xref: /linux/fs/inode.c (revision 7879d7aff0ffd969fcb1a59e3f87ebb353e47b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <linux/seq_file.h>
25 #include <linux/debugfs.h>
26 #include <trace/events/writeback.h>
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/timestamp.h>
29 
30 #include "internal.h"
31 
32 /*
33  * Inode locking rules:
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37  * Inode LRU list locks protect:
38  *   inode->i_sb->s_inode_lru, inode->i_lru
39  * inode->i_sb->s_inode_list_lock protects:
40  *   inode->i_sb->s_inodes, inode->i_sb_list
41  * bdi->wb.list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *     Inode LRU list locks
51  *
52  * bdi->wb.list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode->i_sb->s_inode_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 static unsigned int i_hash_mask __ro_after_init;
64 static unsigned int i_hash_shift __ro_after_init;
65 static struct hlist_head *inode_hashtable __ro_after_init;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67 
68 /*
69  * Empty aops. Can be used for the cases where the user does not
70  * define any of the address_space operations.
71  */
72 const struct address_space_operations empty_aops = {
73 };
74 EXPORT_SYMBOL(empty_aops);
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __ro_after_init;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 #ifdef CONFIG_DEBUG_FS
107 static DEFINE_PER_CPU(long, mg_ctime_updates);
108 static DEFINE_PER_CPU(long, mg_fine_stamps);
109 static DEFINE_PER_CPU(long, mg_ctime_swaps);
110 
get_mg_ctime_updates(void)111 static unsigned long get_mg_ctime_updates(void)
112 {
113 	unsigned long sum = 0;
114 	int i;
115 
116 	for_each_possible_cpu(i)
117 		sum += data_race(per_cpu(mg_ctime_updates, i));
118 	return sum;
119 }
120 
get_mg_fine_stamps(void)121 static unsigned long get_mg_fine_stamps(void)
122 {
123 	unsigned long sum = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i)
127 		sum += data_race(per_cpu(mg_fine_stamps, i));
128 	return sum;
129 }
130 
get_mg_ctime_swaps(void)131 static unsigned long get_mg_ctime_swaps(void)
132 {
133 	unsigned long sum = 0;
134 	int i;
135 
136 	for_each_possible_cpu(i)
137 		sum += data_race(per_cpu(mg_ctime_swaps, i));
138 	return sum;
139 }
140 
141 #define mgtime_counter_inc(__var)	this_cpu_inc(__var)
142 
mgts_show(struct seq_file * s,void * p)143 static int mgts_show(struct seq_file *s, void *p)
144 {
145 	unsigned long ctime_updates = get_mg_ctime_updates();
146 	unsigned long ctime_swaps = get_mg_ctime_swaps();
147 	unsigned long fine_stamps = get_mg_fine_stamps();
148 	unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149 
150 	seq_printf(s, "%lu %lu %lu %lu\n",
151 		   ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 	return 0;
153 }
154 
155 DEFINE_SHOW_ATTRIBUTE(mgts);
156 
mg_debugfs_init(void)157 static int __init mg_debugfs_init(void)
158 {
159 	debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 	return 0;
161 }
162 late_initcall(mg_debugfs_init);
163 
164 #else /* ! CONFIG_DEBUG_FS */
165 
166 #define mgtime_counter_inc(__var)	do { } while (0)
167 
168 #endif /* CONFIG_DEBUG_FS */
169 
170 /*
171  * Handle nr_inode sysctl
172  */
173 #ifdef CONFIG_SYSCTL
174 /*
175  * Statistics gathering..
176  */
177 static struct inodes_stat_t inodes_stat;
178 
proc_nr_inodes(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)179 static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 			  size_t *lenp, loff_t *ppos)
181 {
182 	inodes_stat.nr_inodes = get_nr_inodes();
183 	inodes_stat.nr_unused = get_nr_inodes_unused();
184 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185 }
186 
187 static const struct ctl_table inodes_sysctls[] = {
188 	{
189 		.procname	= "inode-nr",
190 		.data		= &inodes_stat,
191 		.maxlen		= 2*sizeof(long),
192 		.mode		= 0444,
193 		.proc_handler	= proc_nr_inodes,
194 	},
195 	{
196 		.procname	= "inode-state",
197 		.data		= &inodes_stat,
198 		.maxlen		= 7*sizeof(long),
199 		.mode		= 0444,
200 		.proc_handler	= proc_nr_inodes,
201 	},
202 };
203 
init_fs_inode_sysctls(void)204 static int __init init_fs_inode_sysctls(void)
205 {
206 	register_sysctl_init("fs", inodes_sysctls);
207 	return 0;
208 }
209 early_initcall(init_fs_inode_sysctls);
210 #endif
211 
no_open(struct inode * inode,struct file * file)212 static int no_open(struct inode *inode, struct file *file)
213 {
214 	return -ENXIO;
215 }
216 
217 /**
218  * inode_init_always_gfp - perform inode structure initialisation
219  * @sb: superblock inode belongs to
220  * @inode: inode to initialise
221  * @gfp: allocation flags
222  *
223  * These are initializations that need to be done on every inode
224  * allocation as the fields are not initialised by slab allocation.
225  * If there are additional allocations required @gfp is used.
226  */
inode_init_always_gfp(struct super_block * sb,struct inode * inode,gfp_t gfp)227 int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228 {
229 	static const struct inode_operations empty_iops;
230 	static const struct file_operations no_open_fops = {.open = no_open};
231 	struct address_space *const mapping = &inode->i_data;
232 
233 	inode->i_sb = sb;
234 	inode->i_blkbits = sb->s_blocksize_bits;
235 	inode->i_flags = 0;
236 	inode->i_state = 0;
237 	atomic64_set(&inode->i_sequence, 0);
238 	atomic_set(&inode->i_count, 1);
239 	inode->i_op = &empty_iops;
240 	inode->i_fop = &no_open_fops;
241 	inode->i_ino = 0;
242 	inode->__i_nlink = 1;
243 	inode->i_opflags = 0;
244 	if (sb->s_xattr)
245 		inode->i_opflags |= IOP_XATTR;
246 	if (sb->s_type->fs_flags & FS_MGTIME)
247 		inode->i_opflags |= IOP_MGTIME;
248 	i_uid_write(inode, 0);
249 	i_gid_write(inode, 0);
250 	atomic_set(&inode->i_writecount, 0);
251 	inode->i_size = 0;
252 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 	inode->i_blocks = 0;
254 	inode->i_bytes = 0;
255 	inode->i_generation = 0;
256 	inode->i_pipe = NULL;
257 	inode->i_cdev = NULL;
258 	inode->i_link = NULL;
259 	inode->i_dir_seq = 0;
260 	inode->i_rdev = 0;
261 	inode->dirtied_when = 0;
262 
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 	inode->i_wb_frn_winner = 0;
265 	inode->i_wb_frn_avg_time = 0;
266 	inode->i_wb_frn_history = 0;
267 #endif
268 
269 	spin_lock_init(&inode->i_lock);
270 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271 
272 	init_rwsem(&inode->i_rwsem);
273 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274 
275 	atomic_set(&inode->i_dio_count, 0);
276 
277 	mapping->a_ops = &empty_aops;
278 	mapping->host = inode;
279 	mapping->flags = 0;
280 	mapping->wb_err = 0;
281 	atomic_set(&mapping->i_mmap_writable, 0);
282 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 	atomic_set(&mapping->nr_thps, 0);
284 #endif
285 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
286 	mapping->i_private_data = NULL;
287 	mapping->writeback_index = 0;
288 	init_rwsem(&mapping->invalidate_lock);
289 	lockdep_set_class_and_name(&mapping->invalidate_lock,
290 				   &sb->s_type->invalidate_lock_key,
291 				   "mapping.invalidate_lock");
292 	if (sb->s_iflags & SB_I_STABLE_WRITES)
293 		mapping_set_stable_writes(mapping);
294 	inode->i_private = NULL;
295 	inode->i_mapping = mapping;
296 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
297 #ifdef CONFIG_FS_POSIX_ACL
298 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299 #endif
300 
301 #ifdef CONFIG_FSNOTIFY
302 	inode->i_fsnotify_mask = 0;
303 #endif
304 	inode->i_flctx = NULL;
305 
306 	if (unlikely(security_inode_alloc(inode, gfp)))
307 		return -ENOMEM;
308 
309 	this_cpu_inc(nr_inodes);
310 
311 	return 0;
312 }
313 EXPORT_SYMBOL(inode_init_always_gfp);
314 
free_inode_nonrcu(struct inode * inode)315 void free_inode_nonrcu(struct inode *inode)
316 {
317 	kmem_cache_free(inode_cachep, inode);
318 }
319 EXPORT_SYMBOL(free_inode_nonrcu);
320 
i_callback(struct rcu_head * head)321 static void i_callback(struct rcu_head *head)
322 {
323 	struct inode *inode = container_of(head, struct inode, i_rcu);
324 	if (inode->free_inode)
325 		inode->free_inode(inode);
326 	else
327 		free_inode_nonrcu(inode);
328 }
329 
330 /**
331  *	alloc_inode 	- obtain an inode
332  *	@sb: superblock
333  *
334  *	Allocates a new inode for given superblock.
335  *	Inode wont be chained in superblock s_inodes list
336  *	This means :
337  *	- fs can't be unmount
338  *	- quotas, fsnotify, writeback can't work
339  */
alloc_inode(struct super_block * sb)340 struct inode *alloc_inode(struct super_block *sb)
341 {
342 	const struct super_operations *ops = sb->s_op;
343 	struct inode *inode;
344 
345 	if (ops->alloc_inode)
346 		inode = ops->alloc_inode(sb);
347 	else
348 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
349 
350 	if (!inode)
351 		return NULL;
352 
353 	if (unlikely(inode_init_always(sb, inode))) {
354 		if (ops->destroy_inode) {
355 			ops->destroy_inode(inode);
356 			if (!ops->free_inode)
357 				return NULL;
358 		}
359 		inode->free_inode = ops->free_inode;
360 		i_callback(&inode->i_rcu);
361 		return NULL;
362 	}
363 
364 	return inode;
365 }
366 
__destroy_inode(struct inode * inode)367 void __destroy_inode(struct inode *inode)
368 {
369 	BUG_ON(inode_has_buffers(inode));
370 	inode_detach_wb(inode);
371 	security_inode_free(inode);
372 	fsnotify_inode_delete(inode);
373 	locks_free_lock_context(inode);
374 	if (!inode->i_nlink) {
375 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
376 		atomic_long_dec(&inode->i_sb->s_remove_count);
377 	}
378 
379 #ifdef CONFIG_FS_POSIX_ACL
380 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
381 		posix_acl_release(inode->i_acl);
382 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
383 		posix_acl_release(inode->i_default_acl);
384 #endif
385 	this_cpu_dec(nr_inodes);
386 }
387 EXPORT_SYMBOL(__destroy_inode);
388 
destroy_inode(struct inode * inode)389 static void destroy_inode(struct inode *inode)
390 {
391 	const struct super_operations *ops = inode->i_sb->s_op;
392 
393 	BUG_ON(!list_empty(&inode->i_lru));
394 	__destroy_inode(inode);
395 	if (ops->destroy_inode) {
396 		ops->destroy_inode(inode);
397 		if (!ops->free_inode)
398 			return;
399 	}
400 	inode->free_inode = ops->free_inode;
401 	call_rcu(&inode->i_rcu, i_callback);
402 }
403 
404 /**
405  * drop_nlink - directly drop an inode's link count
406  * @inode: inode
407  *
408  * This is a low-level filesystem helper to replace any
409  * direct filesystem manipulation of i_nlink.  In cases
410  * where we are attempting to track writes to the
411  * filesystem, a decrement to zero means an imminent
412  * write when the file is truncated and actually unlinked
413  * on the filesystem.
414  */
drop_nlink(struct inode * inode)415 void drop_nlink(struct inode *inode)
416 {
417 	WARN_ON(inode->i_nlink == 0);
418 	inode->__i_nlink--;
419 	if (!inode->i_nlink)
420 		atomic_long_inc(&inode->i_sb->s_remove_count);
421 }
422 EXPORT_SYMBOL(drop_nlink);
423 
424 /**
425  * clear_nlink - directly zero an inode's link count
426  * @inode: inode
427  *
428  * This is a low-level filesystem helper to replace any
429  * direct filesystem manipulation of i_nlink.  See
430  * drop_nlink() for why we care about i_nlink hitting zero.
431  */
clear_nlink(struct inode * inode)432 void clear_nlink(struct inode *inode)
433 {
434 	if (inode->i_nlink) {
435 		inode->__i_nlink = 0;
436 		atomic_long_inc(&inode->i_sb->s_remove_count);
437 	}
438 }
439 EXPORT_SYMBOL(clear_nlink);
440 
441 /**
442  * set_nlink - directly set an inode's link count
443  * @inode: inode
444  * @nlink: new nlink (should be non-zero)
445  *
446  * This is a low-level filesystem helper to replace any
447  * direct filesystem manipulation of i_nlink.
448  */
set_nlink(struct inode * inode,unsigned int nlink)449 void set_nlink(struct inode *inode, unsigned int nlink)
450 {
451 	if (!nlink) {
452 		clear_nlink(inode);
453 	} else {
454 		/* Yes, some filesystems do change nlink from zero to one */
455 		if (inode->i_nlink == 0)
456 			atomic_long_dec(&inode->i_sb->s_remove_count);
457 
458 		inode->__i_nlink = nlink;
459 	}
460 }
461 EXPORT_SYMBOL(set_nlink);
462 
463 /**
464  * inc_nlink - directly increment an inode's link count
465  * @inode: inode
466  *
467  * This is a low-level filesystem helper to replace any
468  * direct filesystem manipulation of i_nlink.  Currently,
469  * it is only here for parity with dec_nlink().
470  */
inc_nlink(struct inode * inode)471 void inc_nlink(struct inode *inode)
472 {
473 	if (unlikely(inode->i_nlink == 0)) {
474 		WARN_ON(!(inode->i_state & I_LINKABLE));
475 		atomic_long_dec(&inode->i_sb->s_remove_count);
476 	}
477 
478 	inode->__i_nlink++;
479 }
480 EXPORT_SYMBOL(inc_nlink);
481 
__address_space_init_once(struct address_space * mapping)482 static void __address_space_init_once(struct address_space *mapping)
483 {
484 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
485 	init_rwsem(&mapping->i_mmap_rwsem);
486 	INIT_LIST_HEAD(&mapping->i_private_list);
487 	spin_lock_init(&mapping->i_private_lock);
488 	mapping->i_mmap = RB_ROOT_CACHED;
489 }
490 
address_space_init_once(struct address_space * mapping)491 void address_space_init_once(struct address_space *mapping)
492 {
493 	memset(mapping, 0, sizeof(*mapping));
494 	__address_space_init_once(mapping);
495 }
496 EXPORT_SYMBOL(address_space_init_once);
497 
498 /*
499  * These are initializations that only need to be done
500  * once, because the fields are idempotent across use
501  * of the inode, so let the slab aware of that.
502  */
inode_init_once(struct inode * inode)503 void inode_init_once(struct inode *inode)
504 {
505 	memset(inode, 0, sizeof(*inode));
506 	INIT_HLIST_NODE(&inode->i_hash);
507 	INIT_LIST_HEAD(&inode->i_devices);
508 	INIT_LIST_HEAD(&inode->i_io_list);
509 	INIT_LIST_HEAD(&inode->i_wb_list);
510 	INIT_LIST_HEAD(&inode->i_lru);
511 	INIT_LIST_HEAD(&inode->i_sb_list);
512 	__address_space_init_once(&inode->i_data);
513 	i_size_ordered_init(inode);
514 }
515 EXPORT_SYMBOL(inode_init_once);
516 
init_once(void * foo)517 static void init_once(void *foo)
518 {
519 	struct inode *inode = (struct inode *) foo;
520 
521 	inode_init_once(inode);
522 }
523 
524 /*
525  * get additional reference to inode; caller must already hold one.
526  */
ihold(struct inode * inode)527 void ihold(struct inode *inode)
528 {
529 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
530 }
531 EXPORT_SYMBOL(ihold);
532 
__inode_add_lru(struct inode * inode,bool rotate)533 static void __inode_add_lru(struct inode *inode, bool rotate)
534 {
535 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
536 		return;
537 	if (atomic_read(&inode->i_count))
538 		return;
539 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
540 		return;
541 	if (!mapping_shrinkable(&inode->i_data))
542 		return;
543 
544 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
545 		this_cpu_inc(nr_unused);
546 	else if (rotate)
547 		inode->i_state |= I_REFERENCED;
548 }
549 
inode_bit_waitqueue(struct wait_bit_queue_entry * wqe,struct inode * inode,u32 bit)550 struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
551 					    struct inode *inode, u32 bit)
552 {
553         void *bit_address;
554 
555         bit_address = inode_state_wait_address(inode, bit);
556         init_wait_var_entry(wqe, bit_address, 0);
557         return __var_waitqueue(bit_address);
558 }
559 EXPORT_SYMBOL(inode_bit_waitqueue);
560 
561 /*
562  * Add inode to LRU if needed (inode is unused and clean).
563  *
564  * Needs inode->i_lock held.
565  */
inode_add_lru(struct inode * inode)566 void inode_add_lru(struct inode *inode)
567 {
568 	__inode_add_lru(inode, false);
569 }
570 
inode_lru_list_del(struct inode * inode)571 static void inode_lru_list_del(struct inode *inode)
572 {
573 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
574 		this_cpu_dec(nr_unused);
575 }
576 
inode_pin_lru_isolating(struct inode * inode)577 static void inode_pin_lru_isolating(struct inode *inode)
578 {
579 	lockdep_assert_held(&inode->i_lock);
580 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
581 	inode->i_state |= I_LRU_ISOLATING;
582 }
583 
inode_unpin_lru_isolating(struct inode * inode)584 static void inode_unpin_lru_isolating(struct inode *inode)
585 {
586 	spin_lock(&inode->i_lock);
587 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
588 	inode->i_state &= ~I_LRU_ISOLATING;
589 	/* Called with inode->i_lock which ensures memory ordering. */
590 	inode_wake_up_bit(inode, __I_LRU_ISOLATING);
591 	spin_unlock(&inode->i_lock);
592 }
593 
inode_wait_for_lru_isolating(struct inode * inode)594 static void inode_wait_for_lru_isolating(struct inode *inode)
595 {
596 	struct wait_bit_queue_entry wqe;
597 	struct wait_queue_head *wq_head;
598 
599 	lockdep_assert_held(&inode->i_lock);
600 	if (!(inode->i_state & I_LRU_ISOLATING))
601 		return;
602 
603 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
604 	for (;;) {
605 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
606 		/*
607 		 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
608 		 * memory ordering.
609 		 */
610 		if (!(inode->i_state & I_LRU_ISOLATING))
611 			break;
612 		spin_unlock(&inode->i_lock);
613 		schedule();
614 		spin_lock(&inode->i_lock);
615 	}
616 	finish_wait(wq_head, &wqe.wq_entry);
617 	WARN_ON(inode->i_state & I_LRU_ISOLATING);
618 }
619 
620 /**
621  * inode_sb_list_add - add inode to the superblock list of inodes
622  * @inode: inode to add
623  */
inode_sb_list_add(struct inode * inode)624 void inode_sb_list_add(struct inode *inode)
625 {
626 	struct super_block *sb = inode->i_sb;
627 
628 	spin_lock(&sb->s_inode_list_lock);
629 	list_add(&inode->i_sb_list, &sb->s_inodes);
630 	spin_unlock(&sb->s_inode_list_lock);
631 }
632 EXPORT_SYMBOL_GPL(inode_sb_list_add);
633 
inode_sb_list_del(struct inode * inode)634 static inline void inode_sb_list_del(struct inode *inode)
635 {
636 	struct super_block *sb = inode->i_sb;
637 
638 	if (!list_empty(&inode->i_sb_list)) {
639 		spin_lock(&sb->s_inode_list_lock);
640 		list_del_init(&inode->i_sb_list);
641 		spin_unlock(&sb->s_inode_list_lock);
642 	}
643 }
644 
hash(struct super_block * sb,unsigned long hashval)645 static unsigned long hash(struct super_block *sb, unsigned long hashval)
646 {
647 	unsigned long tmp;
648 
649 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
650 			L1_CACHE_BYTES;
651 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
652 	return tmp & i_hash_mask;
653 }
654 
655 /**
656  *	__insert_inode_hash - hash an inode
657  *	@inode: unhashed inode
658  *	@hashval: unsigned long value used to locate this object in the
659  *		inode_hashtable.
660  *
661  *	Add an inode to the inode hash for this superblock.
662  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)663 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
664 {
665 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
666 
667 	spin_lock(&inode_hash_lock);
668 	spin_lock(&inode->i_lock);
669 	hlist_add_head_rcu(&inode->i_hash, b);
670 	spin_unlock(&inode->i_lock);
671 	spin_unlock(&inode_hash_lock);
672 }
673 EXPORT_SYMBOL(__insert_inode_hash);
674 
675 /**
676  *	__remove_inode_hash - remove an inode from the hash
677  *	@inode: inode to unhash
678  *
679  *	Remove an inode from the superblock.
680  */
__remove_inode_hash(struct inode * inode)681 void __remove_inode_hash(struct inode *inode)
682 {
683 	spin_lock(&inode_hash_lock);
684 	spin_lock(&inode->i_lock);
685 	hlist_del_init_rcu(&inode->i_hash);
686 	spin_unlock(&inode->i_lock);
687 	spin_unlock(&inode_hash_lock);
688 }
689 EXPORT_SYMBOL(__remove_inode_hash);
690 
dump_mapping(const struct address_space * mapping)691 void dump_mapping(const struct address_space *mapping)
692 {
693 	struct inode *host;
694 	const struct address_space_operations *a_ops;
695 	struct hlist_node *dentry_first;
696 	struct dentry *dentry_ptr;
697 	struct dentry dentry;
698 	char fname[64] = {};
699 	unsigned long ino;
700 
701 	/*
702 	 * If mapping is an invalid pointer, we don't want to crash
703 	 * accessing it, so probe everything depending on it carefully.
704 	 */
705 	if (get_kernel_nofault(host, &mapping->host) ||
706 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
707 		pr_warn("invalid mapping:%px\n", mapping);
708 		return;
709 	}
710 
711 	if (!host) {
712 		pr_warn("aops:%ps\n", a_ops);
713 		return;
714 	}
715 
716 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
717 	    get_kernel_nofault(ino, &host->i_ino)) {
718 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
719 		return;
720 	}
721 
722 	if (!dentry_first) {
723 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
724 		return;
725 	}
726 
727 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
728 	if (get_kernel_nofault(dentry, dentry_ptr) ||
729 	    !dentry.d_parent || !dentry.d_name.name) {
730 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
731 				a_ops, ino, dentry_ptr);
732 		return;
733 	}
734 
735 	if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
736 		strscpy(fname, "<invalid>");
737 	/*
738 	 * Even if strncpy_from_kernel_nofault() succeeded,
739 	 * the fname could be unreliable
740 	 */
741 	pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
742 		a_ops, ino, fname);
743 }
744 
clear_inode(struct inode * inode)745 void clear_inode(struct inode *inode)
746 {
747 	/*
748 	 * We have to cycle the i_pages lock here because reclaim can be in the
749 	 * process of removing the last page (in __filemap_remove_folio())
750 	 * and we must not free the mapping under it.
751 	 */
752 	xa_lock_irq(&inode->i_data.i_pages);
753 	BUG_ON(inode->i_data.nrpages);
754 	/*
755 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
756 	 * two known and long-standing ways in which nodes may get left behind
757 	 * (when deep radix-tree node allocation failed partway; or when THP
758 	 * collapse_file() failed). Until those two known cases are cleaned up,
759 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
760 	 * nor even WARN_ON(!mapping_empty).
761 	 */
762 	xa_unlock_irq(&inode->i_data.i_pages);
763 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
764 	BUG_ON(!(inode->i_state & I_FREEING));
765 	BUG_ON(inode->i_state & I_CLEAR);
766 	BUG_ON(!list_empty(&inode->i_wb_list));
767 	/* don't need i_lock here, no concurrent mods to i_state */
768 	inode->i_state = I_FREEING | I_CLEAR;
769 }
770 EXPORT_SYMBOL(clear_inode);
771 
772 /*
773  * Free the inode passed in, removing it from the lists it is still connected
774  * to. We remove any pages still attached to the inode and wait for any IO that
775  * is still in progress before finally destroying the inode.
776  *
777  * An inode must already be marked I_FREEING so that we avoid the inode being
778  * moved back onto lists if we race with other code that manipulates the lists
779  * (e.g. writeback_single_inode). The caller is responsible for setting this.
780  *
781  * An inode must already be removed from the LRU list before being evicted from
782  * the cache. This should occur atomically with setting the I_FREEING state
783  * flag, so no inodes here should ever be on the LRU when being evicted.
784  */
evict(struct inode * inode)785 static void evict(struct inode *inode)
786 {
787 	const struct super_operations *op = inode->i_sb->s_op;
788 
789 	BUG_ON(!(inode->i_state & I_FREEING));
790 	BUG_ON(!list_empty(&inode->i_lru));
791 
792 	if (!list_empty(&inode->i_io_list))
793 		inode_io_list_del(inode);
794 
795 	inode_sb_list_del(inode);
796 
797 	spin_lock(&inode->i_lock);
798 	inode_wait_for_lru_isolating(inode);
799 
800 	/*
801 	 * Wait for flusher thread to be done with the inode so that filesystem
802 	 * does not start destroying it while writeback is still running. Since
803 	 * the inode has I_FREEING set, flusher thread won't start new work on
804 	 * the inode.  We just have to wait for running writeback to finish.
805 	 */
806 	inode_wait_for_writeback(inode);
807 	spin_unlock(&inode->i_lock);
808 
809 	if (op->evict_inode) {
810 		op->evict_inode(inode);
811 	} else {
812 		truncate_inode_pages_final(&inode->i_data);
813 		clear_inode(inode);
814 	}
815 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
816 		cd_forget(inode);
817 
818 	remove_inode_hash(inode);
819 
820 	/*
821 	 * Wake up waiters in __wait_on_freeing_inode().
822 	 *
823 	 * It is an invariant that any thread we need to wake up is already
824 	 * accounted for before remove_inode_hash() acquires ->i_lock -- both
825 	 * sides take the lock and sleep is aborted if the inode is found
826 	 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
827 	 * wins and the sleeper aborts after testing with the lock.
828 	 *
829 	 * This also means we don't need any fences for the call below.
830 	 */
831 	inode_wake_up_bit(inode, __I_NEW);
832 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
833 
834 	destroy_inode(inode);
835 }
836 
837 /*
838  * dispose_list - dispose of the contents of a local list
839  * @head: the head of the list to free
840  *
841  * Dispose-list gets a local list with local inodes in it, so it doesn't
842  * need to worry about list corruption and SMP locks.
843  */
dispose_list(struct list_head * head)844 static void dispose_list(struct list_head *head)
845 {
846 	while (!list_empty(head)) {
847 		struct inode *inode;
848 
849 		inode = list_first_entry(head, struct inode, i_lru);
850 		list_del_init(&inode->i_lru);
851 
852 		evict(inode);
853 		cond_resched();
854 	}
855 }
856 
857 /**
858  * evict_inodes	- evict all evictable inodes for a superblock
859  * @sb:		superblock to operate on
860  *
861  * Make sure that no inodes with zero refcount are retained.  This is
862  * called by superblock shutdown after having SB_ACTIVE flag removed,
863  * so any inode reaching zero refcount during or after that call will
864  * be immediately evicted.
865  */
evict_inodes(struct super_block * sb)866 void evict_inodes(struct super_block *sb)
867 {
868 	struct inode *inode;
869 	LIST_HEAD(dispose);
870 
871 again:
872 	spin_lock(&sb->s_inode_list_lock);
873 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
874 		if (atomic_read(&inode->i_count))
875 			continue;
876 
877 		spin_lock(&inode->i_lock);
878 		if (atomic_read(&inode->i_count)) {
879 			spin_unlock(&inode->i_lock);
880 			continue;
881 		}
882 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
883 			spin_unlock(&inode->i_lock);
884 			continue;
885 		}
886 
887 		inode->i_state |= I_FREEING;
888 		inode_lru_list_del(inode);
889 		spin_unlock(&inode->i_lock);
890 		list_add(&inode->i_lru, &dispose);
891 
892 		/*
893 		 * We can have a ton of inodes to evict at unmount time given
894 		 * enough memory, check to see if we need to go to sleep for a
895 		 * bit so we don't livelock.
896 		 */
897 		if (need_resched()) {
898 			spin_unlock(&sb->s_inode_list_lock);
899 			cond_resched();
900 			dispose_list(&dispose);
901 			goto again;
902 		}
903 	}
904 	spin_unlock(&sb->s_inode_list_lock);
905 
906 	dispose_list(&dispose);
907 }
908 EXPORT_SYMBOL_GPL(evict_inodes);
909 
910 /*
911  * Isolate the inode from the LRU in preparation for freeing it.
912  *
913  * If the inode has the I_REFERENCED flag set, then it means that it has been
914  * used recently - the flag is set in iput_final(). When we encounter such an
915  * inode, clear the flag and move it to the back of the LRU so it gets another
916  * pass through the LRU before it gets reclaimed. This is necessary because of
917  * the fact we are doing lazy LRU updates to minimise lock contention so the
918  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
919  * with this flag set because they are the inodes that are out of order.
920  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)921 static enum lru_status inode_lru_isolate(struct list_head *item,
922 		struct list_lru_one *lru, void *arg)
923 {
924 	struct list_head *freeable = arg;
925 	struct inode	*inode = container_of(item, struct inode, i_lru);
926 
927 	/*
928 	 * We are inverting the lru lock/inode->i_lock here, so use a
929 	 * trylock. If we fail to get the lock, just skip it.
930 	 */
931 	if (!spin_trylock(&inode->i_lock))
932 		return LRU_SKIP;
933 
934 	/*
935 	 * Inodes can get referenced, redirtied, or repopulated while
936 	 * they're already on the LRU, and this can make them
937 	 * unreclaimable for a while. Remove them lazily here; iput,
938 	 * sync, or the last page cache deletion will requeue them.
939 	 */
940 	if (atomic_read(&inode->i_count) ||
941 	    (inode->i_state & ~I_REFERENCED) ||
942 	    !mapping_shrinkable(&inode->i_data)) {
943 		list_lru_isolate(lru, &inode->i_lru);
944 		spin_unlock(&inode->i_lock);
945 		this_cpu_dec(nr_unused);
946 		return LRU_REMOVED;
947 	}
948 
949 	/* Recently referenced inodes get one more pass */
950 	if (inode->i_state & I_REFERENCED) {
951 		inode->i_state &= ~I_REFERENCED;
952 		spin_unlock(&inode->i_lock);
953 		return LRU_ROTATE;
954 	}
955 
956 	/*
957 	 * On highmem systems, mapping_shrinkable() permits dropping
958 	 * page cache in order to free up struct inodes: lowmem might
959 	 * be under pressure before the cache inside the highmem zone.
960 	 */
961 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
962 		inode_pin_lru_isolating(inode);
963 		spin_unlock(&inode->i_lock);
964 		spin_unlock(&lru->lock);
965 		if (remove_inode_buffers(inode)) {
966 			unsigned long reap;
967 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
968 			if (current_is_kswapd())
969 				__count_vm_events(KSWAPD_INODESTEAL, reap);
970 			else
971 				__count_vm_events(PGINODESTEAL, reap);
972 			mm_account_reclaimed_pages(reap);
973 		}
974 		inode_unpin_lru_isolating(inode);
975 		return LRU_RETRY;
976 	}
977 
978 	WARN_ON(inode->i_state & I_NEW);
979 	inode->i_state |= I_FREEING;
980 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
981 	spin_unlock(&inode->i_lock);
982 
983 	this_cpu_dec(nr_unused);
984 	return LRU_REMOVED;
985 }
986 
987 /*
988  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
989  * This is called from the superblock shrinker function with a number of inodes
990  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
991  * then are freed outside inode_lock by dispose_list().
992  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)993 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
994 {
995 	LIST_HEAD(freeable);
996 	long freed;
997 
998 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
999 				     inode_lru_isolate, &freeable);
1000 	dispose_list(&freeable);
1001 	return freed;
1002 }
1003 
1004 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1005 /*
1006  * Called with the inode lock held.
1007  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data,bool is_inode_hash_locked)1008 static struct inode *find_inode(struct super_block *sb,
1009 				struct hlist_head *head,
1010 				int (*test)(struct inode *, void *),
1011 				void *data, bool is_inode_hash_locked)
1012 {
1013 	struct inode *inode = NULL;
1014 
1015 	if (is_inode_hash_locked)
1016 		lockdep_assert_held(&inode_hash_lock);
1017 	else
1018 		lockdep_assert_not_held(&inode_hash_lock);
1019 
1020 	rcu_read_lock();
1021 repeat:
1022 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1023 		if (inode->i_sb != sb)
1024 			continue;
1025 		if (!test(inode, data))
1026 			continue;
1027 		spin_lock(&inode->i_lock);
1028 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1029 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1030 			goto repeat;
1031 		}
1032 		if (unlikely(inode->i_state & I_CREATING)) {
1033 			spin_unlock(&inode->i_lock);
1034 			rcu_read_unlock();
1035 			return ERR_PTR(-ESTALE);
1036 		}
1037 		__iget(inode);
1038 		spin_unlock(&inode->i_lock);
1039 		rcu_read_unlock();
1040 		return inode;
1041 	}
1042 	rcu_read_unlock();
1043 	return NULL;
1044 }
1045 
1046 /*
1047  * find_inode_fast is the fast path version of find_inode, see the comment at
1048  * iget_locked for details.
1049  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino,bool is_inode_hash_locked)1050 static struct inode *find_inode_fast(struct super_block *sb,
1051 				struct hlist_head *head, unsigned long ino,
1052 				bool is_inode_hash_locked)
1053 {
1054 	struct inode *inode = NULL;
1055 
1056 	if (is_inode_hash_locked)
1057 		lockdep_assert_held(&inode_hash_lock);
1058 	else
1059 		lockdep_assert_not_held(&inode_hash_lock);
1060 
1061 	rcu_read_lock();
1062 repeat:
1063 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1064 		if (inode->i_ino != ino)
1065 			continue;
1066 		if (inode->i_sb != sb)
1067 			continue;
1068 		spin_lock(&inode->i_lock);
1069 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1070 			__wait_on_freeing_inode(inode, is_inode_hash_locked);
1071 			goto repeat;
1072 		}
1073 		if (unlikely(inode->i_state & I_CREATING)) {
1074 			spin_unlock(&inode->i_lock);
1075 			rcu_read_unlock();
1076 			return ERR_PTR(-ESTALE);
1077 		}
1078 		__iget(inode);
1079 		spin_unlock(&inode->i_lock);
1080 		rcu_read_unlock();
1081 		return inode;
1082 	}
1083 	rcu_read_unlock();
1084 	return NULL;
1085 }
1086 
1087 /*
1088  * Each cpu owns a range of LAST_INO_BATCH numbers.
1089  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1090  * to renew the exhausted range.
1091  *
1092  * This does not significantly increase overflow rate because every CPU can
1093  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1094  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1095  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1096  * overflow rate by 2x, which does not seem too significant.
1097  *
1098  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1099  * error if st_ino won't fit in target struct field. Use 32bit counter
1100  * here to attempt to avoid that.
1101  */
1102 #define LAST_INO_BATCH 1024
1103 static DEFINE_PER_CPU(unsigned int, last_ino);
1104 
get_next_ino(void)1105 unsigned int get_next_ino(void)
1106 {
1107 	unsigned int *p = &get_cpu_var(last_ino);
1108 	unsigned int res = *p;
1109 
1110 #ifdef CONFIG_SMP
1111 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1112 		static atomic_t shared_last_ino;
1113 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1114 
1115 		res = next - LAST_INO_BATCH;
1116 	}
1117 #endif
1118 
1119 	res++;
1120 	/* get_next_ino should not provide a 0 inode number */
1121 	if (unlikely(!res))
1122 		res++;
1123 	*p = res;
1124 	put_cpu_var(last_ino);
1125 	return res;
1126 }
1127 EXPORT_SYMBOL(get_next_ino);
1128 
1129 /**
1130  *	new_inode 	- obtain an inode
1131  *	@sb: superblock
1132  *
1133  *	Allocates a new inode for given superblock. The default gfp_mask
1134  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1135  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1136  *	for the page cache are not reclaimable or migratable,
1137  *	mapping_set_gfp_mask() must be called with suitable flags on the
1138  *	newly created inode's mapping
1139  *
1140  */
new_inode(struct super_block * sb)1141 struct inode *new_inode(struct super_block *sb)
1142 {
1143 	struct inode *inode;
1144 
1145 	inode = alloc_inode(sb);
1146 	if (inode)
1147 		inode_sb_list_add(inode);
1148 	return inode;
1149 }
1150 EXPORT_SYMBOL(new_inode);
1151 
1152 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1153 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1154 {
1155 	if (S_ISDIR(inode->i_mode)) {
1156 		struct file_system_type *type = inode->i_sb->s_type;
1157 
1158 		/* Set new key only if filesystem hasn't already changed it */
1159 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1160 			/*
1161 			 * ensure nobody is actually holding i_rwsem
1162 			 */
1163 			init_rwsem(&inode->i_rwsem);
1164 			lockdep_set_class(&inode->i_rwsem,
1165 					  &type->i_mutex_dir_key);
1166 		}
1167 	}
1168 }
1169 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1170 #endif
1171 
1172 /**
1173  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1174  * @inode:	new inode to unlock
1175  *
1176  * Called when the inode is fully initialised to clear the new state of the
1177  * inode and wake up anyone waiting for the inode to finish initialisation.
1178  */
unlock_new_inode(struct inode * inode)1179 void unlock_new_inode(struct inode *inode)
1180 {
1181 	lockdep_annotate_inode_mutex_key(inode);
1182 	spin_lock(&inode->i_lock);
1183 	WARN_ON(!(inode->i_state & I_NEW));
1184 	inode->i_state &= ~I_NEW & ~I_CREATING;
1185 	/*
1186 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1187 	 * ___wait_var_event() either sees the bit cleared or
1188 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1189 	 */
1190 	smp_mb();
1191 	inode_wake_up_bit(inode, __I_NEW);
1192 	spin_unlock(&inode->i_lock);
1193 }
1194 EXPORT_SYMBOL(unlock_new_inode);
1195 
discard_new_inode(struct inode * inode)1196 void discard_new_inode(struct inode *inode)
1197 {
1198 	lockdep_annotate_inode_mutex_key(inode);
1199 	spin_lock(&inode->i_lock);
1200 	WARN_ON(!(inode->i_state & I_NEW));
1201 	inode->i_state &= ~I_NEW;
1202 	/*
1203 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1204 	 * ___wait_var_event() either sees the bit cleared or
1205 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1206 	 */
1207 	smp_mb();
1208 	inode_wake_up_bit(inode, __I_NEW);
1209 	spin_unlock(&inode->i_lock);
1210 	iput(inode);
1211 }
1212 EXPORT_SYMBOL(discard_new_inode);
1213 
1214 /**
1215  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1216  *
1217  * Lock any non-NULL argument. Passed objects must not be directories.
1218  * Zero, one or two objects may be locked by this function.
1219  *
1220  * @inode1: first inode to lock
1221  * @inode2: second inode to lock
1222  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1223 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1224 {
1225 	if (inode1)
1226 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1227 	if (inode2)
1228 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1229 	if (inode1 > inode2)
1230 		swap(inode1, inode2);
1231 	if (inode1)
1232 		inode_lock(inode1);
1233 	if (inode2 && inode2 != inode1)
1234 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1235 }
1236 EXPORT_SYMBOL(lock_two_nondirectories);
1237 
1238 /**
1239  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1240  * @inode1: first inode to unlock
1241  * @inode2: second inode to unlock
1242  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1243 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1244 {
1245 	if (inode1) {
1246 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1247 		inode_unlock(inode1);
1248 	}
1249 	if (inode2 && inode2 != inode1) {
1250 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1251 		inode_unlock(inode2);
1252 	}
1253 }
1254 EXPORT_SYMBOL(unlock_two_nondirectories);
1255 
1256 /**
1257  * inode_insert5 - obtain an inode from a mounted file system
1258  * @inode:	pre-allocated inode to use for insert to cache
1259  * @hashval:	hash value (usually inode number) to get
1260  * @test:	callback used for comparisons between inodes
1261  * @set:	callback used to initialize a new struct inode
1262  * @data:	opaque data pointer to pass to @test and @set
1263  *
1264  * Search for the inode specified by @hashval and @data in the inode cache,
1265  * and if present return it with an increased reference count. This is a
1266  * variant of iget5_locked() that doesn't allocate an inode.
1267  *
1268  * If the inode is not present in the cache, insert the pre-allocated inode and
1269  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1270  * to fill it in before unlocking it via unlock_new_inode().
1271  *
1272  * Note that both @test and @set are called with the inode_hash_lock held, so
1273  * they can't sleep.
1274  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1275 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1276 			    int (*test)(struct inode *, void *),
1277 			    int (*set)(struct inode *, void *), void *data)
1278 {
1279 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1280 	struct inode *old;
1281 
1282 again:
1283 	spin_lock(&inode_hash_lock);
1284 	old = find_inode(inode->i_sb, head, test, data, true);
1285 	if (unlikely(old)) {
1286 		/*
1287 		 * Uhhuh, somebody else created the same inode under us.
1288 		 * Use the old inode instead of the preallocated one.
1289 		 */
1290 		spin_unlock(&inode_hash_lock);
1291 		if (IS_ERR(old))
1292 			return NULL;
1293 		wait_on_inode(old);
1294 		if (unlikely(inode_unhashed(old))) {
1295 			iput(old);
1296 			goto again;
1297 		}
1298 		return old;
1299 	}
1300 
1301 	if (set && unlikely(set(inode, data))) {
1302 		spin_unlock(&inode_hash_lock);
1303 		return NULL;
1304 	}
1305 
1306 	/*
1307 	 * Return the locked inode with I_NEW set, the
1308 	 * caller is responsible for filling in the contents
1309 	 */
1310 	spin_lock(&inode->i_lock);
1311 	inode->i_state |= I_NEW;
1312 	hlist_add_head_rcu(&inode->i_hash, head);
1313 	spin_unlock(&inode->i_lock);
1314 
1315 	spin_unlock(&inode_hash_lock);
1316 
1317 	/*
1318 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1319 	 * point, so it should be safe to test i_sb_list locklessly.
1320 	 */
1321 	if (list_empty(&inode->i_sb_list))
1322 		inode_sb_list_add(inode);
1323 
1324 	return inode;
1325 }
1326 EXPORT_SYMBOL(inode_insert5);
1327 
1328 /**
1329  * iget5_locked - obtain an inode from a mounted file system
1330  * @sb:		super block of file system
1331  * @hashval:	hash value (usually inode number) to get
1332  * @test:	callback used for comparisons between inodes
1333  * @set:	callback used to initialize a new struct inode
1334  * @data:	opaque data pointer to pass to @test and @set
1335  *
1336  * Search for the inode specified by @hashval and @data in the inode cache,
1337  * and if present return it with an increased reference count. This is a
1338  * generalized version of iget_locked() for file systems where the inode
1339  * number is not sufficient for unique identification of an inode.
1340  *
1341  * If the inode is not present in the cache, allocate and insert a new inode
1342  * and return it locked, hashed, and with the I_NEW flag set. The file system
1343  * gets to fill it in before unlocking it via unlock_new_inode().
1344  *
1345  * Note that both @test and @set are called with the inode_hash_lock held, so
1346  * they can't sleep.
1347  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1348 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1349 		int (*test)(struct inode *, void *),
1350 		int (*set)(struct inode *, void *), void *data)
1351 {
1352 	struct inode *inode = ilookup5(sb, hashval, test, data);
1353 
1354 	if (!inode) {
1355 		struct inode *new = alloc_inode(sb);
1356 
1357 		if (new) {
1358 			inode = inode_insert5(new, hashval, test, set, data);
1359 			if (unlikely(inode != new))
1360 				destroy_inode(new);
1361 		}
1362 	}
1363 	return inode;
1364 }
1365 EXPORT_SYMBOL(iget5_locked);
1366 
1367 /**
1368  * iget5_locked_rcu - obtain an inode from a mounted file system
1369  * @sb:		super block of file system
1370  * @hashval:	hash value (usually inode number) to get
1371  * @test:	callback used for comparisons between inodes
1372  * @set:	callback used to initialize a new struct inode
1373  * @data:	opaque data pointer to pass to @test and @set
1374  *
1375  * This is equivalent to iget5_locked, except the @test callback must
1376  * tolerate the inode not being stable, including being mid-teardown.
1377  */
iget5_locked_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1378 struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1379 		int (*test)(struct inode *, void *),
1380 		int (*set)(struct inode *, void *), void *data)
1381 {
1382 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1383 	struct inode *inode, *new;
1384 
1385 again:
1386 	inode = find_inode(sb, head, test, data, false);
1387 	if (inode) {
1388 		if (IS_ERR(inode))
1389 			return NULL;
1390 		wait_on_inode(inode);
1391 		if (unlikely(inode_unhashed(inode))) {
1392 			iput(inode);
1393 			goto again;
1394 		}
1395 		return inode;
1396 	}
1397 
1398 	new = alloc_inode(sb);
1399 	if (new) {
1400 		inode = inode_insert5(new, hashval, test, set, data);
1401 		if (unlikely(inode != new))
1402 			destroy_inode(new);
1403 	}
1404 	return inode;
1405 }
1406 EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1407 
1408 /**
1409  * iget_locked - obtain an inode from a mounted file system
1410  * @sb:		super block of file system
1411  * @ino:	inode number to get
1412  *
1413  * Search for the inode specified by @ino in the inode cache and if present
1414  * return it with an increased reference count. This is for file systems
1415  * where the inode number is sufficient for unique identification of an inode.
1416  *
1417  * If the inode is not in cache, allocate a new inode and return it locked,
1418  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1419  * before unlocking it via unlock_new_inode().
1420  */
iget_locked(struct super_block * sb,unsigned long ino)1421 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1422 {
1423 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1424 	struct inode *inode;
1425 again:
1426 	inode = find_inode_fast(sb, head, ino, false);
1427 	if (inode) {
1428 		if (IS_ERR(inode))
1429 			return NULL;
1430 		wait_on_inode(inode);
1431 		if (unlikely(inode_unhashed(inode))) {
1432 			iput(inode);
1433 			goto again;
1434 		}
1435 		return inode;
1436 	}
1437 
1438 	inode = alloc_inode(sb);
1439 	if (inode) {
1440 		struct inode *old;
1441 
1442 		spin_lock(&inode_hash_lock);
1443 		/* We released the lock, so.. */
1444 		old = find_inode_fast(sb, head, ino, true);
1445 		if (!old) {
1446 			inode->i_ino = ino;
1447 			spin_lock(&inode->i_lock);
1448 			inode->i_state = I_NEW;
1449 			hlist_add_head_rcu(&inode->i_hash, head);
1450 			spin_unlock(&inode->i_lock);
1451 			spin_unlock(&inode_hash_lock);
1452 			inode_sb_list_add(inode);
1453 
1454 			/* Return the locked inode with I_NEW set, the
1455 			 * caller is responsible for filling in the contents
1456 			 */
1457 			return inode;
1458 		}
1459 
1460 		/*
1461 		 * Uhhuh, somebody else created the same inode under
1462 		 * us. Use the old inode instead of the one we just
1463 		 * allocated.
1464 		 */
1465 		spin_unlock(&inode_hash_lock);
1466 		destroy_inode(inode);
1467 		if (IS_ERR(old))
1468 			return NULL;
1469 		inode = old;
1470 		wait_on_inode(inode);
1471 		if (unlikely(inode_unhashed(inode))) {
1472 			iput(inode);
1473 			goto again;
1474 		}
1475 	}
1476 	return inode;
1477 }
1478 EXPORT_SYMBOL(iget_locked);
1479 
1480 /*
1481  * search the inode cache for a matching inode number.
1482  * If we find one, then the inode number we are trying to
1483  * allocate is not unique and so we should not use it.
1484  *
1485  * Returns 1 if the inode number is unique, 0 if it is not.
1486  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1487 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1488 {
1489 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1490 	struct inode *inode;
1491 
1492 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1493 		if (inode->i_ino == ino && inode->i_sb == sb)
1494 			return 0;
1495 	}
1496 	return 1;
1497 }
1498 
1499 /**
1500  *	iunique - get a unique inode number
1501  *	@sb: superblock
1502  *	@max_reserved: highest reserved inode number
1503  *
1504  *	Obtain an inode number that is unique on the system for a given
1505  *	superblock. This is used by file systems that have no natural
1506  *	permanent inode numbering system. An inode number is returned that
1507  *	is higher than the reserved limit but unique.
1508  *
1509  *	BUGS:
1510  *	With a large number of inodes live on the file system this function
1511  *	currently becomes quite slow.
1512  */
iunique(struct super_block * sb,ino_t max_reserved)1513 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1514 {
1515 	/*
1516 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1517 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1518 	 * here to attempt to avoid that.
1519 	 */
1520 	static DEFINE_SPINLOCK(iunique_lock);
1521 	static unsigned int counter;
1522 	ino_t res;
1523 
1524 	rcu_read_lock();
1525 	spin_lock(&iunique_lock);
1526 	do {
1527 		if (counter <= max_reserved)
1528 			counter = max_reserved + 1;
1529 		res = counter++;
1530 	} while (!test_inode_iunique(sb, res));
1531 	spin_unlock(&iunique_lock);
1532 	rcu_read_unlock();
1533 
1534 	return res;
1535 }
1536 EXPORT_SYMBOL(iunique);
1537 
igrab(struct inode * inode)1538 struct inode *igrab(struct inode *inode)
1539 {
1540 	spin_lock(&inode->i_lock);
1541 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1542 		__iget(inode);
1543 		spin_unlock(&inode->i_lock);
1544 	} else {
1545 		spin_unlock(&inode->i_lock);
1546 		/*
1547 		 * Handle the case where s_op->clear_inode is not been
1548 		 * called yet, and somebody is calling igrab
1549 		 * while the inode is getting freed.
1550 		 */
1551 		inode = NULL;
1552 	}
1553 	return inode;
1554 }
1555 EXPORT_SYMBOL(igrab);
1556 
1557 /**
1558  * ilookup5_nowait - search for an inode in the inode cache
1559  * @sb:		super block of file system to search
1560  * @hashval:	hash value (usually inode number) to search for
1561  * @test:	callback used for comparisons between inodes
1562  * @data:	opaque data pointer to pass to @test
1563  *
1564  * Search for the inode specified by @hashval and @data in the inode cache.
1565  * If the inode is in the cache, the inode is returned with an incremented
1566  * reference count.
1567  *
1568  * Note: I_NEW is not waited upon so you have to be very careful what you do
1569  * with the returned inode.  You probably should be using ilookup5() instead.
1570  *
1571  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1572  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1573 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1574 		int (*test)(struct inode *, void *), void *data)
1575 {
1576 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1577 	struct inode *inode;
1578 
1579 	spin_lock(&inode_hash_lock);
1580 	inode = find_inode(sb, head, test, data, true);
1581 	spin_unlock(&inode_hash_lock);
1582 
1583 	return IS_ERR(inode) ? NULL : inode;
1584 }
1585 EXPORT_SYMBOL(ilookup5_nowait);
1586 
1587 /**
1588  * ilookup5 - search for an inode in the inode cache
1589  * @sb:		super block of file system to search
1590  * @hashval:	hash value (usually inode number) to search for
1591  * @test:	callback used for comparisons between inodes
1592  * @data:	opaque data pointer to pass to @test
1593  *
1594  * Search for the inode specified by @hashval and @data in the inode cache,
1595  * and if the inode is in the cache, return the inode with an incremented
1596  * reference count.  Waits on I_NEW before returning the inode.
1597  * returned with an incremented reference count.
1598  *
1599  * This is a generalized version of ilookup() for file systems where the
1600  * inode number is not sufficient for unique identification of an inode.
1601  *
1602  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1603  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1604 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1605 		int (*test)(struct inode *, void *), void *data)
1606 {
1607 	struct inode *inode;
1608 again:
1609 	inode = ilookup5_nowait(sb, hashval, test, data);
1610 	if (inode) {
1611 		wait_on_inode(inode);
1612 		if (unlikely(inode_unhashed(inode))) {
1613 			iput(inode);
1614 			goto again;
1615 		}
1616 	}
1617 	return inode;
1618 }
1619 EXPORT_SYMBOL(ilookup5);
1620 
1621 /**
1622  * ilookup - search for an inode in the inode cache
1623  * @sb:		super block of file system to search
1624  * @ino:	inode number to search for
1625  *
1626  * Search for the inode @ino in the inode cache, and if the inode is in the
1627  * cache, the inode is returned with an incremented reference count.
1628  */
ilookup(struct super_block * sb,unsigned long ino)1629 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1630 {
1631 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632 	struct inode *inode;
1633 again:
1634 	inode = find_inode_fast(sb, head, ino, false);
1635 
1636 	if (inode) {
1637 		if (IS_ERR(inode))
1638 			return NULL;
1639 		wait_on_inode(inode);
1640 		if (unlikely(inode_unhashed(inode))) {
1641 			iput(inode);
1642 			goto again;
1643 		}
1644 	}
1645 	return inode;
1646 }
1647 EXPORT_SYMBOL(ilookup);
1648 
1649 /**
1650  * find_inode_nowait - find an inode in the inode cache
1651  * @sb:		super block of file system to search
1652  * @hashval:	hash value (usually inode number) to search for
1653  * @match:	callback used for comparisons between inodes
1654  * @data:	opaque data pointer to pass to @match
1655  *
1656  * Search for the inode specified by @hashval and @data in the inode
1657  * cache, where the helper function @match will return 0 if the inode
1658  * does not match, 1 if the inode does match, and -1 if the search
1659  * should be stopped.  The @match function must be responsible for
1660  * taking the i_lock spin_lock and checking i_state for an inode being
1661  * freed or being initialized, and incrementing the reference count
1662  * before returning 1.  It also must not sleep, since it is called with
1663  * the inode_hash_lock spinlock held.
1664  *
1665  * This is a even more generalized version of ilookup5() when the
1666  * function must never block --- find_inode() can block in
1667  * __wait_on_freeing_inode() --- or when the caller can not increment
1668  * the reference count because the resulting iput() might cause an
1669  * inode eviction.  The tradeoff is that the @match funtion must be
1670  * very carefully implemented.
1671  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1672 struct inode *find_inode_nowait(struct super_block *sb,
1673 				unsigned long hashval,
1674 				int (*match)(struct inode *, unsigned long,
1675 					     void *),
1676 				void *data)
1677 {
1678 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1679 	struct inode *inode, *ret_inode = NULL;
1680 	int mval;
1681 
1682 	spin_lock(&inode_hash_lock);
1683 	hlist_for_each_entry(inode, head, i_hash) {
1684 		if (inode->i_sb != sb)
1685 			continue;
1686 		mval = match(inode, hashval, data);
1687 		if (mval == 0)
1688 			continue;
1689 		if (mval == 1)
1690 			ret_inode = inode;
1691 		goto out;
1692 	}
1693 out:
1694 	spin_unlock(&inode_hash_lock);
1695 	return ret_inode;
1696 }
1697 EXPORT_SYMBOL(find_inode_nowait);
1698 
1699 /**
1700  * find_inode_rcu - find an inode in the inode cache
1701  * @sb:		Super block of file system to search
1702  * @hashval:	Key to hash
1703  * @test:	Function to test match on an inode
1704  * @data:	Data for test function
1705  *
1706  * Search for the inode specified by @hashval and @data in the inode cache,
1707  * where the helper function @test will return 0 if the inode does not match
1708  * and 1 if it does.  The @test function must be responsible for taking the
1709  * i_lock spin_lock and checking i_state for an inode being freed or being
1710  * initialized.
1711  *
1712  * If successful, this will return the inode for which the @test function
1713  * returned 1 and NULL otherwise.
1714  *
1715  * The @test function is not permitted to take a ref on any inode presented.
1716  * It is also not permitted to sleep.
1717  *
1718  * The caller must hold the RCU read lock.
1719  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1720 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1721 			     int (*test)(struct inode *, void *), void *data)
1722 {
1723 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1724 	struct inode *inode;
1725 
1726 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1727 			 "suspicious find_inode_rcu() usage");
1728 
1729 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1730 		if (inode->i_sb == sb &&
1731 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1732 		    test(inode, data))
1733 			return inode;
1734 	}
1735 	return NULL;
1736 }
1737 EXPORT_SYMBOL(find_inode_rcu);
1738 
1739 /**
1740  * find_inode_by_ino_rcu - Find an inode in the inode cache
1741  * @sb:		Super block of file system to search
1742  * @ino:	The inode number to match
1743  *
1744  * Search for the inode specified by @hashval and @data in the inode cache,
1745  * where the helper function @test will return 0 if the inode does not match
1746  * and 1 if it does.  The @test function must be responsible for taking the
1747  * i_lock spin_lock and checking i_state for an inode being freed or being
1748  * initialized.
1749  *
1750  * If successful, this will return the inode for which the @test function
1751  * returned 1 and NULL otherwise.
1752  *
1753  * The @test function is not permitted to take a ref on any inode presented.
1754  * It is also not permitted to sleep.
1755  *
1756  * The caller must hold the RCU read lock.
1757  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1758 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1759 				    unsigned long ino)
1760 {
1761 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1762 	struct inode *inode;
1763 
1764 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1765 			 "suspicious find_inode_by_ino_rcu() usage");
1766 
1767 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1768 		if (inode->i_ino == ino &&
1769 		    inode->i_sb == sb &&
1770 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1771 		    return inode;
1772 	}
1773 	return NULL;
1774 }
1775 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1776 
insert_inode_locked(struct inode * inode)1777 int insert_inode_locked(struct inode *inode)
1778 {
1779 	struct super_block *sb = inode->i_sb;
1780 	ino_t ino = inode->i_ino;
1781 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1782 
1783 	while (1) {
1784 		struct inode *old = NULL;
1785 		spin_lock(&inode_hash_lock);
1786 		hlist_for_each_entry(old, head, i_hash) {
1787 			if (old->i_ino != ino)
1788 				continue;
1789 			if (old->i_sb != sb)
1790 				continue;
1791 			spin_lock(&old->i_lock);
1792 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1793 				spin_unlock(&old->i_lock);
1794 				continue;
1795 			}
1796 			break;
1797 		}
1798 		if (likely(!old)) {
1799 			spin_lock(&inode->i_lock);
1800 			inode->i_state |= I_NEW | I_CREATING;
1801 			hlist_add_head_rcu(&inode->i_hash, head);
1802 			spin_unlock(&inode->i_lock);
1803 			spin_unlock(&inode_hash_lock);
1804 			return 0;
1805 		}
1806 		if (unlikely(old->i_state & I_CREATING)) {
1807 			spin_unlock(&old->i_lock);
1808 			spin_unlock(&inode_hash_lock);
1809 			return -EBUSY;
1810 		}
1811 		__iget(old);
1812 		spin_unlock(&old->i_lock);
1813 		spin_unlock(&inode_hash_lock);
1814 		wait_on_inode(old);
1815 		if (unlikely(!inode_unhashed(old))) {
1816 			iput(old);
1817 			return -EBUSY;
1818 		}
1819 		iput(old);
1820 	}
1821 }
1822 EXPORT_SYMBOL(insert_inode_locked);
1823 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1824 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1825 		int (*test)(struct inode *, void *), void *data)
1826 {
1827 	struct inode *old;
1828 
1829 	inode->i_state |= I_CREATING;
1830 	old = inode_insert5(inode, hashval, test, NULL, data);
1831 
1832 	if (old != inode) {
1833 		iput(old);
1834 		return -EBUSY;
1835 	}
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL(insert_inode_locked4);
1839 
1840 
generic_delete_inode(struct inode * inode)1841 int generic_delete_inode(struct inode *inode)
1842 {
1843 	return 1;
1844 }
1845 EXPORT_SYMBOL(generic_delete_inode);
1846 
1847 /*
1848  * Called when we're dropping the last reference
1849  * to an inode.
1850  *
1851  * Call the FS "drop_inode()" function, defaulting to
1852  * the legacy UNIX filesystem behaviour.  If it tells
1853  * us to evict inode, do so.  Otherwise, retain inode
1854  * in cache if fs is alive, sync and evict if fs is
1855  * shutting down.
1856  */
iput_final(struct inode * inode)1857 static void iput_final(struct inode *inode)
1858 {
1859 	struct super_block *sb = inode->i_sb;
1860 	const struct super_operations *op = inode->i_sb->s_op;
1861 	unsigned long state;
1862 	int drop;
1863 
1864 	WARN_ON(inode->i_state & I_NEW);
1865 
1866 	if (op->drop_inode)
1867 		drop = op->drop_inode(inode);
1868 	else
1869 		drop = generic_drop_inode(inode);
1870 
1871 	if (!drop &&
1872 	    !(inode->i_state & I_DONTCACHE) &&
1873 	    (sb->s_flags & SB_ACTIVE)) {
1874 		__inode_add_lru(inode, true);
1875 		spin_unlock(&inode->i_lock);
1876 		return;
1877 	}
1878 
1879 	state = inode->i_state;
1880 	if (!drop) {
1881 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1882 		spin_unlock(&inode->i_lock);
1883 
1884 		write_inode_now(inode, 1);
1885 
1886 		spin_lock(&inode->i_lock);
1887 		state = inode->i_state;
1888 		WARN_ON(state & I_NEW);
1889 		state &= ~I_WILL_FREE;
1890 	}
1891 
1892 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1893 	if (!list_empty(&inode->i_lru))
1894 		inode_lru_list_del(inode);
1895 	spin_unlock(&inode->i_lock);
1896 
1897 	evict(inode);
1898 }
1899 
1900 /**
1901  *	iput	- put an inode
1902  *	@inode: inode to put
1903  *
1904  *	Puts an inode, dropping its usage count. If the inode use count hits
1905  *	zero, the inode is then freed and may also be destroyed.
1906  *
1907  *	Consequently, iput() can sleep.
1908  */
iput(struct inode * inode)1909 void iput(struct inode *inode)
1910 {
1911 	if (!inode)
1912 		return;
1913 	BUG_ON(inode->i_state & I_CLEAR);
1914 retry:
1915 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1916 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1917 			atomic_inc(&inode->i_count);
1918 			spin_unlock(&inode->i_lock);
1919 			trace_writeback_lazytime_iput(inode);
1920 			mark_inode_dirty_sync(inode);
1921 			goto retry;
1922 		}
1923 		iput_final(inode);
1924 	}
1925 }
1926 EXPORT_SYMBOL(iput);
1927 
1928 #ifdef CONFIG_BLOCK
1929 /**
1930  *	bmap	- find a block number in a file
1931  *	@inode:  inode owning the block number being requested
1932  *	@block: pointer containing the block to find
1933  *
1934  *	Replaces the value in ``*block`` with the block number on the device holding
1935  *	corresponding to the requested block number in the file.
1936  *	That is, asked for block 4 of inode 1 the function will replace the
1937  *	4 in ``*block``, with disk block relative to the disk start that holds that
1938  *	block of the file.
1939  *
1940  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1941  *	hole, returns 0 and ``*block`` is also set to 0.
1942  */
bmap(struct inode * inode,sector_t * block)1943 int bmap(struct inode *inode, sector_t *block)
1944 {
1945 	if (!inode->i_mapping->a_ops->bmap)
1946 		return -EINVAL;
1947 
1948 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1949 	return 0;
1950 }
1951 EXPORT_SYMBOL(bmap);
1952 #endif
1953 
1954 /*
1955  * With relative atime, only update atime if the previous atime is
1956  * earlier than or equal to either the ctime or mtime,
1957  * or if at least a day has passed since the last atime update.
1958  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1959 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1960 			     struct timespec64 now)
1961 {
1962 	struct timespec64 atime, mtime, ctime;
1963 
1964 	if (!(mnt->mnt_flags & MNT_RELATIME))
1965 		return true;
1966 	/*
1967 	 * Is mtime younger than or equal to atime? If yes, update atime:
1968 	 */
1969 	atime = inode_get_atime(inode);
1970 	mtime = inode_get_mtime(inode);
1971 	if (timespec64_compare(&mtime, &atime) >= 0)
1972 		return true;
1973 	/*
1974 	 * Is ctime younger than or equal to atime? If yes, update atime:
1975 	 */
1976 	ctime = inode_get_ctime(inode);
1977 	if (timespec64_compare(&ctime, &atime) >= 0)
1978 		return true;
1979 
1980 	/*
1981 	 * Is the previous atime value older than a day? If yes,
1982 	 * update atime:
1983 	 */
1984 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1985 		return true;
1986 	/*
1987 	 * Good, we can skip the atime update:
1988 	 */
1989 	return false;
1990 }
1991 
1992 /**
1993  * inode_update_timestamps - update the timestamps on the inode
1994  * @inode: inode to be updated
1995  * @flags: S_* flags that needed to be updated
1996  *
1997  * The update_time function is called when an inode's timestamps need to be
1998  * updated for a read or write operation. This function handles updating the
1999  * actual timestamps. It's up to the caller to ensure that the inode is marked
2000  * dirty appropriately.
2001  *
2002  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2003  * attempt to update all three of them. S_ATIME updates can be handled
2004  * independently of the rest.
2005  *
2006  * Returns a set of S_* flags indicating which values changed.
2007  */
inode_update_timestamps(struct inode * inode,int flags)2008 int inode_update_timestamps(struct inode *inode, int flags)
2009 {
2010 	int updated = 0;
2011 	struct timespec64 now;
2012 
2013 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2014 		struct timespec64 ctime = inode_get_ctime(inode);
2015 		struct timespec64 mtime = inode_get_mtime(inode);
2016 
2017 		now = inode_set_ctime_current(inode);
2018 		if (!timespec64_equal(&now, &ctime))
2019 			updated |= S_CTIME;
2020 		if (!timespec64_equal(&now, &mtime)) {
2021 			inode_set_mtime_to_ts(inode, now);
2022 			updated |= S_MTIME;
2023 		}
2024 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
2025 			updated |= S_VERSION;
2026 	} else {
2027 		now = current_time(inode);
2028 	}
2029 
2030 	if (flags & S_ATIME) {
2031 		struct timespec64 atime = inode_get_atime(inode);
2032 
2033 		if (!timespec64_equal(&now, &atime)) {
2034 			inode_set_atime_to_ts(inode, now);
2035 			updated |= S_ATIME;
2036 		}
2037 	}
2038 	return updated;
2039 }
2040 EXPORT_SYMBOL(inode_update_timestamps);
2041 
2042 /**
2043  * generic_update_time - update the timestamps on the inode
2044  * @inode: inode to be updated
2045  * @flags: S_* flags that needed to be updated
2046  *
2047  * The update_time function is called when an inode's timestamps need to be
2048  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2049  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2050  * updates can be handled done independently of the rest.
2051  *
2052  * Returns a S_* mask indicating which fields were updated.
2053  */
generic_update_time(struct inode * inode,int flags)2054 int generic_update_time(struct inode *inode, int flags)
2055 {
2056 	int updated = inode_update_timestamps(inode, flags);
2057 	int dirty_flags = 0;
2058 
2059 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
2060 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2061 	if (updated & S_VERSION)
2062 		dirty_flags |= I_DIRTY_SYNC;
2063 	__mark_inode_dirty(inode, dirty_flags);
2064 	return updated;
2065 }
2066 EXPORT_SYMBOL(generic_update_time);
2067 
2068 /*
2069  * This does the actual work of updating an inodes time or version.  Must have
2070  * had called mnt_want_write() before calling this.
2071  */
inode_update_time(struct inode * inode,int flags)2072 int inode_update_time(struct inode *inode, int flags)
2073 {
2074 	if (inode->i_op->update_time)
2075 		return inode->i_op->update_time(inode, flags);
2076 	generic_update_time(inode, flags);
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(inode_update_time);
2080 
2081 /**
2082  *	atime_needs_update	-	update the access time
2083  *	@path: the &struct path to update
2084  *	@inode: inode to update
2085  *
2086  *	Update the accessed time on an inode and mark it for writeback.
2087  *	This function automatically handles read only file systems and media,
2088  *	as well as the "noatime" flag and inode specific "noatime" markers.
2089  */
atime_needs_update(const struct path * path,struct inode * inode)2090 bool atime_needs_update(const struct path *path, struct inode *inode)
2091 {
2092 	struct vfsmount *mnt = path->mnt;
2093 	struct timespec64 now, atime;
2094 
2095 	if (inode->i_flags & S_NOATIME)
2096 		return false;
2097 
2098 	/* Atime updates will likely cause i_uid and i_gid to be written
2099 	 * back improprely if their true value is unknown to the vfs.
2100 	 */
2101 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2102 		return false;
2103 
2104 	if (IS_NOATIME(inode))
2105 		return false;
2106 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2107 		return false;
2108 
2109 	if (mnt->mnt_flags & MNT_NOATIME)
2110 		return false;
2111 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2112 		return false;
2113 
2114 	now = current_time(inode);
2115 
2116 	if (!relatime_need_update(mnt, inode, now))
2117 		return false;
2118 
2119 	atime = inode_get_atime(inode);
2120 	if (timespec64_equal(&atime, &now))
2121 		return false;
2122 
2123 	return true;
2124 }
2125 
touch_atime(const struct path * path)2126 void touch_atime(const struct path *path)
2127 {
2128 	struct vfsmount *mnt = path->mnt;
2129 	struct inode *inode = d_inode(path->dentry);
2130 
2131 	if (!atime_needs_update(path, inode))
2132 		return;
2133 
2134 	if (!sb_start_write_trylock(inode->i_sb))
2135 		return;
2136 
2137 	if (mnt_get_write_access(mnt) != 0)
2138 		goto skip_update;
2139 	/*
2140 	 * File systems can error out when updating inodes if they need to
2141 	 * allocate new space to modify an inode (such is the case for
2142 	 * Btrfs), but since we touch atime while walking down the path we
2143 	 * really don't care if we failed to update the atime of the file,
2144 	 * so just ignore the return value.
2145 	 * We may also fail on filesystems that have the ability to make parts
2146 	 * of the fs read only, e.g. subvolumes in Btrfs.
2147 	 */
2148 	inode_update_time(inode, S_ATIME);
2149 	mnt_put_write_access(mnt);
2150 skip_update:
2151 	sb_end_write(inode->i_sb);
2152 }
2153 EXPORT_SYMBOL(touch_atime);
2154 
2155 /*
2156  * Return mask of changes for notify_change() that need to be done as a
2157  * response to write or truncate. Return 0 if nothing has to be changed.
2158  * Negative value on error (change should be denied).
2159  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2160 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2161 			      struct dentry *dentry)
2162 {
2163 	struct inode *inode = d_inode(dentry);
2164 	int mask = 0;
2165 	int ret;
2166 
2167 	if (IS_NOSEC(inode))
2168 		return 0;
2169 
2170 	mask = setattr_should_drop_suidgid(idmap, inode);
2171 	ret = security_inode_need_killpriv(dentry);
2172 	if (ret < 0)
2173 		return ret;
2174 	if (ret)
2175 		mask |= ATTR_KILL_PRIV;
2176 	return mask;
2177 }
2178 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2179 static int __remove_privs(struct mnt_idmap *idmap,
2180 			  struct dentry *dentry, int kill)
2181 {
2182 	struct iattr newattrs;
2183 
2184 	newattrs.ia_valid = ATTR_FORCE | kill;
2185 	/*
2186 	 * Note we call this on write, so notify_change will not
2187 	 * encounter any conflicting delegations:
2188 	 */
2189 	return notify_change(idmap, dentry, &newattrs, NULL);
2190 }
2191 
file_remove_privs_flags(struct file * file,unsigned int flags)2192 int file_remove_privs_flags(struct file *file, unsigned int flags)
2193 {
2194 	struct dentry *dentry = file_dentry(file);
2195 	struct inode *inode = file_inode(file);
2196 	int error = 0;
2197 	int kill;
2198 
2199 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2200 		return 0;
2201 
2202 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2203 	if (kill < 0)
2204 		return kill;
2205 
2206 	if (kill) {
2207 		if (flags & IOCB_NOWAIT)
2208 			return -EAGAIN;
2209 
2210 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2211 	}
2212 
2213 	if (!error)
2214 		inode_has_no_xattr(inode);
2215 	return error;
2216 }
2217 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2218 
2219 /**
2220  * file_remove_privs - remove special file privileges (suid, capabilities)
2221  * @file: file to remove privileges from
2222  *
2223  * When file is modified by a write or truncation ensure that special
2224  * file privileges are removed.
2225  *
2226  * Return: 0 on success, negative errno on failure.
2227  */
file_remove_privs(struct file * file)2228 int file_remove_privs(struct file *file)
2229 {
2230 	return file_remove_privs_flags(file, 0);
2231 }
2232 EXPORT_SYMBOL(file_remove_privs);
2233 
2234 /**
2235  * current_time - Return FS time (possibly fine-grained)
2236  * @inode: inode.
2237  *
2238  * Return the current time truncated to the time granularity supported by
2239  * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2240  * as having been QUERIED, get a fine-grained timestamp, but don't update
2241  * the floor.
2242  *
2243  * For a multigrain inode, this is effectively an estimate of the timestamp
2244  * that a file would receive. An actual update must go through
2245  * inode_set_ctime_current().
2246  */
current_time(struct inode * inode)2247 struct timespec64 current_time(struct inode *inode)
2248 {
2249 	struct timespec64 now;
2250 	u32 cns;
2251 
2252 	ktime_get_coarse_real_ts64_mg(&now);
2253 
2254 	if (!is_mgtime(inode))
2255 		goto out;
2256 
2257 	/* If nothing has queried it, then coarse time is fine */
2258 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2259 	if (cns & I_CTIME_QUERIED) {
2260 		/*
2261 		 * If there is no apparent change, then get a fine-grained
2262 		 * timestamp.
2263 		 */
2264 		if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2265 			ktime_get_real_ts64(&now);
2266 	}
2267 out:
2268 	return timestamp_truncate(now, inode);
2269 }
2270 EXPORT_SYMBOL(current_time);
2271 
inode_needs_update_time(struct inode * inode)2272 static int inode_needs_update_time(struct inode *inode)
2273 {
2274 	struct timespec64 now, ts;
2275 	int sync_it = 0;
2276 
2277 	/* First try to exhaust all avenues to not sync */
2278 	if (IS_NOCMTIME(inode))
2279 		return 0;
2280 
2281 	now = current_time(inode);
2282 
2283 	ts = inode_get_mtime(inode);
2284 	if (!timespec64_equal(&ts, &now))
2285 		sync_it |= S_MTIME;
2286 
2287 	ts = inode_get_ctime(inode);
2288 	if (!timespec64_equal(&ts, &now))
2289 		sync_it |= S_CTIME;
2290 
2291 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2292 		sync_it |= S_VERSION;
2293 
2294 	return sync_it;
2295 }
2296 
__file_update_time(struct file * file,int sync_mode)2297 static int __file_update_time(struct file *file, int sync_mode)
2298 {
2299 	int ret = 0;
2300 	struct inode *inode = file_inode(file);
2301 
2302 	/* try to update time settings */
2303 	if (!mnt_get_write_access_file(file)) {
2304 		ret = inode_update_time(inode, sync_mode);
2305 		mnt_put_write_access_file(file);
2306 	}
2307 
2308 	return ret;
2309 }
2310 
2311 /**
2312  * file_update_time - update mtime and ctime time
2313  * @file: file accessed
2314  *
2315  * Update the mtime and ctime members of an inode and mark the inode for
2316  * writeback. Note that this function is meant exclusively for usage in
2317  * the file write path of filesystems, and filesystems may choose to
2318  * explicitly ignore updates via this function with the _NOCMTIME inode
2319  * flag, e.g. for network filesystem where these imestamps are handled
2320  * by the server. This can return an error for file systems who need to
2321  * allocate space in order to update an inode.
2322  *
2323  * Return: 0 on success, negative errno on failure.
2324  */
file_update_time(struct file * file)2325 int file_update_time(struct file *file)
2326 {
2327 	int ret;
2328 	struct inode *inode = file_inode(file);
2329 
2330 	ret = inode_needs_update_time(inode);
2331 	if (ret <= 0)
2332 		return ret;
2333 
2334 	return __file_update_time(file, ret);
2335 }
2336 EXPORT_SYMBOL(file_update_time);
2337 
2338 /**
2339  * file_modified_flags - handle mandated vfs changes when modifying a file
2340  * @file: file that was modified
2341  * @flags: kiocb flags
2342  *
2343  * When file has been modified ensure that special
2344  * file privileges are removed and time settings are updated.
2345  *
2346  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2347  * time settings will not be updated. It will return -EAGAIN.
2348  *
2349  * Context: Caller must hold the file's inode lock.
2350  *
2351  * Return: 0 on success, negative errno on failure.
2352  */
file_modified_flags(struct file * file,int flags)2353 static int file_modified_flags(struct file *file, int flags)
2354 {
2355 	int ret;
2356 	struct inode *inode = file_inode(file);
2357 
2358 	/*
2359 	 * Clear the security bits if the process is not being run by root.
2360 	 * This keeps people from modifying setuid and setgid binaries.
2361 	 */
2362 	ret = file_remove_privs_flags(file, flags);
2363 	if (ret)
2364 		return ret;
2365 
2366 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2367 		return 0;
2368 
2369 	ret = inode_needs_update_time(inode);
2370 	if (ret <= 0)
2371 		return ret;
2372 	if (flags & IOCB_NOWAIT)
2373 		return -EAGAIN;
2374 
2375 	return __file_update_time(file, ret);
2376 }
2377 
2378 /**
2379  * file_modified - handle mandated vfs changes when modifying a file
2380  * @file: file that was modified
2381  *
2382  * When file has been modified ensure that special
2383  * file privileges are removed and time settings are updated.
2384  *
2385  * Context: Caller must hold the file's inode lock.
2386  *
2387  * Return: 0 on success, negative errno on failure.
2388  */
file_modified(struct file * file)2389 int file_modified(struct file *file)
2390 {
2391 	return file_modified_flags(file, 0);
2392 }
2393 EXPORT_SYMBOL(file_modified);
2394 
2395 /**
2396  * kiocb_modified - handle mandated vfs changes when modifying a file
2397  * @iocb: iocb that was modified
2398  *
2399  * When file has been modified ensure that special
2400  * file privileges are removed and time settings are updated.
2401  *
2402  * Context: Caller must hold the file's inode lock.
2403  *
2404  * Return: 0 on success, negative errno on failure.
2405  */
kiocb_modified(struct kiocb * iocb)2406 int kiocb_modified(struct kiocb *iocb)
2407 {
2408 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2409 }
2410 EXPORT_SYMBOL_GPL(kiocb_modified);
2411 
inode_needs_sync(struct inode * inode)2412 int inode_needs_sync(struct inode *inode)
2413 {
2414 	if (IS_SYNC(inode))
2415 		return 1;
2416 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2417 		return 1;
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL(inode_needs_sync);
2421 
2422 /*
2423  * If we try to find an inode in the inode hash while it is being
2424  * deleted, we have to wait until the filesystem completes its
2425  * deletion before reporting that it isn't found.  This function waits
2426  * until the deletion _might_ have completed.  Callers are responsible
2427  * to recheck inode state.
2428  *
2429  * It doesn't matter if I_NEW is not set initially, a call to
2430  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2431  * will DTRT.
2432  */
__wait_on_freeing_inode(struct inode * inode,bool is_inode_hash_locked)2433 static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2434 {
2435 	struct wait_bit_queue_entry wqe;
2436 	struct wait_queue_head *wq_head;
2437 
2438 	/*
2439 	 * Handle racing against evict(), see that routine for more details.
2440 	 */
2441 	if (unlikely(inode_unhashed(inode))) {
2442 		WARN_ON(is_inode_hash_locked);
2443 		spin_unlock(&inode->i_lock);
2444 		return;
2445 	}
2446 
2447 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2448 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2449 	spin_unlock(&inode->i_lock);
2450 	rcu_read_unlock();
2451 	if (is_inode_hash_locked)
2452 		spin_unlock(&inode_hash_lock);
2453 	schedule();
2454 	finish_wait(wq_head, &wqe.wq_entry);
2455 	if (is_inode_hash_locked)
2456 		spin_lock(&inode_hash_lock);
2457 	rcu_read_lock();
2458 }
2459 
2460 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2461 static int __init set_ihash_entries(char *str)
2462 {
2463 	if (!str)
2464 		return 0;
2465 	ihash_entries = simple_strtoul(str, &str, 0);
2466 	return 1;
2467 }
2468 __setup("ihash_entries=", set_ihash_entries);
2469 
2470 /*
2471  * Initialize the waitqueues and inode hash table.
2472  */
inode_init_early(void)2473 void __init inode_init_early(void)
2474 {
2475 	/* If hashes are distributed across NUMA nodes, defer
2476 	 * hash allocation until vmalloc space is available.
2477 	 */
2478 	if (hashdist)
2479 		return;
2480 
2481 	inode_hashtable =
2482 		alloc_large_system_hash("Inode-cache",
2483 					sizeof(struct hlist_head),
2484 					ihash_entries,
2485 					14,
2486 					HASH_EARLY | HASH_ZERO,
2487 					&i_hash_shift,
2488 					&i_hash_mask,
2489 					0,
2490 					0);
2491 }
2492 
inode_init(void)2493 void __init inode_init(void)
2494 {
2495 	/* inode slab cache */
2496 	inode_cachep = kmem_cache_create("inode_cache",
2497 					 sizeof(struct inode),
2498 					 0,
2499 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2500 					 SLAB_ACCOUNT),
2501 					 init_once);
2502 
2503 	/* Hash may have been set up in inode_init_early */
2504 	if (!hashdist)
2505 		return;
2506 
2507 	inode_hashtable =
2508 		alloc_large_system_hash("Inode-cache",
2509 					sizeof(struct hlist_head),
2510 					ihash_entries,
2511 					14,
2512 					HASH_ZERO,
2513 					&i_hash_shift,
2514 					&i_hash_mask,
2515 					0,
2516 					0);
2517 }
2518 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2519 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2520 {
2521 	inode->i_mode = mode;
2522 	if (S_ISCHR(mode)) {
2523 		inode->i_fop = &def_chr_fops;
2524 		inode->i_rdev = rdev;
2525 	} else if (S_ISBLK(mode)) {
2526 		if (IS_ENABLED(CONFIG_BLOCK))
2527 			inode->i_fop = &def_blk_fops;
2528 		inode->i_rdev = rdev;
2529 	} else if (S_ISFIFO(mode))
2530 		inode->i_fop = &pipefifo_fops;
2531 	else if (S_ISSOCK(mode))
2532 		;	/* leave it no_open_fops */
2533 	else
2534 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2535 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2536 				  inode->i_ino);
2537 }
2538 EXPORT_SYMBOL(init_special_inode);
2539 
2540 /**
2541  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2542  * @idmap: idmap of the mount the inode was created from
2543  * @inode: New inode
2544  * @dir: Directory inode
2545  * @mode: mode of the new inode
2546  *
2547  * If the inode has been created through an idmapped mount the idmap of
2548  * the vfsmount must be passed through @idmap. This function will then take
2549  * care to map the inode according to @idmap before checking permissions
2550  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2551  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2552  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2553 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2554 		      const struct inode *dir, umode_t mode)
2555 {
2556 	inode_fsuid_set(inode, idmap);
2557 	if (dir && dir->i_mode & S_ISGID) {
2558 		inode->i_gid = dir->i_gid;
2559 
2560 		/* Directories are special, and always inherit S_ISGID */
2561 		if (S_ISDIR(mode))
2562 			mode |= S_ISGID;
2563 	} else
2564 		inode_fsgid_set(inode, idmap);
2565 	inode->i_mode = mode;
2566 }
2567 EXPORT_SYMBOL(inode_init_owner);
2568 
2569 /**
2570  * inode_owner_or_capable - check current task permissions to inode
2571  * @idmap: idmap of the mount the inode was found from
2572  * @inode: inode being checked
2573  *
2574  * Return true if current either has CAP_FOWNER in a namespace with the
2575  * inode owner uid mapped, or owns the file.
2576  *
2577  * If the inode has been found through an idmapped mount the idmap of
2578  * the vfsmount must be passed through @idmap. This function will then take
2579  * care to map the inode according to @idmap before checking permissions.
2580  * On non-idmapped mounts or if permission checking is to be performed on the
2581  * raw inode simply pass @nop_mnt_idmap.
2582  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2583 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2584 			    const struct inode *inode)
2585 {
2586 	vfsuid_t vfsuid;
2587 	struct user_namespace *ns;
2588 
2589 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2590 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2591 		return true;
2592 
2593 	ns = current_user_ns();
2594 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2595 		return true;
2596 	return false;
2597 }
2598 EXPORT_SYMBOL(inode_owner_or_capable);
2599 
2600 /*
2601  * Direct i/o helper functions
2602  */
inode_dio_finished(const struct inode * inode)2603 bool inode_dio_finished(const struct inode *inode)
2604 {
2605 	return atomic_read(&inode->i_dio_count) == 0;
2606 }
2607 EXPORT_SYMBOL(inode_dio_finished);
2608 
2609 /**
2610  * inode_dio_wait - wait for outstanding DIO requests to finish
2611  * @inode: inode to wait for
2612  *
2613  * Waits for all pending direct I/O requests to finish so that we can
2614  * proceed with a truncate or equivalent operation.
2615  *
2616  * Must be called under a lock that serializes taking new references
2617  * to i_dio_count, usually by inode->i_rwsem.
2618  */
inode_dio_wait(struct inode * inode)2619 void inode_dio_wait(struct inode *inode)
2620 {
2621 	wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2622 }
2623 EXPORT_SYMBOL(inode_dio_wait);
2624 
inode_dio_wait_interruptible(struct inode * inode)2625 void inode_dio_wait_interruptible(struct inode *inode)
2626 {
2627 	wait_var_event_interruptible(&inode->i_dio_count,
2628 				     inode_dio_finished(inode));
2629 }
2630 EXPORT_SYMBOL(inode_dio_wait_interruptible);
2631 
2632 /*
2633  * inode_set_flags - atomically set some inode flags
2634  *
2635  * Note: the caller should be holding i_rwsem exclusively, or else be sure that
2636  * they have exclusive access to the inode structure (i.e., while the
2637  * inode is being instantiated).  The reason for the cmpxchg() loop
2638  * --- which wouldn't be necessary if all code paths which modify
2639  * i_flags actually followed this rule, is that there is at least one
2640  * code path which doesn't today so we use cmpxchg() out of an abundance
2641  * of caution.
2642  *
2643  * In the long run, i_rwsem is overkill, and we should probably look
2644  * at using the i_lock spinlock to protect i_flags, and then make sure
2645  * it is so documented in include/linux/fs.h and that all code follows
2646  * the locking convention!!
2647  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2648 void inode_set_flags(struct inode *inode, unsigned int flags,
2649 		     unsigned int mask)
2650 {
2651 	WARN_ON_ONCE(flags & ~mask);
2652 	set_mask_bits(&inode->i_flags, mask, flags);
2653 }
2654 EXPORT_SYMBOL(inode_set_flags);
2655 
inode_nohighmem(struct inode * inode)2656 void inode_nohighmem(struct inode *inode)
2657 {
2658 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2659 }
2660 EXPORT_SYMBOL(inode_nohighmem);
2661 
inode_set_ctime_to_ts(struct inode * inode,struct timespec64 ts)2662 struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2663 {
2664 	trace_inode_set_ctime_to_ts(inode, &ts);
2665 	set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec);
2666 	inode->i_ctime_sec = ts.tv_sec;
2667 	inode->i_ctime_nsec = ts.tv_nsec;
2668 	return ts;
2669 }
2670 EXPORT_SYMBOL(inode_set_ctime_to_ts);
2671 
2672 /**
2673  * timestamp_truncate - Truncate timespec to a granularity
2674  * @t: Timespec
2675  * @inode: inode being updated
2676  *
2677  * Truncate a timespec to the granularity supported by the fs
2678  * containing the inode. Always rounds down. gran must
2679  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2680  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2681 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2682 {
2683 	struct super_block *sb = inode->i_sb;
2684 	unsigned int gran = sb->s_time_gran;
2685 
2686 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2687 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2688 		t.tv_nsec = 0;
2689 
2690 	/* Avoid division in the common cases 1 ns and 1 s. */
2691 	if (gran == 1)
2692 		; /* nothing */
2693 	else if (gran == NSEC_PER_SEC)
2694 		t.tv_nsec = 0;
2695 	else if (gran > 1 && gran < NSEC_PER_SEC)
2696 		t.tv_nsec -= t.tv_nsec % gran;
2697 	else
2698 		WARN(1, "invalid file time granularity: %u", gran);
2699 	return t;
2700 }
2701 EXPORT_SYMBOL(timestamp_truncate);
2702 
2703 /**
2704  * inode_set_ctime_current - set the ctime to current_time
2705  * @inode: inode
2706  *
2707  * Set the inode's ctime to the current value for the inode. Returns the
2708  * current value that was assigned. If this is not a multigrain inode, then we
2709  * set it to the later of the coarse time and floor value.
2710  *
2711  * If it is multigrain, then we first see if the coarse-grained timestamp is
2712  * distinct from what is already there. If so, then use that. Otherwise, get a
2713  * fine-grained timestamp.
2714  *
2715  * After that, try to swap the new value into i_ctime_nsec. Accept the
2716  * resulting ctime, regardless of the outcome of the swap. If it has
2717  * already been replaced, then that timestamp is later than the earlier
2718  * unacceptable one, and is thus acceptable.
2719  */
inode_set_ctime_current(struct inode * inode)2720 struct timespec64 inode_set_ctime_current(struct inode *inode)
2721 {
2722 	struct timespec64 now;
2723 	u32 cns, cur;
2724 
2725 	ktime_get_coarse_real_ts64_mg(&now);
2726 	now = timestamp_truncate(now, inode);
2727 
2728 	/* Just return that if this is not a multigrain fs */
2729 	if (!is_mgtime(inode)) {
2730 		inode_set_ctime_to_ts(inode, now);
2731 		goto out;
2732 	}
2733 
2734 	/*
2735 	 * A fine-grained time is only needed if someone has queried
2736 	 * for timestamps, and the current coarse grained time isn't
2737 	 * later than what's already there.
2738 	 */
2739 	cns = smp_load_acquire(&inode->i_ctime_nsec);
2740 	if (cns & I_CTIME_QUERIED) {
2741 		struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2742 					    .tv_nsec = cns & ~I_CTIME_QUERIED };
2743 
2744 		if (timespec64_compare(&now, &ctime) <= 0) {
2745 			ktime_get_real_ts64_mg(&now);
2746 			now = timestamp_truncate(now, inode);
2747 			mgtime_counter_inc(mg_fine_stamps);
2748 		}
2749 	}
2750 	mgtime_counter_inc(mg_ctime_updates);
2751 
2752 	/* No need to cmpxchg if it's exactly the same */
2753 	if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2754 		trace_ctime_xchg_skip(inode, &now);
2755 		goto out;
2756 	}
2757 	cur = cns;
2758 retry:
2759 	/* Try to swap the nsec value into place. */
2760 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2761 		/* If swap occurred, then we're (mostly) done */
2762 		inode->i_ctime_sec = now.tv_sec;
2763 		trace_ctime_ns_xchg(inode, cns, now.tv_nsec, cur);
2764 		mgtime_counter_inc(mg_ctime_swaps);
2765 	} else {
2766 		/*
2767 		 * Was the change due to someone marking the old ctime QUERIED?
2768 		 * If so then retry the swap. This can only happen once since
2769 		 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2770 		 * with a new ctime.
2771 		 */
2772 		if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2773 			cns = cur;
2774 			goto retry;
2775 		}
2776 		/* Otherwise, keep the existing ctime */
2777 		now.tv_sec = inode->i_ctime_sec;
2778 		now.tv_nsec = cur & ~I_CTIME_QUERIED;
2779 	}
2780 out:
2781 	return now;
2782 }
2783 EXPORT_SYMBOL(inode_set_ctime_current);
2784 
2785 /**
2786  * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2787  * @inode: inode to update
2788  * @update: timespec64 to set the ctime
2789  *
2790  * Attempt to atomically update the ctime on behalf of a delegation holder.
2791  *
2792  * The nfs server can call back the holder of a delegation to get updated
2793  * inode attributes, including the mtime. When updating the mtime, update
2794  * the ctime to a value at least equal to that.
2795  *
2796  * This can race with concurrent updates to the inode, in which
2797  * case the update is skipped.
2798  *
2799  * Note that this works even when multigrain timestamps are not enabled,
2800  * so it is used in either case.
2801  */
inode_set_ctime_deleg(struct inode * inode,struct timespec64 update)2802 struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2803 {
2804 	struct timespec64 now, cur_ts;
2805 	u32 cur, old;
2806 
2807 	/* pairs with try_cmpxchg below */
2808 	cur = smp_load_acquire(&inode->i_ctime_nsec);
2809 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2810 	cur_ts.tv_sec = inode->i_ctime_sec;
2811 
2812 	/* If the update is older than the existing value, skip it. */
2813 	if (timespec64_compare(&update, &cur_ts) <= 0)
2814 		return cur_ts;
2815 
2816 	ktime_get_coarse_real_ts64_mg(&now);
2817 
2818 	/* Clamp the update to "now" if it's in the future */
2819 	if (timespec64_compare(&update, &now) > 0)
2820 		update = now;
2821 
2822 	update = timestamp_truncate(update, inode);
2823 
2824 	/* No need to update if the values are already the same */
2825 	if (timespec64_equal(&update, &cur_ts))
2826 		return cur_ts;
2827 
2828 	/*
2829 	 * Try to swap the nsec value into place. If it fails, that means
2830 	 * it raced with an update due to a write or similar activity. That
2831 	 * stamp takes precedence, so just skip the update.
2832 	 */
2833 retry:
2834 	old = cur;
2835 	if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2836 		inode->i_ctime_sec = update.tv_sec;
2837 		mgtime_counter_inc(mg_ctime_swaps);
2838 		return update;
2839 	}
2840 
2841 	/*
2842 	 * Was the change due to another task marking the old ctime QUERIED?
2843 	 *
2844 	 * If so, then retry the swap. This can only happen once since
2845 	 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2846 	 * with a new ctime.
2847 	 */
2848 	if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2849 		goto retry;
2850 
2851 	/* Otherwise, it was a new timestamp. */
2852 	cur_ts.tv_sec = inode->i_ctime_sec;
2853 	cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2854 	return cur_ts;
2855 }
2856 EXPORT_SYMBOL(inode_set_ctime_deleg);
2857 
2858 /**
2859  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2860  * @idmap:	idmap of the mount @inode was found from
2861  * @inode:	inode to check
2862  * @vfsgid:	the new/current vfsgid of @inode
2863  *
2864  * Check whether @vfsgid is in the caller's group list or if the caller is
2865  * privileged with CAP_FSETID over @inode. This can be used to determine
2866  * whether the setgid bit can be kept or must be dropped.
2867  *
2868  * Return: true if the caller is sufficiently privileged, false if not.
2869  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2870 bool in_group_or_capable(struct mnt_idmap *idmap,
2871 			 const struct inode *inode, vfsgid_t vfsgid)
2872 {
2873 	if (vfsgid_in_group_p(vfsgid))
2874 		return true;
2875 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2876 		return true;
2877 	return false;
2878 }
2879 EXPORT_SYMBOL(in_group_or_capable);
2880 
2881 /**
2882  * mode_strip_sgid - handle the sgid bit for non-directories
2883  * @idmap: idmap of the mount the inode was created from
2884  * @dir: parent directory inode
2885  * @mode: mode of the file to be created in @dir
2886  *
2887  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2888  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2889  * either in the group of the parent directory or they have CAP_FSETID
2890  * in their user namespace and are privileged over the parent directory.
2891  * In all other cases, strip the S_ISGID bit from @mode.
2892  *
2893  * Return: the new mode to use for the file
2894  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2895 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2896 			const struct inode *dir, umode_t mode)
2897 {
2898 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2899 		return mode;
2900 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2901 		return mode;
2902 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2903 		return mode;
2904 	return mode & ~S_ISGID;
2905 }
2906 EXPORT_SYMBOL(mode_strip_sgid);
2907 
2908 #ifdef CONFIG_DEBUG_VFS
2909 /*
2910  * Dump an inode.
2911  *
2912  * TODO: add a proper inode dumping routine, this is a stub to get debug off the
2913  * ground.
2914  */
dump_inode(struct inode * inode,const char * reason)2915 void dump_inode(struct inode *inode, const char *reason)
2916 {
2917        pr_warn("%s encountered for inode %px", reason, inode);
2918 }
2919 
2920 EXPORT_SYMBOL(dump_inode);
2921 #endif
2922