
1842 					int optname,
1843 					sockptr_t optval,
1844 					unsigned int optlen)
1845 {
1846 	int err;
1847 	struct sock *sk;
1848 	struct vsock_sock *vsk;
1849 	const struct vsock_transport *transport;
1850 	u64 val;
1851 
1852 	if (level != AF_VSOCK && level != SOL_SOCKET)
1853 		return -ENOPROTOOPT;
1854 
1855 #define COPY_IN(_v)                                       \
1856 	do {						  \
1857 		if (optlen < sizeof(_v)) {		  \
1858 			err = -EINVAL;			  \
1859 			goto exit;			  \
1860 		}					  \
1861 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1862 			err = -EFAULT;					\
1863 			goto exit;					\
1864 		}							\
1865 	} while (0)
1866 
1867 	err = 0;
1868 	sk = sock->sk;
1869 	vsk = vsock_sk(sk);
1870 
1871 	lock_sock(sk);
1872 
1873 	transport = vsk->transport;
1874 
1875 	if (level == SOL_SOCKET) {
1876 		int zerocopy;
1877 
1878 		if (optname != SO_ZEROCOPY) {
1879 			release_sock(sk);
1880 			return sock_setsockopt(sock, level, optname, optval, optlen);
1881 		}
1882 
1883 		/* Use 'int' type here, because variable to
1884 		 * set this option usually has this type.
1885 		 */
1886 		COPY_IN(zerocopy);
1887 
1888 		if (zerocopy < 0 || zerocopy > 1) {
1889 			err = -EINVAL;
1890 			goto exit;
1891 		}
1892 
1893 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1894 			err = -EOPNOTSUPP;
1895 			goto exit;
1896 		}
1897 
1898 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1899 		goto exit;
1900 	}
1901 
1902 	switch (optname) {
1903 	case SO_VM_SOCKETS_BUFFER_SIZE:
1904 		COPY_IN(val);
1905 		vsock_update_buffer_size(vsk, transport, val);
1906 		break;
1907 
1908 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1909 		COPY_IN(val);
1910 		vsk->buffer_max_size = val;
1911 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1912 		break;
1913 
1914 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1915 		COPY_IN(val);
1916 		vsk->buffer_min_size = val;
1917 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1918 		break;
1919 
1920 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1921 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1922 		struct __kernel_sock_timeval tv;
1923 
1924 		err = sock_copy_user_timeval(&tv, optval, optlen,
1925 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1926 		if (err)
1927 			break;
1928 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1929 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1930 			vsk->connect_timeout = tv.tv_sec * HZ +
1931 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1932 			if (vsk->connect_timeout == 0)
1933 				vsk->connect_timeout =
1934 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1935 
1936 		} else {
1937 			err = -ERANGE;
1938 		}
1939 		break;
1940 	}
1941 
1942 	default:
1943 		err = -ENOPROTOOPT;
1944 		break;
1945 	}
1946 
1947 #undef COPY_IN
1948 
1949 exit:
1950 	release_sock(sk);
1951 	return err;
1952 }
1953 
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1954 static int vsock_connectible_getsockopt(struct socket *sock,
1955 					int level, int optname,
1956 					char __user *optval,
1957 					int __user *optlen)
1958 {
1959 	struct sock *sk = sock->sk;
1960 	struct vsock_sock *vsk = vsock_sk(sk);
1961 
1962 	union {
1963 		u64 val64;
1964 		struct old_timeval32 tm32;
1965 		struct __kernel_old_timeval tm;
1966 		struct  __kernel_sock_timeval stm;
1967 	} v;
1968 
1969 	int lv = sizeof(v.val64);
1970 	int len;
1971 
1972 	if (level != AF_VSOCK)
1973 		return -ENOPROTOOPT;
1974 
1975 	if (get_user(len, optlen))
1976 		return -EFAULT;
1977 
1978 	memset(&v, 0, sizeof(v));
1979 
1980 	switch (optname) {
1981 	case SO_VM_SOCKETS_BUFFER_SIZE:
1982 		v.val64 = vsk->buffer_size;
1983 		break;
1984 
1985 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1986 		v.val64 = vsk->buffer_max_size;
1987 		break;
1988 
1989 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1990 		v.val64 = vsk->buffer_min_size;
1991 		break;
1992 
1993 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1994 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1995 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1996 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1997 		break;
1998 
1999 	default:
2000 		return -ENOPROTOOPT;
2001 	}
2002 
2003 	if (len < lv)
2004 		return -EINVAL;
2005 	if (len > lv)
2006 		len = lv;
2007 	if (copy_to_user(optval, &v, len))
2008 		return -EFAULT;
2009 
2010 	if (put_user(len, optlen))
2011 		return -EFAULT;
2012 
2013 	return 0;
2014 }
2015 
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2016 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
2017 				     size_t len)
2018 {
2019 	struct sock *sk;
2020 	struct vsock_sock *vsk;
2021 	const struct vsock_transport *transport;
2022 	ssize_t total_written;
2023 	long timeout;
2024 	int err;
2025 	struct vsock_transport_send_notify_data send_data;
2026 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
2027 
2028 	sk = sock->sk;
2029 	vsk = vsock_sk(sk);
2030 	total_written = 0;
2031 	err = 0;
2032 
2033 	if (msg->msg_flags & MSG_OOB)
2034 		return -EOPNOTSUPP;
2035 
2036 	lock_sock(sk);
2037 
2038 	transport = vsk->transport;
2039 
2040 	/* Callers should not provide a destination with connection oriented
2041 	 * sockets.
2042 	 */
2043 	if (msg->msg_namelen) {
2044 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2045 		goto out;
2046 	}
2047 
2048 	/* Send data only if both sides are not shutdown in the direction. */
2049 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
2050 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
2051 		err = -EPIPE;
2052 		goto out;
2053 	}
2054 
2055 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2056 	    !vsock_addr_bound(&vsk->local_addr)) {
2057 		err = -ENOTCONN;
2058 		goto out;
2059 	}
2060 
2061 	if (!vsock_addr_bound(&vsk->remote_addr)) {
2062 		err = -EDESTADDRREQ;
2063 		goto out;
2064 	}
2065 
2066 	if (msg->msg_flags & MSG_ZEROCOPY &&
2067 	    !vsock_msgzerocopy_allow(transport)) {
2068 		err = -EOPNOTSUPP;
2069 		goto out;
2070 	}
2071 
2072 	/* Wait for room in the produce queue to enqueue our user's data. */
2073 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2074 
2075 	err = transport->notify_send_init(vsk, &send_data);
2076 	if (err < 0)
2077 		goto out;
2078 
2079 	while (total_written < len) {
2080 		ssize_t written;
2081 
2082 		add_wait_queue(sk_sleep(sk), &wait);
2083 		while (vsock_stream_has_space(vsk) == 0 &&
2084 		       sk->sk_err == 0 &&
2085 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2086 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2087 
2088 			/* Don't wait for non-blocking sockets. */
2089 			if (timeout == 0) {
2090 				err = -EAGAIN;
2091 				remove_wait_queue(sk_sleep(sk), &wait);
2092 				goto out_err;
2093 			}
2094 
2095 			err = transport->notify_send_pre_block(vsk, &send_data);
2096 			if (err < 0) {
2097 				remove_wait_queue(sk_sleep(sk), &wait);
2098 				goto out_err;
2099 			}
2100 
2101 			release_sock(sk);
2102 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2103 			lock_sock(sk);
2104 			if (signal_pending(current)) {
2105 				err = sock_intr_errno(timeout);
2106 				remove_wait_queue(sk_sleep(sk), &wait);
2107 				goto out_err;
2108 			} else if (timeout == 0) {
2109 				err = -EAGAIN;
2110 				remove_wait_queue(sk_sleep(sk), &wait);
2111 				goto out_err;
2112 			}
2113 		}
2114 		remove_wait_queue(sk_sleep(sk), &wait);
2115 
2116 		/* These checks occur both as part of and after the loop
2117 		 * conditional since we need to check before and after
2118 		 * sleeping.
2119 		 */
2120 		if (sk->sk_err) {
2121 			err = -sk->sk_err;
2122 			goto out_err;
2123 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2124 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2125 			err = -EPIPE;
2126 			goto out_err;
2127 		}
2128 
2129 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2130 		if (err < 0)
2131 			goto out_err;
2132 
2133 		/* Note that enqueue will only write as many bytes as are free
2134 		 * in the produce queue, so we don't need to ensure len is
2135 		 * smaller than the queue size.  It is the caller's
2136 		 * responsibility to check how many bytes we were able to send.
2137 		 */
2138 
2139 		if (sk->sk_type == SOCK_SEQPACKET) {
2140 			written = transport->seqpacket_enqueue(vsk,
2141 						msg, len - total_written);
2142 		} else {
2143 			written = transport->stream_enqueue(vsk,
2144 					msg, len - total_written);
2145 		}
2146 
2147 		if (written < 0) {
2148 			err = written;
2149 			goto out_err;
2150 		}
2151 
2152 		total_written += written;
2153 
2154 		err = transport->notify_send_post_enqueue(
2155 				vsk, written, &send_data);
2156 		if (err < 0)
2157 			goto out_err;
2158 
2159 	}
2160 
2161 out_err:
2162 	if (total_written > 0) {
2163 		/* Return number of written bytes only if:
2164 		 * 1) SOCK_STREAM socket.
2165 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2166 		 */
2167 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2168 			err = total_written;
2169 	}
2170 out:
2171 	if (sk->sk_type == SOCK_STREAM)
2172 		err = sk_stream_error(sk, msg->msg_flags, err);
2173 
2174 	release_sock(sk);
2175 	return err;
2176 }
2177 
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2178 static int vsock_connectible_wait_data(struct sock *sk,
2179 				       struct wait_queue_entry *wait,
2180 				       long timeout,
2181 				       struct vsock_transport_recv_notify_data *recv_data,
2182 				       size_t target)
2183 {
2184 	const struct vsock_transport *transport;
2185 	struct vsock_sock *vsk;
2186 	s64 data;
2187 	int err;
2188 
2189 	vsk = vsock_sk(sk);
2190 	err = 0;
2191 	transport = vsk->transport;
2192 
2193 	while (1) {
2194 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2195 		data = vsock_connectible_has_data(vsk);
2196 		if (data != 0)
2197 			break;
2198 
2199 		if (sk->sk_err != 0 ||
2200 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2201 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2202 			break;
2203 		}
2204 
2205 		/* Don't wait for non-blocking sockets. */
2206 		if (timeout == 0) {
2207 			err = -EAGAIN;
2208 			break;
2209 		}
2210 
2211 		if (recv_data) {
2212 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2213 			if (err < 0)
2214 				break;
2215 		}
2216 
2217 		release_sock(sk);
2218 		timeout = schedule_timeout(timeout);
2219 		lock_sock(sk);
2220 
2221 		if (signal_pending(current)) {
2222 			err = sock_intr_errno(timeout);
2223 			break;
2224 		} else if (timeout == 0) {
2225 			err = -EAGAIN;
2226 			break;
2227 		}
2228 	}
2229 
2230 	finish_wait(sk_sleep(sk), wait);
2231 
2232 	if (err)
2233 		return err;
2234 
2235 	/* Internal transport error when checking for available
2236 	 * data. XXX This should be changed to a connection
2237 	 * reset in a later change.
2238 	 */
2239 	if (data < 0)
2240 		return -ENOMEM;
2241 
2242 	return data;
2243 }
2244 
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2245 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2246 				  size_t len, int flags)
2247 {
2248 	struct vsock_transport_recv_notify_data recv_data;
2249 	const struct vsock_transport *transport;
2250 	struct vsock_sock *vsk;
2251 	ssize_t copied;
2252 	size_t target;
2253 	long timeout;
2254 	int err;
2255 
2256 	DEFINE_WAIT(wait);
2257 
2258 	vsk = vsock_sk(sk);
2259 	transport = vsk->transport;
2260 
2261 	/* We must not copy less than target bytes into the user's buffer
2262 	 * before returning successfully, so we wait for the consume queue to
2263 	 * have that much data to consume before dequeueing.  Note that this
2264 	 * makes it impossible to handle cases where target is greater than the
2265 	 * queue size.
2266 	 */
2267 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2268 	if (target >= transport->stream_rcvhiwat(vsk)) {
2269 		err = -ENOMEM;
2270 		goto out;
2271 	}
2272 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2273 	copied = 0;
2274 
2275 	err = transport->notify_recv_init(vsk, target, &recv_data);
2276 	if (err < 0)
2277 		goto out;
2278 
2279 
2280 	while (1) {
2281 		ssize_t read;
2282 
2283 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2284 						  &recv_data, target);
2285 		if (err <= 0)
2286 			break;
2287 
2288 		err = transport->notify_recv_pre_dequeue(vsk, target,
2289 							 &recv_data);
2290 		if (err < 0)
2291 			break;
2292 
2293 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2294 		if (read < 0) {
2295 			err = read;
2296 			break;
2297 		}
2298 
2299 		copied += read;
2300 
2301 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2302 						!(flags & MSG_PEEK), &recv_data);
2303 		if (err < 0)
2304 			goto out;
2305 
2306 		if (read >= target || flags & MSG_PEEK)
2307 			break;
2308 
2309 		target -= read;
2310 	}
2311 
2312 	if (sk->sk_err)
2313 		err = -sk->sk_err;
2314 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2315 		err = 0;
2316 
2317 	if (copied > 0)
2318 		err = copied;
2319 
2320 out:
2321 	return err;
2322 }
2323 
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2324 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2325 				     size_t len, int flags)
2326 {
2327 	const struct vsock_transport *transport;
2328 	struct vsock_sock *vsk;
2329 	ssize_t msg_len;
2330 	long timeout;
2331 	int err = 0;
2332 	DEFINE_WAIT(wait);
2333 
2334 	vsk = vsock_sk(sk);
2335 	transport = vsk->transport;
2336 
2337 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2338 
2339 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2340 	if (err <= 0)
2341 		goto out;
2342 
2343 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2344 
2345 	if (msg_len < 0) {
2346 		err = msg_len;
2347 		goto out;
2348 	}
2349 
2350 	if (sk->sk_err) {
2351 		err = -sk->sk_err;
2352 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2353 		err = 0;
2354 	} else {
2355 		/* User sets MSG_TRUNC, so return real length of
2356 		 * packet.
2357 		 */
2358 		if (flags & MSG_TRUNC)
2359 			err = msg_len;
2360 		else
2361 			err = len - msg_data_left(msg);
2362 
2363 		/* Always set MSG_TRUNC if real length of packet is
2364 		 * bigger than user's buffer.
2365 		 */
2366 		if (msg_len > len)
2367 			msg->msg_flags |= MSG_TRUNC;
2368 	}
2369 
2370 out:
2371 	return err;
2372 }
2373 
2374 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2375 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2376 			    int flags)
2377 {
2378 	struct sock *sk;
2379 	struct vsock_sock *vsk;
2380 	const struct vsock_transport *transport;
2381 	int err;
2382 
2383 	sk = sock->sk;
2384 
2385 	if (unlikely(flags & MSG_ERRQUEUE))
2386 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2387 
2388 	vsk = vsock_sk(sk);
2389 	err = 0;
2390 
2391 	lock_sock(sk);
2392 
2393 	transport = vsk->transport;
2394 
2395 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2396 		/* Recvmsg is supposed to return 0 if a peer performs an
2397 		 * orderly shutdown. Differentiate between that case and when a
2398 		 * peer has not connected or a local shutdown occurred with the
2399 		 * SOCK_DONE flag.
2400 		 */
2401 		if (sock_flag(sk, SOCK_DONE))
2402 			err = 0;
2403 		else
2404 			err = -ENOTCONN;
2405 
2406 		goto out;
2407 	}
2408 
2409 	if (flags & MSG_OOB) {
2410 		err = -EOPNOTSUPP;
2411 		goto out;
2412 	}
2413 
2414 	/* We don't check peer_shutdown flag here since peer may actually shut
2415 	 * down, but there can be data in the queue that a local socket can
2416 	 * receive.
2417 	 */
2418 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2419 		err = 0;
2420 		goto out;
2421 	}
2422 
2423 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2424 	 * is not an error.  We may as well bail out now.
2425 	 */
2426 	if (!len) {
2427 		err = 0;
2428 		goto out;
2429 	}
2430 
2431 	if (sk->sk_type == SOCK_STREAM)
2432 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2433 	else
2434 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2435 
2436 out:
2437 	release_sock(sk);
2438 	return err;
2439 }
2440 
2441 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2442 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2443 			  int flags)
2444 {
2445 #ifdef CONFIG_BPF_SYSCALL
2446 	struct sock *sk = sock->sk;
2447 	const struct proto *prot;
2448 
2449 	prot = READ_ONCE(sk->sk_prot);
2450 	if (prot != &vsock_proto)
2451 		return prot->recvmsg(sk, msg, len, flags, NULL);
2452 #endif
2453 
2454 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2455 }
2456 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2457 
vsock_set_rcvlowat(struct sock * sk,int val)2458 static int vsock_set_rcvlowat(struct sock *sk, int val)
2459 {
2460 	const struct vsock_transport *transport;
2461 	struct vsock_sock *vsk;
2462 
2463 	vsk = vsock_sk(sk);
2464 
2465 	if (val > vsk->buffer_size)
2466 		return -EINVAL;
2467 
2468 	transport = vsk->transport;
2469 
2470 	if (transport && transport->notify_set_rcvlowat) {
2471 		int err;
2472 
2473 		err = transport->notify_set_rcvlowat(vsk, val);
2474 		if (err)
2475 			return err;
2476 	}
2477 
2478 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2479 	return 0;
2480 }
2481 
2482 static const struct proto_ops vsock_stream_ops = {
2483 	.family = PF_VSOCK,
2484 	.owner = THIS_MODULE,
2485 	.release = vsock_release,
2486 	.bind = vsock_bind,
2487 	.connect = vsock_connect,
2488 	.socketpair = sock_no_socketpair,
2489 	.accept = vsock_accept,
2490 	.getname = vsock_getname,
2491 	.poll = vsock_poll,
2492 	.ioctl = vsock_ioctl,
2493 	.listen = vsock_listen,
2494 	.shutdown = vsock_shutdown,
2495 	.setsockopt = vsock_connectible_setsockopt,
2496 	.getsockopt = vsock_connectible_getsockopt,
2497 	.sendmsg = vsock_connectible_sendmsg,
2498 	.recvmsg = vsock_connectible_recvmsg,
2499 	.mmap = sock_no_mmap,
2500 	.set_rcvlowat = vsock_set_rcvlowat,
2501 	.read_skb = vsock_read_skb,
2502 };
2503 
2504 static const struct proto_ops vsock_seqpacket_ops = {
2505 	.family = PF_VSOCK,
2506 	.owner = THIS_MODULE,
2507 	.release = vsock_release,
2508 	.bind = vsock_bind,
2509 	.connect = vsock_connect,
2510 	.socketpair = sock_no_socketpair,
2511 	.accept = vsock_accept,
2512 	.getname = vsock_getname,
2513 	.poll = vsock_poll,
2514 	.ioctl = vsock_ioctl,
2515 	.listen = vsock_listen,
2516 	.shutdown = vsock_shutdown,
2517 	.setsockopt = vsock_connectible_setsockopt,
2518 	.getsockopt = vsock_connectible_getsockopt,
2519 	.sendmsg = vsock_connectible_sendmsg,
2520 	.recvmsg = vsock_connectible_recvmsg,
2521 	.mmap = sock_no_mmap,
2522 	.read_skb = vsock_read_skb,
2523 };
2524 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2525 static int vsock_create(struct net *net, struct socket *sock,
2526 			int protocol, int kern)
2527 {
2528 	struct vsock_sock *vsk;
2529 	struct sock *sk;
2530 	int ret;
2531 
2532 	if (!sock)
2533 		return -EINVAL;
2534 
2535 	if (protocol && protocol != PF_VSOCK)
2536 		return -EPROTONOSUPPORT;
2537 
2538 	switch (sock->type) {
2539 	case SOCK_DGRAM:
2540 		sock->ops = &vsock_dgram_ops;
2541 		break;
2542 	case SOCK_STREAM:
2543 		sock->ops = &vsock_stream_ops;
2544 		break;
2545 	case SOCK_SEQPACKET:
2546 		sock->ops = &vsock_seqpacket_ops;
2547 		break;
2548 	default:
2549 		return -ESOCKTNOSUPPORT;
2550 	}
2551 
2552 	sock->state = SS_UNCONNECTED;
2553 
2554 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2555 	if (!sk)
2556 		return -ENOMEM;
2557 
2558 	vsk = vsock_sk(sk);
2559 
2560 	if (sock->type == SOCK_DGRAM) {
2561 		ret = vsock_assign_transport(vsk, NULL);
2562 		if (ret < 0) {
2563 			sock->sk = NULL;
2564 			sock_put(sk);
2565 			return ret;
2566 		}
2567 	}
2568 
2569 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2570 	 * proto_ops, so there is no handler for custom logic.
2571 	 */
2572 	if (sock_type_connectible(sock->type))
2573 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2574 
2575 	vsock_insert_unbound(vsk);
2576 
2577 	return 0;
2578 }
2579 
2580 static const struct net_proto_family vsock_family_ops = {
2581 	.family = AF_VSOCK,
2582 	.create = vsock_create,
2583 	.owner = THIS_MODULE,
2584 };
2585 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2586 static long vsock_dev_do_ioctl(struct file *filp,
2587 			       unsigned int cmd, void __user *ptr)
2588 {
2589 	u32 __user *p = ptr;
2590 	int retval = 0;
2591 	u32 cid;
2592 
2593 	switch (cmd) {
2594 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2595 		/* To be compatible with the VMCI behavior, we prioritize the
2596 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2597 		 */
2598 		cid = vsock_registered_transport_cid(&transport_g2h);
2599 		if (cid == VMADDR_CID_ANY)
2600 			cid = vsock_registered_transport_cid(&transport_h2g);
2601 		if (cid == VMADDR_CID_ANY)
2602 			cid = vsock_registered_transport_cid(&transport_local);
2603 
2604 		if (put_user(cid, p) != 0)
2605 			retval = -EFAULT;
2606 		break;
2607 
2608 	default:
2609 		retval = -ENOIOCTLCMD;
2610 	}
2611 
2612 	return retval;
2613 }
2614 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2615 static long vsock_dev_ioctl(struct file *filp,
2616 			    unsigned int cmd, unsigned long arg)
2617 {
2618 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2619 }
2620 
2621 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2622 static long vsock_dev_compat_ioctl(struct file *filp,
2623 				   unsigned int cmd, unsigned long arg)
2624 {
2625 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2626 }
2627 #endif
2628 
2629 static const struct file_operations vsock_device_ops = {
2630 	.owner		= THIS_MODULE,
2631 	.unlocked_ioctl	= vsock_dev_ioctl,
2632 #ifdef CONFIG_COMPAT
2633 	.compat_ioctl	= vsock_dev_compat_ioctl,
2634 #endif
2635 	.open		= nonseekable_open,
2636 };
2637 
2638 static struct miscdevice vsock_device = {
2639 	.name		= "vsock",
2640 	.fops		= &vsock_device_ops,
2641 };
2642 
vsock_init(void)2643 static int __init vsock_init(void)
2644 {
2645 	int err = 0;
2646 
2647 	vsock_init_tables();
2648 
2649 	vsock_proto.owner = THIS_MODULE;
2650 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2651 	err = misc_register(&vsock_device);
2652 	if (err) {
2653 		pr_err("Failed to register misc device\n");
2654 		goto err_reset_transport;
2655 	}
2656 
2657 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2658 	if (err) {
2659 		pr_err("Cannot register vsock protocol\n");
2660 		goto err_deregister_misc;
2661 	}
2662 
2663 	err = sock_register(&vsock_family_ops);
2664 	if (err) {
2665 		pr_err("could not register af_vsock (%d) address family: %d\n",
2666 		       AF_VSOCK, err);
2667 		goto err_unregister_proto;
2668 	}
2669 
2670 	vsock_bpf_build_proto();
2671 
2672 	return 0;
2673 
2674 err_unregister_proto:
2675 	proto_unregister(&vsock_proto);
2676 err_deregister_misc:
2677 	misc_deregister(&vsock_device);
2678 err_reset_transport:
2679 	return err;
2680 }
2681 
vsock_exit(void)2682 static void __exit vsock_exit(void)
2683 {
2684 	misc_deregister(&vsock_device);
2685 	sock_unregister(AF_VSOCK);
2686 	proto_unregister(&vsock_proto);
2687 }
2688 
vsock_core_get_transport(struct vsock_sock * vsk)2689 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2690 {
2691 	return vsk->transport;
2692 }
2693 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2694 
vsock_core_register(const struct vsock_transport * t,int features)2695 int vsock_core_register(const struct vsock_transport *t, int features)
2696 {
2697 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2698 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2699 
2700 	if (err)
2701 		return err;
2702 
2703 	t_h2g = transport_h2g;
2704 	t_g2h = transport_g2h;
2705 	t_dgram = transport_dgram;
2706 	t_local = transport_local;
2707 
2708 	if (features & VSOCK_TRANSPORT_F_H2G) {
2709 		if (t_h2g) {
2710 			err = -EBUSY;
2711 			goto err_busy;
2712 		}
2713 		t_h2g = t;
2714 	}
2715 
2716 	if (features & VSOCK_TRANSPORT_F_G2H) {
2717 		if (t_g2h) {
2718 			err = -EBUSY;
2719 			goto err_busy;
2720 		}
2721 		t_g2h = t;
2722 	}
2723 
2724 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2725 		if (t_dgram) {
2726 			err = -EBUSY;
2727 			goto err_busy;
2728 		}
2729 		t_dgram = t;
2730 	}
2731 
2732 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2733 		if (t_local) {
2734 			err = -EBUSY;
2735 			goto err_busy;
2736 		}
2737 		t_local = t;
2738 	}
2739 
2740 	transport_h2g = t_h2g;
2741 	transport_g2h = t_g2h;
2742 	transport_dgram = t_dgram;
2743 	transport_local = t_local;
2744 
2745 err_busy:
2746 	mutex_unlock(&vsock_register_mutex);
2747 	return err;
2748 }
2749 EXPORT_SYMBOL_GPL(vsock_core_register);
2750 
vsock_core_unregister(const struct vsock_transport * t)2751 void vsock_core_unregister(const struct vsock_transport *t)
2752 {
2753 	mutex_lock(&vsock_register_mutex);
2754 
2755 	if (transport_h2g == t)
2756 		transport_h2g = NULL;
2757 
2758 	if (transport_g2h == t)
2759 		transport_g2h = NULL;
2760 
2761 	if (transport_dgram == t)
2762 		transport_dgram = NULL;
2763 
2764 	if (transport_local == t)
2765 		transport_local = NULL;
2766 
2767 	mutex_unlock(&vsock_register_mutex);
2768 }
2769 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2770 
2771 module_init(vsock_init);
2772 module_exit(vsock_exit);
2773 
2774 MODULE_AUTHOR("VMware, Inc.");
2775 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2776 MODULE_VERSION("1.0.2.0-k");
2777 MODULE_LICENSE("GPL v2");
2778