1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113 #else
114 res = false;
115 #endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121 }
122
clear_node_folio_dirty(struct folio * folio)123 static void clear_node_folio_dirty(struct folio *folio)
124 {
125 if (folio_test_dirty(folio)) {
126 f2fs_clear_page_cache_dirty_tag(folio);
127 folio_clear_dirty_for_io(folio);
128 dec_page_count(F2FS_F_SB(folio), F2FS_DIRTY_NODES);
129 }
130 folio_clear_uptodate(folio);
131 }
132
get_current_nat_folio(struct f2fs_sb_info * sbi,nid_t nid)133 static struct folio *get_current_nat_folio(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 return f2fs_get_meta_folio_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
get_next_nat_folio(struct f2fs_sb_info * sbi,nid_t nid)138 static struct folio *get_next_nat_folio(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct folio *src_folio;
141 struct folio *dst_folio;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_folio = get_current_nat_folio(sbi, nid);
151 if (IS_ERR(src_folio))
152 return src_folio;
153 dst_folio = f2fs_grab_meta_folio(sbi, dst_off);
154 f2fs_bug_on(sbi, folio_test_dirty(src_folio));
155
156 src_addr = folio_address(src_folio);
157 dst_addr = folio_address(dst_folio);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 folio_mark_dirty(dst_folio);
160 f2fs_folio_put(src_folio, true);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_folio;
165 }
166
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169 {
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179 }
180
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail,bool init_dirty)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail, bool init_dirty)
189 {
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 if (init_dirty) {
199 INIT_LIST_HEAD(&ne->list);
200 nm_i->nat_cnt[TOTAL_NAT]++;
201 return ne;
202 }
203
204 spin_lock(&nm_i->nat_list_lock);
205 list_add_tail(&ne->list, &nm_i->nat_entries);
206 spin_unlock(&nm_i->nat_list_lock);
207
208 nm_i->nat_cnt[TOTAL_NAT]++;
209 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
210 return ne;
211 }
212
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n,bool for_dirty)213 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n, bool for_dirty)
214 {
215 struct nat_entry *ne;
216
217 ne = radix_tree_lookup(&nm_i->nat_root, n);
218
219 /*
220 * for recent accessed nat entry which will not be dirtied soon
221 * later, move it to tail of lru list.
222 */
223 if (ne && !get_nat_flag(ne, IS_DIRTY) && !for_dirty) {
224 spin_lock(&nm_i->nat_list_lock);
225 if (!list_empty(&ne->list))
226 list_move_tail(&ne->list, &nm_i->nat_entries);
227 spin_unlock(&nm_i->nat_list_lock);
228 }
229
230 return ne;
231 }
232
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)233 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
234 nid_t start, unsigned int nr, struct nat_entry **ep)
235 {
236 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
237 }
238
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)239 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
240 {
241 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
242 nm_i->nat_cnt[TOTAL_NAT]--;
243 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
244 __free_nat_entry(e);
245 }
246
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)247 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
248 struct nat_entry *ne)
249 {
250 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
251 struct nat_entry_set *head;
252
253 head = radix_tree_lookup(&nm_i->nat_set_root, set);
254 if (!head) {
255 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
256 GFP_NOFS, true, NULL);
257
258 INIT_LIST_HEAD(&head->entry_list);
259 INIT_LIST_HEAD(&head->set_list);
260 head->set = set;
261 head->entry_cnt = 0;
262 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
263 }
264 return head;
265 }
266
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne,bool init_dirty)267 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry *ne, bool init_dirty)
269 {
270 struct nat_entry_set *head;
271 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
272
273 if (!new_ne)
274 head = __grab_nat_entry_set(nm_i, ne);
275
276 /*
277 * update entry_cnt in below condition:
278 * 1. update NEW_ADDR to valid block address;
279 * 2. update old block address to new one;
280 */
281 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
282 !get_nat_flag(ne, IS_DIRTY)))
283 head->entry_cnt++;
284
285 set_nat_flag(ne, IS_PREALLOC, new_ne);
286
287 if (get_nat_flag(ne, IS_DIRTY))
288 goto refresh_list;
289
290 nm_i->nat_cnt[DIRTY_NAT]++;
291 if (!init_dirty)
292 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
293 set_nat_flag(ne, IS_DIRTY, true);
294 refresh_list:
295 spin_lock(&nm_i->nat_list_lock);
296 if (new_ne)
297 list_del_init(&ne->list);
298 else
299 list_move_tail(&ne->list, &head->entry_list);
300 spin_unlock(&nm_i->nat_list_lock);
301 }
302
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)303 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
304 struct nat_entry_set *set, struct nat_entry *ne)
305 {
306 spin_lock(&nm_i->nat_list_lock);
307 list_move_tail(&ne->list, &nm_i->nat_entries);
308 spin_unlock(&nm_i->nat_list_lock);
309
310 set_nat_flag(ne, IS_DIRTY, false);
311 set->entry_cnt--;
312 nm_i->nat_cnt[DIRTY_NAT]--;
313 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
314 }
315
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)316 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
317 nid_t start, unsigned int nr, struct nat_entry_set **ep)
318 {
319 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
320 start, nr);
321 }
322
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct folio * folio)323 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio)
324 {
325 return is_node_folio(folio) && IS_DNODE(folio) && is_cold_node(folio);
326 }
327
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)328 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
329 {
330 spin_lock_init(&sbi->fsync_node_lock);
331 INIT_LIST_HEAD(&sbi->fsync_node_list);
332 sbi->fsync_seg_id = 0;
333 sbi->fsync_node_num = 0;
334 }
335
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct folio * folio)336 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
337 struct folio *folio)
338 {
339 struct fsync_node_entry *fn;
340 unsigned long flags;
341 unsigned int seq_id;
342
343 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
344 GFP_NOFS, true, NULL);
345
346 folio_get(folio);
347 fn->folio = folio;
348 INIT_LIST_HEAD(&fn->list);
349
350 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
351 list_add_tail(&fn->list, &sbi->fsync_node_list);
352 fn->seq_id = sbi->fsync_seg_id++;
353 seq_id = fn->seq_id;
354 sbi->fsync_node_num++;
355 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
356
357 return seq_id;
358 }
359
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct folio * folio)360 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio)
361 {
362 struct fsync_node_entry *fn;
363 unsigned long flags;
364
365 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
366 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
367 if (fn->folio == folio) {
368 list_del(&fn->list);
369 sbi->fsync_node_num--;
370 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
371 kmem_cache_free(fsync_node_entry_slab, fn);
372 folio_put(folio);
373 return;
374 }
375 }
376 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
377 f2fs_bug_on(sbi, 1);
378 }
379
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)380 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
381 {
382 unsigned long flags;
383
384 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
385 sbi->fsync_seg_id = 0;
386 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
387 }
388
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)389 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
390 {
391 struct f2fs_nm_info *nm_i = NM_I(sbi);
392 struct nat_entry *e;
393 bool need = false;
394
395 f2fs_down_read(&nm_i->nat_tree_lock);
396 e = __lookup_nat_cache(nm_i, nid, false);
397 if (e) {
398 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
399 !get_nat_flag(e, HAS_FSYNCED_INODE))
400 need = true;
401 }
402 f2fs_up_read(&nm_i->nat_tree_lock);
403 return need;
404 }
405
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)406 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
407 {
408 struct f2fs_nm_info *nm_i = NM_I(sbi);
409 struct nat_entry *e;
410 bool is_cp = true;
411
412 f2fs_down_read(&nm_i->nat_tree_lock);
413 e = __lookup_nat_cache(nm_i, nid, false);
414 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
415 is_cp = false;
416 f2fs_up_read(&nm_i->nat_tree_lock);
417 return is_cp;
418 }
419
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)420 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
421 {
422 struct f2fs_nm_info *nm_i = NM_I(sbi);
423 struct nat_entry *e;
424 bool need_update = true;
425
426 f2fs_down_read(&nm_i->nat_tree_lock);
427 e = __lookup_nat_cache(nm_i, ino, false);
428 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
429 (get_nat_flag(e, IS_CHECKPOINTED) ||
430 get_nat_flag(e, HAS_FSYNCED_INODE)))
431 need_update = false;
432 f2fs_up_read(&nm_i->nat_tree_lock);
433 return need_update;
434 }
435
436 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)437 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
438 struct f2fs_nat_entry *ne)
439 {
440 struct f2fs_nm_info *nm_i = NM_I(sbi);
441 struct nat_entry *new, *e;
442
443 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
444 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
445 return;
446
447 new = __alloc_nat_entry(sbi, nid, false);
448 if (!new)
449 return;
450
451 f2fs_down_write(&nm_i->nat_tree_lock);
452 e = __lookup_nat_cache(nm_i, nid, false);
453 if (!e)
454 e = __init_nat_entry(nm_i, new, ne, false, false);
455 else
456 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
457 nat_get_blkaddr(e) !=
458 le32_to_cpu(ne->block_addr) ||
459 nat_get_version(e) != ne->version);
460 f2fs_up_write(&nm_i->nat_tree_lock);
461 if (e != new)
462 __free_nat_entry(new);
463 }
464
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)465 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
466 block_t new_blkaddr, bool fsync_done)
467 {
468 struct f2fs_nm_info *nm_i = NM_I(sbi);
469 struct nat_entry *e;
470 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
471 bool init_dirty = false;
472
473 f2fs_down_write(&nm_i->nat_tree_lock);
474 e = __lookup_nat_cache(nm_i, ni->nid, true);
475 if (!e) {
476 init_dirty = true;
477 e = __init_nat_entry(nm_i, new, NULL, true, true);
478 copy_node_info(&e->ni, ni);
479 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
480 } else if (new_blkaddr == NEW_ADDR) {
481 /*
482 * when nid is reallocated,
483 * previous nat entry can be remained in nat cache.
484 * So, reinitialize it with new information.
485 */
486 copy_node_info(&e->ni, ni);
487 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
488 }
489 /* let's free early to reduce memory consumption */
490 if (e != new)
491 __free_nat_entry(new);
492
493 /* sanity check */
494 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
495 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
496 new_blkaddr == NULL_ADDR);
497 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
498 new_blkaddr == NEW_ADDR);
499 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
500 new_blkaddr == NEW_ADDR);
501
502 /* increment version no as node is removed */
503 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
504 unsigned char version = nat_get_version(e);
505
506 nat_set_version(e, inc_node_version(version));
507 }
508
509 /* change address */
510 nat_set_blkaddr(e, new_blkaddr);
511 if (!__is_valid_data_blkaddr(new_blkaddr))
512 set_nat_flag(e, IS_CHECKPOINTED, false);
513 __set_nat_cache_dirty(nm_i, e, init_dirty);
514
515 /* update fsync_mark if its inode nat entry is still alive */
516 if (ni->nid != ni->ino)
517 e = __lookup_nat_cache(nm_i, ni->ino, false);
518 if (e) {
519 if (fsync_done && ni->nid == ni->ino)
520 set_nat_flag(e, HAS_FSYNCED_INODE, true);
521 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
522 }
523 f2fs_up_write(&nm_i->nat_tree_lock);
524 }
525
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)526 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
527 {
528 struct f2fs_nm_info *nm_i = NM_I(sbi);
529 int nr = nr_shrink;
530
531 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
532 return 0;
533
534 spin_lock(&nm_i->nat_list_lock);
535 while (nr_shrink) {
536 struct nat_entry *ne;
537
538 if (list_empty(&nm_i->nat_entries))
539 break;
540
541 ne = list_first_entry(&nm_i->nat_entries,
542 struct nat_entry, list);
543 list_del(&ne->list);
544 spin_unlock(&nm_i->nat_list_lock);
545
546 __del_from_nat_cache(nm_i, ne);
547 nr_shrink--;
548
549 spin_lock(&nm_i->nat_list_lock);
550 }
551 spin_unlock(&nm_i->nat_list_lock);
552
553 f2fs_up_write(&nm_i->nat_tree_lock);
554 return nr - nr_shrink;
555 }
556
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)557 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
558 struct node_info *ni, bool checkpoint_context)
559 {
560 struct f2fs_nm_info *nm_i = NM_I(sbi);
561 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
562 struct f2fs_journal *journal = curseg->journal;
563 nid_t start_nid = START_NID(nid);
564 struct f2fs_nat_block *nat_blk;
565 struct folio *folio = NULL;
566 struct f2fs_nat_entry ne;
567 struct nat_entry *e;
568 pgoff_t index;
569 int i;
570 bool need_cache = true;
571
572 ni->flag = 0;
573 ni->nid = nid;
574 retry:
575 /* Check nat cache */
576 f2fs_down_read(&nm_i->nat_tree_lock);
577 e = __lookup_nat_cache(nm_i, nid, false);
578 if (e) {
579 ni->ino = nat_get_ino(e);
580 ni->blk_addr = nat_get_blkaddr(e);
581 ni->version = nat_get_version(e);
582 f2fs_up_read(&nm_i->nat_tree_lock);
583 if (IS_ENABLED(CONFIG_F2FS_CHECK_FS)) {
584 need_cache = false;
585 goto sanity_check;
586 }
587 return 0;
588 }
589
590 /*
591 * Check current segment summary by trying to grab journal_rwsem first.
592 * This sem is on the critical path on the checkpoint requiring the above
593 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
594 * while not bothering checkpoint.
595 */
596 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
597 down_read(&curseg->journal_rwsem);
598 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
599 !down_read_trylock(&curseg->journal_rwsem)) {
600 f2fs_up_read(&nm_i->nat_tree_lock);
601 goto retry;
602 }
603
604 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
605 if (i >= 0) {
606 ne = nat_in_journal(journal, i);
607 node_info_from_raw_nat(ni, &ne);
608 }
609 up_read(&curseg->journal_rwsem);
610 if (i >= 0) {
611 f2fs_up_read(&nm_i->nat_tree_lock);
612 goto sanity_check;
613 }
614
615 /* Fill node_info from nat page */
616 index = current_nat_addr(sbi, nid);
617 f2fs_up_read(&nm_i->nat_tree_lock);
618
619 folio = f2fs_get_meta_folio(sbi, index);
620 if (IS_ERR(folio))
621 return PTR_ERR(folio);
622
623 nat_blk = folio_address(folio);
624 ne = nat_blk->entries[nid - start_nid];
625 node_info_from_raw_nat(ni, &ne);
626 f2fs_folio_put(folio, true);
627 sanity_check:
628 if (__is_valid_data_blkaddr(ni->blk_addr) &&
629 !f2fs_is_valid_blkaddr(sbi, ni->blk_addr,
630 DATA_GENERIC_ENHANCE)) {
631 set_sbi_flag(sbi, SBI_NEED_FSCK);
632 f2fs_err_ratelimited(sbi,
633 "f2fs_get_node_info of %pS: inconsistent nat entry, "
634 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
635 __builtin_return_address(0),
636 ni->ino, ni->nid, ni->blk_addr, ni->version, ni->flag);
637 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
638 return -EFSCORRUPTED;
639 }
640
641 /* cache nat entry */
642 if (need_cache)
643 cache_nat_entry(sbi, nid, &ne);
644 return 0;
645 }
646
647 /*
648 * readahead MAX_RA_NODE number of node pages.
649 */
f2fs_ra_node_pages(struct folio * parent,int start,int n)650 static void f2fs_ra_node_pages(struct folio *parent, int start, int n)
651 {
652 struct f2fs_sb_info *sbi = F2FS_F_SB(parent);
653 struct blk_plug plug;
654 int i, end;
655 nid_t nid;
656
657 blk_start_plug(&plug);
658
659 /* Then, try readahead for siblings of the desired node */
660 end = start + n;
661 end = min(end, (int)NIDS_PER_BLOCK);
662 for (i = start; i < end; i++) {
663 nid = get_nid(parent, i, false);
664 f2fs_ra_node_page(sbi, nid);
665 }
666
667 blk_finish_plug(&plug);
668 }
669
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)670 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
671 {
672 const long direct_index = ADDRS_PER_INODE(dn->inode);
673 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
674 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
675 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
676 int cur_level = dn->cur_level;
677 int max_level = dn->max_level;
678 pgoff_t base = 0;
679
680 if (!dn->max_level)
681 return pgofs + 1;
682
683 while (max_level-- > cur_level)
684 skipped_unit *= NIDS_PER_BLOCK;
685
686 switch (dn->max_level) {
687 case 3:
688 base += 2 * indirect_blks;
689 fallthrough;
690 case 2:
691 base += 2 * direct_blks;
692 fallthrough;
693 case 1:
694 base += direct_index;
695 break;
696 default:
697 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
698 }
699
700 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
701 }
702
703 /*
704 * The maximum depth is four.
705 * Offset[0] will have raw inode offset.
706 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])707 static int get_node_path(struct inode *inode, long block,
708 int offset[4], unsigned int noffset[4])
709 {
710 const long direct_index = ADDRS_PER_INODE(inode);
711 const long direct_blks = ADDRS_PER_BLOCK(inode);
712 const long dptrs_per_blk = NIDS_PER_BLOCK;
713 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
714 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
715 int n = 0;
716 int level = 0;
717
718 noffset[0] = 0;
719
720 if (block < direct_index) {
721 offset[n] = block;
722 goto got;
723 }
724 block -= direct_index;
725 if (block < direct_blks) {
726 offset[n++] = NODE_DIR1_BLOCK;
727 noffset[n] = 1;
728 offset[n] = block;
729 level = 1;
730 goto got;
731 }
732 block -= direct_blks;
733 if (block < direct_blks) {
734 offset[n++] = NODE_DIR2_BLOCK;
735 noffset[n] = 2;
736 offset[n] = block;
737 level = 1;
738 goto got;
739 }
740 block -= direct_blks;
741 if (block < indirect_blks) {
742 offset[n++] = NODE_IND1_BLOCK;
743 noffset[n] = 3;
744 offset[n++] = block / direct_blks;
745 noffset[n] = 4 + offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 2;
748 goto got;
749 }
750 block -= indirect_blks;
751 if (block < indirect_blks) {
752 offset[n++] = NODE_IND2_BLOCK;
753 noffset[n] = 4 + dptrs_per_blk;
754 offset[n++] = block / direct_blks;
755 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
756 offset[n] = block % direct_blks;
757 level = 2;
758 goto got;
759 }
760 block -= indirect_blks;
761 if (block < dindirect_blks) {
762 offset[n++] = NODE_DIND_BLOCK;
763 noffset[n] = 5 + (dptrs_per_blk * 2);
764 offset[n++] = block / indirect_blks;
765 noffset[n] = 6 + (dptrs_per_blk * 2) +
766 offset[n - 1] * (dptrs_per_blk + 1);
767 offset[n++] = (block / direct_blks) % dptrs_per_blk;
768 noffset[n] = 7 + (dptrs_per_blk * 2) +
769 offset[n - 2] * (dptrs_per_blk + 1) +
770 offset[n - 1];
771 offset[n] = block % direct_blks;
772 level = 3;
773 goto got;
774 } else {
775 return -E2BIG;
776 }
777 got:
778 return level;
779 }
780
781 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start);
782
783 /*
784 * Caller should call f2fs_put_dnode(dn).
785 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
786 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
787 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)788 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
789 {
790 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
791 struct folio *nfolio[4];
792 struct folio *parent = NULL;
793 int offset[4];
794 unsigned int noffset[4];
795 nid_t nids[4];
796 int level, i = 0;
797 int err = 0;
798
799 level = get_node_path(dn->inode, index, offset, noffset);
800 if (level < 0)
801 return level;
802
803 nids[0] = dn->inode->i_ino;
804
805 if (!dn->inode_folio) {
806 nfolio[0] = f2fs_get_inode_folio(sbi, nids[0]);
807 if (IS_ERR(nfolio[0]))
808 return PTR_ERR(nfolio[0]);
809 } else {
810 nfolio[0] = dn->inode_folio;
811 }
812
813 /* if inline_data is set, should not report any block indices */
814 if (f2fs_has_inline_data(dn->inode) && index) {
815 err = -ENOENT;
816 f2fs_folio_put(nfolio[0], true);
817 goto release_out;
818 }
819
820 parent = nfolio[0];
821 if (level != 0)
822 nids[1] = get_nid(parent, offset[0], true);
823 dn->inode_folio = nfolio[0];
824 dn->inode_folio_locked = true;
825
826 /* get indirect or direct nodes */
827 for (i = 1; i <= level; i++) {
828 bool done = false;
829
830 if (nids[i] && nids[i] == dn->inode->i_ino) {
831 err = -EFSCORRUPTED;
832 f2fs_err_ratelimited(sbi,
833 "inode mapping table is corrupted, run fsck to fix it, "
834 "ino:%lu, nid:%u, level:%d, offset:%d",
835 dn->inode->i_ino, nids[i], level, offset[level]);
836 set_sbi_flag(sbi, SBI_NEED_FSCK);
837 goto release_pages;
838 }
839
840 if (!nids[i] && mode == ALLOC_NODE) {
841 /* alloc new node */
842 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
843 err = -ENOSPC;
844 goto release_pages;
845 }
846
847 dn->nid = nids[i];
848 nfolio[i] = f2fs_new_node_folio(dn, noffset[i]);
849 if (IS_ERR(nfolio[i])) {
850 f2fs_alloc_nid_failed(sbi, nids[i]);
851 err = PTR_ERR(nfolio[i]);
852 goto release_pages;
853 }
854
855 set_nid(parent, offset[i - 1], nids[i], i == 1);
856 f2fs_alloc_nid_done(sbi, nids[i]);
857 done = true;
858 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
859 nfolio[i] = f2fs_get_node_folio_ra(parent, offset[i - 1]);
860 if (IS_ERR(nfolio[i])) {
861 err = PTR_ERR(nfolio[i]);
862 goto release_pages;
863 }
864 done = true;
865 }
866 if (i == 1) {
867 dn->inode_folio_locked = false;
868 folio_unlock(parent);
869 } else {
870 f2fs_folio_put(parent, true);
871 }
872
873 if (!done) {
874 nfolio[i] = f2fs_get_node_folio(sbi, nids[i]);
875 if (IS_ERR(nfolio[i])) {
876 err = PTR_ERR(nfolio[i]);
877 f2fs_folio_put(nfolio[0], false);
878 goto release_out;
879 }
880 }
881 if (i < level) {
882 parent = nfolio[i];
883 nids[i + 1] = get_nid(parent, offset[i], false);
884 }
885 }
886 dn->nid = nids[level];
887 dn->ofs_in_node = offset[level];
888 dn->node_folio = nfolio[level];
889 dn->data_blkaddr = f2fs_data_blkaddr(dn);
890
891 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
892 f2fs_sb_has_readonly(sbi)) {
893 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
894 unsigned int ofs_in_node = dn->ofs_in_node;
895 pgoff_t fofs = index;
896 unsigned int c_len;
897 block_t blkaddr;
898
899 /* should align fofs and ofs_in_node to cluster_size */
900 if (fofs % cluster_size) {
901 fofs = round_down(fofs, cluster_size);
902 ofs_in_node = round_down(ofs_in_node, cluster_size);
903 }
904
905 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
906 if (!c_len)
907 goto out;
908
909 blkaddr = data_blkaddr(dn->inode, dn->node_folio, ofs_in_node);
910 if (blkaddr == COMPRESS_ADDR)
911 blkaddr = data_blkaddr(dn->inode, dn->node_folio,
912 ofs_in_node + 1);
913
914 f2fs_update_read_extent_tree_range_compressed(dn->inode,
915 fofs, blkaddr, cluster_size, c_len);
916 }
917 out:
918 return 0;
919
920 release_pages:
921 f2fs_folio_put(parent, true);
922 if (i > 1)
923 f2fs_folio_put(nfolio[0], false);
924 release_out:
925 dn->inode_folio = NULL;
926 dn->node_folio = NULL;
927 if (err == -ENOENT) {
928 dn->cur_level = i;
929 dn->max_level = level;
930 dn->ofs_in_node = offset[level];
931 }
932 return err;
933 }
934
truncate_node(struct dnode_of_data * dn)935 static int truncate_node(struct dnode_of_data *dn)
936 {
937 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
938 struct node_info ni;
939 int err;
940 pgoff_t index;
941
942 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
943 if (err)
944 return err;
945
946 if (ni.blk_addr != NEW_ADDR &&
947 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
948 f2fs_err_ratelimited(sbi,
949 "nat entry is corrupted, run fsck to fix it, ino:%u, "
950 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
951 set_sbi_flag(sbi, SBI_NEED_FSCK);
952 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
953 return -EFSCORRUPTED;
954 }
955
956 /* Deallocate node address */
957 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
958 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
959 set_node_addr(sbi, &ni, NULL_ADDR, false);
960
961 if (dn->nid == dn->inode->i_ino) {
962 f2fs_remove_orphan_inode(sbi, dn->nid);
963 dec_valid_inode_count(sbi);
964 f2fs_inode_synced(dn->inode);
965 }
966
967 clear_node_folio_dirty(dn->node_folio);
968 set_sbi_flag(sbi, SBI_IS_DIRTY);
969
970 index = dn->node_folio->index;
971 f2fs_folio_put(dn->node_folio, true);
972
973 invalidate_mapping_pages(NODE_MAPPING(sbi),
974 index, index);
975
976 dn->node_folio = NULL;
977 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
978
979 return 0;
980 }
981
truncate_dnode(struct dnode_of_data * dn)982 static int truncate_dnode(struct dnode_of_data *dn)
983 {
984 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
985 struct folio *folio;
986 int err;
987
988 if (dn->nid == 0)
989 return 1;
990
991 /* get direct node */
992 folio = f2fs_get_node_folio(sbi, dn->nid);
993 if (PTR_ERR(folio) == -ENOENT)
994 return 1;
995 else if (IS_ERR(folio))
996 return PTR_ERR(folio);
997
998 if (IS_INODE(folio) || ino_of_node(folio) != dn->inode->i_ino) {
999 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
1000 dn->inode->i_ino, dn->nid, ino_of_node(folio));
1001 set_sbi_flag(sbi, SBI_NEED_FSCK);
1002 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
1003 f2fs_folio_put(folio, true);
1004 return -EFSCORRUPTED;
1005 }
1006
1007 /* Make dnode_of_data for parameter */
1008 dn->node_folio = folio;
1009 dn->ofs_in_node = 0;
1010 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
1011 err = truncate_node(dn);
1012 if (err) {
1013 f2fs_folio_put(folio, true);
1014 return err;
1015 }
1016
1017 return 1;
1018 }
1019
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)1020 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
1021 int ofs, int depth)
1022 {
1023 struct dnode_of_data rdn = *dn;
1024 struct folio *folio;
1025 struct f2fs_node *rn;
1026 nid_t child_nid;
1027 unsigned int child_nofs;
1028 int freed = 0;
1029 int i, ret;
1030
1031 if (dn->nid == 0)
1032 return NIDS_PER_BLOCK + 1;
1033
1034 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
1035
1036 folio = f2fs_get_node_folio(F2FS_I_SB(dn->inode), dn->nid);
1037 if (IS_ERR(folio)) {
1038 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(folio));
1039 return PTR_ERR(folio);
1040 }
1041
1042 f2fs_ra_node_pages(folio, ofs, NIDS_PER_BLOCK);
1043
1044 rn = F2FS_NODE(folio);
1045 if (depth < 3) {
1046 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1047 child_nid = le32_to_cpu(rn->in.nid[i]);
1048 if (child_nid == 0)
1049 continue;
1050 rdn.nid = child_nid;
1051 ret = truncate_dnode(&rdn);
1052 if (ret < 0)
1053 goto out_err;
1054 if (set_nid(folio, i, 0, false))
1055 dn->node_changed = true;
1056 }
1057 } else {
1058 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1059 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1060 child_nid = le32_to_cpu(rn->in.nid[i]);
1061 if (child_nid == 0) {
1062 child_nofs += NIDS_PER_BLOCK + 1;
1063 continue;
1064 }
1065 rdn.nid = child_nid;
1066 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1067 if (ret == (NIDS_PER_BLOCK + 1)) {
1068 if (set_nid(folio, i, 0, false))
1069 dn->node_changed = true;
1070 child_nofs += ret;
1071 } else if (ret < 0 && ret != -ENOENT) {
1072 goto out_err;
1073 }
1074 }
1075 freed = child_nofs;
1076 }
1077
1078 if (!ofs) {
1079 /* remove current indirect node */
1080 dn->node_folio = folio;
1081 ret = truncate_node(dn);
1082 if (ret)
1083 goto out_err;
1084 freed++;
1085 } else {
1086 f2fs_folio_put(folio, true);
1087 }
1088 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1089 return freed;
1090
1091 out_err:
1092 f2fs_folio_put(folio, true);
1093 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1094 return ret;
1095 }
1096
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1097 static int truncate_partial_nodes(struct dnode_of_data *dn,
1098 struct f2fs_inode *ri, int *offset, int depth)
1099 {
1100 struct folio *folios[2];
1101 nid_t nid[3];
1102 nid_t child_nid;
1103 int err = 0;
1104 int i;
1105 int idx = depth - 2;
1106
1107 nid[0] = get_nid(dn->inode_folio, offset[0], true);
1108 if (!nid[0])
1109 return 0;
1110
1111 /* get indirect nodes in the path */
1112 for (i = 0; i < idx + 1; i++) {
1113 /* reference count'll be increased */
1114 folios[i] = f2fs_get_node_folio(F2FS_I_SB(dn->inode), nid[i]);
1115 if (IS_ERR(folios[i])) {
1116 err = PTR_ERR(folios[i]);
1117 idx = i - 1;
1118 goto fail;
1119 }
1120 nid[i + 1] = get_nid(folios[i], offset[i + 1], false);
1121 }
1122
1123 f2fs_ra_node_pages(folios[idx], offset[idx + 1], NIDS_PER_BLOCK);
1124
1125 /* free direct nodes linked to a partial indirect node */
1126 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1127 child_nid = get_nid(folios[idx], i, false);
1128 if (!child_nid)
1129 continue;
1130 dn->nid = child_nid;
1131 err = truncate_dnode(dn);
1132 if (err < 0)
1133 goto fail;
1134 if (set_nid(folios[idx], i, 0, false))
1135 dn->node_changed = true;
1136 }
1137
1138 if (offset[idx + 1] == 0) {
1139 dn->node_folio = folios[idx];
1140 dn->nid = nid[idx];
1141 err = truncate_node(dn);
1142 if (err)
1143 goto fail;
1144 } else {
1145 f2fs_folio_put(folios[idx], true);
1146 }
1147 offset[idx]++;
1148 offset[idx + 1] = 0;
1149 idx--;
1150 fail:
1151 for (i = idx; i >= 0; i--)
1152 f2fs_folio_put(folios[i], true);
1153
1154 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1155
1156 return err;
1157 }
1158
1159 /*
1160 * All the block addresses of data and nodes should be nullified.
1161 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1162 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1163 {
1164 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1165 int err = 0, cont = 1;
1166 int level, offset[4], noffset[4];
1167 unsigned int nofs = 0;
1168 struct f2fs_inode *ri;
1169 struct dnode_of_data dn;
1170 struct folio *folio;
1171
1172 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1173
1174 level = get_node_path(inode, from, offset, noffset);
1175 if (level <= 0) {
1176 if (!level) {
1177 level = -EFSCORRUPTED;
1178 f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u",
1179 __func__, inode->i_ino,
1180 from, ADDRS_PER_INODE(inode));
1181 set_sbi_flag(sbi, SBI_NEED_FSCK);
1182 }
1183 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1184 return level;
1185 }
1186
1187 folio = f2fs_get_inode_folio(sbi, inode->i_ino);
1188 if (IS_ERR(folio)) {
1189 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio));
1190 return PTR_ERR(folio);
1191 }
1192
1193 set_new_dnode(&dn, inode, folio, NULL, 0);
1194 folio_unlock(folio);
1195
1196 ri = F2FS_INODE(folio);
1197 switch (level) {
1198 case 0:
1199 case 1:
1200 nofs = noffset[1];
1201 break;
1202 case 2:
1203 nofs = noffset[1];
1204 if (!offset[level - 1])
1205 goto skip_partial;
1206 err = truncate_partial_nodes(&dn, ri, offset, level);
1207 if (err < 0 && err != -ENOENT)
1208 goto fail;
1209 nofs += 1 + NIDS_PER_BLOCK;
1210 break;
1211 case 3:
1212 nofs = 5 + 2 * NIDS_PER_BLOCK;
1213 if (!offset[level - 1])
1214 goto skip_partial;
1215 err = truncate_partial_nodes(&dn, ri, offset, level);
1216 if (err < 0 && err != -ENOENT)
1217 goto fail;
1218 break;
1219 default:
1220 BUG();
1221 }
1222
1223 skip_partial:
1224 while (cont) {
1225 dn.nid = get_nid(folio, offset[0], true);
1226 switch (offset[0]) {
1227 case NODE_DIR1_BLOCK:
1228 case NODE_DIR2_BLOCK:
1229 err = truncate_dnode(&dn);
1230 break;
1231
1232 case NODE_IND1_BLOCK:
1233 case NODE_IND2_BLOCK:
1234 err = truncate_nodes(&dn, nofs, offset[1], 2);
1235 break;
1236
1237 case NODE_DIND_BLOCK:
1238 err = truncate_nodes(&dn, nofs, offset[1], 3);
1239 cont = 0;
1240 break;
1241
1242 default:
1243 BUG();
1244 }
1245 if (err == -ENOENT) {
1246 set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK);
1247 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1248 f2fs_err_ratelimited(sbi,
1249 "truncate node fail, ino:%lu, nid:%u, "
1250 "offset[0]:%d, offset[1]:%d, nofs:%d",
1251 inode->i_ino, dn.nid, offset[0],
1252 offset[1], nofs);
1253 err = 0;
1254 }
1255 if (err < 0)
1256 goto fail;
1257 if (offset[1] == 0 && get_nid(folio, offset[0], true)) {
1258 folio_lock(folio);
1259 BUG_ON(!is_node_folio(folio));
1260 set_nid(folio, offset[0], 0, true);
1261 folio_unlock(folio);
1262 }
1263 offset[1] = 0;
1264 offset[0]++;
1265 nofs += err;
1266 }
1267 fail:
1268 f2fs_folio_put(folio, false);
1269 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1270 return err > 0 ? 0 : err;
1271 }
1272
1273 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1274 int f2fs_truncate_xattr_node(struct inode *inode)
1275 {
1276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1277 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1278 struct dnode_of_data dn;
1279 struct folio *nfolio;
1280 int err;
1281
1282 if (!nid)
1283 return 0;
1284
1285 nfolio = f2fs_get_xnode_folio(sbi, nid);
1286 if (IS_ERR(nfolio))
1287 return PTR_ERR(nfolio);
1288
1289 set_new_dnode(&dn, inode, NULL, nfolio, nid);
1290 err = truncate_node(&dn);
1291 if (err) {
1292 f2fs_folio_put(nfolio, true);
1293 return err;
1294 }
1295
1296 f2fs_i_xnid_write(inode, 0);
1297
1298 return 0;
1299 }
1300
1301 /*
1302 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1303 * f2fs_unlock_op().
1304 */
f2fs_remove_inode_page(struct inode * inode)1305 int f2fs_remove_inode_page(struct inode *inode)
1306 {
1307 struct dnode_of_data dn;
1308 int err;
1309
1310 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1311 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1312 if (err)
1313 return err;
1314
1315 err = f2fs_truncate_xattr_node(inode);
1316 if (err) {
1317 f2fs_put_dnode(&dn);
1318 return err;
1319 }
1320
1321 /* remove potential inline_data blocks */
1322 if (!IS_DEVICE_ALIASING(inode) &&
1323 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1324 S_ISLNK(inode->i_mode)))
1325 f2fs_truncate_data_blocks_range(&dn, 1);
1326
1327 /* 0 is possible, after f2fs_new_inode() has failed */
1328 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1329 f2fs_put_dnode(&dn);
1330 return -EIO;
1331 }
1332
1333 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1334 f2fs_warn(F2FS_I_SB(inode),
1335 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1336 inode->i_ino, (unsigned long long)inode->i_blocks);
1337 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1338 }
1339
1340 /* will put inode & node pages */
1341 err = truncate_node(&dn);
1342 if (err) {
1343 f2fs_put_dnode(&dn);
1344 return err;
1345 }
1346 return 0;
1347 }
1348
f2fs_new_inode_folio(struct inode * inode)1349 struct folio *f2fs_new_inode_folio(struct inode *inode)
1350 {
1351 struct dnode_of_data dn;
1352
1353 /* allocate inode page for new inode */
1354 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1355
1356 /* caller should f2fs_folio_put(folio, true); */
1357 return f2fs_new_node_folio(&dn, 0);
1358 }
1359
f2fs_new_node_folio(struct dnode_of_data * dn,unsigned int ofs)1360 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs)
1361 {
1362 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1363 struct node_info new_ni;
1364 struct folio *folio;
1365 int err;
1366
1367 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1368 return ERR_PTR(-EPERM);
1369
1370 folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), dn->nid, false);
1371 if (IS_ERR(folio))
1372 return folio;
1373
1374 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1375 goto fail;
1376
1377 #ifdef CONFIG_F2FS_CHECK_FS
1378 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1379 if (err) {
1380 dec_valid_node_count(sbi, dn->inode, !ofs);
1381 goto fail;
1382 }
1383 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1384 err = -EFSCORRUPTED;
1385 dec_valid_node_count(sbi, dn->inode, !ofs);
1386 set_sbi_flag(sbi, SBI_NEED_FSCK);
1387 f2fs_warn_ratelimited(sbi,
1388 "f2fs_new_node_folio: inconsistent nat entry, "
1389 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1390 new_ni.ino, new_ni.nid, new_ni.blk_addr,
1391 new_ni.version, new_ni.flag);
1392 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1393 goto fail;
1394 }
1395 #endif
1396 new_ni.nid = dn->nid;
1397 new_ni.ino = dn->inode->i_ino;
1398 new_ni.blk_addr = NULL_ADDR;
1399 new_ni.flag = 0;
1400 new_ni.version = 0;
1401 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1402
1403 f2fs_folio_wait_writeback(folio, NODE, true, true);
1404 fill_node_footer(folio, dn->nid, dn->inode->i_ino, ofs, true);
1405 set_cold_node(folio, S_ISDIR(dn->inode->i_mode));
1406 if (!folio_test_uptodate(folio))
1407 folio_mark_uptodate(folio);
1408 if (folio_mark_dirty(folio))
1409 dn->node_changed = true;
1410
1411 if (f2fs_has_xattr_block(ofs))
1412 f2fs_i_xnid_write(dn->inode, dn->nid);
1413
1414 if (ofs == 0)
1415 inc_valid_inode_count(sbi);
1416 return folio;
1417 fail:
1418 clear_node_folio_dirty(folio);
1419 f2fs_folio_put(folio, true);
1420 return ERR_PTR(err);
1421 }
1422
1423 /*
1424 * Caller should do after getting the following values.
1425 * 0: f2fs_folio_put(folio, false)
1426 * LOCKED_PAGE or error: f2fs_folio_put(folio, true)
1427 */
read_node_folio(struct folio * folio,blk_opf_t op_flags)1428 static int read_node_folio(struct folio *folio, blk_opf_t op_flags)
1429 {
1430 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1431 struct node_info ni;
1432 struct f2fs_io_info fio = {
1433 .sbi = sbi,
1434 .type = NODE,
1435 .op = REQ_OP_READ,
1436 .op_flags = op_flags,
1437 .folio = folio,
1438 .encrypted_page = NULL,
1439 };
1440 int err;
1441
1442 if (folio_test_uptodate(folio)) {
1443 if (!f2fs_inode_chksum_verify(sbi, folio)) {
1444 folio_clear_uptodate(folio);
1445 return -EFSBADCRC;
1446 }
1447 return LOCKED_PAGE;
1448 }
1449
1450 err = f2fs_get_node_info(sbi, folio->index, &ni, false);
1451 if (err)
1452 return err;
1453
1454 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1455 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1456 folio_clear_uptodate(folio);
1457 return -ENOENT;
1458 }
1459
1460 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1461
1462 err = f2fs_submit_page_bio(&fio);
1463
1464 if (!err)
1465 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1466
1467 return err;
1468 }
1469
1470 /*
1471 * Readahead a node page
1472 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1473 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1474 {
1475 struct folio *afolio;
1476 int err;
1477
1478 if (!nid)
1479 return;
1480 if (f2fs_check_nid_range(sbi, nid))
1481 return;
1482
1483 afolio = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1484 if (afolio)
1485 return;
1486
1487 afolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1488 if (IS_ERR(afolio))
1489 return;
1490
1491 err = read_node_folio(afolio, REQ_RAHEAD);
1492 f2fs_folio_put(afolio, err ? true : false);
1493 }
1494
sanity_check_node_footer(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t nid,enum node_type ntype)1495 static int sanity_check_node_footer(struct f2fs_sb_info *sbi,
1496 struct folio *folio, pgoff_t nid,
1497 enum node_type ntype)
1498 {
1499 if (unlikely(nid != nid_of_node(folio) ||
1500 (ntype == NODE_TYPE_INODE && !IS_INODE(folio)) ||
1501 (ntype == NODE_TYPE_XATTR &&
1502 !f2fs_has_xattr_block(ofs_of_node(folio))) ||
1503 time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))) {
1504 f2fs_warn(sbi, "inconsistent node block, node_type:%d, nid:%lu, "
1505 "node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1506 ntype, nid, nid_of_node(folio), ino_of_node(folio),
1507 ofs_of_node(folio), cpver_of_node(folio),
1508 next_blkaddr_of_node(folio));
1509 set_sbi_flag(sbi, SBI_NEED_FSCK);
1510 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1511 return -EFSCORRUPTED;
1512 }
1513 return 0;
1514 }
1515
__get_node_folio(struct f2fs_sb_info * sbi,pgoff_t nid,struct folio * parent,int start,enum node_type ntype)1516 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid,
1517 struct folio *parent, int start, enum node_type ntype)
1518 {
1519 struct folio *folio;
1520 int err;
1521
1522 if (!nid)
1523 return ERR_PTR(-ENOENT);
1524 if (f2fs_check_nid_range(sbi, nid))
1525 return ERR_PTR(-EINVAL);
1526 repeat:
1527 folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false);
1528 if (IS_ERR(folio))
1529 return folio;
1530
1531 err = read_node_folio(folio, 0);
1532 if (err < 0)
1533 goto out_put_err;
1534 if (err == LOCKED_PAGE)
1535 goto page_hit;
1536
1537 if (parent)
1538 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1539
1540 folio_lock(folio);
1541
1542 if (unlikely(!is_node_folio(folio))) {
1543 f2fs_folio_put(folio, true);
1544 goto repeat;
1545 }
1546
1547 if (unlikely(!folio_test_uptodate(folio))) {
1548 err = -EIO;
1549 goto out_err;
1550 }
1551
1552 if (!f2fs_inode_chksum_verify(sbi, folio)) {
1553 err = -EFSBADCRC;
1554 goto out_err;
1555 }
1556 page_hit:
1557 err = sanity_check_node_footer(sbi, folio, nid, ntype);
1558 if (!err)
1559 return folio;
1560 out_err:
1561 folio_clear_uptodate(folio);
1562 out_put_err:
1563 /* ENOENT comes from read_node_folio which is not an error. */
1564 if (err != -ENOENT)
1565 f2fs_handle_page_eio(sbi, folio, NODE);
1566 f2fs_folio_put(folio, true);
1567 return ERR_PTR(err);
1568 }
1569
f2fs_get_node_folio(struct f2fs_sb_info * sbi,pgoff_t nid)1570 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid)
1571 {
1572 return __get_node_folio(sbi, nid, NULL, 0, NODE_TYPE_REGULAR);
1573 }
1574
f2fs_get_inode_folio(struct f2fs_sb_info * sbi,pgoff_t ino)1575 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino)
1576 {
1577 return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE);
1578 }
1579
f2fs_get_xnode_folio(struct f2fs_sb_info * sbi,pgoff_t xnid)1580 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid)
1581 {
1582 return __get_node_folio(sbi, xnid, NULL, 0, NODE_TYPE_XATTR);
1583 }
1584
f2fs_get_node_folio_ra(struct folio * parent,int start)1585 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start)
1586 {
1587 struct f2fs_sb_info *sbi = F2FS_F_SB(parent);
1588 nid_t nid = get_nid(parent, start, false);
1589
1590 return __get_node_folio(sbi, nid, parent, start, NODE_TYPE_REGULAR);
1591 }
1592
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1593 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1594 {
1595 struct inode *inode;
1596 struct folio *folio;
1597 int ret;
1598
1599 /* should flush inline_data before evict_inode */
1600 inode = ilookup(sbi->sb, ino);
1601 if (!inode)
1602 return;
1603
1604 folio = f2fs_filemap_get_folio(inode->i_mapping, 0,
1605 FGP_LOCK|FGP_NOWAIT, 0);
1606 if (IS_ERR(folio))
1607 goto iput_out;
1608
1609 if (!folio_test_uptodate(folio))
1610 goto folio_out;
1611
1612 if (!folio_test_dirty(folio))
1613 goto folio_out;
1614
1615 if (!folio_clear_dirty_for_io(folio))
1616 goto folio_out;
1617
1618 ret = f2fs_write_inline_data(inode, folio);
1619 inode_dec_dirty_pages(inode);
1620 f2fs_remove_dirty_inode(inode);
1621 if (ret)
1622 folio_mark_dirty(folio);
1623 folio_out:
1624 f2fs_folio_put(folio, true);
1625 iput_out:
1626 iput(inode);
1627 }
1628
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1629 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1630 {
1631 pgoff_t index;
1632 struct folio_batch fbatch;
1633 struct folio *last_folio = NULL;
1634 int nr_folios;
1635
1636 folio_batch_init(&fbatch);
1637 index = 0;
1638
1639 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1640 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1641 &fbatch))) {
1642 int i;
1643
1644 for (i = 0; i < nr_folios; i++) {
1645 struct folio *folio = fbatch.folios[i];
1646
1647 if (unlikely(f2fs_cp_error(sbi))) {
1648 f2fs_folio_put(last_folio, false);
1649 folio_batch_release(&fbatch);
1650 return ERR_PTR(-EIO);
1651 }
1652
1653 if (!IS_DNODE(folio) || !is_cold_node(folio))
1654 continue;
1655 if (ino_of_node(folio) != ino)
1656 continue;
1657
1658 folio_lock(folio);
1659
1660 if (unlikely(!is_node_folio(folio))) {
1661 continue_unlock:
1662 folio_unlock(folio);
1663 continue;
1664 }
1665 if (ino_of_node(folio) != ino)
1666 goto continue_unlock;
1667
1668 if (!folio_test_dirty(folio)) {
1669 /* someone wrote it for us */
1670 goto continue_unlock;
1671 }
1672
1673 if (last_folio)
1674 f2fs_folio_put(last_folio, false);
1675
1676 folio_get(folio);
1677 last_folio = folio;
1678 folio_unlock(folio);
1679 }
1680 folio_batch_release(&fbatch);
1681 cond_resched();
1682 }
1683 return last_folio;
1684 }
1685
__write_node_folio(struct folio * folio,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1686 static bool __write_node_folio(struct folio *folio, bool atomic, bool *submitted,
1687 struct writeback_control *wbc, bool do_balance,
1688 enum iostat_type io_type, unsigned int *seq_id)
1689 {
1690 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1691 nid_t nid;
1692 struct node_info ni;
1693 struct f2fs_io_info fio = {
1694 .sbi = sbi,
1695 .ino = ino_of_node(folio),
1696 .type = NODE,
1697 .op = REQ_OP_WRITE,
1698 .op_flags = wbc_to_write_flags(wbc),
1699 .folio = folio,
1700 .encrypted_page = NULL,
1701 .submitted = 0,
1702 .io_type = io_type,
1703 .io_wbc = wbc,
1704 };
1705 unsigned int seq;
1706
1707 trace_f2fs_writepage(folio, NODE);
1708
1709 if (unlikely(f2fs_cp_error(sbi))) {
1710 /* keep node pages in remount-ro mode */
1711 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1712 goto redirty_out;
1713 folio_clear_uptodate(folio);
1714 dec_page_count(sbi, F2FS_DIRTY_NODES);
1715 folio_unlock(folio);
1716 return true;
1717 }
1718
1719 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1720 goto redirty_out;
1721
1722 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1723 wbc->sync_mode == WB_SYNC_NONE &&
1724 IS_DNODE(folio) && is_cold_node(folio))
1725 goto redirty_out;
1726
1727 /* get old block addr of this node page */
1728 nid = nid_of_node(folio);
1729 f2fs_bug_on(sbi, folio->index != nid);
1730
1731 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1732 goto redirty_out;
1733
1734 f2fs_down_read(&sbi->node_write);
1735
1736 /* This page is already truncated */
1737 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1738 folio_clear_uptodate(folio);
1739 dec_page_count(sbi, F2FS_DIRTY_NODES);
1740 f2fs_up_read(&sbi->node_write);
1741 folio_unlock(folio);
1742 return true;
1743 }
1744
1745 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1746 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1747 DATA_GENERIC_ENHANCE)) {
1748 f2fs_up_read(&sbi->node_write);
1749 goto redirty_out;
1750 }
1751
1752 if (atomic && !test_opt(sbi, NOBARRIER))
1753 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1754
1755 /* should add to global list before clearing PAGECACHE status */
1756 if (f2fs_in_warm_node_list(sbi, folio)) {
1757 seq = f2fs_add_fsync_node_entry(sbi, folio);
1758 if (seq_id)
1759 *seq_id = seq;
1760 }
1761
1762 folio_start_writeback(folio);
1763
1764 fio.old_blkaddr = ni.blk_addr;
1765 f2fs_do_write_node_page(nid, &fio);
1766 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(folio));
1767 dec_page_count(sbi, F2FS_DIRTY_NODES);
1768 f2fs_up_read(&sbi->node_write);
1769
1770 folio_unlock(folio);
1771
1772 if (unlikely(f2fs_cp_error(sbi))) {
1773 f2fs_submit_merged_write(sbi, NODE);
1774 submitted = NULL;
1775 }
1776 if (submitted)
1777 *submitted = fio.submitted;
1778
1779 if (do_balance)
1780 f2fs_balance_fs(sbi, false);
1781 return true;
1782
1783 redirty_out:
1784 folio_redirty_for_writepage(wbc, folio);
1785 folio_unlock(folio);
1786 return false;
1787 }
1788
f2fs_move_node_folio(struct folio * node_folio,int gc_type)1789 int f2fs_move_node_folio(struct folio *node_folio, int gc_type)
1790 {
1791 int err = 0;
1792
1793 if (gc_type == FG_GC) {
1794 struct writeback_control wbc = {
1795 .sync_mode = WB_SYNC_ALL,
1796 .nr_to_write = 1,
1797 };
1798
1799 f2fs_folio_wait_writeback(node_folio, NODE, true, true);
1800
1801 folio_mark_dirty(node_folio);
1802
1803 if (!folio_clear_dirty_for_io(node_folio)) {
1804 err = -EAGAIN;
1805 goto out_page;
1806 }
1807
1808 if (!__write_node_folio(node_folio, false, NULL,
1809 &wbc, false, FS_GC_NODE_IO, NULL))
1810 err = -EAGAIN;
1811 goto release_page;
1812 } else {
1813 /* set page dirty and write it */
1814 if (!folio_test_writeback(node_folio))
1815 folio_mark_dirty(node_folio);
1816 }
1817 out_page:
1818 folio_unlock(node_folio);
1819 release_page:
1820 f2fs_folio_put(node_folio, false);
1821 return err;
1822 }
1823
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1824 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1825 struct writeback_control *wbc, bool atomic,
1826 unsigned int *seq_id)
1827 {
1828 pgoff_t index;
1829 struct folio_batch fbatch;
1830 int ret = 0;
1831 struct folio *last_folio = NULL;
1832 bool marked = false;
1833 nid_t ino = inode->i_ino;
1834 int nr_folios;
1835 int nwritten = 0;
1836
1837 if (atomic) {
1838 last_folio = last_fsync_dnode(sbi, ino);
1839 if (IS_ERR_OR_NULL(last_folio))
1840 return PTR_ERR_OR_ZERO(last_folio);
1841 }
1842 retry:
1843 folio_batch_init(&fbatch);
1844 index = 0;
1845
1846 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1847 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1848 &fbatch))) {
1849 int i;
1850
1851 for (i = 0; i < nr_folios; i++) {
1852 struct folio *folio = fbatch.folios[i];
1853 bool submitted = false;
1854
1855 if (unlikely(f2fs_cp_error(sbi))) {
1856 f2fs_folio_put(last_folio, false);
1857 folio_batch_release(&fbatch);
1858 ret = -EIO;
1859 goto out;
1860 }
1861
1862 if (!IS_DNODE(folio) || !is_cold_node(folio))
1863 continue;
1864 if (ino_of_node(folio) != ino)
1865 continue;
1866
1867 folio_lock(folio);
1868
1869 if (unlikely(!is_node_folio(folio))) {
1870 continue_unlock:
1871 folio_unlock(folio);
1872 continue;
1873 }
1874 if (ino_of_node(folio) != ino)
1875 goto continue_unlock;
1876
1877 if (!folio_test_dirty(folio) && folio != last_folio) {
1878 /* someone wrote it for us */
1879 goto continue_unlock;
1880 }
1881
1882 f2fs_folio_wait_writeback(folio, NODE, true, true);
1883
1884 set_fsync_mark(folio, 0);
1885 set_dentry_mark(folio, 0);
1886
1887 if (!atomic || folio == last_folio) {
1888 set_fsync_mark(folio, 1);
1889 percpu_counter_inc(&sbi->rf_node_block_count);
1890 if (IS_INODE(folio)) {
1891 if (is_inode_flag_set(inode,
1892 FI_DIRTY_INODE))
1893 f2fs_update_inode(inode, folio);
1894 set_dentry_mark(folio,
1895 f2fs_need_dentry_mark(sbi, ino));
1896 }
1897 /* may be written by other thread */
1898 if (!folio_test_dirty(folio))
1899 folio_mark_dirty(folio);
1900 }
1901
1902 if (!folio_clear_dirty_for_io(folio))
1903 goto continue_unlock;
1904
1905 if (!__write_node_folio(folio, atomic &&
1906 folio == last_folio,
1907 &submitted, wbc, true,
1908 FS_NODE_IO, seq_id)) {
1909 f2fs_folio_put(last_folio, false);
1910 folio_batch_release(&fbatch);
1911 ret = -EIO;
1912 goto out;
1913 }
1914 if (submitted)
1915 nwritten++;
1916
1917 if (folio == last_folio) {
1918 f2fs_folio_put(folio, false);
1919 folio_batch_release(&fbatch);
1920 marked = true;
1921 goto out;
1922 }
1923 }
1924 folio_batch_release(&fbatch);
1925 cond_resched();
1926 }
1927 if (atomic && !marked) {
1928 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1929 ino, last_folio->index);
1930 folio_lock(last_folio);
1931 f2fs_folio_wait_writeback(last_folio, NODE, true, true);
1932 folio_mark_dirty(last_folio);
1933 folio_unlock(last_folio);
1934 goto retry;
1935 }
1936 out:
1937 if (nwritten)
1938 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1939 return ret;
1940 }
1941
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1942 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1943 {
1944 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1945 bool clean;
1946
1947 if (inode->i_ino != ino)
1948 return 0;
1949
1950 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1951 return 0;
1952
1953 spin_lock(&sbi->inode_lock[DIRTY_META]);
1954 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1955 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1956
1957 if (clean)
1958 return 0;
1959
1960 inode = igrab(inode);
1961 if (!inode)
1962 return 0;
1963 return 1;
1964 }
1965
flush_dirty_inode(struct folio * folio)1966 static bool flush_dirty_inode(struct folio *folio)
1967 {
1968 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
1969 struct inode *inode;
1970 nid_t ino = ino_of_node(folio);
1971
1972 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1973 if (!inode)
1974 return false;
1975
1976 f2fs_update_inode(inode, folio);
1977 folio_unlock(folio);
1978
1979 iput(inode);
1980 return true;
1981 }
1982
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1983 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1984 {
1985 pgoff_t index = 0;
1986 struct folio_batch fbatch;
1987 int nr_folios;
1988
1989 folio_batch_init(&fbatch);
1990
1991 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1992 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1993 &fbatch))) {
1994 int i;
1995
1996 for (i = 0; i < nr_folios; i++) {
1997 struct folio *folio = fbatch.folios[i];
1998
1999 if (!IS_INODE(folio))
2000 continue;
2001
2002 folio_lock(folio);
2003
2004 if (unlikely(!is_node_folio(folio)))
2005 goto unlock;
2006 if (!folio_test_dirty(folio))
2007 goto unlock;
2008
2009 /* flush inline_data, if it's async context. */
2010 if (folio_test_f2fs_inline(folio)) {
2011 folio_clear_f2fs_inline(folio);
2012 folio_unlock(folio);
2013 flush_inline_data(sbi, ino_of_node(folio));
2014 continue;
2015 }
2016 unlock:
2017 folio_unlock(folio);
2018 }
2019 folio_batch_release(&fbatch);
2020 cond_resched();
2021 }
2022 }
2023
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)2024 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2025 struct writeback_control *wbc,
2026 bool do_balance, enum iostat_type io_type)
2027 {
2028 pgoff_t index;
2029 struct folio_batch fbatch;
2030 int step = 0;
2031 int nwritten = 0;
2032 int ret = 0;
2033 int nr_folios, done = 0;
2034
2035 folio_batch_init(&fbatch);
2036
2037 next_step:
2038 index = 0;
2039
2040 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
2041 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
2042 &fbatch))) {
2043 int i;
2044
2045 for (i = 0; i < nr_folios; i++) {
2046 struct folio *folio = fbatch.folios[i];
2047 bool submitted = false;
2048
2049 /* give a priority to WB_SYNC threads */
2050 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2051 wbc->sync_mode == WB_SYNC_NONE) {
2052 done = 1;
2053 break;
2054 }
2055
2056 /*
2057 * flushing sequence with step:
2058 * 0. indirect nodes
2059 * 1. dentry dnodes
2060 * 2. file dnodes
2061 */
2062 if (step == 0 && IS_DNODE(folio))
2063 continue;
2064 if (step == 1 && (!IS_DNODE(folio) ||
2065 is_cold_node(folio)))
2066 continue;
2067 if (step == 2 && (!IS_DNODE(folio) ||
2068 !is_cold_node(folio)))
2069 continue;
2070 lock_node:
2071 if (wbc->sync_mode == WB_SYNC_ALL)
2072 folio_lock(folio);
2073 else if (!folio_trylock(folio))
2074 continue;
2075
2076 if (unlikely(!is_node_folio(folio))) {
2077 continue_unlock:
2078 folio_unlock(folio);
2079 continue;
2080 }
2081
2082 if (!folio_test_dirty(folio)) {
2083 /* someone wrote it for us */
2084 goto continue_unlock;
2085 }
2086
2087 /* flush inline_data/inode, if it's async context. */
2088 if (!do_balance)
2089 goto write_node;
2090
2091 /* flush inline_data */
2092 if (folio_test_f2fs_inline(folio)) {
2093 folio_clear_f2fs_inline(folio);
2094 folio_unlock(folio);
2095 flush_inline_data(sbi, ino_of_node(folio));
2096 goto lock_node;
2097 }
2098
2099 /* flush dirty inode */
2100 if (IS_INODE(folio) && flush_dirty_inode(folio))
2101 goto lock_node;
2102 write_node:
2103 f2fs_folio_wait_writeback(folio, NODE, true, true);
2104
2105 if (!folio_clear_dirty_for_io(folio))
2106 goto continue_unlock;
2107
2108 set_fsync_mark(folio, 0);
2109 set_dentry_mark(folio, 0);
2110
2111 if (!__write_node_folio(folio, false, &submitted,
2112 wbc, do_balance, io_type, NULL)) {
2113 folio_batch_release(&fbatch);
2114 ret = -EIO;
2115 goto out;
2116 }
2117 if (submitted)
2118 nwritten++;
2119
2120 if (--wbc->nr_to_write == 0)
2121 break;
2122 }
2123 folio_batch_release(&fbatch);
2124 cond_resched();
2125
2126 if (wbc->nr_to_write == 0) {
2127 step = 2;
2128 break;
2129 }
2130 }
2131
2132 if (step < 2) {
2133 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2134 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2135 goto out;
2136 step++;
2137 goto next_step;
2138 }
2139 out:
2140 if (nwritten)
2141 f2fs_submit_merged_write(sbi, NODE);
2142
2143 if (unlikely(f2fs_cp_error(sbi)))
2144 return -EIO;
2145 return ret;
2146 }
2147
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2148 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2149 unsigned int seq_id)
2150 {
2151 struct fsync_node_entry *fn;
2152 struct list_head *head = &sbi->fsync_node_list;
2153 unsigned long flags;
2154 unsigned int cur_seq_id = 0;
2155
2156 while (seq_id && cur_seq_id < seq_id) {
2157 struct folio *folio;
2158
2159 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2160 if (list_empty(head)) {
2161 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2162 break;
2163 }
2164 fn = list_first_entry(head, struct fsync_node_entry, list);
2165 if (fn->seq_id > seq_id) {
2166 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2167 break;
2168 }
2169 cur_seq_id = fn->seq_id;
2170 folio = fn->folio;
2171 folio_get(folio);
2172 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2173
2174 f2fs_folio_wait_writeback(folio, NODE, true, false);
2175
2176 folio_put(folio);
2177 }
2178
2179 return filemap_check_errors(NODE_MAPPING(sbi));
2180 }
2181
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2182 static int f2fs_write_node_pages(struct address_space *mapping,
2183 struct writeback_control *wbc)
2184 {
2185 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2186 struct blk_plug plug;
2187 long diff;
2188
2189 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2190 goto skip_write;
2191
2192 /* balancing f2fs's metadata in background */
2193 f2fs_balance_fs_bg(sbi, true);
2194
2195 /* collect a number of dirty node pages and write together */
2196 if (wbc->sync_mode != WB_SYNC_ALL &&
2197 get_pages(sbi, F2FS_DIRTY_NODES) <
2198 nr_pages_to_skip(sbi, NODE))
2199 goto skip_write;
2200
2201 if (wbc->sync_mode == WB_SYNC_ALL)
2202 atomic_inc(&sbi->wb_sync_req[NODE]);
2203 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2204 /* to avoid potential deadlock */
2205 if (current->plug)
2206 blk_finish_plug(current->plug);
2207 goto skip_write;
2208 }
2209
2210 trace_f2fs_writepages(mapping->host, wbc, NODE);
2211
2212 diff = nr_pages_to_write(sbi, NODE, wbc);
2213 blk_start_plug(&plug);
2214 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2215 blk_finish_plug(&plug);
2216 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2217
2218 if (wbc->sync_mode == WB_SYNC_ALL)
2219 atomic_dec(&sbi->wb_sync_req[NODE]);
2220 return 0;
2221
2222 skip_write:
2223 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2224 trace_f2fs_writepages(mapping->host, wbc, NODE);
2225 return 0;
2226 }
2227
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2228 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2229 struct folio *folio)
2230 {
2231 trace_f2fs_set_page_dirty(folio, NODE);
2232
2233 if (!folio_test_uptodate(folio))
2234 folio_mark_uptodate(folio);
2235 #ifdef CONFIG_F2FS_CHECK_FS
2236 if (IS_INODE(folio))
2237 f2fs_inode_chksum_set(F2FS_M_SB(mapping), folio);
2238 #endif
2239 if (filemap_dirty_folio(mapping, folio)) {
2240 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2241 folio_set_f2fs_reference(folio);
2242 return true;
2243 }
2244 return false;
2245 }
2246
2247 /*
2248 * Structure of the f2fs node operations
2249 */
2250 const struct address_space_operations f2fs_node_aops = {
2251 .writepages = f2fs_write_node_pages,
2252 .dirty_folio = f2fs_dirty_node_folio,
2253 .invalidate_folio = f2fs_invalidate_folio,
2254 .release_folio = f2fs_release_folio,
2255 .migrate_folio = filemap_migrate_folio,
2256 };
2257
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2258 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2259 nid_t n)
2260 {
2261 return radix_tree_lookup(&nm_i->free_nid_root, n);
2262 }
2263
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2264 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2265 struct free_nid *i)
2266 {
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2269
2270 if (err)
2271 return err;
2272
2273 nm_i->nid_cnt[FREE_NID]++;
2274 list_add_tail(&i->list, &nm_i->free_nid_list);
2275 return 0;
2276 }
2277
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2278 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2279 struct free_nid *i, enum nid_state state)
2280 {
2281 struct f2fs_nm_info *nm_i = NM_I(sbi);
2282
2283 f2fs_bug_on(sbi, state != i->state);
2284 nm_i->nid_cnt[state]--;
2285 if (state == FREE_NID)
2286 list_del(&i->list);
2287 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2288 }
2289
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2290 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2291 enum nid_state org_state, enum nid_state dst_state)
2292 {
2293 struct f2fs_nm_info *nm_i = NM_I(sbi);
2294
2295 f2fs_bug_on(sbi, org_state != i->state);
2296 i->state = dst_state;
2297 nm_i->nid_cnt[org_state]--;
2298 nm_i->nid_cnt[dst_state]++;
2299
2300 switch (dst_state) {
2301 case PREALLOC_NID:
2302 list_del(&i->list);
2303 break;
2304 case FREE_NID:
2305 list_add_tail(&i->list, &nm_i->free_nid_list);
2306 break;
2307 default:
2308 BUG_ON(1);
2309 }
2310 }
2311
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2312 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2313 bool set, bool build)
2314 {
2315 struct f2fs_nm_info *nm_i = NM_I(sbi);
2316 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2317 unsigned int nid_ofs = nid - START_NID(nid);
2318
2319 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2320 return;
2321
2322 if (set) {
2323 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2324 return;
2325 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2326 nm_i->free_nid_count[nat_ofs]++;
2327 } else {
2328 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2329 return;
2330 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2331 if (!build)
2332 nm_i->free_nid_count[nat_ofs]--;
2333 }
2334 }
2335
2336 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2337 static bool add_free_nid(struct f2fs_sb_info *sbi,
2338 nid_t nid, bool build, bool update)
2339 {
2340 struct f2fs_nm_info *nm_i = NM_I(sbi);
2341 struct free_nid *i, *e;
2342 struct nat_entry *ne;
2343 int err;
2344 bool ret = false;
2345
2346 /* 0 nid should not be used */
2347 if (unlikely(nid == 0))
2348 return false;
2349
2350 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2351 return false;
2352
2353 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2354 i->nid = nid;
2355 i->state = FREE_NID;
2356
2357 err = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2358 f2fs_bug_on(sbi, err);
2359
2360 err = -EINVAL;
2361
2362 spin_lock(&nm_i->nid_list_lock);
2363
2364 if (build) {
2365 /*
2366 * Thread A Thread B
2367 * - f2fs_create
2368 * - f2fs_new_inode
2369 * - f2fs_alloc_nid
2370 * - __insert_nid_to_list(PREALLOC_NID)
2371 * - f2fs_balance_fs_bg
2372 * - f2fs_build_free_nids
2373 * - __f2fs_build_free_nids
2374 * - scan_nat_page
2375 * - add_free_nid
2376 * - __lookup_nat_cache
2377 * - f2fs_add_link
2378 * - f2fs_init_inode_metadata
2379 * - f2fs_new_inode_folio
2380 * - f2fs_new_node_folio
2381 * - set_node_addr
2382 * - f2fs_alloc_nid_done
2383 * - __remove_nid_from_list(PREALLOC_NID)
2384 * - __insert_nid_to_list(FREE_NID)
2385 */
2386 ne = __lookup_nat_cache(nm_i, nid, false);
2387 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2388 nat_get_blkaddr(ne) != NULL_ADDR))
2389 goto err_out;
2390
2391 e = __lookup_free_nid_list(nm_i, nid);
2392 if (e) {
2393 if (e->state == FREE_NID)
2394 ret = true;
2395 goto err_out;
2396 }
2397 }
2398 ret = true;
2399 err = __insert_free_nid(sbi, i);
2400 err_out:
2401 if (update) {
2402 update_free_nid_bitmap(sbi, nid, ret, build);
2403 if (!build)
2404 nm_i->available_nids++;
2405 }
2406 spin_unlock(&nm_i->nid_list_lock);
2407 radix_tree_preload_end();
2408
2409 if (err)
2410 kmem_cache_free(free_nid_slab, i);
2411 return ret;
2412 }
2413
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2414 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2415 {
2416 struct f2fs_nm_info *nm_i = NM_I(sbi);
2417 struct free_nid *i;
2418 bool need_free = false;
2419
2420 spin_lock(&nm_i->nid_list_lock);
2421 i = __lookup_free_nid_list(nm_i, nid);
2422 if (i && i->state == FREE_NID) {
2423 __remove_free_nid(sbi, i, FREE_NID);
2424 need_free = true;
2425 }
2426 spin_unlock(&nm_i->nid_list_lock);
2427
2428 if (need_free)
2429 kmem_cache_free(free_nid_slab, i);
2430 }
2431
scan_nat_page(struct f2fs_sb_info * sbi,struct f2fs_nat_block * nat_blk,nid_t start_nid)2432 static int scan_nat_page(struct f2fs_sb_info *sbi,
2433 struct f2fs_nat_block *nat_blk, nid_t start_nid)
2434 {
2435 struct f2fs_nm_info *nm_i = NM_I(sbi);
2436 block_t blk_addr;
2437 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2438 int i;
2439
2440 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2441
2442 i = start_nid % NAT_ENTRY_PER_BLOCK;
2443
2444 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2445 if (unlikely(start_nid >= nm_i->max_nid))
2446 break;
2447
2448 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2449
2450 if (blk_addr == NEW_ADDR)
2451 return -EFSCORRUPTED;
2452
2453 if (blk_addr == NULL_ADDR) {
2454 add_free_nid(sbi, start_nid, true, true);
2455 } else {
2456 spin_lock(&NM_I(sbi)->nid_list_lock);
2457 update_free_nid_bitmap(sbi, start_nid, false, true);
2458 spin_unlock(&NM_I(sbi)->nid_list_lock);
2459 }
2460 }
2461
2462 return 0;
2463 }
2464
scan_curseg_cache(struct f2fs_sb_info * sbi)2465 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2466 {
2467 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2468 struct f2fs_journal *journal = curseg->journal;
2469 int i;
2470
2471 down_read(&curseg->journal_rwsem);
2472 for (i = 0; i < nats_in_cursum(journal); i++) {
2473 block_t addr;
2474 nid_t nid;
2475
2476 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2477 nid = le32_to_cpu(nid_in_journal(journal, i));
2478 if (addr == NULL_ADDR)
2479 add_free_nid(sbi, nid, true, false);
2480 else
2481 remove_free_nid(sbi, nid);
2482 }
2483 up_read(&curseg->journal_rwsem);
2484 }
2485
scan_free_nid_bits(struct f2fs_sb_info * sbi)2486 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2487 {
2488 struct f2fs_nm_info *nm_i = NM_I(sbi);
2489 unsigned int i, idx;
2490 nid_t nid;
2491
2492 f2fs_down_read(&nm_i->nat_tree_lock);
2493
2494 for (i = 0; i < nm_i->nat_blocks; i++) {
2495 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2496 continue;
2497 if (!nm_i->free_nid_count[i])
2498 continue;
2499 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2500 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2501 NAT_ENTRY_PER_BLOCK, idx);
2502 if (idx >= NAT_ENTRY_PER_BLOCK)
2503 break;
2504
2505 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2506 add_free_nid(sbi, nid, true, false);
2507
2508 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2509 goto out;
2510 }
2511 }
2512 out:
2513 scan_curseg_cache(sbi);
2514
2515 f2fs_up_read(&nm_i->nat_tree_lock);
2516 }
2517
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2518 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2519 bool sync, bool mount)
2520 {
2521 struct f2fs_nm_info *nm_i = NM_I(sbi);
2522 int i = 0, ret;
2523 nid_t nid = nm_i->next_scan_nid;
2524
2525 if (unlikely(nid >= nm_i->max_nid))
2526 nid = 0;
2527
2528 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2529 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2530
2531 /* Enough entries */
2532 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2533 return 0;
2534
2535 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2536 return 0;
2537
2538 if (!mount) {
2539 /* try to find free nids in free_nid_bitmap */
2540 scan_free_nid_bits(sbi);
2541
2542 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2543 return 0;
2544 }
2545
2546 /* readahead nat pages to be scanned */
2547 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2548 META_NAT, true);
2549
2550 f2fs_down_read(&nm_i->nat_tree_lock);
2551
2552 while (1) {
2553 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2554 nm_i->nat_block_bitmap)) {
2555 struct folio *folio = get_current_nat_folio(sbi, nid);
2556
2557 if (IS_ERR(folio)) {
2558 ret = PTR_ERR(folio);
2559 } else {
2560 ret = scan_nat_page(sbi, folio_address(folio),
2561 nid);
2562 f2fs_folio_put(folio, true);
2563 }
2564
2565 if (ret) {
2566 f2fs_up_read(&nm_i->nat_tree_lock);
2567
2568 if (ret == -EFSCORRUPTED) {
2569 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2570 set_sbi_flag(sbi, SBI_NEED_FSCK);
2571 f2fs_handle_error(sbi,
2572 ERROR_INCONSISTENT_NAT);
2573 }
2574
2575 return ret;
2576 }
2577 }
2578
2579 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2580 if (unlikely(nid >= nm_i->max_nid))
2581 nid = 0;
2582
2583 if (++i >= FREE_NID_PAGES)
2584 break;
2585 }
2586
2587 /* go to the next free nat pages to find free nids abundantly */
2588 nm_i->next_scan_nid = nid;
2589
2590 /* find free nids from current sum_pages */
2591 scan_curseg_cache(sbi);
2592
2593 f2fs_up_read(&nm_i->nat_tree_lock);
2594
2595 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2596 nm_i->ra_nid_pages, META_NAT, false);
2597
2598 return 0;
2599 }
2600
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2601 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2602 {
2603 int ret;
2604
2605 mutex_lock(&NM_I(sbi)->build_lock);
2606 ret = __f2fs_build_free_nids(sbi, sync, mount);
2607 mutex_unlock(&NM_I(sbi)->build_lock);
2608
2609 return ret;
2610 }
2611
2612 /*
2613 * If this function returns success, caller can obtain a new nid
2614 * from second parameter of this function.
2615 * The returned nid could be used ino as well as nid when inode is created.
2616 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2617 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2618 {
2619 struct f2fs_nm_info *nm_i = NM_I(sbi);
2620 struct free_nid *i = NULL;
2621 retry:
2622 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2623 return false;
2624
2625 spin_lock(&nm_i->nid_list_lock);
2626
2627 if (unlikely(nm_i->available_nids == 0)) {
2628 spin_unlock(&nm_i->nid_list_lock);
2629 return false;
2630 }
2631
2632 /* We should not use stale free nids created by f2fs_build_free_nids */
2633 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2634 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2635 i = list_first_entry(&nm_i->free_nid_list,
2636 struct free_nid, list);
2637 *nid = i->nid;
2638
2639 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2640 nm_i->available_nids--;
2641
2642 update_free_nid_bitmap(sbi, *nid, false, false);
2643
2644 spin_unlock(&nm_i->nid_list_lock);
2645 return true;
2646 }
2647 spin_unlock(&nm_i->nid_list_lock);
2648
2649 /* Let's scan nat pages and its caches to get free nids */
2650 if (!f2fs_build_free_nids(sbi, true, false))
2651 goto retry;
2652 return false;
2653 }
2654
2655 /*
2656 * f2fs_alloc_nid() should be called prior to this function.
2657 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2658 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2659 {
2660 struct f2fs_nm_info *nm_i = NM_I(sbi);
2661 struct free_nid *i;
2662
2663 spin_lock(&nm_i->nid_list_lock);
2664 i = __lookup_free_nid_list(nm_i, nid);
2665 f2fs_bug_on(sbi, !i);
2666 __remove_free_nid(sbi, i, PREALLOC_NID);
2667 spin_unlock(&nm_i->nid_list_lock);
2668
2669 kmem_cache_free(free_nid_slab, i);
2670 }
2671
2672 /*
2673 * f2fs_alloc_nid() should be called prior to this function.
2674 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2675 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2676 {
2677 struct f2fs_nm_info *nm_i = NM_I(sbi);
2678 struct free_nid *i;
2679 bool need_free = false;
2680
2681 if (!nid)
2682 return;
2683
2684 spin_lock(&nm_i->nid_list_lock);
2685 i = __lookup_free_nid_list(nm_i, nid);
2686 f2fs_bug_on(sbi, !i);
2687
2688 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2689 __remove_free_nid(sbi, i, PREALLOC_NID);
2690 need_free = true;
2691 } else {
2692 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2693 }
2694
2695 nm_i->available_nids++;
2696
2697 update_free_nid_bitmap(sbi, nid, true, false);
2698
2699 spin_unlock(&nm_i->nid_list_lock);
2700
2701 if (need_free)
2702 kmem_cache_free(free_nid_slab, i);
2703 }
2704
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2705 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2706 {
2707 struct f2fs_nm_info *nm_i = NM_I(sbi);
2708 int nr = nr_shrink;
2709
2710 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2711 return 0;
2712
2713 if (!mutex_trylock(&nm_i->build_lock))
2714 return 0;
2715
2716 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2717 struct free_nid *i, *next;
2718 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2719
2720 spin_lock(&nm_i->nid_list_lock);
2721 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2722 if (!nr_shrink || !batch ||
2723 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2724 break;
2725 __remove_free_nid(sbi, i, FREE_NID);
2726 kmem_cache_free(free_nid_slab, i);
2727 nr_shrink--;
2728 batch--;
2729 }
2730 spin_unlock(&nm_i->nid_list_lock);
2731 }
2732
2733 mutex_unlock(&nm_i->build_lock);
2734
2735 return nr - nr_shrink;
2736 }
2737
f2fs_recover_inline_xattr(struct inode * inode,struct folio * folio)2738 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio)
2739 {
2740 void *src_addr, *dst_addr;
2741 size_t inline_size;
2742 struct folio *ifolio;
2743 struct f2fs_inode *ri;
2744
2745 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino);
2746 if (IS_ERR(ifolio))
2747 return PTR_ERR(ifolio);
2748
2749 ri = F2FS_INODE(folio);
2750 if (ri->i_inline & F2FS_INLINE_XATTR) {
2751 if (!f2fs_has_inline_xattr(inode)) {
2752 set_inode_flag(inode, FI_INLINE_XATTR);
2753 stat_inc_inline_xattr(inode);
2754 }
2755 } else {
2756 if (f2fs_has_inline_xattr(inode)) {
2757 stat_dec_inline_xattr(inode);
2758 clear_inode_flag(inode, FI_INLINE_XATTR);
2759 }
2760 goto update_inode;
2761 }
2762
2763 dst_addr = inline_xattr_addr(inode, ifolio);
2764 src_addr = inline_xattr_addr(inode, folio);
2765 inline_size = inline_xattr_size(inode);
2766
2767 f2fs_folio_wait_writeback(ifolio, NODE, true, true);
2768 memcpy(dst_addr, src_addr, inline_size);
2769 update_inode:
2770 f2fs_update_inode(inode, ifolio);
2771 f2fs_folio_put(ifolio, true);
2772 return 0;
2773 }
2774
f2fs_recover_xattr_data(struct inode * inode,struct folio * folio)2775 int f2fs_recover_xattr_data(struct inode *inode, struct folio *folio)
2776 {
2777 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2778 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2779 nid_t new_xnid;
2780 struct dnode_of_data dn;
2781 struct node_info ni;
2782 struct folio *xfolio;
2783 int err;
2784
2785 if (!prev_xnid)
2786 goto recover_xnid;
2787
2788 /* 1: invalidate the previous xattr nid */
2789 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2790 if (err)
2791 return err;
2792
2793 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1);
2794 dec_valid_node_count(sbi, inode, false);
2795 set_node_addr(sbi, &ni, NULL_ADDR, false);
2796
2797 recover_xnid:
2798 /* 2: update xattr nid in inode */
2799 if (!f2fs_alloc_nid(sbi, &new_xnid))
2800 return -ENOSPC;
2801
2802 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2803 xfolio = f2fs_new_node_folio(&dn, XATTR_NODE_OFFSET);
2804 if (IS_ERR(xfolio)) {
2805 f2fs_alloc_nid_failed(sbi, new_xnid);
2806 return PTR_ERR(xfolio);
2807 }
2808
2809 f2fs_alloc_nid_done(sbi, new_xnid);
2810 f2fs_update_inode_page(inode);
2811
2812 /* 3: update and set xattr node page dirty */
2813 if (folio) {
2814 memcpy(F2FS_NODE(xfolio), F2FS_NODE(folio),
2815 VALID_XATTR_BLOCK_SIZE);
2816 folio_mark_dirty(xfolio);
2817 }
2818 f2fs_folio_put(xfolio, true);
2819
2820 return 0;
2821 }
2822
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct folio * folio)2823 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct folio *folio)
2824 {
2825 struct f2fs_inode *src, *dst;
2826 nid_t ino = ino_of_node(folio);
2827 struct node_info old_ni, new_ni;
2828 struct folio *ifolio;
2829 int err;
2830
2831 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2832 if (err)
2833 return err;
2834
2835 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2836 return -EINVAL;
2837 retry:
2838 ifolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), ino, false);
2839 if (IS_ERR(ifolio)) {
2840 memalloc_retry_wait(GFP_NOFS);
2841 goto retry;
2842 }
2843
2844 /* Should not use this inode from free nid list */
2845 remove_free_nid(sbi, ino);
2846
2847 if (!folio_test_uptodate(ifolio))
2848 folio_mark_uptodate(ifolio);
2849 fill_node_footer(ifolio, ino, ino, 0, true);
2850 set_cold_node(ifolio, false);
2851
2852 src = F2FS_INODE(folio);
2853 dst = F2FS_INODE(ifolio);
2854
2855 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2856 dst->i_size = 0;
2857 dst->i_blocks = cpu_to_le64(1);
2858 dst->i_links = cpu_to_le32(1);
2859 dst->i_xattr_nid = 0;
2860 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2861 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2862 dst->i_extra_isize = src->i_extra_isize;
2863
2864 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2865 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2866 i_inline_xattr_size))
2867 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2868
2869 if (f2fs_sb_has_project_quota(sbi) &&
2870 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2871 i_projid))
2872 dst->i_projid = src->i_projid;
2873
2874 if (f2fs_sb_has_inode_crtime(sbi) &&
2875 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2876 i_crtime_nsec)) {
2877 dst->i_crtime = src->i_crtime;
2878 dst->i_crtime_nsec = src->i_crtime_nsec;
2879 }
2880 }
2881
2882 new_ni = old_ni;
2883 new_ni.ino = ino;
2884
2885 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2886 WARN_ON(1);
2887 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2888 inc_valid_inode_count(sbi);
2889 folio_mark_dirty(ifolio);
2890 f2fs_folio_put(ifolio, true);
2891 return 0;
2892 }
2893
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2894 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2895 unsigned int segno, struct f2fs_summary_block *sum)
2896 {
2897 struct f2fs_node *rn;
2898 struct f2fs_summary *sum_entry;
2899 block_t addr;
2900 int i, idx, last_offset, nrpages;
2901
2902 /* scan the node segment */
2903 last_offset = BLKS_PER_SEG(sbi);
2904 addr = START_BLOCK(sbi, segno);
2905 sum_entry = &sum->entries[0];
2906
2907 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2908 nrpages = bio_max_segs(last_offset - i);
2909
2910 /* readahead node pages */
2911 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2912
2913 for (idx = addr; idx < addr + nrpages; idx++) {
2914 struct folio *folio = f2fs_get_tmp_folio(sbi, idx);
2915
2916 if (IS_ERR(folio))
2917 return PTR_ERR(folio);
2918
2919 rn = F2FS_NODE(folio);
2920 sum_entry->nid = rn->footer.nid;
2921 sum_entry->version = 0;
2922 sum_entry->ofs_in_node = 0;
2923 sum_entry++;
2924 f2fs_folio_put(folio, true);
2925 }
2926
2927 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2928 addr + nrpages);
2929 }
2930 return 0;
2931 }
2932
remove_nats_in_journal(struct f2fs_sb_info * sbi)2933 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2934 {
2935 struct f2fs_nm_info *nm_i = NM_I(sbi);
2936 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2937 struct f2fs_journal *journal = curseg->journal;
2938 int i;
2939 bool init_dirty;
2940
2941 down_write(&curseg->journal_rwsem);
2942 for (i = 0; i < nats_in_cursum(journal); i++) {
2943 struct nat_entry *ne;
2944 struct f2fs_nat_entry raw_ne;
2945 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2946
2947 if (f2fs_check_nid_range(sbi, nid))
2948 continue;
2949
2950 init_dirty = false;
2951
2952 raw_ne = nat_in_journal(journal, i);
2953
2954 ne = __lookup_nat_cache(nm_i, nid, true);
2955 if (!ne) {
2956 init_dirty = true;
2957 ne = __alloc_nat_entry(sbi, nid, true);
2958 __init_nat_entry(nm_i, ne, &raw_ne, true, true);
2959 }
2960
2961 /*
2962 * if a free nat in journal has not been used after last
2963 * checkpoint, we should remove it from available nids,
2964 * since later we will add it again.
2965 */
2966 if (!get_nat_flag(ne, IS_DIRTY) &&
2967 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2968 spin_lock(&nm_i->nid_list_lock);
2969 nm_i->available_nids--;
2970 spin_unlock(&nm_i->nid_list_lock);
2971 }
2972
2973 __set_nat_cache_dirty(nm_i, ne, init_dirty);
2974 }
2975 update_nats_in_cursum(journal, -i);
2976 up_write(&curseg->journal_rwsem);
2977 }
2978
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2979 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2980 struct list_head *head, int max)
2981 {
2982 struct nat_entry_set *cur;
2983
2984 if (nes->entry_cnt >= max)
2985 goto add_out;
2986
2987 list_for_each_entry(cur, head, set_list) {
2988 if (cur->entry_cnt >= nes->entry_cnt) {
2989 list_add(&nes->set_list, cur->set_list.prev);
2990 return;
2991 }
2992 }
2993 add_out:
2994 list_add_tail(&nes->set_list, head);
2995 }
2996
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,const struct f2fs_nat_block * nat_blk)2997 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2998 const struct f2fs_nat_block *nat_blk)
2999 {
3000 struct f2fs_nm_info *nm_i = NM_I(sbi);
3001 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
3002 int valid = 0;
3003 int i = 0;
3004
3005 if (!enabled_nat_bits(sbi, NULL))
3006 return;
3007
3008 if (nat_index == 0) {
3009 valid = 1;
3010 i = 1;
3011 }
3012 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
3013 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
3014 valid++;
3015 }
3016 if (valid == 0) {
3017 __set_bit_le(nat_index, nm_i->empty_nat_bits);
3018 __clear_bit_le(nat_index, nm_i->full_nat_bits);
3019 return;
3020 }
3021
3022 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
3023 if (valid == NAT_ENTRY_PER_BLOCK)
3024 __set_bit_le(nat_index, nm_i->full_nat_bits);
3025 else
3026 __clear_bit_le(nat_index, nm_i->full_nat_bits);
3027 }
3028
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)3029 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3030 struct nat_entry_set *set, struct cp_control *cpc)
3031 {
3032 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3033 struct f2fs_journal *journal = curseg->journal;
3034 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3035 bool to_journal = true;
3036 struct f2fs_nat_block *nat_blk;
3037 struct nat_entry *ne, *cur;
3038 struct folio *folio = NULL;
3039
3040 /*
3041 * there are two steps to flush nat entries:
3042 * #1, flush nat entries to journal in current hot data summary block.
3043 * #2, flush nat entries to nat page.
3044 */
3045 if (enabled_nat_bits(sbi, cpc) ||
3046 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3047 to_journal = false;
3048
3049 if (to_journal) {
3050 down_write(&curseg->journal_rwsem);
3051 } else {
3052 folio = get_next_nat_folio(sbi, start_nid);
3053 if (IS_ERR(folio))
3054 return PTR_ERR(folio);
3055
3056 nat_blk = folio_address(folio);
3057 f2fs_bug_on(sbi, !nat_blk);
3058 }
3059
3060 /* flush dirty nats in nat entry set */
3061 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3062 struct f2fs_nat_entry *raw_ne;
3063 nid_t nid = nat_get_nid(ne);
3064 int offset;
3065
3066 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3067
3068 if (to_journal) {
3069 offset = f2fs_lookup_journal_in_cursum(journal,
3070 NAT_JOURNAL, nid, 1);
3071 f2fs_bug_on(sbi, offset < 0);
3072 raw_ne = &nat_in_journal(journal, offset);
3073 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3074 } else {
3075 raw_ne = &nat_blk->entries[nid - start_nid];
3076 }
3077 raw_nat_from_node_info(raw_ne, &ne->ni);
3078 nat_reset_flag(ne);
3079 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3080 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3081 add_free_nid(sbi, nid, false, true);
3082 } else {
3083 spin_lock(&NM_I(sbi)->nid_list_lock);
3084 update_free_nid_bitmap(sbi, nid, false, false);
3085 spin_unlock(&NM_I(sbi)->nid_list_lock);
3086 }
3087 }
3088
3089 if (to_journal) {
3090 up_write(&curseg->journal_rwsem);
3091 } else {
3092 __update_nat_bits(sbi, start_nid, nat_blk);
3093 f2fs_folio_put(folio, true);
3094 }
3095
3096 /* Allow dirty nats by node block allocation in write_begin */
3097 if (!set->entry_cnt) {
3098 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3099 kmem_cache_free(nat_entry_set_slab, set);
3100 }
3101 return 0;
3102 }
3103
3104 /*
3105 * This function is called during the checkpointing process.
3106 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3107 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3108 {
3109 struct f2fs_nm_info *nm_i = NM_I(sbi);
3110 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3111 struct f2fs_journal *journal = curseg->journal;
3112 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3113 struct nat_entry_set *set, *tmp;
3114 unsigned int found;
3115 nid_t set_idx = 0;
3116 LIST_HEAD(sets);
3117 int err = 0;
3118
3119 /*
3120 * during unmount, let's flush nat_bits before checking
3121 * nat_cnt[DIRTY_NAT].
3122 */
3123 if (enabled_nat_bits(sbi, cpc)) {
3124 f2fs_down_write(&nm_i->nat_tree_lock);
3125 remove_nats_in_journal(sbi);
3126 f2fs_up_write(&nm_i->nat_tree_lock);
3127 }
3128
3129 if (!nm_i->nat_cnt[DIRTY_NAT])
3130 return 0;
3131
3132 f2fs_down_write(&nm_i->nat_tree_lock);
3133
3134 /*
3135 * if there are no enough space in journal to store dirty nat
3136 * entries, remove all entries from journal and merge them
3137 * into nat entry set.
3138 */
3139 if (enabled_nat_bits(sbi, cpc) ||
3140 !__has_cursum_space(journal,
3141 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3142 remove_nats_in_journal(sbi);
3143
3144 while ((found = __gang_lookup_nat_set(nm_i,
3145 set_idx, NAT_VEC_SIZE, setvec))) {
3146 unsigned idx;
3147
3148 set_idx = setvec[found - 1]->set + 1;
3149 for (idx = 0; idx < found; idx++)
3150 __adjust_nat_entry_set(setvec[idx], &sets,
3151 MAX_NAT_JENTRIES(journal));
3152 }
3153
3154 /* flush dirty nats in nat entry set */
3155 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3156 err = __flush_nat_entry_set(sbi, set, cpc);
3157 if (err)
3158 break;
3159 }
3160
3161 f2fs_up_write(&nm_i->nat_tree_lock);
3162 /* Allow dirty nats by node block allocation in write_begin */
3163
3164 return err;
3165 }
3166
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3167 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3168 {
3169 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3170 struct f2fs_nm_info *nm_i = NM_I(sbi);
3171 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3172 unsigned int i;
3173 __u64 cp_ver = cur_cp_version(ckpt);
3174 block_t nat_bits_addr;
3175
3176 if (!enabled_nat_bits(sbi, NULL))
3177 return 0;
3178
3179 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3180 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3181 F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL);
3182 if (!nm_i->nat_bits)
3183 return -ENOMEM;
3184
3185 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3186 nm_i->nat_bits_blocks;
3187 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3188 struct folio *folio;
3189
3190 folio = f2fs_get_meta_folio(sbi, nat_bits_addr++);
3191 if (IS_ERR(folio))
3192 return PTR_ERR(folio);
3193
3194 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i),
3195 folio_address(folio), F2FS_BLKSIZE);
3196 f2fs_folio_put(folio, true);
3197 }
3198
3199 cp_ver |= (cur_cp_crc(ckpt) << 32);
3200 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3201 disable_nat_bits(sbi, true);
3202 return 0;
3203 }
3204
3205 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3206 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3207
3208 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3209 return 0;
3210 }
3211
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3212 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3213 {
3214 struct f2fs_nm_info *nm_i = NM_I(sbi);
3215 unsigned int i = 0;
3216 nid_t nid, last_nid;
3217
3218 if (!enabled_nat_bits(sbi, NULL))
3219 return;
3220
3221 for (i = 0; i < nm_i->nat_blocks; i++) {
3222 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3223 if (i >= nm_i->nat_blocks)
3224 break;
3225
3226 __set_bit_le(i, nm_i->nat_block_bitmap);
3227
3228 nid = i * NAT_ENTRY_PER_BLOCK;
3229 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3230
3231 spin_lock(&NM_I(sbi)->nid_list_lock);
3232 for (; nid < last_nid; nid++)
3233 update_free_nid_bitmap(sbi, nid, true, true);
3234 spin_unlock(&NM_I(sbi)->nid_list_lock);
3235 }
3236
3237 for (i = 0; i < nm_i->nat_blocks; i++) {
3238 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3239 if (i >= nm_i->nat_blocks)
3240 break;
3241
3242 __set_bit_le(i, nm_i->nat_block_bitmap);
3243 }
3244 }
3245
init_node_manager(struct f2fs_sb_info * sbi)3246 static int init_node_manager(struct f2fs_sb_info *sbi)
3247 {
3248 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3249 struct f2fs_nm_info *nm_i = NM_I(sbi);
3250 unsigned char *version_bitmap;
3251 unsigned int nat_segs;
3252 int err;
3253
3254 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3255
3256 /* segment_count_nat includes pair segment so divide to 2. */
3257 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3258 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3259 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3260
3261 /* not used nids: 0, node, meta, (and root counted as valid node) */
3262 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3263 F2FS_RESERVED_NODE_NUM;
3264 nm_i->nid_cnt[FREE_NID] = 0;
3265 nm_i->nid_cnt[PREALLOC_NID] = 0;
3266 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3267 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3268 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3269 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3270
3271 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3272 INIT_LIST_HEAD(&nm_i->free_nid_list);
3273 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3274 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3275 INIT_LIST_HEAD(&nm_i->nat_entries);
3276 spin_lock_init(&nm_i->nat_list_lock);
3277
3278 mutex_init(&nm_i->build_lock);
3279 spin_lock_init(&nm_i->nid_list_lock);
3280 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3281
3282 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3283 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3284 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3285 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3286 GFP_KERNEL);
3287 if (!nm_i->nat_bitmap)
3288 return -ENOMEM;
3289
3290 if (!test_opt(sbi, NAT_BITS))
3291 disable_nat_bits(sbi, true);
3292
3293 err = __get_nat_bitmaps(sbi);
3294 if (err)
3295 return err;
3296
3297 #ifdef CONFIG_F2FS_CHECK_FS
3298 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3299 GFP_KERNEL);
3300 if (!nm_i->nat_bitmap_mir)
3301 return -ENOMEM;
3302 #endif
3303
3304 return 0;
3305 }
3306
init_free_nid_cache(struct f2fs_sb_info * sbi)3307 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3308 {
3309 struct f2fs_nm_info *nm_i = NM_I(sbi);
3310 int i;
3311
3312 nm_i->free_nid_bitmap =
3313 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3314 nm_i->nat_blocks),
3315 GFP_KERNEL);
3316 if (!nm_i->free_nid_bitmap)
3317 return -ENOMEM;
3318
3319 for (i = 0; i < nm_i->nat_blocks; i++) {
3320 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3321 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3322 if (!nm_i->free_nid_bitmap[i])
3323 return -ENOMEM;
3324 }
3325
3326 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3327 GFP_KERNEL);
3328 if (!nm_i->nat_block_bitmap)
3329 return -ENOMEM;
3330
3331 nm_i->free_nid_count =
3332 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3333 nm_i->nat_blocks),
3334 GFP_KERNEL);
3335 if (!nm_i->free_nid_count)
3336 return -ENOMEM;
3337 return 0;
3338 }
3339
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3340 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3341 {
3342 int err;
3343
3344 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3345 GFP_KERNEL);
3346 if (!sbi->nm_info)
3347 return -ENOMEM;
3348
3349 err = init_node_manager(sbi);
3350 if (err)
3351 return err;
3352
3353 err = init_free_nid_cache(sbi);
3354 if (err)
3355 return err;
3356
3357 /* load free nid status from nat_bits table */
3358 load_free_nid_bitmap(sbi);
3359
3360 return f2fs_build_free_nids(sbi, true, true);
3361 }
3362
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3363 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3364 {
3365 struct f2fs_nm_info *nm_i = NM_I(sbi);
3366 struct free_nid *i, *next_i;
3367 void *vec[NAT_VEC_SIZE];
3368 struct nat_entry **natvec = (struct nat_entry **)vec;
3369 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3370 nid_t nid = 0;
3371 unsigned int found;
3372
3373 if (!nm_i)
3374 return;
3375
3376 /* destroy free nid list */
3377 spin_lock(&nm_i->nid_list_lock);
3378 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3379 __remove_free_nid(sbi, i, FREE_NID);
3380 spin_unlock(&nm_i->nid_list_lock);
3381 kmem_cache_free(free_nid_slab, i);
3382 spin_lock(&nm_i->nid_list_lock);
3383 }
3384 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3385 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3386 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3387 spin_unlock(&nm_i->nid_list_lock);
3388
3389 /* destroy nat cache */
3390 f2fs_down_write(&nm_i->nat_tree_lock);
3391 while ((found = __gang_lookup_nat_cache(nm_i,
3392 nid, NAT_VEC_SIZE, natvec))) {
3393 unsigned idx;
3394
3395 nid = nat_get_nid(natvec[found - 1]) + 1;
3396 for (idx = 0; idx < found; idx++) {
3397 spin_lock(&nm_i->nat_list_lock);
3398 list_del(&natvec[idx]->list);
3399 spin_unlock(&nm_i->nat_list_lock);
3400
3401 __del_from_nat_cache(nm_i, natvec[idx]);
3402 }
3403 }
3404 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3405
3406 /* destroy nat set cache */
3407 nid = 0;
3408 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3409 while ((found = __gang_lookup_nat_set(nm_i,
3410 nid, NAT_VEC_SIZE, setvec))) {
3411 unsigned idx;
3412
3413 nid = setvec[found - 1]->set + 1;
3414 for (idx = 0; idx < found; idx++) {
3415 /* entry_cnt is not zero, when cp_error was occurred */
3416 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3417 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3418 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3419 }
3420 }
3421 f2fs_up_write(&nm_i->nat_tree_lock);
3422
3423 kvfree(nm_i->nat_block_bitmap);
3424 if (nm_i->free_nid_bitmap) {
3425 int i;
3426
3427 for (i = 0; i < nm_i->nat_blocks; i++)
3428 kvfree(nm_i->free_nid_bitmap[i]);
3429 kvfree(nm_i->free_nid_bitmap);
3430 }
3431 kvfree(nm_i->free_nid_count);
3432
3433 kfree(nm_i->nat_bitmap);
3434 kvfree(nm_i->nat_bits);
3435 #ifdef CONFIG_F2FS_CHECK_FS
3436 kfree(nm_i->nat_bitmap_mir);
3437 #endif
3438 sbi->nm_info = NULL;
3439 kfree(nm_i);
3440 }
3441
f2fs_create_node_manager_caches(void)3442 int __init f2fs_create_node_manager_caches(void)
3443 {
3444 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3445 sizeof(struct nat_entry));
3446 if (!nat_entry_slab)
3447 goto fail;
3448
3449 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3450 sizeof(struct free_nid));
3451 if (!free_nid_slab)
3452 goto destroy_nat_entry;
3453
3454 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3455 sizeof(struct nat_entry_set));
3456 if (!nat_entry_set_slab)
3457 goto destroy_free_nid;
3458
3459 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3460 sizeof(struct fsync_node_entry));
3461 if (!fsync_node_entry_slab)
3462 goto destroy_nat_entry_set;
3463 return 0;
3464
3465 destroy_nat_entry_set:
3466 kmem_cache_destroy(nat_entry_set_slab);
3467 destroy_free_nid:
3468 kmem_cache_destroy(free_nid_slab);
3469 destroy_nat_entry:
3470 kmem_cache_destroy(nat_entry_slab);
3471 fail:
3472 return -ENOMEM;
3473 }
3474
f2fs_destroy_node_manager_caches(void)3475 void f2fs_destroy_node_manager_caches(void)
3476 {
3477 kmem_cache_destroy(fsync_node_entry_slab);
3478 kmem_cache_destroy(nat_entry_set_slab);
3479 kmem_cache_destroy(free_nid_slab);
3480 kmem_cache_destroy(nat_entry_slab);
3481 }
3482