1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3
4 #include <linux/mmu_context.h>
5 #include <linux/perf_event.h>
6 #include <linux/vmalloc.h>
7 #include <linux/memory.h>
8 #include <linux/execmem.h>
9
10 #include <asm/text-patching.h>
11 #include <asm/insn.h>
12 #include <asm/ibt.h>
13 #include <asm/set_memory.h>
14 #include <asm/nmi.h>
15
16 int __read_mostly alternatives_patched;
17
18 EXPORT_SYMBOL_GPL(alternatives_patched);
19
20 #define MAX_PATCH_LEN (255-1)
21
22 #define DA_ALL (~0)
23 #define DA_ALT 0x01
24 #define DA_RET 0x02
25 #define DA_RETPOLINE 0x04
26 #define DA_ENDBR 0x08
27 #define DA_SMP 0x10
28
29 static unsigned int debug_alternative;
30
debug_alt(char * str)31 static int __init debug_alt(char *str)
32 {
33 if (str && *str == '=')
34 str++;
35
36 if (!str || kstrtouint(str, 0, &debug_alternative))
37 debug_alternative = DA_ALL;
38
39 return 1;
40 }
41 __setup("debug-alternative", debug_alt);
42
43 static int noreplace_smp;
44
setup_noreplace_smp(char * str)45 static int __init setup_noreplace_smp(char *str)
46 {
47 noreplace_smp = 1;
48 return 1;
49 }
50 __setup("noreplace-smp", setup_noreplace_smp);
51
52 #define DPRINTK(type, fmt, args...) \
53 do { \
54 if (debug_alternative & DA_##type) \
55 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
56 } while (0)
57
58 #define DUMP_BYTES(type, buf, len, fmt, args...) \
59 do { \
60 if (unlikely(debug_alternative & DA_##type)) { \
61 int j; \
62 \
63 if (!(len)) \
64 break; \
65 \
66 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
67 for (j = 0; j < (len) - 1; j++) \
68 printk(KERN_CONT "%02hhx ", buf[j]); \
69 printk(KERN_CONT "%02hhx\n", buf[j]); \
70 } \
71 } while (0)
72
73 static const unsigned char x86nops[] =
74 {
75 BYTES_NOP1,
76 BYTES_NOP2,
77 BYTES_NOP3,
78 BYTES_NOP4,
79 BYTES_NOP5,
80 BYTES_NOP6,
81 BYTES_NOP7,
82 BYTES_NOP8,
83 #ifdef CONFIG_64BIT
84 BYTES_NOP9,
85 BYTES_NOP10,
86 BYTES_NOP11,
87 #endif
88 };
89
90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
91 {
92 NULL,
93 x86nops,
94 x86nops + 1,
95 x86nops + 1 + 2,
96 x86nops + 1 + 2 + 3,
97 x86nops + 1 + 2 + 3 + 4,
98 x86nops + 1 + 2 + 3 + 4 + 5,
99 x86nops + 1 + 2 + 3 + 4 + 5 + 6,
100 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
101 #ifdef CONFIG_64BIT
102 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
104 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
105 #endif
106 };
107
108 #ifdef CONFIG_FINEIBT
109 static bool cfi_paranoid __ro_after_init;
110 #endif
111
112 #ifdef CONFIG_MITIGATION_ITS
113
114 #ifdef CONFIG_MODULES
115 static struct module *its_mod;
116 #endif
117 static void *its_page;
118 static unsigned int its_offset;
119 struct its_array its_pages;
120
__its_alloc(struct its_array * pages)121 static void *__its_alloc(struct its_array *pages)
122 {
123 void *page __free(execmem) = execmem_alloc(EXECMEM_MODULE_TEXT, PAGE_SIZE);
124 if (!page)
125 return NULL;
126
127 void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
128 GFP_KERNEL);
129 if (!tmp)
130 return NULL;
131
132 pages->pages = tmp;
133 pages->pages[pages->num++] = page;
134
135 return no_free_ptr(page);
136 }
137
138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
its_init_thunk(void * thunk,int reg)139 static void *its_init_thunk(void *thunk, int reg)
140 {
141 u8 *bytes = thunk;
142 int offset = 0;
143 int i = 0;
144
145 #ifdef CONFIG_FINEIBT
146 if (cfi_paranoid) {
147 /*
148 * When ITS uses indirect branch thunk the fineibt_paranoid
149 * caller sequence doesn't fit in the caller site. So put the
150 * remaining part of the sequence (<ea> + JNE) into the ITS
151 * thunk.
152 */
153 bytes[i++] = 0xea; /* invalid instruction */
154 bytes[i++] = 0x75; /* JNE */
155 bytes[i++] = 0xfd;
156
157 offset = 1;
158 }
159 #endif
160
161 if (reg >= 8) {
162 bytes[i++] = 0x41; /* REX.B prefix */
163 reg -= 8;
164 }
165 bytes[i++] = 0xff;
166 bytes[i++] = 0xe0 + reg; /* jmp *reg */
167 bytes[i++] = 0xcc;
168
169 return thunk + offset;
170 }
171
its_pages_protect(struct its_array * pages)172 static void its_pages_protect(struct its_array *pages)
173 {
174 for (int i = 0; i < pages->num; i++) {
175 void *page = pages->pages[i];
176 execmem_restore_rox(page, PAGE_SIZE);
177 }
178 }
179
its_fini_core(void)180 static void its_fini_core(void)
181 {
182 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
183 its_pages_protect(&its_pages);
184 kfree(its_pages.pages);
185 }
186
187 #ifdef CONFIG_MODULES
its_init_mod(struct module * mod)188 void its_init_mod(struct module *mod)
189 {
190 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
191 return;
192
193 mutex_lock(&text_mutex);
194 its_mod = mod;
195 its_page = NULL;
196 }
197
its_fini_mod(struct module * mod)198 void its_fini_mod(struct module *mod)
199 {
200 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
201 return;
202
203 WARN_ON_ONCE(its_mod != mod);
204
205 its_mod = NULL;
206 its_page = NULL;
207 mutex_unlock(&text_mutex);
208
209 if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
210 its_pages_protect(&mod->arch.its_pages);
211 }
212
its_free_mod(struct module * mod)213 void its_free_mod(struct module *mod)
214 {
215 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
216 return;
217
218 for (int i = 0; i < mod->arch.its_pages.num; i++) {
219 void *page = mod->arch.its_pages.pages[i];
220 execmem_free(page);
221 }
222 kfree(mod->arch.its_pages.pages);
223 }
224 #endif /* CONFIG_MODULES */
225
its_alloc(void)226 static void *its_alloc(void)
227 {
228 struct its_array *pages = &its_pages;
229 void *page;
230
231 #ifdef CONFIG_MODULES
232 if (its_mod)
233 pages = &its_mod->arch.its_pages;
234 #endif
235
236 page = __its_alloc(pages);
237 if (!page)
238 return NULL;
239
240 execmem_make_temp_rw(page, PAGE_SIZE);
241 if (pages == &its_pages)
242 set_memory_x((unsigned long)page, 1);
243
244 return page;
245 }
246
its_allocate_thunk(int reg)247 static void *its_allocate_thunk(int reg)
248 {
249 int size = 3 + (reg / 8);
250 void *thunk;
251
252 #ifdef CONFIG_FINEIBT
253 /*
254 * The ITS thunk contains an indirect jump and an int3 instruction so
255 * its size is 3 or 4 bytes depending on the register used. If CFI
256 * paranoid is used then 3 extra bytes are added in the ITS thunk to
257 * complete the fineibt_paranoid caller sequence.
258 */
259 if (cfi_paranoid)
260 size += 3;
261 #endif
262
263 if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
264 its_page = its_alloc();
265 if (!its_page) {
266 pr_err("ITS page allocation failed\n");
267 return NULL;
268 }
269 memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
270 its_offset = 32;
271 }
272
273 /*
274 * If the indirect branch instruction will be in the lower half
275 * of a cacheline, then update the offset to reach the upper half.
276 */
277 if ((its_offset + size - 1) % 64 < 32)
278 its_offset = ((its_offset - 1) | 0x3F) + 33;
279
280 thunk = its_page + its_offset;
281 its_offset += size;
282
283 return its_init_thunk(thunk, reg);
284 }
285
its_static_thunk(int reg)286 u8 *its_static_thunk(int reg)
287 {
288 u8 *thunk = __x86_indirect_its_thunk_array[reg];
289
290 #ifdef CONFIG_FINEIBT
291 /* Paranoid thunk starts 2 bytes before */
292 if (cfi_paranoid)
293 return thunk - 2;
294 #endif
295 return thunk;
296 }
297
298 #else
its_fini_core(void)299 static inline void its_fini_core(void) {}
300 #endif /* CONFIG_MITIGATION_ITS */
301
302 /*
303 * Nomenclature for variable names to simplify and clarify this code and ease
304 * any potential staring at it:
305 *
306 * @instr: source address of the original instructions in the kernel text as
307 * generated by the compiler.
308 *
309 * @buf: temporary buffer on which the patching operates. This buffer is
310 * eventually text-poked into the kernel image.
311 *
312 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
313 * in the .altinstr_replacement section.
314 */
315
316 /*
317 * Fill the buffer with a single effective instruction of size @len.
318 *
319 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
320 * for every single-byte NOP, try to generate the maximally available NOP of
321 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
322 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
323 * *jump* over instead of executing long and daft NOPs.
324 */
add_nop(u8 * buf,unsigned int len)325 static void add_nop(u8 *buf, unsigned int len)
326 {
327 u8 *target = buf + len;
328
329 if (!len)
330 return;
331
332 if (len <= ASM_NOP_MAX) {
333 memcpy(buf, x86_nops[len], len);
334 return;
335 }
336
337 if (len < 128) {
338 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
339 buf += JMP8_INSN_SIZE;
340 } else {
341 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
342 buf += JMP32_INSN_SIZE;
343 }
344
345 for (;buf < target; buf++)
346 *buf = INT3_INSN_OPCODE;
347 }
348
349 /*
350 * Matches NOP and NOPL, not any of the other possible NOPs.
351 */
insn_is_nop(struct insn * insn)352 static bool insn_is_nop(struct insn *insn)
353 {
354 /* Anything NOP, but no REP NOP */
355 if (insn->opcode.bytes[0] == 0x90 &&
356 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
357 return true;
358
359 /* NOPL */
360 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
361 return true;
362
363 /* TODO: more nops */
364
365 return false;
366 }
367
368 /*
369 * Find the offset of the first non-NOP instruction starting at @offset
370 * but no further than @len.
371 */
skip_nops(u8 * buf,int offset,int len)372 static int skip_nops(u8 *buf, int offset, int len)
373 {
374 struct insn insn;
375
376 for (; offset < len; offset += insn.length) {
377 if (insn_decode_kernel(&insn, &buf[offset]))
378 break;
379
380 if (!insn_is_nop(&insn))
381 break;
382 }
383
384 return offset;
385 }
386
387 /*
388 * "noinline" to cause control flow change and thus invalidate I$ and
389 * cause refetch after modification.
390 */
optimize_nops(const u8 * const instr,u8 * buf,size_t len)391 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
392 {
393 for (int next, i = 0; i < len; i = next) {
394 struct insn insn;
395
396 if (insn_decode_kernel(&insn, &buf[i]))
397 return;
398
399 next = i + insn.length;
400
401 if (insn_is_nop(&insn)) {
402 int nop = i;
403
404 /* Has the NOP already been optimized? */
405 if (i + insn.length == len)
406 return;
407
408 next = skip_nops(buf, next, len);
409
410 add_nop(buf + nop, next - nop);
411 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
412 }
413 }
414 }
415
416 /*
417 * In this context, "source" is where the instructions are placed in the
418 * section .altinstr_replacement, for example during kernel build by the
419 * toolchain.
420 * "Destination" is where the instructions are being patched in by this
421 * machinery.
422 *
423 * The source offset is:
424 *
425 * src_imm = target - src_next_ip (1)
426 *
427 * and the target offset is:
428 *
429 * dst_imm = target - dst_next_ip (2)
430 *
431 * so rework (1) as an expression for target like:
432 *
433 * target = src_imm + src_next_ip (1a)
434 *
435 * and substitute in (2) to get:
436 *
437 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
438 *
439 * Now, since the instruction stream is 'identical' at src and dst (it
440 * is being copied after all) it can be stated that:
441 *
442 * src_next_ip = src + ip_offset
443 * dst_next_ip = dst + ip_offset (4)
444 *
445 * Substitute (4) in (3) and observe ip_offset being cancelled out to
446 * obtain:
447 *
448 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
449 * = src_imm + src - dst + ip_offset - ip_offset
450 * = src_imm + src - dst (5)
451 *
452 * IOW, only the relative displacement of the code block matters.
453 */
454
455 #define apply_reloc_n(n_, p_, d_) \
456 do { \
457 s32 v = *(s##n_ *)(p_); \
458 v += (d_); \
459 BUG_ON((v >> 31) != (v >> (n_-1))); \
460 *(s##n_ *)(p_) = (s##n_)v; \
461 } while (0)
462
463
464 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)465 void apply_reloc(int n, void *ptr, uintptr_t diff)
466 {
467 switch (n) {
468 case 1: apply_reloc_n(8, ptr, diff); break;
469 case 2: apply_reloc_n(16, ptr, diff); break;
470 case 4: apply_reloc_n(32, ptr, diff); break;
471 default: BUG();
472 }
473 }
474
475 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)476 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
477 {
478 u8 *target = src + offset;
479 /*
480 * If the target is inside the patched block, it's relative to the
481 * block itself and does not need relocation.
482 */
483 return (target < src || target > src + src_len);
484 }
485
__apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)486 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
487 {
488 for (int next, i = 0; i < instrlen; i = next) {
489 struct insn insn;
490
491 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
492 return;
493
494 next = i + insn.length;
495
496 switch (insn.opcode.bytes[0]) {
497 case 0x0f:
498 if (insn.opcode.bytes[1] < 0x80 ||
499 insn.opcode.bytes[1] > 0x8f)
500 break;
501
502 fallthrough; /* Jcc.d32 */
503 case 0x70 ... 0x7f: /* Jcc.d8 */
504 case JMP8_INSN_OPCODE:
505 case JMP32_INSN_OPCODE:
506 case CALL_INSN_OPCODE:
507 if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
508 apply_reloc(insn.immediate.nbytes,
509 buf + i + insn_offset_immediate(&insn),
510 repl - instr);
511 }
512
513 /*
514 * Where possible, convert JMP.d32 into JMP.d8.
515 */
516 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
517 s32 imm = insn.immediate.value;
518 imm += repl - instr;
519 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
520 if ((imm >> 31) == (imm >> 7)) {
521 buf[i+0] = JMP8_INSN_OPCODE;
522 buf[i+1] = (s8)imm;
523
524 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
525 }
526 }
527 break;
528 }
529
530 if (insn_rip_relative(&insn)) {
531 if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
532 apply_reloc(insn.displacement.nbytes,
533 buf + i + insn_offset_displacement(&insn),
534 repl - instr);
535 }
536 }
537 }
538 }
539
text_poke_apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)540 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
541 {
542 __apply_relocation(buf, instr, instrlen, repl, repl_len);
543 optimize_nops(instr, buf, instrlen);
544 }
545
546 /* Low-level backend functions usable from alternative code replacements. */
547 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
548 EXPORT_SYMBOL_GPL(nop_func);
549
BUG_func(void)550 noinstr void BUG_func(void)
551 {
552 BUG();
553 }
554 EXPORT_SYMBOL(BUG_func);
555
556 #define CALL_RIP_REL_OPCODE 0xff
557 #define CALL_RIP_REL_MODRM 0x15
558
559 /*
560 * Rewrite the "call BUG_func" replacement to point to the target of the
561 * indirect pv_ops call "call *disp(%ip)".
562 */
alt_replace_call(u8 * instr,u8 * insn_buff,struct alt_instr * a)563 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
564 {
565 void *target, *bug = &BUG_func;
566 s32 disp;
567
568 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
569 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
570 BUG();
571 }
572
573 if (a->instrlen != 6 ||
574 instr[0] != CALL_RIP_REL_OPCODE ||
575 instr[1] != CALL_RIP_REL_MODRM) {
576 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
577 BUG();
578 }
579
580 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
581 disp = *(s32 *)(instr + 2);
582 #ifdef CONFIG_X86_64
583 /* ff 15 00 00 00 00 call *0x0(%rip) */
584 /* target address is stored at "next instruction + disp". */
585 target = *(void **)(instr + a->instrlen + disp);
586 #else
587 /* ff 15 00 00 00 00 call *0x0 */
588 /* target address is stored at disp. */
589 target = *(void **)disp;
590 #endif
591 if (!target)
592 target = bug;
593
594 /* (BUG_func - .) + (target - BUG_func) := target - . */
595 *(s32 *)(insn_buff + 1) += target - bug;
596
597 if (target == &nop_func)
598 return 0;
599
600 return 5;
601 }
602
instr_va(struct alt_instr * i)603 static inline u8 * instr_va(struct alt_instr *i)
604 {
605 return (u8 *)&i->instr_offset + i->instr_offset;
606 }
607
608 /*
609 * Replace instructions with better alternatives for this CPU type. This runs
610 * before SMP is initialized to avoid SMP problems with self modifying code.
611 * This implies that asymmetric systems where APs have less capabilities than
612 * the boot processor are not handled. Tough. Make sure you disable such
613 * features by hand.
614 *
615 * Marked "noinline" to cause control flow change and thus insn cache
616 * to refetch changed I$ lines.
617 */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)618 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
619 struct alt_instr *end)
620 {
621 u8 insn_buff[MAX_PATCH_LEN];
622 u8 *instr, *replacement;
623 struct alt_instr *a, *b;
624
625 DPRINTK(ALT, "alt table %px, -> %px", start, end);
626
627 /*
628 * KASAN_SHADOW_START is defined using
629 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
630 * During the process, KASAN becomes confused seeing partial LA57
631 * conversion and triggers a false-positive out-of-bound report.
632 *
633 * Disable KASAN until the patching is complete.
634 */
635 kasan_disable_current();
636
637 /*
638 * The scan order should be from start to end. A later scanned
639 * alternative code can overwrite previously scanned alternative code.
640 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
641 * patch code.
642 *
643 * So be careful if you want to change the scan order to any other
644 * order.
645 */
646 for (a = start; a < end; a++) {
647 int insn_buff_sz = 0;
648
649 /*
650 * In case of nested ALTERNATIVE()s the outer alternative might
651 * add more padding. To ensure consistent patching find the max
652 * padding for all alt_instr entries for this site (nested
653 * alternatives result in consecutive entries).
654 */
655 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
656 u8 len = max(a->instrlen, b->instrlen);
657 a->instrlen = b->instrlen = len;
658 }
659
660 instr = instr_va(a);
661 replacement = (u8 *)&a->repl_offset + a->repl_offset;
662 BUG_ON(a->instrlen > sizeof(insn_buff));
663 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
664
665 /*
666 * Patch if either:
667 * - feature is present
668 * - feature not present but ALT_FLAG_NOT is set to mean,
669 * patch if feature is *NOT* present.
670 */
671 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
672 memcpy(insn_buff, instr, a->instrlen);
673 optimize_nops(instr, insn_buff, a->instrlen);
674 text_poke_early(instr, insn_buff, a->instrlen);
675 continue;
676 }
677
678 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
679 a->cpuid >> 5,
680 a->cpuid & 0x1f,
681 instr, instr, a->instrlen,
682 replacement, a->replacementlen, a->flags);
683
684 memcpy(insn_buff, replacement, a->replacementlen);
685 insn_buff_sz = a->replacementlen;
686
687 if (a->flags & ALT_FLAG_DIRECT_CALL) {
688 insn_buff_sz = alt_replace_call(instr, insn_buff, a);
689 if (insn_buff_sz < 0)
690 continue;
691 }
692
693 for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
694 insn_buff[insn_buff_sz] = 0x90;
695
696 text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
697
698 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr);
699 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
700 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
701
702 text_poke_early(instr, insn_buff, insn_buff_sz);
703 }
704
705 kasan_enable_current();
706 }
707
is_jcc32(struct insn * insn)708 static inline bool is_jcc32(struct insn *insn)
709 {
710 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
711 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
712 }
713
714 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
715
716 /*
717 * CALL/JMP *%\reg
718 */
emit_indirect(int op,int reg,u8 * bytes)719 static int emit_indirect(int op, int reg, u8 *bytes)
720 {
721 int i = 0;
722 u8 modrm;
723
724 switch (op) {
725 case CALL_INSN_OPCODE:
726 modrm = 0x10; /* Reg = 2; CALL r/m */
727 break;
728
729 case JMP32_INSN_OPCODE:
730 modrm = 0x20; /* Reg = 4; JMP r/m */
731 break;
732
733 default:
734 WARN_ON_ONCE(1);
735 return -1;
736 }
737
738 if (reg >= 8) {
739 bytes[i++] = 0x41; /* REX.B prefix */
740 reg -= 8;
741 }
742
743 modrm |= 0xc0; /* Mod = 3 */
744 modrm += reg;
745
746 bytes[i++] = 0xff; /* opcode */
747 bytes[i++] = modrm;
748
749 return i;
750 }
751
__emit_trampoline(void * addr,struct insn * insn,u8 * bytes,void * call_dest,void * jmp_dest)752 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
753 void *call_dest, void *jmp_dest)
754 {
755 u8 op = insn->opcode.bytes[0];
756 int i = 0;
757
758 /*
759 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
760 * tail-calls. Deal with them.
761 */
762 if (is_jcc32(insn)) {
763 bytes[i++] = op;
764 op = insn->opcode.bytes[1];
765 goto clang_jcc;
766 }
767
768 if (insn->length == 6)
769 bytes[i++] = 0x2e; /* CS-prefix */
770
771 switch (op) {
772 case CALL_INSN_OPCODE:
773 __text_gen_insn(bytes+i, op, addr+i,
774 call_dest,
775 CALL_INSN_SIZE);
776 i += CALL_INSN_SIZE;
777 break;
778
779 case JMP32_INSN_OPCODE:
780 clang_jcc:
781 __text_gen_insn(bytes+i, op, addr+i,
782 jmp_dest,
783 JMP32_INSN_SIZE);
784 i += JMP32_INSN_SIZE;
785 break;
786
787 default:
788 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
789 return -1;
790 }
791
792 WARN_ON_ONCE(i != insn->length);
793
794 return i;
795 }
796
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)797 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
798 {
799 return __emit_trampoline(addr, insn, bytes,
800 __x86_indirect_call_thunk_array[reg],
801 __x86_indirect_jump_thunk_array[reg]);
802 }
803
804 #ifdef CONFIG_MITIGATION_ITS
emit_its_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)805 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
806 {
807 u8 *thunk = __x86_indirect_its_thunk_array[reg];
808 u8 *tmp = its_allocate_thunk(reg);
809
810 if (tmp)
811 thunk = tmp;
812
813 return __emit_trampoline(addr, insn, bytes, thunk, thunk);
814 }
815
816 /* Check if an indirect branch is at ITS-unsafe address */
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)817 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
818 {
819 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
820 return false;
821
822 /* Indirect branch opcode is 2 or 3 bytes depending on reg */
823 addr += 1 + reg / 8;
824
825 /* Lower-half of the cacheline? */
826 return !(addr & 0x20);
827 }
828 #else /* CONFIG_MITIGATION_ITS */
829
830 #ifdef CONFIG_FINEIBT
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)831 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
832 {
833 return false;
834 }
835 #endif
836
837 #endif /* CONFIG_MITIGATION_ITS */
838
839 /*
840 * Rewrite the compiler generated retpoline thunk calls.
841 *
842 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
843 * indirect instructions, avoiding the extra indirection.
844 *
845 * For example, convert:
846 *
847 * CALL __x86_indirect_thunk_\reg
848 *
849 * into:
850 *
851 * CALL *%\reg
852 *
853 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
854 */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)855 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
856 {
857 retpoline_thunk_t *target;
858 int reg, ret, i = 0;
859 u8 op, cc;
860
861 target = addr + insn->length + insn->immediate.value;
862 reg = target - __x86_indirect_thunk_array;
863
864 if (WARN_ON_ONCE(reg & ~0xf))
865 return -1;
866
867 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
868 BUG_ON(reg == 4);
869
870 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
871 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
872 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
873 return emit_call_track_retpoline(addr, insn, reg, bytes);
874
875 return -1;
876 }
877
878 op = insn->opcode.bytes[0];
879
880 /*
881 * Convert:
882 *
883 * Jcc.d32 __x86_indirect_thunk_\reg
884 *
885 * into:
886 *
887 * Jncc.d8 1f
888 * [ LFENCE ]
889 * JMP *%\reg
890 * [ NOP ]
891 * 1:
892 */
893 if (is_jcc32(insn)) {
894 cc = insn->opcode.bytes[1] & 0xf;
895 cc ^= 1; /* invert condition */
896
897 bytes[i++] = 0x70 + cc; /* Jcc.d8 */
898 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
899
900 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
901 op = JMP32_INSN_OPCODE;
902 }
903
904 /*
905 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
906 */
907 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
908 bytes[i++] = 0x0f;
909 bytes[i++] = 0xae;
910 bytes[i++] = 0xe8; /* LFENCE */
911 }
912
913 #ifdef CONFIG_MITIGATION_ITS
914 /*
915 * Check if the address of last byte of emitted-indirect is in
916 * lower-half of the cacheline. Such branches need ITS mitigation.
917 */
918 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
919 return emit_its_trampoline(addr, insn, reg, bytes);
920 #endif
921
922 ret = emit_indirect(op, reg, bytes + i);
923 if (ret < 0)
924 return ret;
925 i += ret;
926
927 /*
928 * The compiler is supposed to EMIT an INT3 after every unconditional
929 * JMP instruction due to AMD BTC. However, if the compiler is too old
930 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
931 * indirect JMPs even on Intel.
932 */
933 if (op == JMP32_INSN_OPCODE && i < insn->length)
934 bytes[i++] = INT3_INSN_OPCODE;
935
936 for (; i < insn->length;)
937 bytes[i++] = BYTES_NOP1;
938
939 return i;
940 }
941
942 /*
943 * Generated by 'objtool --retpoline'.
944 */
apply_retpolines(s32 * start,s32 * end)945 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
946 {
947 s32 *s;
948
949 for (s = start; s < end; s++) {
950 void *addr = (void *)s + *s;
951 struct insn insn;
952 int len, ret;
953 u8 bytes[16];
954 u8 op1, op2;
955 u8 *dest;
956
957 ret = insn_decode_kernel(&insn, addr);
958 if (WARN_ON_ONCE(ret < 0))
959 continue;
960
961 op1 = insn.opcode.bytes[0];
962 op2 = insn.opcode.bytes[1];
963
964 switch (op1) {
965 case 0x70 ... 0x7f: /* Jcc.d8 */
966 /* See cfi_paranoid. */
967 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
968 continue;
969
970 case CALL_INSN_OPCODE:
971 case JMP32_INSN_OPCODE:
972 /* Check for cfi_paranoid + ITS */
973 dest = addr + insn.length + insn.immediate.value;
974 if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) {
975 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
976 continue;
977 }
978 break;
979
980 case 0x0f: /* escape */
981 if (op2 >= 0x80 && op2 <= 0x8f)
982 break;
983 fallthrough;
984 default:
985 WARN_ON_ONCE(1);
986 continue;
987 }
988
989 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
990 addr, addr, insn.length,
991 addr + insn.length + insn.immediate.value);
992
993 len = patch_retpoline(addr, &insn, bytes);
994 if (len == insn.length) {
995 optimize_nops(addr, bytes, len);
996 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr);
997 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
998 text_poke_early(addr, bytes, len);
999 }
1000 }
1001 }
1002
1003 #ifdef CONFIG_MITIGATION_RETHUNK
1004
cpu_wants_rethunk(void)1005 bool cpu_wants_rethunk(void)
1006 {
1007 return cpu_feature_enabled(X86_FEATURE_RETHUNK);
1008 }
1009
cpu_wants_rethunk_at(void * addr)1010 bool cpu_wants_rethunk_at(void *addr)
1011 {
1012 if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1013 return false;
1014 if (x86_return_thunk != its_return_thunk)
1015 return true;
1016
1017 return !((unsigned long)addr & 0x20);
1018 }
1019
1020 /*
1021 * Rewrite the compiler generated return thunk tail-calls.
1022 *
1023 * For example, convert:
1024 *
1025 * JMP __x86_return_thunk
1026 *
1027 * into:
1028 *
1029 * RET
1030 */
patch_return(void * addr,struct insn * insn,u8 * bytes)1031 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1032 {
1033 int i = 0;
1034
1035 /* Patch the custom return thunks... */
1036 if (cpu_wants_rethunk_at(addr)) {
1037 i = JMP32_INSN_SIZE;
1038 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1039 } else {
1040 /* ... or patch them out if not needed. */
1041 bytes[i++] = RET_INSN_OPCODE;
1042 }
1043
1044 for (; i < insn->length;)
1045 bytes[i++] = INT3_INSN_OPCODE;
1046 return i;
1047 }
1048
apply_returns(s32 * start,s32 * end)1049 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1050 {
1051 s32 *s;
1052
1053 if (cpu_wants_rethunk())
1054 static_call_force_reinit();
1055
1056 for (s = start; s < end; s++) {
1057 void *dest = NULL, *addr = (void *)s + *s;
1058 struct insn insn;
1059 int len, ret;
1060 u8 bytes[16];
1061 u8 op;
1062
1063 ret = insn_decode_kernel(&insn, addr);
1064 if (WARN_ON_ONCE(ret < 0))
1065 continue;
1066
1067 op = insn.opcode.bytes[0];
1068 if (op == JMP32_INSN_OPCODE)
1069 dest = addr + insn.length + insn.immediate.value;
1070
1071 if (__static_call_fixup(addr, op, dest) ||
1072 WARN_ONCE(dest != &__x86_return_thunk,
1073 "missing return thunk: %pS-%pS: %*ph",
1074 addr, dest, 5, addr))
1075 continue;
1076
1077 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1078 addr, addr, insn.length,
1079 addr + insn.length + insn.immediate.value);
1080
1081 len = patch_return(addr, &insn, bytes);
1082 if (len == insn.length) {
1083 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr);
1084 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1085 text_poke_early(addr, bytes, len);
1086 }
1087 }
1088 }
1089 #else /* !CONFIG_MITIGATION_RETHUNK: */
apply_returns(s32 * start,s32 * end)1090 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1091 #endif /* !CONFIG_MITIGATION_RETHUNK */
1092
1093 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1094
apply_retpolines(s32 * start,s32 * end)1095 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)1096 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1097
1098 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1099
1100 #ifdef CONFIG_X86_KERNEL_IBT
1101
is_endbr(u32 * val)1102 __noendbr bool is_endbr(u32 *val)
1103 {
1104 u32 endbr;
1105
1106 __get_kernel_nofault(&endbr, val, u32, Efault);
1107 return __is_endbr(endbr);
1108
1109 Efault:
1110 return false;
1111 }
1112
1113 #ifdef CONFIG_FINEIBT
1114
exact_endbr(u32 * val)1115 static __noendbr bool exact_endbr(u32 *val)
1116 {
1117 u32 endbr;
1118
1119 __get_kernel_nofault(&endbr, val, u32, Efault);
1120 return endbr == gen_endbr();
1121
1122 Efault:
1123 return false;
1124 }
1125
1126 #endif
1127
1128 static void poison_cfi(void *addr);
1129
poison_endbr(void * addr)1130 static void __init_or_module poison_endbr(void *addr)
1131 {
1132 u32 poison = gen_endbr_poison();
1133
1134 if (WARN_ON_ONCE(!is_endbr(addr)))
1135 return;
1136
1137 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1138
1139 /*
1140 * When we have IBT, the lack of ENDBR will trigger #CP
1141 */
1142 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1143 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1144 text_poke_early(addr, &poison, 4);
1145 }
1146
1147 /*
1148 * Generated by: objtool --ibt
1149 *
1150 * Seal the functions for indirect calls by clobbering the ENDBR instructions
1151 * and the kCFI hash value.
1152 */
apply_seal_endbr(s32 * start,s32 * end)1153 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1154 {
1155 s32 *s;
1156
1157 for (s = start; s < end; s++) {
1158 void *addr = (void *)s + *s;
1159
1160 poison_endbr(addr);
1161 if (IS_ENABLED(CONFIG_FINEIBT))
1162 poison_cfi(addr - 16);
1163 }
1164 }
1165
1166 #else /* !CONFIG_X86_KERNEL_IBT: */
1167
apply_seal_endbr(s32 * start,s32 * end)1168 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1169
1170 #endif /* !CONFIG_X86_KERNEL_IBT */
1171
1172 #ifdef CONFIG_CFI_AUTO_DEFAULT
1173 # define __CFI_DEFAULT CFI_AUTO
1174 #elif defined(CONFIG_CFI_CLANG)
1175 # define __CFI_DEFAULT CFI_KCFI
1176 #else
1177 # define __CFI_DEFAULT CFI_OFF
1178 #endif
1179
1180 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1181
1182 #ifdef CONFIG_FINEIBT_BHI
1183 bool cfi_bhi __ro_after_init = false;
1184 #endif
1185
1186 #ifdef CONFIG_CFI_CLANG
cfi_get_func_hash(void * func)1187 u32 cfi_get_func_hash(void *func)
1188 {
1189 u32 hash;
1190
1191 func -= cfi_get_offset();
1192 switch (cfi_mode) {
1193 case CFI_FINEIBT:
1194 func += 7;
1195 break;
1196 case CFI_KCFI:
1197 func += 1;
1198 break;
1199 default:
1200 return 0;
1201 }
1202
1203 if (get_kernel_nofault(hash, func))
1204 return 0;
1205
1206 return hash;
1207 }
1208
cfi_get_func_arity(void * func)1209 int cfi_get_func_arity(void *func)
1210 {
1211 bhi_thunk *target;
1212 s32 disp;
1213
1214 if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1215 return 0;
1216
1217 if (get_kernel_nofault(disp, func - 4))
1218 return 0;
1219
1220 target = func + disp;
1221 return target - __bhi_args;
1222 }
1223 #endif
1224
1225 #ifdef CONFIG_FINEIBT
1226
1227 static bool cfi_rand __ro_after_init = true;
1228 static u32 cfi_seed __ro_after_init;
1229
1230 /*
1231 * Re-hash the CFI hash with a boot-time seed while making sure the result is
1232 * not a valid ENDBR instruction.
1233 */
cfi_rehash(u32 hash)1234 static u32 cfi_rehash(u32 hash)
1235 {
1236 hash ^= cfi_seed;
1237 while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1238 bool lsb = hash & 1;
1239 hash >>= 1;
1240 if (lsb)
1241 hash ^= 0x80200003;
1242 }
1243 return hash;
1244 }
1245
cfi_parse_cmdline(char * str)1246 static __init int cfi_parse_cmdline(char *str)
1247 {
1248 if (!str)
1249 return -EINVAL;
1250
1251 while (str) {
1252 char *next = strchr(str, ',');
1253 if (next) {
1254 *next = 0;
1255 next++;
1256 }
1257
1258 if (!strcmp(str, "auto")) {
1259 cfi_mode = CFI_AUTO;
1260 } else if (!strcmp(str, "off")) {
1261 cfi_mode = CFI_OFF;
1262 cfi_rand = false;
1263 } else if (!strcmp(str, "kcfi")) {
1264 cfi_mode = CFI_KCFI;
1265 } else if (!strcmp(str, "fineibt")) {
1266 cfi_mode = CFI_FINEIBT;
1267 } else if (!strcmp(str, "norand")) {
1268 cfi_rand = false;
1269 } else if (!strcmp(str, "warn")) {
1270 pr_alert("CFI mismatch non-fatal!\n");
1271 cfi_warn = true;
1272 } else if (!strcmp(str, "paranoid")) {
1273 if (cfi_mode == CFI_FINEIBT) {
1274 cfi_paranoid = true;
1275 } else {
1276 pr_err("Ignoring paranoid; depends on fineibt.\n");
1277 }
1278 } else if (!strcmp(str, "bhi")) {
1279 #ifdef CONFIG_FINEIBT_BHI
1280 if (cfi_mode == CFI_FINEIBT) {
1281 cfi_bhi = true;
1282 } else {
1283 pr_err("Ignoring bhi; depends on fineibt.\n");
1284 }
1285 #else
1286 pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n");
1287 #endif
1288 } else {
1289 pr_err("Ignoring unknown cfi option (%s).", str);
1290 }
1291
1292 str = next;
1293 }
1294
1295 return 0;
1296 }
1297 early_param("cfi", cfi_parse_cmdline);
1298
1299 /*
1300 * kCFI FineIBT
1301 *
1302 * __cfi_\func: __cfi_\func:
1303 * movl $0x12345678,%eax // 5 endbr64 // 4
1304 * nop subl $0x12345678,%r10d // 7
1305 * nop jne __cfi_\func+6 // 2
1306 * nop nop3 // 3
1307 * nop
1308 * nop
1309 * nop
1310 * nop
1311 * nop
1312 * nop
1313 * nop
1314 * nop
1315 *
1316 *
1317 * caller: caller:
1318 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6
1319 * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4
1320 * je 1f // 2 nop4 // 4
1321 * ud2 // 2
1322 * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6
1323 *
1324 */
1325
1326 /*
1327 * <fineibt_preamble_start>:
1328 * 0: f3 0f 1e fa endbr64
1329 * 4: 41 81 <ea> 78 56 34 12 sub $0x12345678, %r10d
1330 * b: 75 f9 jne 6 <fineibt_preamble_start+0x6>
1331 * d: 0f 1f 00 nopl (%rax)
1332 *
1333 * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as
1334 * (bad) on x86_64 and raises #UD.
1335 */
1336 asm( ".pushsection .rodata \n"
1337 "fineibt_preamble_start: \n"
1338 " endbr64 \n"
1339 " subl $0x12345678, %r10d \n"
1340 "fineibt_preamble_bhi: \n"
1341 " jne fineibt_preamble_start+6 \n"
1342 ASM_NOP3
1343 "fineibt_preamble_end: \n"
1344 ".popsection\n"
1345 );
1346
1347 extern u8 fineibt_preamble_start[];
1348 extern u8 fineibt_preamble_bhi[];
1349 extern u8 fineibt_preamble_end[];
1350
1351 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1352 #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start)
1353 #define fineibt_preamble_ud 6
1354 #define fineibt_preamble_hash 7
1355
1356 /*
1357 * <fineibt_caller_start>:
1358 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
1359 * 6: 4d 8d 5b f0 lea -0x10(%r11), %r11
1360 * a: 0f 1f 40 00 nopl 0x0(%rax)
1361 */
1362 asm( ".pushsection .rodata \n"
1363 "fineibt_caller_start: \n"
1364 " movl $0x12345678, %r10d \n"
1365 " lea -0x10(%r11), %r11 \n"
1366 ASM_NOP4
1367 "fineibt_caller_end: \n"
1368 ".popsection \n"
1369 );
1370
1371 extern u8 fineibt_caller_start[];
1372 extern u8 fineibt_caller_end[];
1373
1374 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1375 #define fineibt_caller_hash 2
1376
1377 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1378
1379 /*
1380 * Since FineIBT does hash validation on the callee side it is prone to
1381 * circumvention attacks where a 'naked' ENDBR instruction exists that
1382 * is not part of the fineibt_preamble sequence.
1383 *
1384 * Notably the x86 entry points must be ENDBR and equally cannot be
1385 * fineibt_preamble.
1386 *
1387 * The fineibt_paranoid caller sequence adds additional caller side
1388 * hash validation. This stops such circumvention attacks dead, but at the cost
1389 * of adding a load.
1390 *
1391 * <fineibt_paranoid_start>:
1392 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
1393 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d
1394 * a: 4d 8d 5b <f0> lea -0x10(%r11), %r11
1395 * e: 75 fd jne d <fineibt_paranoid_start+0xd>
1396 * 10: 41 ff d3 call *%r11
1397 * 13: 90 nop
1398 *
1399 * Notably LEA does not modify flags and can be reordered with the CMP,
1400 * avoiding a dependency. Again, using a non-taken (backwards) branch
1401 * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1402 * Jcc.d8, causing #UD.
1403 */
1404 asm( ".pushsection .rodata \n"
1405 "fineibt_paranoid_start: \n"
1406 " movl $0x12345678, %r10d \n"
1407 " cmpl -9(%r11), %r10d \n"
1408 " lea -0x10(%r11), %r11 \n"
1409 " jne fineibt_paranoid_start+0xd \n"
1410 "fineibt_paranoid_ind: \n"
1411 " call *%r11 \n"
1412 " nop \n"
1413 "fineibt_paranoid_end: \n"
1414 ".popsection \n"
1415 );
1416
1417 extern u8 fineibt_paranoid_start[];
1418 extern u8 fineibt_paranoid_ind[];
1419 extern u8 fineibt_paranoid_end[];
1420
1421 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1422 #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start)
1423 #define fineibt_paranoid_ud 0xd
1424
decode_preamble_hash(void * addr,int * reg)1425 static u32 decode_preamble_hash(void *addr, int *reg)
1426 {
1427 u8 *p = addr;
1428
1429 /* b8+reg 78 56 34 12 movl $0x12345678,\reg */
1430 if (p[0] >= 0xb8 && p[0] < 0xc0) {
1431 if (reg)
1432 *reg = p[0] - 0xb8;
1433 return *(u32 *)(addr + 1);
1434 }
1435
1436 return 0; /* invalid hash value */
1437 }
1438
decode_caller_hash(void * addr)1439 static u32 decode_caller_hash(void *addr)
1440 {
1441 u8 *p = addr;
1442
1443 /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */
1444 if (p[0] == 0x41 && p[1] == 0xba)
1445 return -*(u32 *)(addr + 2);
1446
1447 /* e8 0c 88 a9 cb ed jmp.d8 +12 */
1448 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1449 return -*(u32 *)(addr + 2);
1450
1451 return 0; /* invalid hash value */
1452 }
1453
1454 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1455 static int cfi_disable_callers(s32 *start, s32 *end)
1456 {
1457 /*
1458 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1459 * in tact for later usage. Also see decode_caller_hash() and
1460 * cfi_rewrite_callers().
1461 */
1462 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1463 s32 *s;
1464
1465 for (s = start; s < end; s++) {
1466 void *addr = (void *)s + *s;
1467 u32 hash;
1468
1469 addr -= fineibt_caller_size;
1470 hash = decode_caller_hash(addr);
1471 if (!hash) /* nocfi callers */
1472 continue;
1473
1474 text_poke_early(addr, jmp, 2);
1475 }
1476
1477 return 0;
1478 }
1479
cfi_enable_callers(s32 * start,s32 * end)1480 static int cfi_enable_callers(s32 *start, s32 *end)
1481 {
1482 /*
1483 * Re-enable kCFI, undo what cfi_disable_callers() did.
1484 */
1485 const u8 mov[] = { 0x41, 0xba };
1486 s32 *s;
1487
1488 for (s = start; s < end; s++) {
1489 void *addr = (void *)s + *s;
1490 u32 hash;
1491
1492 addr -= fineibt_caller_size;
1493 hash = decode_caller_hash(addr);
1494 if (!hash) /* nocfi callers */
1495 continue;
1496
1497 text_poke_early(addr, mov, 2);
1498 }
1499
1500 return 0;
1501 }
1502
1503 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1504 static int cfi_rand_preamble(s32 *start, s32 *end)
1505 {
1506 s32 *s;
1507
1508 for (s = start; s < end; s++) {
1509 void *addr = (void *)s + *s;
1510 u32 hash;
1511
1512 hash = decode_preamble_hash(addr, NULL);
1513 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1514 addr, addr, 5, addr))
1515 return -EINVAL;
1516
1517 hash = cfi_rehash(hash);
1518 text_poke_early(addr + 1, &hash, 4);
1519 }
1520
1521 return 0;
1522 }
1523
cfi_fineibt_bhi_preamble(void * addr,int arity)1524 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1525 {
1526 if (!arity)
1527 return;
1528
1529 if (!cfi_warn && arity == 1) {
1530 /*
1531 * Crazy scheme to allow arity-1 inline:
1532 *
1533 * __cfi_foo:
1534 * 0: f3 0f 1e fa endbr64
1535 * 4: 41 81 <ea> 78 56 34 12 sub 0x12345678, %r10d
1536 * b: 49 0f 45 fa cmovne %r10, %rdi
1537 * f: 75 f5 jne __cfi_foo+6
1538 * 11: 0f 1f 00 nopl (%rax)
1539 *
1540 * Code that direct calls to foo()+0, decodes the tail end as:
1541 *
1542 * foo:
1543 * 0: f5 cmc
1544 * 1: 0f 1f 00 nopl (%rax)
1545 *
1546 * which clobbers CF, but does not affect anything ABI
1547 * wise.
1548 *
1549 * Notably, this scheme is incompatible with permissive CFI
1550 * because the CMOVcc is unconditional and RDI will have been
1551 * clobbered.
1552 */
1553 const u8 magic[9] = {
1554 0x49, 0x0f, 0x45, 0xfa,
1555 0x75, 0xf5,
1556 BYTES_NOP3,
1557 };
1558
1559 text_poke_early(addr + fineibt_preamble_bhi, magic, 9);
1560
1561 return;
1562 }
1563
1564 text_poke_early(addr + fineibt_preamble_bhi,
1565 text_gen_insn(CALL_INSN_OPCODE,
1566 addr + fineibt_preamble_bhi,
1567 __bhi_args[arity]),
1568 CALL_INSN_SIZE);
1569 }
1570
cfi_rewrite_preamble(s32 * start,s32 * end)1571 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1572 {
1573 s32 *s;
1574
1575 for (s = start; s < end; s++) {
1576 void *addr = (void *)s + *s;
1577 int arity;
1578 u32 hash;
1579
1580 /*
1581 * When the function doesn't start with ENDBR the compiler will
1582 * have determined there are no indirect calls to it and we
1583 * don't need no CFI either.
1584 */
1585 if (!is_endbr(addr + 16))
1586 continue;
1587
1588 hash = decode_preamble_hash(addr, &arity);
1589 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1590 addr, addr, 5, addr))
1591 return -EINVAL;
1592
1593 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1594 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1595 text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1596
1597 WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1598 "kCFI preamble has wrong register at: %pS %*ph\n",
1599 addr, 5, addr);
1600
1601 if (cfi_bhi)
1602 cfi_fineibt_bhi_preamble(addr, arity);
1603 }
1604
1605 return 0;
1606 }
1607
cfi_rewrite_endbr(s32 * start,s32 * end)1608 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1609 {
1610 s32 *s;
1611
1612 for (s = start; s < end; s++) {
1613 void *addr = (void *)s + *s;
1614
1615 if (!exact_endbr(addr + 16))
1616 continue;
1617
1618 poison_endbr(addr + 16);
1619 }
1620 }
1621
1622 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1623 static int cfi_rand_callers(s32 *start, s32 *end)
1624 {
1625 s32 *s;
1626
1627 for (s = start; s < end; s++) {
1628 void *addr = (void *)s + *s;
1629 u32 hash;
1630
1631 addr -= fineibt_caller_size;
1632 hash = decode_caller_hash(addr);
1633 if (hash) {
1634 hash = -cfi_rehash(hash);
1635 text_poke_early(addr + 2, &hash, 4);
1636 }
1637 }
1638
1639 return 0;
1640 }
1641
emit_paranoid_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)1642 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1643 {
1644 u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1645
1646 #ifdef CONFIG_MITIGATION_ITS
1647 u8 *tmp = its_allocate_thunk(reg);
1648 if (tmp)
1649 thunk = tmp;
1650 #endif
1651
1652 return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1653 }
1654
cfi_rewrite_callers(s32 * start,s32 * end)1655 static int cfi_rewrite_callers(s32 *start, s32 *end)
1656 {
1657 s32 *s;
1658
1659 BUG_ON(fineibt_paranoid_size != 20);
1660
1661 for (s = start; s < end; s++) {
1662 void *addr = (void *)s + *s;
1663 struct insn insn;
1664 u8 bytes[20];
1665 u32 hash;
1666 int ret;
1667 u8 op;
1668
1669 addr -= fineibt_caller_size;
1670 hash = decode_caller_hash(addr);
1671 if (!hash)
1672 continue;
1673
1674 if (!cfi_paranoid) {
1675 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1676 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1677 text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1678 /* rely on apply_retpolines() */
1679 continue;
1680 }
1681
1682 /* cfi_paranoid */
1683 ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1684 if (WARN_ON_ONCE(ret < 0))
1685 continue;
1686
1687 op = insn.opcode.bytes[0];
1688 if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1689 WARN_ON_ONCE(1);
1690 continue;
1691 }
1692
1693 memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1694 memcpy(bytes + fineibt_caller_hash, &hash, 4);
1695
1696 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1697 emit_paranoid_trampoline(addr + fineibt_caller_size,
1698 &insn, 11, bytes + fineibt_caller_size);
1699 } else {
1700 ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind);
1701 if (WARN_ON_ONCE(ret != 3))
1702 continue;
1703 }
1704
1705 text_poke_early(addr, bytes, fineibt_paranoid_size);
1706 }
1707
1708 return 0;
1709 }
1710
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1711 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1712 s32 *start_cfi, s32 *end_cfi, bool builtin)
1713 {
1714 int ret;
1715
1716 if (WARN_ONCE(fineibt_preamble_size != 16,
1717 "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1718 return;
1719
1720 if (cfi_mode == CFI_AUTO) {
1721 cfi_mode = CFI_KCFI;
1722 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1723 /*
1724 * FRED has much saner context on exception entry and
1725 * is less easy to take advantage of.
1726 */
1727 if (!cpu_feature_enabled(X86_FEATURE_FRED))
1728 cfi_paranoid = true;
1729 cfi_mode = CFI_FINEIBT;
1730 }
1731 }
1732
1733 /*
1734 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1735 * rewrite them. This disables all CFI. If this succeeds but any of the
1736 * later stages fails, we're without CFI.
1737 */
1738 ret = cfi_disable_callers(start_retpoline, end_retpoline);
1739 if (ret)
1740 goto err;
1741
1742 if (cfi_rand) {
1743 if (builtin) {
1744 cfi_seed = get_random_u32();
1745 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1746 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1747 }
1748
1749 ret = cfi_rand_preamble(start_cfi, end_cfi);
1750 if (ret)
1751 goto err;
1752
1753 ret = cfi_rand_callers(start_retpoline, end_retpoline);
1754 if (ret)
1755 goto err;
1756 }
1757
1758 switch (cfi_mode) {
1759 case CFI_OFF:
1760 if (builtin)
1761 pr_info("Disabling CFI\n");
1762 return;
1763
1764 case CFI_KCFI:
1765 ret = cfi_enable_callers(start_retpoline, end_retpoline);
1766 if (ret)
1767 goto err;
1768
1769 if (builtin)
1770 pr_info("Using kCFI\n");
1771 return;
1772
1773 case CFI_FINEIBT:
1774 /* place the FineIBT preamble at func()-16 */
1775 ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1776 if (ret)
1777 goto err;
1778
1779 /* rewrite the callers to target func()-16 */
1780 ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1781 if (ret)
1782 goto err;
1783
1784 /* now that nobody targets func()+0, remove ENDBR there */
1785 cfi_rewrite_endbr(start_cfi, end_cfi);
1786
1787 if (builtin) {
1788 pr_info("Using %sFineIBT%s CFI\n",
1789 cfi_paranoid ? "paranoid " : "",
1790 cfi_bhi ? "+BHI" : "");
1791 }
1792 return;
1793
1794 default:
1795 break;
1796 }
1797
1798 err:
1799 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1800 }
1801
poison_hash(void * addr)1802 static inline void poison_hash(void *addr)
1803 {
1804 *(u32 *)addr = 0;
1805 }
1806
poison_cfi(void * addr)1807 static void poison_cfi(void *addr)
1808 {
1809 /*
1810 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1811 * some (static) functions for which they can determine the address
1812 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1813 *
1814 * As such, these functions will get sealed, but we need to be careful
1815 * to not unconditionally scribble the previous function.
1816 */
1817 switch (cfi_mode) {
1818 case CFI_FINEIBT:
1819 /*
1820 * FineIBT prefix should start with an ENDBR.
1821 */
1822 if (!is_endbr(addr))
1823 break;
1824
1825 /*
1826 * __cfi_\func:
1827 * osp nopl (%rax)
1828 * subl $0, %r10d
1829 * jz 1f
1830 * ud2
1831 * 1: nop
1832 */
1833 poison_endbr(addr);
1834 poison_hash(addr + fineibt_preamble_hash);
1835 break;
1836
1837 case CFI_KCFI:
1838 /*
1839 * kCFI prefix should start with a valid hash.
1840 */
1841 if (!decode_preamble_hash(addr, NULL))
1842 break;
1843
1844 /*
1845 * __cfi_\func:
1846 * movl $0, %eax
1847 * .skip 11, 0x90
1848 */
1849 poison_hash(addr + 1);
1850 break;
1851
1852 default:
1853 break;
1854 }
1855 }
1856
1857 /*
1858 * When regs->ip points to a 0xEA byte in the FineIBT preamble,
1859 * return true and fill out target and type.
1860 *
1861 * We check the preamble by checking for the ENDBR instruction relative to the
1862 * 0xEA instruction.
1863 */
decode_fineibt_preamble(struct pt_regs * regs,unsigned long * target,u32 * type)1864 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1865 {
1866 unsigned long addr = regs->ip - fineibt_preamble_ud;
1867 u32 hash;
1868
1869 if (!exact_endbr((void *)addr))
1870 return false;
1871
1872 *target = addr + fineibt_preamble_size;
1873
1874 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1875 *type = (u32)regs->r10 + hash;
1876
1877 /*
1878 * Since regs->ip points to the middle of an instruction; it cannot
1879 * continue with the normal fixup.
1880 */
1881 regs->ip = *target;
1882
1883 return true;
1884
1885 Efault:
1886 return false;
1887 }
1888
1889 /*
1890 * regs->ip points to one of the UD2 in __bhi_args[].
1891 */
decode_fineibt_bhi(struct pt_regs * regs,unsigned long * target,u32 * type)1892 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1893 {
1894 unsigned long addr;
1895 u32 hash;
1896
1897 if (!cfi_bhi)
1898 return false;
1899
1900 if (regs->ip < (unsigned long)__bhi_args ||
1901 regs->ip >= (unsigned long)__bhi_args_end)
1902 return false;
1903
1904 /*
1905 * Fetch the return address from the stack, this points to the
1906 * FineIBT preamble. Since the CALL instruction is in the 5 last
1907 * bytes of the preamble, the return address is in fact the target
1908 * address.
1909 */
1910 __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1911 *target = addr;
1912
1913 addr -= fineibt_preamble_size;
1914 if (!exact_endbr((void *)addr))
1915 return false;
1916
1917 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1918 *type = (u32)regs->r10 + hash;
1919
1920 /*
1921 * The UD2 sites are constructed with a RET immediately following,
1922 * as such the non-fatal case can use the regular fixup.
1923 */
1924 return true;
1925
1926 Efault:
1927 return false;
1928 }
1929
is_paranoid_thunk(unsigned long addr)1930 static bool is_paranoid_thunk(unsigned long addr)
1931 {
1932 u32 thunk;
1933
1934 __get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
1935 return (thunk & 0x00FFFFFF) == 0xfd75ea;
1936
1937 Efault:
1938 return false;
1939 }
1940
1941 /*
1942 * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
1943 * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS
1944 * thunk.
1945 */
decode_fineibt_paranoid(struct pt_regs * regs,unsigned long * target,u32 * type)1946 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
1947 {
1948 unsigned long addr = regs->ip - fineibt_paranoid_ud;
1949
1950 if (!cfi_paranoid)
1951 return false;
1952
1953 if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
1954 *target = regs->r11 + fineibt_preamble_size;
1955 *type = regs->r10;
1956
1957 /*
1958 * Since the trapping instruction is the exact, but LOCK prefixed,
1959 * Jcc.d8 that got us here, the normal fixup will work.
1960 */
1961 return true;
1962 }
1963
1964 /*
1965 * The cfi_paranoid + ITS thunk combination results in:
1966 *
1967 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
1968 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d
1969 * a: 4d 8d 5b f0 lea -0x10(%r11), %r11
1970 * e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11
1971 *
1972 * Where the paranoid_thunk looks like:
1973 *
1974 * 1d: <ea> (bad)
1975 * __x86_indirect_paranoid_thunk_r11:
1976 * 1e: 75 fd jne 1d
1977 * __x86_indirect_its_thunk_r11:
1978 * 20: 41 ff eb jmp *%r11
1979 * 23: cc int3
1980 *
1981 */
1982 if (is_paranoid_thunk(regs->ip)) {
1983 *target = regs->r11 + fineibt_preamble_size;
1984 *type = regs->r10;
1985
1986 regs->ip = *target;
1987 return true;
1988 }
1989
1990 return false;
1991 }
1992
decode_fineibt_insn(struct pt_regs * regs,unsigned long * target,u32 * type)1993 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
1994 {
1995 if (decode_fineibt_paranoid(regs, target, type))
1996 return true;
1997
1998 if (decode_fineibt_bhi(regs, target, type))
1999 return true;
2000
2001 return decode_fineibt_preamble(regs, target, type);
2002 }
2003
2004 #else /* !CONFIG_FINEIBT: */
2005
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)2006 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2007 s32 *start_cfi, s32 *end_cfi, bool builtin)
2008 {
2009 }
2010
2011 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)2012 static void poison_cfi(void *addr) { }
2013 #endif
2014
2015 #endif /* !CONFIG_FINEIBT */
2016
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)2017 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2018 s32 *start_cfi, s32 *end_cfi)
2019 {
2020 return __apply_fineibt(start_retpoline, end_retpoline,
2021 start_cfi, end_cfi,
2022 /* .builtin = */ false);
2023 }
2024
2025 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2026 static void alternatives_smp_lock(const s32 *start, const s32 *end,
2027 u8 *text, u8 *text_end)
2028 {
2029 const s32 *poff;
2030
2031 for (poff = start; poff < end; poff++) {
2032 u8 *ptr = (u8 *)poff + *poff;
2033
2034 if (!*poff || ptr < text || ptr >= text_end)
2035 continue;
2036 /* turn DS segment override prefix into lock prefix */
2037 if (*ptr == 0x3e)
2038 text_poke(ptr, ((unsigned char []){0xf0}), 1);
2039 }
2040 }
2041
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2042 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2043 u8 *text, u8 *text_end)
2044 {
2045 const s32 *poff;
2046
2047 for (poff = start; poff < end; poff++) {
2048 u8 *ptr = (u8 *)poff + *poff;
2049
2050 if (!*poff || ptr < text || ptr >= text_end)
2051 continue;
2052 /* turn lock prefix into DS segment override prefix */
2053 if (*ptr == 0xf0)
2054 text_poke(ptr, ((unsigned char []){0x3E}), 1);
2055 }
2056 }
2057
2058 struct smp_alt_module {
2059 /* what is this ??? */
2060 struct module *mod;
2061 char *name;
2062
2063 /* ptrs to lock prefixes */
2064 const s32 *locks;
2065 const s32 *locks_end;
2066
2067 /* .text segment, needed to avoid patching init code ;) */
2068 u8 *text;
2069 u8 *text_end;
2070
2071 struct list_head next;
2072 };
2073 static LIST_HEAD(smp_alt_modules);
2074 static bool uniproc_patched = false; /* protected by text_mutex */
2075
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)2076 void __init_or_module alternatives_smp_module_add(struct module *mod,
2077 char *name,
2078 void *locks, void *locks_end,
2079 void *text, void *text_end)
2080 {
2081 struct smp_alt_module *smp;
2082
2083 mutex_lock(&text_mutex);
2084 if (!uniproc_patched)
2085 goto unlock;
2086
2087 if (num_possible_cpus() == 1)
2088 /* Don't bother remembering, we'll never have to undo it. */
2089 goto smp_unlock;
2090
2091 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
2092 if (NULL == smp)
2093 /* we'll run the (safe but slow) SMP code then ... */
2094 goto unlock;
2095
2096 smp->mod = mod;
2097 smp->name = name;
2098 smp->locks = locks;
2099 smp->locks_end = locks_end;
2100 smp->text = text;
2101 smp->text_end = text_end;
2102 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2103 smp->locks, smp->locks_end,
2104 smp->text, smp->text_end, smp->name);
2105
2106 list_add_tail(&smp->next, &smp_alt_modules);
2107 smp_unlock:
2108 alternatives_smp_unlock(locks, locks_end, text, text_end);
2109 unlock:
2110 mutex_unlock(&text_mutex);
2111 }
2112
alternatives_smp_module_del(struct module * mod)2113 void __init_or_module alternatives_smp_module_del(struct module *mod)
2114 {
2115 struct smp_alt_module *item;
2116
2117 mutex_lock(&text_mutex);
2118 list_for_each_entry(item, &smp_alt_modules, next) {
2119 if (mod != item->mod)
2120 continue;
2121 list_del(&item->next);
2122 kfree(item);
2123 break;
2124 }
2125 mutex_unlock(&text_mutex);
2126 }
2127
alternatives_enable_smp(void)2128 void alternatives_enable_smp(void)
2129 {
2130 struct smp_alt_module *mod;
2131
2132 /* Why bother if there are no other CPUs? */
2133 BUG_ON(num_possible_cpus() == 1);
2134
2135 mutex_lock(&text_mutex);
2136
2137 if (uniproc_patched) {
2138 pr_info("switching to SMP code\n");
2139 BUG_ON(num_online_cpus() != 1);
2140 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2141 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2142 list_for_each_entry(mod, &smp_alt_modules, next)
2143 alternatives_smp_lock(mod->locks, mod->locks_end,
2144 mod->text, mod->text_end);
2145 uniproc_patched = false;
2146 }
2147 mutex_unlock(&text_mutex);
2148 }
2149
2150 /*
2151 * Return 1 if the address range is reserved for SMP-alternatives.
2152 * Must hold text_mutex.
2153 */
alternatives_text_reserved(void * start,void * end)2154 int alternatives_text_reserved(void *start, void *end)
2155 {
2156 struct smp_alt_module *mod;
2157 const s32 *poff;
2158 u8 *text_start = start;
2159 u8 *text_end = end;
2160
2161 lockdep_assert_held(&text_mutex);
2162
2163 list_for_each_entry(mod, &smp_alt_modules, next) {
2164 if (mod->text > text_end || mod->text_end < text_start)
2165 continue;
2166 for (poff = mod->locks; poff < mod->locks_end; poff++) {
2167 const u8 *ptr = (const u8 *)poff + *poff;
2168
2169 if (text_start <= ptr && text_end > ptr)
2170 return 1;
2171 }
2172 }
2173
2174 return 0;
2175 }
2176 #endif /* CONFIG_SMP */
2177
2178 /*
2179 * Self-test for the INT3 based CALL emulation code.
2180 *
2181 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2182 * properly and that there is a stack gap between the INT3 frame and the
2183 * previous context. Without this gap doing a virtual PUSH on the interrupted
2184 * stack would corrupt the INT3 IRET frame.
2185 *
2186 * See entry_{32,64}.S for more details.
2187 */
2188
2189 /*
2190 * We define the int3_magic() function in assembly to control the calling
2191 * convention such that we can 'call' it from assembly.
2192 */
2193
2194 extern void int3_magic(unsigned int *ptr); /* defined in asm */
2195
2196 asm (
2197 " .pushsection .init.text, \"ax\", @progbits\n"
2198 " .type int3_magic, @function\n"
2199 "int3_magic:\n"
2200 ANNOTATE_NOENDBR
2201 " movl $1, (%" _ASM_ARG1 ")\n"
2202 ASM_RET
2203 " .size int3_magic, .-int3_magic\n"
2204 " .popsection\n"
2205 );
2206
2207 extern void int3_selftest_ip(void); /* defined in asm below */
2208
2209 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)2210 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2211 {
2212 unsigned long selftest = (unsigned long)&int3_selftest_ip;
2213 struct die_args *args = data;
2214 struct pt_regs *regs = args->regs;
2215
2216 OPTIMIZER_HIDE_VAR(selftest);
2217
2218 if (!regs || user_mode(regs))
2219 return NOTIFY_DONE;
2220
2221 if (val != DIE_INT3)
2222 return NOTIFY_DONE;
2223
2224 if (regs->ip - INT3_INSN_SIZE != selftest)
2225 return NOTIFY_DONE;
2226
2227 int3_emulate_call(regs, (unsigned long)&int3_magic);
2228 return NOTIFY_STOP;
2229 }
2230
2231 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)2232 static noinline void __init int3_selftest(void)
2233 {
2234 static __initdata struct notifier_block int3_exception_nb = {
2235 .notifier_call = int3_exception_notify,
2236 .priority = INT_MAX-1, /* last */
2237 };
2238 unsigned int val = 0;
2239
2240 BUG_ON(register_die_notifier(&int3_exception_nb));
2241
2242 /*
2243 * Basically: int3_magic(&val); but really complicated :-)
2244 *
2245 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
2246 * notifier above will emulate CALL for us.
2247 */
2248 asm volatile ("int3_selftest_ip:\n\t"
2249 ANNOTATE_NOENDBR
2250 " int3; nop; nop; nop; nop\n\t"
2251 : ASM_CALL_CONSTRAINT
2252 : __ASM_SEL_RAW(a, D) (&val)
2253 : "memory");
2254
2255 BUG_ON(val != 1);
2256
2257 unregister_die_notifier(&int3_exception_nb);
2258 }
2259
2260 static __initdata int __alt_reloc_selftest_addr;
2261
2262 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)2263 __visible noinline void __init __alt_reloc_selftest(void *arg)
2264 {
2265 WARN_ON(arg != &__alt_reloc_selftest_addr);
2266 }
2267
alt_reloc_selftest(void)2268 static noinline void __init alt_reloc_selftest(void)
2269 {
2270 /*
2271 * Tests text_poke_apply_relocation().
2272 *
2273 * This has a relative immediate (CALL) in a place other than the first
2274 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2275 *
2276 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c
2277 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4
2278 *
2279 * Getting this wrong will either crash and burn or tickle the WARN
2280 * above.
2281 */
2282 asm_inline volatile (
2283 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2284 : ASM_CALL_CONSTRAINT
2285 : [mem] "m" (__alt_reloc_selftest_addr)
2286 : _ASM_ARG1
2287 );
2288 }
2289
alternative_instructions(void)2290 void __init alternative_instructions(void)
2291 {
2292 u64 ibt;
2293
2294 int3_selftest();
2295
2296 /*
2297 * The patching is not fully atomic, so try to avoid local
2298 * interruptions that might execute the to be patched code.
2299 * Other CPUs are not running.
2300 */
2301 stop_nmi();
2302
2303 /*
2304 * Don't stop machine check exceptions while patching.
2305 * MCEs only happen when something got corrupted and in this
2306 * case we must do something about the corruption.
2307 * Ignoring it is worse than an unlikely patching race.
2308 * Also machine checks tend to be broadcast and if one CPU
2309 * goes into machine check the others follow quickly, so we don't
2310 * expect a machine check to cause undue problems during to code
2311 * patching.
2312 */
2313
2314 /*
2315 * Make sure to set (artificial) features depending on used paravirt
2316 * functions which can later influence alternative patching.
2317 */
2318 paravirt_set_cap();
2319
2320 /* Keep CET-IBT disabled until caller/callee are patched */
2321 ibt = ibt_save(/*disable*/ true);
2322
2323 __apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2324 __cfi_sites, __cfi_sites_end, true);
2325
2326 /*
2327 * Rewrite the retpolines, must be done before alternatives since
2328 * those can rewrite the retpoline thunks.
2329 */
2330 apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2331 apply_returns(__return_sites, __return_sites_end);
2332
2333 its_fini_core();
2334
2335 /*
2336 * Adjust all CALL instructions to point to func()-10, including
2337 * those in .altinstr_replacement.
2338 */
2339 callthunks_patch_builtin_calls();
2340
2341 apply_alternatives(__alt_instructions, __alt_instructions_end);
2342
2343 /*
2344 * Seal all functions that do not have their address taken.
2345 */
2346 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2347
2348 ibt_restore(ibt);
2349
2350 #ifdef CONFIG_SMP
2351 /* Patch to UP if other cpus not imminent. */
2352 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2353 uniproc_patched = true;
2354 alternatives_smp_module_add(NULL, "core kernel",
2355 __smp_locks, __smp_locks_end,
2356 _text, _etext);
2357 }
2358
2359 if (!uniproc_patched || num_possible_cpus() == 1) {
2360 free_init_pages("SMP alternatives",
2361 (unsigned long)__smp_locks,
2362 (unsigned long)__smp_locks_end);
2363 }
2364 #endif
2365
2366 restart_nmi();
2367 alternatives_patched = 1;
2368
2369 alt_reloc_selftest();
2370 }
2371
2372 /**
2373 * text_poke_early - Update instructions on a live kernel at boot time
2374 * @addr: address to modify
2375 * @opcode: source of the copy
2376 * @len: length to copy
2377 *
2378 * When you use this code to patch more than one byte of an instruction
2379 * you need to make sure that other CPUs cannot execute this code in parallel.
2380 * Also no thread must be currently preempted in the middle of these
2381 * instructions. And on the local CPU you need to be protected against NMI or
2382 * MCE handlers seeing an inconsistent instruction while you patch.
2383 */
text_poke_early(void * addr,const void * opcode,size_t len)2384 void __init_or_module text_poke_early(void *addr, const void *opcode,
2385 size_t len)
2386 {
2387 unsigned long flags;
2388
2389 if (boot_cpu_has(X86_FEATURE_NX) &&
2390 is_module_text_address((unsigned long)addr)) {
2391 /*
2392 * Modules text is marked initially as non-executable, so the
2393 * code cannot be running and speculative code-fetches are
2394 * prevented. Just change the code.
2395 */
2396 memcpy(addr, opcode, len);
2397 } else {
2398 local_irq_save(flags);
2399 memcpy(addr, opcode, len);
2400 sync_core();
2401 local_irq_restore(flags);
2402
2403 /*
2404 * Could also do a CLFLUSH here to speed up CPU recovery; but
2405 * that causes hangs on some VIA CPUs.
2406 */
2407 }
2408 }
2409
2410 __ro_after_init struct mm_struct *text_poke_mm;
2411 __ro_after_init unsigned long text_poke_mm_addr;
2412
text_poke_memcpy(void * dst,const void * src,size_t len)2413 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2414 {
2415 memcpy(dst, src, len);
2416 }
2417
text_poke_memset(void * dst,const void * src,size_t len)2418 static void text_poke_memset(void *dst, const void *src, size_t len)
2419 {
2420 int c = *(const int *)src;
2421
2422 memset(dst, c, len);
2423 }
2424
2425 typedef void text_poke_f(void *dst, const void *src, size_t len);
2426
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)2427 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2428 {
2429 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2430 struct page *pages[2] = {NULL};
2431 struct mm_struct *prev_mm;
2432 unsigned long flags;
2433 pte_t pte, *ptep;
2434 spinlock_t *ptl;
2435 pgprot_t pgprot;
2436
2437 /*
2438 * While boot memory allocator is running we cannot use struct pages as
2439 * they are not yet initialized. There is no way to recover.
2440 */
2441 BUG_ON(!after_bootmem);
2442
2443 if (!core_kernel_text((unsigned long)addr)) {
2444 pages[0] = vmalloc_to_page(addr);
2445 if (cross_page_boundary)
2446 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2447 } else {
2448 pages[0] = virt_to_page(addr);
2449 WARN_ON(!PageReserved(pages[0]));
2450 if (cross_page_boundary)
2451 pages[1] = virt_to_page(addr + PAGE_SIZE);
2452 }
2453 /*
2454 * If something went wrong, crash and burn since recovery paths are not
2455 * implemented.
2456 */
2457 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2458
2459 /*
2460 * Map the page without the global bit, as TLB flushing is done with
2461 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2462 */
2463 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2464
2465 /*
2466 * The lock is not really needed, but this allows to avoid open-coding.
2467 */
2468 ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2469
2470 /*
2471 * This must not fail; preallocated in poking_init().
2472 */
2473 VM_BUG_ON(!ptep);
2474
2475 local_irq_save(flags);
2476
2477 pte = mk_pte(pages[0], pgprot);
2478 set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2479
2480 if (cross_page_boundary) {
2481 pte = mk_pte(pages[1], pgprot);
2482 set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2483 }
2484
2485 /*
2486 * Loading the temporary mm behaves as a compiler barrier, which
2487 * guarantees that the PTE will be set at the time memcpy() is done.
2488 */
2489 prev_mm = use_temporary_mm(text_poke_mm);
2490
2491 kasan_disable_current();
2492 func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2493 kasan_enable_current();
2494
2495 /*
2496 * Ensure that the PTE is only cleared after the instructions of memcpy
2497 * were issued by using a compiler barrier.
2498 */
2499 barrier();
2500
2501 pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2502 if (cross_page_boundary)
2503 pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2504
2505 /*
2506 * Loading the previous page-table hierarchy requires a serializing
2507 * instruction that already allows the core to see the updated version.
2508 * Xen-PV is assumed to serialize execution in a similar manner.
2509 */
2510 unuse_temporary_mm(prev_mm);
2511
2512 /*
2513 * Flushing the TLB might involve IPIs, which would require enabled
2514 * IRQs, but not if the mm is not used, as it is in this point.
2515 */
2516 flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2517 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2518 PAGE_SHIFT, false);
2519
2520 if (func == text_poke_memcpy) {
2521 /*
2522 * If the text does not match what we just wrote then something is
2523 * fundamentally screwy; there's nothing we can really do about that.
2524 */
2525 BUG_ON(memcmp(addr, src, len));
2526 }
2527
2528 local_irq_restore(flags);
2529 pte_unmap_unlock(ptep, ptl);
2530 return addr;
2531 }
2532
2533 /**
2534 * text_poke - Update instructions on a live kernel
2535 * @addr: address to modify
2536 * @opcode: source of the copy
2537 * @len: length to copy
2538 *
2539 * Only atomic text poke/set should be allowed when not doing early patching.
2540 * It means the size must be writable atomically and the address must be aligned
2541 * in a way that permits an atomic write. It also makes sure we fit on a single
2542 * page.
2543 *
2544 * Note that the caller must ensure that if the modified code is part of a
2545 * module, the module would not be removed during poking. This can be achieved
2546 * by registering a module notifier, and ordering module removal and patching
2547 * through a mutex.
2548 */
text_poke(void * addr,const void * opcode,size_t len)2549 void *text_poke(void *addr, const void *opcode, size_t len)
2550 {
2551 lockdep_assert_held(&text_mutex);
2552
2553 return __text_poke(text_poke_memcpy, addr, opcode, len);
2554 }
2555
2556 /**
2557 * text_poke_kgdb - Update instructions on a live kernel by kgdb
2558 * @addr: address to modify
2559 * @opcode: source of the copy
2560 * @len: length to copy
2561 *
2562 * Only atomic text poke/set should be allowed when not doing early patching.
2563 * It means the size must be writable atomically and the address must be aligned
2564 * in a way that permits an atomic write. It also makes sure we fit on a single
2565 * page.
2566 *
2567 * Context: should only be used by kgdb, which ensures no other core is running,
2568 * despite the fact it does not hold the text_mutex.
2569 */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2570 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2571 {
2572 return __text_poke(text_poke_memcpy, addr, opcode, len);
2573 }
2574
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2575 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2576 bool core_ok)
2577 {
2578 unsigned long start = (unsigned long)addr;
2579 size_t patched = 0;
2580
2581 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2582 return NULL;
2583
2584 while (patched < len) {
2585 unsigned long ptr = start + patched;
2586 size_t s;
2587
2588 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2589
2590 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2591 patched += s;
2592 }
2593 return addr;
2594 }
2595
2596 /**
2597 * text_poke_copy - Copy instructions into (an unused part of) RX memory
2598 * @addr: address to modify
2599 * @opcode: source of the copy
2600 * @len: length to copy, could be more than 2x PAGE_SIZE
2601 *
2602 * Not safe against concurrent execution; useful for JITs to dump
2603 * new code blocks into unused regions of RX memory. Can be used in
2604 * conjunction with synchronize_rcu_tasks() to wait for existing
2605 * execution to quiesce after having made sure no existing functions
2606 * pointers are live.
2607 */
text_poke_copy(void * addr,const void * opcode,size_t len)2608 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2609 {
2610 mutex_lock(&text_mutex);
2611 addr = text_poke_copy_locked(addr, opcode, len, false);
2612 mutex_unlock(&text_mutex);
2613 return addr;
2614 }
2615
2616 /**
2617 * text_poke_set - memset into (an unused part of) RX memory
2618 * @addr: address to modify
2619 * @c: the byte to fill the area with
2620 * @len: length to copy, could be more than 2x PAGE_SIZE
2621 *
2622 * This is useful to overwrite unused regions of RX memory with illegal
2623 * instructions.
2624 */
text_poke_set(void * addr,int c,size_t len)2625 void *text_poke_set(void *addr, int c, size_t len)
2626 {
2627 unsigned long start = (unsigned long)addr;
2628 size_t patched = 0;
2629
2630 if (WARN_ON_ONCE(core_kernel_text(start)))
2631 return NULL;
2632
2633 mutex_lock(&text_mutex);
2634 while (patched < len) {
2635 unsigned long ptr = start + patched;
2636 size_t s;
2637
2638 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2639
2640 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2641 patched += s;
2642 }
2643 mutex_unlock(&text_mutex);
2644 return addr;
2645 }
2646
do_sync_core(void * info)2647 static void do_sync_core(void *info)
2648 {
2649 sync_core();
2650 }
2651
smp_text_poke_sync_each_cpu(void)2652 void smp_text_poke_sync_each_cpu(void)
2653 {
2654 on_each_cpu(do_sync_core, NULL, 1);
2655 }
2656
2657 /*
2658 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2659 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2660 * opcode to Jcc.d8, using len to distinguish.
2661 */
2662 struct smp_text_poke_loc {
2663 /* addr := _stext + rel_addr */
2664 s32 rel_addr;
2665 s32 disp;
2666 u8 len;
2667 u8 opcode;
2668 const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2669 /* see smp_text_poke_batch_finish() */
2670 u8 old;
2671 };
2672
2673 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2674
2675 static struct smp_text_poke_array {
2676 struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2677 int nr_entries;
2678 } text_poke_array;
2679
2680 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2681
2682 /*
2683 * These four __always_inline annotations imply noinstr, necessary
2684 * due to smp_text_poke_int3_handler() being noinstr:
2685 */
2686
try_get_text_poke_array(void)2687 static __always_inline bool try_get_text_poke_array(void)
2688 {
2689 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2690
2691 if (!raw_atomic_inc_not_zero(refs))
2692 return false;
2693
2694 return true;
2695 }
2696
put_text_poke_array(void)2697 static __always_inline void put_text_poke_array(void)
2698 {
2699 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2700
2701 smp_mb__before_atomic();
2702 raw_atomic_dec(refs);
2703 }
2704
text_poke_addr(const struct smp_text_poke_loc * tpl)2705 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2706 {
2707 return _stext + tpl->rel_addr;
2708 }
2709
patch_cmp(const void * tpl_a,const void * tpl_b)2710 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2711 {
2712 if (tpl_a < text_poke_addr(tpl_b))
2713 return -1;
2714 if (tpl_a > text_poke_addr(tpl_b))
2715 return 1;
2716 return 0;
2717 }
2718
smp_text_poke_int3_handler(struct pt_regs * regs)2719 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2720 {
2721 struct smp_text_poke_loc *tpl;
2722 int ret = 0;
2723 void *ip;
2724
2725 if (user_mode(regs))
2726 return 0;
2727
2728 /*
2729 * Having observed our INT3 instruction, we now must observe
2730 * text_poke_array with non-zero refcount:
2731 *
2732 * text_poke_array_refs = 1 INT3
2733 * WMB RMB
2734 * write INT3 if (text_poke_array_refs != 0)
2735 */
2736 smp_rmb();
2737
2738 if (!try_get_text_poke_array())
2739 return 0;
2740
2741 /*
2742 * Discount the INT3. See smp_text_poke_batch_finish().
2743 */
2744 ip = (void *) regs->ip - INT3_INSN_SIZE;
2745
2746 /*
2747 * Skip the binary search if there is a single member in the vector.
2748 */
2749 if (unlikely(text_poke_array.nr_entries > 1)) {
2750 tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2751 sizeof(struct smp_text_poke_loc),
2752 patch_cmp);
2753 if (!tpl)
2754 goto out_put;
2755 } else {
2756 tpl = text_poke_array.vec;
2757 if (text_poke_addr(tpl) != ip)
2758 goto out_put;
2759 }
2760
2761 ip += tpl->len;
2762
2763 switch (tpl->opcode) {
2764 case INT3_INSN_OPCODE:
2765 /*
2766 * Someone poked an explicit INT3, they'll want to handle it,
2767 * do not consume.
2768 */
2769 goto out_put;
2770
2771 case RET_INSN_OPCODE:
2772 int3_emulate_ret(regs);
2773 break;
2774
2775 case CALL_INSN_OPCODE:
2776 int3_emulate_call(regs, (long)ip + tpl->disp);
2777 break;
2778
2779 case JMP32_INSN_OPCODE:
2780 case JMP8_INSN_OPCODE:
2781 int3_emulate_jmp(regs, (long)ip + tpl->disp);
2782 break;
2783
2784 case 0x70 ... 0x7f: /* Jcc */
2785 int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2786 break;
2787
2788 default:
2789 BUG();
2790 }
2791
2792 ret = 1;
2793
2794 out_put:
2795 put_text_poke_array();
2796 return ret;
2797 }
2798
2799 /**
2800 * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2801 *
2802 * Input state:
2803 * text_poke_array.vec: vector of instructions to patch
2804 * text_poke_array.nr_entries: number of entries in the vector
2805 *
2806 * Modify multi-byte instructions by using INT3 breakpoints on SMP.
2807 * We completely avoid using stop_machine() here, and achieve the
2808 * synchronization using INT3 breakpoints and SMP cross-calls.
2809 *
2810 * The way it is done:
2811 * - For each entry in the vector:
2812 * - add an INT3 trap to the address that will be patched
2813 * - SMP sync all CPUs
2814 * - For each entry in the vector:
2815 * - update all but the first byte of the patched range
2816 * - SMP sync all CPUs
2817 * - For each entry in the vector:
2818 * - replace the first byte (INT3) by the first byte of the
2819 * replacing opcode
2820 * - SMP sync all CPUs
2821 */
smp_text_poke_batch_finish(void)2822 void smp_text_poke_batch_finish(void)
2823 {
2824 unsigned char int3 = INT3_INSN_OPCODE;
2825 unsigned int i;
2826 int do_sync;
2827
2828 if (!text_poke_array.nr_entries)
2829 return;
2830
2831 lockdep_assert_held(&text_mutex);
2832
2833 /*
2834 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2835 * ensure reading a non-zero refcount provides up to date text_poke_array data.
2836 */
2837 for_each_possible_cpu(i)
2838 atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2839
2840 /*
2841 * Function tracing can enable thousands of places that need to be
2842 * updated. This can take quite some time, and with full kernel debugging
2843 * enabled, this could cause the softlockup watchdog to trigger.
2844 * This function gets called every 256 entries added to be patched.
2845 * Call cond_resched() here to make sure that other tasks can get scheduled
2846 * while processing all the functions being patched.
2847 */
2848 cond_resched();
2849
2850 /*
2851 * Corresponding read barrier in INT3 notifier for making sure the
2852 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2853 */
2854 smp_wmb();
2855
2856 /*
2857 * First step: add a INT3 trap to the address that will be patched.
2858 */
2859 for (i = 0; i < text_poke_array.nr_entries; i++) {
2860 text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2861 text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2862 }
2863
2864 smp_text_poke_sync_each_cpu();
2865
2866 /*
2867 * Second step: update all but the first byte of the patched range.
2868 */
2869 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2870 u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2871 u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2872 const u8 *new = text_poke_array.vec[i].text;
2873 int len = text_poke_array.vec[i].len;
2874
2875 if (len - INT3_INSN_SIZE > 0) {
2876 memcpy(old + INT3_INSN_SIZE,
2877 text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2878 len - INT3_INSN_SIZE);
2879
2880 if (len == 6) {
2881 _new[0] = 0x0f;
2882 memcpy(_new + 1, new, 5);
2883 new = _new;
2884 }
2885
2886 text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2887 new + INT3_INSN_SIZE,
2888 len - INT3_INSN_SIZE);
2889
2890 do_sync++;
2891 }
2892
2893 /*
2894 * Emit a perf event to record the text poke, primarily to
2895 * support Intel PT decoding which must walk the executable code
2896 * to reconstruct the trace. The flow up to here is:
2897 * - write INT3 byte
2898 * - IPI-SYNC
2899 * - write instruction tail
2900 * At this point the actual control flow will be through the
2901 * INT3 and handler and not hit the old or new instruction.
2902 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2903 * can still be decoded. Subsequently:
2904 * - emit RECORD_TEXT_POKE with the new instruction
2905 * - IPI-SYNC
2906 * - write first byte
2907 * - IPI-SYNC
2908 * So before the text poke event timestamp, the decoder will see
2909 * either the old instruction flow or FUP/TIP of INT3. After the
2910 * text poke event timestamp, the decoder will see either the
2911 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2912 * use the timestamp as the point at which to modify the
2913 * executable code.
2914 * The old instruction is recorded so that the event can be
2915 * processed forwards or backwards.
2916 */
2917 perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
2918 }
2919
2920 if (do_sync) {
2921 /*
2922 * According to Intel, this core syncing is very likely
2923 * not necessary and we'd be safe even without it. But
2924 * better safe than sorry (plus there's not only Intel).
2925 */
2926 smp_text_poke_sync_each_cpu();
2927 }
2928
2929 /*
2930 * Third step: replace the first byte (INT3) by the first byte of the
2931 * replacing opcode.
2932 */
2933 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2934 u8 byte = text_poke_array.vec[i].text[0];
2935
2936 if (text_poke_array.vec[i].len == 6)
2937 byte = 0x0f;
2938
2939 if (byte == INT3_INSN_OPCODE)
2940 continue;
2941
2942 text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
2943 do_sync++;
2944 }
2945
2946 if (do_sync)
2947 smp_text_poke_sync_each_cpu();
2948
2949 /*
2950 * Remove and wait for refs to be zero.
2951 *
2952 * Notably, if after step-3 above the INT3 got removed, then the
2953 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3
2954 * handlers and the below spin-wait will not happen.
2955 *
2956 * IOW. unless the replacement instruction is INT3, this case goes
2957 * unused.
2958 */
2959 for_each_possible_cpu(i) {
2960 atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
2961
2962 if (unlikely(!atomic_dec_and_test(refs)))
2963 atomic_cond_read_acquire(refs, !VAL);
2964 }
2965
2966 /* They are all completed: */
2967 text_poke_array.nr_entries = 0;
2968 }
2969
__smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)2970 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
2971 {
2972 struct smp_text_poke_loc *tpl;
2973 struct insn insn;
2974 int ret, i = 0;
2975
2976 tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
2977
2978 if (len == 6)
2979 i = 1;
2980 memcpy((void *)tpl->text, opcode+i, len-i);
2981 if (!emulate)
2982 emulate = opcode;
2983
2984 ret = insn_decode_kernel(&insn, emulate);
2985 BUG_ON(ret < 0);
2986
2987 tpl->rel_addr = addr - (void *)_stext;
2988 tpl->len = len;
2989 tpl->opcode = insn.opcode.bytes[0];
2990
2991 if (is_jcc32(&insn)) {
2992 /*
2993 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2994 */
2995 tpl->opcode = insn.opcode.bytes[1] - 0x10;
2996 }
2997
2998 switch (tpl->opcode) {
2999 case RET_INSN_OPCODE:
3000 case JMP32_INSN_OPCODE:
3001 case JMP8_INSN_OPCODE:
3002 /*
3003 * Control flow instructions without implied execution of the
3004 * next instruction can be padded with INT3.
3005 */
3006 for (i = insn.length; i < len; i++)
3007 BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3008 break;
3009
3010 default:
3011 BUG_ON(len != insn.length);
3012 }
3013
3014 switch (tpl->opcode) {
3015 case INT3_INSN_OPCODE:
3016 case RET_INSN_OPCODE:
3017 break;
3018
3019 case CALL_INSN_OPCODE:
3020 case JMP32_INSN_OPCODE:
3021 case JMP8_INSN_OPCODE:
3022 case 0x70 ... 0x7f: /* Jcc */
3023 tpl->disp = insn.immediate.value;
3024 break;
3025
3026 default: /* assume NOP */
3027 switch (len) {
3028 case 2: /* NOP2 -- emulate as JMP8+0 */
3029 BUG_ON(memcmp(emulate, x86_nops[len], len));
3030 tpl->opcode = JMP8_INSN_OPCODE;
3031 tpl->disp = 0;
3032 break;
3033
3034 case 5: /* NOP5 -- emulate as JMP32+0 */
3035 BUG_ON(memcmp(emulate, x86_nops[len], len));
3036 tpl->opcode = JMP32_INSN_OPCODE;
3037 tpl->disp = 0;
3038 break;
3039
3040 default: /* unknown instruction */
3041 BUG();
3042 }
3043 break;
3044 }
3045 }
3046
3047 /*
3048 * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3049 * early if needed.
3050 */
text_poke_addr_ordered(void * addr)3051 static bool text_poke_addr_ordered(void *addr)
3052 {
3053 WARN_ON_ONCE(!addr);
3054
3055 if (!text_poke_array.nr_entries)
3056 return true;
3057
3058 /*
3059 * If the last current entry's address is higher than the
3060 * new entry's address we'd like to add, then ordering
3061 * is violated and we must first flush all pending patching
3062 * requests:
3063 */
3064 if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3065 return false;
3066
3067 return true;
3068 }
3069
3070 /**
3071 * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3072 * @addr: address to patch
3073 * @opcode: opcode of new instruction
3074 * @len: length to copy
3075 * @emulate: instruction to be emulated
3076 *
3077 * Add a new instruction to the current queue of to-be-patched instructions
3078 * the kernel maintains. The patching request will not be executed immediately,
3079 * but becomes part of an array of patching requests, optimized for batched
3080 * execution. All pending patching requests will be executed on the next
3081 * smp_text_poke_batch_finish() call.
3082 */
smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)3083 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3084 {
3085 if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3086 smp_text_poke_batch_finish();
3087 __smp_text_poke_batch_add(addr, opcode, len, emulate);
3088 }
3089
3090 /**
3091 * smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3092 * @addr: address to patch
3093 * @opcode: opcode of new instruction
3094 * @len: length to copy
3095 * @emulate: instruction to be emulated
3096 *
3097 * Update a single instruction with the vector in the stack, avoiding
3098 * dynamically allocated memory. This function should be used when it is
3099 * not possible to allocate memory for a vector. The single instruction
3100 * is patched in immediately.
3101 */
smp_text_poke_single(void * addr,const void * opcode,size_t len,const void * emulate)3102 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3103 {
3104 smp_text_poke_batch_add(addr, opcode, len, emulate);
3105 smp_text_poke_batch_finish();
3106 }
3107