xref: /linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 #include "test_util.h"
8 #include "kvm_util.h"
9 #include "processor.h"
10 #include "ucall_common.h"
11 
12 #include <assert.h>
13 #include <sched.h>
14 #include <sys/mman.h>
15 #include <sys/resource.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 uint32_t guest_random_seed;
24 struct guest_random_state guest_rng;
25 static uint32_t last_guest_seed;
26 
27 static int vcpu_mmap_sz(void);
28 
__open_path_or_exit(const char * path,int flags,const char * enoent_help)29 int __open_path_or_exit(const char *path, int flags, const char *enoent_help)
30 {
31 	int fd;
32 
33 	fd = open(path, flags);
34 	if (fd < 0)
35 		goto error;
36 
37 	return fd;
38 
39 error:
40 	if (errno == EACCES || errno == ENOENT)
41 		ksft_exit_skip("- Cannot open '%s': %s.  %s\n",
42 			       path, strerror(errno),
43 			       errno == EACCES ? "Root required?" : enoent_help);
44 	TEST_FAIL("Failed to open '%s'", path);
45 }
46 
open_path_or_exit(const char * path,int flags)47 int open_path_or_exit(const char *path, int flags)
48 {
49 	return __open_path_or_exit(path, flags, "");
50 }
51 
52 /*
53  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
54  *
55  * Input Args:
56  *   flags - The flags to pass when opening KVM_DEV_PATH.
57  *
58  * Return:
59  *   The opened file descriptor of /dev/kvm.
60  */
_open_kvm_dev_path_or_exit(int flags)61 static int _open_kvm_dev_path_or_exit(int flags)
62 {
63 	return __open_path_or_exit(KVM_DEV_PATH, flags, "Is KVM loaded and enabled?");
64 }
65 
open_kvm_dev_path_or_exit(void)66 int open_kvm_dev_path_or_exit(void)
67 {
68 	return _open_kvm_dev_path_or_exit(O_RDONLY);
69 }
70 
get_module_param(const char * module_name,const char * param,void * buffer,size_t buffer_size)71 static ssize_t get_module_param(const char *module_name, const char *param,
72 				void *buffer, size_t buffer_size)
73 {
74 	const int path_size = 128;
75 	char path[path_size];
76 	ssize_t bytes_read;
77 	int fd, r;
78 
79 	/* Verify KVM is loaded, to provide a more helpful SKIP message. */
80 	close(open_kvm_dev_path_or_exit());
81 
82 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
83 		     module_name, param);
84 	TEST_ASSERT(r < path_size,
85 		    "Failed to construct sysfs path in %d bytes.", path_size);
86 
87 	fd = open_path_or_exit(path, O_RDONLY);
88 
89 	bytes_read = read(fd, buffer, buffer_size);
90 	TEST_ASSERT(bytes_read > 0, "read(%s) returned %ld, wanted %ld bytes",
91 		    path, bytes_read, buffer_size);
92 
93 	r = close(fd);
94 	TEST_ASSERT(!r, "close(%s) failed", path);
95 	return bytes_read;
96 }
97 
get_module_param_integer(const char * module_name,const char * param)98 static int get_module_param_integer(const char *module_name, const char *param)
99 {
100 	/*
101 	 * 16 bytes to hold a 64-bit value (1 byte per char), 1 byte for the
102 	 * NUL char, and 1 byte because the kernel sucks and inserts a newline
103 	 * at the end.
104 	 */
105 	char value[16 + 1 + 1];
106 	ssize_t r;
107 
108 	memset(value, '\0', sizeof(value));
109 
110 	r = get_module_param(module_name, param, value, sizeof(value));
111 	TEST_ASSERT(value[r - 1] == '\n',
112 		    "Expected trailing newline, got char '%c'", value[r - 1]);
113 
114 	/*
115 	 * Squash the newline, otherwise atoi_paranoid() will complain about
116 	 * trailing non-NUL characters in the string.
117 	 */
118 	value[r - 1] = '\0';
119 	return atoi_paranoid(value);
120 }
121 
get_module_param_bool(const char * module_name,const char * param)122 static bool get_module_param_bool(const char *module_name, const char *param)
123 {
124 	char value;
125 	ssize_t r;
126 
127 	r = get_module_param(module_name, param, &value, sizeof(value));
128 	TEST_ASSERT_EQ(r, 1);
129 
130 	if (value == 'Y')
131 		return true;
132 	else if (value == 'N')
133 		return false;
134 
135 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
136 }
137 
get_kvm_param_bool(const char * param)138 bool get_kvm_param_bool(const char *param)
139 {
140 	return get_module_param_bool("kvm", param);
141 }
142 
get_kvm_intel_param_bool(const char * param)143 bool get_kvm_intel_param_bool(const char *param)
144 {
145 	return get_module_param_bool("kvm_intel", param);
146 }
147 
get_kvm_amd_param_bool(const char * param)148 bool get_kvm_amd_param_bool(const char *param)
149 {
150 	return get_module_param_bool("kvm_amd", param);
151 }
152 
get_kvm_param_integer(const char * param)153 int get_kvm_param_integer(const char *param)
154 {
155 	return get_module_param_integer("kvm", param);
156 }
157 
get_kvm_intel_param_integer(const char * param)158 int get_kvm_intel_param_integer(const char *param)
159 {
160 	return get_module_param_integer("kvm_intel", param);
161 }
162 
get_kvm_amd_param_integer(const char * param)163 int get_kvm_amd_param_integer(const char *param)
164 {
165 	return get_module_param_integer("kvm_amd", param);
166 }
167 
168 /*
169  * Capability
170  *
171  * Input Args:
172  *   cap - Capability
173  *
174  * Output Args: None
175  *
176  * Return:
177  *   On success, the Value corresponding to the capability (KVM_CAP_*)
178  *   specified by the value of cap.  On failure a TEST_ASSERT failure
179  *   is produced.
180  *
181  * Looks up and returns the value corresponding to the capability
182  * (KVM_CAP_*) given by cap.
183  */
kvm_check_cap(long cap)184 unsigned int kvm_check_cap(long cap)
185 {
186 	int ret;
187 	int kvm_fd;
188 
189 	kvm_fd = open_kvm_dev_path_or_exit();
190 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
191 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
192 
193 	close(kvm_fd);
194 
195 	return (unsigned int)ret;
196 }
197 
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)198 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
199 {
200 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
201 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
202 	else
203 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
204 	vm->dirty_ring_size = ring_size;
205 }
206 
vm_open(struct kvm_vm * vm)207 static void vm_open(struct kvm_vm *vm)
208 {
209 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
210 
211 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
212 
213 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
214 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
215 
216 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
217 		vm->stats.fd = vm_get_stats_fd(vm);
218 	else
219 		vm->stats.fd = -1;
220 }
221 
vm_guest_mode_string(uint32_t i)222 const char *vm_guest_mode_string(uint32_t i)
223 {
224 	static const char * const strings[] = {
225 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
226 		[VM_MODE_P52V48_16K]	= "PA-bits:52,  VA-bits:48, 16K pages",
227 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
228 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
229 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
230 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
231 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
232 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
233 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
234 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
235 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
236 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
237 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
238 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
239 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
240 		[VM_MODE_P47V47_16K]	= "PA-bits:47,  VA-bits:47, 16K pages",
241 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
242 	};
243 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
244 		       "Missing new mode strings?");
245 
246 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
247 
248 	return strings[i];
249 }
250 
251 const struct vm_guest_mode_params vm_guest_mode_params[] = {
252 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
253 	[VM_MODE_P52V48_16K]	= { 52, 48,  0x4000, 14 },
254 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
255 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
256 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
257 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
258 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
259 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
260 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
261 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
262 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
263 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
264 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
265 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
266 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
267 	[VM_MODE_P47V47_16K]	= { 47, 47,  0x4000, 14 },
268 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
269 };
270 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
271 	       "Missing new mode params?");
272 
273 /*
274  * Initializes vm->vpages_valid to match the canonical VA space of the
275  * architecture.
276  *
277  * The default implementation is valid for architectures which split the
278  * range addressed by a single page table into a low and high region
279  * based on the MSB of the VA. On architectures with this behavior
280  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
281  */
vm_vaddr_populate_bitmap(struct kvm_vm * vm)282 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
283 {
284 	sparsebit_set_num(vm->vpages_valid,
285 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
286 	sparsebit_set_num(vm->vpages_valid,
287 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
288 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
289 }
290 
____vm_create(struct vm_shape shape)291 struct kvm_vm *____vm_create(struct vm_shape shape)
292 {
293 	struct kvm_vm *vm;
294 
295 	vm = calloc(1, sizeof(*vm));
296 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
297 
298 	INIT_LIST_HEAD(&vm->vcpus);
299 	vm->regions.gpa_tree = RB_ROOT;
300 	vm->regions.hva_tree = RB_ROOT;
301 	hash_init(vm->regions.slot_hash);
302 
303 	vm->mode = shape.mode;
304 	vm->type = shape.type;
305 
306 	vm->pa_bits = vm_guest_mode_params[vm->mode].pa_bits;
307 	vm->va_bits = vm_guest_mode_params[vm->mode].va_bits;
308 	vm->page_size = vm_guest_mode_params[vm->mode].page_size;
309 	vm->page_shift = vm_guest_mode_params[vm->mode].page_shift;
310 
311 	/* Setup mode specific traits. */
312 	switch (vm->mode) {
313 	case VM_MODE_P52V48_4K:
314 		vm->pgtable_levels = 4;
315 		break;
316 	case VM_MODE_P52V48_64K:
317 		vm->pgtable_levels = 3;
318 		break;
319 	case VM_MODE_P48V48_4K:
320 		vm->pgtable_levels = 4;
321 		break;
322 	case VM_MODE_P48V48_64K:
323 		vm->pgtable_levels = 3;
324 		break;
325 	case VM_MODE_P40V48_4K:
326 	case VM_MODE_P36V48_4K:
327 		vm->pgtable_levels = 4;
328 		break;
329 	case VM_MODE_P40V48_64K:
330 	case VM_MODE_P36V48_64K:
331 		vm->pgtable_levels = 3;
332 		break;
333 	case VM_MODE_P52V48_16K:
334 	case VM_MODE_P48V48_16K:
335 	case VM_MODE_P40V48_16K:
336 	case VM_MODE_P36V48_16K:
337 		vm->pgtable_levels = 4;
338 		break;
339 	case VM_MODE_P47V47_16K:
340 	case VM_MODE_P36V47_16K:
341 		vm->pgtable_levels = 3;
342 		break;
343 	case VM_MODE_PXXV48_4K:
344 #ifdef __x86_64__
345 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
346 		kvm_init_vm_address_properties(vm);
347 		/*
348 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
349 		 * it doesn't take effect unless a CR4.LA57 is set, which it
350 		 * isn't for this mode (48-bit virtual address space).
351 		 */
352 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
353 			    "Linear address width (%d bits) not supported",
354 			    vm->va_bits);
355 		pr_debug("Guest physical address width detected: %d\n",
356 			 vm->pa_bits);
357 		vm->pgtable_levels = 4;
358 		vm->va_bits = 48;
359 #else
360 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
361 #endif
362 		break;
363 	case VM_MODE_P47V64_4K:
364 		vm->pgtable_levels = 5;
365 		break;
366 	case VM_MODE_P44V64_4K:
367 		vm->pgtable_levels = 5;
368 		break;
369 	default:
370 		TEST_FAIL("Unknown guest mode: 0x%x", vm->mode);
371 	}
372 
373 #ifdef __aarch64__
374 	TEST_ASSERT(!vm->type, "ARM doesn't support test-provided types");
375 	if (vm->pa_bits != 40)
376 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
377 #endif
378 
379 	vm_open(vm);
380 
381 	/* Limit to VA-bit canonical virtual addresses. */
382 	vm->vpages_valid = sparsebit_alloc();
383 	vm_vaddr_populate_bitmap(vm);
384 
385 	/* Limit physical addresses to PA-bits. */
386 	vm->max_gfn = vm_compute_max_gfn(vm);
387 
388 	/* Allocate and setup memory for guest. */
389 	vm->vpages_mapped = sparsebit_alloc();
390 
391 	return vm;
392 }
393 
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)394 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
395 				     uint32_t nr_runnable_vcpus,
396 				     uint64_t extra_mem_pages)
397 {
398 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
399 	uint64_t nr_pages;
400 
401 	TEST_ASSERT(nr_runnable_vcpus,
402 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs");
403 
404 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
405 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
406 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
407 
408 	/*
409 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
410 	 * test code and other per-VM assets that will be loaded into memslot0.
411 	 */
412 	nr_pages = 512;
413 
414 	/* Account for the per-vCPU stacks on behalf of the test. */
415 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
416 
417 	/*
418 	 * Account for the number of pages needed for the page tables.  The
419 	 * maximum page table size for a memory region will be when the
420 	 * smallest page size is used. Considering each page contains x page
421 	 * table descriptors, the total extra size for page tables (for extra
422 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
423 	 * than N/x*2.
424 	 */
425 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
426 
427 	/* Account for the number of pages needed by ucall. */
428 	nr_pages += ucall_nr_pages_required(page_size);
429 
430 	return vm_adjust_num_guest_pages(mode, nr_pages);
431 }
432 
kvm_set_files_rlimit(uint32_t nr_vcpus)433 void kvm_set_files_rlimit(uint32_t nr_vcpus)
434 {
435 	/*
436 	 * Each vCPU will open two file descriptors: the vCPU itself and the
437 	 * vCPU's binary stats file descriptor.  Add an arbitrary amount of
438 	 * buffer for all other files a test may open.
439 	 */
440 	int nr_fds_wanted = nr_vcpus * 2 + 100;
441 	struct rlimit rl;
442 
443 	/*
444 	 * Check that we're allowed to open nr_fds_wanted file descriptors and
445 	 * try raising the limits if needed.
446 	 */
447 	TEST_ASSERT(!getrlimit(RLIMIT_NOFILE, &rl), "getrlimit() failed!");
448 
449 	if (rl.rlim_cur < nr_fds_wanted) {
450 		rl.rlim_cur = nr_fds_wanted;
451 		if (rl.rlim_max < nr_fds_wanted) {
452 			int old_rlim_max = rl.rlim_max;
453 
454 			rl.rlim_max = nr_fds_wanted;
455 			__TEST_REQUIRE(setrlimit(RLIMIT_NOFILE, &rl) >= 0,
456 				       "RLIMIT_NOFILE hard limit is too low (%d, wanted %d)",
457 				       old_rlim_max, nr_fds_wanted);
458 		} else {
459 			TEST_ASSERT(!setrlimit(RLIMIT_NOFILE, &rl), "setrlimit() failed!");
460 		}
461 	}
462 
463 }
464 
is_guest_memfd_required(struct vm_shape shape)465 static bool is_guest_memfd_required(struct vm_shape shape)
466 {
467 #ifdef __x86_64__
468 	return shape.type == KVM_X86_SNP_VM;
469 #else
470 	return false;
471 #endif
472 }
473 
__vm_create(struct vm_shape shape,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)474 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
475 			   uint64_t nr_extra_pages)
476 {
477 	uint64_t nr_pages = vm_nr_pages_required(shape.mode, nr_runnable_vcpus,
478 						 nr_extra_pages);
479 	struct userspace_mem_region *slot0;
480 	struct kvm_vm *vm;
481 	int i, flags;
482 
483 	kvm_set_files_rlimit(nr_runnable_vcpus);
484 
485 	pr_debug("%s: mode='%s' type='%d', pages='%ld'\n", __func__,
486 		 vm_guest_mode_string(shape.mode), shape.type, nr_pages);
487 
488 	vm = ____vm_create(shape);
489 
490 	/*
491 	 * Force GUEST_MEMFD for the primary memory region if necessary, e.g.
492 	 * for CoCo VMs that require GUEST_MEMFD backed private memory.
493 	 */
494 	flags = 0;
495 	if (is_guest_memfd_required(shape))
496 		flags |= KVM_MEM_GUEST_MEMFD;
497 
498 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, flags);
499 	for (i = 0; i < NR_MEM_REGIONS; i++)
500 		vm->memslots[i] = 0;
501 
502 	kvm_vm_elf_load(vm, program_invocation_name);
503 
504 	/*
505 	 * TODO: Add proper defines to protect the library's memslots, and then
506 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
507 	 * read-only memslots as MMIO, and creating a read-only memslot for the
508 	 * MMIO region would prevent silently clobbering the MMIO region.
509 	 */
510 	slot0 = memslot2region(vm, 0);
511 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
512 
513 	if (guest_random_seed != last_guest_seed) {
514 		pr_info("Random seed: 0x%x\n", guest_random_seed);
515 		last_guest_seed = guest_random_seed;
516 	}
517 	guest_rng = new_guest_random_state(guest_random_seed);
518 	sync_global_to_guest(vm, guest_rng);
519 
520 	kvm_arch_vm_post_create(vm);
521 
522 	return vm;
523 }
524 
525 /*
526  * VM Create with customized parameters
527  *
528  * Input Args:
529  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
530  *   nr_vcpus - VCPU count
531  *   extra_mem_pages - Non-slot0 physical memory total size
532  *   guest_code - Guest entry point
533  *   vcpuids - VCPU IDs
534  *
535  * Output Args: None
536  *
537  * Return:
538  *   Pointer to opaque structure that describes the created VM.
539  *
540  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
541  * extra_mem_pages is only used to calculate the maximum page table size,
542  * no real memory allocation for non-slot0 memory in this function.
543  */
__vm_create_with_vcpus(struct vm_shape shape,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])544 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
545 				      uint64_t extra_mem_pages,
546 				      void *guest_code, struct kvm_vcpu *vcpus[])
547 {
548 	struct kvm_vm *vm;
549 	int i;
550 
551 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
552 
553 	vm = __vm_create(shape, nr_vcpus, extra_mem_pages);
554 
555 	for (i = 0; i < nr_vcpus; ++i)
556 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
557 
558 	return vm;
559 }
560 
__vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)561 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
562 					       struct kvm_vcpu **vcpu,
563 					       uint64_t extra_mem_pages,
564 					       void *guest_code)
565 {
566 	struct kvm_vcpu *vcpus[1];
567 	struct kvm_vm *vm;
568 
569 	vm = __vm_create_with_vcpus(shape, 1, extra_mem_pages, guest_code, vcpus);
570 
571 	*vcpu = vcpus[0];
572 	return vm;
573 }
574 
575 /*
576  * VM Restart
577  *
578  * Input Args:
579  *   vm - VM that has been released before
580  *
581  * Output Args: None
582  *
583  * Reopens the file descriptors associated to the VM and reinstates the
584  * global state, such as the irqchip and the memory regions that are mapped
585  * into the guest.
586  */
kvm_vm_restart(struct kvm_vm * vmp)587 void kvm_vm_restart(struct kvm_vm *vmp)
588 {
589 	int ctr;
590 	struct userspace_mem_region *region;
591 
592 	vm_open(vmp);
593 	if (vmp->has_irqchip)
594 		vm_create_irqchip(vmp);
595 
596 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
597 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION2, &region->region);
598 
599 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
600 			    "  rc: %i errno: %i\n"
601 			    "  slot: %u flags: 0x%x\n"
602 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
603 			    ret, errno, region->region.slot,
604 			    region->region.flags,
605 			    region->region.guest_phys_addr,
606 			    region->region.memory_size);
607 	}
608 }
609 
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)610 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
611 					      uint32_t vcpu_id)
612 {
613 	return __vm_vcpu_add(vm, vcpu_id);
614 }
615 
vm_recreate_with_one_vcpu(struct kvm_vm * vm)616 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
617 {
618 	kvm_vm_restart(vm);
619 
620 	return vm_vcpu_recreate(vm, 0);
621 }
622 
__pin_task_to_cpu(pthread_t task,int cpu)623 int __pin_task_to_cpu(pthread_t task, int cpu)
624 {
625 	cpu_set_t cpuset;
626 
627 	CPU_ZERO(&cpuset);
628 	CPU_SET(cpu, &cpuset);
629 
630 	return pthread_setaffinity_np(task, sizeof(cpuset), &cpuset);
631 }
632 
parse_pcpu(const char * cpu_str,const cpu_set_t * allowed_mask)633 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
634 {
635 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
636 
637 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
638 		    "Not allowed to run on pCPU '%d', check cgroups?", pcpu);
639 	return pcpu;
640 }
641 
kvm_print_vcpu_pinning_help(void)642 void kvm_print_vcpu_pinning_help(void)
643 {
644 	const char *name = program_invocation_name;
645 
646 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
647 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
648 	       "     entry for the main application task (specified via entry\n"
649 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
650 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
651 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
652 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
653 	       "         %s -v 3 -c 22,23,24,50\n\n"
654 	       "     To leave the application task unpinned, drop the final entry:\n\n"
655 	       "         %s -v 3 -c 22,23,24\n\n"
656 	       "     (default: no pinning)\n", name, name);
657 }
658 
kvm_parse_vcpu_pinning(const char * pcpus_string,uint32_t vcpu_to_pcpu[],int nr_vcpus)659 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
660 			    int nr_vcpus)
661 {
662 	cpu_set_t allowed_mask;
663 	char *cpu, *cpu_list;
664 	char delim[2] = ",";
665 	int i, r;
666 
667 	cpu_list = strdup(pcpus_string);
668 	TEST_ASSERT(cpu_list, "strdup() allocation failed.");
669 
670 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
671 	TEST_ASSERT(!r, "sched_getaffinity() failed");
672 
673 	cpu = strtok(cpu_list, delim);
674 
675 	/* 1. Get all pcpus for vcpus. */
676 	for (i = 0; i < nr_vcpus; i++) {
677 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'", i);
678 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
679 		cpu = strtok(NULL, delim);
680 	}
681 
682 	/* 2. Check if the main worker needs to be pinned. */
683 	if (cpu) {
684 		pin_self_to_cpu(parse_pcpu(cpu, &allowed_mask));
685 		cpu = strtok(NULL, delim);
686 	}
687 
688 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
689 	free(cpu_list);
690 }
691 
692 /*
693  * Userspace Memory Region Find
694  *
695  * Input Args:
696  *   vm - Virtual Machine
697  *   start - Starting VM physical address
698  *   end - Ending VM physical address, inclusive.
699  *
700  * Output Args: None
701  *
702  * Return:
703  *   Pointer to overlapping region, NULL if no such region.
704  *
705  * Searches for a region with any physical memory that overlaps with
706  * any portion of the guest physical addresses from start to end
707  * inclusive.  If multiple overlapping regions exist, a pointer to any
708  * of the regions is returned.  Null is returned only when no overlapping
709  * region exists.
710  */
711 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)712 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
713 {
714 	struct rb_node *node;
715 
716 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
717 		struct userspace_mem_region *region =
718 			container_of(node, struct userspace_mem_region, gpa_node);
719 		uint64_t existing_start = region->region.guest_phys_addr;
720 		uint64_t existing_end = region->region.guest_phys_addr
721 			+ region->region.memory_size - 1;
722 		if (start <= existing_end && end >= existing_start)
723 			return region;
724 
725 		if (start < existing_start)
726 			node = node->rb_left;
727 		else
728 			node = node->rb_right;
729 	}
730 
731 	return NULL;
732 }
733 
kvm_stats_release(struct kvm_binary_stats * stats)734 static void kvm_stats_release(struct kvm_binary_stats *stats)
735 {
736 	int ret;
737 
738 	if (stats->fd < 0)
739 		return;
740 
741 	if (stats->desc) {
742 		free(stats->desc);
743 		stats->desc = NULL;
744 	}
745 
746 	ret = close(stats->fd);
747 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
748 	stats->fd = -1;
749 }
750 
vcpu_arch_free(struct kvm_vcpu * vcpu)751 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
752 {
753 
754 }
755 
756 /*
757  * VM VCPU Remove
758  *
759  * Input Args:
760  *   vcpu - VCPU to remove
761  *
762  * Output Args: None
763  *
764  * Return: None, TEST_ASSERT failures for all error conditions
765  *
766  * Removes a vCPU from a VM and frees its resources.
767  */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)768 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
769 {
770 	int ret;
771 
772 	if (vcpu->dirty_gfns) {
773 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
774 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
775 		vcpu->dirty_gfns = NULL;
776 	}
777 
778 	ret = munmap(vcpu->run, vcpu_mmap_sz());
779 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
780 
781 	ret = close(vcpu->fd);
782 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
783 
784 	kvm_stats_release(&vcpu->stats);
785 
786 	list_del(&vcpu->list);
787 
788 	vcpu_arch_free(vcpu);
789 	free(vcpu);
790 }
791 
kvm_vm_release(struct kvm_vm * vmp)792 void kvm_vm_release(struct kvm_vm *vmp)
793 {
794 	struct kvm_vcpu *vcpu, *tmp;
795 	int ret;
796 
797 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
798 		vm_vcpu_rm(vmp, vcpu);
799 
800 	ret = close(vmp->fd);
801 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
802 
803 	ret = close(vmp->kvm_fd);
804 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
805 
806 	/* Free cached stats metadata and close FD */
807 	kvm_stats_release(&vmp->stats);
808 }
809 
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region)810 static void __vm_mem_region_delete(struct kvm_vm *vm,
811 				   struct userspace_mem_region *region)
812 {
813 	int ret;
814 
815 	rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
816 	rb_erase(&region->hva_node, &vm->regions.hva_tree);
817 	hash_del(&region->slot_node);
818 
819 	sparsebit_free(&region->unused_phy_pages);
820 	sparsebit_free(&region->protected_phy_pages);
821 	ret = munmap(region->mmap_start, region->mmap_size);
822 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
823 	if (region->fd >= 0) {
824 		/* There's an extra map when using shared memory. */
825 		ret = munmap(region->mmap_alias, region->mmap_size);
826 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
827 		close(region->fd);
828 	}
829 	if (region->region.guest_memfd >= 0)
830 		close(region->region.guest_memfd);
831 
832 	free(region);
833 }
834 
835 /*
836  * Destroys and frees the VM pointed to by vmp.
837  */
kvm_vm_free(struct kvm_vm * vmp)838 void kvm_vm_free(struct kvm_vm *vmp)
839 {
840 	int ctr;
841 	struct hlist_node *node;
842 	struct userspace_mem_region *region;
843 
844 	if (vmp == NULL)
845 		return;
846 
847 	/* Free userspace_mem_regions. */
848 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
849 		__vm_mem_region_delete(vmp, region);
850 
851 	/* Free sparsebit arrays. */
852 	sparsebit_free(&vmp->vpages_valid);
853 	sparsebit_free(&vmp->vpages_mapped);
854 
855 	kvm_vm_release(vmp);
856 
857 	/* Free the structure describing the VM. */
858 	free(vmp);
859 }
860 
kvm_memfd_alloc(size_t size,bool hugepages)861 int kvm_memfd_alloc(size_t size, bool hugepages)
862 {
863 	int memfd_flags = MFD_CLOEXEC;
864 	int fd, r;
865 
866 	if (hugepages)
867 		memfd_flags |= MFD_HUGETLB;
868 
869 	fd = memfd_create("kvm_selftest", memfd_flags);
870 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
871 
872 	r = ftruncate(fd, size);
873 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
874 
875 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
876 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
877 
878 	return fd;
879 }
880 
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)881 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
882 					       struct userspace_mem_region *region)
883 {
884 	struct rb_node **cur, *parent;
885 
886 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
887 		struct userspace_mem_region *cregion;
888 
889 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
890 		parent = *cur;
891 		if (region->region.guest_phys_addr <
892 		    cregion->region.guest_phys_addr)
893 			cur = &(*cur)->rb_left;
894 		else {
895 			TEST_ASSERT(region->region.guest_phys_addr !=
896 				    cregion->region.guest_phys_addr,
897 				    "Duplicate GPA in region tree");
898 
899 			cur = &(*cur)->rb_right;
900 		}
901 	}
902 
903 	rb_link_node(&region->gpa_node, parent, cur);
904 	rb_insert_color(&region->gpa_node, gpa_tree);
905 }
906 
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)907 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
908 					       struct userspace_mem_region *region)
909 {
910 	struct rb_node **cur, *parent;
911 
912 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
913 		struct userspace_mem_region *cregion;
914 
915 		cregion = container_of(*cur, typeof(*cregion), hva_node);
916 		parent = *cur;
917 		if (region->host_mem < cregion->host_mem)
918 			cur = &(*cur)->rb_left;
919 		else {
920 			TEST_ASSERT(region->host_mem !=
921 				    cregion->host_mem,
922 				    "Duplicate HVA in region tree");
923 
924 			cur = &(*cur)->rb_right;
925 		}
926 	}
927 
928 	rb_link_node(&region->hva_node, parent, cur);
929 	rb_insert_color(&region->hva_node, hva_tree);
930 }
931 
932 
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)933 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
934 				uint64_t gpa, uint64_t size, void *hva)
935 {
936 	struct kvm_userspace_memory_region region = {
937 		.slot = slot,
938 		.flags = flags,
939 		.guest_phys_addr = gpa,
940 		.memory_size = size,
941 		.userspace_addr = (uintptr_t)hva,
942 	};
943 
944 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
945 }
946 
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)947 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
948 			       uint64_t gpa, uint64_t size, void *hva)
949 {
950 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
951 
952 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
953 		    errno, strerror(errno));
954 }
955 
956 #define TEST_REQUIRE_SET_USER_MEMORY_REGION2()			\
957 	__TEST_REQUIRE(kvm_has_cap(KVM_CAP_USER_MEMORY2),	\
958 		       "KVM selftests now require KVM_SET_USER_MEMORY_REGION2 (introduced in v6.8)")
959 
__vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)960 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
961 				 uint64_t gpa, uint64_t size, void *hva,
962 				 uint32_t guest_memfd, uint64_t guest_memfd_offset)
963 {
964 	struct kvm_userspace_memory_region2 region = {
965 		.slot = slot,
966 		.flags = flags,
967 		.guest_phys_addr = gpa,
968 		.memory_size = size,
969 		.userspace_addr = (uintptr_t)hva,
970 		.guest_memfd = guest_memfd,
971 		.guest_memfd_offset = guest_memfd_offset,
972 	};
973 
974 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
975 
976 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION2, &region);
977 }
978 
vm_set_user_memory_region2(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva,uint32_t guest_memfd,uint64_t guest_memfd_offset)979 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
980 				uint64_t gpa, uint64_t size, void *hva,
981 				uint32_t guest_memfd, uint64_t guest_memfd_offset)
982 {
983 	int ret = __vm_set_user_memory_region2(vm, slot, flags, gpa, size, hva,
984 					       guest_memfd, guest_memfd_offset);
985 
986 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed, errno = %d (%s)",
987 		    errno, strerror(errno));
988 }
989 
990 
991 /* FIXME: This thing needs to be ripped apart and rewritten. */
vm_mem_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags,int guest_memfd,uint64_t guest_memfd_offset)992 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
993 		uint64_t guest_paddr, uint32_t slot, uint64_t npages,
994 		uint32_t flags, int guest_memfd, uint64_t guest_memfd_offset)
995 {
996 	int ret;
997 	struct userspace_mem_region *region;
998 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
999 	size_t mem_size = npages * vm->page_size;
1000 	size_t alignment;
1001 
1002 	TEST_REQUIRE_SET_USER_MEMORY_REGION2();
1003 
1004 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
1005 		"Number of guest pages is not compatible with the host. "
1006 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
1007 
1008 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
1009 		"address not on a page boundary.\n"
1010 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
1011 		guest_paddr, vm->page_size);
1012 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
1013 		<= vm->max_gfn, "Physical range beyond maximum "
1014 		"supported physical address,\n"
1015 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
1016 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
1017 		guest_paddr, npages, vm->max_gfn, vm->page_size);
1018 
1019 	/*
1020 	 * Confirm a mem region with an overlapping address doesn't
1021 	 * already exist.
1022 	 */
1023 	region = (struct userspace_mem_region *) userspace_mem_region_find(
1024 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
1025 	if (region != NULL)
1026 		TEST_FAIL("overlapping userspace_mem_region already "
1027 			"exists\n"
1028 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
1029 			"page_size: 0x%x\n"
1030 			"  existing guest_paddr: 0x%lx size: 0x%lx",
1031 			guest_paddr, npages, vm->page_size,
1032 			(uint64_t) region->region.guest_phys_addr,
1033 			(uint64_t) region->region.memory_size);
1034 
1035 	/* Confirm no region with the requested slot already exists. */
1036 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1037 			       slot) {
1038 		if (region->region.slot != slot)
1039 			continue;
1040 
1041 		TEST_FAIL("A mem region with the requested slot "
1042 			"already exists.\n"
1043 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
1044 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
1045 			slot, guest_paddr, npages,
1046 			region->region.slot,
1047 			(uint64_t) region->region.guest_phys_addr,
1048 			(uint64_t) region->region.memory_size);
1049 	}
1050 
1051 	/* Allocate and initialize new mem region structure. */
1052 	region = calloc(1, sizeof(*region));
1053 	TEST_ASSERT(region != NULL, "Insufficient Memory");
1054 	region->mmap_size = mem_size;
1055 
1056 #ifdef __s390x__
1057 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
1058 	alignment = 0x100000;
1059 #else
1060 	alignment = 1;
1061 #endif
1062 
1063 	/*
1064 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
1065 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
1066 	 * because mmap will always return an address aligned to the HugeTLB
1067 	 * page size.
1068 	 */
1069 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
1070 		alignment = max(backing_src_pagesz, alignment);
1071 
1072 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1073 
1074 	/* Add enough memory to align up if necessary */
1075 	if (alignment > 1)
1076 		region->mmap_size += alignment;
1077 
1078 	region->fd = -1;
1079 	if (backing_src_is_shared(src_type))
1080 		region->fd = kvm_memfd_alloc(region->mmap_size,
1081 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1082 
1083 	region->mmap_start = mmap(NULL, region->mmap_size,
1084 				  PROT_READ | PROT_WRITE,
1085 				  vm_mem_backing_src_alias(src_type)->flag,
1086 				  region->fd, 0);
1087 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1088 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1089 
1090 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1091 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1092 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1093 		    region->mmap_start, backing_src_pagesz);
1094 
1095 	/* Align host address */
1096 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1097 
1098 	/* As needed perform madvise */
1099 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1100 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1101 		ret = madvise(region->host_mem, mem_size,
1102 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1103 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1104 			    region->host_mem, mem_size,
1105 			    vm_mem_backing_src_alias(src_type)->name);
1106 	}
1107 
1108 	region->backing_src_type = src_type;
1109 
1110 	if (flags & KVM_MEM_GUEST_MEMFD) {
1111 		if (guest_memfd < 0) {
1112 			uint32_t guest_memfd_flags = 0;
1113 			TEST_ASSERT(!guest_memfd_offset,
1114 				    "Offset must be zero when creating new guest_memfd");
1115 			guest_memfd = vm_create_guest_memfd(vm, mem_size, guest_memfd_flags);
1116 		} else {
1117 			/*
1118 			 * Install a unique fd for each memslot so that the fd
1119 			 * can be closed when the region is deleted without
1120 			 * needing to track if the fd is owned by the framework
1121 			 * or by the caller.
1122 			 */
1123 			guest_memfd = dup(guest_memfd);
1124 			TEST_ASSERT(guest_memfd >= 0, __KVM_SYSCALL_ERROR("dup()", guest_memfd));
1125 		}
1126 
1127 		region->region.guest_memfd = guest_memfd;
1128 		region->region.guest_memfd_offset = guest_memfd_offset;
1129 	} else {
1130 		region->region.guest_memfd = -1;
1131 	}
1132 
1133 	region->unused_phy_pages = sparsebit_alloc();
1134 	if (vm_arch_has_protected_memory(vm))
1135 		region->protected_phy_pages = sparsebit_alloc();
1136 	sparsebit_set_num(region->unused_phy_pages,
1137 		guest_paddr >> vm->page_shift, npages);
1138 	region->region.slot = slot;
1139 	region->region.flags = flags;
1140 	region->region.guest_phys_addr = guest_paddr;
1141 	region->region.memory_size = npages * vm->page_size;
1142 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1143 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1144 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1145 		"  rc: %i errno: %i\n"
1146 		"  slot: %u flags: 0x%x\n"
1147 		"  guest_phys_addr: 0x%lx size: 0x%lx guest_memfd: %d",
1148 		ret, errno, slot, flags,
1149 		guest_paddr, (uint64_t) region->region.memory_size,
1150 		region->region.guest_memfd);
1151 
1152 	/* Add to quick lookup data structures */
1153 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1154 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1155 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1156 
1157 	/* If shared memory, create an alias. */
1158 	if (region->fd >= 0) {
1159 		region->mmap_alias = mmap(NULL, region->mmap_size,
1160 					  PROT_READ | PROT_WRITE,
1161 					  vm_mem_backing_src_alias(src_type)->flag,
1162 					  region->fd, 0);
1163 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1164 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1165 
1166 		/* Align host alias address */
1167 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1168 	}
1169 }
1170 
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)1171 void vm_userspace_mem_region_add(struct kvm_vm *vm,
1172 				 enum vm_mem_backing_src_type src_type,
1173 				 uint64_t guest_paddr, uint32_t slot,
1174 				 uint64_t npages, uint32_t flags)
1175 {
1176 	vm_mem_add(vm, src_type, guest_paddr, slot, npages, flags, -1, 0);
1177 }
1178 
1179 /*
1180  * Memslot to region
1181  *
1182  * Input Args:
1183  *   vm - Virtual Machine
1184  *   memslot - KVM memory slot ID
1185  *
1186  * Output Args: None
1187  *
1188  * Return:
1189  *   Pointer to memory region structure that describe memory region
1190  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1191  *   on error (e.g. currently no memory region using memslot as a KVM
1192  *   memory slot ID).
1193  */
1194 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1195 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1196 {
1197 	struct userspace_mem_region *region;
1198 
1199 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1200 			       memslot)
1201 		if (region->region.slot == memslot)
1202 			return region;
1203 
1204 	fprintf(stderr, "No mem region with the requested slot found,\n"
1205 		"  requested slot: %u\n", memslot);
1206 	fputs("---- vm dump ----\n", stderr);
1207 	vm_dump(stderr, vm, 2);
1208 	TEST_FAIL("Mem region not found");
1209 	return NULL;
1210 }
1211 
1212 /*
1213  * VM Memory Region Flags Set
1214  *
1215  * Input Args:
1216  *   vm - Virtual Machine
1217  *   flags - Starting guest physical address
1218  *
1219  * Output Args: None
1220  *
1221  * Return: None
1222  *
1223  * Sets the flags of the memory region specified by the value of slot,
1224  * to the values given by flags.
1225  */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1226 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1227 {
1228 	int ret;
1229 	struct userspace_mem_region *region;
1230 
1231 	region = memslot2region(vm, slot);
1232 
1233 	region->region.flags = flags;
1234 
1235 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1236 
1237 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION2 IOCTL failed,\n"
1238 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1239 		ret, errno, slot, flags);
1240 }
1241 
1242 /*
1243  * VM Memory Region Move
1244  *
1245  * Input Args:
1246  *   vm - Virtual Machine
1247  *   slot - Slot of the memory region to move
1248  *   new_gpa - Starting guest physical address
1249  *
1250  * Output Args: None
1251  *
1252  * Return: None
1253  *
1254  * Change the gpa of a memory region.
1255  */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1256 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1257 {
1258 	struct userspace_mem_region *region;
1259 	int ret;
1260 
1261 	region = memslot2region(vm, slot);
1262 
1263 	region->region.guest_phys_addr = new_gpa;
1264 
1265 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1266 
1267 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION2 failed\n"
1268 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1269 		    ret, errno, slot, new_gpa);
1270 }
1271 
1272 /*
1273  * VM Memory Region Delete
1274  *
1275  * Input Args:
1276  *   vm - Virtual Machine
1277  *   slot - Slot of the memory region to delete
1278  *
1279  * Output Args: None
1280  *
1281  * Return: None
1282  *
1283  * Delete a memory region.
1284  */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1285 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1286 {
1287 	struct userspace_mem_region *region = memslot2region(vm, slot);
1288 
1289 	region->region.memory_size = 0;
1290 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION2, &region->region);
1291 
1292 	__vm_mem_region_delete(vm, region);
1293 }
1294 
vm_guest_mem_fallocate(struct kvm_vm * vm,uint64_t base,uint64_t size,bool punch_hole)1295 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t base, uint64_t size,
1296 			    bool punch_hole)
1297 {
1298 	const int mode = FALLOC_FL_KEEP_SIZE | (punch_hole ? FALLOC_FL_PUNCH_HOLE : 0);
1299 	struct userspace_mem_region *region;
1300 	uint64_t end = base + size;
1301 	uint64_t gpa, len;
1302 	off_t fd_offset;
1303 	int ret;
1304 
1305 	for (gpa = base; gpa < end; gpa += len) {
1306 		uint64_t offset;
1307 
1308 		region = userspace_mem_region_find(vm, gpa, gpa);
1309 		TEST_ASSERT(region && region->region.flags & KVM_MEM_GUEST_MEMFD,
1310 			    "Private memory region not found for GPA 0x%lx", gpa);
1311 
1312 		offset = gpa - region->region.guest_phys_addr;
1313 		fd_offset = region->region.guest_memfd_offset + offset;
1314 		len = min_t(uint64_t, end - gpa, region->region.memory_size - offset);
1315 
1316 		ret = fallocate(region->region.guest_memfd, mode, fd_offset, len);
1317 		TEST_ASSERT(!ret, "fallocate() failed to %s at %lx (len = %lu), fd = %d, mode = %x, offset = %lx",
1318 			    punch_hole ? "punch hole" : "allocate", gpa, len,
1319 			    region->region.guest_memfd, mode, fd_offset);
1320 	}
1321 }
1322 
1323 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1324 static int vcpu_mmap_sz(void)
1325 {
1326 	int dev_fd, ret;
1327 
1328 	dev_fd = open_kvm_dev_path_or_exit();
1329 
1330 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1331 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1332 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1333 
1334 	close(dev_fd);
1335 
1336 	return ret;
1337 }
1338 
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1339 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1340 {
1341 	struct kvm_vcpu *vcpu;
1342 
1343 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1344 		if (vcpu->id == vcpu_id)
1345 			return true;
1346 	}
1347 
1348 	return false;
1349 }
1350 
1351 /*
1352  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1353  * No additional vCPU setup is done.  Returns the vCPU.
1354  */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1355 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1356 {
1357 	struct kvm_vcpu *vcpu;
1358 
1359 	/* Confirm a vcpu with the specified id doesn't already exist. */
1360 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists", vcpu_id);
1361 
1362 	/* Allocate and initialize new vcpu structure. */
1363 	vcpu = calloc(1, sizeof(*vcpu));
1364 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1365 
1366 	vcpu->vm = vm;
1367 	vcpu->id = vcpu_id;
1368 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1369 	TEST_ASSERT_VM_VCPU_IOCTL(vcpu->fd >= 0, KVM_CREATE_VCPU, vcpu->fd, vm);
1370 
1371 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1372 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1373 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1374 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1375 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1376 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1377 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1378 
1379 	if (kvm_has_cap(KVM_CAP_BINARY_STATS_FD))
1380 		vcpu->stats.fd = vcpu_get_stats_fd(vcpu);
1381 	else
1382 		vcpu->stats.fd = -1;
1383 
1384 	/* Add to linked-list of VCPUs. */
1385 	list_add(&vcpu->list, &vm->vcpus);
1386 
1387 	return vcpu;
1388 }
1389 
1390 /*
1391  * VM Virtual Address Unused Gap
1392  *
1393  * Input Args:
1394  *   vm - Virtual Machine
1395  *   sz - Size (bytes)
1396  *   vaddr_min - Minimum Virtual Address
1397  *
1398  * Output Args: None
1399  *
1400  * Return:
1401  *   Lowest virtual address at or below vaddr_min, with at least
1402  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1403  *   size sz is available.
1404  *
1405  * Within the VM specified by vm, locates the lowest starting virtual
1406  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1407  * TEST_ASSERT failure occurs for invalid input or no area of at least
1408  * sz unallocated bytes >= vaddr_min is available.
1409  */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1410 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1411 			       vm_vaddr_t vaddr_min)
1412 {
1413 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1414 
1415 	/* Determine lowest permitted virtual page index. */
1416 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1417 	if ((pgidx_start * vm->page_size) < vaddr_min)
1418 		goto no_va_found;
1419 
1420 	/* Loop over section with enough valid virtual page indexes. */
1421 	if (!sparsebit_is_set_num(vm->vpages_valid,
1422 		pgidx_start, pages))
1423 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1424 			pgidx_start, pages);
1425 	do {
1426 		/*
1427 		 * Are there enough unused virtual pages available at
1428 		 * the currently proposed starting virtual page index.
1429 		 * If not, adjust proposed starting index to next
1430 		 * possible.
1431 		 */
1432 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1433 			pgidx_start, pages))
1434 			goto va_found;
1435 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1436 			pgidx_start, pages);
1437 		if (pgidx_start == 0)
1438 			goto no_va_found;
1439 
1440 		/*
1441 		 * If needed, adjust proposed starting virtual address,
1442 		 * to next range of valid virtual addresses.
1443 		 */
1444 		if (!sparsebit_is_set_num(vm->vpages_valid,
1445 			pgidx_start, pages)) {
1446 			pgidx_start = sparsebit_next_set_num(
1447 				vm->vpages_valid, pgidx_start, pages);
1448 			if (pgidx_start == 0)
1449 				goto no_va_found;
1450 		}
1451 	} while (pgidx_start != 0);
1452 
1453 no_va_found:
1454 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1455 
1456 	/* NOT REACHED */
1457 	return -1;
1458 
1459 va_found:
1460 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1461 		pgidx_start, pages),
1462 		"Unexpected, invalid virtual page index range,\n"
1463 		"  pgidx_start: 0x%lx\n"
1464 		"  pages: 0x%lx",
1465 		pgidx_start, pages);
1466 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1467 		pgidx_start, pages),
1468 		"Unexpected, pages already mapped,\n"
1469 		"  pgidx_start: 0x%lx\n"
1470 		"  pages: 0x%lx",
1471 		pgidx_start, pages);
1472 
1473 	return pgidx_start * vm->page_size;
1474 }
1475 
____vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type,bool protected)1476 static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
1477 				     vm_vaddr_t vaddr_min,
1478 				     enum kvm_mem_region_type type,
1479 				     bool protected)
1480 {
1481 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1482 
1483 	virt_pgd_alloc(vm);
1484 	vm_paddr_t paddr = __vm_phy_pages_alloc(vm, pages,
1485 						KVM_UTIL_MIN_PFN * vm->page_size,
1486 						vm->memslots[type], protected);
1487 
1488 	/*
1489 	 * Find an unused range of virtual page addresses of at least
1490 	 * pages in length.
1491 	 */
1492 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1493 
1494 	/* Map the virtual pages. */
1495 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1496 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1497 
1498 		virt_pg_map(vm, vaddr, paddr);
1499 
1500 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1501 	}
1502 
1503 	return vaddr_start;
1504 }
1505 
__vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1506 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1507 			    enum kvm_mem_region_type type)
1508 {
1509 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type,
1510 				  vm_arch_has_protected_memory(vm));
1511 }
1512 
vm_vaddr_alloc_shared(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,enum kvm_mem_region_type type)1513 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
1514 				 vm_vaddr_t vaddr_min,
1515 				 enum kvm_mem_region_type type)
1516 {
1517 	return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, false);
1518 }
1519 
1520 /*
1521  * VM Virtual Address Allocate
1522  *
1523  * Input Args:
1524  *   vm - Virtual Machine
1525  *   sz - Size in bytes
1526  *   vaddr_min - Minimum starting virtual address
1527  *
1528  * Output Args: None
1529  *
1530  * Return:
1531  *   Starting guest virtual address
1532  *
1533  * Allocates at least sz bytes within the virtual address space of the vm
1534  * given by vm.  The allocated bytes are mapped to a virtual address >=
1535  * the address given by vaddr_min.  Note that each allocation uses a
1536  * a unique set of pages, with the minimum real allocation being at least
1537  * a page. The allocated physical space comes from the TEST_DATA memory region.
1538  */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1539 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1540 {
1541 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1542 }
1543 
1544 /*
1545  * VM Virtual Address Allocate Pages
1546  *
1547  * Input Args:
1548  *   vm - Virtual Machine
1549  *
1550  * Output Args: None
1551  *
1552  * Return:
1553  *   Starting guest virtual address
1554  *
1555  * Allocates at least N system pages worth of bytes within the virtual address
1556  * space of the vm.
1557  */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1558 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1559 {
1560 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1561 }
1562 
__vm_vaddr_alloc_page(struct kvm_vm * vm,enum kvm_mem_region_type type)1563 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1564 {
1565 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1566 }
1567 
1568 /*
1569  * VM Virtual Address Allocate Page
1570  *
1571  * Input Args:
1572  *   vm - Virtual Machine
1573  *
1574  * Output Args: None
1575  *
1576  * Return:
1577  *   Starting guest virtual address
1578  *
1579  * Allocates at least one system page worth of bytes within the virtual address
1580  * space of the vm.
1581  */
vm_vaddr_alloc_page(struct kvm_vm * vm)1582 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1583 {
1584 	return vm_vaddr_alloc_pages(vm, 1);
1585 }
1586 
1587 /*
1588  * Map a range of VM virtual address to the VM's physical address
1589  *
1590  * Input Args:
1591  *   vm - Virtual Machine
1592  *   vaddr - Virtuall address to map
1593  *   paddr - VM Physical Address
1594  *   npages - The number of pages to map
1595  *
1596  * Output Args: None
1597  *
1598  * Return: None
1599  *
1600  * Within the VM given by @vm, creates a virtual translation for
1601  * @npages starting at @vaddr to the page range starting at @paddr.
1602  */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1603 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1604 	      unsigned int npages)
1605 {
1606 	size_t page_size = vm->page_size;
1607 	size_t size = npages * page_size;
1608 
1609 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1610 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1611 
1612 	while (npages--) {
1613 		virt_pg_map(vm, vaddr, paddr);
1614 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1615 
1616 		vaddr += page_size;
1617 		paddr += page_size;
1618 	}
1619 }
1620 
1621 /*
1622  * Address VM Physical to Host Virtual
1623  *
1624  * Input Args:
1625  *   vm - Virtual Machine
1626  *   gpa - VM physical address
1627  *
1628  * Output Args: None
1629  *
1630  * Return:
1631  *   Equivalent host virtual address
1632  *
1633  * Locates the memory region containing the VM physical address given
1634  * by gpa, within the VM given by vm.  When found, the host virtual
1635  * address providing the memory to the vm physical address is returned.
1636  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1637  */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1638 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1639 {
1640 	struct userspace_mem_region *region;
1641 
1642 	gpa = vm_untag_gpa(vm, gpa);
1643 
1644 	region = userspace_mem_region_find(vm, gpa, gpa);
1645 	if (!region) {
1646 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1647 		return NULL;
1648 	}
1649 
1650 	return (void *)((uintptr_t)region->host_mem
1651 		+ (gpa - region->region.guest_phys_addr));
1652 }
1653 
1654 /*
1655  * Address Host Virtual to VM Physical
1656  *
1657  * Input Args:
1658  *   vm - Virtual Machine
1659  *   hva - Host virtual address
1660  *
1661  * Output Args: None
1662  *
1663  * Return:
1664  *   Equivalent VM physical address
1665  *
1666  * Locates the memory region containing the host virtual address given
1667  * by hva, within the VM given by vm.  When found, the equivalent
1668  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1669  * region containing hva exists.
1670  */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1671 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1672 {
1673 	struct rb_node *node;
1674 
1675 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1676 		struct userspace_mem_region *region =
1677 			container_of(node, struct userspace_mem_region, hva_node);
1678 
1679 		if (hva >= region->host_mem) {
1680 			if (hva <= (region->host_mem
1681 				+ region->region.memory_size - 1))
1682 				return (vm_paddr_t)((uintptr_t)
1683 					region->region.guest_phys_addr
1684 					+ (hva - (uintptr_t)region->host_mem));
1685 
1686 			node = node->rb_right;
1687 		} else
1688 			node = node->rb_left;
1689 	}
1690 
1691 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1692 	return -1;
1693 }
1694 
1695 /*
1696  * Address VM physical to Host Virtual *alias*.
1697  *
1698  * Input Args:
1699  *   vm - Virtual Machine
1700  *   gpa - VM physical address
1701  *
1702  * Output Args: None
1703  *
1704  * Return:
1705  *   Equivalent address within the host virtual *alias* area, or NULL
1706  *   (without failing the test) if the guest memory is not shared (so
1707  *   no alias exists).
1708  *
1709  * Create a writable, shared virtual=>physical alias for the specific GPA.
1710  * The primary use case is to allow the host selftest to manipulate guest
1711  * memory without mapping said memory in the guest's address space. And, for
1712  * userfaultfd-based demand paging, to do so without triggering userfaults.
1713  */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1714 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1715 {
1716 	struct userspace_mem_region *region;
1717 	uintptr_t offset;
1718 
1719 	region = userspace_mem_region_find(vm, gpa, gpa);
1720 	if (!region)
1721 		return NULL;
1722 
1723 	if (!region->host_alias)
1724 		return NULL;
1725 
1726 	offset = gpa - region->region.guest_phys_addr;
1727 	return (void *) ((uintptr_t) region->host_alias + offset);
1728 }
1729 
1730 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1731 void vm_create_irqchip(struct kvm_vm *vm)
1732 {
1733 	int r;
1734 
1735 	/*
1736 	 * Allocate a fully in-kernel IRQ chip by default, but fall back to a
1737 	 * split model (x86 only) if that fails (KVM x86 allows compiling out
1738 	 * support for KVM_CREATE_IRQCHIP).
1739 	 */
1740 	r = __vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1741 	if (r && errno == ENOTTY && kvm_has_cap(KVM_CAP_SPLIT_IRQCHIP))
1742 		vm_enable_cap(vm, KVM_CAP_SPLIT_IRQCHIP, 24);
1743 	else
1744 		TEST_ASSERT_VM_VCPU_IOCTL(!r, KVM_CREATE_IRQCHIP, r, vm);
1745 
1746 	vm->has_irqchip = true;
1747 }
1748 
_vcpu_run(struct kvm_vcpu * vcpu)1749 int _vcpu_run(struct kvm_vcpu *vcpu)
1750 {
1751 	int rc;
1752 
1753 	do {
1754 		rc = __vcpu_run(vcpu);
1755 	} while (rc == -1 && errno == EINTR);
1756 
1757 	if (!rc)
1758 		assert_on_unhandled_exception(vcpu);
1759 
1760 	return rc;
1761 }
1762 
1763 /*
1764  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1765  * Assert if the KVM returns an error (other than -EINTR).
1766  */
vcpu_run(struct kvm_vcpu * vcpu)1767 void vcpu_run(struct kvm_vcpu *vcpu)
1768 {
1769 	int ret = _vcpu_run(vcpu);
1770 
1771 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1772 }
1773 
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1774 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1775 {
1776 	int ret;
1777 
1778 	vcpu->run->immediate_exit = 1;
1779 	ret = __vcpu_run(vcpu);
1780 	vcpu->run->immediate_exit = 0;
1781 
1782 	TEST_ASSERT(ret == -1 && errno == EINTR,
1783 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1784 		    ret, errno);
1785 }
1786 
1787 /*
1788  * Get the list of guest registers which are supported for
1789  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1790  * it is the caller's responsibility to free the list.
1791  */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1792 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1793 {
1794 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1795 	int ret;
1796 
1797 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1798 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1799 
1800 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1801 	reg_list->n = reg_list_n.n;
1802 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1803 	return reg_list;
1804 }
1805 
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1806 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1807 {
1808 	uint32_t page_size = getpagesize();
1809 	uint32_t size = vcpu->vm->dirty_ring_size;
1810 
1811 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1812 
1813 	if (!vcpu->dirty_gfns) {
1814 		void *addr;
1815 
1816 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1817 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1818 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1819 
1820 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1821 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1822 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1823 
1824 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1825 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1826 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1827 
1828 		vcpu->dirty_gfns = addr;
1829 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1830 	}
1831 
1832 	return vcpu->dirty_gfns;
1833 }
1834 
1835 /*
1836  * Device Ioctl
1837  */
1838 
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1839 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1840 {
1841 	struct kvm_device_attr attribute = {
1842 		.group = group,
1843 		.attr = attr,
1844 		.flags = 0,
1845 	};
1846 
1847 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1848 }
1849 
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1850 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1851 {
1852 	struct kvm_create_device create_dev = {
1853 		.type = type,
1854 		.flags = KVM_CREATE_DEVICE_TEST,
1855 	};
1856 
1857 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1858 }
1859 
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1860 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1861 {
1862 	struct kvm_create_device create_dev = {
1863 		.type = type,
1864 		.fd = -1,
1865 		.flags = 0,
1866 	};
1867 	int err;
1868 
1869 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1870 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1871 	return err ? : create_dev.fd;
1872 }
1873 
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1874 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1875 {
1876 	struct kvm_device_attr kvmattr = {
1877 		.group = group,
1878 		.attr = attr,
1879 		.flags = 0,
1880 		.addr = (uintptr_t)val,
1881 	};
1882 
1883 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1884 }
1885 
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1886 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1887 {
1888 	struct kvm_device_attr kvmattr = {
1889 		.group = group,
1890 		.attr = attr,
1891 		.flags = 0,
1892 		.addr = (uintptr_t)val,
1893 	};
1894 
1895 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1896 }
1897 
1898 /*
1899  * IRQ related functions.
1900  */
1901 
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1902 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1903 {
1904 	struct kvm_irq_level irq_level = {
1905 		.irq    = irq,
1906 		.level  = level,
1907 	};
1908 
1909 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1910 }
1911 
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1912 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1913 {
1914 	int ret = _kvm_irq_line(vm, irq, level);
1915 
1916 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1917 }
1918 
kvm_gsi_routing_create(void)1919 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1920 {
1921 	struct kvm_irq_routing *routing;
1922 	size_t size;
1923 
1924 	size = sizeof(struct kvm_irq_routing);
1925 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1926 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1927 	routing = calloc(1, size);
1928 	assert(routing);
1929 
1930 	return routing;
1931 }
1932 
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1933 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1934 		uint32_t gsi, uint32_t pin)
1935 {
1936 	int i;
1937 
1938 	assert(routing);
1939 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1940 
1941 	i = routing->nr;
1942 	routing->entries[i].gsi = gsi;
1943 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1944 	routing->entries[i].flags = 0;
1945 	routing->entries[i].u.irqchip.irqchip = 0;
1946 	routing->entries[i].u.irqchip.pin = pin;
1947 	routing->nr++;
1948 }
1949 
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1950 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1951 {
1952 	int ret;
1953 
1954 	assert(routing);
1955 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1956 	free(routing);
1957 
1958 	return ret;
1959 }
1960 
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1961 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1962 {
1963 	int ret;
1964 
1965 	ret = _kvm_gsi_routing_write(vm, routing);
1966 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1967 }
1968 
1969 /*
1970  * VM Dump
1971  *
1972  * Input Args:
1973  *   vm - Virtual Machine
1974  *   indent - Left margin indent amount
1975  *
1976  * Output Args:
1977  *   stream - Output FILE stream
1978  *
1979  * Return: None
1980  *
1981  * Dumps the current state of the VM given by vm, to the FILE stream
1982  * given by stream.
1983  */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1984 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1985 {
1986 	int ctr;
1987 	struct userspace_mem_region *region;
1988 	struct kvm_vcpu *vcpu;
1989 
1990 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1991 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1992 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1993 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1994 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1995 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1996 			"host_virt: %p\n", indent + 2, "",
1997 			(uint64_t) region->region.guest_phys_addr,
1998 			(uint64_t) region->region.memory_size,
1999 			region->host_mem);
2000 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2001 		sparsebit_dump(stream, region->unused_phy_pages, 0);
2002 		if (region->protected_phy_pages) {
2003 			fprintf(stream, "%*sprotected_phy_pages: ", indent + 2, "");
2004 			sparsebit_dump(stream, region->protected_phy_pages, 0);
2005 		}
2006 	}
2007 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2008 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2009 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
2010 		vm->pgd_created);
2011 	if (vm->pgd_created) {
2012 		fprintf(stream, "%*sVirtual Translation Tables:\n",
2013 			indent + 2, "");
2014 		virt_dump(stream, vm, indent + 4);
2015 	}
2016 	fprintf(stream, "%*sVCPUs:\n", indent, "");
2017 
2018 	list_for_each_entry(vcpu, &vm->vcpus, list)
2019 		vcpu_dump(stream, vcpu, indent + 2);
2020 }
2021 
2022 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
2023 
2024 /* Known KVM exit reasons */
2025 static struct exit_reason {
2026 	unsigned int reason;
2027 	const char *name;
2028 } exit_reasons_known[] = {
2029 	KVM_EXIT_STRING(UNKNOWN),
2030 	KVM_EXIT_STRING(EXCEPTION),
2031 	KVM_EXIT_STRING(IO),
2032 	KVM_EXIT_STRING(HYPERCALL),
2033 	KVM_EXIT_STRING(DEBUG),
2034 	KVM_EXIT_STRING(HLT),
2035 	KVM_EXIT_STRING(MMIO),
2036 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
2037 	KVM_EXIT_STRING(SHUTDOWN),
2038 	KVM_EXIT_STRING(FAIL_ENTRY),
2039 	KVM_EXIT_STRING(INTR),
2040 	KVM_EXIT_STRING(SET_TPR),
2041 	KVM_EXIT_STRING(TPR_ACCESS),
2042 	KVM_EXIT_STRING(S390_SIEIC),
2043 	KVM_EXIT_STRING(S390_RESET),
2044 	KVM_EXIT_STRING(DCR),
2045 	KVM_EXIT_STRING(NMI),
2046 	KVM_EXIT_STRING(INTERNAL_ERROR),
2047 	KVM_EXIT_STRING(OSI),
2048 	KVM_EXIT_STRING(PAPR_HCALL),
2049 	KVM_EXIT_STRING(S390_UCONTROL),
2050 	KVM_EXIT_STRING(WATCHDOG),
2051 	KVM_EXIT_STRING(S390_TSCH),
2052 	KVM_EXIT_STRING(EPR),
2053 	KVM_EXIT_STRING(SYSTEM_EVENT),
2054 	KVM_EXIT_STRING(S390_STSI),
2055 	KVM_EXIT_STRING(IOAPIC_EOI),
2056 	KVM_EXIT_STRING(HYPERV),
2057 	KVM_EXIT_STRING(ARM_NISV),
2058 	KVM_EXIT_STRING(X86_RDMSR),
2059 	KVM_EXIT_STRING(X86_WRMSR),
2060 	KVM_EXIT_STRING(DIRTY_RING_FULL),
2061 	KVM_EXIT_STRING(AP_RESET_HOLD),
2062 	KVM_EXIT_STRING(X86_BUS_LOCK),
2063 	KVM_EXIT_STRING(XEN),
2064 	KVM_EXIT_STRING(RISCV_SBI),
2065 	KVM_EXIT_STRING(RISCV_CSR),
2066 	KVM_EXIT_STRING(NOTIFY),
2067 	KVM_EXIT_STRING(LOONGARCH_IOCSR),
2068 	KVM_EXIT_STRING(MEMORY_FAULT),
2069 };
2070 
2071 /*
2072  * Exit Reason String
2073  *
2074  * Input Args:
2075  *   exit_reason - Exit reason
2076  *
2077  * Output Args: None
2078  *
2079  * Return:
2080  *   Constant string pointer describing the exit reason.
2081  *
2082  * Locates and returns a constant string that describes the KVM exit
2083  * reason given by exit_reason.  If no such string is found, a constant
2084  * string of "Unknown" is returned.
2085  */
exit_reason_str(unsigned int exit_reason)2086 const char *exit_reason_str(unsigned int exit_reason)
2087 {
2088 	unsigned int n1;
2089 
2090 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2091 		if (exit_reason == exit_reasons_known[n1].reason)
2092 			return exit_reasons_known[n1].name;
2093 	}
2094 
2095 	return "Unknown";
2096 }
2097 
2098 /*
2099  * Physical Contiguous Page Allocator
2100  *
2101  * Input Args:
2102  *   vm - Virtual Machine
2103  *   num - number of pages
2104  *   paddr_min - Physical address minimum
2105  *   memslot - Memory region to allocate page from
2106  *   protected - True if the pages will be used as protected/private memory
2107  *
2108  * Output Args: None
2109  *
2110  * Return:
2111  *   Starting physical address
2112  *
2113  * Within the VM specified by vm, locates a range of available physical
2114  * pages at or above paddr_min. If found, the pages are marked as in use
2115  * and their base address is returned. A TEST_ASSERT failure occurs if
2116  * not enough pages are available at or above paddr_min.
2117  */
__vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot,bool protected)2118 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2119 				vm_paddr_t paddr_min, uint32_t memslot,
2120 				bool protected)
2121 {
2122 	struct userspace_mem_region *region;
2123 	sparsebit_idx_t pg, base;
2124 
2125 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2126 
2127 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2128 		"not divisible by page size.\n"
2129 		"  paddr_min: 0x%lx page_size: 0x%x",
2130 		paddr_min, vm->page_size);
2131 
2132 	region = memslot2region(vm, memslot);
2133 	TEST_ASSERT(!protected || region->protected_phy_pages,
2134 		    "Region doesn't support protected memory");
2135 
2136 	base = pg = paddr_min >> vm->page_shift;
2137 	do {
2138 		for (; pg < base + num; ++pg) {
2139 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2140 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2141 				break;
2142 			}
2143 		}
2144 	} while (pg && pg != base + num);
2145 
2146 	if (pg == 0) {
2147 		fprintf(stderr, "No guest physical page available, "
2148 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2149 			paddr_min, vm->page_size, memslot);
2150 		fputs("---- vm dump ----\n", stderr);
2151 		vm_dump(stderr, vm, 2);
2152 		abort();
2153 	}
2154 
2155 	for (pg = base; pg < base + num; ++pg) {
2156 		sparsebit_clear(region->unused_phy_pages, pg);
2157 		if (protected)
2158 			sparsebit_set(region->protected_phy_pages, pg);
2159 	}
2160 
2161 	return base * vm->page_size;
2162 }
2163 
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2164 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2165 			     uint32_t memslot)
2166 {
2167 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2168 }
2169 
vm_alloc_page_table(struct kvm_vm * vm)2170 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2171 {
2172 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
2173 				 vm->memslots[MEM_REGION_PT]);
2174 }
2175 
2176 /*
2177  * Address Guest Virtual to Host Virtual
2178  *
2179  * Input Args:
2180  *   vm - Virtual Machine
2181  *   gva - VM virtual address
2182  *
2183  * Output Args: None
2184  *
2185  * Return:
2186  *   Equivalent host virtual address
2187  */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2188 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2189 {
2190 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2191 }
2192 
vm_compute_max_gfn(struct kvm_vm * vm)2193 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2194 {
2195 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2196 }
2197 
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2198 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2199 				      unsigned int page_shift,
2200 				      unsigned int new_page_shift,
2201 				      bool ceil)
2202 {
2203 	unsigned int n = 1 << (new_page_shift - page_shift);
2204 
2205 	if (page_shift >= new_page_shift)
2206 		return num_pages * (1 << (page_shift - new_page_shift));
2207 
2208 	return num_pages / n + !!(ceil && num_pages % n);
2209 }
2210 
getpageshift(void)2211 static inline int getpageshift(void)
2212 {
2213 	return __builtin_ffs(getpagesize()) - 1;
2214 }
2215 
2216 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2217 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2218 {
2219 	return vm_calc_num_pages(num_guest_pages,
2220 				 vm_guest_mode_params[mode].page_shift,
2221 				 getpageshift(), true);
2222 }
2223 
2224 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2225 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2226 {
2227 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2228 				 vm_guest_mode_params[mode].page_shift, false);
2229 }
2230 
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2231 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2232 {
2233 	unsigned int n;
2234 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2235 	return vm_adjust_num_guest_pages(mode, n);
2236 }
2237 
2238 /*
2239  * Read binary stats descriptors
2240  *
2241  * Input Args:
2242  *   stats_fd - the file descriptor for the binary stats file from which to read
2243  *   header - the binary stats metadata header corresponding to the given FD
2244  *
2245  * Output Args: None
2246  *
2247  * Return:
2248  *   A pointer to a newly allocated series of stat descriptors.
2249  *   Caller is responsible for freeing the returned kvm_stats_desc.
2250  *
2251  * Read the stats descriptors from the binary stats interface.
2252  */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)2253 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2254 					      struct kvm_stats_header *header)
2255 {
2256 	struct kvm_stats_desc *stats_desc;
2257 	ssize_t desc_size, total_size, ret;
2258 
2259 	desc_size = get_stats_descriptor_size(header);
2260 	total_size = header->num_desc * desc_size;
2261 
2262 	stats_desc = calloc(header->num_desc, desc_size);
2263 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2264 
2265 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2266 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2267 
2268 	return stats_desc;
2269 }
2270 
2271 /*
2272  * Read stat data for a particular stat
2273  *
2274  * Input Args:
2275  *   stats_fd - the file descriptor for the binary stats file from which to read
2276  *   header - the binary stats metadata header corresponding to the given FD
2277  *   desc - the binary stat metadata for the particular stat to be read
2278  *   max_elements - the maximum number of 8-byte values to read into data
2279  *
2280  * Output Args:
2281  *   data - the buffer into which stat data should be read
2282  *
2283  * Read the data values of a specified stat from the binary stats interface.
2284  */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)2285 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2286 		    struct kvm_stats_desc *desc, uint64_t *data,
2287 		    size_t max_elements)
2288 {
2289 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2290 	size_t size = nr_elements * sizeof(*data);
2291 	ssize_t ret;
2292 
2293 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2294 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2295 
2296 	ret = pread(stats_fd, data, size,
2297 		    header->data_offset + desc->offset);
2298 
2299 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2300 		    desc->name, errno, strerror(errno));
2301 	TEST_ASSERT(ret == size,
2302 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2303 		    desc->name, size, ret);
2304 }
2305 
kvm_get_stat(struct kvm_binary_stats * stats,const char * name,uint64_t * data,size_t max_elements)2306 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
2307 		  uint64_t *data, size_t max_elements)
2308 {
2309 	struct kvm_stats_desc *desc;
2310 	size_t size_desc;
2311 	int i;
2312 
2313 	if (!stats->desc) {
2314 		read_stats_header(stats->fd, &stats->header);
2315 		stats->desc = read_stats_descriptors(stats->fd, &stats->header);
2316 	}
2317 
2318 	size_desc = get_stats_descriptor_size(&stats->header);
2319 
2320 	for (i = 0; i < stats->header.num_desc; ++i) {
2321 		desc = (void *)stats->desc + (i * size_desc);
2322 
2323 		if (strcmp(desc->name, name))
2324 			continue;
2325 
2326 		read_stat_data(stats->fd, &stats->header, desc, data, max_elements);
2327 		return;
2328 	}
2329 
2330 	TEST_FAIL("Unable to find stat '%s'", name);
2331 }
2332 
kvm_arch_vm_post_create(struct kvm_vm * vm)2333 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2334 {
2335 }
2336 
kvm_selftest_arch_init(void)2337 __weak void kvm_selftest_arch_init(void)
2338 {
2339 }
2340 
kvm_selftest_init(void)2341 void __attribute((constructor)) kvm_selftest_init(void)
2342 {
2343 	/* Tell stdout not to buffer its content. */
2344 	setbuf(stdout, NULL);
2345 
2346 	guest_random_seed = last_guest_seed = random();
2347 	pr_info("Random seed: 0x%x\n", guest_random_seed);
2348 
2349 	kvm_selftest_arch_init();
2350 }
2351 
vm_is_gpa_protected(struct kvm_vm * vm,vm_paddr_t paddr)2352 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr)
2353 {
2354 	sparsebit_idx_t pg = 0;
2355 	struct userspace_mem_region *region;
2356 
2357 	if (!vm_arch_has_protected_memory(vm))
2358 		return false;
2359 
2360 	region = userspace_mem_region_find(vm, paddr, paddr);
2361 	TEST_ASSERT(region, "No vm physical memory at 0x%lx", paddr);
2362 
2363 	pg = paddr >> vm->page_shift;
2364 	return sparsebit_is_set(region->protected_phy_pages, pg);
2365 }
2366