1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/compaction.h> 36 #include <linux/rmap.h> 37 #include <linux/module.h> 38 #include <linux/node.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 enum { 46 MEMMAP_ON_MEMORY_DISABLE = 0, 47 MEMMAP_ON_MEMORY_ENABLE, 48 MEMMAP_ON_MEMORY_FORCE, 49 }; 50 51 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; 52 53 static inline unsigned long memory_block_memmap_size(void) 54 { 55 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); 56 } 57 58 static inline unsigned long memory_block_memmap_on_memory_pages(void) 59 { 60 unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); 61 62 /* 63 * In "forced" memmap_on_memory mode, we add extra pages to align the 64 * vmemmap size to cover full pageblocks. That way, we can add memory 65 * even if the vmemmap size is not properly aligned, however, we might waste 66 * memory. 67 */ 68 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) 69 return pageblock_align(nr_pages); 70 return nr_pages; 71 } 72 73 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 74 /* 75 * memory_hotplug.memmap_on_memory parameter 76 */ 77 static int set_memmap_mode(const char *val, const struct kernel_param *kp) 78 { 79 int ret, mode; 80 bool enabled; 81 82 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { 83 mode = MEMMAP_ON_MEMORY_FORCE; 84 } else { 85 ret = kstrtobool(val, &enabled); 86 if (ret < 0) 87 return ret; 88 if (enabled) 89 mode = MEMMAP_ON_MEMORY_ENABLE; 90 else 91 mode = MEMMAP_ON_MEMORY_DISABLE; 92 } 93 *((int *)kp->arg) = mode; 94 if (mode == MEMMAP_ON_MEMORY_FORCE) { 95 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 96 97 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", 98 memmap_pages - PFN_UP(memory_block_memmap_size())); 99 } 100 return 0; 101 } 102 103 static int get_memmap_mode(char *buffer, const struct kernel_param *kp) 104 { 105 int mode = *((int *)kp->arg); 106 107 if (mode == MEMMAP_ON_MEMORY_FORCE) 108 return sprintf(buffer, "force\n"); 109 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N'); 110 } 111 112 static const struct kernel_param_ops memmap_mode_ops = { 113 .set = set_memmap_mode, 114 .get = get_memmap_mode, 115 }; 116 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); 117 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" 118 "With value \"force\" it could result in memory wastage due " 119 "to memmap size limitations (Y/N/force)"); 120 121 static inline bool mhp_memmap_on_memory(void) 122 { 123 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; 124 } 125 #else 126 static inline bool mhp_memmap_on_memory(void) 127 { 128 return false; 129 } 130 #endif 131 132 enum { 133 ONLINE_POLICY_CONTIG_ZONES = 0, 134 ONLINE_POLICY_AUTO_MOVABLE, 135 }; 136 137 static const char * const online_policy_to_str[] = { 138 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 139 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 140 }; 141 142 static int set_online_policy(const char *val, const struct kernel_param *kp) 143 { 144 int ret = sysfs_match_string(online_policy_to_str, val); 145 146 if (ret < 0) 147 return ret; 148 *((int *)kp->arg) = ret; 149 return 0; 150 } 151 152 static int get_online_policy(char *buffer, const struct kernel_param *kp) 153 { 154 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 155 } 156 157 /* 158 * memory_hotplug.online_policy: configure online behavior when onlining without 159 * specifying a zone (MMOP_ONLINE) 160 * 161 * "contig-zones": keep zone contiguous 162 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 163 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 164 */ 165 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 166 static const struct kernel_param_ops online_policy_ops = { 167 .set = set_online_policy, 168 .get = get_online_policy, 169 }; 170 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 171 MODULE_PARM_DESC(online_policy, 172 "Set the online policy (\"contig-zones\", \"auto-movable\") " 173 "Default: \"contig-zones\""); 174 175 /* 176 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 177 * 178 * The ratio represent an upper limit and the kernel might decide to not 179 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 180 * doesn't allow for more MOVABLE memory. 181 */ 182 static unsigned int auto_movable_ratio __read_mostly = 301; 183 module_param(auto_movable_ratio, uint, 0644); 184 MODULE_PARM_DESC(auto_movable_ratio, 185 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 186 "in percent for \"auto-movable\" online policy. Default: 301"); 187 188 /* 189 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 190 */ 191 #ifdef CONFIG_NUMA 192 static bool auto_movable_numa_aware __read_mostly = true; 193 module_param(auto_movable_numa_aware, bool, 0644); 194 MODULE_PARM_DESC(auto_movable_numa_aware, 195 "Consider numa node stats in addition to global stats in " 196 "\"auto-movable\" online policy. Default: true"); 197 #endif /* CONFIG_NUMA */ 198 199 /* 200 * online_page_callback contains pointer to current page onlining function. 201 * Initially it is generic_online_page(). If it is required it could be 202 * changed by calling set_online_page_callback() for callback registration 203 * and restore_online_page_callback() for generic callback restore. 204 */ 205 206 static online_page_callback_t online_page_callback = generic_online_page; 207 static DEFINE_MUTEX(online_page_callback_lock); 208 209 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 210 211 void get_online_mems(void) 212 { 213 percpu_down_read(&mem_hotplug_lock); 214 } 215 216 void put_online_mems(void) 217 { 218 percpu_up_read(&mem_hotplug_lock); 219 } 220 221 bool movable_node_enabled = false; 222 223 static int mhp_default_online_type = -1; 224 int mhp_get_default_online_type(void) 225 { 226 if (mhp_default_online_type >= 0) 227 return mhp_default_online_type; 228 229 if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_OFFLINE)) 230 mhp_default_online_type = MMOP_OFFLINE; 231 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_AUTO)) 232 mhp_default_online_type = MMOP_ONLINE; 233 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_KERNEL)) 234 mhp_default_online_type = MMOP_ONLINE_KERNEL; 235 else if (IS_ENABLED(CONFIG_MHP_DEFAULT_ONLINE_TYPE_ONLINE_MOVABLE)) 236 mhp_default_online_type = MMOP_ONLINE_MOVABLE; 237 else 238 mhp_default_online_type = MMOP_OFFLINE; 239 240 return mhp_default_online_type; 241 } 242 243 void mhp_set_default_online_type(int online_type) 244 { 245 mhp_default_online_type = online_type; 246 } 247 248 static int __init setup_memhp_default_state(char *str) 249 { 250 const int online_type = mhp_online_type_from_str(str); 251 252 if (online_type >= 0) 253 mhp_default_online_type = online_type; 254 255 return 1; 256 } 257 __setup("memhp_default_state=", setup_memhp_default_state); 258 259 void mem_hotplug_begin(void) 260 { 261 cpus_read_lock(); 262 percpu_down_write(&mem_hotplug_lock); 263 } 264 265 void mem_hotplug_done(void) 266 { 267 percpu_up_write(&mem_hotplug_lock); 268 cpus_read_unlock(); 269 } 270 271 u64 max_mem_size = U64_MAX; 272 273 /* add this memory to iomem resource */ 274 static struct resource *register_memory_resource(u64 start, u64 size, 275 const char *resource_name) 276 { 277 struct resource *res; 278 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 279 280 if (strcmp(resource_name, "System RAM")) 281 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 282 283 if (!mhp_range_allowed(start, size, true)) 284 return ERR_PTR(-E2BIG); 285 286 /* 287 * Make sure value parsed from 'mem=' only restricts memory adding 288 * while booting, so that memory hotplug won't be impacted. Please 289 * refer to document of 'mem=' in kernel-parameters.txt for more 290 * details. 291 */ 292 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 293 return ERR_PTR(-E2BIG); 294 295 /* 296 * Request ownership of the new memory range. This might be 297 * a child of an existing resource that was present but 298 * not marked as busy. 299 */ 300 res = __request_region(&iomem_resource, start, size, 301 resource_name, flags); 302 303 if (!res) { 304 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 305 start, start + size); 306 return ERR_PTR(-EEXIST); 307 } 308 return res; 309 } 310 311 static void release_memory_resource(struct resource *res) 312 { 313 if (!res) 314 return; 315 release_resource(res); 316 kfree(res); 317 } 318 319 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 320 { 321 /* 322 * Disallow all operations smaller than a sub-section and only 323 * allow operations smaller than a section for 324 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 325 * enforces a larger memory_block_size_bytes() granularity for 326 * memory that will be marked online, so this check should only 327 * fire for direct arch_{add,remove}_memory() users outside of 328 * add_memory_resource(). 329 */ 330 unsigned long min_align; 331 332 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 333 min_align = PAGES_PER_SUBSECTION; 334 else 335 min_align = PAGES_PER_SECTION; 336 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 337 return -EINVAL; 338 return 0; 339 } 340 341 /* 342 * Return page for the valid pfn only if the page is online. All pfn 343 * walkers which rely on the fully initialized page->flags and others 344 * should use this rather than pfn_valid && pfn_to_page 345 */ 346 struct page *pfn_to_online_page(unsigned long pfn) 347 { 348 unsigned long nr = pfn_to_section_nr(pfn); 349 struct dev_pagemap *pgmap; 350 struct mem_section *ms; 351 352 if (nr >= NR_MEM_SECTIONS) 353 return NULL; 354 355 ms = __nr_to_section(nr); 356 if (!online_section(ms)) 357 return NULL; 358 359 /* 360 * Save some code text when online_section() + 361 * pfn_section_valid() are sufficient. 362 */ 363 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 364 return NULL; 365 366 if (!pfn_section_valid(ms, pfn)) 367 return NULL; 368 369 if (!online_device_section(ms)) 370 return pfn_to_page(pfn); 371 372 /* 373 * Slowpath: when ZONE_DEVICE collides with 374 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 375 * the section may be 'offline' but 'valid'. Only 376 * get_dev_pagemap() can determine sub-section online status. 377 */ 378 pgmap = get_dev_pagemap(pfn, NULL); 379 put_dev_pagemap(pgmap); 380 381 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 382 if (pgmap) 383 return NULL; 384 385 return pfn_to_page(pfn); 386 } 387 EXPORT_SYMBOL_GPL(pfn_to_online_page); 388 389 int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 390 struct mhp_params *params) 391 { 392 const unsigned long end_pfn = pfn + nr_pages; 393 unsigned long cur_nr_pages; 394 int err; 395 struct vmem_altmap *altmap = params->altmap; 396 397 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 398 return -EINVAL; 399 400 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 401 402 if (altmap) { 403 /* 404 * Validate altmap is within bounds of the total request 405 */ 406 if (altmap->base_pfn != pfn 407 || vmem_altmap_offset(altmap) > nr_pages) { 408 pr_warn_once("memory add fail, invalid altmap\n"); 409 return -EINVAL; 410 } 411 altmap->alloc = 0; 412 } 413 414 if (check_pfn_span(pfn, nr_pages)) { 415 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 416 return -EINVAL; 417 } 418 419 for (; pfn < end_pfn; pfn += cur_nr_pages) { 420 /* Select all remaining pages up to the next section boundary */ 421 cur_nr_pages = min(end_pfn - pfn, 422 SECTION_ALIGN_UP(pfn + 1) - pfn); 423 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 424 params->pgmap); 425 if (err) 426 break; 427 cond_resched(); 428 } 429 vmemmap_populate_print_last(); 430 return err; 431 } 432 433 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 434 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 435 unsigned long start_pfn, 436 unsigned long end_pfn) 437 { 438 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 439 if (unlikely(!pfn_to_online_page(start_pfn))) 440 continue; 441 442 if (unlikely(pfn_to_nid(start_pfn) != nid)) 443 continue; 444 445 if (zone != page_zone(pfn_to_page(start_pfn))) 446 continue; 447 448 return start_pfn; 449 } 450 451 return 0; 452 } 453 454 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 455 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 456 unsigned long start_pfn, 457 unsigned long end_pfn) 458 { 459 unsigned long pfn; 460 461 /* pfn is the end pfn of a memory section. */ 462 pfn = end_pfn - 1; 463 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 464 if (unlikely(!pfn_to_online_page(pfn))) 465 continue; 466 467 if (unlikely(pfn_to_nid(pfn) != nid)) 468 continue; 469 470 if (zone != page_zone(pfn_to_page(pfn))) 471 continue; 472 473 return pfn; 474 } 475 476 return 0; 477 } 478 479 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 480 unsigned long end_pfn) 481 { 482 unsigned long pfn; 483 int nid = zone_to_nid(zone); 484 485 if (zone->zone_start_pfn == start_pfn) { 486 /* 487 * If the section is smallest section in the zone, it need 488 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 489 * In this case, we find second smallest valid mem_section 490 * for shrinking zone. 491 */ 492 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 493 zone_end_pfn(zone)); 494 if (pfn) { 495 zone->spanned_pages = zone_end_pfn(zone) - pfn; 496 zone->zone_start_pfn = pfn; 497 } else { 498 zone->zone_start_pfn = 0; 499 zone->spanned_pages = 0; 500 } 501 } else if (zone_end_pfn(zone) == end_pfn) { 502 /* 503 * If the section is biggest section in the zone, it need 504 * shrink zone->spanned_pages. 505 * In this case, we find second biggest valid mem_section for 506 * shrinking zone. 507 */ 508 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 509 start_pfn); 510 if (pfn) 511 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 512 else { 513 zone->zone_start_pfn = 0; 514 zone->spanned_pages = 0; 515 } 516 } 517 } 518 519 static void update_pgdat_span(struct pglist_data *pgdat) 520 { 521 unsigned long node_start_pfn = 0, node_end_pfn = 0; 522 struct zone *zone; 523 524 for (zone = pgdat->node_zones; 525 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 526 unsigned long end_pfn = zone_end_pfn(zone); 527 528 /* No need to lock the zones, they can't change. */ 529 if (!zone->spanned_pages) 530 continue; 531 if (!node_end_pfn) { 532 node_start_pfn = zone->zone_start_pfn; 533 node_end_pfn = end_pfn; 534 continue; 535 } 536 537 if (end_pfn > node_end_pfn) 538 node_end_pfn = end_pfn; 539 if (zone->zone_start_pfn < node_start_pfn) 540 node_start_pfn = zone->zone_start_pfn; 541 } 542 543 pgdat->node_start_pfn = node_start_pfn; 544 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 545 } 546 547 void remove_pfn_range_from_zone(struct zone *zone, 548 unsigned long start_pfn, 549 unsigned long nr_pages) 550 { 551 const unsigned long end_pfn = start_pfn + nr_pages; 552 struct pglist_data *pgdat = zone->zone_pgdat; 553 unsigned long pfn, cur_nr_pages; 554 555 /* Poison struct pages because they are now uninitialized again. */ 556 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 557 cond_resched(); 558 559 /* Select all remaining pages up to the next section boundary */ 560 cur_nr_pages = 561 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 562 page_init_poison(pfn_to_page(pfn), 563 sizeof(struct page) * cur_nr_pages); 564 } 565 566 /* 567 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 568 * we will not try to shrink the zones - which is okay as 569 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 570 */ 571 if (zone_is_zone_device(zone)) 572 return; 573 574 clear_zone_contiguous(zone); 575 576 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 577 update_pgdat_span(pgdat); 578 579 set_zone_contiguous(zone); 580 } 581 582 /** 583 * __remove_pages() - remove sections of pages 584 * @pfn: starting pageframe (must be aligned to start of a section) 585 * @nr_pages: number of pages to remove (must be multiple of section size) 586 * @altmap: alternative device page map or %NULL if default memmap is used 587 * 588 * Generic helper function to remove section mappings and sysfs entries 589 * for the section of the memory we are removing. Caller needs to make 590 * sure that pages are marked reserved and zones are adjust properly by 591 * calling offline_pages(). 592 */ 593 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 594 struct vmem_altmap *altmap) 595 { 596 const unsigned long end_pfn = pfn + nr_pages; 597 unsigned long cur_nr_pages; 598 599 if (check_pfn_span(pfn, nr_pages)) { 600 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 601 return; 602 } 603 604 for (; pfn < end_pfn; pfn += cur_nr_pages) { 605 cond_resched(); 606 /* Select all remaining pages up to the next section boundary */ 607 cur_nr_pages = min(end_pfn - pfn, 608 SECTION_ALIGN_UP(pfn + 1) - pfn); 609 sparse_remove_section(pfn, cur_nr_pages, altmap); 610 } 611 } 612 613 int set_online_page_callback(online_page_callback_t callback) 614 { 615 int rc = -EINVAL; 616 617 get_online_mems(); 618 mutex_lock(&online_page_callback_lock); 619 620 if (online_page_callback == generic_online_page) { 621 online_page_callback = callback; 622 rc = 0; 623 } 624 625 mutex_unlock(&online_page_callback_lock); 626 put_online_mems(); 627 628 return rc; 629 } 630 EXPORT_SYMBOL_GPL(set_online_page_callback); 631 632 int restore_online_page_callback(online_page_callback_t callback) 633 { 634 int rc = -EINVAL; 635 636 get_online_mems(); 637 mutex_lock(&online_page_callback_lock); 638 639 if (online_page_callback == callback) { 640 online_page_callback = generic_online_page; 641 rc = 0; 642 } 643 644 mutex_unlock(&online_page_callback_lock); 645 put_online_mems(); 646 647 return rc; 648 } 649 EXPORT_SYMBOL_GPL(restore_online_page_callback); 650 651 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 652 void generic_online_page(struct page *page, unsigned int order) 653 { 654 __free_pages_core(page, order, MEMINIT_HOTPLUG); 655 } 656 EXPORT_SYMBOL_GPL(generic_online_page); 657 658 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 659 { 660 const unsigned long end_pfn = start_pfn + nr_pages; 661 unsigned long pfn; 662 663 /* 664 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might 665 * decide to not expose all pages to the buddy (e.g., expose them 666 * later). We account all pages as being online and belonging to this 667 * zone ("present"). 668 * When using memmap_on_memory, the range might not be aligned to 669 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 670 * this and the first chunk to online will be pageblock_nr_pages. 671 */ 672 for (pfn = start_pfn; pfn < end_pfn;) { 673 struct page *page = pfn_to_page(pfn); 674 int order; 675 676 /* 677 * Free to online pages in the largest chunks alignment allows. 678 * 679 * __ffs() behaviour is undefined for 0. start == 0 is 680 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for 681 * the case. 682 */ 683 if (pfn) 684 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn)); 685 else 686 order = MAX_PAGE_ORDER; 687 688 /* 689 * Exposing the page to the buddy by freeing can cause 690 * issues with debug_pagealloc enabled: some archs don't 691 * like double-unmappings. So treat them like any pages that 692 * were allocated from the buddy. 693 */ 694 debug_pagealloc_map_pages(page, 1 << order); 695 (*online_page_callback)(page, order); 696 pfn += (1UL << order); 697 } 698 699 /* mark all involved sections as online */ 700 online_mem_sections(start_pfn, end_pfn); 701 } 702 703 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 704 unsigned long nr_pages) 705 { 706 unsigned long old_end_pfn = zone_end_pfn(zone); 707 708 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 709 zone->zone_start_pfn = start_pfn; 710 711 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 712 } 713 714 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 715 unsigned long nr_pages) 716 { 717 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 718 719 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 720 pgdat->node_start_pfn = start_pfn; 721 722 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 723 724 } 725 726 #ifdef CONFIG_ZONE_DEVICE 727 static void section_taint_zone_device(unsigned long pfn) 728 { 729 struct mem_section *ms = __pfn_to_section(pfn); 730 731 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 732 } 733 #else 734 static inline void section_taint_zone_device(unsigned long pfn) 735 { 736 } 737 #endif 738 739 /* 740 * Associate the pfn range with the given zone, initializing the memmaps 741 * and resizing the pgdat/zone data to span the added pages. After this 742 * call, all affected pages are PageOffline(). 743 * 744 * All aligned pageblocks are initialized to the specified migratetype 745 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 746 * zone stats (e.g., nr_isolate_pageblock) are touched. 747 */ 748 void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 749 unsigned long nr_pages, 750 struct vmem_altmap *altmap, int migratetype, 751 bool isolate_pageblock) 752 { 753 struct pglist_data *pgdat = zone->zone_pgdat; 754 int nid = pgdat->node_id; 755 756 clear_zone_contiguous(zone); 757 758 if (zone_is_empty(zone)) 759 init_currently_empty_zone(zone, start_pfn, nr_pages); 760 resize_zone_range(zone, start_pfn, nr_pages); 761 resize_pgdat_range(pgdat, start_pfn, nr_pages); 762 763 /* 764 * Subsection population requires care in pfn_to_online_page(). 765 * Set the taint to enable the slow path detection of 766 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 767 * section. 768 */ 769 if (zone_is_zone_device(zone)) { 770 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 771 section_taint_zone_device(start_pfn); 772 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 773 section_taint_zone_device(start_pfn + nr_pages); 774 } 775 776 /* 777 * TODO now we have a visible range of pages which are not associated 778 * with their zone properly. Not nice but set_pfnblock_migratetype() 779 * expects the zone spans the pfn range. All the pages in the range 780 * are reserved so nobody should be touching them so we should be safe 781 */ 782 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 783 MEMINIT_HOTPLUG, altmap, migratetype, 784 isolate_pageblock); 785 786 set_zone_contiguous(zone); 787 } 788 789 struct auto_movable_stats { 790 unsigned long kernel_early_pages; 791 unsigned long movable_pages; 792 }; 793 794 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 795 struct zone *zone) 796 { 797 if (zone_idx(zone) == ZONE_MOVABLE) { 798 stats->movable_pages += zone->present_pages; 799 } else { 800 stats->kernel_early_pages += zone->present_early_pages; 801 #ifdef CONFIG_CMA 802 /* 803 * CMA pages (never on hotplugged memory) behave like 804 * ZONE_MOVABLE. 805 */ 806 stats->movable_pages += zone->cma_pages; 807 stats->kernel_early_pages -= zone->cma_pages; 808 #endif /* CONFIG_CMA */ 809 } 810 } 811 struct auto_movable_group_stats { 812 unsigned long movable_pages; 813 unsigned long req_kernel_early_pages; 814 }; 815 816 static int auto_movable_stats_account_group(struct memory_group *group, 817 void *arg) 818 { 819 const int ratio = READ_ONCE(auto_movable_ratio); 820 struct auto_movable_group_stats *stats = arg; 821 long pages; 822 823 /* 824 * We don't support modifying the config while the auto-movable online 825 * policy is already enabled. Just avoid the division by zero below. 826 */ 827 if (!ratio) 828 return 0; 829 830 /* 831 * Calculate how many early kernel pages this group requires to 832 * satisfy the configured zone ratio. 833 */ 834 pages = group->present_movable_pages * 100 / ratio; 835 pages -= group->present_kernel_pages; 836 837 if (pages > 0) 838 stats->req_kernel_early_pages += pages; 839 stats->movable_pages += group->present_movable_pages; 840 return 0; 841 } 842 843 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 844 unsigned long nr_pages) 845 { 846 unsigned long kernel_early_pages, movable_pages; 847 struct auto_movable_group_stats group_stats = {}; 848 struct auto_movable_stats stats = {}; 849 struct zone *zone; 850 int i; 851 852 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 853 if (nid == NUMA_NO_NODE) { 854 /* TODO: cache values */ 855 for_each_populated_zone(zone) 856 auto_movable_stats_account_zone(&stats, zone); 857 } else { 858 for (i = 0; i < MAX_NR_ZONES; i++) { 859 pg_data_t *pgdat = NODE_DATA(nid); 860 861 zone = pgdat->node_zones + i; 862 if (populated_zone(zone)) 863 auto_movable_stats_account_zone(&stats, zone); 864 } 865 } 866 867 kernel_early_pages = stats.kernel_early_pages; 868 movable_pages = stats.movable_pages; 869 870 /* 871 * Kernel memory inside dynamic memory group allows for more MOVABLE 872 * memory within the same group. Remove the effect of all but the 873 * current group from the stats. 874 */ 875 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 876 group, &group_stats); 877 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 878 return false; 879 kernel_early_pages -= group_stats.req_kernel_early_pages; 880 movable_pages -= group_stats.movable_pages; 881 882 if (group && group->is_dynamic) 883 kernel_early_pages += group->present_kernel_pages; 884 885 /* 886 * Test if we could online the given number of pages to ZONE_MOVABLE 887 * and still stay in the configured ratio. 888 */ 889 movable_pages += nr_pages; 890 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 891 } 892 893 /* 894 * Returns a default kernel memory zone for the given pfn range. 895 * If no kernel zone covers this pfn range it will automatically go 896 * to the ZONE_NORMAL. 897 */ 898 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 899 unsigned long nr_pages) 900 { 901 struct pglist_data *pgdat = NODE_DATA(nid); 902 int zid; 903 904 for (zid = 0; zid < ZONE_NORMAL; zid++) { 905 struct zone *zone = &pgdat->node_zones[zid]; 906 907 if (zone_intersects(zone, start_pfn, nr_pages)) 908 return zone; 909 } 910 911 return &pgdat->node_zones[ZONE_NORMAL]; 912 } 913 914 /* 915 * Determine to which zone to online memory dynamically based on user 916 * configuration and system stats. We care about the following ratio: 917 * 918 * MOVABLE : KERNEL 919 * 920 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 921 * one of the kernel zones. CMA pages inside one of the kernel zones really 922 * behaves like ZONE_MOVABLE, so we treat them accordingly. 923 * 924 * We don't allow for hotplugged memory in a KERNEL zone to increase the 925 * amount of MOVABLE memory we can have, so we end up with: 926 * 927 * MOVABLE : KERNEL_EARLY 928 * 929 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 930 * boot. We base our calculation on KERNEL_EARLY internally, because: 931 * 932 * a) Hotplugged memory in one of the kernel zones can sometimes still get 933 * hotunplugged, especially when hot(un)plugging individual memory blocks. 934 * There is no coordination across memory devices, therefore "automatic" 935 * hotunplugging, as implemented in hypervisors, could result in zone 936 * imbalances. 937 * b) Early/boot memory in one of the kernel zones can usually not get 938 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 939 * with unmovable allocations). While there are corner cases where it might 940 * still work, it is barely relevant in practice. 941 * 942 * Exceptions are dynamic memory groups, which allow for more MOVABLE 943 * memory within the same memory group -- because in that case, there is 944 * coordination within the single memory device managed by a single driver. 945 * 946 * We rely on "present pages" instead of "managed pages", as the latter is 947 * highly unreliable and dynamic in virtualized environments, and does not 948 * consider boot time allocations. For example, memory ballooning adjusts the 949 * managed pages when inflating/deflating the balloon, and balloon compaction 950 * can even migrate inflated pages between zones. 951 * 952 * Using "present pages" is better but some things to keep in mind are: 953 * 954 * a) Some memblock allocations, such as for the crashkernel area, are 955 * effectively unused by the kernel, yet they account to "present pages". 956 * Fortunately, these allocations are comparatively small in relevant setups 957 * (e.g., fraction of system memory). 958 * b) Some hotplugged memory blocks in virtualized environments, esecially 959 * hotplugged by virtio-mem, look like they are completely present, however, 960 * only parts of the memory block are actually currently usable. 961 * "present pages" is an upper limit that can get reached at runtime. As 962 * we base our calculations on KERNEL_EARLY, this is not an issue. 963 */ 964 static struct zone *auto_movable_zone_for_pfn(int nid, 965 struct memory_group *group, 966 unsigned long pfn, 967 unsigned long nr_pages) 968 { 969 unsigned long online_pages = 0, max_pages, end_pfn; 970 struct page *page; 971 972 if (!auto_movable_ratio) 973 goto kernel_zone; 974 975 if (group && !group->is_dynamic) { 976 max_pages = group->s.max_pages; 977 online_pages = group->present_movable_pages; 978 979 /* If anything is !MOVABLE online the rest !MOVABLE. */ 980 if (group->present_kernel_pages) 981 goto kernel_zone; 982 } else if (!group || group->d.unit_pages == nr_pages) { 983 max_pages = nr_pages; 984 } else { 985 max_pages = group->d.unit_pages; 986 /* 987 * Take a look at all online sections in the current unit. 988 * We can safely assume that all pages within a section belong 989 * to the same zone, because dynamic memory groups only deal 990 * with hotplugged memory. 991 */ 992 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 993 end_pfn = pfn + group->d.unit_pages; 994 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 995 page = pfn_to_online_page(pfn); 996 if (!page) 997 continue; 998 /* If anything is !MOVABLE online the rest !MOVABLE. */ 999 if (!is_zone_movable_page(page)) 1000 goto kernel_zone; 1001 online_pages += PAGES_PER_SECTION; 1002 } 1003 } 1004 1005 /* 1006 * Online MOVABLE if we could *currently* online all remaining parts 1007 * MOVABLE. We expect to (add+) online them immediately next, so if 1008 * nobody interferes, all will be MOVABLE if possible. 1009 */ 1010 nr_pages = max_pages - online_pages; 1011 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 1012 goto kernel_zone; 1013 1014 #ifdef CONFIG_NUMA 1015 if (auto_movable_numa_aware && 1016 !auto_movable_can_online_movable(nid, group, nr_pages)) 1017 goto kernel_zone; 1018 #endif /* CONFIG_NUMA */ 1019 1020 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1021 kernel_zone: 1022 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 1023 } 1024 1025 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 1026 unsigned long nr_pages) 1027 { 1028 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 1029 nr_pages); 1030 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1031 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 1032 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 1033 1034 /* 1035 * We inherit the existing zone in a simple case where zones do not 1036 * overlap in the given range 1037 */ 1038 if (in_kernel ^ in_movable) 1039 return (in_kernel) ? kernel_zone : movable_zone; 1040 1041 /* 1042 * If the range doesn't belong to any zone or two zones overlap in the 1043 * given range then we use movable zone only if movable_node is 1044 * enabled because we always online to a kernel zone by default. 1045 */ 1046 return movable_node_enabled ? movable_zone : kernel_zone; 1047 } 1048 1049 struct zone *zone_for_pfn_range(int online_type, int nid, 1050 struct memory_group *group, unsigned long start_pfn, 1051 unsigned long nr_pages) 1052 { 1053 if (online_type == MMOP_ONLINE_KERNEL) 1054 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1055 1056 if (online_type == MMOP_ONLINE_MOVABLE) 1057 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1058 1059 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1060 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1061 1062 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1063 } 1064 1065 /* 1066 * This function should only be called by memory_block_{online,offline}, 1067 * and {online,offline}_pages. 1068 */ 1069 void adjust_present_page_count(struct page *page, struct memory_group *group, 1070 long nr_pages) 1071 { 1072 struct zone *zone = page_zone(page); 1073 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1074 1075 /* 1076 * We only support onlining/offlining/adding/removing of complete 1077 * memory blocks; therefore, either all is either early or hotplugged. 1078 */ 1079 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1080 zone->present_early_pages += nr_pages; 1081 zone->present_pages += nr_pages; 1082 zone->zone_pgdat->node_present_pages += nr_pages; 1083 1084 if (group && movable) 1085 group->present_movable_pages += nr_pages; 1086 else if (group && !movable) 1087 group->present_kernel_pages += nr_pages; 1088 } 1089 1090 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1091 struct zone *zone, bool mhp_off_inaccessible) 1092 { 1093 unsigned long end_pfn = pfn + nr_pages; 1094 int ret, i; 1095 1096 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1097 if (ret) 1098 return ret; 1099 1100 /* 1101 * Memory block is accessible at this stage and hence poison the struct 1102 * pages now. If the memory block is accessible during memory hotplug 1103 * addition phase, then page poisining is already performed in 1104 * sparse_add_section(). 1105 */ 1106 if (mhp_off_inaccessible) 1107 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages); 1108 1109 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE, 1110 false); 1111 1112 for (i = 0; i < nr_pages; i++) { 1113 struct page *page = pfn_to_page(pfn + i); 1114 1115 __ClearPageOffline(page); 1116 SetPageVmemmapSelfHosted(page); 1117 } 1118 1119 /* 1120 * It might be that the vmemmap_pages fully span sections. If that is 1121 * the case, mark those sections online here as otherwise they will be 1122 * left offline. 1123 */ 1124 if (nr_pages >= PAGES_PER_SECTION) 1125 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1126 1127 return ret; 1128 } 1129 1130 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1131 { 1132 unsigned long end_pfn = pfn + nr_pages; 1133 1134 /* 1135 * It might be that the vmemmap_pages fully span sections. If that is 1136 * the case, mark those sections offline here as otherwise they will be 1137 * left online. 1138 */ 1139 if (nr_pages >= PAGES_PER_SECTION) 1140 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1141 1142 /* 1143 * The pages associated with this vmemmap have been offlined, so 1144 * we can reset its state here. 1145 */ 1146 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1147 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1148 } 1149 1150 /* 1151 * Must be called with mem_hotplug_lock in write mode. 1152 */ 1153 int online_pages(unsigned long pfn, unsigned long nr_pages, 1154 struct zone *zone, struct memory_group *group) 1155 { 1156 struct memory_notify mem_arg = { 1157 .start_pfn = pfn, 1158 .nr_pages = nr_pages, 1159 }; 1160 struct node_notify node_arg = { 1161 .nid = NUMA_NO_NODE, 1162 }; 1163 const int nid = zone_to_nid(zone); 1164 int need_zonelists_rebuild = 0; 1165 unsigned long flags; 1166 int ret; 1167 1168 /* 1169 * {on,off}lining is constrained to full memory sections (or more 1170 * precisely to memory blocks from the user space POV). 1171 * memmap_on_memory is an exception because it reserves initial part 1172 * of the physical memory space for vmemmaps. That space is pageblock 1173 * aligned. 1174 */ 1175 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1176 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1177 return -EINVAL; 1178 1179 1180 /* associate pfn range with the zone */ 1181 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_MOVABLE, 1182 true); 1183 1184 if (!node_state(nid, N_MEMORY)) { 1185 /* Adding memory to the node for the first time */ 1186 node_arg.nid = nid; 1187 ret = node_notify(NODE_ADDING_FIRST_MEMORY, &node_arg); 1188 ret = notifier_to_errno(ret); 1189 if (ret) 1190 goto failed_addition; 1191 } 1192 1193 ret = memory_notify(MEM_GOING_ONLINE, &mem_arg); 1194 ret = notifier_to_errno(ret); 1195 if (ret) 1196 goto failed_addition; 1197 1198 /* 1199 * Fixup the number of isolated pageblocks before marking the sections 1200 * onlining, such that undo_isolate_page_range() works correctly. 1201 */ 1202 spin_lock_irqsave(&zone->lock, flags); 1203 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1204 spin_unlock_irqrestore(&zone->lock, flags); 1205 1206 /* 1207 * If this zone is not populated, then it is not in zonelist. 1208 * This means the page allocator ignores this zone. 1209 * So, zonelist must be updated after online. 1210 */ 1211 if (!populated_zone(zone)) { 1212 need_zonelists_rebuild = 1; 1213 setup_zone_pageset(zone); 1214 } 1215 1216 online_pages_range(pfn, nr_pages); 1217 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1218 1219 if (node_arg.nid >= 0) 1220 node_set_state(nid, N_MEMORY); 1221 if (need_zonelists_rebuild) 1222 build_all_zonelists(NULL); 1223 1224 /* Basic onlining is complete, allow allocation of onlined pages. */ 1225 undo_isolate_page_range(pfn, pfn + nr_pages); 1226 1227 /* 1228 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1229 * the tail of the freelist when undoing isolation). Shuffle the whole 1230 * zone to make sure the just onlined pages are properly distributed 1231 * across the whole freelist - to create an initial shuffle. 1232 */ 1233 shuffle_zone(zone); 1234 1235 /* reinitialise watermarks and update pcp limits */ 1236 init_per_zone_wmark_min(); 1237 1238 kswapd_run(nid); 1239 kcompactd_run(nid); 1240 1241 if (node_arg.nid >= 0) 1242 /* First memory added successfully. Notify consumers. */ 1243 node_notify(NODE_ADDED_FIRST_MEMORY, &node_arg); 1244 1245 writeback_set_ratelimit(); 1246 1247 memory_notify(MEM_ONLINE, &mem_arg); 1248 return 0; 1249 1250 failed_addition: 1251 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1252 (unsigned long long) pfn << PAGE_SHIFT, 1253 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1254 memory_notify(MEM_CANCEL_ONLINE, &mem_arg); 1255 if (node_arg.nid != NUMA_NO_NODE) 1256 node_notify(NODE_CANCEL_ADDING_FIRST_MEMORY, &node_arg); 1257 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1258 return ret; 1259 } 1260 1261 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1262 static pg_data_t *hotadd_init_pgdat(int nid) 1263 { 1264 struct pglist_data *pgdat; 1265 1266 /* 1267 * NODE_DATA is preallocated (free_area_init) but its internal 1268 * state is not allocated completely. Add missing pieces. 1269 * Completely offline nodes stay around and they just need 1270 * reintialization. 1271 */ 1272 pgdat = NODE_DATA(nid); 1273 1274 /* init node's zones as empty zones, we don't have any present pages.*/ 1275 free_area_init_core_hotplug(pgdat); 1276 1277 /* 1278 * The node we allocated has no zone fallback lists. For avoiding 1279 * to access not-initialized zonelist, build here. 1280 */ 1281 build_all_zonelists(pgdat); 1282 1283 return pgdat; 1284 } 1285 1286 /* 1287 * __try_online_node - online a node if offlined 1288 * @nid: the node ID 1289 * @set_node_online: Whether we want to online the node 1290 * called by cpu_up() to online a node without onlined memory. 1291 * 1292 * Returns: 1293 * 1 -> a new node has been allocated 1294 * 0 -> the node is already online 1295 * -ENOMEM -> the node could not be allocated 1296 */ 1297 static int __try_online_node(int nid, bool set_node_online) 1298 { 1299 pg_data_t *pgdat; 1300 int ret = 1; 1301 1302 if (node_online(nid)) 1303 return 0; 1304 1305 pgdat = hotadd_init_pgdat(nid); 1306 if (!pgdat) { 1307 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1308 ret = -ENOMEM; 1309 goto out; 1310 } 1311 1312 if (set_node_online) { 1313 node_set_online(nid); 1314 ret = register_one_node(nid); 1315 BUG_ON(ret); 1316 } 1317 out: 1318 return ret; 1319 } 1320 1321 /* 1322 * Users of this function always want to online/register the node 1323 */ 1324 int try_online_node(int nid) 1325 { 1326 int ret; 1327 1328 mem_hotplug_begin(); 1329 ret = __try_online_node(nid, true); 1330 mem_hotplug_done(); 1331 return ret; 1332 } 1333 1334 static int check_hotplug_memory_range(u64 start, u64 size) 1335 { 1336 /* memory range must be block size aligned */ 1337 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1338 !IS_ALIGNED(size, memory_block_size_bytes())) { 1339 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1340 memory_block_size_bytes(), start, size); 1341 return -EINVAL; 1342 } 1343 1344 return 0; 1345 } 1346 1347 static int online_memory_block(struct memory_block *mem, void *arg) 1348 { 1349 mem->online_type = mhp_get_default_online_type(); 1350 return device_online(&mem->dev); 1351 } 1352 1353 #ifndef arch_supports_memmap_on_memory 1354 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) 1355 { 1356 /* 1357 * As default, we want the vmemmap to span a complete PMD such that we 1358 * can map the vmemmap using a single PMD if supported by the 1359 * architecture. 1360 */ 1361 return IS_ALIGNED(vmemmap_size, PMD_SIZE); 1362 } 1363 #endif 1364 1365 bool mhp_supports_memmap_on_memory(void) 1366 { 1367 unsigned long vmemmap_size = memory_block_memmap_size(); 1368 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 1369 1370 /* 1371 * Besides having arch support and the feature enabled at runtime, we 1372 * need a few more assumptions to hold true: 1373 * 1374 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code 1375 * to populate memory from the altmap for unrelated parts (i.e., 1376 * other memory blocks) 1377 * 1378 * b) The vmemmap pages (and thereby the pages that will be exposed to 1379 * the buddy) have to cover full pageblocks: memory onlining/offlining 1380 * code requires applicable ranges to be page-aligned, for example, to 1381 * set the migratetypes properly. 1382 * 1383 * TODO: Although we have a check here to make sure that vmemmap pages 1384 * fully populate a PMD, it is not the right place to check for 1385 * this. A much better solution involves improving vmemmap code 1386 * to fallback to base pages when trying to populate vmemmap using 1387 * altmap as an alternative source of memory, and we do not exactly 1388 * populate a single PMD. 1389 */ 1390 if (!mhp_memmap_on_memory()) 1391 return false; 1392 1393 /* 1394 * Make sure the vmemmap allocation is fully contained 1395 * so that we always allocate vmemmap memory from altmap area. 1396 */ 1397 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) 1398 return false; 1399 1400 /* 1401 * start pfn should be pageblock_nr_pages aligned for correctly 1402 * setting migrate types 1403 */ 1404 if (!pageblock_aligned(memmap_pages)) 1405 return false; 1406 1407 if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) 1408 /* No effective hotplugged memory doesn't make sense. */ 1409 return false; 1410 1411 return arch_supports_memmap_on_memory(vmemmap_size); 1412 } 1413 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory); 1414 1415 static void remove_memory_blocks_and_altmaps(u64 start, u64 size) 1416 { 1417 unsigned long memblock_size = memory_block_size_bytes(); 1418 u64 cur_start; 1419 1420 /* 1421 * For memmap_on_memory, the altmaps were added on a per-memblock 1422 * basis; we have to process each individual memory block. 1423 */ 1424 for (cur_start = start; cur_start < start + size; 1425 cur_start += memblock_size) { 1426 struct vmem_altmap *altmap = NULL; 1427 struct memory_block *mem; 1428 1429 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start))); 1430 if (WARN_ON_ONCE(!mem)) 1431 continue; 1432 1433 altmap = mem->altmap; 1434 mem->altmap = NULL; 1435 1436 remove_memory_block_devices(cur_start, memblock_size); 1437 1438 arch_remove_memory(cur_start, memblock_size, altmap); 1439 1440 /* Verify that all vmemmap pages have actually been freed. */ 1441 WARN(altmap->alloc, "Altmap not fully unmapped"); 1442 kfree(altmap); 1443 } 1444 } 1445 1446 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group, 1447 u64 start, u64 size, mhp_t mhp_flags) 1448 { 1449 unsigned long memblock_size = memory_block_size_bytes(); 1450 u64 cur_start; 1451 int ret; 1452 1453 for (cur_start = start; cur_start < start + size; 1454 cur_start += memblock_size) { 1455 struct mhp_params params = { .pgprot = 1456 pgprot_mhp(PAGE_KERNEL) }; 1457 struct vmem_altmap mhp_altmap = { 1458 .base_pfn = PHYS_PFN(cur_start), 1459 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1), 1460 }; 1461 1462 mhp_altmap.free = memory_block_memmap_on_memory_pages(); 1463 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE) 1464 mhp_altmap.inaccessible = true; 1465 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap), 1466 GFP_KERNEL); 1467 if (!params.altmap) { 1468 ret = -ENOMEM; 1469 goto out; 1470 } 1471 1472 /* call arch's memory hotadd */ 1473 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms); 1474 if (ret < 0) { 1475 kfree(params.altmap); 1476 goto out; 1477 } 1478 1479 /* create memory block devices after memory was added */ 1480 ret = create_memory_block_devices(cur_start, memblock_size, 1481 params.altmap, group); 1482 if (ret) { 1483 arch_remove_memory(cur_start, memblock_size, NULL); 1484 kfree(params.altmap); 1485 goto out; 1486 } 1487 } 1488 1489 return 0; 1490 out: 1491 if (ret && cur_start != start) 1492 remove_memory_blocks_and_altmaps(start, cur_start - start); 1493 return ret; 1494 } 1495 1496 /* 1497 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1498 * and online/offline operations (triggered e.g. by sysfs). 1499 * 1500 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1501 */ 1502 int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1503 { 1504 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1505 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1506 struct memory_group *group = NULL; 1507 u64 start, size; 1508 bool new_node = false; 1509 int ret; 1510 1511 start = res->start; 1512 size = resource_size(res); 1513 1514 ret = check_hotplug_memory_range(start, size); 1515 if (ret) 1516 return ret; 1517 1518 if (mhp_flags & MHP_NID_IS_MGID) { 1519 group = memory_group_find_by_id(nid); 1520 if (!group) 1521 return -EINVAL; 1522 nid = group->nid; 1523 } 1524 1525 if (!node_possible(nid)) { 1526 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1527 return -EINVAL; 1528 } 1529 1530 mem_hotplug_begin(); 1531 1532 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1533 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1534 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1535 ret = memblock_add_node(start, size, nid, memblock_flags); 1536 if (ret) 1537 goto error_mem_hotplug_end; 1538 } 1539 1540 ret = __try_online_node(nid, false); 1541 if (ret < 0) 1542 goto error; 1543 new_node = ret; 1544 1545 /* 1546 * Self hosted memmap array 1547 */ 1548 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) && 1549 mhp_supports_memmap_on_memory()) { 1550 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags); 1551 if (ret) 1552 goto error; 1553 } else { 1554 ret = arch_add_memory(nid, start, size, ¶ms); 1555 if (ret < 0) 1556 goto error; 1557 1558 /* create memory block devices after memory was added */ 1559 ret = create_memory_block_devices(start, size, NULL, group); 1560 if (ret) { 1561 arch_remove_memory(start, size, params.altmap); 1562 goto error; 1563 } 1564 } 1565 1566 if (new_node) { 1567 /* If sysfs file of new node can't be created, cpu on the node 1568 * can't be hot-added. There is no rollback way now. 1569 * So, check by BUG_ON() to catch it reluctantly.. 1570 * We online node here. We can't roll back from here. 1571 */ 1572 node_set_online(nid); 1573 ret = register_one_node(nid); 1574 BUG_ON(ret); 1575 } 1576 1577 register_memory_blocks_under_node_hotplug(nid, PFN_DOWN(start), 1578 PFN_UP(start + size - 1)); 1579 1580 /* create new memmap entry */ 1581 if (!strcmp(res->name, "System RAM")) 1582 firmware_map_add_hotplug(start, start + size, "System RAM"); 1583 1584 /* device_online() will take the lock when calling online_pages() */ 1585 mem_hotplug_done(); 1586 1587 /* 1588 * In case we're allowed to merge the resource, flag it and trigger 1589 * merging now that adding succeeded. 1590 */ 1591 if (mhp_flags & MHP_MERGE_RESOURCE) 1592 merge_system_ram_resource(res); 1593 1594 /* online pages if requested */ 1595 if (mhp_get_default_online_type() != MMOP_OFFLINE) 1596 walk_memory_blocks(start, size, NULL, online_memory_block); 1597 1598 return ret; 1599 error: 1600 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1601 memblock_remove(start, size); 1602 error_mem_hotplug_end: 1603 mem_hotplug_done(); 1604 return ret; 1605 } 1606 1607 /* requires device_hotplug_lock, see add_memory_resource() */ 1608 int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1609 { 1610 struct resource *res; 1611 int ret; 1612 1613 res = register_memory_resource(start, size, "System RAM"); 1614 if (IS_ERR(res)) 1615 return PTR_ERR(res); 1616 1617 ret = add_memory_resource(nid, res, mhp_flags); 1618 if (ret < 0) 1619 release_memory_resource(res); 1620 return ret; 1621 } 1622 1623 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1624 { 1625 int rc; 1626 1627 lock_device_hotplug(); 1628 rc = __add_memory(nid, start, size, mhp_flags); 1629 unlock_device_hotplug(); 1630 1631 return rc; 1632 } 1633 EXPORT_SYMBOL_GPL(add_memory); 1634 1635 /* 1636 * Add special, driver-managed memory to the system as system RAM. Such 1637 * memory is not exposed via the raw firmware-provided memmap as system 1638 * RAM, instead, it is detected and added by a driver - during cold boot, 1639 * after a reboot, and after kexec. 1640 * 1641 * Reasons why this memory should not be used for the initial memmap of a 1642 * kexec kernel or for placing kexec images: 1643 * - The booting kernel is in charge of determining how this memory will be 1644 * used (e.g., use persistent memory as system RAM) 1645 * - Coordination with a hypervisor is required before this memory 1646 * can be used (e.g., inaccessible parts). 1647 * 1648 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1649 * memory map") are created. Also, the created memory resource is flagged 1650 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1651 * this memory as well (esp., not place kexec images onto it). 1652 * 1653 * The resource_name (visible via /proc/iomem) has to have the format 1654 * "System RAM ($DRIVER)". 1655 */ 1656 int add_memory_driver_managed(int nid, u64 start, u64 size, 1657 const char *resource_name, mhp_t mhp_flags) 1658 { 1659 struct resource *res; 1660 int rc; 1661 1662 if (!resource_name || 1663 strstr(resource_name, "System RAM (") != resource_name || 1664 resource_name[strlen(resource_name) - 1] != ')') 1665 return -EINVAL; 1666 1667 lock_device_hotplug(); 1668 1669 res = register_memory_resource(start, size, resource_name); 1670 if (IS_ERR(res)) { 1671 rc = PTR_ERR(res); 1672 goto out_unlock; 1673 } 1674 1675 rc = add_memory_resource(nid, res, mhp_flags); 1676 if (rc < 0) 1677 release_memory_resource(res); 1678 1679 out_unlock: 1680 unlock_device_hotplug(); 1681 return rc; 1682 } 1683 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1684 1685 /* 1686 * Platforms should define arch_get_mappable_range() that provides 1687 * maximum possible addressable physical memory range for which the 1688 * linear mapping could be created. The platform returned address 1689 * range must adhere to these following semantics. 1690 * 1691 * - range.start <= range.end 1692 * - Range includes both end points [range.start..range.end] 1693 * 1694 * There is also a fallback definition provided here, allowing the 1695 * entire possible physical address range in case any platform does 1696 * not define arch_get_mappable_range(). 1697 */ 1698 struct range __weak arch_get_mappable_range(void) 1699 { 1700 struct range mhp_range = { 1701 .start = 0UL, 1702 .end = -1ULL, 1703 }; 1704 return mhp_range; 1705 } 1706 1707 struct range mhp_get_pluggable_range(bool need_mapping) 1708 { 1709 const u64 max_phys = DIRECT_MAP_PHYSMEM_END; 1710 struct range mhp_range; 1711 1712 if (need_mapping) { 1713 mhp_range = arch_get_mappable_range(); 1714 if (mhp_range.start > max_phys) { 1715 mhp_range.start = 0; 1716 mhp_range.end = 0; 1717 } 1718 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1719 } else { 1720 mhp_range.start = 0; 1721 mhp_range.end = max_phys; 1722 } 1723 return mhp_range; 1724 } 1725 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1726 1727 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1728 { 1729 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1730 u64 end = start + size; 1731 1732 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1733 return true; 1734 1735 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1736 start, end, mhp_range.start, mhp_range.end); 1737 return false; 1738 } 1739 1740 #ifdef CONFIG_MEMORY_HOTREMOVE 1741 /* 1742 * Scan pfn range [start,end) to find movable/migratable pages (LRU and 1743 * hugetlb folio, movable_ops pages). Will skip over most unmovable 1744 * pages (esp., pages that can be skipped when offlining), but bail out on 1745 * definitely unmovable pages. 1746 * 1747 * Returns: 1748 * 0 in case a movable page is found and movable_pfn was updated. 1749 * -ENOENT in case no movable page was found. 1750 * -EBUSY in case a definitely unmovable page was found. 1751 */ 1752 static int scan_movable_pages(unsigned long start, unsigned long end, 1753 unsigned long *movable_pfn) 1754 { 1755 unsigned long pfn; 1756 1757 for_each_valid_pfn(pfn, start, end) { 1758 struct page *page; 1759 struct folio *folio; 1760 1761 page = pfn_to_page(pfn); 1762 if (PageLRU(page) || page_has_movable_ops(page)) 1763 goto found; 1764 1765 /* 1766 * PageOffline() pages that do not have movable_ops and 1767 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1768 * definitely unmovable. If their reference count would be 0, 1769 * they could at least be skipped when offlining memory. 1770 */ 1771 if (PageOffline(page) && page_count(page)) 1772 return -EBUSY; 1773 1774 if (!PageHuge(page)) 1775 continue; 1776 folio = page_folio(page); 1777 /* 1778 * This test is racy as we hold no reference or lock. The 1779 * hugetlb page could have been free'ed and head is no longer 1780 * a hugetlb page before the following check. In such unlikely 1781 * cases false positives and negatives are possible. Calling 1782 * code must deal with these scenarios. 1783 */ 1784 if (folio_test_hugetlb_migratable(folio)) 1785 goto found; 1786 pfn |= folio_nr_pages(folio) - 1; 1787 } 1788 return -ENOENT; 1789 found: 1790 *movable_pfn = pfn; 1791 return 0; 1792 } 1793 1794 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1795 { 1796 struct folio *folio; 1797 unsigned long pfn; 1798 LIST_HEAD(source); 1799 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1800 DEFAULT_RATELIMIT_BURST); 1801 1802 for_each_valid_pfn(pfn, start_pfn, end_pfn) { 1803 struct page *page; 1804 1805 page = pfn_to_page(pfn); 1806 folio = page_folio(page); 1807 1808 if (!folio_try_get(folio)) 1809 continue; 1810 1811 if (unlikely(page_folio(page) != folio)) 1812 goto put_folio; 1813 1814 if (folio_test_large(folio)) 1815 pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1; 1816 1817 if (folio_contain_hwpoisoned_page(folio)) { 1818 if (WARN_ON(folio_test_lru(folio))) 1819 folio_isolate_lru(folio); 1820 if (folio_mapped(folio)) { 1821 folio_lock(folio); 1822 unmap_poisoned_folio(folio, pfn, false); 1823 folio_unlock(folio); 1824 } 1825 1826 goto put_folio; 1827 } 1828 1829 if (!isolate_folio_to_list(folio, &source)) { 1830 if (__ratelimit(&migrate_rs)) { 1831 pr_warn("failed to isolate pfn %lx\n", 1832 page_to_pfn(page)); 1833 dump_page(page, "isolation failed"); 1834 } 1835 } 1836 put_folio: 1837 folio_put(folio); 1838 } 1839 if (!list_empty(&source)) { 1840 nodemask_t nmask = node_states[N_MEMORY]; 1841 struct migration_target_control mtc = { 1842 .nmask = &nmask, 1843 .gfp_mask = GFP_KERNEL | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1844 .reason = MR_MEMORY_HOTPLUG, 1845 }; 1846 int ret; 1847 1848 /* 1849 * We have checked that migration range is on a single zone so 1850 * we can use the nid of the first page to all the others. 1851 */ 1852 mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru)); 1853 1854 /* 1855 * try to allocate from a different node but reuse this node 1856 * if there are no other online nodes to be used (e.g. we are 1857 * offlining a part of the only existing node) 1858 */ 1859 node_clear(mtc.nid, nmask); 1860 if (nodes_empty(nmask)) 1861 node_set(mtc.nid, nmask); 1862 ret = migrate_pages(&source, alloc_migration_target, NULL, 1863 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1864 if (ret) { 1865 list_for_each_entry(folio, &source, lru) { 1866 if (__ratelimit(&migrate_rs)) { 1867 pr_warn("migrating pfn %lx failed ret:%d\n", 1868 folio_pfn(folio), ret); 1869 dump_page(&folio->page, 1870 "migration failure"); 1871 } 1872 } 1873 putback_movable_pages(&source); 1874 } 1875 } 1876 } 1877 1878 static int __init cmdline_parse_movable_node(char *p) 1879 { 1880 movable_node_enabled = true; 1881 return 0; 1882 } 1883 early_param("movable_node", cmdline_parse_movable_node); 1884 1885 static int count_system_ram_pages_cb(unsigned long start_pfn, 1886 unsigned long nr_pages, void *data) 1887 { 1888 unsigned long *nr_system_ram_pages = data; 1889 1890 *nr_system_ram_pages += nr_pages; 1891 return 0; 1892 } 1893 1894 /* 1895 * Must be called with mem_hotplug_lock in write mode. 1896 */ 1897 int offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1898 struct zone *zone, struct memory_group *group) 1899 { 1900 unsigned long pfn, managed_pages, system_ram_pages = 0; 1901 const unsigned long end_pfn = start_pfn + nr_pages; 1902 struct pglist_data *pgdat = zone->zone_pgdat; 1903 const int node = zone_to_nid(zone); 1904 struct memory_notify mem_arg = { 1905 .start_pfn = start_pfn, 1906 .nr_pages = nr_pages, 1907 }; 1908 struct node_notify node_arg = { 1909 .nid = NUMA_NO_NODE, 1910 }; 1911 unsigned long flags; 1912 char *reason; 1913 int ret; 1914 1915 /* 1916 * {on,off}lining is constrained to full memory sections (or more 1917 * precisely to memory blocks from the user space POV). 1918 * memmap_on_memory is an exception because it reserves initial part 1919 * of the physical memory space for vmemmaps. That space is pageblock 1920 * aligned. 1921 */ 1922 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1923 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1924 return -EINVAL; 1925 1926 /* 1927 * Don't allow to offline memory blocks that contain holes. 1928 * Consequently, memory blocks with holes can never get onlined 1929 * via the hotplug path - online_pages() - as hotplugged memory has 1930 * no holes. This way, we don't have to worry about memory holes, 1931 * don't need pfn_valid() checks, and can avoid using 1932 * walk_system_ram_range() later. 1933 */ 1934 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1935 count_system_ram_pages_cb); 1936 if (system_ram_pages != nr_pages) { 1937 ret = -EINVAL; 1938 reason = "memory holes"; 1939 goto failed_removal; 1940 } 1941 1942 /* 1943 * We only support offlining of memory blocks managed by a single zone, 1944 * checked by calling code. This is just a sanity check that we might 1945 * want to remove in the future. 1946 */ 1947 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1948 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1949 ret = -EINVAL; 1950 reason = "multizone range"; 1951 goto failed_removal; 1952 } 1953 1954 /* 1955 * Disable pcplists so that page isolation cannot race with freeing 1956 * in a way that pages from isolated pageblock are left on pcplists. 1957 */ 1958 zone_pcp_disable(zone); 1959 lru_cache_disable(); 1960 1961 /* set above range as isolated */ 1962 ret = start_isolate_page_range(start_pfn, end_pfn, 1963 PB_ISOLATE_MODE_MEM_OFFLINE); 1964 if (ret) { 1965 reason = "failure to isolate range"; 1966 goto failed_removal_pcplists_disabled; 1967 } 1968 1969 /* 1970 * Check whether the node will have no present pages after we offline 1971 * 'nr_pages' more. If so, we know that the node will become empty, and 1972 * so we will clear N_MEMORY for it. 1973 */ 1974 if (nr_pages >= pgdat->node_present_pages) { 1975 node_arg.nid = node; 1976 ret = node_notify(NODE_REMOVING_LAST_MEMORY, &node_arg); 1977 ret = notifier_to_errno(ret); 1978 if (ret) { 1979 reason = "node notifier failure"; 1980 goto failed_removal_isolated; 1981 } 1982 } 1983 1984 ret = memory_notify(MEM_GOING_OFFLINE, &mem_arg); 1985 ret = notifier_to_errno(ret); 1986 if (ret) { 1987 reason = "notifier failure"; 1988 goto failed_removal_isolated; 1989 } 1990 1991 do { 1992 pfn = start_pfn; 1993 do { 1994 /* 1995 * Historically we always checked for any signal and 1996 * can't limit it to fatal signals without eventually 1997 * breaking user space. 1998 */ 1999 if (signal_pending(current)) { 2000 ret = -EINTR; 2001 reason = "signal backoff"; 2002 goto failed_removal_isolated; 2003 } 2004 2005 cond_resched(); 2006 2007 ret = scan_movable_pages(pfn, end_pfn, &pfn); 2008 if (!ret) { 2009 /* 2010 * TODO: fatal migration failures should bail 2011 * out 2012 */ 2013 do_migrate_range(pfn, end_pfn); 2014 } 2015 } while (!ret); 2016 2017 if (ret != -ENOENT) { 2018 reason = "unmovable page"; 2019 goto failed_removal_isolated; 2020 } 2021 2022 /* 2023 * Dissolve free hugetlb folios in the memory block before doing 2024 * offlining actually in order to make hugetlbfs's object 2025 * counting consistent. 2026 */ 2027 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn); 2028 if (ret) { 2029 reason = "failure to dissolve huge pages"; 2030 goto failed_removal_isolated; 2031 } 2032 2033 ret = test_pages_isolated(start_pfn, end_pfn, 2034 PB_ISOLATE_MODE_MEM_OFFLINE); 2035 2036 } while (ret); 2037 2038 /* Mark all sections offline and remove free pages from the buddy. */ 2039 managed_pages = __offline_isolated_pages(start_pfn, end_pfn); 2040 pr_debug("Offlined Pages %ld\n", nr_pages); 2041 2042 /* 2043 * The memory sections are marked offline, and the pageblock flags 2044 * effectively stale; nobody should be touching them. Fixup the number 2045 * of isolated pageblocks, memory onlining will properly revert this. 2046 */ 2047 spin_lock_irqsave(&zone->lock, flags); 2048 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2049 spin_unlock_irqrestore(&zone->lock, flags); 2050 2051 lru_cache_enable(); 2052 zone_pcp_enable(zone); 2053 2054 /* removal success */ 2055 adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages); 2056 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2057 2058 /* reinitialise watermarks and update pcp limits */ 2059 init_per_zone_wmark_min(); 2060 2061 /* 2062 * Make sure to mark the node as memory-less before rebuilding the zone 2063 * list. Otherwise this node would still appear in the fallback lists. 2064 */ 2065 if (node_arg.nid >= 0) 2066 node_clear_state(node, N_MEMORY); 2067 if (!populated_zone(zone)) { 2068 zone_pcp_reset(zone); 2069 build_all_zonelists(NULL); 2070 } 2071 2072 if (node_arg.nid >= 0) { 2073 kcompactd_stop(node); 2074 kswapd_stop(node); 2075 /* Node went memoryless. Notify consumers */ 2076 node_notify(NODE_REMOVED_LAST_MEMORY, &node_arg); 2077 } 2078 2079 writeback_set_ratelimit(); 2080 2081 memory_notify(MEM_OFFLINE, &mem_arg); 2082 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2083 return 0; 2084 2085 failed_removal_isolated: 2086 /* pushback to free area */ 2087 undo_isolate_page_range(start_pfn, end_pfn); 2088 memory_notify(MEM_CANCEL_OFFLINE, &mem_arg); 2089 if (node_arg.nid != NUMA_NO_NODE) 2090 node_notify(NODE_CANCEL_REMOVING_LAST_MEMORY, &node_arg); 2091 failed_removal_pcplists_disabled: 2092 lru_cache_enable(); 2093 zone_pcp_enable(zone); 2094 failed_removal: 2095 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2096 (unsigned long long) start_pfn << PAGE_SHIFT, 2097 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2098 reason); 2099 return ret; 2100 } 2101 2102 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2103 { 2104 int *nid = arg; 2105 2106 *nid = mem->nid; 2107 if (unlikely(mem->state != MEM_OFFLINE)) { 2108 phys_addr_t beginpa, endpa; 2109 2110 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2111 endpa = beginpa + memory_block_size_bytes() - 1; 2112 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2113 &beginpa, &endpa); 2114 2115 return -EBUSY; 2116 } 2117 return 0; 2118 } 2119 2120 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg) 2121 { 2122 u64 *num_altmaps = (u64 *)arg; 2123 2124 if (mem->altmap) 2125 *num_altmaps += 1; 2126 2127 return 0; 2128 } 2129 2130 static int check_cpu_on_node(int nid) 2131 { 2132 int cpu; 2133 2134 for_each_present_cpu(cpu) { 2135 if (cpu_to_node(cpu) == nid) 2136 /* 2137 * the cpu on this node isn't removed, and we can't 2138 * offline this node. 2139 */ 2140 return -EBUSY; 2141 } 2142 2143 return 0; 2144 } 2145 2146 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2147 { 2148 int nid = *(int *)arg; 2149 2150 /* 2151 * If a memory block belongs to multiple nodes, the stored nid is not 2152 * reliable. However, such blocks are always online (e.g., cannot get 2153 * offlined) and, therefore, are still spanned by the node. 2154 */ 2155 return mem->nid == nid ? -EEXIST : 0; 2156 } 2157 2158 /** 2159 * try_offline_node 2160 * @nid: the node ID 2161 * 2162 * Offline a node if all memory sections and cpus of the node are removed. 2163 * 2164 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2165 * and online/offline operations before this call. 2166 */ 2167 void try_offline_node(int nid) 2168 { 2169 int rc; 2170 2171 /* 2172 * If the node still spans pages (especially ZONE_DEVICE), don't 2173 * offline it. A node spans memory after move_pfn_range_to_zone(), 2174 * e.g., after the memory block was onlined. 2175 */ 2176 if (node_spanned_pages(nid)) 2177 return; 2178 2179 /* 2180 * Especially offline memory blocks might not be spanned by the 2181 * node. They will get spanned by the node once they get onlined. 2182 * However, they link to the node in sysfs and can get onlined later. 2183 */ 2184 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2185 if (rc) 2186 return; 2187 2188 if (check_cpu_on_node(nid)) 2189 return; 2190 2191 /* 2192 * all memory/cpu of this node are removed, we can offline this 2193 * node now. 2194 */ 2195 node_set_offline(nid); 2196 unregister_one_node(nid); 2197 } 2198 EXPORT_SYMBOL(try_offline_node); 2199 2200 static int memory_blocks_have_altmaps(u64 start, u64 size) 2201 { 2202 u64 num_memblocks = size / memory_block_size_bytes(); 2203 u64 num_altmaps = 0; 2204 2205 if (!mhp_memmap_on_memory()) 2206 return 0; 2207 2208 walk_memory_blocks(start, size, &num_altmaps, 2209 count_memory_range_altmaps_cb); 2210 2211 if (num_altmaps == 0) 2212 return 0; 2213 2214 if (WARN_ON_ONCE(num_memblocks != num_altmaps)) 2215 return -EINVAL; 2216 2217 return 1; 2218 } 2219 2220 static int try_remove_memory(u64 start, u64 size) 2221 { 2222 int rc, nid = NUMA_NO_NODE; 2223 2224 BUG_ON(check_hotplug_memory_range(start, size)); 2225 2226 /* 2227 * All memory blocks must be offlined before removing memory. Check 2228 * whether all memory blocks in question are offline and return error 2229 * if this is not the case. 2230 * 2231 * While at it, determine the nid. Note that if we'd have mixed nodes, 2232 * we'd only try to offline the last determined one -- which is good 2233 * enough for the cases we care about. 2234 */ 2235 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2236 if (rc) 2237 return rc; 2238 2239 /* remove memmap entry */ 2240 firmware_map_remove(start, start + size, "System RAM"); 2241 2242 mem_hotplug_begin(); 2243 2244 rc = memory_blocks_have_altmaps(start, size); 2245 if (rc < 0) { 2246 mem_hotplug_done(); 2247 return rc; 2248 } else if (!rc) { 2249 /* 2250 * Memory block device removal under the device_hotplug_lock is 2251 * a barrier against racing online attempts. 2252 * No altmaps present, do the removal directly 2253 */ 2254 remove_memory_block_devices(start, size); 2255 arch_remove_memory(start, size, NULL); 2256 } else { 2257 /* all memblocks in the range have altmaps */ 2258 remove_memory_blocks_and_altmaps(start, size); 2259 } 2260 2261 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 2262 memblock_remove(start, size); 2263 2264 release_mem_region_adjustable(start, size); 2265 2266 if (nid != NUMA_NO_NODE) 2267 try_offline_node(nid); 2268 2269 mem_hotplug_done(); 2270 return 0; 2271 } 2272 2273 /** 2274 * __remove_memory - Remove memory if every memory block is offline 2275 * @start: physical address of the region to remove 2276 * @size: size of the region to remove 2277 * 2278 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2279 * and online/offline operations before this call, as required by 2280 * try_offline_node(). 2281 */ 2282 void __remove_memory(u64 start, u64 size) 2283 { 2284 2285 /* 2286 * trigger BUG() if some memory is not offlined prior to calling this 2287 * function 2288 */ 2289 if (try_remove_memory(start, size)) 2290 BUG(); 2291 } 2292 2293 /* 2294 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2295 * some memory is not offline 2296 */ 2297 int remove_memory(u64 start, u64 size) 2298 { 2299 int rc; 2300 2301 lock_device_hotplug(); 2302 rc = try_remove_memory(start, size); 2303 unlock_device_hotplug(); 2304 2305 return rc; 2306 } 2307 EXPORT_SYMBOL_GPL(remove_memory); 2308 2309 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2310 { 2311 uint8_t online_type = MMOP_ONLINE_KERNEL; 2312 uint8_t **online_types = arg; 2313 struct page *page; 2314 int rc; 2315 2316 /* 2317 * Sense the online_type via the zone of the memory block. Offlining 2318 * with multiple zones within one memory block will be rejected 2319 * by offlining code ... so we don't care about that. 2320 */ 2321 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2322 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2323 online_type = MMOP_ONLINE_MOVABLE; 2324 2325 rc = device_offline(&mem->dev); 2326 /* 2327 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2328 * so try_reonline_memory_block() can do the right thing. 2329 */ 2330 if (!rc) 2331 **online_types = online_type; 2332 2333 (*online_types)++; 2334 /* Ignore if already offline. */ 2335 return rc < 0 ? rc : 0; 2336 } 2337 2338 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2339 { 2340 uint8_t **online_types = arg; 2341 int rc; 2342 2343 if (**online_types != MMOP_OFFLINE) { 2344 mem->online_type = **online_types; 2345 rc = device_online(&mem->dev); 2346 if (rc < 0) 2347 pr_warn("%s: Failed to re-online memory: %d", 2348 __func__, rc); 2349 } 2350 2351 /* Continue processing all remaining memory blocks. */ 2352 (*online_types)++; 2353 return 0; 2354 } 2355 2356 /* 2357 * Try to offline and remove memory. Might take a long time to finish in case 2358 * memory is still in use. Primarily useful for memory devices that logically 2359 * unplugged all memory (so it's no longer in use) and want to offline + remove 2360 * that memory. 2361 */ 2362 int offline_and_remove_memory(u64 start, u64 size) 2363 { 2364 const unsigned long mb_count = size / memory_block_size_bytes(); 2365 uint8_t *online_types, *tmp; 2366 int rc; 2367 2368 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2369 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2370 return -EINVAL; 2371 2372 /* 2373 * We'll remember the old online type of each memory block, so we can 2374 * try to revert whatever we did when offlining one memory block fails 2375 * after offlining some others succeeded. 2376 */ 2377 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2378 GFP_KERNEL); 2379 if (!online_types) 2380 return -ENOMEM; 2381 /* 2382 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2383 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2384 * try_reonline_memory_block(). 2385 */ 2386 memset(online_types, MMOP_OFFLINE, mb_count); 2387 2388 lock_device_hotplug(); 2389 2390 tmp = online_types; 2391 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2392 2393 /* 2394 * In case we succeeded to offline all memory, remove it. 2395 * This cannot fail as it cannot get onlined in the meantime. 2396 */ 2397 if (!rc) { 2398 rc = try_remove_memory(start, size); 2399 if (rc) 2400 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2401 } 2402 2403 /* 2404 * Rollback what we did. While memory onlining might theoretically fail 2405 * (nacked by a notifier), it barely ever happens. 2406 */ 2407 if (rc) { 2408 tmp = online_types; 2409 walk_memory_blocks(start, size, &tmp, 2410 try_reonline_memory_block); 2411 } 2412 unlock_device_hotplug(); 2413 2414 kfree(online_types); 2415 return rc; 2416 } 2417 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2418 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2419