1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
29
30 #include "internal.h"
31
32 /*
33 * Inode locking rules:
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37 * Inode LRU list locks protect:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode->i_sb->s_inode_list_lock protects:
40 * inode->i_sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 * Inode LRU list locks
51 *
52 * bdi->wb.list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode->i_sb->s_inode_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67
68 /*
69 * Empty aops. Can be used for the cases where the user does not
70 * define any of the address_space operations.
71 */
72 const struct address_space_operations empty_aops = {
73 };
74 EXPORT_SYMBOL(empty_aops);
75
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79 static struct kmem_cache *inode_cachep __ro_after_init;
80
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88 }
89
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97 }
98
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104 }
105
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
110
get_mg_ctime_updates(void)111 static unsigned long get_mg_ctime_updates(void)
112 {
113 unsigned long sum = 0;
114 int i;
115
116 for_each_possible_cpu(i)
117 sum += data_race(per_cpu(mg_ctime_updates, i));
118 return sum;
119 }
120
get_mg_fine_stamps(void)121 static unsigned long get_mg_fine_stamps(void)
122 {
123 unsigned long sum = 0;
124 int i;
125
126 for_each_possible_cpu(i)
127 sum += data_race(per_cpu(mg_fine_stamps, i));
128 return sum;
129 }
130
get_mg_ctime_swaps(void)131 static unsigned long get_mg_ctime_swaps(void)
132 {
133 unsigned long sum = 0;
134 int i;
135
136 for_each_possible_cpu(i)
137 sum += data_race(per_cpu(mg_ctime_swaps, i));
138 return sum;
139 }
140
141 #define mgtime_counter_inc(__var) this_cpu_inc(__var)
142
mgts_show(struct seq_file * s,void * p)143 static int mgts_show(struct seq_file *s, void *p)
144 {
145 unsigned long ctime_updates = get_mg_ctime_updates();
146 unsigned long ctime_swaps = get_mg_ctime_swaps();
147 unsigned long fine_stamps = get_mg_fine_stamps();
148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149
150 seq_printf(s, "%lu %lu %lu %lu\n",
151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 return 0;
153 }
154
155 DEFINE_SHOW_ATTRIBUTE(mgts);
156
mg_debugfs_init(void)157 static int __init mg_debugfs_init(void)
158 {
159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 return 0;
161 }
162 late_initcall(mg_debugfs_init);
163
164 #else /* ! CONFIG_DEBUG_FS */
165
166 #define mgtime_counter_inc(__var) do { } while (0)
167
168 #endif /* CONFIG_DEBUG_FS */
169
170 /*
171 * Handle nr_inode sysctl
172 */
173 #ifdef CONFIG_SYSCTL
174 /*
175 * Statistics gathering..
176 */
177 static struct inodes_stat_t inodes_stat;
178
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 size_t *lenp, loff_t *ppos)
181 {
182 inodes_stat.nr_inodes = get_nr_inodes();
183 inodes_stat.nr_unused = get_nr_inodes_unused();
184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185 }
186
187 static const struct ctl_table inodes_sysctls[] = {
188 {
189 .procname = "inode-nr",
190 .data = &inodes_stat,
191 .maxlen = 2*sizeof(long),
192 .mode = 0444,
193 .proc_handler = proc_nr_inodes,
194 },
195 {
196 .procname = "inode-state",
197 .data = &inodes_stat,
198 .maxlen = 7*sizeof(long),
199 .mode = 0444,
200 .proc_handler = proc_nr_inodes,
201 },
202 };
203
init_fs_inode_sysctls(void)204 static int __init init_fs_inode_sysctls(void)
205 {
206 register_sysctl_init("fs", inodes_sysctls);
207 return 0;
208 }
209 early_initcall(init_fs_inode_sysctls);
210 #endif
211
no_open(struct inode * inode,struct file * file)212 static int no_open(struct inode *inode, struct file *file)
213 {
214 return -ENXIO;
215 }
216
217 /**
218 * inode_init_always_gfp - perform inode structure initialisation
219 * @sb: superblock inode belongs to
220 * @inode: inode to initialise
221 * @gfp: allocation flags
222 *
223 * These are initializations that need to be done on every inode
224 * allocation as the fields are not initialised by slab allocation.
225 * If there are additional allocations required @gfp is used.
226 */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228 {
229 static const struct inode_operations empty_iops;
230 static const struct file_operations no_open_fops = {.open = no_open};
231 struct address_space *const mapping = &inode->i_data;
232
233 inode->i_sb = sb;
234 inode->i_blkbits = sb->s_blocksize_bits;
235 inode->i_flags = 0;
236 inode->i_state = 0;
237 atomic64_set(&inode->i_sequence, 0);
238 atomic_set(&inode->i_count, 1);
239 inode->i_op = &empty_iops;
240 inode->i_fop = &no_open_fops;
241 inode->i_ino = 0;
242 inode->__i_nlink = 1;
243 inode->i_opflags = 0;
244 if (sb->s_xattr)
245 inode->i_opflags |= IOP_XATTR;
246 if (sb->s_type->fs_flags & FS_MGTIME)
247 inode->i_opflags |= IOP_MGTIME;
248 i_uid_write(inode, 0);
249 i_gid_write(inode, 0);
250 atomic_set(&inode->i_writecount, 0);
251 inode->i_size = 0;
252 inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 inode->i_blocks = 0;
254 inode->i_bytes = 0;
255 inode->i_generation = 0;
256 inode->i_pipe = NULL;
257 inode->i_cdev = NULL;
258 inode->i_link = NULL;
259 inode->i_dir_seq = 0;
260 inode->i_rdev = 0;
261 inode->dirtied_when = 0;
262
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 inode->i_wb_frn_winner = 0;
265 inode->i_wb_frn_avg_time = 0;
266 inode->i_wb_frn_history = 0;
267 #endif
268
269 spin_lock_init(&inode->i_lock);
270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271
272 init_rwsem(&inode->i_rwsem);
273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274
275 atomic_set(&inode->i_dio_count, 0);
276
277 mapping->a_ops = &empty_aops;
278 mapping->host = inode;
279 mapping->flags = 0;
280 mapping->wb_err = 0;
281 atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 atomic_set(&mapping->nr_thps, 0);
284 #endif
285 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 mapping->i_private_data = NULL;
287 mapping->writeback_index = 0;
288 init_rwsem(&mapping->invalidate_lock);
289 lockdep_set_class_and_name(&mapping->invalidate_lock,
290 &sb->s_type->invalidate_lock_key,
291 "mapping.invalidate_lock");
292 if (sb->s_iflags & SB_I_STABLE_WRITES)
293 mapping_set_stable_writes(mapping);
294 inode->i_private = NULL;
295 inode->i_mapping = mapping;
296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
300
301 #ifdef CONFIG_FSNOTIFY
302 inode->i_fsnotify_mask = 0;
303 #endif
304 inode->i_flctx = NULL;
305
306 if (unlikely(security_inode_alloc(inode, gfp)))
307 return -ENOMEM;
308
309 this_cpu_inc(nr_inodes);
310
311 return 0;
312 }
313 EXPORT_SYMBOL(inode_init_always_gfp);
314
free_inode_nonrcu(struct inode * inode)315 void free_inode_nonrcu(struct inode *inode)
316 {
317 kmem_cache_free(inode_cachep, inode);
318 }
319 EXPORT_SYMBOL(free_inode_nonrcu);
320
i_callback(struct rcu_head * head)321 static void i_callback(struct rcu_head *head)
322 {
323 struct inode *inode = container_of(head, struct inode, i_rcu);
324 if (inode->free_inode)
325 inode->free_inode(inode);
326 else
327 free_inode_nonrcu(inode);
328 }
329
330 /**
331 * alloc_inode - obtain an inode
332 * @sb: superblock
333 *
334 * Allocates a new inode for given superblock.
335 * Inode wont be chained in superblock s_inodes list
336 * This means :
337 * - fs can't be unmount
338 * - quotas, fsnotify, writeback can't work
339 */
alloc_inode(struct super_block * sb)340 struct inode *alloc_inode(struct super_block *sb)
341 {
342 const struct super_operations *ops = sb->s_op;
343 struct inode *inode;
344
345 if (ops->alloc_inode)
346 inode = ops->alloc_inode(sb);
347 else
348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
349
350 if (!inode)
351 return NULL;
352
353 if (unlikely(inode_init_always(sb, inode))) {
354 if (ops->destroy_inode) {
355 ops->destroy_inode(inode);
356 if (!ops->free_inode)
357 return NULL;
358 }
359 inode->free_inode = ops->free_inode;
360 i_callback(&inode->i_rcu);
361 return NULL;
362 }
363
364 return inode;
365 }
366
__destroy_inode(struct inode * inode)367 void __destroy_inode(struct inode *inode)
368 {
369 BUG_ON(inode_has_buffers(inode));
370 inode_detach_wb(inode);
371 security_inode_free(inode);
372 fsnotify_inode_delete(inode);
373 locks_free_lock_context(inode);
374 if (!inode->i_nlink) {
375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
376 atomic_long_dec(&inode->i_sb->s_remove_count);
377 }
378
379 #ifdef CONFIG_FS_POSIX_ACL
380 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
381 posix_acl_release(inode->i_acl);
382 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
383 posix_acl_release(inode->i_default_acl);
384 #endif
385 this_cpu_dec(nr_inodes);
386 }
387 EXPORT_SYMBOL(__destroy_inode);
388
destroy_inode(struct inode * inode)389 static void destroy_inode(struct inode *inode)
390 {
391 const struct super_operations *ops = inode->i_sb->s_op;
392
393 BUG_ON(!list_empty(&inode->i_lru));
394 __destroy_inode(inode);
395 if (ops->destroy_inode) {
396 ops->destroy_inode(inode);
397 if (!ops->free_inode)
398 return;
399 }
400 inode->free_inode = ops->free_inode;
401 call_rcu(&inode->i_rcu, i_callback);
402 }
403
404 /**
405 * drop_nlink - directly drop an inode's link count
406 * @inode: inode
407 *
408 * This is a low-level filesystem helper to replace any
409 * direct filesystem manipulation of i_nlink. In cases
410 * where we are attempting to track writes to the
411 * filesystem, a decrement to zero means an imminent
412 * write when the file is truncated and actually unlinked
413 * on the filesystem.
414 */
drop_nlink(struct inode * inode)415 void drop_nlink(struct inode *inode)
416 {
417 WARN_ON(inode->i_nlink == 0);
418 inode->__i_nlink--;
419 if (!inode->i_nlink)
420 atomic_long_inc(&inode->i_sb->s_remove_count);
421 }
422 EXPORT_SYMBOL(drop_nlink);
423
424 /**
425 * clear_nlink - directly zero an inode's link count
426 * @inode: inode
427 *
428 * This is a low-level filesystem helper to replace any
429 * direct filesystem manipulation of i_nlink. See
430 * drop_nlink() for why we care about i_nlink hitting zero.
431 */
clear_nlink(struct inode * inode)432 void clear_nlink(struct inode *inode)
433 {
434 if (inode->i_nlink) {
435 inode->__i_nlink = 0;
436 atomic_long_inc(&inode->i_sb->s_remove_count);
437 }
438 }
439 EXPORT_SYMBOL(clear_nlink);
440
441 /**
442 * set_nlink - directly set an inode's link count
443 * @inode: inode
444 * @nlink: new nlink (should be non-zero)
445 *
446 * This is a low-level filesystem helper to replace any
447 * direct filesystem manipulation of i_nlink.
448 */
set_nlink(struct inode * inode,unsigned int nlink)449 void set_nlink(struct inode *inode, unsigned int nlink)
450 {
451 if (!nlink) {
452 clear_nlink(inode);
453 } else {
454 /* Yes, some filesystems do change nlink from zero to one */
455 if (inode->i_nlink == 0)
456 atomic_long_dec(&inode->i_sb->s_remove_count);
457
458 inode->__i_nlink = nlink;
459 }
460 }
461 EXPORT_SYMBOL(set_nlink);
462
463 /**
464 * inc_nlink - directly increment an inode's link count
465 * @inode: inode
466 *
467 * This is a low-level filesystem helper to replace any
468 * direct filesystem manipulation of i_nlink. Currently,
469 * it is only here for parity with dec_nlink().
470 */
inc_nlink(struct inode * inode)471 void inc_nlink(struct inode *inode)
472 {
473 if (unlikely(inode->i_nlink == 0)) {
474 WARN_ON(!(inode->i_state & I_LINKABLE));
475 atomic_long_dec(&inode->i_sb->s_remove_count);
476 }
477
478 inode->__i_nlink++;
479 }
480 EXPORT_SYMBOL(inc_nlink);
481
__address_space_init_once(struct address_space * mapping)482 static void __address_space_init_once(struct address_space *mapping)
483 {
484 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
485 init_rwsem(&mapping->i_mmap_rwsem);
486 INIT_LIST_HEAD(&mapping->i_private_list);
487 spin_lock_init(&mapping->i_private_lock);
488 mapping->i_mmap = RB_ROOT_CACHED;
489 }
490
address_space_init_once(struct address_space * mapping)491 void address_space_init_once(struct address_space *mapping)
492 {
493 memset(mapping, 0, sizeof(*mapping));
494 __address_space_init_once(mapping);
495 }
496 EXPORT_SYMBOL(address_space_init_once);
497
498 /*
499 * These are initializations that only need to be done
500 * once, because the fields are idempotent across use
501 * of the inode, so let the slab aware of that.
502 */
inode_init_once(struct inode * inode)503 void inode_init_once(struct inode *inode)
504 {
505 memset(inode, 0, sizeof(*inode));
506 INIT_HLIST_NODE(&inode->i_hash);
507 INIT_LIST_HEAD(&inode->i_devices);
508 INIT_LIST_HEAD(&inode->i_io_list);
509 INIT_LIST_HEAD(&inode->i_wb_list);
510 INIT_LIST_HEAD(&inode->i_lru);
511 INIT_LIST_HEAD(&inode->i_sb_list);
512 __address_space_init_once(&inode->i_data);
513 i_size_ordered_init(inode);
514 }
515 EXPORT_SYMBOL(inode_init_once);
516
init_once(void * foo)517 static void init_once(void *foo)
518 {
519 struct inode *inode = (struct inode *) foo;
520
521 inode_init_once(inode);
522 }
523
524 /*
525 * get additional reference to inode; caller must already hold one.
526 */
ihold(struct inode * inode)527 void ihold(struct inode *inode)
528 {
529 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
530 }
531 EXPORT_SYMBOL(ihold);
532
__inode_add_lru(struct inode * inode,bool rotate)533 static void __inode_add_lru(struct inode *inode, bool rotate)
534 {
535 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
536 return;
537 if (atomic_read(&inode->i_count))
538 return;
539 if (!(inode->i_sb->s_flags & SB_ACTIVE))
540 return;
541 if (!mapping_shrinkable(&inode->i_data))
542 return;
543
544 if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
545 this_cpu_inc(nr_unused);
546 else if (rotate)
547 inode->i_state |= I_REFERENCED;
548 }
549
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)550 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
551 struct inode *inode, u32 bit)
552 {
553 void *bit_address;
554
555 bit_address = inode_state_wait_address(inode, bit);
556 init_wait_var_entry(wqe, bit_address, 0);
557 return __var_waitqueue(bit_address);
558 }
559 EXPORT_SYMBOL(inode_bit_waitqueue);
560
561 /*
562 * Add inode to LRU if needed (inode is unused and clean).
563 *
564 * Needs inode->i_lock held.
565 */
inode_add_lru(struct inode * inode)566 void inode_add_lru(struct inode *inode)
567 {
568 __inode_add_lru(inode, false);
569 }
570
inode_lru_list_del(struct inode * inode)571 static void inode_lru_list_del(struct inode *inode)
572 {
573 if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
574 this_cpu_dec(nr_unused);
575 }
576
inode_pin_lru_isolating(struct inode * inode)577 static void inode_pin_lru_isolating(struct inode *inode)
578 {
579 lockdep_assert_held(&inode->i_lock);
580 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
581 inode->i_state |= I_LRU_ISOLATING;
582 }
583
inode_unpin_lru_isolating(struct inode * inode)584 static void inode_unpin_lru_isolating(struct inode *inode)
585 {
586 spin_lock(&inode->i_lock);
587 WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
588 inode->i_state &= ~I_LRU_ISOLATING;
589 /* Called with inode->i_lock which ensures memory ordering. */
590 inode_wake_up_bit(inode, __I_LRU_ISOLATING);
591 spin_unlock(&inode->i_lock);
592 }
593
inode_wait_for_lru_isolating(struct inode * inode)594 static void inode_wait_for_lru_isolating(struct inode *inode)
595 {
596 struct wait_bit_queue_entry wqe;
597 struct wait_queue_head *wq_head;
598
599 lockdep_assert_held(&inode->i_lock);
600 if (!(inode->i_state & I_LRU_ISOLATING))
601 return;
602
603 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
604 for (;;) {
605 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
606 /*
607 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
608 * memory ordering.
609 */
610 if (!(inode->i_state & I_LRU_ISOLATING))
611 break;
612 spin_unlock(&inode->i_lock);
613 schedule();
614 spin_lock(&inode->i_lock);
615 }
616 finish_wait(wq_head, &wqe.wq_entry);
617 WARN_ON(inode->i_state & I_LRU_ISOLATING);
618 }
619
620 /**
621 * inode_sb_list_add - add inode to the superblock list of inodes
622 * @inode: inode to add
623 */
inode_sb_list_add(struct inode * inode)624 void inode_sb_list_add(struct inode *inode)
625 {
626 struct super_block *sb = inode->i_sb;
627
628 spin_lock(&sb->s_inode_list_lock);
629 list_add(&inode->i_sb_list, &sb->s_inodes);
630 spin_unlock(&sb->s_inode_list_lock);
631 }
632 EXPORT_SYMBOL_GPL(inode_sb_list_add);
633
inode_sb_list_del(struct inode * inode)634 static inline void inode_sb_list_del(struct inode *inode)
635 {
636 struct super_block *sb = inode->i_sb;
637
638 if (!list_empty(&inode->i_sb_list)) {
639 spin_lock(&sb->s_inode_list_lock);
640 list_del_init(&inode->i_sb_list);
641 spin_unlock(&sb->s_inode_list_lock);
642 }
643 }
644
hash(struct super_block * sb,unsigned long hashval)645 static unsigned long hash(struct super_block *sb, unsigned long hashval)
646 {
647 unsigned long tmp;
648
649 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
650 L1_CACHE_BYTES;
651 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
652 return tmp & i_hash_mask;
653 }
654
655 /**
656 * __insert_inode_hash - hash an inode
657 * @inode: unhashed inode
658 * @hashval: unsigned long value used to locate this object in the
659 * inode_hashtable.
660 *
661 * Add an inode to the inode hash for this superblock.
662 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)663 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
664 {
665 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
666
667 spin_lock(&inode_hash_lock);
668 spin_lock(&inode->i_lock);
669 hlist_add_head_rcu(&inode->i_hash, b);
670 spin_unlock(&inode->i_lock);
671 spin_unlock(&inode_hash_lock);
672 }
673 EXPORT_SYMBOL(__insert_inode_hash);
674
675 /**
676 * __remove_inode_hash - remove an inode from the hash
677 * @inode: inode to unhash
678 *
679 * Remove an inode from the superblock.
680 */
__remove_inode_hash(struct inode * inode)681 void __remove_inode_hash(struct inode *inode)
682 {
683 spin_lock(&inode_hash_lock);
684 spin_lock(&inode->i_lock);
685 hlist_del_init_rcu(&inode->i_hash);
686 spin_unlock(&inode->i_lock);
687 spin_unlock(&inode_hash_lock);
688 }
689 EXPORT_SYMBOL(__remove_inode_hash);
690
dump_mapping(const struct address_space * mapping)691 void dump_mapping(const struct address_space *mapping)
692 {
693 struct inode *host;
694 const struct address_space_operations *a_ops;
695 struct hlist_node *dentry_first;
696 struct dentry *dentry_ptr;
697 struct dentry dentry;
698 char fname[64] = {};
699 unsigned long ino;
700
701 /*
702 * If mapping is an invalid pointer, we don't want to crash
703 * accessing it, so probe everything depending on it carefully.
704 */
705 if (get_kernel_nofault(host, &mapping->host) ||
706 get_kernel_nofault(a_ops, &mapping->a_ops)) {
707 pr_warn("invalid mapping:%px\n", mapping);
708 return;
709 }
710
711 if (!host) {
712 pr_warn("aops:%ps\n", a_ops);
713 return;
714 }
715
716 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
717 get_kernel_nofault(ino, &host->i_ino)) {
718 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
719 return;
720 }
721
722 if (!dentry_first) {
723 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
724 return;
725 }
726
727 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
728 if (get_kernel_nofault(dentry, dentry_ptr) ||
729 !dentry.d_parent || !dentry.d_name.name) {
730 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
731 a_ops, ino, dentry_ptr);
732 return;
733 }
734
735 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
736 strscpy(fname, "<invalid>");
737 /*
738 * Even if strncpy_from_kernel_nofault() succeeded,
739 * the fname could be unreliable
740 */
741 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
742 a_ops, ino, fname);
743 }
744
clear_inode(struct inode * inode)745 void clear_inode(struct inode *inode)
746 {
747 /*
748 * We have to cycle the i_pages lock here because reclaim can be in the
749 * process of removing the last page (in __filemap_remove_folio())
750 * and we must not free the mapping under it.
751 */
752 xa_lock_irq(&inode->i_data.i_pages);
753 BUG_ON(inode->i_data.nrpages);
754 /*
755 * Almost always, mapping_empty(&inode->i_data) here; but there are
756 * two known and long-standing ways in which nodes may get left behind
757 * (when deep radix-tree node allocation failed partway; or when THP
758 * collapse_file() failed). Until those two known cases are cleaned up,
759 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
760 * nor even WARN_ON(!mapping_empty).
761 */
762 xa_unlock_irq(&inode->i_data.i_pages);
763 BUG_ON(!list_empty(&inode->i_data.i_private_list));
764 BUG_ON(!(inode->i_state & I_FREEING));
765 BUG_ON(inode->i_state & I_CLEAR);
766 BUG_ON(!list_empty(&inode->i_wb_list));
767 /* don't need i_lock here, no concurrent mods to i_state */
768 inode->i_state = I_FREEING | I_CLEAR;
769 }
770 EXPORT_SYMBOL(clear_inode);
771
772 /*
773 * Free the inode passed in, removing it from the lists it is still connected
774 * to. We remove any pages still attached to the inode and wait for any IO that
775 * is still in progress before finally destroying the inode.
776 *
777 * An inode must already be marked I_FREEING so that we avoid the inode being
778 * moved back onto lists if we race with other code that manipulates the lists
779 * (e.g. writeback_single_inode). The caller is responsible for setting this.
780 *
781 * An inode must already be removed from the LRU list before being evicted from
782 * the cache. This should occur atomically with setting the I_FREEING state
783 * flag, so no inodes here should ever be on the LRU when being evicted.
784 */
evict(struct inode * inode)785 static void evict(struct inode *inode)
786 {
787 const struct super_operations *op = inode->i_sb->s_op;
788
789 BUG_ON(!(inode->i_state & I_FREEING));
790 BUG_ON(!list_empty(&inode->i_lru));
791
792 if (!list_empty(&inode->i_io_list))
793 inode_io_list_del(inode);
794
795 inode_sb_list_del(inode);
796
797 spin_lock(&inode->i_lock);
798 inode_wait_for_lru_isolating(inode);
799
800 /*
801 * Wait for flusher thread to be done with the inode so that filesystem
802 * does not start destroying it while writeback is still running. Since
803 * the inode has I_FREEING set, flusher thread won't start new work on
804 * the inode. We just have to wait for running writeback to finish.
805 */
806 inode_wait_for_writeback(inode);
807 spin_unlock(&inode->i_lock);
808
809 if (op->evict_inode) {
810 op->evict_inode(inode);
811 } else {
812 truncate_inode_pages_final(&inode->i_data);
813 clear_inode(inode);
814 }
815 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
816 cd_forget(inode);
817
818 remove_inode_hash(inode);
819
820 /*
821 * Wake up waiters in __wait_on_freeing_inode().
822 *
823 * It is an invariant that any thread we need to wake up is already
824 * accounted for before remove_inode_hash() acquires ->i_lock -- both
825 * sides take the lock and sleep is aborted if the inode is found
826 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
827 * wins and the sleeper aborts after testing with the lock.
828 *
829 * This also means we don't need any fences for the call below.
830 */
831 inode_wake_up_bit(inode, __I_NEW);
832 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
833
834 destroy_inode(inode);
835 }
836
837 /*
838 * dispose_list - dispose of the contents of a local list
839 * @head: the head of the list to free
840 *
841 * Dispose-list gets a local list with local inodes in it, so it doesn't
842 * need to worry about list corruption and SMP locks.
843 */
dispose_list(struct list_head * head)844 static void dispose_list(struct list_head *head)
845 {
846 while (!list_empty(head)) {
847 struct inode *inode;
848
849 inode = list_first_entry(head, struct inode, i_lru);
850 list_del_init(&inode->i_lru);
851
852 evict(inode);
853 cond_resched();
854 }
855 }
856
857 /**
858 * evict_inodes - evict all evictable inodes for a superblock
859 * @sb: superblock to operate on
860 *
861 * Make sure that no inodes with zero refcount are retained. This is
862 * called by superblock shutdown after having SB_ACTIVE flag removed,
863 * so any inode reaching zero refcount during or after that call will
864 * be immediately evicted.
865 */
evict_inodes(struct super_block * sb)866 void evict_inodes(struct super_block *sb)
867 {
868 struct inode *inode;
869 LIST_HEAD(dispose);
870
871 again:
872 spin_lock(&sb->s_inode_list_lock);
873 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
874 if (atomic_read(&inode->i_count))
875 continue;
876
877 spin_lock(&inode->i_lock);
878 if (atomic_read(&inode->i_count)) {
879 spin_unlock(&inode->i_lock);
880 continue;
881 }
882 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
883 spin_unlock(&inode->i_lock);
884 continue;
885 }
886
887 inode->i_state |= I_FREEING;
888 inode_lru_list_del(inode);
889 spin_unlock(&inode->i_lock);
890 list_add(&inode->i_lru, &dispose);
891
892 /*
893 * We can have a ton of inodes to evict at unmount time given
894 * enough memory, check to see if we need to go to sleep for a
895 * bit so we don't livelock.
896 */
897 if (need_resched()) {
898 spin_unlock(&sb->s_inode_list_lock);
899 cond_resched();
900 dispose_list(&dispose);
901 goto again;
902 }
903 }
904 spin_unlock(&sb->s_inode_list_lock);
905
906 dispose_list(&dispose);
907 }
908 EXPORT_SYMBOL_GPL(evict_inodes);
909
910 /*
911 * Isolate the inode from the LRU in preparation for freeing it.
912 *
913 * If the inode has the I_REFERENCED flag set, then it means that it has been
914 * used recently - the flag is set in iput_final(). When we encounter such an
915 * inode, clear the flag and move it to the back of the LRU so it gets another
916 * pass through the LRU before it gets reclaimed. This is necessary because of
917 * the fact we are doing lazy LRU updates to minimise lock contention so the
918 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
919 * with this flag set because they are the inodes that are out of order.
920 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)921 static enum lru_status inode_lru_isolate(struct list_head *item,
922 struct list_lru_one *lru, void *arg)
923 {
924 struct list_head *freeable = arg;
925 struct inode *inode = container_of(item, struct inode, i_lru);
926
927 /*
928 * We are inverting the lru lock/inode->i_lock here, so use a
929 * trylock. If we fail to get the lock, just skip it.
930 */
931 if (!spin_trylock(&inode->i_lock))
932 return LRU_SKIP;
933
934 /*
935 * Inodes can get referenced, redirtied, or repopulated while
936 * they're already on the LRU, and this can make them
937 * unreclaimable for a while. Remove them lazily here; iput,
938 * sync, or the last page cache deletion will requeue them.
939 */
940 if (atomic_read(&inode->i_count) ||
941 (inode->i_state & ~I_REFERENCED) ||
942 !mapping_shrinkable(&inode->i_data)) {
943 list_lru_isolate(lru, &inode->i_lru);
944 spin_unlock(&inode->i_lock);
945 this_cpu_dec(nr_unused);
946 return LRU_REMOVED;
947 }
948
949 /* Recently referenced inodes get one more pass */
950 if (inode->i_state & I_REFERENCED) {
951 inode->i_state &= ~I_REFERENCED;
952 spin_unlock(&inode->i_lock);
953 return LRU_ROTATE;
954 }
955
956 /*
957 * On highmem systems, mapping_shrinkable() permits dropping
958 * page cache in order to free up struct inodes: lowmem might
959 * be under pressure before the cache inside the highmem zone.
960 */
961 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
962 inode_pin_lru_isolating(inode);
963 spin_unlock(&inode->i_lock);
964 spin_unlock(&lru->lock);
965 if (remove_inode_buffers(inode)) {
966 unsigned long reap;
967 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
968 if (current_is_kswapd())
969 __count_vm_events(KSWAPD_INODESTEAL, reap);
970 else
971 __count_vm_events(PGINODESTEAL, reap);
972 mm_account_reclaimed_pages(reap);
973 }
974 inode_unpin_lru_isolating(inode);
975 return LRU_RETRY;
976 }
977
978 WARN_ON(inode->i_state & I_NEW);
979 inode->i_state |= I_FREEING;
980 list_lru_isolate_move(lru, &inode->i_lru, freeable);
981 spin_unlock(&inode->i_lock);
982
983 this_cpu_dec(nr_unused);
984 return LRU_REMOVED;
985 }
986
987 /*
988 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
989 * This is called from the superblock shrinker function with a number of inodes
990 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
991 * then are freed outside inode_lock by dispose_list().
992 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)993 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
994 {
995 LIST_HEAD(freeable);
996 long freed;
997
998 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
999 inode_lru_isolate, &freeable);
1000 dispose_list(&freeable);
1001 return freed;
1002 }
1003
1004 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1005 /*
1006 * Called with the inode lock held.
1007 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked)1008 static struct inode *find_inode(struct super_block *sb,
1009 struct hlist_head *head,
1010 int (*test)(struct inode *, void *),
1011 void *data, bool is_inode_hash_locked)
1012 {
1013 struct inode *inode = NULL;
1014
1015 if (is_inode_hash_locked)
1016 lockdep_assert_held(&inode_hash_lock);
1017 else
1018 lockdep_assert_not_held(&inode_hash_lock);
1019
1020 rcu_read_lock();
1021 repeat:
1022 hlist_for_each_entry_rcu(inode, head, i_hash) {
1023 if (inode->i_sb != sb)
1024 continue;
1025 if (!test(inode, data))
1026 continue;
1027 spin_lock(&inode->i_lock);
1028 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1029 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1030 goto repeat;
1031 }
1032 if (unlikely(inode->i_state & I_CREATING)) {
1033 spin_unlock(&inode->i_lock);
1034 rcu_read_unlock();
1035 return ERR_PTR(-ESTALE);
1036 }
1037 __iget(inode);
1038 spin_unlock(&inode->i_lock);
1039 rcu_read_unlock();
1040 return inode;
1041 }
1042 rcu_read_unlock();
1043 return NULL;
1044 }
1045
1046 /*
1047 * find_inode_fast is the fast path version of find_inode, see the comment at
1048 * iget_locked for details.
1049 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked)1050 static struct inode *find_inode_fast(struct super_block *sb,
1051 struct hlist_head *head, unsigned long ino,
1052 bool is_inode_hash_locked)
1053 {
1054 struct inode *inode = NULL;
1055
1056 if (is_inode_hash_locked)
1057 lockdep_assert_held(&inode_hash_lock);
1058 else
1059 lockdep_assert_not_held(&inode_hash_lock);
1060
1061 rcu_read_lock();
1062 repeat:
1063 hlist_for_each_entry_rcu(inode, head, i_hash) {
1064 if (inode->i_ino != ino)
1065 continue;
1066 if (inode->i_sb != sb)
1067 continue;
1068 spin_lock(&inode->i_lock);
1069 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1070 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1071 goto repeat;
1072 }
1073 if (unlikely(inode->i_state & I_CREATING)) {
1074 spin_unlock(&inode->i_lock);
1075 rcu_read_unlock();
1076 return ERR_PTR(-ESTALE);
1077 }
1078 __iget(inode);
1079 spin_unlock(&inode->i_lock);
1080 rcu_read_unlock();
1081 return inode;
1082 }
1083 rcu_read_unlock();
1084 return NULL;
1085 }
1086
1087 /*
1088 * Each cpu owns a range of LAST_INO_BATCH numbers.
1089 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1090 * to renew the exhausted range.
1091 *
1092 * This does not significantly increase overflow rate because every CPU can
1093 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1094 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1095 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1096 * overflow rate by 2x, which does not seem too significant.
1097 *
1098 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1099 * error if st_ino won't fit in target struct field. Use 32bit counter
1100 * here to attempt to avoid that.
1101 */
1102 #define LAST_INO_BATCH 1024
1103 static DEFINE_PER_CPU(unsigned int, last_ino);
1104
get_next_ino(void)1105 unsigned int get_next_ino(void)
1106 {
1107 unsigned int *p = &get_cpu_var(last_ino);
1108 unsigned int res = *p;
1109
1110 #ifdef CONFIG_SMP
1111 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1112 static atomic_t shared_last_ino;
1113 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1114
1115 res = next - LAST_INO_BATCH;
1116 }
1117 #endif
1118
1119 res++;
1120 /* get_next_ino should not provide a 0 inode number */
1121 if (unlikely(!res))
1122 res++;
1123 *p = res;
1124 put_cpu_var(last_ino);
1125 return res;
1126 }
1127 EXPORT_SYMBOL(get_next_ino);
1128
1129 /**
1130 * new_inode - obtain an inode
1131 * @sb: superblock
1132 *
1133 * Allocates a new inode for given superblock. The default gfp_mask
1134 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1135 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1136 * for the page cache are not reclaimable or migratable,
1137 * mapping_set_gfp_mask() must be called with suitable flags on the
1138 * newly created inode's mapping
1139 *
1140 */
new_inode(struct super_block * sb)1141 struct inode *new_inode(struct super_block *sb)
1142 {
1143 struct inode *inode;
1144
1145 inode = alloc_inode(sb);
1146 if (inode)
1147 inode_sb_list_add(inode);
1148 return inode;
1149 }
1150 EXPORT_SYMBOL(new_inode);
1151
1152 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1153 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1154 {
1155 if (S_ISDIR(inode->i_mode)) {
1156 struct file_system_type *type = inode->i_sb->s_type;
1157
1158 /* Set new key only if filesystem hasn't already changed it */
1159 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1160 /*
1161 * ensure nobody is actually holding i_rwsem
1162 */
1163 init_rwsem(&inode->i_rwsem);
1164 lockdep_set_class(&inode->i_rwsem,
1165 &type->i_mutex_dir_key);
1166 }
1167 }
1168 }
1169 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1170 #endif
1171
1172 /**
1173 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1174 * @inode: new inode to unlock
1175 *
1176 * Called when the inode is fully initialised to clear the new state of the
1177 * inode and wake up anyone waiting for the inode to finish initialisation.
1178 */
unlock_new_inode(struct inode * inode)1179 void unlock_new_inode(struct inode *inode)
1180 {
1181 lockdep_annotate_inode_mutex_key(inode);
1182 spin_lock(&inode->i_lock);
1183 WARN_ON(!(inode->i_state & I_NEW));
1184 inode->i_state &= ~I_NEW & ~I_CREATING;
1185 /*
1186 * Pairs with the barrier in prepare_to_wait_event() to make sure
1187 * ___wait_var_event() either sees the bit cleared or
1188 * waitqueue_active() check in wake_up_var() sees the waiter.
1189 */
1190 smp_mb();
1191 inode_wake_up_bit(inode, __I_NEW);
1192 spin_unlock(&inode->i_lock);
1193 }
1194 EXPORT_SYMBOL(unlock_new_inode);
1195
discard_new_inode(struct inode * inode)1196 void discard_new_inode(struct inode *inode)
1197 {
1198 lockdep_annotate_inode_mutex_key(inode);
1199 spin_lock(&inode->i_lock);
1200 WARN_ON(!(inode->i_state & I_NEW));
1201 inode->i_state &= ~I_NEW;
1202 /*
1203 * Pairs with the barrier in prepare_to_wait_event() to make sure
1204 * ___wait_var_event() either sees the bit cleared or
1205 * waitqueue_active() check in wake_up_var() sees the waiter.
1206 */
1207 smp_mb();
1208 inode_wake_up_bit(inode, __I_NEW);
1209 spin_unlock(&inode->i_lock);
1210 iput(inode);
1211 }
1212 EXPORT_SYMBOL(discard_new_inode);
1213
1214 /**
1215 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1216 *
1217 * Lock any non-NULL argument. Passed objects must not be directories.
1218 * Zero, one or two objects may be locked by this function.
1219 *
1220 * @inode1: first inode to lock
1221 * @inode2: second inode to lock
1222 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1223 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1224 {
1225 if (inode1)
1226 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1227 if (inode2)
1228 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1229 if (inode1 > inode2)
1230 swap(inode1, inode2);
1231 if (inode1)
1232 inode_lock(inode1);
1233 if (inode2 && inode2 != inode1)
1234 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1235 }
1236 EXPORT_SYMBOL(lock_two_nondirectories);
1237
1238 /**
1239 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1240 * @inode1: first inode to unlock
1241 * @inode2: second inode to unlock
1242 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1243 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1244 {
1245 if (inode1) {
1246 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1247 inode_unlock(inode1);
1248 }
1249 if (inode2 && inode2 != inode1) {
1250 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1251 inode_unlock(inode2);
1252 }
1253 }
1254 EXPORT_SYMBOL(unlock_two_nondirectories);
1255
1256 /**
1257 * inode_insert5 - obtain an inode from a mounted file system
1258 * @inode: pre-allocated inode to use for insert to cache
1259 * @hashval: hash value (usually inode number) to get
1260 * @test: callback used for comparisons between inodes
1261 * @set: callback used to initialize a new struct inode
1262 * @data: opaque data pointer to pass to @test and @set
1263 *
1264 * Search for the inode specified by @hashval and @data in the inode cache,
1265 * and if present return it with an increased reference count. This is a
1266 * variant of iget5_locked() that doesn't allocate an inode.
1267 *
1268 * If the inode is not present in the cache, insert the pre-allocated inode and
1269 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1270 * to fill it in before unlocking it via unlock_new_inode().
1271 *
1272 * Note that both @test and @set are called with the inode_hash_lock held, so
1273 * they can't sleep.
1274 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1275 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1276 int (*test)(struct inode *, void *),
1277 int (*set)(struct inode *, void *), void *data)
1278 {
1279 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1280 struct inode *old;
1281
1282 again:
1283 spin_lock(&inode_hash_lock);
1284 old = find_inode(inode->i_sb, head, test, data, true);
1285 if (unlikely(old)) {
1286 /*
1287 * Uhhuh, somebody else created the same inode under us.
1288 * Use the old inode instead of the preallocated one.
1289 */
1290 spin_unlock(&inode_hash_lock);
1291 if (IS_ERR(old))
1292 return NULL;
1293 wait_on_inode(old);
1294 if (unlikely(inode_unhashed(old))) {
1295 iput(old);
1296 goto again;
1297 }
1298 return old;
1299 }
1300
1301 if (set && unlikely(set(inode, data))) {
1302 spin_unlock(&inode_hash_lock);
1303 return NULL;
1304 }
1305
1306 /*
1307 * Return the locked inode with I_NEW set, the
1308 * caller is responsible for filling in the contents
1309 */
1310 spin_lock(&inode->i_lock);
1311 inode->i_state |= I_NEW;
1312 hlist_add_head_rcu(&inode->i_hash, head);
1313 spin_unlock(&inode->i_lock);
1314
1315 spin_unlock(&inode_hash_lock);
1316
1317 /*
1318 * Add inode to the sb list if it's not already. It has I_NEW at this
1319 * point, so it should be safe to test i_sb_list locklessly.
1320 */
1321 if (list_empty(&inode->i_sb_list))
1322 inode_sb_list_add(inode);
1323
1324 return inode;
1325 }
1326 EXPORT_SYMBOL(inode_insert5);
1327
1328 /**
1329 * iget5_locked - obtain an inode from a mounted file system
1330 * @sb: super block of file system
1331 * @hashval: hash value (usually inode number) to get
1332 * @test: callback used for comparisons between inodes
1333 * @set: callback used to initialize a new struct inode
1334 * @data: opaque data pointer to pass to @test and @set
1335 *
1336 * Search for the inode specified by @hashval and @data in the inode cache,
1337 * and if present return it with an increased reference count. This is a
1338 * generalized version of iget_locked() for file systems where the inode
1339 * number is not sufficient for unique identification of an inode.
1340 *
1341 * If the inode is not present in the cache, allocate and insert a new inode
1342 * and return it locked, hashed, and with the I_NEW flag set. The file system
1343 * gets to fill it in before unlocking it via unlock_new_inode().
1344 *
1345 * Note that both @test and @set are called with the inode_hash_lock held, so
1346 * they can't sleep.
1347 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1348 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1349 int (*test)(struct inode *, void *),
1350 int (*set)(struct inode *, void *), void *data)
1351 {
1352 struct inode *inode = ilookup5(sb, hashval, test, data);
1353
1354 if (!inode) {
1355 struct inode *new = alloc_inode(sb);
1356
1357 if (new) {
1358 inode = inode_insert5(new, hashval, test, set, data);
1359 if (unlikely(inode != new))
1360 destroy_inode(new);
1361 }
1362 }
1363 return inode;
1364 }
1365 EXPORT_SYMBOL(iget5_locked);
1366
1367 /**
1368 * iget5_locked_rcu - obtain an inode from a mounted file system
1369 * @sb: super block of file system
1370 * @hashval: hash value (usually inode number) to get
1371 * @test: callback used for comparisons between inodes
1372 * @set: callback used to initialize a new struct inode
1373 * @data: opaque data pointer to pass to @test and @set
1374 *
1375 * This is equivalent to iget5_locked, except the @test callback must
1376 * tolerate the inode not being stable, including being mid-teardown.
1377 */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1378 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1379 int (*test)(struct inode *, void *),
1380 int (*set)(struct inode *, void *), void *data)
1381 {
1382 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1383 struct inode *inode, *new;
1384
1385 again:
1386 inode = find_inode(sb, head, test, data, false);
1387 if (inode) {
1388 if (IS_ERR(inode))
1389 return NULL;
1390 wait_on_inode(inode);
1391 if (unlikely(inode_unhashed(inode))) {
1392 iput(inode);
1393 goto again;
1394 }
1395 return inode;
1396 }
1397
1398 new = alloc_inode(sb);
1399 if (new) {
1400 inode = inode_insert5(new, hashval, test, set, data);
1401 if (unlikely(inode != new))
1402 destroy_inode(new);
1403 }
1404 return inode;
1405 }
1406 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1407
1408 /**
1409 * iget_locked - obtain an inode from a mounted file system
1410 * @sb: super block of file system
1411 * @ino: inode number to get
1412 *
1413 * Search for the inode specified by @ino in the inode cache and if present
1414 * return it with an increased reference count. This is for file systems
1415 * where the inode number is sufficient for unique identification of an inode.
1416 *
1417 * If the inode is not in cache, allocate a new inode and return it locked,
1418 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1419 * before unlocking it via unlock_new_inode().
1420 */
iget_locked(struct super_block * sb,unsigned long ino)1421 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1422 {
1423 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1424 struct inode *inode;
1425 again:
1426 inode = find_inode_fast(sb, head, ino, false);
1427 if (inode) {
1428 if (IS_ERR(inode))
1429 return NULL;
1430 wait_on_inode(inode);
1431 if (unlikely(inode_unhashed(inode))) {
1432 iput(inode);
1433 goto again;
1434 }
1435 return inode;
1436 }
1437
1438 inode = alloc_inode(sb);
1439 if (inode) {
1440 struct inode *old;
1441
1442 spin_lock(&inode_hash_lock);
1443 /* We released the lock, so.. */
1444 old = find_inode_fast(sb, head, ino, true);
1445 if (!old) {
1446 inode->i_ino = ino;
1447 spin_lock(&inode->i_lock);
1448 inode->i_state = I_NEW;
1449 hlist_add_head_rcu(&inode->i_hash, head);
1450 spin_unlock(&inode->i_lock);
1451 spin_unlock(&inode_hash_lock);
1452 inode_sb_list_add(inode);
1453
1454 /* Return the locked inode with I_NEW set, the
1455 * caller is responsible for filling in the contents
1456 */
1457 return inode;
1458 }
1459
1460 /*
1461 * Uhhuh, somebody else created the same inode under
1462 * us. Use the old inode instead of the one we just
1463 * allocated.
1464 */
1465 spin_unlock(&inode_hash_lock);
1466 destroy_inode(inode);
1467 if (IS_ERR(old))
1468 return NULL;
1469 inode = old;
1470 wait_on_inode(inode);
1471 if (unlikely(inode_unhashed(inode))) {
1472 iput(inode);
1473 goto again;
1474 }
1475 }
1476 return inode;
1477 }
1478 EXPORT_SYMBOL(iget_locked);
1479
1480 /*
1481 * search the inode cache for a matching inode number.
1482 * If we find one, then the inode number we are trying to
1483 * allocate is not unique and so we should not use it.
1484 *
1485 * Returns 1 if the inode number is unique, 0 if it is not.
1486 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1487 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1488 {
1489 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1490 struct inode *inode;
1491
1492 hlist_for_each_entry_rcu(inode, b, i_hash) {
1493 if (inode->i_ino == ino && inode->i_sb == sb)
1494 return 0;
1495 }
1496 return 1;
1497 }
1498
1499 /**
1500 * iunique - get a unique inode number
1501 * @sb: superblock
1502 * @max_reserved: highest reserved inode number
1503 *
1504 * Obtain an inode number that is unique on the system for a given
1505 * superblock. This is used by file systems that have no natural
1506 * permanent inode numbering system. An inode number is returned that
1507 * is higher than the reserved limit but unique.
1508 *
1509 * BUGS:
1510 * With a large number of inodes live on the file system this function
1511 * currently becomes quite slow.
1512 */
iunique(struct super_block * sb,ino_t max_reserved)1513 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1514 {
1515 /*
1516 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1517 * error if st_ino won't fit in target struct field. Use 32bit counter
1518 * here to attempt to avoid that.
1519 */
1520 static DEFINE_SPINLOCK(iunique_lock);
1521 static unsigned int counter;
1522 ino_t res;
1523
1524 rcu_read_lock();
1525 spin_lock(&iunique_lock);
1526 do {
1527 if (counter <= max_reserved)
1528 counter = max_reserved + 1;
1529 res = counter++;
1530 } while (!test_inode_iunique(sb, res));
1531 spin_unlock(&iunique_lock);
1532 rcu_read_unlock();
1533
1534 return res;
1535 }
1536 EXPORT_SYMBOL(iunique);
1537
igrab(struct inode * inode)1538 struct inode *igrab(struct inode *inode)
1539 {
1540 spin_lock(&inode->i_lock);
1541 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1542 __iget(inode);
1543 spin_unlock(&inode->i_lock);
1544 } else {
1545 spin_unlock(&inode->i_lock);
1546 /*
1547 * Handle the case where s_op->clear_inode is not been
1548 * called yet, and somebody is calling igrab
1549 * while the inode is getting freed.
1550 */
1551 inode = NULL;
1552 }
1553 return inode;
1554 }
1555 EXPORT_SYMBOL(igrab);
1556
1557 /**
1558 * ilookup5_nowait - search for an inode in the inode cache
1559 * @sb: super block of file system to search
1560 * @hashval: hash value (usually inode number) to search for
1561 * @test: callback used for comparisons between inodes
1562 * @data: opaque data pointer to pass to @test
1563 *
1564 * Search for the inode specified by @hashval and @data in the inode cache.
1565 * If the inode is in the cache, the inode is returned with an incremented
1566 * reference count.
1567 *
1568 * Note: I_NEW is not waited upon so you have to be very careful what you do
1569 * with the returned inode. You probably should be using ilookup5() instead.
1570 *
1571 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1572 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1573 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1574 int (*test)(struct inode *, void *), void *data)
1575 {
1576 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1577 struct inode *inode;
1578
1579 spin_lock(&inode_hash_lock);
1580 inode = find_inode(sb, head, test, data, true);
1581 spin_unlock(&inode_hash_lock);
1582
1583 return IS_ERR(inode) ? NULL : inode;
1584 }
1585 EXPORT_SYMBOL(ilookup5_nowait);
1586
1587 /**
1588 * ilookup5 - search for an inode in the inode cache
1589 * @sb: super block of file system to search
1590 * @hashval: hash value (usually inode number) to search for
1591 * @test: callback used for comparisons between inodes
1592 * @data: opaque data pointer to pass to @test
1593 *
1594 * Search for the inode specified by @hashval and @data in the inode cache,
1595 * and if the inode is in the cache, return the inode with an incremented
1596 * reference count. Waits on I_NEW before returning the inode.
1597 * returned with an incremented reference count.
1598 *
1599 * This is a generalized version of ilookup() for file systems where the
1600 * inode number is not sufficient for unique identification of an inode.
1601 *
1602 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1603 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1604 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1605 int (*test)(struct inode *, void *), void *data)
1606 {
1607 struct inode *inode;
1608 again:
1609 inode = ilookup5_nowait(sb, hashval, test, data);
1610 if (inode) {
1611 wait_on_inode(inode);
1612 if (unlikely(inode_unhashed(inode))) {
1613 iput(inode);
1614 goto again;
1615 }
1616 }
1617 return inode;
1618 }
1619 EXPORT_SYMBOL(ilookup5);
1620
1621 /**
1622 * ilookup - search for an inode in the inode cache
1623 * @sb: super block of file system to search
1624 * @ino: inode number to search for
1625 *
1626 * Search for the inode @ino in the inode cache, and if the inode is in the
1627 * cache, the inode is returned with an incremented reference count.
1628 */
ilookup(struct super_block * sb,unsigned long ino)1629 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1630 {
1631 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632 struct inode *inode;
1633 again:
1634 inode = find_inode_fast(sb, head, ino, false);
1635
1636 if (inode) {
1637 if (IS_ERR(inode))
1638 return NULL;
1639 wait_on_inode(inode);
1640 if (unlikely(inode_unhashed(inode))) {
1641 iput(inode);
1642 goto again;
1643 }
1644 }
1645 return inode;
1646 }
1647 EXPORT_SYMBOL(ilookup);
1648
1649 /**
1650 * find_inode_nowait - find an inode in the inode cache
1651 * @sb: super block of file system to search
1652 * @hashval: hash value (usually inode number) to search for
1653 * @match: callback used for comparisons between inodes
1654 * @data: opaque data pointer to pass to @match
1655 *
1656 * Search for the inode specified by @hashval and @data in the inode
1657 * cache, where the helper function @match will return 0 if the inode
1658 * does not match, 1 if the inode does match, and -1 if the search
1659 * should be stopped. The @match function must be responsible for
1660 * taking the i_lock spin_lock and checking i_state for an inode being
1661 * freed or being initialized, and incrementing the reference count
1662 * before returning 1. It also must not sleep, since it is called with
1663 * the inode_hash_lock spinlock held.
1664 *
1665 * This is a even more generalized version of ilookup5() when the
1666 * function must never block --- find_inode() can block in
1667 * __wait_on_freeing_inode() --- or when the caller can not increment
1668 * the reference count because the resulting iput() might cause an
1669 * inode eviction. The tradeoff is that the @match funtion must be
1670 * very carefully implemented.
1671 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1672 struct inode *find_inode_nowait(struct super_block *sb,
1673 unsigned long hashval,
1674 int (*match)(struct inode *, unsigned long,
1675 void *),
1676 void *data)
1677 {
1678 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1679 struct inode *inode, *ret_inode = NULL;
1680 int mval;
1681
1682 spin_lock(&inode_hash_lock);
1683 hlist_for_each_entry(inode, head, i_hash) {
1684 if (inode->i_sb != sb)
1685 continue;
1686 mval = match(inode, hashval, data);
1687 if (mval == 0)
1688 continue;
1689 if (mval == 1)
1690 ret_inode = inode;
1691 goto out;
1692 }
1693 out:
1694 spin_unlock(&inode_hash_lock);
1695 return ret_inode;
1696 }
1697 EXPORT_SYMBOL(find_inode_nowait);
1698
1699 /**
1700 * find_inode_rcu - find an inode in the inode cache
1701 * @sb: Super block of file system to search
1702 * @hashval: Key to hash
1703 * @test: Function to test match on an inode
1704 * @data: Data for test function
1705 *
1706 * Search for the inode specified by @hashval and @data in the inode cache,
1707 * where the helper function @test will return 0 if the inode does not match
1708 * and 1 if it does. The @test function must be responsible for taking the
1709 * i_lock spin_lock and checking i_state for an inode being freed or being
1710 * initialized.
1711 *
1712 * If successful, this will return the inode for which the @test function
1713 * returned 1 and NULL otherwise.
1714 *
1715 * The @test function is not permitted to take a ref on any inode presented.
1716 * It is also not permitted to sleep.
1717 *
1718 * The caller must hold the RCU read lock.
1719 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1720 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1721 int (*test)(struct inode *, void *), void *data)
1722 {
1723 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1724 struct inode *inode;
1725
1726 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1727 "suspicious find_inode_rcu() usage");
1728
1729 hlist_for_each_entry_rcu(inode, head, i_hash) {
1730 if (inode->i_sb == sb &&
1731 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1732 test(inode, data))
1733 return inode;
1734 }
1735 return NULL;
1736 }
1737 EXPORT_SYMBOL(find_inode_rcu);
1738
1739 /**
1740 * find_inode_by_ino_rcu - Find an inode in the inode cache
1741 * @sb: Super block of file system to search
1742 * @ino: The inode number to match
1743 *
1744 * Search for the inode specified by @hashval and @data in the inode cache,
1745 * where the helper function @test will return 0 if the inode does not match
1746 * and 1 if it does. The @test function must be responsible for taking the
1747 * i_lock spin_lock and checking i_state for an inode being freed or being
1748 * initialized.
1749 *
1750 * If successful, this will return the inode for which the @test function
1751 * returned 1 and NULL otherwise.
1752 *
1753 * The @test function is not permitted to take a ref on any inode presented.
1754 * It is also not permitted to sleep.
1755 *
1756 * The caller must hold the RCU read lock.
1757 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1758 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1759 unsigned long ino)
1760 {
1761 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1762 struct inode *inode;
1763
1764 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1765 "suspicious find_inode_by_ino_rcu() usage");
1766
1767 hlist_for_each_entry_rcu(inode, head, i_hash) {
1768 if (inode->i_ino == ino &&
1769 inode->i_sb == sb &&
1770 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1771 return inode;
1772 }
1773 return NULL;
1774 }
1775 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1776
insert_inode_locked(struct inode * inode)1777 int insert_inode_locked(struct inode *inode)
1778 {
1779 struct super_block *sb = inode->i_sb;
1780 ino_t ino = inode->i_ino;
1781 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1782
1783 while (1) {
1784 struct inode *old = NULL;
1785 spin_lock(&inode_hash_lock);
1786 hlist_for_each_entry(old, head, i_hash) {
1787 if (old->i_ino != ino)
1788 continue;
1789 if (old->i_sb != sb)
1790 continue;
1791 spin_lock(&old->i_lock);
1792 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1793 spin_unlock(&old->i_lock);
1794 continue;
1795 }
1796 break;
1797 }
1798 if (likely(!old)) {
1799 spin_lock(&inode->i_lock);
1800 inode->i_state |= I_NEW | I_CREATING;
1801 hlist_add_head_rcu(&inode->i_hash, head);
1802 spin_unlock(&inode->i_lock);
1803 spin_unlock(&inode_hash_lock);
1804 return 0;
1805 }
1806 if (unlikely(old->i_state & I_CREATING)) {
1807 spin_unlock(&old->i_lock);
1808 spin_unlock(&inode_hash_lock);
1809 return -EBUSY;
1810 }
1811 __iget(old);
1812 spin_unlock(&old->i_lock);
1813 spin_unlock(&inode_hash_lock);
1814 wait_on_inode(old);
1815 if (unlikely(!inode_unhashed(old))) {
1816 iput(old);
1817 return -EBUSY;
1818 }
1819 iput(old);
1820 }
1821 }
1822 EXPORT_SYMBOL(insert_inode_locked);
1823
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1824 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1825 int (*test)(struct inode *, void *), void *data)
1826 {
1827 struct inode *old;
1828
1829 inode->i_state |= I_CREATING;
1830 old = inode_insert5(inode, hashval, test, NULL, data);
1831
1832 if (old != inode) {
1833 iput(old);
1834 return -EBUSY;
1835 }
1836 return 0;
1837 }
1838 EXPORT_SYMBOL(insert_inode_locked4);
1839
1840
generic_delete_inode(struct inode * inode)1841 int generic_delete_inode(struct inode *inode)
1842 {
1843 return 1;
1844 }
1845 EXPORT_SYMBOL(generic_delete_inode);
1846
1847 /*
1848 * Called when we're dropping the last reference
1849 * to an inode.
1850 *
1851 * Call the FS "drop_inode()" function, defaulting to
1852 * the legacy UNIX filesystem behaviour. If it tells
1853 * us to evict inode, do so. Otherwise, retain inode
1854 * in cache if fs is alive, sync and evict if fs is
1855 * shutting down.
1856 */
iput_final(struct inode * inode)1857 static void iput_final(struct inode *inode)
1858 {
1859 struct super_block *sb = inode->i_sb;
1860 const struct super_operations *op = inode->i_sb->s_op;
1861 unsigned long state;
1862 int drop;
1863
1864 WARN_ON(inode->i_state & I_NEW);
1865
1866 if (op->drop_inode)
1867 drop = op->drop_inode(inode);
1868 else
1869 drop = generic_drop_inode(inode);
1870
1871 if (!drop &&
1872 !(inode->i_state & I_DONTCACHE) &&
1873 (sb->s_flags & SB_ACTIVE)) {
1874 __inode_add_lru(inode, true);
1875 spin_unlock(&inode->i_lock);
1876 return;
1877 }
1878
1879 state = inode->i_state;
1880 if (!drop) {
1881 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1882 spin_unlock(&inode->i_lock);
1883
1884 write_inode_now(inode, 1);
1885
1886 spin_lock(&inode->i_lock);
1887 state = inode->i_state;
1888 WARN_ON(state & I_NEW);
1889 state &= ~I_WILL_FREE;
1890 }
1891
1892 WRITE_ONCE(inode->i_state, state | I_FREEING);
1893 if (!list_empty(&inode->i_lru))
1894 inode_lru_list_del(inode);
1895 spin_unlock(&inode->i_lock);
1896
1897 evict(inode);
1898 }
1899
1900 /**
1901 * iput - put an inode
1902 * @inode: inode to put
1903 *
1904 * Puts an inode, dropping its usage count. If the inode use count hits
1905 * zero, the inode is then freed and may also be destroyed.
1906 *
1907 * Consequently, iput() can sleep.
1908 */
iput(struct inode * inode)1909 void iput(struct inode *inode)
1910 {
1911 if (!inode)
1912 return;
1913 BUG_ON(inode->i_state & I_CLEAR);
1914 retry:
1915 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1916 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1917 atomic_inc(&inode->i_count);
1918 spin_unlock(&inode->i_lock);
1919 trace_writeback_lazytime_iput(inode);
1920 mark_inode_dirty_sync(inode);
1921 goto retry;
1922 }
1923 iput_final(inode);
1924 }
1925 }
1926 EXPORT_SYMBOL(iput);
1927
1928 #ifdef CONFIG_BLOCK
1929 /**
1930 * bmap - find a block number in a file
1931 * @inode: inode owning the block number being requested
1932 * @block: pointer containing the block to find
1933 *
1934 * Replaces the value in ``*block`` with the block number on the device holding
1935 * corresponding to the requested block number in the file.
1936 * That is, asked for block 4 of inode 1 the function will replace the
1937 * 4 in ``*block``, with disk block relative to the disk start that holds that
1938 * block of the file.
1939 *
1940 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1941 * hole, returns 0 and ``*block`` is also set to 0.
1942 */
bmap(struct inode * inode,sector_t * block)1943 int bmap(struct inode *inode, sector_t *block)
1944 {
1945 if (!inode->i_mapping->a_ops->bmap)
1946 return -EINVAL;
1947
1948 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1949 return 0;
1950 }
1951 EXPORT_SYMBOL(bmap);
1952 #endif
1953
1954 /*
1955 * With relative atime, only update atime if the previous atime is
1956 * earlier than or equal to either the ctime or mtime,
1957 * or if at least a day has passed since the last atime update.
1958 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1959 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1960 struct timespec64 now)
1961 {
1962 struct timespec64 atime, mtime, ctime;
1963
1964 if (!(mnt->mnt_flags & MNT_RELATIME))
1965 return true;
1966 /*
1967 * Is mtime younger than or equal to atime? If yes, update atime:
1968 */
1969 atime = inode_get_atime(inode);
1970 mtime = inode_get_mtime(inode);
1971 if (timespec64_compare(&mtime, &atime) >= 0)
1972 return true;
1973 /*
1974 * Is ctime younger than or equal to atime? If yes, update atime:
1975 */
1976 ctime = inode_get_ctime(inode);
1977 if (timespec64_compare(&ctime, &atime) >= 0)
1978 return true;
1979
1980 /*
1981 * Is the previous atime value older than a day? If yes,
1982 * update atime:
1983 */
1984 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1985 return true;
1986 /*
1987 * Good, we can skip the atime update:
1988 */
1989 return false;
1990 }
1991
1992 /**
1993 * inode_update_timestamps - update the timestamps on the inode
1994 * @inode: inode to be updated
1995 * @flags: S_* flags that needed to be updated
1996 *
1997 * The update_time function is called when an inode's timestamps need to be
1998 * updated for a read or write operation. This function handles updating the
1999 * actual timestamps. It's up to the caller to ensure that the inode is marked
2000 * dirty appropriately.
2001 *
2002 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2003 * attempt to update all three of them. S_ATIME updates can be handled
2004 * independently of the rest.
2005 *
2006 * Returns a set of S_* flags indicating which values changed.
2007 */
inode_update_timestamps(struct inode * inode,int flags)2008 int inode_update_timestamps(struct inode *inode, int flags)
2009 {
2010 int updated = 0;
2011 struct timespec64 now;
2012
2013 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2014 struct timespec64 ctime = inode_get_ctime(inode);
2015 struct timespec64 mtime = inode_get_mtime(inode);
2016
2017 now = inode_set_ctime_current(inode);
2018 if (!timespec64_equal(&now, &ctime))
2019 updated |= S_CTIME;
2020 if (!timespec64_equal(&now, &mtime)) {
2021 inode_set_mtime_to_ts(inode, now);
2022 updated |= S_MTIME;
2023 }
2024 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2025 updated |= S_VERSION;
2026 } else {
2027 now = current_time(inode);
2028 }
2029
2030 if (flags & S_ATIME) {
2031 struct timespec64 atime = inode_get_atime(inode);
2032
2033 if (!timespec64_equal(&now, &atime)) {
2034 inode_set_atime_to_ts(inode, now);
2035 updated |= S_ATIME;
2036 }
2037 }
2038 return updated;
2039 }
2040 EXPORT_SYMBOL(inode_update_timestamps);
2041
2042 /**
2043 * generic_update_time - update the timestamps on the inode
2044 * @inode: inode to be updated
2045 * @flags: S_* flags that needed to be updated
2046 *
2047 * The update_time function is called when an inode's timestamps need to be
2048 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2049 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2050 * updates can be handled done independently of the rest.
2051 *
2052 * Returns a S_* mask indicating which fields were updated.
2053 */
generic_update_time(struct inode * inode,int flags)2054 int generic_update_time(struct inode *inode, int flags)
2055 {
2056 int updated = inode_update_timestamps(inode, flags);
2057 int dirty_flags = 0;
2058
2059 if (updated & (S_ATIME|S_MTIME|S_CTIME))
2060 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2061 if (updated & S_VERSION)
2062 dirty_flags |= I_DIRTY_SYNC;
2063 __mark_inode_dirty(inode, dirty_flags);
2064 return updated;
2065 }
2066 EXPORT_SYMBOL(generic_update_time);
2067
2068 /*
2069 * This does the actual work of updating an inodes time or version. Must have
2070 * had called mnt_want_write() before calling this.
2071 */
inode_update_time(struct inode * inode,int flags)2072 int inode_update_time(struct inode *inode, int flags)
2073 {
2074 if (inode->i_op->update_time)
2075 return inode->i_op->update_time(inode, flags);
2076 generic_update_time(inode, flags);
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(inode_update_time);
2080
2081 /**
2082 * atime_needs_update - update the access time
2083 * @path: the &struct path to update
2084 * @inode: inode to update
2085 *
2086 * Update the accessed time on an inode and mark it for writeback.
2087 * This function automatically handles read only file systems and media,
2088 * as well as the "noatime" flag and inode specific "noatime" markers.
2089 */
atime_needs_update(const struct path * path,struct inode * inode)2090 bool atime_needs_update(const struct path *path, struct inode *inode)
2091 {
2092 struct vfsmount *mnt = path->mnt;
2093 struct timespec64 now, atime;
2094
2095 if (inode->i_flags & S_NOATIME)
2096 return false;
2097
2098 /* Atime updates will likely cause i_uid and i_gid to be written
2099 * back improprely if their true value is unknown to the vfs.
2100 */
2101 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2102 return false;
2103
2104 if (IS_NOATIME(inode))
2105 return false;
2106 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2107 return false;
2108
2109 if (mnt->mnt_flags & MNT_NOATIME)
2110 return false;
2111 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2112 return false;
2113
2114 now = current_time(inode);
2115
2116 if (!relatime_need_update(mnt, inode, now))
2117 return false;
2118
2119 atime = inode_get_atime(inode);
2120 if (timespec64_equal(&atime, &now))
2121 return false;
2122
2123 return true;
2124 }
2125
touch_atime(const struct path * path)2126 void touch_atime(const struct path *path)
2127 {
2128 struct vfsmount *mnt = path->mnt;
2129 struct inode *inode = d_inode(path->dentry);
2130
2131 if (!atime_needs_update(path, inode))
2132 return;
2133
2134 if (!sb_start_write_trylock(inode->i_sb))
2135 return;
2136
2137 if (mnt_get_write_access(mnt) != 0)
2138 goto skip_update;
2139 /*
2140 * File systems can error out when updating inodes if they need to
2141 * allocate new space to modify an inode (such is the case for
2142 * Btrfs), but since we touch atime while walking down the path we
2143 * really don't care if we failed to update the atime of the file,
2144 * so just ignore the return value.
2145 * We may also fail on filesystems that have the ability to make parts
2146 * of the fs read only, e.g. subvolumes in Btrfs.
2147 */
2148 inode_update_time(inode, S_ATIME);
2149 mnt_put_write_access(mnt);
2150 skip_update:
2151 sb_end_write(inode->i_sb);
2152 }
2153 EXPORT_SYMBOL(touch_atime);
2154
2155 /*
2156 * Return mask of changes for notify_change() that need to be done as a
2157 * response to write or truncate. Return 0 if nothing has to be changed.
2158 * Negative value on error (change should be denied).
2159 */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2160 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2161 struct dentry *dentry)
2162 {
2163 struct inode *inode = d_inode(dentry);
2164 int mask = 0;
2165 int ret;
2166
2167 if (IS_NOSEC(inode))
2168 return 0;
2169
2170 mask = setattr_should_drop_suidgid(idmap, inode);
2171 ret = security_inode_need_killpriv(dentry);
2172 if (ret < 0)
2173 return ret;
2174 if (ret)
2175 mask |= ATTR_KILL_PRIV;
2176 return mask;
2177 }
2178
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2179 static int __remove_privs(struct mnt_idmap *idmap,
2180 struct dentry *dentry, int kill)
2181 {
2182 struct iattr newattrs;
2183
2184 newattrs.ia_valid = ATTR_FORCE | kill;
2185 /*
2186 * Note we call this on write, so notify_change will not
2187 * encounter any conflicting delegations:
2188 */
2189 return notify_change(idmap, dentry, &newattrs, NULL);
2190 }
2191
file_remove_privs_flags(struct file * file,unsigned int flags)2192 int file_remove_privs_flags(struct file *file, unsigned int flags)
2193 {
2194 struct dentry *dentry = file_dentry(file);
2195 struct inode *inode = file_inode(file);
2196 int error = 0;
2197 int kill;
2198
2199 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2200 return 0;
2201
2202 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2203 if (kill < 0)
2204 return kill;
2205
2206 if (kill) {
2207 if (flags & IOCB_NOWAIT)
2208 return -EAGAIN;
2209
2210 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2211 }
2212
2213 if (!error)
2214 inode_has_no_xattr(inode);
2215 return error;
2216 }
2217 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2218
2219 /**
2220 * file_remove_privs - remove special file privileges (suid, capabilities)
2221 * @file: file to remove privileges from
2222 *
2223 * When file is modified by a write or truncation ensure that special
2224 * file privileges are removed.
2225 *
2226 * Return: 0 on success, negative errno on failure.
2227 */
file_remove_privs(struct file * file)2228 int file_remove_privs(struct file *file)
2229 {
2230 return file_remove_privs_flags(file, 0);
2231 }
2232 EXPORT_SYMBOL(file_remove_privs);
2233
2234 /**
2235 * current_time - Return FS time (possibly fine-grained)
2236 * @inode: inode.
2237 *
2238 * Return the current time truncated to the time granularity supported by
2239 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2240 * as having been QUERIED, get a fine-grained timestamp, but don't update
2241 * the floor.
2242 *
2243 * For a multigrain inode, this is effectively an estimate of the timestamp
2244 * that a file would receive. An actual update must go through
2245 * inode_set_ctime_current().
2246 */
current_time(struct inode * inode)2247 struct timespec64 current_time(struct inode *inode)
2248 {
2249 struct timespec64 now;
2250 u32 cns;
2251
2252 ktime_get_coarse_real_ts64_mg(&now);
2253
2254 if (!is_mgtime(inode))
2255 goto out;
2256
2257 /* If nothing has queried it, then coarse time is fine */
2258 cns = smp_load_acquire(&inode->i_ctime_nsec);
2259 if (cns & I_CTIME_QUERIED) {
2260 /*
2261 * If there is no apparent change, then get a fine-grained
2262 * timestamp.
2263 */
2264 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2265 ktime_get_real_ts64(&now);
2266 }
2267 out:
2268 return timestamp_truncate(now, inode);
2269 }
2270 EXPORT_SYMBOL(current_time);
2271
inode_needs_update_time(struct inode * inode)2272 static int inode_needs_update_time(struct inode *inode)
2273 {
2274 struct timespec64 now, ts;
2275 int sync_it = 0;
2276
2277 /* First try to exhaust all avenues to not sync */
2278 if (IS_NOCMTIME(inode))
2279 return 0;
2280
2281 now = current_time(inode);
2282
2283 ts = inode_get_mtime(inode);
2284 if (!timespec64_equal(&ts, &now))
2285 sync_it |= S_MTIME;
2286
2287 ts = inode_get_ctime(inode);
2288 if (!timespec64_equal(&ts, &now))
2289 sync_it |= S_CTIME;
2290
2291 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2292 sync_it |= S_VERSION;
2293
2294 return sync_it;
2295 }
2296
__file_update_time(struct file * file,int sync_mode)2297 static int __file_update_time(struct file *file, int sync_mode)
2298 {
2299 int ret = 0;
2300 struct inode *inode = file_inode(file);
2301
2302 /* try to update time settings */
2303 if (!mnt_get_write_access_file(file)) {
2304 ret = inode_update_time(inode, sync_mode);
2305 mnt_put_write_access_file(file);
2306 }
2307
2308 return ret;
2309 }
2310
2311 /**
2312 * file_update_time - update mtime and ctime time
2313 * @file: file accessed
2314 *
2315 * Update the mtime and ctime members of an inode and mark the inode for
2316 * writeback. Note that this function is meant exclusively for usage in
2317 * the file write path of filesystems, and filesystems may choose to
2318 * explicitly ignore updates via this function with the _NOCMTIME inode
2319 * flag, e.g. for network filesystem where these imestamps are handled
2320 * by the server. This can return an error for file systems who need to
2321 * allocate space in order to update an inode.
2322 *
2323 * Return: 0 on success, negative errno on failure.
2324 */
file_update_time(struct file * file)2325 int file_update_time(struct file *file)
2326 {
2327 int ret;
2328 struct inode *inode = file_inode(file);
2329
2330 ret = inode_needs_update_time(inode);
2331 if (ret <= 0)
2332 return ret;
2333
2334 return __file_update_time(file, ret);
2335 }
2336 EXPORT_SYMBOL(file_update_time);
2337
2338 /**
2339 * file_modified_flags - handle mandated vfs changes when modifying a file
2340 * @file: file that was modified
2341 * @flags: kiocb flags
2342 *
2343 * When file has been modified ensure that special
2344 * file privileges are removed and time settings are updated.
2345 *
2346 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2347 * time settings will not be updated. It will return -EAGAIN.
2348 *
2349 * Context: Caller must hold the file's inode lock.
2350 *
2351 * Return: 0 on success, negative errno on failure.
2352 */
file_modified_flags(struct file * file,int flags)2353 static int file_modified_flags(struct file *file, int flags)
2354 {
2355 int ret;
2356 struct inode *inode = file_inode(file);
2357
2358 /*
2359 * Clear the security bits if the process is not being run by root.
2360 * This keeps people from modifying setuid and setgid binaries.
2361 */
2362 ret = file_remove_privs_flags(file, flags);
2363 if (ret)
2364 return ret;
2365
2366 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2367 return 0;
2368
2369 ret = inode_needs_update_time(inode);
2370 if (ret <= 0)
2371 return ret;
2372 if (flags & IOCB_NOWAIT)
2373 return -EAGAIN;
2374
2375 return __file_update_time(file, ret);
2376 }
2377
2378 /**
2379 * file_modified - handle mandated vfs changes when modifying a file
2380 * @file: file that was modified
2381 *
2382 * When file has been modified ensure that special
2383 * file privileges are removed and time settings are updated.
2384 *
2385 * Context: Caller must hold the file's inode lock.
2386 *
2387 * Return: 0 on success, negative errno on failure.
2388 */
file_modified(struct file * file)2389 int file_modified(struct file *file)
2390 {
2391 return file_modified_flags(file, 0);
2392 }
2393 EXPORT_SYMBOL(file_modified);
2394
2395 /**
2396 * kiocb_modified - handle mandated vfs changes when modifying a file
2397 * @iocb: iocb that was modified
2398 *
2399 * When file has been modified ensure that special
2400 * file privileges are removed and time settings are updated.
2401 *
2402 * Context: Caller must hold the file's inode lock.
2403 *
2404 * Return: 0 on success, negative errno on failure.
2405 */
kiocb_modified(struct kiocb * iocb)2406 int kiocb_modified(struct kiocb *iocb)
2407 {
2408 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2409 }
2410 EXPORT_SYMBOL_GPL(kiocb_modified);
2411
inode_needs_sync(struct inode * inode)2412 int inode_needs_sync(struct inode *inode)
2413 {
2414 if (IS_SYNC(inode))
2415 return 1;
2416 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2417 return 1;
2418 return 0;
2419 }
2420 EXPORT_SYMBOL(inode_needs_sync);
2421
2422 /*
2423 * If we try to find an inode in the inode hash while it is being
2424 * deleted, we have to wait until the filesystem completes its
2425 * deletion before reporting that it isn't found. This function waits
2426 * until the deletion _might_ have completed. Callers are responsible
2427 * to recheck inode state.
2428 *
2429 * It doesn't matter if I_NEW is not set initially, a call to
2430 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2431 * will DTRT.
2432 */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2433 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2434 {
2435 struct wait_bit_queue_entry wqe;
2436 struct wait_queue_head *wq_head;
2437
2438 /*
2439 * Handle racing against evict(), see that routine for more details.
2440 */
2441 if (unlikely(inode_unhashed(inode))) {
2442 WARN_ON(is_inode_hash_locked);
2443 spin_unlock(&inode->i_lock);
2444 return;
2445 }
2446
2447 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2448 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2449 spin_unlock(&inode->i_lock);
2450 rcu_read_unlock();
2451 if (is_inode_hash_locked)
2452 spin_unlock(&inode_hash_lock);
2453 schedule();
2454 finish_wait(wq_head, &wqe.wq_entry);
2455 if (is_inode_hash_locked)
2456 spin_lock(&inode_hash_lock);
2457 rcu_read_lock();
2458 }
2459
2460 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2461 static int __init set_ihash_entries(char *str)
2462 {
2463 if (!str)
2464 return 0;
2465 ihash_entries = simple_strtoul(str, &str, 0);
2466 return 1;
2467 }
2468 __setup("ihash_entries=", set_ihash_entries);
2469
2470 /*
2471 * Initialize the waitqueues and inode hash table.
2472 */
inode_init_early(void)2473 void __init inode_init_early(void)
2474 {
2475 /* If hashes are distributed across NUMA nodes, defer
2476 * hash allocation until vmalloc space is available.
2477 */
2478 if (hashdist)
2479 return;
2480
2481 inode_hashtable =
2482 alloc_large_system_hash("Inode-cache",
2483 sizeof(struct hlist_head),
2484 ihash_entries,
2485 14,
2486 HASH_EARLY | HASH_ZERO,
2487 &i_hash_shift,
2488 &i_hash_mask,
2489 0,
2490 0);
2491 }
2492
inode_init(void)2493 void __init inode_init(void)
2494 {
2495 /* inode slab cache */
2496 inode_cachep = kmem_cache_create("inode_cache",
2497 sizeof(struct inode),
2498 0,
2499 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2500 SLAB_ACCOUNT),
2501 init_once);
2502
2503 /* Hash may have been set up in inode_init_early */
2504 if (!hashdist)
2505 return;
2506
2507 inode_hashtable =
2508 alloc_large_system_hash("Inode-cache",
2509 sizeof(struct hlist_head),
2510 ihash_entries,
2511 14,
2512 HASH_ZERO,
2513 &i_hash_shift,
2514 &i_hash_mask,
2515 0,
2516 0);
2517 }
2518
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2519 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2520 {
2521 inode->i_mode = mode;
2522 if (S_ISCHR(mode)) {
2523 inode->i_fop = &def_chr_fops;
2524 inode->i_rdev = rdev;
2525 } else if (S_ISBLK(mode)) {
2526 if (IS_ENABLED(CONFIG_BLOCK))
2527 inode->i_fop = &def_blk_fops;
2528 inode->i_rdev = rdev;
2529 } else if (S_ISFIFO(mode))
2530 inode->i_fop = &pipefifo_fops;
2531 else if (S_ISSOCK(mode))
2532 ; /* leave it no_open_fops */
2533 else
2534 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2535 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2536 inode->i_ino);
2537 }
2538 EXPORT_SYMBOL(init_special_inode);
2539
2540 /**
2541 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2542 * @idmap: idmap of the mount the inode was created from
2543 * @inode: New inode
2544 * @dir: Directory inode
2545 * @mode: mode of the new inode
2546 *
2547 * If the inode has been created through an idmapped mount the idmap of
2548 * the vfsmount must be passed through @idmap. This function will then take
2549 * care to map the inode according to @idmap before checking permissions
2550 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2551 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2552 */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2553 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2554 const struct inode *dir, umode_t mode)
2555 {
2556 inode_fsuid_set(inode, idmap);
2557 if (dir && dir->i_mode & S_ISGID) {
2558 inode->i_gid = dir->i_gid;
2559
2560 /* Directories are special, and always inherit S_ISGID */
2561 if (S_ISDIR(mode))
2562 mode |= S_ISGID;
2563 } else
2564 inode_fsgid_set(inode, idmap);
2565 inode->i_mode = mode;
2566 }
2567 EXPORT_SYMBOL(inode_init_owner);
2568
2569 /**
2570 * inode_owner_or_capable - check current task permissions to inode
2571 * @idmap: idmap of the mount the inode was found from
2572 * @inode: inode being checked
2573 *
2574 * Return true if current either has CAP_FOWNER in a namespace with the
2575 * inode owner uid mapped, or owns the file.
2576 *
2577 * If the inode has been found through an idmapped mount the idmap of
2578 * the vfsmount must be passed through @idmap. This function will then take
2579 * care to map the inode according to @idmap before checking permissions.
2580 * On non-idmapped mounts or if permission checking is to be performed on the
2581 * raw inode simply pass @nop_mnt_idmap.
2582 */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2583 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2584 const struct inode *inode)
2585 {
2586 vfsuid_t vfsuid;
2587 struct user_namespace *ns;
2588
2589 vfsuid = i_uid_into_vfsuid(idmap, inode);
2590 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2591 return true;
2592
2593 ns = current_user_ns();
2594 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2595 return true;
2596 return false;
2597 }
2598 EXPORT_SYMBOL(inode_owner_or_capable);
2599
2600 /*
2601 * Direct i/o helper functions
2602 */
inode_dio_finished(const struct inode * inode)2603 bool inode_dio_finished(const struct inode *inode)
2604 {
2605 return atomic_read(&inode->i_dio_count) == 0;
2606 }
2607 EXPORT_SYMBOL(inode_dio_finished);
2608
2609 /**
2610 * inode_dio_wait - wait for outstanding DIO requests to finish
2611 * @inode: inode to wait for
2612 *
2613 * Waits for all pending direct I/O requests to finish so that we can
2614 * proceed with a truncate or equivalent operation.
2615 *
2616 * Must be called under a lock that serializes taking new references
2617 * to i_dio_count, usually by inode->i_rwsem.
2618 */
inode_dio_wait(struct inode * inode)2619 void inode_dio_wait(struct inode *inode)
2620 {
2621 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2622 }
2623 EXPORT_SYMBOL(inode_dio_wait);
2624
inode_dio_wait_interruptible(struct inode * inode)2625 void inode_dio_wait_interruptible(struct inode *inode)
2626 {
2627 wait_var_event_interruptible(&inode->i_dio_count,
2628 inode_dio_finished(inode));
2629 }
2630 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2631
2632 /*
2633 * inode_set_flags - atomically set some inode flags
2634 *
2635 * Note: the caller should be holding i_rwsem exclusively, or else be sure that
2636 * they have exclusive access to the inode structure (i.e., while the
2637 * inode is being instantiated). The reason for the cmpxchg() loop
2638 * --- which wouldn't be necessary if all code paths which modify
2639 * i_flags actually followed this rule, is that there is at least one
2640 * code path which doesn't today so we use cmpxchg() out of an abundance
2641 * of caution.
2642 *
2643 * In the long run, i_rwsem is overkill, and we should probably look
2644 * at using the i_lock spinlock to protect i_flags, and then make sure
2645 * it is so documented in include/linux/fs.h and that all code follows
2646 * the locking convention!!
2647 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2648 void inode_set_flags(struct inode *inode, unsigned int flags,
2649 unsigned int mask)
2650 {
2651 WARN_ON_ONCE(flags & ~mask);
2652 set_mask_bits(&inode->i_flags, mask, flags);
2653 }
2654 EXPORT_SYMBOL(inode_set_flags);
2655
inode_nohighmem(struct inode * inode)2656 void inode_nohighmem(struct inode *inode)
2657 {
2658 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2659 }
2660 EXPORT_SYMBOL(inode_nohighmem);
2661
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)2662 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2663 {
2664 trace_inode_set_ctime_to_ts(inode, &ts);
2665 set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2666 inode->i_ctime_sec = ts.tv_sec;
2667 inode->i_ctime_nsec = ts.tv_nsec;
2668 return ts;
2669 }
2670 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2671
2672 /**
2673 * timestamp_truncate - Truncate timespec to a granularity
2674 * @t: Timespec
2675 * @inode: inode being updated
2676 *
2677 * Truncate a timespec to the granularity supported by the fs
2678 * containing the inode. Always rounds down. gran must
2679 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2680 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2681 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2682 {
2683 struct super_block *sb = inode->i_sb;
2684 unsigned int gran = sb->s_time_gran;
2685
2686 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2687 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2688 t.tv_nsec = 0;
2689
2690 /* Avoid division in the common cases 1 ns and 1 s. */
2691 if (gran == 1)
2692 ; /* nothing */
2693 else if (gran == NSEC_PER_SEC)
2694 t.tv_nsec = 0;
2695 else if (gran > 1 && gran < NSEC_PER_SEC)
2696 t.tv_nsec -= t.tv_nsec % gran;
2697 else
2698 WARN(1, "invalid file time granularity: %u", gran);
2699 return t;
2700 }
2701 EXPORT_SYMBOL(timestamp_truncate);
2702
2703 /**
2704 * inode_set_ctime_current - set the ctime to current_time
2705 * @inode: inode
2706 *
2707 * Set the inode's ctime to the current value for the inode. Returns the
2708 * current value that was assigned. If this is not a multigrain inode, then we
2709 * set it to the later of the coarse time and floor value.
2710 *
2711 * If it is multigrain, then we first see if the coarse-grained timestamp is
2712 * distinct from what is already there. If so, then use that. Otherwise, get a
2713 * fine-grained timestamp.
2714 *
2715 * After that, try to swap the new value into i_ctime_nsec. Accept the
2716 * resulting ctime, regardless of the outcome of the swap. If it has
2717 * already been replaced, then that timestamp is later than the earlier
2718 * unacceptable one, and is thus acceptable.
2719 */
inode_set_ctime_current(struct inode * inode)2720 struct timespec64 inode_set_ctime_current(struct inode *inode)
2721 {
2722 struct timespec64 now;
2723 u32 cns, cur;
2724
2725 ktime_get_coarse_real_ts64_mg(&now);
2726 now = timestamp_truncate(now, inode);
2727
2728 /* Just return that if this is not a multigrain fs */
2729 if (!is_mgtime(inode)) {
2730 inode_set_ctime_to_ts(inode, now);
2731 goto out;
2732 }
2733
2734 /*
2735 * A fine-grained time is only needed if someone has queried
2736 * for timestamps, and the current coarse grained time isn't
2737 * later than what's already there.
2738 */
2739 cns = smp_load_acquire(&inode->i_ctime_nsec);
2740 if (cns & I_CTIME_QUERIED) {
2741 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2742 .tv_nsec = cns & ~I_CTIME_QUERIED };
2743
2744 if (timespec64_compare(&now, &ctime) <= 0) {
2745 ktime_get_real_ts64_mg(&now);
2746 now = timestamp_truncate(now, inode);
2747 mgtime_counter_inc(mg_fine_stamps);
2748 }
2749 }
2750 mgtime_counter_inc(mg_ctime_updates);
2751
2752 /* No need to cmpxchg if it's exactly the same */
2753 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2754 trace_ctime_xchg_skip(inode, &now);
2755 goto out;
2756 }
2757 cur = cns;
2758 retry:
2759 /* Try to swap the nsec value into place. */
2760 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2761 /* If swap occurred, then we're (mostly) done */
2762 inode->i_ctime_sec = now.tv_sec;
2763 trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2764 mgtime_counter_inc(mg_ctime_swaps);
2765 } else {
2766 /*
2767 * Was the change due to someone marking the old ctime QUERIED?
2768 * If so then retry the swap. This can only happen once since
2769 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2770 * with a new ctime.
2771 */
2772 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2773 cns = cur;
2774 goto retry;
2775 }
2776 /* Otherwise, keep the existing ctime */
2777 now.tv_sec = inode->i_ctime_sec;
2778 now.tv_nsec = cur & ~I_CTIME_QUERIED;
2779 }
2780 out:
2781 return now;
2782 }
2783 EXPORT_SYMBOL(inode_set_ctime_current);
2784
2785 /**
2786 * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2787 * @inode: inode to update
2788 * @update: timespec64 to set the ctime
2789 *
2790 * Attempt to atomically update the ctime on behalf of a delegation holder.
2791 *
2792 * The nfs server can call back the holder of a delegation to get updated
2793 * inode attributes, including the mtime. When updating the mtime, update
2794 * the ctime to a value at least equal to that.
2795 *
2796 * This can race with concurrent updates to the inode, in which
2797 * case the update is skipped.
2798 *
2799 * Note that this works even when multigrain timestamps are not enabled,
2800 * so it is used in either case.
2801 */
inode_set_ctime_deleg(struct inode * inode,struct timespec64 update)2802 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2803 {
2804 struct timespec64 now, cur_ts;
2805 u32 cur, old;
2806
2807 /* pairs with try_cmpxchg below */
2808 cur = smp_load_acquire(&inode->i_ctime_nsec);
2809 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2810 cur_ts.tv_sec = inode->i_ctime_sec;
2811
2812 /* If the update is older than the existing value, skip it. */
2813 if (timespec64_compare(&update, &cur_ts) <= 0)
2814 return cur_ts;
2815
2816 ktime_get_coarse_real_ts64_mg(&now);
2817
2818 /* Clamp the update to "now" if it's in the future */
2819 if (timespec64_compare(&update, &now) > 0)
2820 update = now;
2821
2822 update = timestamp_truncate(update, inode);
2823
2824 /* No need to update if the values are already the same */
2825 if (timespec64_equal(&update, &cur_ts))
2826 return cur_ts;
2827
2828 /*
2829 * Try to swap the nsec value into place. If it fails, that means
2830 * it raced with an update due to a write or similar activity. That
2831 * stamp takes precedence, so just skip the update.
2832 */
2833 retry:
2834 old = cur;
2835 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2836 inode->i_ctime_sec = update.tv_sec;
2837 mgtime_counter_inc(mg_ctime_swaps);
2838 return update;
2839 }
2840
2841 /*
2842 * Was the change due to another task marking the old ctime QUERIED?
2843 *
2844 * If so, then retry the swap. This can only happen once since
2845 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2846 * with a new ctime.
2847 */
2848 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2849 goto retry;
2850
2851 /* Otherwise, it was a new timestamp. */
2852 cur_ts.tv_sec = inode->i_ctime_sec;
2853 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2854 return cur_ts;
2855 }
2856 EXPORT_SYMBOL(inode_set_ctime_deleg);
2857
2858 /**
2859 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2860 * @idmap: idmap of the mount @inode was found from
2861 * @inode: inode to check
2862 * @vfsgid: the new/current vfsgid of @inode
2863 *
2864 * Check whether @vfsgid is in the caller's group list or if the caller is
2865 * privileged with CAP_FSETID over @inode. This can be used to determine
2866 * whether the setgid bit can be kept or must be dropped.
2867 *
2868 * Return: true if the caller is sufficiently privileged, false if not.
2869 */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2870 bool in_group_or_capable(struct mnt_idmap *idmap,
2871 const struct inode *inode, vfsgid_t vfsgid)
2872 {
2873 if (vfsgid_in_group_p(vfsgid))
2874 return true;
2875 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2876 return true;
2877 return false;
2878 }
2879 EXPORT_SYMBOL(in_group_or_capable);
2880
2881 /**
2882 * mode_strip_sgid - handle the sgid bit for non-directories
2883 * @idmap: idmap of the mount the inode was created from
2884 * @dir: parent directory inode
2885 * @mode: mode of the file to be created in @dir
2886 *
2887 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2888 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2889 * either in the group of the parent directory or they have CAP_FSETID
2890 * in their user namespace and are privileged over the parent directory.
2891 * In all other cases, strip the S_ISGID bit from @mode.
2892 *
2893 * Return: the new mode to use for the file
2894 */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2895 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2896 const struct inode *dir, umode_t mode)
2897 {
2898 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2899 return mode;
2900 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2901 return mode;
2902 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2903 return mode;
2904 return mode & ~S_ISGID;
2905 }
2906 EXPORT_SYMBOL(mode_strip_sgid);
2907
2908 #ifdef CONFIG_DEBUG_VFS
2909 /*
2910 * Dump an inode.
2911 *
2912 * TODO: add a proper inode dumping routine, this is a stub to get debug off the
2913 * ground.
2914 */
dump_inode(struct inode * inode,const char * reason)2915 void dump_inode(struct inode *inode, const char *reason)
2916 {
2917 pr_warn("%s encountered for inode %px", reason, inode);
2918 }
2919
2920 EXPORT_SYMBOL(dump_inode);
2921 #endif
2922