xref: /linux/arch/s390/include/asm/pgtable.h (revision bec077162bd0017c21288919757809656094a157)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/cpufeature.h>
18 #include <linux/page-flags.h>
19 #include <linux/radix-tree.h>
20 #include <linux/atomic.h>
21 #include <asm/ctlreg.h>
22 #include <asm/bug.h>
23 #include <asm/page.h>
24 #include <asm/uv.h>
25 
26 extern pgd_t swapper_pg_dir[];
27 extern pgd_t invalid_pg_dir[];
28 extern void paging_init(void);
29 extern struct ctlreg s390_invalid_asce;
30 
31 enum {
32 	PG_DIRECT_MAP_4K = 0,
33 	PG_DIRECT_MAP_1M,
34 	PG_DIRECT_MAP_2G,
35 	PG_DIRECT_MAP_MAX
36 };
37 
38 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
39 
update_page_count(int level,long count)40 static inline void update_page_count(int level, long count)
41 {
42 	if (IS_ENABLED(CONFIG_PROC_FS))
43 		atomic_long_add(count, &direct_pages_count[level]);
44 }
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_range(vmf, vma, addr, ptep, nr) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 extern unsigned long vmemmap_size;
93 
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR	MODULES_VADDR
97 #define MODULES_END	MODULES_END
98 #define MODULES_LEN	(1UL << 31)
99 
is_module_addr(void * addr)100 static inline int is_module_addr(void *addr)
101 {
102 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 	if (addr < (void *)MODULES_VADDR)
104 		return 0;
105 	if (addr > (void *)MODULES_END)
106 		return 0;
107 	return 1;
108 }
109 
110 #ifdef CONFIG_KMSAN
111 #define KMSAN_VMALLOC_SIZE (VMALLOC_END - VMALLOC_START)
112 #define KMSAN_VMALLOC_SHADOW_START VMALLOC_END
113 #define KMSAN_VMALLOC_SHADOW_END (KMSAN_VMALLOC_SHADOW_START + KMSAN_VMALLOC_SIZE)
114 #define KMSAN_VMALLOC_ORIGIN_START KMSAN_VMALLOC_SHADOW_END
115 #define KMSAN_VMALLOC_ORIGIN_END (KMSAN_VMALLOC_ORIGIN_START + KMSAN_VMALLOC_SIZE)
116 #define KMSAN_MODULES_SHADOW_START KMSAN_VMALLOC_ORIGIN_END
117 #define KMSAN_MODULES_SHADOW_END (KMSAN_MODULES_SHADOW_START + MODULES_LEN)
118 #define KMSAN_MODULES_ORIGIN_START KMSAN_MODULES_SHADOW_END
119 #define KMSAN_MODULES_ORIGIN_END (KMSAN_MODULES_ORIGIN_START + MODULES_LEN)
120 #endif
121 
122 #ifdef CONFIG_RANDOMIZE_BASE
123 #define KASLR_LEN	(1UL << 31)
124 #else
125 #define KASLR_LEN	0UL
126 #endif
127 
128 void setup_protection_map(void);
129 
130 /*
131  * A 64 bit pagetable entry of S390 has following format:
132  * |			 PFRA			      |0IPC|  OS  |
133  * 0000000000111111111122222222223333333333444444444455555555556666
134  * 0123456789012345678901234567890123456789012345678901234567890123
135  *
136  * I Page-Invalid Bit:    Page is not available for address-translation
137  * P Page-Protection Bit: Store access not possible for page
138  * C Change-bit override: HW is not required to set change bit
139  *
140  * A 64 bit segmenttable entry of S390 has following format:
141  * |        P-table origin                              |      TT
142  * 0000000000111111111122222222223333333333444444444455555555556666
143  * 0123456789012345678901234567890123456789012345678901234567890123
144  *
145  * I Segment-Invalid Bit:    Segment is not available for address-translation
146  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
147  * P Page-Protection Bit: Store access not possible for page
148  * TT Type 00
149  *
150  * A 64 bit region table entry of S390 has following format:
151  * |        S-table origin                             |   TF  TTTL
152  * 0000000000111111111122222222223333333333444444444455555555556666
153  * 0123456789012345678901234567890123456789012345678901234567890123
154  *
155  * I Segment-Invalid Bit:    Segment is not available for address-translation
156  * TT Type 01
157  * TF
158  * TL Table length
159  *
160  * The 64 bit regiontable origin of S390 has following format:
161  * |      region table origon                          |       DTTL
162  * 0000000000111111111122222222223333333333444444444455555555556666
163  * 0123456789012345678901234567890123456789012345678901234567890123
164  *
165  * X Space-Switch event:
166  * G Segment-Invalid Bit:
167  * P Private-Space Bit:
168  * S Storage-Alteration:
169  * R Real space
170  * TL Table-Length:
171  *
172  * A storage key has the following format:
173  * | ACC |F|R|C|0|
174  *  0   3 4 5 6 7
175  * ACC: access key
176  * F  : fetch protection bit
177  * R  : referenced bit
178  * C  : changed bit
179  */
180 
181 /* Hardware bits in the page table entry */
182 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
183 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
184 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
185 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
186 
187 /* Software bits in the page table entry */
188 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
189 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
190 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
191 #define _PAGE_READ	0x010		/* SW pte read bit */
192 #define _PAGE_WRITE	0x020		/* SW pte write bit */
193 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
194 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
195 
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201 
202 #define _PAGE_SW_BITS	0xffUL		/* All SW bits */
203 
204 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
205 
206 /* Set of bits not changed in pte_modify */
207 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
208 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
209 
210 /*
211  * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
212  * HW bit and all SW bits.
213  */
214 #define _PAGE_RDP_MASK		~(_PAGE_PROTECT | _PAGE_SW_BITS)
215 
216 /*
217  * handle_pte_fault uses pte_present and pte_none to find out the pte type
218  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
219  * distinguish present from not-present ptes. It is changed only with the page
220  * table lock held.
221  *
222  * The following table gives the different possible bit combinations for
223  * the pte hardware and software bits in the last 12 bits of a pte
224  * (. unassigned bit, x don't care, t swap type):
225  *
226  *				842100000000
227  *				000084210000
228  *				000000008421
229  *				.IR.uswrdy.p
230  * empty			.10.00000000
231  * swap				.11..ttttt.0
232  * prot-none, clean, old	.11.xx0000.1
233  * prot-none, clean, young	.11.xx0001.1
234  * prot-none, dirty, old	.11.xx0010.1
235  * prot-none, dirty, young	.11.xx0011.1
236  * read-only, clean, old	.11.xx0100.1
237  * read-only, clean, young	.01.xx0101.1
238  * read-only, dirty, old	.11.xx0110.1
239  * read-only, dirty, young	.01.xx0111.1
240  * read-write, clean, old	.11.xx1100.1
241  * read-write, clean, young	.01.xx1101.1
242  * read-write, dirty, old	.10.xx1110.1
243  * read-write, dirty, young	.00.xx1111.1
244  * HW-bits: R read-only, I invalid
245  * SW-bits: p present, y young, d dirty, r read, w write, s special,
246  *	    u unused, l large
247  *
248  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
249  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
250  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
251  */
252 
253 /* Bits in the segment/region table address-space-control-element */
254 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
255 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
256 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
257 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
258 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
259 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
260 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
261 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
262 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
263 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
264 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
265 
266 /* Bits in the region table entry */
267 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
268 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
269 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
270 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
271 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
272 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
273 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
274 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
275 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
276 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
277 
278 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
279 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
280 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
281 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
282 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH | \
283 				 _REGION3_ENTRY_PRESENT)
284 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
285 
286 #define _REGION3_ENTRY_HARDWARE_BITS		0xfffffffffffff6ffUL
287 #define _REGION3_ENTRY_HARDWARE_BITS_LARGE	0xffffffff8001073cUL
288 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
289 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
290 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
291 #define _REGION3_ENTRY_COMM	0x0010	/* Common-Region, marks swap entry */
292 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
293 #define _REGION3_ENTRY_WRITE	0x8000	/* SW region write bit */
294 #define _REGION3_ENTRY_READ	0x4000	/* SW region read bit */
295 
296 #ifdef CONFIG_MEM_SOFT_DIRTY
297 #define _REGION3_ENTRY_SOFT_DIRTY 0x0002 /* SW region soft dirty bit */
298 #else
299 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
300 #endif
301 
302 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
303 
304 /*
305  * SW region present bit. For non-leaf region-third-table entries, bits 62-63
306  * indicate the TABLE LENGTH and both must be set to 1. But such entries
307  * would always be considered as present, so it is safe to use bit 63 as
308  * PRESENT bit for PUD.
309  */
310 #define _REGION3_ENTRY_PRESENT	0x0001
311 
312 /* Bits in the segment table entry */
313 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe3fUL
314 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe3cUL
315 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff1073cUL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
317 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
318 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
319 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
320 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
321 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
322 
323 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PRESENT)
324 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
325 
326 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
327 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
328 
329 #define _SEGMENT_ENTRY_COMM	0x0010	/* Common-Segment, marks swap entry */
330 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
331 #define _SEGMENT_ENTRY_WRITE	0x8000	/* SW segment write bit */
332 #define _SEGMENT_ENTRY_READ	0x4000	/* SW segment read bit */
333 
334 #ifdef CONFIG_MEM_SOFT_DIRTY
335 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0002 /* SW segment soft dirty bit */
336 #else
337 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338 #endif
339 
340 #define _SEGMENT_ENTRY_PRESENT	0x0001	/* SW segment present bit */
341 
342 /* Common bits in region and segment table entries, for swap entries */
343 #define _RST_ENTRY_COMM		0x0010	/* Common-Region/Segment, marks swap entry */
344 #define _RST_ENTRY_INVALID	0x0020	/* invalid region/segment table entry */
345 
346 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
347 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
348 
349 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
350 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
351 
352 #define _REGION1_SHIFT	53
353 #define _REGION2_SHIFT	42
354 #define _REGION3_SHIFT	31
355 #define _SEGMENT_SHIFT	20
356 
357 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
358 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
359 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
360 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
361 #define _PAGE_INDEX	(0xffUL  << PAGE_SHIFT)
362 
363 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
364 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
365 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
366 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
367 
368 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
369 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
370 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
371 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
372 
373 #define PMD_SHIFT	_SEGMENT_SHIFT
374 #define PUD_SHIFT	_REGION3_SHIFT
375 #define P4D_SHIFT	_REGION2_SHIFT
376 #define PGDIR_SHIFT	_REGION1_SHIFT
377 
378 #define PMD_SIZE	_SEGMENT_SIZE
379 #define PUD_SIZE	_REGION3_SIZE
380 #define P4D_SIZE	_REGION2_SIZE
381 #define PGDIR_SIZE	_REGION1_SIZE
382 
383 #define PMD_MASK	_SEGMENT_MASK
384 #define PUD_MASK	_REGION3_MASK
385 #define P4D_MASK	_REGION2_MASK
386 #define PGDIR_MASK	_REGION1_MASK
387 
388 #define PTRS_PER_PTE	_PAGE_ENTRIES
389 #define PTRS_PER_PMD	_CRST_ENTRIES
390 #define PTRS_PER_PUD	_CRST_ENTRIES
391 #define PTRS_PER_P4D	_CRST_ENTRIES
392 #define PTRS_PER_PGD	_CRST_ENTRIES
393 
394 /*
395  * Segment table and region3 table entry encoding
396  * (R = read-only, I = invalid, y = young bit):
397  *				dy..R...I...wr
398  * prot-none, clean, old	00..1...1...00
399  * prot-none, clean, young	01..1...1...00
400  * prot-none, dirty, old	10..1...1...00
401  * prot-none, dirty, young	11..1...1...00
402  * read-only, clean, old	00..1...1...01
403  * read-only, clean, young	01..1...0...01
404  * read-only, dirty, old	10..1...1...01
405  * read-only, dirty, young	11..1...0...01
406  * read-write, clean, old	00..1...1...11
407  * read-write, clean, young	01..1...0...11
408  * read-write, dirty, old	10..0...1...11
409  * read-write, dirty, young	11..0...0...11
410  * The segment table origin is used to distinguish empty (origin==0) from
411  * read-write, old segment table entries (origin!=0)
412  * HW-bits: R read-only, I invalid
413  * SW-bits: y young, d dirty, r read, w write
414  */
415 
416 /* Page status table bits for virtualization */
417 #define PGSTE_ACC_BITS	0xf000000000000000UL
418 #define PGSTE_FP_BIT	0x0800000000000000UL
419 #define PGSTE_PCL_BIT	0x0080000000000000UL
420 #define PGSTE_HR_BIT	0x0040000000000000UL
421 #define PGSTE_HC_BIT	0x0020000000000000UL
422 #define PGSTE_GR_BIT	0x0004000000000000UL
423 #define PGSTE_GC_BIT	0x0002000000000000UL
424 #define PGSTE_ST2_MASK	0x0000ffff00000000UL
425 #define PGSTE_UC_BIT	0x0000000000008000UL	/* user dirty (migration) */
426 #define PGSTE_IN_BIT	0x0000000000004000UL	/* IPTE notify bit */
427 #define PGSTE_VSIE_BIT	0x0000000000002000UL	/* ref'd in a shadow table */
428 
429 /* Guest Page State used for virtualization */
430 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
431 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
432 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
433 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
434 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
435 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
436 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
437 
438 /*
439  * A user page table pointer has the space-switch-event bit, the
440  * private-space-control bit and the storage-alteration-event-control
441  * bit set. A kernel page table pointer doesn't need them.
442  */
443 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
444 				 _ASCE_ALT_EVENT)
445 
446 /*
447  * Page protection definitions.
448  */
449 #define __PAGE_NONE		(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
450 #define __PAGE_RO		(_PAGE_PRESENT | _PAGE_READ | \
451 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
452 #define __PAGE_RX		(_PAGE_PRESENT | _PAGE_READ | \
453 				 _PAGE_INVALID | _PAGE_PROTECT)
454 #define __PAGE_RW		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
455 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
456 #define __PAGE_RWX		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
457 				 _PAGE_INVALID | _PAGE_PROTECT)
458 #define __PAGE_SHARED		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
459 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
460 #define __PAGE_KERNEL		(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
461 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
462 #define __PAGE_KERNEL_RO	(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
463 				 _PAGE_PROTECT | _PAGE_NOEXEC)
464 
465 extern unsigned long page_noexec_mask;
466 
467 #define __pgprot_page_mask(x)	__pgprot((x) & page_noexec_mask)
468 
469 #define PAGE_NONE		__pgprot_page_mask(__PAGE_NONE)
470 #define PAGE_RO			__pgprot_page_mask(__PAGE_RO)
471 #define PAGE_RX			__pgprot_page_mask(__PAGE_RX)
472 #define PAGE_RW			__pgprot_page_mask(__PAGE_RW)
473 #define PAGE_RWX		__pgprot_page_mask(__PAGE_RWX)
474 #define PAGE_SHARED		__pgprot_page_mask(__PAGE_SHARED)
475 #define PAGE_KERNEL		__pgprot_page_mask(__PAGE_KERNEL)
476 #define PAGE_KERNEL_RO		__pgprot_page_mask(__PAGE_KERNEL_RO)
477 
478 /*
479  * Segment entry (large page) protection definitions.
480  */
481 #define __SEGMENT_NONE		(_SEGMENT_ENTRY_PRESENT | \
482 				 _SEGMENT_ENTRY_INVALID | \
483 				 _SEGMENT_ENTRY_PROTECT)
484 #define __SEGMENT_RO		(_SEGMENT_ENTRY_PRESENT | \
485 				 _SEGMENT_ENTRY_PROTECT | \
486 				 _SEGMENT_ENTRY_READ | \
487 				 _SEGMENT_ENTRY_NOEXEC)
488 #define __SEGMENT_RX		(_SEGMENT_ENTRY_PRESENT | \
489 				 _SEGMENT_ENTRY_PROTECT | \
490 				 _SEGMENT_ENTRY_READ)
491 #define __SEGMENT_RW		(_SEGMENT_ENTRY_PRESENT | \
492 				 _SEGMENT_ENTRY_READ | \
493 				 _SEGMENT_ENTRY_WRITE | \
494 				 _SEGMENT_ENTRY_NOEXEC)
495 #define __SEGMENT_RWX		(_SEGMENT_ENTRY_PRESENT | \
496 				 _SEGMENT_ENTRY_READ | \
497 				 _SEGMENT_ENTRY_WRITE)
498 #define __SEGMENT_KERNEL	(_SEGMENT_ENTRY |	\
499 				 _SEGMENT_ENTRY_LARGE |	\
500 				 _SEGMENT_ENTRY_READ |	\
501 				 _SEGMENT_ENTRY_WRITE | \
502 				 _SEGMENT_ENTRY_YOUNG | \
503 				 _SEGMENT_ENTRY_DIRTY | \
504 				 _SEGMENT_ENTRY_NOEXEC)
505 #define __SEGMENT_KERNEL_RO	(_SEGMENT_ENTRY |	\
506 				 _SEGMENT_ENTRY_LARGE |	\
507 				 _SEGMENT_ENTRY_READ |	\
508 				 _SEGMENT_ENTRY_YOUNG |	\
509 				 _SEGMENT_ENTRY_PROTECT | \
510 				 _SEGMENT_ENTRY_NOEXEC)
511 
512 extern unsigned long segment_noexec_mask;
513 
514 #define __pgprot_segment_mask(x) __pgprot((x) & segment_noexec_mask)
515 
516 #define SEGMENT_NONE		__pgprot_segment_mask(__SEGMENT_NONE)
517 #define SEGMENT_RO		__pgprot_segment_mask(__SEGMENT_RO)
518 #define SEGMENT_RX		__pgprot_segment_mask(__SEGMENT_RX)
519 #define SEGMENT_RW		__pgprot_segment_mask(__SEGMENT_RW)
520 #define SEGMENT_RWX		__pgprot_segment_mask(__SEGMENT_RWX)
521 #define SEGMENT_KERNEL		__pgprot_segment_mask(__SEGMENT_KERNEL)
522 #define SEGMENT_KERNEL_RO	__pgprot_segment_mask(__SEGMENT_KERNEL_RO)
523 
524 /*
525  * Region3 entry (large page) protection definitions.
526  */
527 
528 #define __REGION3_KERNEL	(_REGION_ENTRY_TYPE_R3 | \
529 				 _REGION3_ENTRY_PRESENT | \
530 				 _REGION3_ENTRY_LARGE | \
531 				 _REGION3_ENTRY_READ | \
532 				 _REGION3_ENTRY_WRITE | \
533 				 _REGION3_ENTRY_YOUNG | \
534 				 _REGION3_ENTRY_DIRTY | \
535 				 _REGION_ENTRY_NOEXEC)
536 #define __REGION3_KERNEL_RO	(_REGION_ENTRY_TYPE_R3 | \
537 				 _REGION3_ENTRY_PRESENT | \
538 				 _REGION3_ENTRY_LARGE | \
539 				 _REGION3_ENTRY_READ | \
540 				 _REGION3_ENTRY_YOUNG | \
541 				 _REGION_ENTRY_PROTECT | \
542 				 _REGION_ENTRY_NOEXEC)
543 
544 extern unsigned long region_noexec_mask;
545 
546 #define __pgprot_region_mask(x)	__pgprot((x) & region_noexec_mask)
547 
548 #define REGION3_KERNEL		__pgprot_region_mask(__REGION3_KERNEL)
549 #define REGION3_KERNEL_RO	__pgprot_region_mask(__REGION3_KERNEL_RO)
550 
mm_p4d_folded(struct mm_struct * mm)551 static inline bool mm_p4d_folded(struct mm_struct *mm)
552 {
553 	return mm->context.asce_limit <= _REGION1_SIZE;
554 }
555 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
556 
mm_pud_folded(struct mm_struct * mm)557 static inline bool mm_pud_folded(struct mm_struct *mm)
558 {
559 	return mm->context.asce_limit <= _REGION2_SIZE;
560 }
561 #define mm_pud_folded(mm) mm_pud_folded(mm)
562 
mm_pmd_folded(struct mm_struct * mm)563 static inline bool mm_pmd_folded(struct mm_struct *mm)
564 {
565 	return mm->context.asce_limit <= _REGION3_SIZE;
566 }
567 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
568 
mm_has_pgste(struct mm_struct * mm)569 static inline int mm_has_pgste(struct mm_struct *mm)
570 {
571 #ifdef CONFIG_PGSTE
572 	if (unlikely(mm->context.has_pgste))
573 		return 1;
574 #endif
575 	return 0;
576 }
577 
mm_is_protected(struct mm_struct * mm)578 static inline int mm_is_protected(struct mm_struct *mm)
579 {
580 #ifdef CONFIG_PGSTE
581 	if (unlikely(atomic_read(&mm->context.protected_count)))
582 		return 1;
583 #endif
584 	return 0;
585 }
586 
clear_pgste_bit(pgste_t pgste,unsigned long mask)587 static inline pgste_t clear_pgste_bit(pgste_t pgste, unsigned long mask)
588 {
589 	return __pgste(pgste_val(pgste) & ~mask);
590 }
591 
set_pgste_bit(pgste_t pgste,unsigned long mask)592 static inline pgste_t set_pgste_bit(pgste_t pgste, unsigned long mask)
593 {
594 	return __pgste(pgste_val(pgste) | mask);
595 }
596 
clear_pte_bit(pte_t pte,pgprot_t prot)597 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
598 {
599 	return __pte(pte_val(pte) & ~pgprot_val(prot));
600 }
601 
set_pte_bit(pte_t pte,pgprot_t prot)602 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
603 {
604 	return __pte(pte_val(pte) | pgprot_val(prot));
605 }
606 
clear_pmd_bit(pmd_t pmd,pgprot_t prot)607 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
608 {
609 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
610 }
611 
set_pmd_bit(pmd_t pmd,pgprot_t prot)612 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
613 {
614 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
615 }
616 
clear_pud_bit(pud_t pud,pgprot_t prot)617 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
618 {
619 	return __pud(pud_val(pud) & ~pgprot_val(prot));
620 }
621 
set_pud_bit(pud_t pud,pgprot_t prot)622 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
623 {
624 	return __pud(pud_val(pud) | pgprot_val(prot));
625 }
626 
627 /*
628  * As soon as the guest uses storage keys or enables PV, we deduplicate all
629  * mapped shared zeropages and prevent new shared zeropages from getting
630  * mapped.
631  */
632 #define mm_forbids_zeropage mm_forbids_zeropage
mm_forbids_zeropage(struct mm_struct * mm)633 static inline int mm_forbids_zeropage(struct mm_struct *mm)
634 {
635 #ifdef CONFIG_PGSTE
636 	if (!mm->context.allow_cow_sharing)
637 		return 1;
638 #endif
639 	return 0;
640 }
641 
mm_uses_skeys(struct mm_struct * mm)642 static inline int mm_uses_skeys(struct mm_struct *mm)
643 {
644 #ifdef CONFIG_PGSTE
645 	if (mm->context.uses_skeys)
646 		return 1;
647 #endif
648 	return 0;
649 }
650 
csp(unsigned int * ptr,unsigned int old,unsigned int new)651 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
652 {
653 	union register_pair r1 = { .even = old, .odd = new, };
654 	unsigned long address = (unsigned long)ptr | 1;
655 
656 	asm volatile(
657 		"	csp	%[r1],%[address]"
658 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
659 		: [address] "d" (address)
660 		: "cc");
661 }
662 
663 /**
664  * cspg() - Compare and Swap and Purge (CSPG)
665  * @ptr: Pointer to the value to be exchanged
666  * @old: The expected old value
667  * @new: The new value
668  *
669  * Return: True if compare and swap was successful, otherwise false.
670  */
cspg(unsigned long * ptr,unsigned long old,unsigned long new)671 static inline bool cspg(unsigned long *ptr, unsigned long old, unsigned long new)
672 {
673 	union register_pair r1 = { .even = old, .odd = new, };
674 	unsigned long address = (unsigned long)ptr | 1;
675 
676 	asm volatile(
677 		"	cspg	%[r1],%[address]"
678 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
679 		: [address] "d" (address)
680 		: "cc");
681 	return old == r1.even;
682 }
683 
684 #define CRDTE_DTT_PAGE		0x00UL
685 #define CRDTE_DTT_SEGMENT	0x10UL
686 #define CRDTE_DTT_REGION3	0x14UL
687 #define CRDTE_DTT_REGION2	0x18UL
688 #define CRDTE_DTT_REGION1	0x1cUL
689 
690 /**
691  * crdte() - Compare and Replace DAT Table Entry
692  * @old:     The expected old value
693  * @new:     The new value
694  * @table:   Pointer to the value to be exchanged
695  * @dtt:     Table type of the table to be exchanged
696  * @address: The address mapped by the entry to be replaced
697  * @asce:    The ASCE of this entry
698  *
699  * Return: True if compare and replace was successful, otherwise false.
700  */
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)701 static inline bool crdte(unsigned long old, unsigned long new,
702 			 unsigned long *table, unsigned long dtt,
703 			 unsigned long address, unsigned long asce)
704 {
705 	union register_pair r1 = { .even = old, .odd = new, };
706 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
707 
708 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
709 		     : [r1] "+&d" (r1.pair)
710 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
711 		     : "memory", "cc");
712 	return old == r1.even;
713 }
714 
715 /*
716  * pgd/p4d/pud/pmd/pte query functions
717  */
pgd_folded(pgd_t pgd)718 static inline int pgd_folded(pgd_t pgd)
719 {
720 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
721 }
722 
pgd_present(pgd_t pgd)723 static inline int pgd_present(pgd_t pgd)
724 {
725 	if (pgd_folded(pgd))
726 		return 1;
727 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
728 }
729 
pgd_none(pgd_t pgd)730 static inline int pgd_none(pgd_t pgd)
731 {
732 	if (pgd_folded(pgd))
733 		return 0;
734 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
735 }
736 
pgd_bad(pgd_t pgd)737 static inline int pgd_bad(pgd_t pgd)
738 {
739 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
740 		return 0;
741 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
742 }
743 
pgd_pfn(pgd_t pgd)744 static inline unsigned long pgd_pfn(pgd_t pgd)
745 {
746 	unsigned long origin_mask;
747 
748 	origin_mask = _REGION_ENTRY_ORIGIN;
749 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
750 }
751 
p4d_folded(p4d_t p4d)752 static inline int p4d_folded(p4d_t p4d)
753 {
754 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
755 }
756 
p4d_present(p4d_t p4d)757 static inline int p4d_present(p4d_t p4d)
758 {
759 	if (p4d_folded(p4d))
760 		return 1;
761 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
762 }
763 
p4d_none(p4d_t p4d)764 static inline int p4d_none(p4d_t p4d)
765 {
766 	if (p4d_folded(p4d))
767 		return 0;
768 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
769 }
770 
p4d_pfn(p4d_t p4d)771 static inline unsigned long p4d_pfn(p4d_t p4d)
772 {
773 	unsigned long origin_mask;
774 
775 	origin_mask = _REGION_ENTRY_ORIGIN;
776 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
777 }
778 
pud_folded(pud_t pud)779 static inline int pud_folded(pud_t pud)
780 {
781 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
782 }
783 
pud_present(pud_t pud)784 static inline int pud_present(pud_t pud)
785 {
786 	if (pud_folded(pud))
787 		return 1;
788 	return (pud_val(pud) & _REGION3_ENTRY_PRESENT) != 0;
789 }
790 
pud_none(pud_t pud)791 static inline int pud_none(pud_t pud)
792 {
793 	if (pud_folded(pud))
794 		return 0;
795 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
796 }
797 
798 #define pud_leaf pud_leaf
pud_leaf(pud_t pud)799 static inline bool pud_leaf(pud_t pud)
800 {
801 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
802 		return 0;
803 	return (pud_present(pud) && (pud_val(pud) & _REGION3_ENTRY_LARGE) != 0);
804 }
805 
pmd_present(pmd_t pmd)806 static inline int pmd_present(pmd_t pmd)
807 {
808 	return (pmd_val(pmd) & _SEGMENT_ENTRY_PRESENT) != 0;
809 }
810 
811 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pmd)812 static inline bool pmd_leaf(pmd_t pmd)
813 {
814 	return (pmd_present(pmd) && (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0);
815 }
816 
pmd_bad(pmd_t pmd)817 static inline int pmd_bad(pmd_t pmd)
818 {
819 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_leaf(pmd))
820 		return 1;
821 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
822 }
823 
pud_bad(pud_t pud)824 static inline int pud_bad(pud_t pud)
825 {
826 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
827 
828 	if (type > _REGION_ENTRY_TYPE_R3 || pud_leaf(pud))
829 		return 1;
830 	if (type < _REGION_ENTRY_TYPE_R3)
831 		return 0;
832 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
833 }
834 
p4d_bad(p4d_t p4d)835 static inline int p4d_bad(p4d_t p4d)
836 {
837 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
838 
839 	if (type > _REGION_ENTRY_TYPE_R2)
840 		return 1;
841 	if (type < _REGION_ENTRY_TYPE_R2)
842 		return 0;
843 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
844 }
845 
pmd_none(pmd_t pmd)846 static inline int pmd_none(pmd_t pmd)
847 {
848 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
849 }
850 
851 #define pmd_write pmd_write
pmd_write(pmd_t pmd)852 static inline int pmd_write(pmd_t pmd)
853 {
854 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
855 }
856 
857 #define pud_write pud_write
pud_write(pud_t pud)858 static inline int pud_write(pud_t pud)
859 {
860 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
861 }
862 
863 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)864 static inline int pmd_dirty(pmd_t pmd)
865 {
866 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
867 }
868 
869 #define pmd_young pmd_young
pmd_young(pmd_t pmd)870 static inline int pmd_young(pmd_t pmd)
871 {
872 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
873 }
874 
pte_present(pte_t pte)875 static inline int pte_present(pte_t pte)
876 {
877 	/* Bit pattern: (pte & 0x001) == 0x001 */
878 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
879 }
880 
pte_none(pte_t pte)881 static inline int pte_none(pte_t pte)
882 {
883 	/* Bit pattern: pte == 0x400 */
884 	return pte_val(pte) == _PAGE_INVALID;
885 }
886 
pte_swap(pte_t pte)887 static inline int pte_swap(pte_t pte)
888 {
889 	/* Bit pattern: (pte & 0x201) == 0x200 */
890 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
891 		== _PAGE_PROTECT;
892 }
893 
pte_special(pte_t pte)894 static inline int pte_special(pte_t pte)
895 {
896 	return (pte_val(pte) & _PAGE_SPECIAL);
897 }
898 
899 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)900 static inline int pte_same(pte_t a, pte_t b)
901 {
902 	return pte_val(a) == pte_val(b);
903 }
904 
905 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)906 static inline int pte_protnone(pte_t pte)
907 {
908 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
909 }
910 
pmd_protnone(pmd_t pmd)911 static inline int pmd_protnone(pmd_t pmd)
912 {
913 	/* pmd_leaf(pmd) implies pmd_present(pmd) */
914 	return pmd_leaf(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
915 }
916 #endif
917 
pte_swp_exclusive(pte_t pte)918 static inline bool pte_swp_exclusive(pte_t pte)
919 {
920 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
921 }
922 
pte_swp_mkexclusive(pte_t pte)923 static inline pte_t pte_swp_mkexclusive(pte_t pte)
924 {
925 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
926 }
927 
pte_swp_clear_exclusive(pte_t pte)928 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
929 {
930 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
931 }
932 
pte_soft_dirty(pte_t pte)933 static inline int pte_soft_dirty(pte_t pte)
934 {
935 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
936 }
937 #define pte_swp_soft_dirty pte_soft_dirty
938 
pte_mksoft_dirty(pte_t pte)939 static inline pte_t pte_mksoft_dirty(pte_t pte)
940 {
941 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
942 }
943 #define pte_swp_mksoft_dirty pte_mksoft_dirty
944 
pte_clear_soft_dirty(pte_t pte)945 static inline pte_t pte_clear_soft_dirty(pte_t pte)
946 {
947 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
948 }
949 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
950 
pmd_soft_dirty(pmd_t pmd)951 static inline int pmd_soft_dirty(pmd_t pmd)
952 {
953 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
954 }
955 
pmd_mksoft_dirty(pmd_t pmd)956 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
957 {
958 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
959 }
960 
pmd_clear_soft_dirty(pmd_t pmd)961 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
962 {
963 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
964 }
965 
966 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
967 #define pmd_swp_soft_dirty(pmd)		pmd_soft_dirty(pmd)
968 #define pmd_swp_mksoft_dirty(pmd)	pmd_mksoft_dirty(pmd)
969 #define pmd_swp_clear_soft_dirty(pmd)	pmd_clear_soft_dirty(pmd)
970 #endif
971 
972 /*
973  * query functions pte_write/pte_dirty/pte_young only work if
974  * pte_present() is true. Undefined behaviour if not..
975  */
pte_write(pte_t pte)976 static inline int pte_write(pte_t pte)
977 {
978 	return (pte_val(pte) & _PAGE_WRITE) != 0;
979 }
980 
pte_dirty(pte_t pte)981 static inline int pte_dirty(pte_t pte)
982 {
983 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
984 }
985 
pte_young(pte_t pte)986 static inline int pte_young(pte_t pte)
987 {
988 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
989 }
990 
991 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)992 static inline int pte_unused(pte_t pte)
993 {
994 	return pte_val(pte) & _PAGE_UNUSED;
995 }
996 
997 /*
998  * Extract the pgprot value from the given pte while at the same time making it
999  * usable for kernel address space mappings where fault driven dirty and
1000  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
1001  * must not be set.
1002  */
1003 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)1004 static inline pgprot_t pte_pgprot(pte_t pte)
1005 {
1006 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
1007 
1008 	if (pte_write(pte))
1009 		pte_flags |= pgprot_val(PAGE_KERNEL);
1010 	else
1011 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
1012 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
1013 
1014 	return __pgprot(pte_flags);
1015 }
1016 
1017 /*
1018  * pgd/pmd/pte modification functions
1019  */
1020 
set_pgd(pgd_t * pgdp,pgd_t pgd)1021 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1022 {
1023 	WRITE_ONCE(*pgdp, pgd);
1024 }
1025 
set_p4d(p4d_t * p4dp,p4d_t p4d)1026 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1027 {
1028 	WRITE_ONCE(*p4dp, p4d);
1029 }
1030 
set_pud(pud_t * pudp,pud_t pud)1031 static inline void set_pud(pud_t *pudp, pud_t pud)
1032 {
1033 	WRITE_ONCE(*pudp, pud);
1034 }
1035 
set_pmd(pmd_t * pmdp,pmd_t pmd)1036 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
1037 {
1038 	WRITE_ONCE(*pmdp, pmd);
1039 }
1040 
set_pte(pte_t * ptep,pte_t pte)1041 static inline void set_pte(pte_t *ptep, pte_t pte)
1042 {
1043 	WRITE_ONCE(*ptep, pte);
1044 }
1045 
pgd_clear(pgd_t * pgd)1046 static inline void pgd_clear(pgd_t *pgd)
1047 {
1048 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1049 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
1050 }
1051 
p4d_clear(p4d_t * p4d)1052 static inline void p4d_clear(p4d_t *p4d)
1053 {
1054 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1055 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
1056 }
1057 
pud_clear(pud_t * pud)1058 static inline void pud_clear(pud_t *pud)
1059 {
1060 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1061 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
1062 }
1063 
pmd_clear(pmd_t * pmdp)1064 static inline void pmd_clear(pmd_t *pmdp)
1065 {
1066 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1067 }
1068 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1069 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1070 {
1071 	set_pte(ptep, __pte(_PAGE_INVALID));
1072 }
1073 
1074 /*
1075  * The following pte modification functions only work if
1076  * pte_present() is true. Undefined behaviour if not..
1077  */
pte_modify(pte_t pte,pgprot_t newprot)1078 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1079 {
1080 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
1081 	pte = set_pte_bit(pte, newprot);
1082 	/*
1083 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
1084 	 * has the invalid bit set, clear it again for readable, young pages
1085 	 */
1086 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
1087 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1088 	/*
1089 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
1090 	 * protection bit set, clear it again for writable, dirty pages
1091 	 */
1092 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1093 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1094 	return pte;
1095 }
1096 
pte_wrprotect(pte_t pte)1097 static inline pte_t pte_wrprotect(pte_t pte)
1098 {
1099 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1100 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1101 }
1102 
pte_mkwrite_novma(pte_t pte)1103 static inline pte_t pte_mkwrite_novma(pte_t pte)
1104 {
1105 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1106 	if (pte_val(pte) & _PAGE_DIRTY)
1107 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1108 	return pte;
1109 }
1110 
pte_mkclean(pte_t pte)1111 static inline pte_t pte_mkclean(pte_t pte)
1112 {
1113 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1114 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1115 }
1116 
pte_mkdirty(pte_t pte)1117 static inline pte_t pte_mkdirty(pte_t pte)
1118 {
1119 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1120 	if (pte_val(pte) & _PAGE_WRITE)
1121 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1122 	return pte;
1123 }
1124 
pte_mkold(pte_t pte)1125 static inline pte_t pte_mkold(pte_t pte)
1126 {
1127 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1128 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1129 }
1130 
pte_mkyoung(pte_t pte)1131 static inline pte_t pte_mkyoung(pte_t pte)
1132 {
1133 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1134 	if (pte_val(pte) & _PAGE_READ)
1135 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1136 	return pte;
1137 }
1138 
pte_mkspecial(pte_t pte)1139 static inline pte_t pte_mkspecial(pte_t pte)
1140 {
1141 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1142 }
1143 
1144 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)1145 static inline pte_t pte_mkhuge(pte_t pte)
1146 {
1147 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1148 }
1149 #endif
1150 
1151 #define IPTE_GLOBAL	0
1152 #define	IPTE_LOCAL	1
1153 
1154 #define IPTE_NODAT	0x400
1155 #define IPTE_GUEST_ASCE	0x800
1156 
__ptep_rdp(unsigned long addr,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1157 static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1158 				       unsigned long opt, unsigned long asce,
1159 				       int local)
1160 {
1161 	unsigned long pto;
1162 
1163 	pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1164 	asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1165 		     : "+m" (*ptep)
1166 		     : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1167 		       [asce] "a" (asce), [m4] "i" (local));
1168 }
1169 
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1170 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1171 					unsigned long opt, unsigned long asce,
1172 					int local)
1173 {
1174 	unsigned long pto = __pa(ptep);
1175 
1176 	if (__builtin_constant_p(opt) && opt == 0) {
1177 		/* Invalidation + TLB flush for the pte */
1178 		asm volatile(
1179 			"	ipte	%[r1],%[r2],0,%[m4]"
1180 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1181 			  [m4] "i" (local));
1182 		return;
1183 	}
1184 
1185 	/* Invalidate ptes with options + TLB flush of the ptes */
1186 	opt = opt | (asce & _ASCE_ORIGIN);
1187 	asm volatile(
1188 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1189 		: [r2] "+a" (address), [r3] "+a" (opt)
1190 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1191 }
1192 
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1193 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1194 					      pte_t *ptep, int local)
1195 {
1196 	unsigned long pto = __pa(ptep);
1197 
1198 	/* Invalidate a range of ptes + TLB flush of the ptes */
1199 	do {
1200 		asm volatile(
1201 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1202 			: [r2] "+a" (address), [r3] "+a" (nr)
1203 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1204 	} while (nr != 255);
1205 }
1206 
1207 /*
1208  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1209  * both clear the TLB for the unmapped pte. The reason is that
1210  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1211  * to modify an active pte. The sequence is
1212  *   1) ptep_get_and_clear
1213  *   2) set_pte_at
1214  *   3) flush_tlb_range
1215  * On s390 the tlb needs to get flushed with the modification of the pte
1216  * if the pte is active. The only way how this can be implemented is to
1217  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1218  * is a nop.
1219  */
1220 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1221 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1222 
1223 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1224 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1225 					    unsigned long addr, pte_t *ptep)
1226 {
1227 	pte_t pte = *ptep;
1228 
1229 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1230 	return pte_young(pte);
1231 }
1232 
1233 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1234 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1235 					 unsigned long address, pte_t *ptep)
1236 {
1237 	return ptep_test_and_clear_young(vma, address, ptep);
1238 }
1239 
1240 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1241 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1242 				       unsigned long addr, pte_t *ptep)
1243 {
1244 	pte_t res;
1245 
1246 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1247 	/* At this point the reference through the mapping is still present */
1248 	if (mm_is_protected(mm) && pte_present(res))
1249 		uv_convert_from_secure_pte(res);
1250 	return res;
1251 }
1252 
1253 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1254 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1255 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1256 			     pte_t *, pte_t, pte_t);
1257 
1258 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1259 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1260 				     unsigned long addr, pte_t *ptep)
1261 {
1262 	pte_t res;
1263 
1264 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1265 	/* At this point the reference through the mapping is still present */
1266 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1267 		uv_convert_from_secure_pte(res);
1268 	return res;
1269 }
1270 
1271 /*
1272  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1273  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1274  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1275  * cannot be accessed while the batched unmap is running. In this case
1276  * full==1 and a simple pte_clear is enough. See tlb.h.
1277  */
1278 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1279 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1280 					    unsigned long addr,
1281 					    pte_t *ptep, int full)
1282 {
1283 	pte_t res;
1284 
1285 	if (full) {
1286 		res = *ptep;
1287 		set_pte(ptep, __pte(_PAGE_INVALID));
1288 	} else {
1289 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1290 	}
1291 	/* Nothing to do */
1292 	if (!mm_is_protected(mm) || !pte_present(res))
1293 		return res;
1294 	/*
1295 	 * At this point the reference through the mapping is still present.
1296 	 * The notifier should have destroyed all protected vCPUs at this
1297 	 * point, so the destroy should be successful.
1298 	 */
1299 	if (full && !uv_destroy_pte(res))
1300 		return res;
1301 	/*
1302 	 * If something went wrong and the page could not be destroyed, or
1303 	 * if this is not a mm teardown, the slower export is used as
1304 	 * fallback instead.
1305 	 */
1306 	uv_convert_from_secure_pte(res);
1307 	return res;
1308 }
1309 
1310 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1311 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1312 				      unsigned long addr, pte_t *ptep)
1313 {
1314 	pte_t pte = *ptep;
1315 
1316 	if (pte_write(pte))
1317 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1318 }
1319 
1320 /*
1321  * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1322  * bits in the comparison. Those might change e.g. because of dirty and young
1323  * tracking.
1324  */
pte_allow_rdp(pte_t old,pte_t new)1325 static inline int pte_allow_rdp(pte_t old, pte_t new)
1326 {
1327 	/*
1328 	 * Only allow changes from RO to RW
1329 	 */
1330 	if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1331 		return 0;
1332 
1333 	return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1334 }
1335 
flush_tlb_fix_spurious_fault(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1336 static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1337 						unsigned long address,
1338 						pte_t *ptep)
1339 {
1340 	/*
1341 	 * RDP might not have propagated the PTE protection reset to all CPUs,
1342 	 * so there could be spurious TLB protection faults.
1343 	 * NOTE: This will also be called when a racing pagetable update on
1344 	 * another thread already installed the correct PTE. Both cases cannot
1345 	 * really be distinguished.
1346 	 * Therefore, only do the local TLB flush when RDP can be used, and the
1347 	 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1348 	 * A local RDP can be used to do the flush.
1349 	 */
1350 	if (cpu_has_rdp() && !(pte_val(*ptep) & _PAGE_PROTECT))
1351 		__ptep_rdp(address, ptep, 0, 0, 1);
1352 }
1353 #define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1354 
1355 void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1356 			 pte_t new);
1357 
1358 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1359 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1360 					unsigned long addr, pte_t *ptep,
1361 					pte_t entry, int dirty)
1362 {
1363 	if (pte_same(*ptep, entry))
1364 		return 0;
1365 	if (cpu_has_rdp() && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1366 		ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1367 	else
1368 		ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1369 	return 1;
1370 }
1371 
1372 /*
1373  * Additional functions to handle KVM guest page tables
1374  */
1375 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1376 		     pte_t *ptep, pte_t entry);
1377 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1378 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1379 		 pte_t *ptep, unsigned long bits);
1380 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1381 		    pte_t *ptep, int prot, unsigned long bit);
1382 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1383 		     pte_t *ptep , int reset);
1384 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1385 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1386 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1387 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1388 
1389 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1390 			    pte_t *ptep);
1391 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1392 			  unsigned char key, bool nq);
1393 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1394 			       unsigned char key, unsigned char *oldkey,
1395 			       bool nq, bool mr, bool mc);
1396 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1397 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1398 			  unsigned char *key);
1399 
1400 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1401 				unsigned long bits, unsigned long value);
1402 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1403 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1404 			unsigned long *oldpte, unsigned long *oldpgste);
1405 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1406 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1407 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1408 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1409 
1410 #define pgprot_writecombine	pgprot_writecombine
1411 pgprot_t pgprot_writecombine(pgprot_t prot);
1412 
1413 #define PFN_PTE_SHIFT		PAGE_SHIFT
1414 
1415 /*
1416  * Set multiple PTEs to consecutive pages with a single call.  All PTEs
1417  * are within the same folio, PMD and VMA.
1418  */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry,unsigned int nr)1419 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1420 			      pte_t *ptep, pte_t entry, unsigned int nr)
1421 {
1422 	if (pte_present(entry))
1423 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1424 	if (mm_has_pgste(mm)) {
1425 		for (;;) {
1426 			ptep_set_pte_at(mm, addr, ptep, entry);
1427 			if (--nr == 0)
1428 				break;
1429 			ptep++;
1430 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1431 			addr += PAGE_SIZE;
1432 		}
1433 	} else {
1434 		for (;;) {
1435 			set_pte(ptep, entry);
1436 			if (--nr == 0)
1437 				break;
1438 			ptep++;
1439 			entry = __pte(pte_val(entry) + PAGE_SIZE);
1440 		}
1441 	}
1442 }
1443 #define set_ptes set_ptes
1444 
1445 /*
1446  * Conversion functions: convert a page and protection to a page entry,
1447  * and a page entry and page directory to the page they refer to.
1448  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1449 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1450 {
1451 	pte_t __pte;
1452 
1453 	__pte = __pte(physpage | pgprot_val(pgprot));
1454 	return pte_mkyoung(__pte);
1455 }
1456 
1457 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1458 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1459 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1460 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1461 
1462 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1463 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1464 
pmd_deref(pmd_t pmd)1465 static inline unsigned long pmd_deref(pmd_t pmd)
1466 {
1467 	unsigned long origin_mask;
1468 
1469 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1470 	if (pmd_leaf(pmd))
1471 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1472 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1473 }
1474 
pmd_pfn(pmd_t pmd)1475 static inline unsigned long pmd_pfn(pmd_t pmd)
1476 {
1477 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1478 }
1479 
pud_deref(pud_t pud)1480 static inline unsigned long pud_deref(pud_t pud)
1481 {
1482 	unsigned long origin_mask;
1483 
1484 	origin_mask = _REGION_ENTRY_ORIGIN;
1485 	if (pud_leaf(pud))
1486 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1487 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1488 }
1489 
1490 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)1491 static inline unsigned long pud_pfn(pud_t pud)
1492 {
1493 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1494 }
1495 
1496 /*
1497  * The pgd_offset function *always* adds the index for the top-level
1498  * region/segment table. This is done to get a sequence like the
1499  * following to work:
1500  *	pgdp = pgd_offset(current->mm, addr);
1501  *	pgd = READ_ONCE(*pgdp);
1502  *	p4dp = p4d_offset(&pgd, addr);
1503  *	...
1504  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1505  * only add an index if they dereferenced the pointer.
1506  */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1507 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1508 {
1509 	unsigned long rste;
1510 	unsigned int shift;
1511 
1512 	/* Get the first entry of the top level table */
1513 	rste = pgd_val(*pgd);
1514 	/* Pick up the shift from the table type of the first entry */
1515 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1516 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1517 }
1518 
1519 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1520 
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1521 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1522 {
1523 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1524 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1525 	return (p4d_t *) pgdp;
1526 }
1527 #define p4d_offset_lockless p4d_offset_lockless
1528 
p4d_offset(pgd_t * pgdp,unsigned long address)1529 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1530 {
1531 	return p4d_offset_lockless(pgdp, *pgdp, address);
1532 }
1533 
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1534 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1535 {
1536 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1537 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1538 	return (pud_t *) p4dp;
1539 }
1540 #define pud_offset_lockless pud_offset_lockless
1541 
pud_offset(p4d_t * p4dp,unsigned long address)1542 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1543 {
1544 	return pud_offset_lockless(p4dp, *p4dp, address);
1545 }
1546 #define pud_offset pud_offset
1547 
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1548 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1549 {
1550 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1551 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1552 	return (pmd_t *) pudp;
1553 }
1554 #define pmd_offset_lockless pmd_offset_lockless
1555 
pmd_offset(pud_t * pudp,unsigned long address)1556 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1557 {
1558 	return pmd_offset_lockless(pudp, *pudp, address);
1559 }
1560 #define pmd_offset pmd_offset
1561 
pmd_page_vaddr(pmd_t pmd)1562 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1563 {
1564 	return (unsigned long) pmd_deref(pmd);
1565 }
1566 
gup_fast_permitted(unsigned long start,unsigned long end)1567 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1568 {
1569 	return end <= current->mm->context.asce_limit;
1570 }
1571 #define gup_fast_permitted gup_fast_permitted
1572 
1573 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1574 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1575 #define pte_page(x) pfn_to_page(pte_pfn(x))
1576 
1577 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1578 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1579 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1580 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1581 
pmd_wrprotect(pmd_t pmd)1582 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1583 {
1584 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1585 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1586 }
1587 
pmd_mkwrite_novma(pmd_t pmd)1588 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
1589 {
1590 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1591 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1592 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1593 	return pmd;
1594 }
1595 
pmd_mkclean(pmd_t pmd)1596 static inline pmd_t pmd_mkclean(pmd_t pmd)
1597 {
1598 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1599 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1600 }
1601 
pmd_mkdirty(pmd_t pmd)1602 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1603 {
1604 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1605 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1606 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1607 	return pmd;
1608 }
1609 
pud_wrprotect(pud_t pud)1610 static inline pud_t pud_wrprotect(pud_t pud)
1611 {
1612 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1613 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1614 }
1615 
pud_mkwrite(pud_t pud)1616 static inline pud_t pud_mkwrite(pud_t pud)
1617 {
1618 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1619 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1620 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1621 	return pud;
1622 }
1623 
pud_mkclean(pud_t pud)1624 static inline pud_t pud_mkclean(pud_t pud)
1625 {
1626 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1627 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1628 }
1629 
pud_mkdirty(pud_t pud)1630 static inline pud_t pud_mkdirty(pud_t pud)
1631 {
1632 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1633 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1634 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1635 	return pud;
1636 }
1637 
1638 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1639 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1640 {
1641 	/*
1642 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1643 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1644 	 */
1645 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1646 		return pgprot_val(SEGMENT_NONE);
1647 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1648 		return pgprot_val(SEGMENT_RO);
1649 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1650 		return pgprot_val(SEGMENT_RX);
1651 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1652 		return pgprot_val(SEGMENT_RW);
1653 	return pgprot_val(SEGMENT_RWX);
1654 }
1655 
pmd_mkyoung(pmd_t pmd)1656 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1657 {
1658 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1659 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1660 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1661 	return pmd;
1662 }
1663 
pmd_mkold(pmd_t pmd)1664 static inline pmd_t pmd_mkold(pmd_t pmd)
1665 {
1666 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1667 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1668 }
1669 
pmd_modify(pmd_t pmd,pgprot_t newprot)1670 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1671 {
1672 	unsigned long mask;
1673 
1674 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1675 	mask |= _SEGMENT_ENTRY_DIRTY;
1676 	mask |= _SEGMENT_ENTRY_YOUNG;
1677 	mask |=	_SEGMENT_ENTRY_LARGE;
1678 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1679 	pmd = __pmd(pmd_val(pmd) & mask);
1680 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1681 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1682 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1683 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1684 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1685 	return pmd;
1686 }
1687 
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1688 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1689 {
1690 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1691 }
1692 
1693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1694 
__pmdp_csp(pmd_t * pmdp)1695 static inline void __pmdp_csp(pmd_t *pmdp)
1696 {
1697 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1698 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1699 }
1700 
1701 #define IDTE_GLOBAL	0
1702 #define IDTE_LOCAL	1
1703 
1704 #define IDTE_PTOA	0x0800
1705 #define IDTE_NODAT	0x1000
1706 #define IDTE_GUEST_ASCE	0x2000
1707 
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1708 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1709 					unsigned long opt, unsigned long asce,
1710 					int local)
1711 {
1712 	unsigned long sto;
1713 
1714 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1715 	if (__builtin_constant_p(opt) && opt == 0) {
1716 		/* flush without guest asce */
1717 		asm volatile(
1718 			"	idte	%[r1],0,%[r2],%[m4]"
1719 			: "+m" (*pmdp)
1720 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1721 			  [m4] "i" (local)
1722 			: "cc" );
1723 	} else {
1724 		/* flush with guest asce */
1725 		asm volatile(
1726 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1727 			: "+m" (*pmdp)
1728 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1729 			  [r3] "a" (asce), [m4] "i" (local)
1730 			: "cc" );
1731 	}
1732 }
1733 
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1734 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1735 					unsigned long opt, unsigned long asce,
1736 					int local)
1737 {
1738 	unsigned long r3o;
1739 
1740 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1741 	r3o |= _ASCE_TYPE_REGION3;
1742 	if (__builtin_constant_p(opt) && opt == 0) {
1743 		/* flush without guest asce */
1744 		asm volatile(
1745 			"	idte	%[r1],0,%[r2],%[m4]"
1746 			: "+m" (*pudp)
1747 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1748 			  [m4] "i" (local)
1749 			: "cc");
1750 	} else {
1751 		/* flush with guest asce */
1752 		asm volatile(
1753 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1754 			: "+m" (*pudp)
1755 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1756 			  [r3] "a" (asce), [m4] "i" (local)
1757 			: "cc" );
1758 	}
1759 }
1760 
1761 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1762 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1763 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1764 
1765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1766 
1767 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1768 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1769 				pgtable_t pgtable);
1770 
1771 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1772 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1773 
1774 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1775 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1776 					unsigned long addr, pmd_t *pmdp,
1777 					pmd_t entry, int dirty)
1778 {
1779 	VM_BUG_ON(addr & ~HPAGE_MASK);
1780 
1781 	entry = pmd_mkyoung(entry);
1782 	if (dirty)
1783 		entry = pmd_mkdirty(entry);
1784 	if (pmd_val(*pmdp) == pmd_val(entry))
1785 		return 0;
1786 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1787 	return 1;
1788 }
1789 
1790 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1791 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1792 					    unsigned long addr, pmd_t *pmdp)
1793 {
1794 	pmd_t pmd = *pmdp;
1795 
1796 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1797 	return pmd_young(pmd);
1798 }
1799 
1800 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1801 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1802 					 unsigned long addr, pmd_t *pmdp)
1803 {
1804 	VM_BUG_ON(addr & ~HPAGE_MASK);
1805 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1806 }
1807 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1808 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1809 			      pmd_t *pmdp, pmd_t entry)
1810 {
1811 	set_pmd(pmdp, entry);
1812 }
1813 
pmd_mkhuge(pmd_t pmd)1814 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1815 {
1816 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1817 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1818 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1819 }
1820 
1821 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1822 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1823 					    unsigned long addr, pmd_t *pmdp)
1824 {
1825 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1826 }
1827 
1828 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1829 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1830 						 unsigned long addr,
1831 						 pmd_t *pmdp, int full)
1832 {
1833 	if (full) {
1834 		pmd_t pmd = *pmdp;
1835 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1836 		return pmd;
1837 	}
1838 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1839 }
1840 
1841 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1842 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1843 					  unsigned long addr, pmd_t *pmdp)
1844 {
1845 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1846 }
1847 
1848 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1849 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1850 				   unsigned long addr, pmd_t *pmdp)
1851 {
1852 	pmd_t pmd;
1853 
1854 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
1855 	pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1856 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1857 }
1858 
1859 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1860 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1861 				      unsigned long addr, pmd_t *pmdp)
1862 {
1863 	pmd_t pmd = *pmdp;
1864 
1865 	if (pmd_write(pmd))
1866 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1867 }
1868 
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1869 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1870 					unsigned long address,
1871 					pmd_t *pmdp)
1872 {
1873 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1874 }
1875 #define pmdp_collapse_flush pmdp_collapse_flush
1876 
1877 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1878 
pmd_trans_huge(pmd_t pmd)1879 static inline int pmd_trans_huge(pmd_t pmd)
1880 {
1881 	return pmd_leaf(pmd);
1882 }
1883 
1884 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1885 static inline int has_transparent_hugepage(void)
1886 {
1887 	return cpu_has_edat1() ? 1 : 0;
1888 }
1889 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1890 
1891 /*
1892  * 64 bit swap entry format:
1893  * A page-table entry has some bits we have to treat in a special way.
1894  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1895  * as invalid.
1896  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1897  * |			  offset			|E11XX|type |S0|
1898  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1899  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1900  *
1901  * Bits 0-51 store the offset.
1902  * Bit 52 (E) is used to remember PG_anon_exclusive.
1903  * Bits 57-61 store the type.
1904  * Bit 62 (S) is used for softdirty tracking.
1905  * Bits 55 and 56 (X) are unused.
1906  */
1907 
1908 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1909 #define __SWP_OFFSET_SHIFT	12
1910 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1911 #define __SWP_TYPE_SHIFT	2
1912 
mk_swap_pte(unsigned long type,unsigned long offset)1913 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1914 {
1915 	unsigned long pteval;
1916 
1917 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1918 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1919 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1920 	return __pte(pteval);
1921 }
1922 
__swp_type(swp_entry_t entry)1923 static inline unsigned long __swp_type(swp_entry_t entry)
1924 {
1925 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1926 }
1927 
__swp_offset(swp_entry_t entry)1928 static inline unsigned long __swp_offset(swp_entry_t entry)
1929 {
1930 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1931 }
1932 
__swp_entry(unsigned long type,unsigned long offset)1933 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1934 {
1935 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1936 }
1937 
1938 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1939 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1940 
1941 /*
1942  * 64 bit swap entry format for REGION3 and SEGMENT table entries (RSTE)
1943  * Bits 59 and 63 are used to indicate the swap entry. Bit 58 marks the rste
1944  * as invalid.
1945  * A swap entry is indicated by bit pattern (rste & 0x011) == 0x010
1946  * |			  offset			|Xtype |11TT|S0|
1947  * |0000000000111111111122222222223333333333444444444455|555555|5566|66|
1948  * |0123456789012345678901234567890123456789012345678901|234567|8901|23|
1949  *
1950  * Bits 0-51 store the offset.
1951  * Bits 53-57 store the type.
1952  * Bit 62 (S) is used for softdirty tracking.
1953  * Bits 60-61 (TT) indicate the table type: 0x01 for REGION3 and 0x00 for SEGMENT.
1954  * Bit 52 (X) is unused.
1955  */
1956 
1957 #define __SWP_OFFSET_MASK_RSTE	((1UL << 52) - 1)
1958 #define __SWP_OFFSET_SHIFT_RSTE	12
1959 #define __SWP_TYPE_MASK_RSTE		((1UL << 5) - 1)
1960 #define __SWP_TYPE_SHIFT_RSTE	6
1961 
1962 /*
1963  * TT bits set to 0x00 == SEGMENT. For REGION3 entries, caller must add R3
1964  * bits 0x01. See also __set_huge_pte_at().
1965  */
mk_swap_rste(unsigned long type,unsigned long offset)1966 static inline unsigned long mk_swap_rste(unsigned long type, unsigned long offset)
1967 {
1968 	unsigned long rste;
1969 
1970 	rste = _RST_ENTRY_INVALID | _RST_ENTRY_COMM;
1971 	rste |= (offset & __SWP_OFFSET_MASK_RSTE) << __SWP_OFFSET_SHIFT_RSTE;
1972 	rste |= (type & __SWP_TYPE_MASK_RSTE) << __SWP_TYPE_SHIFT_RSTE;
1973 	return rste;
1974 }
1975 
__swp_type_rste(swp_entry_t entry)1976 static inline unsigned long __swp_type_rste(swp_entry_t entry)
1977 {
1978 	return (entry.val >> __SWP_TYPE_SHIFT_RSTE) & __SWP_TYPE_MASK_RSTE;
1979 }
1980 
__swp_offset_rste(swp_entry_t entry)1981 static inline unsigned long __swp_offset_rste(swp_entry_t entry)
1982 {
1983 	return (entry.val >> __SWP_OFFSET_SHIFT_RSTE) & __SWP_OFFSET_MASK_RSTE;
1984 }
1985 
1986 #define __rste_to_swp_entry(rste)	((swp_entry_t) { rste })
1987 
1988 /*
1989  * s390 has different layout for PTE and region / segment table entries (RSTE).
1990  * This is also true for swap entries, and their swap type and offset encoding.
1991  * For hugetlbfs PTE_MARKER support, s390 has internal __swp_type_rste() and
1992  * __swp_offset_rste() helpers to correctly handle RSTE swap entries.
1993  *
1994  * But common swap code does not know about this difference, and only uses
1995  * __swp_type(), __swp_offset() and __swp_entry() helpers for conversion between
1996  * arch-dependent and arch-independent representation of swp_entry_t for all
1997  * pagetable levels. On s390, those helpers only work for PTE swap entries.
1998  *
1999  * Therefore, implement __pmd_to_swp_entry() to build a fake PTE swap entry
2000  * and return the arch-dependent representation of that. Correspondingly,
2001  * implement __swp_entry_to_pmd() to convert that into a proper PMD swap
2002  * entry again. With this, the arch-dependent swp_entry_t representation will
2003  * always look like a PTE swap entry in common code.
2004  *
2005  * This is somewhat similar to fake PTEs in hugetlbfs code for s390, but only
2006  * requires conversion of the swap type and offset, and not all the possible
2007  * PTE bits.
2008  */
__pmd_to_swp_entry(pmd_t pmd)2009 static inline swp_entry_t __pmd_to_swp_entry(pmd_t pmd)
2010 {
2011 	swp_entry_t arch_entry;
2012 	pte_t pte;
2013 
2014 	arch_entry = __rste_to_swp_entry(pmd_val(pmd));
2015 	pte = mk_swap_pte(__swp_type_rste(arch_entry), __swp_offset_rste(arch_entry));
2016 	return __pte_to_swp_entry(pte);
2017 }
2018 
__swp_entry_to_pmd(swp_entry_t arch_entry)2019 static inline pmd_t __swp_entry_to_pmd(swp_entry_t arch_entry)
2020 {
2021 	pmd_t pmd;
2022 
2023 	pmd = __pmd(mk_swap_rste(__swp_type(arch_entry), __swp_offset(arch_entry)));
2024 	return pmd;
2025 }
2026 
2027 extern int vmem_add_mapping(unsigned long start, unsigned long size);
2028 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
2029 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
2030 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
2031 extern void vmem_unmap_4k_page(unsigned long addr);
2032 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
2033 extern int s390_enable_sie(void);
2034 extern int s390_enable_skey(void);
2035 extern void s390_reset_cmma(struct mm_struct *mm);
2036 
2037 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
2038 #define HAVE_ARCH_UNMAPPED_AREA
2039 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2040 
2041 #define pmd_pgtable(pmd) \
2042 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
2043 
gmap_pgste_get_pgt_addr(unsigned long * pgt)2044 static inline unsigned long gmap_pgste_get_pgt_addr(unsigned long *pgt)
2045 {
2046 	unsigned long *pgstes, res;
2047 
2048 	pgstes = pgt + _PAGE_ENTRIES;
2049 
2050 	res = (pgstes[0] & PGSTE_ST2_MASK) << 16;
2051 	res |= pgstes[1] & PGSTE_ST2_MASK;
2052 	res |= (pgstes[2] & PGSTE_ST2_MASK) >> 16;
2053 	res |= (pgstes[3] & PGSTE_ST2_MASK) >> 32;
2054 
2055 	return res;
2056 }
2057 
2058 #endif /* _S390_PAGE_H */
2059