xref: /linux/arch/x86/kernel/alternative.c (revision a6923c06a3b2e2c534ae28c53a7531e76cc95cfa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/mmu_context.h>
5 #include <linux/perf_event.h>
6 #include <linux/vmalloc.h>
7 #include <linux/memory.h>
8 #include <linux/execmem.h>
9 
10 #include <asm/text-patching.h>
11 #include <asm/insn.h>
12 #include <asm/ibt.h>
13 #include <asm/set_memory.h>
14 #include <asm/nmi.h>
15 
16 int __read_mostly alternatives_patched;
17 
18 EXPORT_SYMBOL_GPL(alternatives_patched);
19 
20 #define MAX_PATCH_LEN (255-1)
21 
22 #define DA_ALL		(~0)
23 #define DA_ALT		0x01
24 #define DA_RET		0x02
25 #define DA_RETPOLINE	0x04
26 #define DA_ENDBR	0x08
27 #define DA_SMP		0x10
28 
29 static unsigned int debug_alternative;
30 
debug_alt(char * str)31 static int __init debug_alt(char *str)
32 {
33 	if (str && *str == '=')
34 		str++;
35 
36 	if (!str || kstrtouint(str, 0, &debug_alternative))
37 		debug_alternative = DA_ALL;
38 
39 	return 1;
40 }
41 __setup("debug-alternative", debug_alt);
42 
43 static int noreplace_smp;
44 
setup_noreplace_smp(char * str)45 static int __init setup_noreplace_smp(char *str)
46 {
47 	noreplace_smp = 1;
48 	return 1;
49 }
50 __setup("noreplace-smp", setup_noreplace_smp);
51 
52 #define DPRINTK(type, fmt, args...)					\
53 do {									\
54 	if (debug_alternative & DA_##type)				\
55 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
56 } while (0)
57 
58 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
59 do {									\
60 	if (unlikely(debug_alternative & DA_##type)) {			\
61 		int j;							\
62 									\
63 		if (!(len))						\
64 			break;						\
65 									\
66 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
67 		for (j = 0; j < (len) - 1; j++)				\
68 			printk(KERN_CONT "%02hhx ", buf[j]);		\
69 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
70 	}								\
71 } while (0)
72 
73 static const unsigned char x86nops[] =
74 {
75 	BYTES_NOP1,
76 	BYTES_NOP2,
77 	BYTES_NOP3,
78 	BYTES_NOP4,
79 	BYTES_NOP5,
80 	BYTES_NOP6,
81 	BYTES_NOP7,
82 	BYTES_NOP8,
83 #ifdef CONFIG_64BIT
84 	BYTES_NOP9,
85 	BYTES_NOP10,
86 	BYTES_NOP11,
87 #endif
88 };
89 
90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
91 {
92 	NULL,
93 	x86nops,
94 	x86nops + 1,
95 	x86nops + 1 + 2,
96 	x86nops + 1 + 2 + 3,
97 	x86nops + 1 + 2 + 3 + 4,
98 	x86nops + 1 + 2 + 3 + 4 + 5,
99 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
101 #ifdef CONFIG_64BIT
102 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
104 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
105 #endif
106 };
107 
108 #ifdef CONFIG_FINEIBT
109 static bool cfi_paranoid __ro_after_init;
110 #endif
111 
112 #ifdef CONFIG_MITIGATION_ITS
113 
114 #ifdef CONFIG_MODULES
115 static struct module *its_mod;
116 #endif
117 static void *its_page;
118 static unsigned int its_offset;
119 struct its_array its_pages;
120 
__its_alloc(struct its_array * pages)121 static void *__its_alloc(struct its_array *pages)
122 {
123 	void *page __free(execmem) = execmem_alloc(EXECMEM_MODULE_TEXT, PAGE_SIZE);
124 	if (!page)
125 		return NULL;
126 
127 	void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
128 			     GFP_KERNEL);
129 	if (!tmp)
130 		return NULL;
131 
132 	pages->pages = tmp;
133 	pages->pages[pages->num++] = page;
134 
135 	return no_free_ptr(page);
136 }
137 
138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
its_init_thunk(void * thunk,int reg)139 static void *its_init_thunk(void *thunk, int reg)
140 {
141 	u8 *bytes = thunk;
142 	int offset = 0;
143 	int i = 0;
144 
145 #ifdef CONFIG_FINEIBT
146 	if (cfi_paranoid) {
147 		/*
148 		 * When ITS uses indirect branch thunk the fineibt_paranoid
149 		 * caller sequence doesn't fit in the caller site. So put the
150 		 * remaining part of the sequence (<ea> + JNE) into the ITS
151 		 * thunk.
152 		 */
153 		bytes[i++] = 0xea; /* invalid instruction */
154 		bytes[i++] = 0x75; /* JNE */
155 		bytes[i++] = 0xfd;
156 
157 		offset = 1;
158 	}
159 #endif
160 
161 	if (reg >= 8) {
162 		bytes[i++] = 0x41; /* REX.B prefix */
163 		reg -= 8;
164 	}
165 	bytes[i++] = 0xff;
166 	bytes[i++] = 0xe0 + reg; /* jmp *reg */
167 	bytes[i++] = 0xcc;
168 
169 	return thunk + offset;
170 }
171 
its_pages_protect(struct its_array * pages)172 static void its_pages_protect(struct its_array *pages)
173 {
174 	for (int i = 0; i < pages->num; i++) {
175 		void *page = pages->pages[i];
176 		execmem_restore_rox(page, PAGE_SIZE);
177 	}
178 }
179 
its_fini_core(void)180 static void its_fini_core(void)
181 {
182 	if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
183 		its_pages_protect(&its_pages);
184 	kfree(its_pages.pages);
185 }
186 
187 #ifdef CONFIG_MODULES
its_init_mod(struct module * mod)188 void its_init_mod(struct module *mod)
189 {
190 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
191 		return;
192 
193 	mutex_lock(&text_mutex);
194 	its_mod = mod;
195 	its_page = NULL;
196 }
197 
its_fini_mod(struct module * mod)198 void its_fini_mod(struct module *mod)
199 {
200 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
201 		return;
202 
203 	WARN_ON_ONCE(its_mod != mod);
204 
205 	its_mod = NULL;
206 	its_page = NULL;
207 	mutex_unlock(&text_mutex);
208 
209 	if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
210 		its_pages_protect(&mod->arch.its_pages);
211 }
212 
its_free_mod(struct module * mod)213 void its_free_mod(struct module *mod)
214 {
215 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
216 		return;
217 
218 	for (int i = 0; i < mod->arch.its_pages.num; i++) {
219 		void *page = mod->arch.its_pages.pages[i];
220 		execmem_free(page);
221 	}
222 	kfree(mod->arch.its_pages.pages);
223 }
224 #endif /* CONFIG_MODULES */
225 
its_alloc(void)226 static void *its_alloc(void)
227 {
228 	struct its_array *pages = &its_pages;
229 	void *page;
230 
231 #ifdef CONFIG_MODULES
232 	if (its_mod)
233 		pages = &its_mod->arch.its_pages;
234 #endif
235 
236 	page = __its_alloc(pages);
237 	if (!page)
238 		return NULL;
239 
240 	execmem_make_temp_rw(page, PAGE_SIZE);
241 	if (pages == &its_pages)
242 		set_memory_x((unsigned long)page, 1);
243 
244 	return page;
245 }
246 
its_allocate_thunk(int reg)247 static void *its_allocate_thunk(int reg)
248 {
249 	int size = 3 + (reg / 8);
250 	void *thunk;
251 
252 #ifdef CONFIG_FINEIBT
253 	/*
254 	 * The ITS thunk contains an indirect jump and an int3 instruction so
255 	 * its size is 3 or 4 bytes depending on the register used. If CFI
256 	 * paranoid is used then 3 extra bytes are added in the ITS thunk to
257 	 * complete the fineibt_paranoid caller sequence.
258 	 */
259 	if (cfi_paranoid)
260 		size += 3;
261 #endif
262 
263 	if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
264 		its_page = its_alloc();
265 		if (!its_page) {
266 			pr_err("ITS page allocation failed\n");
267 			return NULL;
268 		}
269 		memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
270 		its_offset = 32;
271 	}
272 
273 	/*
274 	 * If the indirect branch instruction will be in the lower half
275 	 * of a cacheline, then update the offset to reach the upper half.
276 	 */
277 	if ((its_offset + size - 1) % 64 < 32)
278 		its_offset = ((its_offset - 1) | 0x3F) + 33;
279 
280 	thunk = its_page + its_offset;
281 	its_offset += size;
282 
283 	return its_init_thunk(thunk, reg);
284 }
285 
its_static_thunk(int reg)286 u8 *its_static_thunk(int reg)
287 {
288 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
289 
290 #ifdef CONFIG_FINEIBT
291 	/* Paranoid thunk starts 2 bytes before */
292 	if (cfi_paranoid)
293 		return thunk - 2;
294 #endif
295 	return thunk;
296 }
297 
298 #else
its_fini_core(void)299 static inline void its_fini_core(void) {}
300 #endif /* CONFIG_MITIGATION_ITS */
301 
302 /*
303  * Nomenclature for variable names to simplify and clarify this code and ease
304  * any potential staring at it:
305  *
306  * @instr: source address of the original instructions in the kernel text as
307  * generated by the compiler.
308  *
309  * @buf: temporary buffer on which the patching operates. This buffer is
310  * eventually text-poked into the kernel image.
311  *
312  * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
313  * in the .altinstr_replacement section.
314  */
315 
316 /*
317  * Fill the buffer with a single effective instruction of size @len.
318  *
319  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
320  * for every single-byte NOP, try to generate the maximally available NOP of
321  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
322  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
323  * *jump* over instead of executing long and daft NOPs.
324  */
add_nop(u8 * buf,unsigned int len)325 static void add_nop(u8 *buf, unsigned int len)
326 {
327 	u8 *target = buf + len;
328 
329 	if (!len)
330 		return;
331 
332 	if (len <= ASM_NOP_MAX) {
333 		memcpy(buf, x86_nops[len], len);
334 		return;
335 	}
336 
337 	if (len < 128) {
338 		__text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
339 		buf += JMP8_INSN_SIZE;
340 	} else {
341 		__text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
342 		buf += JMP32_INSN_SIZE;
343 	}
344 
345 	for (;buf < target; buf++)
346 		*buf = INT3_INSN_OPCODE;
347 }
348 
349 /*
350  * Matches NOP and NOPL, not any of the other possible NOPs.
351  */
insn_is_nop(struct insn * insn)352 static bool insn_is_nop(struct insn *insn)
353 {
354 	/* Anything NOP, but no REP NOP */
355 	if (insn->opcode.bytes[0] == 0x90 &&
356 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
357 		return true;
358 
359 	/* NOPL */
360 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
361 		return true;
362 
363 	/* TODO: more nops */
364 
365 	return false;
366 }
367 
368 /*
369  * Find the offset of the first non-NOP instruction starting at @offset
370  * but no further than @len.
371  */
skip_nops(u8 * buf,int offset,int len)372 static int skip_nops(u8 *buf, int offset, int len)
373 {
374 	struct insn insn;
375 
376 	for (; offset < len; offset += insn.length) {
377 		if (insn_decode_kernel(&insn, &buf[offset]))
378 			break;
379 
380 		if (!insn_is_nop(&insn))
381 			break;
382 	}
383 
384 	return offset;
385 }
386 
387 /*
388  * "noinline" to cause control flow change and thus invalidate I$ and
389  * cause refetch after modification.
390  */
optimize_nops(const u8 * const instr,u8 * buf,size_t len)391 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
392 {
393 	for (int next, i = 0; i < len; i = next) {
394 		struct insn insn;
395 
396 		if (insn_decode_kernel(&insn, &buf[i]))
397 			return;
398 
399 		next = i + insn.length;
400 
401 		if (insn_is_nop(&insn)) {
402 			int nop = i;
403 
404 			/* Has the NOP already been optimized? */
405 			if (i + insn.length == len)
406 				return;
407 
408 			next = skip_nops(buf, next, len);
409 
410 			add_nop(buf + nop, next - nop);
411 			DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
412 		}
413 	}
414 }
415 
416 /*
417  * In this context, "source" is where the instructions are placed in the
418  * section .altinstr_replacement, for example during kernel build by the
419  * toolchain.
420  * "Destination" is where the instructions are being patched in by this
421  * machinery.
422  *
423  * The source offset is:
424  *
425  *   src_imm = target - src_next_ip                  (1)
426  *
427  * and the target offset is:
428  *
429  *   dst_imm = target - dst_next_ip                  (2)
430  *
431  * so rework (1) as an expression for target like:
432  *
433  *   target = src_imm + src_next_ip                  (1a)
434  *
435  * and substitute in (2) to get:
436  *
437  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
438  *
439  * Now, since the instruction stream is 'identical' at src and dst (it
440  * is being copied after all) it can be stated that:
441  *
442  *   src_next_ip = src + ip_offset
443  *   dst_next_ip = dst + ip_offset                   (4)
444  *
445  * Substitute (4) in (3) and observe ip_offset being cancelled out to
446  * obtain:
447  *
448  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
449  *           = src_imm + src - dst + ip_offset - ip_offset
450  *           = src_imm + src - dst                   (5)
451  *
452  * IOW, only the relative displacement of the code block matters.
453  */
454 
455 #define apply_reloc_n(n_, p_, d_)				\
456 	do {							\
457 		s32 v = *(s##n_ *)(p_);				\
458 		v += (d_);					\
459 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
460 		*(s##n_ *)(p_) = (s##n_)v;			\
461 	} while (0)
462 
463 
464 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)465 void apply_reloc(int n, void *ptr, uintptr_t diff)
466 {
467 	switch (n) {
468 	case 1: apply_reloc_n(8, ptr, diff); break;
469 	case 2: apply_reloc_n(16, ptr, diff); break;
470 	case 4: apply_reloc_n(32, ptr, diff); break;
471 	default: BUG();
472 	}
473 }
474 
475 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)476 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
477 {
478 	u8 *target = src + offset;
479 	/*
480 	 * If the target is inside the patched block, it's relative to the
481 	 * block itself and does not need relocation.
482 	 */
483 	return (target < src || target > src + src_len);
484 }
485 
__apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)486 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
487 {
488 	for (int next, i = 0; i < instrlen; i = next) {
489 		struct insn insn;
490 
491 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
492 			return;
493 
494 		next = i + insn.length;
495 
496 		switch (insn.opcode.bytes[0]) {
497 		case 0x0f:
498 			if (insn.opcode.bytes[1] < 0x80 ||
499 			    insn.opcode.bytes[1] > 0x8f)
500 				break;
501 
502 			fallthrough;	/* Jcc.d32 */
503 		case 0x70 ... 0x7f:	/* Jcc.d8 */
504 		case JMP8_INSN_OPCODE:
505 		case JMP32_INSN_OPCODE:
506 		case CALL_INSN_OPCODE:
507 			if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
508 				apply_reloc(insn.immediate.nbytes,
509 					    buf + i + insn_offset_immediate(&insn),
510 					    repl - instr);
511 			}
512 
513 			/*
514 			 * Where possible, convert JMP.d32 into JMP.d8.
515 			 */
516 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
517 				s32 imm = insn.immediate.value;
518 				imm += repl - instr;
519 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
520 				if ((imm >> 31) == (imm >> 7)) {
521 					buf[i+0] = JMP8_INSN_OPCODE;
522 					buf[i+1] = (s8)imm;
523 
524 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
525 				}
526 			}
527 			break;
528 		}
529 
530 		if (insn_rip_relative(&insn)) {
531 			if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
532 				apply_reloc(insn.displacement.nbytes,
533 					    buf + i + insn_offset_displacement(&insn),
534 					    repl - instr);
535 			}
536 		}
537 	}
538 }
539 
text_poke_apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)540 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
541 {
542 	__apply_relocation(buf, instr, instrlen, repl, repl_len);
543 	optimize_nops(instr, buf, instrlen);
544 }
545 
546 /* Low-level backend functions usable from alternative code replacements. */
547 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
548 EXPORT_SYMBOL_GPL(nop_func);
549 
BUG_func(void)550 noinstr void BUG_func(void)
551 {
552 	BUG();
553 }
554 EXPORT_SYMBOL(BUG_func);
555 
556 #define CALL_RIP_REL_OPCODE	0xff
557 #define CALL_RIP_REL_MODRM	0x15
558 
559 /*
560  * Rewrite the "call BUG_func" replacement to point to the target of the
561  * indirect pv_ops call "call *disp(%ip)".
562  */
alt_replace_call(u8 * instr,u8 * insn_buff,struct alt_instr * a)563 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
564 {
565 	void *target, *bug = &BUG_func;
566 	s32 disp;
567 
568 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
569 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
570 		BUG();
571 	}
572 
573 	if (a->instrlen != 6 ||
574 	    instr[0] != CALL_RIP_REL_OPCODE ||
575 	    instr[1] != CALL_RIP_REL_MODRM) {
576 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
577 		BUG();
578 	}
579 
580 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
581 	disp = *(s32 *)(instr + 2);
582 #ifdef CONFIG_X86_64
583 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
584 	/* target address is stored at "next instruction + disp". */
585 	target = *(void **)(instr + a->instrlen + disp);
586 #else
587 	/* ff 15 00 00 00 00   call   *0x0 */
588 	/* target address is stored at disp. */
589 	target = *(void **)disp;
590 #endif
591 	if (!target)
592 		target = bug;
593 
594 	/* (BUG_func - .) + (target - BUG_func) := target - . */
595 	*(s32 *)(insn_buff + 1) += target - bug;
596 
597 	if (target == &nop_func)
598 		return 0;
599 
600 	return 5;
601 }
602 
instr_va(struct alt_instr * i)603 static inline u8 * instr_va(struct alt_instr *i)
604 {
605 	return (u8 *)&i->instr_offset + i->instr_offset;
606 }
607 
608 /*
609  * Replace instructions with better alternatives for this CPU type. This runs
610  * before SMP is initialized to avoid SMP problems with self modifying code.
611  * This implies that asymmetric systems where APs have less capabilities than
612  * the boot processor are not handled. Tough. Make sure you disable such
613  * features by hand.
614  *
615  * Marked "noinline" to cause control flow change and thus insn cache
616  * to refetch changed I$ lines.
617  */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)618 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
619 						  struct alt_instr *end)
620 {
621 	u8 insn_buff[MAX_PATCH_LEN];
622 	u8 *instr, *replacement;
623 	struct alt_instr *a, *b;
624 
625 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
626 
627 	/*
628 	 * KASAN_SHADOW_START is defined using
629 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
630 	 * During the process, KASAN becomes confused seeing partial LA57
631 	 * conversion and triggers a false-positive out-of-bound report.
632 	 *
633 	 * Disable KASAN until the patching is complete.
634 	 */
635 	kasan_disable_current();
636 
637 	/*
638 	 * The scan order should be from start to end. A later scanned
639 	 * alternative code can overwrite previously scanned alternative code.
640 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
641 	 * patch code.
642 	 *
643 	 * So be careful if you want to change the scan order to any other
644 	 * order.
645 	 */
646 	for (a = start; a < end; a++) {
647 		int insn_buff_sz = 0;
648 
649 		/*
650 		 * In case of nested ALTERNATIVE()s the outer alternative might
651 		 * add more padding. To ensure consistent patching find the max
652 		 * padding for all alt_instr entries for this site (nested
653 		 * alternatives result in consecutive entries).
654 		 */
655 		for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
656 			u8 len = max(a->instrlen, b->instrlen);
657 			a->instrlen = b->instrlen = len;
658 		}
659 
660 		instr = instr_va(a);
661 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
662 		BUG_ON(a->instrlen > sizeof(insn_buff));
663 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
664 
665 		/*
666 		 * Patch if either:
667 		 * - feature is present
668 		 * - feature not present but ALT_FLAG_NOT is set to mean,
669 		 *   patch if feature is *NOT* present.
670 		 */
671 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
672 			memcpy(insn_buff, instr, a->instrlen);
673 			optimize_nops(instr, insn_buff, a->instrlen);
674 			text_poke_early(instr, insn_buff, a->instrlen);
675 			continue;
676 		}
677 
678 		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
679 			a->cpuid >> 5,
680 			a->cpuid & 0x1f,
681 			instr, instr, a->instrlen,
682 			replacement, a->replacementlen, a->flags);
683 
684 		memcpy(insn_buff, replacement, a->replacementlen);
685 		insn_buff_sz = a->replacementlen;
686 
687 		if (a->flags & ALT_FLAG_DIRECT_CALL) {
688 			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
689 			if (insn_buff_sz < 0)
690 				continue;
691 		}
692 
693 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
694 			insn_buff[insn_buff_sz] = 0x90;
695 
696 		text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
697 
698 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
699 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
700 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
701 
702 		text_poke_early(instr, insn_buff, insn_buff_sz);
703 	}
704 
705 	kasan_enable_current();
706 }
707 
is_jcc32(struct insn * insn)708 static inline bool is_jcc32(struct insn *insn)
709 {
710 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
711 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
712 }
713 
714 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
715 
716 /*
717  * CALL/JMP *%\reg
718  */
emit_indirect(int op,int reg,u8 * bytes)719 static int emit_indirect(int op, int reg, u8 *bytes)
720 {
721 	int i = 0;
722 	u8 modrm;
723 
724 	switch (op) {
725 	case CALL_INSN_OPCODE:
726 		modrm = 0x10; /* Reg = 2; CALL r/m */
727 		break;
728 
729 	case JMP32_INSN_OPCODE:
730 		modrm = 0x20; /* Reg = 4; JMP r/m */
731 		break;
732 
733 	default:
734 		WARN_ON_ONCE(1);
735 		return -1;
736 	}
737 
738 	if (reg >= 8) {
739 		bytes[i++] = 0x41; /* REX.B prefix */
740 		reg -= 8;
741 	}
742 
743 	modrm |= 0xc0; /* Mod = 3 */
744 	modrm += reg;
745 
746 	bytes[i++] = 0xff; /* opcode */
747 	bytes[i++] = modrm;
748 
749 	return i;
750 }
751 
__emit_trampoline(void * addr,struct insn * insn,u8 * bytes,void * call_dest,void * jmp_dest)752 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
753 			     void *call_dest, void *jmp_dest)
754 {
755 	u8 op = insn->opcode.bytes[0];
756 	int i = 0;
757 
758 	/*
759 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
760 	 * tail-calls. Deal with them.
761 	 */
762 	if (is_jcc32(insn)) {
763 		bytes[i++] = op;
764 		op = insn->opcode.bytes[1];
765 		goto clang_jcc;
766 	}
767 
768 	if (insn->length == 6)
769 		bytes[i++] = 0x2e; /* CS-prefix */
770 
771 	switch (op) {
772 	case CALL_INSN_OPCODE:
773 		__text_gen_insn(bytes+i, op, addr+i,
774 				call_dest,
775 				CALL_INSN_SIZE);
776 		i += CALL_INSN_SIZE;
777 		break;
778 
779 	case JMP32_INSN_OPCODE:
780 clang_jcc:
781 		__text_gen_insn(bytes+i, op, addr+i,
782 				jmp_dest,
783 				JMP32_INSN_SIZE);
784 		i += JMP32_INSN_SIZE;
785 		break;
786 
787 	default:
788 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
789 		return -1;
790 	}
791 
792 	WARN_ON_ONCE(i != insn->length);
793 
794 	return i;
795 }
796 
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)797 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
798 {
799 	return __emit_trampoline(addr, insn, bytes,
800 				 __x86_indirect_call_thunk_array[reg],
801 				 __x86_indirect_jump_thunk_array[reg]);
802 }
803 
804 #ifdef CONFIG_MITIGATION_ITS
emit_its_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)805 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
806 {
807 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
808 	u8 *tmp = its_allocate_thunk(reg);
809 
810 	if (tmp)
811 		thunk = tmp;
812 
813 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
814 }
815 
816 /* Check if an indirect branch is at ITS-unsafe address */
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)817 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
818 {
819 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
820 		return false;
821 
822 	/* Indirect branch opcode is 2 or 3 bytes depending on reg */
823 	addr += 1 + reg / 8;
824 
825 	/* Lower-half of the cacheline? */
826 	return !(addr & 0x20);
827 }
828 #else /* CONFIG_MITIGATION_ITS */
829 
830 #ifdef CONFIG_FINEIBT
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)831 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
832 {
833 	return false;
834 }
835 #endif
836 
837 #endif /* CONFIG_MITIGATION_ITS */
838 
839 /*
840  * Rewrite the compiler generated retpoline thunk calls.
841  *
842  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
843  * indirect instructions, avoiding the extra indirection.
844  *
845  * For example, convert:
846  *
847  *   CALL __x86_indirect_thunk_\reg
848  *
849  * into:
850  *
851  *   CALL *%\reg
852  *
853  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
854  */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)855 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
856 {
857 	retpoline_thunk_t *target;
858 	int reg, ret, i = 0;
859 	u8 op, cc;
860 
861 	target = addr + insn->length + insn->immediate.value;
862 	reg = target - __x86_indirect_thunk_array;
863 
864 	if (WARN_ON_ONCE(reg & ~0xf))
865 		return -1;
866 
867 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
868 	BUG_ON(reg == 4);
869 
870 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
871 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
872 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
873 			return emit_call_track_retpoline(addr, insn, reg, bytes);
874 
875 		return -1;
876 	}
877 
878 	op = insn->opcode.bytes[0];
879 
880 	/*
881 	 * Convert:
882 	 *
883 	 *   Jcc.d32 __x86_indirect_thunk_\reg
884 	 *
885 	 * into:
886 	 *
887 	 *   Jncc.d8 1f
888 	 *   [ LFENCE ]
889 	 *   JMP *%\reg
890 	 *   [ NOP ]
891 	 * 1:
892 	 */
893 	if (is_jcc32(insn)) {
894 		cc = insn->opcode.bytes[1] & 0xf;
895 		cc ^= 1; /* invert condition */
896 
897 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
898 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
899 
900 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
901 		op = JMP32_INSN_OPCODE;
902 	}
903 
904 	/*
905 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
906 	 */
907 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
908 		bytes[i++] = 0x0f;
909 		bytes[i++] = 0xae;
910 		bytes[i++] = 0xe8; /* LFENCE */
911 	}
912 
913 #ifdef CONFIG_MITIGATION_ITS
914 	/*
915 	 * Check if the address of last byte of emitted-indirect is in
916 	 * lower-half of the cacheline. Such branches need ITS mitigation.
917 	 */
918 	if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
919 		return emit_its_trampoline(addr, insn, reg, bytes);
920 #endif
921 
922 	ret = emit_indirect(op, reg, bytes + i);
923 	if (ret < 0)
924 		return ret;
925 	i += ret;
926 
927 	/*
928 	 * The compiler is supposed to EMIT an INT3 after every unconditional
929 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
930 	 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
931 	 * indirect JMPs even on Intel.
932 	 */
933 	if (op == JMP32_INSN_OPCODE && i < insn->length)
934 		bytes[i++] = INT3_INSN_OPCODE;
935 
936 	for (; i < insn->length;)
937 		bytes[i++] = BYTES_NOP1;
938 
939 	return i;
940 }
941 
942 /*
943  * Generated by 'objtool --retpoline'.
944  */
apply_retpolines(s32 * start,s32 * end)945 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
946 {
947 	s32 *s;
948 
949 	for (s = start; s < end; s++) {
950 		void *addr = (void *)s + *s;
951 		struct insn insn;
952 		int len, ret;
953 		u8 bytes[16];
954 		u8 op1, op2;
955 		u8 *dest;
956 
957 		ret = insn_decode_kernel(&insn, addr);
958 		if (WARN_ON_ONCE(ret < 0))
959 			continue;
960 
961 		op1 = insn.opcode.bytes[0];
962 		op2 = insn.opcode.bytes[1];
963 
964 		switch (op1) {
965 		case 0x70 ... 0x7f:	/* Jcc.d8 */
966 			/* See cfi_paranoid. */
967 			WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
968 			continue;
969 
970 		case CALL_INSN_OPCODE:
971 		case JMP32_INSN_OPCODE:
972 			/* Check for cfi_paranoid + ITS */
973 			dest = addr + insn.length + insn.immediate.value;
974 			if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) {
975 				WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
976 				continue;
977 			}
978 			break;
979 
980 		case 0x0f: /* escape */
981 			if (op2 >= 0x80 && op2 <= 0x8f)
982 				break;
983 			fallthrough;
984 		default:
985 			WARN_ON_ONCE(1);
986 			continue;
987 		}
988 
989 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
990 			addr, addr, insn.length,
991 			addr + insn.length + insn.immediate.value);
992 
993 		len = patch_retpoline(addr, &insn, bytes);
994 		if (len == insn.length) {
995 			optimize_nops(addr, bytes, len);
996 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
997 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
998 			text_poke_early(addr, bytes, len);
999 		}
1000 	}
1001 }
1002 
1003 #ifdef CONFIG_MITIGATION_RETHUNK
1004 
cpu_wants_rethunk(void)1005 bool cpu_wants_rethunk(void)
1006 {
1007 	return cpu_feature_enabled(X86_FEATURE_RETHUNK);
1008 }
1009 
cpu_wants_rethunk_at(void * addr)1010 bool cpu_wants_rethunk_at(void *addr)
1011 {
1012 	if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1013 		return false;
1014 	if (x86_return_thunk != its_return_thunk)
1015 		return true;
1016 
1017 	return !((unsigned long)addr & 0x20);
1018 }
1019 
1020 /*
1021  * Rewrite the compiler generated return thunk tail-calls.
1022  *
1023  * For example, convert:
1024  *
1025  *   JMP __x86_return_thunk
1026  *
1027  * into:
1028  *
1029  *   RET
1030  */
patch_return(void * addr,struct insn * insn,u8 * bytes)1031 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1032 {
1033 	int i = 0;
1034 
1035 	/* Patch the custom return thunks... */
1036 	if (cpu_wants_rethunk_at(addr)) {
1037 		i = JMP32_INSN_SIZE;
1038 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1039 	} else {
1040 		/* ... or patch them out if not needed. */
1041 		bytes[i++] = RET_INSN_OPCODE;
1042 	}
1043 
1044 	for (; i < insn->length;)
1045 		bytes[i++] = INT3_INSN_OPCODE;
1046 	return i;
1047 }
1048 
apply_returns(s32 * start,s32 * end)1049 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1050 {
1051 	s32 *s;
1052 
1053 	if (cpu_wants_rethunk())
1054 		static_call_force_reinit();
1055 
1056 	for (s = start; s < end; s++) {
1057 		void *dest = NULL, *addr = (void *)s + *s;
1058 		struct insn insn;
1059 		int len, ret;
1060 		u8 bytes[16];
1061 		u8 op;
1062 
1063 		ret = insn_decode_kernel(&insn, addr);
1064 		if (WARN_ON_ONCE(ret < 0))
1065 			continue;
1066 
1067 		op = insn.opcode.bytes[0];
1068 		if (op == JMP32_INSN_OPCODE)
1069 			dest = addr + insn.length + insn.immediate.value;
1070 
1071 		if (__static_call_fixup(addr, op, dest) ||
1072 		    WARN_ONCE(dest != &__x86_return_thunk,
1073 			      "missing return thunk: %pS-%pS: %*ph",
1074 			      addr, dest, 5, addr))
1075 			continue;
1076 
1077 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1078 			addr, addr, insn.length,
1079 			addr + insn.length + insn.immediate.value);
1080 
1081 		len = patch_return(addr, &insn, bytes);
1082 		if (len == insn.length) {
1083 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
1084 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1085 			text_poke_early(addr, bytes, len);
1086 		}
1087 	}
1088 }
1089 #else /* !CONFIG_MITIGATION_RETHUNK: */
apply_returns(s32 * start,s32 * end)1090 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1091 #endif /* !CONFIG_MITIGATION_RETHUNK */
1092 
1093 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1094 
apply_retpolines(s32 * start,s32 * end)1095 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)1096 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1097 
1098 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1099 
1100 #ifdef CONFIG_X86_KERNEL_IBT
1101 
is_endbr(u32 * val)1102 __noendbr bool is_endbr(u32 *val)
1103 {
1104 	u32 endbr;
1105 
1106 	__get_kernel_nofault(&endbr, val, u32, Efault);
1107 	return __is_endbr(endbr);
1108 
1109 Efault:
1110 	return false;
1111 }
1112 
1113 #ifdef CONFIG_FINEIBT
1114 
exact_endbr(u32 * val)1115 static __noendbr bool exact_endbr(u32 *val)
1116 {
1117 	u32 endbr;
1118 
1119 	__get_kernel_nofault(&endbr, val, u32, Efault);
1120 	return endbr == gen_endbr();
1121 
1122 Efault:
1123 	return false;
1124 }
1125 
1126 #endif
1127 
1128 static void poison_cfi(void *addr);
1129 
poison_endbr(void * addr)1130 static void __init_or_module poison_endbr(void *addr)
1131 {
1132 	u32 poison = gen_endbr_poison();
1133 
1134 	if (WARN_ON_ONCE(!is_endbr(addr)))
1135 		return;
1136 
1137 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1138 
1139 	/*
1140 	 * When we have IBT, the lack of ENDBR will trigger #CP
1141 	 */
1142 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1143 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1144 	text_poke_early(addr, &poison, 4);
1145 }
1146 
1147 /*
1148  * Generated by: objtool --ibt
1149  *
1150  * Seal the functions for indirect calls by clobbering the ENDBR instructions
1151  * and the kCFI hash value.
1152  */
apply_seal_endbr(s32 * start,s32 * end)1153 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1154 {
1155 	s32 *s;
1156 
1157 	for (s = start; s < end; s++) {
1158 		void *addr = (void *)s + *s;
1159 
1160 		poison_endbr(addr);
1161 		if (IS_ENABLED(CONFIG_FINEIBT))
1162 			poison_cfi(addr - 16);
1163 	}
1164 }
1165 
1166 #else /* !CONFIG_X86_KERNEL_IBT: */
1167 
apply_seal_endbr(s32 * start,s32 * end)1168 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1169 
1170 #endif /* !CONFIG_X86_KERNEL_IBT */
1171 
1172 #ifdef CONFIG_CFI_AUTO_DEFAULT
1173 # define __CFI_DEFAULT CFI_AUTO
1174 #elif defined(CONFIG_CFI_CLANG)
1175 # define __CFI_DEFAULT CFI_KCFI
1176 #else
1177 # define __CFI_DEFAULT CFI_OFF
1178 #endif
1179 
1180 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1181 
1182 #ifdef CONFIG_FINEIBT_BHI
1183 bool cfi_bhi __ro_after_init = false;
1184 #endif
1185 
1186 #ifdef CONFIG_CFI_CLANG
cfi_get_func_hash(void * func)1187 u32 cfi_get_func_hash(void *func)
1188 {
1189 	u32 hash;
1190 
1191 	func -= cfi_get_offset();
1192 	switch (cfi_mode) {
1193 	case CFI_FINEIBT:
1194 		func += 7;
1195 		break;
1196 	case CFI_KCFI:
1197 		func += 1;
1198 		break;
1199 	default:
1200 		return 0;
1201 	}
1202 
1203 	if (get_kernel_nofault(hash, func))
1204 		return 0;
1205 
1206 	return hash;
1207 }
1208 
cfi_get_func_arity(void * func)1209 int cfi_get_func_arity(void *func)
1210 {
1211 	bhi_thunk *target;
1212 	s32 disp;
1213 
1214 	if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1215 		return 0;
1216 
1217 	if (get_kernel_nofault(disp, func - 4))
1218 		return 0;
1219 
1220 	target = func + disp;
1221 	return target - __bhi_args;
1222 }
1223 #endif
1224 
1225 #ifdef CONFIG_FINEIBT
1226 
1227 static bool cfi_rand __ro_after_init = true;
1228 static u32  cfi_seed __ro_after_init;
1229 
1230 /*
1231  * Re-hash the CFI hash with a boot-time seed while making sure the result is
1232  * not a valid ENDBR instruction.
1233  */
cfi_rehash(u32 hash)1234 static u32 cfi_rehash(u32 hash)
1235 {
1236 	hash ^= cfi_seed;
1237 	while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1238 		bool lsb = hash & 1;
1239 		hash >>= 1;
1240 		if (lsb)
1241 			hash ^= 0x80200003;
1242 	}
1243 	return hash;
1244 }
1245 
cfi_parse_cmdline(char * str)1246 static __init int cfi_parse_cmdline(char *str)
1247 {
1248 	if (!str)
1249 		return -EINVAL;
1250 
1251 	while (str) {
1252 		char *next = strchr(str, ',');
1253 		if (next) {
1254 			*next = 0;
1255 			next++;
1256 		}
1257 
1258 		if (!strcmp(str, "auto")) {
1259 			cfi_mode = CFI_AUTO;
1260 		} else if (!strcmp(str, "off")) {
1261 			cfi_mode = CFI_OFF;
1262 			cfi_rand = false;
1263 		} else if (!strcmp(str, "kcfi")) {
1264 			cfi_mode = CFI_KCFI;
1265 		} else if (!strcmp(str, "fineibt")) {
1266 			cfi_mode = CFI_FINEIBT;
1267 		} else if (!strcmp(str, "norand")) {
1268 			cfi_rand = false;
1269 		} else if (!strcmp(str, "warn")) {
1270 			pr_alert("CFI mismatch non-fatal!\n");
1271 			cfi_warn = true;
1272 		} else if (!strcmp(str, "paranoid")) {
1273 			if (cfi_mode == CFI_FINEIBT) {
1274 				cfi_paranoid = true;
1275 			} else {
1276 				pr_err("Ignoring paranoid; depends on fineibt.\n");
1277 			}
1278 		} else if (!strcmp(str, "bhi")) {
1279 #ifdef CONFIG_FINEIBT_BHI
1280 			if (cfi_mode == CFI_FINEIBT) {
1281 				cfi_bhi = true;
1282 			} else {
1283 				pr_err("Ignoring bhi; depends on fineibt.\n");
1284 			}
1285 #else
1286 			pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n");
1287 #endif
1288 		} else {
1289 			pr_err("Ignoring unknown cfi option (%s).", str);
1290 		}
1291 
1292 		str = next;
1293 	}
1294 
1295 	return 0;
1296 }
1297 early_param("cfi", cfi_parse_cmdline);
1298 
1299 /*
1300  * kCFI						FineIBT
1301  *
1302  * __cfi_\func:					__cfi_\func:
1303  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1304  *	nop					     subl   $0x12345678,%r10d   // 7
1305  *	nop					     jne    __cfi_\func+6	// 2
1306  *	nop					     nop3			// 3
1307  *	nop
1308  *	nop
1309  *	nop
1310  *	nop
1311  *	nop
1312  *	nop
1313  *	nop
1314  *	nop
1315  *
1316  *
1317  * caller:					caller:
1318  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1319  *	addl	$-15(%r11),%r10d	 // 4	     lea    -0x10(%r11),%r11	// 4
1320  *	je	1f			 // 2	     nop4			// 4
1321  *	ud2				 // 2
1322  * 1:	cs call	__x86_indirect_thunk_r11 // 6	     call   *%r11; nop3;	// 6
1323  *
1324  */
1325 
1326 /*
1327  * <fineibt_preamble_start>:
1328  *  0:   f3 0f 1e fa             endbr64
1329  *  4:   41 81 <ea> 78 56 34 12  sub    $0x12345678, %r10d
1330  *  b:   75 f9                   jne    6 <fineibt_preamble_start+0x6>
1331  *  d:   0f 1f 00                nopl   (%rax)
1332  *
1333  * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as
1334  * (bad) on x86_64 and raises #UD.
1335  */
1336 asm(	".pushsection .rodata				\n"
1337 	"fineibt_preamble_start:			\n"
1338 	"	endbr64					\n"
1339 	"	subl	$0x12345678, %r10d		\n"
1340 	"fineibt_preamble_bhi:				\n"
1341 	"	jne	fineibt_preamble_start+6	\n"
1342 	ASM_NOP3
1343 	"fineibt_preamble_end:				\n"
1344 	".popsection\n"
1345 );
1346 
1347 extern u8 fineibt_preamble_start[];
1348 extern u8 fineibt_preamble_bhi[];
1349 extern u8 fineibt_preamble_end[];
1350 
1351 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1352 #define fineibt_preamble_bhi  (fineibt_preamble_bhi - fineibt_preamble_start)
1353 #define fineibt_preamble_ud   6
1354 #define fineibt_preamble_hash 7
1355 
1356 /*
1357  * <fineibt_caller_start>:
1358  *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1359  *  6:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1360  *  a:   0f 1f 40 00             nopl   0x0(%rax)
1361  */
1362 asm(	".pushsection .rodata			\n"
1363 	"fineibt_caller_start:			\n"
1364 	"	movl	$0x12345678, %r10d	\n"
1365 	"	lea	-0x10(%r11), %r11	\n"
1366 	ASM_NOP4
1367 	"fineibt_caller_end:			\n"
1368 	".popsection				\n"
1369 );
1370 
1371 extern u8 fineibt_caller_start[];
1372 extern u8 fineibt_caller_end[];
1373 
1374 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1375 #define fineibt_caller_hash 2
1376 
1377 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1378 
1379 /*
1380  * Since FineIBT does hash validation on the callee side it is prone to
1381  * circumvention attacks where a 'naked' ENDBR instruction exists that
1382  * is not part of the fineibt_preamble sequence.
1383  *
1384  * Notably the x86 entry points must be ENDBR and equally cannot be
1385  * fineibt_preamble.
1386  *
1387  * The fineibt_paranoid caller sequence adds additional caller side
1388  * hash validation. This stops such circumvention attacks dead, but at the cost
1389  * of adding a load.
1390  *
1391  * <fineibt_paranoid_start>:
1392  *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1393  *  6:   45 3b 53 f7             cmp    -0x9(%r11), %r10d
1394  *  a:   4d 8d 5b <f0>           lea    -0x10(%r11), %r11
1395  *  e:   75 fd                   jne    d <fineibt_paranoid_start+0xd>
1396  * 10:   41 ff d3                call   *%r11
1397  * 13:   90                      nop
1398  *
1399  * Notably LEA does not modify flags and can be reordered with the CMP,
1400  * avoiding a dependency. Again, using a non-taken (backwards) branch
1401  * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1402  * Jcc.d8, causing #UD.
1403  */
1404 asm(	".pushsection .rodata				\n"
1405 	"fineibt_paranoid_start:			\n"
1406 	"	movl	$0x12345678, %r10d		\n"
1407 	"	cmpl	-9(%r11), %r10d			\n"
1408 	"	lea	-0x10(%r11), %r11		\n"
1409 	"	jne	fineibt_paranoid_start+0xd	\n"
1410 	"fineibt_paranoid_ind:				\n"
1411 	"	call	*%r11				\n"
1412 	"	nop					\n"
1413 	"fineibt_paranoid_end:				\n"
1414 	".popsection					\n"
1415 );
1416 
1417 extern u8 fineibt_paranoid_start[];
1418 extern u8 fineibt_paranoid_ind[];
1419 extern u8 fineibt_paranoid_end[];
1420 
1421 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1422 #define fineibt_paranoid_ind  (fineibt_paranoid_ind - fineibt_paranoid_start)
1423 #define fineibt_paranoid_ud   0xd
1424 
decode_preamble_hash(void * addr,int * reg)1425 static u32 decode_preamble_hash(void *addr, int *reg)
1426 {
1427 	u8 *p = addr;
1428 
1429 	/* b8+reg 78 56 34 12          movl    $0x12345678,\reg */
1430 	if (p[0] >= 0xb8 && p[0] < 0xc0) {
1431 		if (reg)
1432 			*reg = p[0] - 0xb8;
1433 		return *(u32 *)(addr + 1);
1434 	}
1435 
1436 	return 0; /* invalid hash value */
1437 }
1438 
decode_caller_hash(void * addr)1439 static u32 decode_caller_hash(void *addr)
1440 {
1441 	u8 *p = addr;
1442 
1443 	/* 41 ba 88 a9 cb ed       mov    $(-0x12345678),%r10d */
1444 	if (p[0] == 0x41 && p[1] == 0xba)
1445 		return -*(u32 *)(addr + 2);
1446 
1447 	/* e8 0c 88 a9 cb ed	   jmp.d8  +12 */
1448 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1449 		return -*(u32 *)(addr + 2);
1450 
1451 	return 0; /* invalid hash value */
1452 }
1453 
1454 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1455 static int cfi_disable_callers(s32 *start, s32 *end)
1456 {
1457 	/*
1458 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1459 	 * in tact for later usage. Also see decode_caller_hash() and
1460 	 * cfi_rewrite_callers().
1461 	 */
1462 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1463 	s32 *s;
1464 
1465 	for (s = start; s < end; s++) {
1466 		void *addr = (void *)s + *s;
1467 		u32 hash;
1468 
1469 		addr -= fineibt_caller_size;
1470 		hash = decode_caller_hash(addr);
1471 		if (!hash) /* nocfi callers */
1472 			continue;
1473 
1474 		text_poke_early(addr, jmp, 2);
1475 	}
1476 
1477 	return 0;
1478 }
1479 
cfi_enable_callers(s32 * start,s32 * end)1480 static int cfi_enable_callers(s32 *start, s32 *end)
1481 {
1482 	/*
1483 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1484 	 */
1485 	const u8 mov[] = { 0x41, 0xba };
1486 	s32 *s;
1487 
1488 	for (s = start; s < end; s++) {
1489 		void *addr = (void *)s + *s;
1490 		u32 hash;
1491 
1492 		addr -= fineibt_caller_size;
1493 		hash = decode_caller_hash(addr);
1494 		if (!hash) /* nocfi callers */
1495 			continue;
1496 
1497 		text_poke_early(addr, mov, 2);
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1504 static int cfi_rand_preamble(s32 *start, s32 *end)
1505 {
1506 	s32 *s;
1507 
1508 	for (s = start; s < end; s++) {
1509 		void *addr = (void *)s + *s;
1510 		u32 hash;
1511 
1512 		hash = decode_preamble_hash(addr, NULL);
1513 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1514 			 addr, addr, 5, addr))
1515 			return -EINVAL;
1516 
1517 		hash = cfi_rehash(hash);
1518 		text_poke_early(addr + 1, &hash, 4);
1519 	}
1520 
1521 	return 0;
1522 }
1523 
cfi_fineibt_bhi_preamble(void * addr,int arity)1524 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1525 {
1526 	if (!arity)
1527 		return;
1528 
1529 	if (!cfi_warn && arity == 1) {
1530 		/*
1531 		 * Crazy scheme to allow arity-1 inline:
1532 		 *
1533 		 * __cfi_foo:
1534 		 *  0: f3 0f 1e fa             endbr64
1535 		 *  4: 41 81 <ea> 78 56 34 12  sub     0x12345678, %r10d
1536 		 *  b: 49 0f 45 fa             cmovne  %r10, %rdi
1537 		 *  f: 75 f5                   jne     __cfi_foo+6
1538 		 * 11: 0f 1f 00                nopl    (%rax)
1539 		 *
1540 		 * Code that direct calls to foo()+0, decodes the tail end as:
1541 		 *
1542 		 * foo:
1543 		 *  0: f5                      cmc
1544 		 *  1: 0f 1f 00                nopl    (%rax)
1545 		 *
1546 		 * which clobbers CF, but does not affect anything ABI
1547 		 * wise.
1548 		 *
1549 		 * Notably, this scheme is incompatible with permissive CFI
1550 		 * because the CMOVcc is unconditional and RDI will have been
1551 		 * clobbered.
1552 		 */
1553 		const u8 magic[9] = {
1554 			0x49, 0x0f, 0x45, 0xfa,
1555 			0x75, 0xf5,
1556 			BYTES_NOP3,
1557 		};
1558 
1559 		text_poke_early(addr + fineibt_preamble_bhi, magic, 9);
1560 
1561 		return;
1562 	}
1563 
1564 	text_poke_early(addr + fineibt_preamble_bhi,
1565 			text_gen_insn(CALL_INSN_OPCODE,
1566 				      addr + fineibt_preamble_bhi,
1567 				      __bhi_args[arity]),
1568 			CALL_INSN_SIZE);
1569 }
1570 
cfi_rewrite_preamble(s32 * start,s32 * end)1571 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1572 {
1573 	s32 *s;
1574 
1575 	for (s = start; s < end; s++) {
1576 		void *addr = (void *)s + *s;
1577 		int arity;
1578 		u32 hash;
1579 
1580 		/*
1581 		 * When the function doesn't start with ENDBR the compiler will
1582 		 * have determined there are no indirect calls to it and we
1583 		 * don't need no CFI either.
1584 		 */
1585 		if (!is_endbr(addr + 16))
1586 			continue;
1587 
1588 		hash = decode_preamble_hash(addr, &arity);
1589 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1590 			 addr, addr, 5, addr))
1591 			return -EINVAL;
1592 
1593 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1594 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1595 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1596 
1597 		WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1598 			  "kCFI preamble has wrong register at: %pS %*ph\n",
1599 			  addr, 5, addr);
1600 
1601 		if (cfi_bhi)
1602 			cfi_fineibt_bhi_preamble(addr, arity);
1603 	}
1604 
1605 	return 0;
1606 }
1607 
cfi_rewrite_endbr(s32 * start,s32 * end)1608 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1609 {
1610 	s32 *s;
1611 
1612 	for (s = start; s < end; s++) {
1613 		void *addr = (void *)s + *s;
1614 
1615 		if (!exact_endbr(addr + 16))
1616 			continue;
1617 
1618 		poison_endbr(addr + 16);
1619 	}
1620 }
1621 
1622 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1623 static int cfi_rand_callers(s32 *start, s32 *end)
1624 {
1625 	s32 *s;
1626 
1627 	for (s = start; s < end; s++) {
1628 		void *addr = (void *)s + *s;
1629 		u32 hash;
1630 
1631 		addr -= fineibt_caller_size;
1632 		hash = decode_caller_hash(addr);
1633 		if (hash) {
1634 			hash = -cfi_rehash(hash);
1635 			text_poke_early(addr + 2, &hash, 4);
1636 		}
1637 	}
1638 
1639 	return 0;
1640 }
1641 
emit_paranoid_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)1642 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1643 {
1644 	u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1645 
1646 #ifdef CONFIG_MITIGATION_ITS
1647 	u8 *tmp = its_allocate_thunk(reg);
1648 	if (tmp)
1649 		thunk = tmp;
1650 #endif
1651 
1652 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1653 }
1654 
cfi_rewrite_callers(s32 * start,s32 * end)1655 static int cfi_rewrite_callers(s32 *start, s32 *end)
1656 {
1657 	s32 *s;
1658 
1659 	BUG_ON(fineibt_paranoid_size != 20);
1660 
1661 	for (s = start; s < end; s++) {
1662 		void *addr = (void *)s + *s;
1663 		struct insn insn;
1664 		u8 bytes[20];
1665 		u32 hash;
1666 		int ret;
1667 		u8 op;
1668 
1669 		addr -= fineibt_caller_size;
1670 		hash = decode_caller_hash(addr);
1671 		if (!hash)
1672 			continue;
1673 
1674 		if (!cfi_paranoid) {
1675 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1676 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1677 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1678 			/* rely on apply_retpolines() */
1679 			continue;
1680 		}
1681 
1682 		/* cfi_paranoid */
1683 		ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1684 		if (WARN_ON_ONCE(ret < 0))
1685 			continue;
1686 
1687 		op = insn.opcode.bytes[0];
1688 		if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1689 			WARN_ON_ONCE(1);
1690 			continue;
1691 		}
1692 
1693 		memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1694 		memcpy(bytes + fineibt_caller_hash, &hash, 4);
1695 
1696 		if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1697 			emit_paranoid_trampoline(addr + fineibt_caller_size,
1698 						 &insn, 11, bytes + fineibt_caller_size);
1699 		} else {
1700 			ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind);
1701 			if (WARN_ON_ONCE(ret != 3))
1702 				continue;
1703 		}
1704 
1705 		text_poke_early(addr, bytes, fineibt_paranoid_size);
1706 	}
1707 
1708 	return 0;
1709 }
1710 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1711 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1712 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1713 {
1714 	int ret;
1715 
1716 	if (WARN_ONCE(fineibt_preamble_size != 16,
1717 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1718 		return;
1719 
1720 	if (cfi_mode == CFI_AUTO) {
1721 		cfi_mode = CFI_KCFI;
1722 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1723 			/*
1724 			 * FRED has much saner context on exception entry and
1725 			 * is less easy to take advantage of.
1726 			 */
1727 			if (!cpu_feature_enabled(X86_FEATURE_FRED))
1728 				cfi_paranoid = true;
1729 			cfi_mode = CFI_FINEIBT;
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1735 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1736 	 * later stages fails, we're without CFI.
1737 	 */
1738 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1739 	if (ret)
1740 		goto err;
1741 
1742 	if (cfi_rand) {
1743 		if (builtin) {
1744 			cfi_seed = get_random_u32();
1745 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1746 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1747 		}
1748 
1749 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1750 		if (ret)
1751 			goto err;
1752 
1753 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1754 		if (ret)
1755 			goto err;
1756 	}
1757 
1758 	switch (cfi_mode) {
1759 	case CFI_OFF:
1760 		if (builtin)
1761 			pr_info("Disabling CFI\n");
1762 		return;
1763 
1764 	case CFI_KCFI:
1765 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1766 		if (ret)
1767 			goto err;
1768 
1769 		if (builtin)
1770 			pr_info("Using kCFI\n");
1771 		return;
1772 
1773 	case CFI_FINEIBT:
1774 		/* place the FineIBT preamble at func()-16 */
1775 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1776 		if (ret)
1777 			goto err;
1778 
1779 		/* rewrite the callers to target func()-16 */
1780 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1781 		if (ret)
1782 			goto err;
1783 
1784 		/* now that nobody targets func()+0, remove ENDBR there */
1785 		cfi_rewrite_endbr(start_cfi, end_cfi);
1786 
1787 		if (builtin) {
1788 			pr_info("Using %sFineIBT%s CFI\n",
1789 				cfi_paranoid ? "paranoid " : "",
1790 				cfi_bhi ? "+BHI" : "");
1791 		}
1792 		return;
1793 
1794 	default:
1795 		break;
1796 	}
1797 
1798 err:
1799 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1800 }
1801 
poison_hash(void * addr)1802 static inline void poison_hash(void *addr)
1803 {
1804 	*(u32 *)addr = 0;
1805 }
1806 
poison_cfi(void * addr)1807 static void poison_cfi(void *addr)
1808 {
1809 	/*
1810 	 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1811 	 * some (static) functions for which they can determine the address
1812 	 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1813 	 *
1814 	 * As such, these functions will get sealed, but we need to be careful
1815 	 * to not unconditionally scribble the previous function.
1816 	 */
1817 	switch (cfi_mode) {
1818 	case CFI_FINEIBT:
1819 		/*
1820 		 * FineIBT prefix should start with an ENDBR.
1821 		 */
1822 		if (!is_endbr(addr))
1823 			break;
1824 
1825 		/*
1826 		 * __cfi_\func:
1827 		 *	osp nopl (%rax)
1828 		 *	subl	$0, %r10d
1829 		 *	jz	1f
1830 		 *	ud2
1831 		 * 1:	nop
1832 		 */
1833 		poison_endbr(addr);
1834 		poison_hash(addr + fineibt_preamble_hash);
1835 		break;
1836 
1837 	case CFI_KCFI:
1838 		/*
1839 		 * kCFI prefix should start with a valid hash.
1840 		 */
1841 		if (!decode_preamble_hash(addr, NULL))
1842 			break;
1843 
1844 		/*
1845 		 * __cfi_\func:
1846 		 *	movl	$0, %eax
1847 		 *	.skip	11, 0x90
1848 		 */
1849 		poison_hash(addr + 1);
1850 		break;
1851 
1852 	default:
1853 		break;
1854 	}
1855 }
1856 
1857 /*
1858  * When regs->ip points to a 0xEA byte in the FineIBT preamble,
1859  * return true and fill out target and type.
1860  *
1861  * We check the preamble by checking for the ENDBR instruction relative to the
1862  * 0xEA instruction.
1863  */
decode_fineibt_preamble(struct pt_regs * regs,unsigned long * target,u32 * type)1864 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1865 {
1866 	unsigned long addr = regs->ip - fineibt_preamble_ud;
1867 	u32 hash;
1868 
1869 	if (!exact_endbr((void *)addr))
1870 		return false;
1871 
1872 	*target = addr + fineibt_preamble_size;
1873 
1874 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1875 	*type = (u32)regs->r10 + hash;
1876 
1877 	/*
1878 	 * Since regs->ip points to the middle of an instruction; it cannot
1879 	 * continue with the normal fixup.
1880 	 */
1881 	regs->ip = *target;
1882 
1883 	return true;
1884 
1885 Efault:
1886 	return false;
1887 }
1888 
1889 /*
1890  * regs->ip points to one of the UD2 in __bhi_args[].
1891  */
decode_fineibt_bhi(struct pt_regs * regs,unsigned long * target,u32 * type)1892 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1893 {
1894 	unsigned long addr;
1895 	u32 hash;
1896 
1897 	if (!cfi_bhi)
1898 		return false;
1899 
1900 	if (regs->ip < (unsigned long)__bhi_args ||
1901 	    regs->ip >= (unsigned long)__bhi_args_end)
1902 		return false;
1903 
1904 	/*
1905 	 * Fetch the return address from the stack, this points to the
1906 	 * FineIBT preamble. Since the CALL instruction is in the 5 last
1907 	 * bytes of the preamble, the return address is in fact the target
1908 	 * address.
1909 	 */
1910 	__get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1911 	*target = addr;
1912 
1913 	addr -= fineibt_preamble_size;
1914 	if (!exact_endbr((void *)addr))
1915 		return false;
1916 
1917 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1918 	*type = (u32)regs->r10 + hash;
1919 
1920 	/*
1921 	 * The UD2 sites are constructed with a RET immediately following,
1922 	 * as such the non-fatal case can use the regular fixup.
1923 	 */
1924 	return true;
1925 
1926 Efault:
1927 	return false;
1928 }
1929 
is_paranoid_thunk(unsigned long addr)1930 static bool is_paranoid_thunk(unsigned long addr)
1931 {
1932 	u32 thunk;
1933 
1934 	__get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
1935 	return (thunk & 0x00FFFFFF) == 0xfd75ea;
1936 
1937 Efault:
1938 	return false;
1939 }
1940 
1941 /*
1942  * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
1943  * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS
1944  * thunk.
1945  */
decode_fineibt_paranoid(struct pt_regs * regs,unsigned long * target,u32 * type)1946 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
1947 {
1948 	unsigned long addr = regs->ip - fineibt_paranoid_ud;
1949 
1950 	if (!cfi_paranoid)
1951 		return false;
1952 
1953 	if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
1954 		*target = regs->r11 + fineibt_preamble_size;
1955 		*type = regs->r10;
1956 
1957 		/*
1958 		 * Since the trapping instruction is the exact, but LOCK prefixed,
1959 		 * Jcc.d8 that got us here, the normal fixup will work.
1960 		 */
1961 		return true;
1962 	}
1963 
1964 	/*
1965 	 * The cfi_paranoid + ITS thunk combination results in:
1966 	 *
1967 	 *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1968 	 *  6:   45 3b 53 f7             cmp    -0x9(%r11), %r10d
1969 	 *  a:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1970 	 *  e:   2e e8 XX XX XX XX	 cs call __x86_indirect_paranoid_thunk_r11
1971 	 *
1972 	 * Where the paranoid_thunk looks like:
1973 	 *
1974 	 *  1d:  <ea>                    (bad)
1975 	 *  __x86_indirect_paranoid_thunk_r11:
1976 	 *  1e:  75 fd                   jne 1d
1977 	 *  __x86_indirect_its_thunk_r11:
1978 	 *  20:  41 ff eb                jmp *%r11
1979 	 *  23:  cc                      int3
1980 	 *
1981 	 */
1982 	if (is_paranoid_thunk(regs->ip)) {
1983 		*target = regs->r11 + fineibt_preamble_size;
1984 		*type = regs->r10;
1985 
1986 		regs->ip = *target;
1987 		return true;
1988 	}
1989 
1990 	return false;
1991 }
1992 
decode_fineibt_insn(struct pt_regs * regs,unsigned long * target,u32 * type)1993 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
1994 {
1995 	if (decode_fineibt_paranoid(regs, target, type))
1996 		return true;
1997 
1998 	if (decode_fineibt_bhi(regs, target, type))
1999 		return true;
2000 
2001 	return decode_fineibt_preamble(regs, target, type);
2002 }
2003 
2004 #else /* !CONFIG_FINEIBT: */
2005 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)2006 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2007 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
2008 {
2009 }
2010 
2011 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)2012 static void poison_cfi(void *addr) { }
2013 #endif
2014 
2015 #endif /* !CONFIG_FINEIBT */
2016 
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)2017 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2018 		   s32 *start_cfi, s32 *end_cfi)
2019 {
2020 	return __apply_fineibt(start_retpoline, end_retpoline,
2021 			       start_cfi, end_cfi,
2022 			       /* .builtin = */ false);
2023 }
2024 
2025 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2026 static void alternatives_smp_lock(const s32 *start, const s32 *end,
2027 				  u8 *text, u8 *text_end)
2028 {
2029 	const s32 *poff;
2030 
2031 	for (poff = start; poff < end; poff++) {
2032 		u8 *ptr = (u8 *)poff + *poff;
2033 
2034 		if (!*poff || ptr < text || ptr >= text_end)
2035 			continue;
2036 		/* turn DS segment override prefix into lock prefix */
2037 		if (*ptr == 0x3e)
2038 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
2039 	}
2040 }
2041 
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2042 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2043 				    u8 *text, u8 *text_end)
2044 {
2045 	const s32 *poff;
2046 
2047 	for (poff = start; poff < end; poff++) {
2048 		u8 *ptr = (u8 *)poff + *poff;
2049 
2050 		if (!*poff || ptr < text || ptr >= text_end)
2051 			continue;
2052 		/* turn lock prefix into DS segment override prefix */
2053 		if (*ptr == 0xf0)
2054 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
2055 	}
2056 }
2057 
2058 struct smp_alt_module {
2059 	/* what is this ??? */
2060 	struct module	*mod;
2061 	char		*name;
2062 
2063 	/* ptrs to lock prefixes */
2064 	const s32	*locks;
2065 	const s32	*locks_end;
2066 
2067 	/* .text segment, needed to avoid patching init code ;) */
2068 	u8		*text;
2069 	u8		*text_end;
2070 
2071 	struct list_head next;
2072 };
2073 static LIST_HEAD(smp_alt_modules);
2074 static bool uniproc_patched = false;	/* protected by text_mutex */
2075 
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)2076 void __init_or_module alternatives_smp_module_add(struct module *mod,
2077 						  char *name,
2078 						  void *locks, void *locks_end,
2079 						  void *text,  void *text_end)
2080 {
2081 	struct smp_alt_module *smp;
2082 
2083 	mutex_lock(&text_mutex);
2084 	if (!uniproc_patched)
2085 		goto unlock;
2086 
2087 	if (num_possible_cpus() == 1)
2088 		/* Don't bother remembering, we'll never have to undo it. */
2089 		goto smp_unlock;
2090 
2091 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
2092 	if (NULL == smp)
2093 		/* we'll run the (safe but slow) SMP code then ... */
2094 		goto unlock;
2095 
2096 	smp->mod	= mod;
2097 	smp->name	= name;
2098 	smp->locks	= locks;
2099 	smp->locks_end	= locks_end;
2100 	smp->text	= text;
2101 	smp->text_end	= text_end;
2102 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2103 		smp->locks, smp->locks_end,
2104 		smp->text, smp->text_end, smp->name);
2105 
2106 	list_add_tail(&smp->next, &smp_alt_modules);
2107 smp_unlock:
2108 	alternatives_smp_unlock(locks, locks_end, text, text_end);
2109 unlock:
2110 	mutex_unlock(&text_mutex);
2111 }
2112 
alternatives_smp_module_del(struct module * mod)2113 void __init_or_module alternatives_smp_module_del(struct module *mod)
2114 {
2115 	struct smp_alt_module *item;
2116 
2117 	mutex_lock(&text_mutex);
2118 	list_for_each_entry(item, &smp_alt_modules, next) {
2119 		if (mod != item->mod)
2120 			continue;
2121 		list_del(&item->next);
2122 		kfree(item);
2123 		break;
2124 	}
2125 	mutex_unlock(&text_mutex);
2126 }
2127 
alternatives_enable_smp(void)2128 void alternatives_enable_smp(void)
2129 {
2130 	struct smp_alt_module *mod;
2131 
2132 	/* Why bother if there are no other CPUs? */
2133 	BUG_ON(num_possible_cpus() == 1);
2134 
2135 	mutex_lock(&text_mutex);
2136 
2137 	if (uniproc_patched) {
2138 		pr_info("switching to SMP code\n");
2139 		BUG_ON(num_online_cpus() != 1);
2140 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2141 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2142 		list_for_each_entry(mod, &smp_alt_modules, next)
2143 			alternatives_smp_lock(mod->locks, mod->locks_end,
2144 					      mod->text, mod->text_end);
2145 		uniproc_patched = false;
2146 	}
2147 	mutex_unlock(&text_mutex);
2148 }
2149 
2150 /*
2151  * Return 1 if the address range is reserved for SMP-alternatives.
2152  * Must hold text_mutex.
2153  */
alternatives_text_reserved(void * start,void * end)2154 int alternatives_text_reserved(void *start, void *end)
2155 {
2156 	struct smp_alt_module *mod;
2157 	const s32 *poff;
2158 	u8 *text_start = start;
2159 	u8 *text_end = end;
2160 
2161 	lockdep_assert_held(&text_mutex);
2162 
2163 	list_for_each_entry(mod, &smp_alt_modules, next) {
2164 		if (mod->text > text_end || mod->text_end < text_start)
2165 			continue;
2166 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
2167 			const u8 *ptr = (const u8 *)poff + *poff;
2168 
2169 			if (text_start <= ptr && text_end > ptr)
2170 				return 1;
2171 		}
2172 	}
2173 
2174 	return 0;
2175 }
2176 #endif /* CONFIG_SMP */
2177 
2178 /*
2179  * Self-test for the INT3 based CALL emulation code.
2180  *
2181  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2182  * properly and that there is a stack gap between the INT3 frame and the
2183  * previous context. Without this gap doing a virtual PUSH on the interrupted
2184  * stack would corrupt the INT3 IRET frame.
2185  *
2186  * See entry_{32,64}.S for more details.
2187  */
2188 
2189 /*
2190  * We define the int3_magic() function in assembly to control the calling
2191  * convention such that we can 'call' it from assembly.
2192  */
2193 
2194 extern void int3_magic(unsigned int *ptr); /* defined in asm */
2195 
2196 asm (
2197 "	.pushsection	.init.text, \"ax\", @progbits\n"
2198 "	.type		int3_magic, @function\n"
2199 "int3_magic:\n"
2200 	ANNOTATE_NOENDBR
2201 "	movl	$1, (%" _ASM_ARG1 ")\n"
2202 	ASM_RET
2203 "	.size		int3_magic, .-int3_magic\n"
2204 "	.popsection\n"
2205 );
2206 
2207 extern void int3_selftest_ip(void); /* defined in asm below */
2208 
2209 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)2210 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2211 {
2212 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
2213 	struct die_args *args = data;
2214 	struct pt_regs *regs = args->regs;
2215 
2216 	OPTIMIZER_HIDE_VAR(selftest);
2217 
2218 	if (!regs || user_mode(regs))
2219 		return NOTIFY_DONE;
2220 
2221 	if (val != DIE_INT3)
2222 		return NOTIFY_DONE;
2223 
2224 	if (regs->ip - INT3_INSN_SIZE != selftest)
2225 		return NOTIFY_DONE;
2226 
2227 	int3_emulate_call(regs, (unsigned long)&int3_magic);
2228 	return NOTIFY_STOP;
2229 }
2230 
2231 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)2232 static noinline void __init int3_selftest(void)
2233 {
2234 	static __initdata struct notifier_block int3_exception_nb = {
2235 		.notifier_call	= int3_exception_notify,
2236 		.priority	= INT_MAX-1, /* last */
2237 	};
2238 	unsigned int val = 0;
2239 
2240 	BUG_ON(register_die_notifier(&int3_exception_nb));
2241 
2242 	/*
2243 	 * Basically: int3_magic(&val); but really complicated :-)
2244 	 *
2245 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
2246 	 * notifier above will emulate CALL for us.
2247 	 */
2248 	asm volatile ("int3_selftest_ip:\n\t"
2249 		      ANNOTATE_NOENDBR
2250 		      "    int3; nop; nop; nop; nop\n\t"
2251 		      : ASM_CALL_CONSTRAINT
2252 		      : __ASM_SEL_RAW(a, D) (&val)
2253 		      : "memory");
2254 
2255 	BUG_ON(val != 1);
2256 
2257 	unregister_die_notifier(&int3_exception_nb);
2258 }
2259 
2260 static __initdata int __alt_reloc_selftest_addr;
2261 
2262 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)2263 __visible noinline void __init __alt_reloc_selftest(void *arg)
2264 {
2265 	WARN_ON(arg != &__alt_reloc_selftest_addr);
2266 }
2267 
alt_reloc_selftest(void)2268 static noinline void __init alt_reloc_selftest(void)
2269 {
2270 	/*
2271 	 * Tests text_poke_apply_relocation().
2272 	 *
2273 	 * This has a relative immediate (CALL) in a place other than the first
2274 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2275 	 *
2276 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
2277 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
2278 	 *
2279 	 * Getting this wrong will either crash and burn or tickle the WARN
2280 	 * above.
2281 	 */
2282 	asm_inline volatile (
2283 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2284 		: ASM_CALL_CONSTRAINT
2285 		: [mem] "m" (__alt_reloc_selftest_addr)
2286 		: _ASM_ARG1
2287 	);
2288 }
2289 
alternative_instructions(void)2290 void __init alternative_instructions(void)
2291 {
2292 	u64 ibt;
2293 
2294 	int3_selftest();
2295 
2296 	/*
2297 	 * The patching is not fully atomic, so try to avoid local
2298 	 * interruptions that might execute the to be patched code.
2299 	 * Other CPUs are not running.
2300 	 */
2301 	stop_nmi();
2302 
2303 	/*
2304 	 * Don't stop machine check exceptions while patching.
2305 	 * MCEs only happen when something got corrupted and in this
2306 	 * case we must do something about the corruption.
2307 	 * Ignoring it is worse than an unlikely patching race.
2308 	 * Also machine checks tend to be broadcast and if one CPU
2309 	 * goes into machine check the others follow quickly, so we don't
2310 	 * expect a machine check to cause undue problems during to code
2311 	 * patching.
2312 	 */
2313 
2314 	/*
2315 	 * Make sure to set (artificial) features depending on used paravirt
2316 	 * functions which can later influence alternative patching.
2317 	 */
2318 	paravirt_set_cap();
2319 
2320 	/* Keep CET-IBT disabled until caller/callee are patched */
2321 	ibt = ibt_save(/*disable*/ true);
2322 
2323 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2324 			__cfi_sites, __cfi_sites_end, true);
2325 
2326 	/*
2327 	 * Rewrite the retpolines, must be done before alternatives since
2328 	 * those can rewrite the retpoline thunks.
2329 	 */
2330 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2331 	apply_returns(__return_sites, __return_sites_end);
2332 
2333 	its_fini_core();
2334 
2335 	/*
2336 	 * Adjust all CALL instructions to point to func()-10, including
2337 	 * those in .altinstr_replacement.
2338 	 */
2339 	callthunks_patch_builtin_calls();
2340 
2341 	apply_alternatives(__alt_instructions, __alt_instructions_end);
2342 
2343 	/*
2344 	 * Seal all functions that do not have their address taken.
2345 	 */
2346 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2347 
2348 	ibt_restore(ibt);
2349 
2350 #ifdef CONFIG_SMP
2351 	/* Patch to UP if other cpus not imminent. */
2352 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2353 		uniproc_patched = true;
2354 		alternatives_smp_module_add(NULL, "core kernel",
2355 					    __smp_locks, __smp_locks_end,
2356 					    _text, _etext);
2357 	}
2358 
2359 	if (!uniproc_patched || num_possible_cpus() == 1) {
2360 		free_init_pages("SMP alternatives",
2361 				(unsigned long)__smp_locks,
2362 				(unsigned long)__smp_locks_end);
2363 	}
2364 #endif
2365 
2366 	restart_nmi();
2367 	alternatives_patched = 1;
2368 
2369 	alt_reloc_selftest();
2370 }
2371 
2372 /**
2373  * text_poke_early - Update instructions on a live kernel at boot time
2374  * @addr: address to modify
2375  * @opcode: source of the copy
2376  * @len: length to copy
2377  *
2378  * When you use this code to patch more than one byte of an instruction
2379  * you need to make sure that other CPUs cannot execute this code in parallel.
2380  * Also no thread must be currently preempted in the middle of these
2381  * instructions. And on the local CPU you need to be protected against NMI or
2382  * MCE handlers seeing an inconsistent instruction while you patch.
2383  */
text_poke_early(void * addr,const void * opcode,size_t len)2384 void __init_or_module text_poke_early(void *addr, const void *opcode,
2385 				      size_t len)
2386 {
2387 	unsigned long flags;
2388 
2389 	if (boot_cpu_has(X86_FEATURE_NX) &&
2390 	    is_module_text_address((unsigned long)addr)) {
2391 		/*
2392 		 * Modules text is marked initially as non-executable, so the
2393 		 * code cannot be running and speculative code-fetches are
2394 		 * prevented. Just change the code.
2395 		 */
2396 		memcpy(addr, opcode, len);
2397 	} else {
2398 		local_irq_save(flags);
2399 		memcpy(addr, opcode, len);
2400 		sync_core();
2401 		local_irq_restore(flags);
2402 
2403 		/*
2404 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
2405 		 * that causes hangs on some VIA CPUs.
2406 		 */
2407 	}
2408 }
2409 
2410 __ro_after_init struct mm_struct *text_poke_mm;
2411 __ro_after_init unsigned long text_poke_mm_addr;
2412 
text_poke_memcpy(void * dst,const void * src,size_t len)2413 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2414 {
2415 	memcpy(dst, src, len);
2416 }
2417 
text_poke_memset(void * dst,const void * src,size_t len)2418 static void text_poke_memset(void *dst, const void *src, size_t len)
2419 {
2420 	int c = *(const int *)src;
2421 
2422 	memset(dst, c, len);
2423 }
2424 
2425 typedef void text_poke_f(void *dst, const void *src, size_t len);
2426 
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)2427 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2428 {
2429 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2430 	struct page *pages[2] = {NULL};
2431 	struct mm_struct *prev_mm;
2432 	unsigned long flags;
2433 	pte_t pte, *ptep;
2434 	spinlock_t *ptl;
2435 	pgprot_t pgprot;
2436 
2437 	/*
2438 	 * While boot memory allocator is running we cannot use struct pages as
2439 	 * they are not yet initialized. There is no way to recover.
2440 	 */
2441 	BUG_ON(!after_bootmem);
2442 
2443 	if (!core_kernel_text((unsigned long)addr)) {
2444 		pages[0] = vmalloc_to_page(addr);
2445 		if (cross_page_boundary)
2446 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2447 	} else {
2448 		pages[0] = virt_to_page(addr);
2449 		WARN_ON(!PageReserved(pages[0]));
2450 		if (cross_page_boundary)
2451 			pages[1] = virt_to_page(addr + PAGE_SIZE);
2452 	}
2453 	/*
2454 	 * If something went wrong, crash and burn since recovery paths are not
2455 	 * implemented.
2456 	 */
2457 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2458 
2459 	/*
2460 	 * Map the page without the global bit, as TLB flushing is done with
2461 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2462 	 */
2463 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2464 
2465 	/*
2466 	 * The lock is not really needed, but this allows to avoid open-coding.
2467 	 */
2468 	ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2469 
2470 	/*
2471 	 * This must not fail; preallocated in poking_init().
2472 	 */
2473 	VM_BUG_ON(!ptep);
2474 
2475 	local_irq_save(flags);
2476 
2477 	pte = mk_pte(pages[0], pgprot);
2478 	set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2479 
2480 	if (cross_page_boundary) {
2481 		pte = mk_pte(pages[1], pgprot);
2482 		set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2483 	}
2484 
2485 	/*
2486 	 * Loading the temporary mm behaves as a compiler barrier, which
2487 	 * guarantees that the PTE will be set at the time memcpy() is done.
2488 	 */
2489 	prev_mm = use_temporary_mm(text_poke_mm);
2490 
2491 	kasan_disable_current();
2492 	func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2493 	kasan_enable_current();
2494 
2495 	/*
2496 	 * Ensure that the PTE is only cleared after the instructions of memcpy
2497 	 * were issued by using a compiler barrier.
2498 	 */
2499 	barrier();
2500 
2501 	pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2502 	if (cross_page_boundary)
2503 		pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2504 
2505 	/*
2506 	 * Loading the previous page-table hierarchy requires a serializing
2507 	 * instruction that already allows the core to see the updated version.
2508 	 * Xen-PV is assumed to serialize execution in a similar manner.
2509 	 */
2510 	unuse_temporary_mm(prev_mm);
2511 
2512 	/*
2513 	 * Flushing the TLB might involve IPIs, which would require enabled
2514 	 * IRQs, but not if the mm is not used, as it is in this point.
2515 	 */
2516 	flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2517 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2518 			   PAGE_SHIFT, false);
2519 
2520 	if (func == text_poke_memcpy) {
2521 		/*
2522 		 * If the text does not match what we just wrote then something is
2523 		 * fundamentally screwy; there's nothing we can really do about that.
2524 		 */
2525 		BUG_ON(memcmp(addr, src, len));
2526 	}
2527 
2528 	local_irq_restore(flags);
2529 	pte_unmap_unlock(ptep, ptl);
2530 	return addr;
2531 }
2532 
2533 /**
2534  * text_poke - Update instructions on a live kernel
2535  * @addr: address to modify
2536  * @opcode: source of the copy
2537  * @len: length to copy
2538  *
2539  * Only atomic text poke/set should be allowed when not doing early patching.
2540  * It means the size must be writable atomically and the address must be aligned
2541  * in a way that permits an atomic write. It also makes sure we fit on a single
2542  * page.
2543  *
2544  * Note that the caller must ensure that if the modified code is part of a
2545  * module, the module would not be removed during poking. This can be achieved
2546  * by registering a module notifier, and ordering module removal and patching
2547  * through a mutex.
2548  */
text_poke(void * addr,const void * opcode,size_t len)2549 void *text_poke(void *addr, const void *opcode, size_t len)
2550 {
2551 	lockdep_assert_held(&text_mutex);
2552 
2553 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2554 }
2555 
2556 /**
2557  * text_poke_kgdb - Update instructions on a live kernel by kgdb
2558  * @addr: address to modify
2559  * @opcode: source of the copy
2560  * @len: length to copy
2561  *
2562  * Only atomic text poke/set should be allowed when not doing early patching.
2563  * It means the size must be writable atomically and the address must be aligned
2564  * in a way that permits an atomic write. It also makes sure we fit on a single
2565  * page.
2566  *
2567  * Context: should only be used by kgdb, which ensures no other core is running,
2568  *	    despite the fact it does not hold the text_mutex.
2569  */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2570 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2571 {
2572 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2573 }
2574 
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2575 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2576 			    bool core_ok)
2577 {
2578 	unsigned long start = (unsigned long)addr;
2579 	size_t patched = 0;
2580 
2581 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2582 		return NULL;
2583 
2584 	while (patched < len) {
2585 		unsigned long ptr = start + patched;
2586 		size_t s;
2587 
2588 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2589 
2590 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2591 		patched += s;
2592 	}
2593 	return addr;
2594 }
2595 
2596 /**
2597  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2598  * @addr: address to modify
2599  * @opcode: source of the copy
2600  * @len: length to copy, could be more than 2x PAGE_SIZE
2601  *
2602  * Not safe against concurrent execution; useful for JITs to dump
2603  * new code blocks into unused regions of RX memory. Can be used in
2604  * conjunction with synchronize_rcu_tasks() to wait for existing
2605  * execution to quiesce after having made sure no existing functions
2606  * pointers are live.
2607  */
text_poke_copy(void * addr,const void * opcode,size_t len)2608 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2609 {
2610 	mutex_lock(&text_mutex);
2611 	addr = text_poke_copy_locked(addr, opcode, len, false);
2612 	mutex_unlock(&text_mutex);
2613 	return addr;
2614 }
2615 
2616 /**
2617  * text_poke_set - memset into (an unused part of) RX memory
2618  * @addr: address to modify
2619  * @c: the byte to fill the area with
2620  * @len: length to copy, could be more than 2x PAGE_SIZE
2621  *
2622  * This is useful to overwrite unused regions of RX memory with illegal
2623  * instructions.
2624  */
text_poke_set(void * addr,int c,size_t len)2625 void *text_poke_set(void *addr, int c, size_t len)
2626 {
2627 	unsigned long start = (unsigned long)addr;
2628 	size_t patched = 0;
2629 
2630 	if (WARN_ON_ONCE(core_kernel_text(start)))
2631 		return NULL;
2632 
2633 	mutex_lock(&text_mutex);
2634 	while (patched < len) {
2635 		unsigned long ptr = start + patched;
2636 		size_t s;
2637 
2638 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2639 
2640 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2641 		patched += s;
2642 	}
2643 	mutex_unlock(&text_mutex);
2644 	return addr;
2645 }
2646 
do_sync_core(void * info)2647 static void do_sync_core(void *info)
2648 {
2649 	sync_core();
2650 }
2651 
smp_text_poke_sync_each_cpu(void)2652 void smp_text_poke_sync_each_cpu(void)
2653 {
2654 	on_each_cpu(do_sync_core, NULL, 1);
2655 }
2656 
2657 /*
2658  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2659  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2660  * opcode to Jcc.d8, using len to distinguish.
2661  */
2662 struct smp_text_poke_loc {
2663 	/* addr := _stext + rel_addr */
2664 	s32 rel_addr;
2665 	s32 disp;
2666 	u8 len;
2667 	u8 opcode;
2668 	const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2669 	/* see smp_text_poke_batch_finish() */
2670 	u8 old;
2671 };
2672 
2673 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2674 
2675 static struct smp_text_poke_array {
2676 	struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2677 	int nr_entries;
2678 } text_poke_array;
2679 
2680 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2681 
2682 /*
2683  * These four __always_inline annotations imply noinstr, necessary
2684  * due to smp_text_poke_int3_handler() being noinstr:
2685  */
2686 
try_get_text_poke_array(void)2687 static __always_inline bool try_get_text_poke_array(void)
2688 {
2689 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2690 
2691 	if (!raw_atomic_inc_not_zero(refs))
2692 		return false;
2693 
2694 	return true;
2695 }
2696 
put_text_poke_array(void)2697 static __always_inline void put_text_poke_array(void)
2698 {
2699 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2700 
2701 	smp_mb__before_atomic();
2702 	raw_atomic_dec(refs);
2703 }
2704 
text_poke_addr(const struct smp_text_poke_loc * tpl)2705 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2706 {
2707 	return _stext + tpl->rel_addr;
2708 }
2709 
patch_cmp(const void * tpl_a,const void * tpl_b)2710 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2711 {
2712 	if (tpl_a < text_poke_addr(tpl_b))
2713 		return -1;
2714 	if (tpl_a > text_poke_addr(tpl_b))
2715 		return 1;
2716 	return 0;
2717 }
2718 
smp_text_poke_int3_handler(struct pt_regs * regs)2719 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2720 {
2721 	struct smp_text_poke_loc *tpl;
2722 	int ret = 0;
2723 	void *ip;
2724 
2725 	if (user_mode(regs))
2726 		return 0;
2727 
2728 	/*
2729 	 * Having observed our INT3 instruction, we now must observe
2730 	 * text_poke_array with non-zero refcount:
2731 	 *
2732 	 *	text_poke_array_refs = 1		INT3
2733 	 *	WMB			RMB
2734 	 *	write INT3		if (text_poke_array_refs != 0)
2735 	 */
2736 	smp_rmb();
2737 
2738 	if (!try_get_text_poke_array())
2739 		return 0;
2740 
2741 	/*
2742 	 * Discount the INT3. See smp_text_poke_batch_finish().
2743 	 */
2744 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2745 
2746 	/*
2747 	 * Skip the binary search if there is a single member in the vector.
2748 	 */
2749 	if (unlikely(text_poke_array.nr_entries > 1)) {
2750 		tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2751 				      sizeof(struct smp_text_poke_loc),
2752 				      patch_cmp);
2753 		if (!tpl)
2754 			goto out_put;
2755 	} else {
2756 		tpl = text_poke_array.vec;
2757 		if (text_poke_addr(tpl) != ip)
2758 			goto out_put;
2759 	}
2760 
2761 	ip += tpl->len;
2762 
2763 	switch (tpl->opcode) {
2764 	case INT3_INSN_OPCODE:
2765 		/*
2766 		 * Someone poked an explicit INT3, they'll want to handle it,
2767 		 * do not consume.
2768 		 */
2769 		goto out_put;
2770 
2771 	case RET_INSN_OPCODE:
2772 		int3_emulate_ret(regs);
2773 		break;
2774 
2775 	case CALL_INSN_OPCODE:
2776 		int3_emulate_call(regs, (long)ip + tpl->disp);
2777 		break;
2778 
2779 	case JMP32_INSN_OPCODE:
2780 	case JMP8_INSN_OPCODE:
2781 		int3_emulate_jmp(regs, (long)ip + tpl->disp);
2782 		break;
2783 
2784 	case 0x70 ... 0x7f: /* Jcc */
2785 		int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2786 		break;
2787 
2788 	default:
2789 		BUG();
2790 	}
2791 
2792 	ret = 1;
2793 
2794 out_put:
2795 	put_text_poke_array();
2796 	return ret;
2797 }
2798 
2799 /**
2800  * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2801  *
2802  * Input state:
2803  *  text_poke_array.vec: vector of instructions to patch
2804  *  text_poke_array.nr_entries: number of entries in the vector
2805  *
2806  * Modify multi-byte instructions by using INT3 breakpoints on SMP.
2807  * We completely avoid using stop_machine() here, and achieve the
2808  * synchronization using INT3 breakpoints and SMP cross-calls.
2809  *
2810  * The way it is done:
2811  *	- For each entry in the vector:
2812  *		- add an INT3 trap to the address that will be patched
2813  *	- SMP sync all CPUs
2814  *	- For each entry in the vector:
2815  *		- update all but the first byte of the patched range
2816  *	- SMP sync all CPUs
2817  *	- For each entry in the vector:
2818  *		- replace the first byte (INT3) by the first byte of the
2819  *		  replacing opcode
2820  *	- SMP sync all CPUs
2821  */
smp_text_poke_batch_finish(void)2822 void smp_text_poke_batch_finish(void)
2823 {
2824 	unsigned char int3 = INT3_INSN_OPCODE;
2825 	unsigned int i;
2826 	int do_sync;
2827 
2828 	if (!text_poke_array.nr_entries)
2829 		return;
2830 
2831 	lockdep_assert_held(&text_mutex);
2832 
2833 	/*
2834 	 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2835 	 * ensure reading a non-zero refcount provides up to date text_poke_array data.
2836 	 */
2837 	for_each_possible_cpu(i)
2838 		atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2839 
2840 	/*
2841 	 * Function tracing can enable thousands of places that need to be
2842 	 * updated. This can take quite some time, and with full kernel debugging
2843 	 * enabled, this could cause the softlockup watchdog to trigger.
2844 	 * This function gets called every 256 entries added to be patched.
2845 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2846 	 * while processing all the functions being patched.
2847 	 */
2848 	cond_resched();
2849 
2850 	/*
2851 	 * Corresponding read barrier in INT3 notifier for making sure the
2852 	 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2853 	 */
2854 	smp_wmb();
2855 
2856 	/*
2857 	 * First step: add a INT3 trap to the address that will be patched.
2858 	 */
2859 	for (i = 0; i < text_poke_array.nr_entries; i++) {
2860 		text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2861 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2862 	}
2863 
2864 	smp_text_poke_sync_each_cpu();
2865 
2866 	/*
2867 	 * Second step: update all but the first byte of the patched range.
2868 	 */
2869 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2870 		u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2871 		u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2872 		const u8 *new = text_poke_array.vec[i].text;
2873 		int len = text_poke_array.vec[i].len;
2874 
2875 		if (len - INT3_INSN_SIZE > 0) {
2876 			memcpy(old + INT3_INSN_SIZE,
2877 			       text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2878 			       len - INT3_INSN_SIZE);
2879 
2880 			if (len == 6) {
2881 				_new[0] = 0x0f;
2882 				memcpy(_new + 1, new, 5);
2883 				new = _new;
2884 			}
2885 
2886 			text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2887 				  new + INT3_INSN_SIZE,
2888 				  len - INT3_INSN_SIZE);
2889 
2890 			do_sync++;
2891 		}
2892 
2893 		/*
2894 		 * Emit a perf event to record the text poke, primarily to
2895 		 * support Intel PT decoding which must walk the executable code
2896 		 * to reconstruct the trace. The flow up to here is:
2897 		 *   - write INT3 byte
2898 		 *   - IPI-SYNC
2899 		 *   - write instruction tail
2900 		 * At this point the actual control flow will be through the
2901 		 * INT3 and handler and not hit the old or new instruction.
2902 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2903 		 * can still be decoded. Subsequently:
2904 		 *   - emit RECORD_TEXT_POKE with the new instruction
2905 		 *   - IPI-SYNC
2906 		 *   - write first byte
2907 		 *   - IPI-SYNC
2908 		 * So before the text poke event timestamp, the decoder will see
2909 		 * either the old instruction flow or FUP/TIP of INT3. After the
2910 		 * text poke event timestamp, the decoder will see either the
2911 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2912 		 * use the timestamp as the point at which to modify the
2913 		 * executable code.
2914 		 * The old instruction is recorded so that the event can be
2915 		 * processed forwards or backwards.
2916 		 */
2917 		perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
2918 	}
2919 
2920 	if (do_sync) {
2921 		/*
2922 		 * According to Intel, this core syncing is very likely
2923 		 * not necessary and we'd be safe even without it. But
2924 		 * better safe than sorry (plus there's not only Intel).
2925 		 */
2926 		smp_text_poke_sync_each_cpu();
2927 	}
2928 
2929 	/*
2930 	 * Third step: replace the first byte (INT3) by the first byte of the
2931 	 * replacing opcode.
2932 	 */
2933 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2934 		u8 byte = text_poke_array.vec[i].text[0];
2935 
2936 		if (text_poke_array.vec[i].len == 6)
2937 			byte = 0x0f;
2938 
2939 		if (byte == INT3_INSN_OPCODE)
2940 			continue;
2941 
2942 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
2943 		do_sync++;
2944 	}
2945 
2946 	if (do_sync)
2947 		smp_text_poke_sync_each_cpu();
2948 
2949 	/*
2950 	 * Remove and wait for refs to be zero.
2951 	 *
2952 	 * Notably, if after step-3 above the INT3 got removed, then the
2953 	 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3
2954 	 * handlers and the below spin-wait will not happen.
2955 	 *
2956 	 * IOW. unless the replacement instruction is INT3, this case goes
2957 	 * unused.
2958 	 */
2959 	for_each_possible_cpu(i) {
2960 		atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
2961 
2962 		if (unlikely(!atomic_dec_and_test(refs)))
2963 			atomic_cond_read_acquire(refs, !VAL);
2964 	}
2965 
2966 	/* They are all completed: */
2967 	text_poke_array.nr_entries = 0;
2968 }
2969 
__smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)2970 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
2971 {
2972 	struct smp_text_poke_loc *tpl;
2973 	struct insn insn;
2974 	int ret, i = 0;
2975 
2976 	tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
2977 
2978 	if (len == 6)
2979 		i = 1;
2980 	memcpy((void *)tpl->text, opcode+i, len-i);
2981 	if (!emulate)
2982 		emulate = opcode;
2983 
2984 	ret = insn_decode_kernel(&insn, emulate);
2985 	BUG_ON(ret < 0);
2986 
2987 	tpl->rel_addr = addr - (void *)_stext;
2988 	tpl->len = len;
2989 	tpl->opcode = insn.opcode.bytes[0];
2990 
2991 	if (is_jcc32(&insn)) {
2992 		/*
2993 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2994 		 */
2995 		tpl->opcode = insn.opcode.bytes[1] - 0x10;
2996 	}
2997 
2998 	switch (tpl->opcode) {
2999 	case RET_INSN_OPCODE:
3000 	case JMP32_INSN_OPCODE:
3001 	case JMP8_INSN_OPCODE:
3002 		/*
3003 		 * Control flow instructions without implied execution of the
3004 		 * next instruction can be padded with INT3.
3005 		 */
3006 		for (i = insn.length; i < len; i++)
3007 			BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3008 		break;
3009 
3010 	default:
3011 		BUG_ON(len != insn.length);
3012 	}
3013 
3014 	switch (tpl->opcode) {
3015 	case INT3_INSN_OPCODE:
3016 	case RET_INSN_OPCODE:
3017 		break;
3018 
3019 	case CALL_INSN_OPCODE:
3020 	case JMP32_INSN_OPCODE:
3021 	case JMP8_INSN_OPCODE:
3022 	case 0x70 ... 0x7f: /* Jcc */
3023 		tpl->disp = insn.immediate.value;
3024 		break;
3025 
3026 	default: /* assume NOP */
3027 		switch (len) {
3028 		case 2: /* NOP2 -- emulate as JMP8+0 */
3029 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3030 			tpl->opcode = JMP8_INSN_OPCODE;
3031 			tpl->disp = 0;
3032 			break;
3033 
3034 		case 5: /* NOP5 -- emulate as JMP32+0 */
3035 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3036 			tpl->opcode = JMP32_INSN_OPCODE;
3037 			tpl->disp = 0;
3038 			break;
3039 
3040 		default: /* unknown instruction */
3041 			BUG();
3042 		}
3043 		break;
3044 	}
3045 }
3046 
3047 /*
3048  * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3049  * early if needed.
3050  */
text_poke_addr_ordered(void * addr)3051 static bool text_poke_addr_ordered(void *addr)
3052 {
3053 	WARN_ON_ONCE(!addr);
3054 
3055 	if (!text_poke_array.nr_entries)
3056 		return true;
3057 
3058 	/*
3059 	 * If the last current entry's address is higher than the
3060 	 * new entry's address we'd like to add, then ordering
3061 	 * is violated and we must first flush all pending patching
3062 	 * requests:
3063 	 */
3064 	if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3065 		return false;
3066 
3067 	return true;
3068 }
3069 
3070 /**
3071  * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3072  * @addr:	address to patch
3073  * @opcode:	opcode of new instruction
3074  * @len:	length to copy
3075  * @emulate:	instruction to be emulated
3076  *
3077  * Add a new instruction to the current queue of to-be-patched instructions
3078  * the kernel maintains. The patching request will not be executed immediately,
3079  * but becomes part of an array of patching requests, optimized for batched
3080  * execution. All pending patching requests will be executed on the next
3081  * smp_text_poke_batch_finish() call.
3082  */
smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)3083 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3084 {
3085 	if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3086 		smp_text_poke_batch_finish();
3087 	__smp_text_poke_batch_add(addr, opcode, len, emulate);
3088 }
3089 
3090 /**
3091  * smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3092  * @addr:	address to patch
3093  * @opcode:	opcode of new instruction
3094  * @len:	length to copy
3095  * @emulate:	instruction to be emulated
3096  *
3097  * Update a single instruction with the vector in the stack, avoiding
3098  * dynamically allocated memory. This function should be used when it is
3099  * not possible to allocate memory for a vector. The single instruction
3100  * is patched in immediately.
3101  */
smp_text_poke_single(void * addr,const void * opcode,size_t len,const void * emulate)3102 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3103 {
3104 	smp_text_poke_batch_add(addr, opcode, len, emulate);
3105 	smp_text_poke_batch_finish();
3106 }
3107